WO2022068208A1 - 手术器械、从操作设备及手术机器人 - Google Patents

手术器械、从操作设备及手术机器人 Download PDF

Info

Publication number
WO2022068208A1
WO2022068208A1 PCT/CN2021/092683 CN2021092683W WO2022068208A1 WO 2022068208 A1 WO2022068208 A1 WO 2022068208A1 CN 2021092683 W CN2021092683 W CN 2021092683W WO 2022068208 A1 WO2022068208 A1 WO 2022068208A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
decoupling
guide
cables
pair
Prior art date
Application number
PCT/CN2021/092683
Other languages
English (en)
French (fr)
Inventor
吴仲兵
上官希坤
王建辰
Original Assignee
深圳市精锋医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市精锋医疗科技有限公司 filed Critical 深圳市精锋医疗科技有限公司
Publication of WO2022068208A1 publication Critical patent/WO2022068208A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • A61B2034/715Cable tensioning mechanisms for removing slack

Definitions

  • the present invention relates to the field of medical instruments, in particular to a surgical instrument, a slave operating device applying the surgical instrument, and a surgical robot having the slave operating device.
  • Minimally invasive surgery refers to a surgical method that uses modern medical instruments such as laparoscope and thoracoscope and related equipment to perform surgery inside the human cavity. Compared with traditional surgical methods, minimally invasive surgery has the advantages of less trauma, less pain, and faster recovery.
  • the minimally invasive surgical robot usually includes a master operation console and a slave operation device.
  • the master operation console is used to send control commands to the slave operation device according to the operation of the doctor to control the slave operation device, and the slave operation device is used to respond to the transmission of the master operation console. control commands and perform corresponding surgical operations.
  • the slave operating device is connected with a surgical instrument that can be detached from the slave operating device.
  • the surgical instrument includes a driving device and an end effector for performing surgery.
  • the driving device is used for connecting the surgical instrument to the slave operating device and receiving the data from the slave operating device.
  • the driving force is used to drive the movement of the end effector, the driving device is connected with the end effector through the driving cable, and the driving device manipulates the movement of the end effector through the driving cable.
  • the end effector generally includes motion with three degrees of freedom, namely rotation, pitch motion and yaw motion.
  • Some end effectors also have autorotation motion, in which the yaw motion is controlled by a set of drive cables, and the drive cable for the pitch motion is Controlled by another set of drive cables, since the pitch and yaw movements of the end effector are orthogonal, there is a coupling between the drive cables that control the pitch and the drive cables that control the yaw when the end effector performs the pitch movement relationship, that is, the motion of the drive cable that controls pitch is limited to the drive cable that controls yaw, so this coupling relationship between the two needs to be decoupled.
  • the prior art adopts the method of software decoupling, but the algorithm of the software decoupling method is relatively complicated, which increases the complexity of the system control program, and the software decoupling method will have errors during data collection, so it cannot be accurate. to release the coupling between the two.
  • the present invention provides a surgical instrument, a slave operating device, and a surgical robot having the surgical instrument, wherein the surgical instrument includes an end effector, a driving device and a cable, and the cable includes a device for driving the A first pair of cables and a second pair of cables for the end effector to perform a yaw motion, and a third pair of cables for driving the end effector to perform a pitch motion, the driving device includes:
  • the guide mechanism includes a first guide part and a second guide part;
  • one end of the third pair of cables is connected to the third drive unit, and the drive unit manipulates the pitching motion of the end effector through the third pair of cables;
  • a decoupling mechanism includes a master decoupling member and a slave decoupling member
  • the slave decoupling member includes a carriage
  • the first guide portion is connected to the carriage
  • the first guide portion for cooperating with the second guide part to move along the guide direction relative to the second guide part
  • the main decoupling part is used for driving the carriage to move along the guide direction, so as to increase the first pair of the length of one of the cables and the second pair of cables within the drive device and reducing the length of the other pair of cables within the drive device to enable the drive unit to drive the end effector Perform a pitch motion.
  • the driving device further includes a mounting seat, the carriage is slidably disposed on the mounting seat, and the second guide portion is mounted on the mounting seat.
  • the first guide portion includes a straight shaft
  • the second guide portion includes an outer cylinder
  • the straight shaft passes through the outer cylinder
  • the straight shaft is configured to be in a straight line relative to the outer cylinder sports.
  • the mounting seat further has a mounting hole for mounting the outer cylinder, one end of the mounting hole has a first opening with an inner diameter substantially equal to the outer diameter of the outer cylinder, and the other end of the mounting hole has a The bottom of the outer cylinder is held, and the bottom has a second opening for the straight shaft to pass through.
  • the inner diameter of the second opening is smaller than the inner diameter of the first opening.
  • the guide mechanism further includes a baffle plate installed at the first opening for fixing the outer cylinder in the installation hole.
  • the baffle plate has a third opening, and the third opening is used for the straight shaft to pass through.
  • the inner diameter of the third opening is substantially equal to the inner diameter of the second opening.
  • the carriage includes a first arm and a second arm, and the straight shaft is connected between the first arm and the second arm.
  • the carriage further includes a third arm connected to the first arm and the second arm.
  • the straight axis is parallel to the third arm.
  • a first guide portion and a second guide portion are respectively provided on the first arm and the second arm, and the first guide portion and the second guide portion are respectively used for the first pair of cables and the The second pair of cable guides.
  • a wire inlet is provided on the mounting base, and the first pair of cables to the third pair of cables extend through the wire inlet to the end effector, the first arm and the second pair of cables.
  • the arms are respectively located on both sides of the wire inlet.
  • the first guide portion includes a slide rail fixedly connected with the carriage
  • the second guide portion includes a first guide wheel and a second guide wheel that are aligned with each other
  • the slide rail is slidably installed on the sliding frame. on the first guide wheel and the second guide wheel.
  • the slave decoupling member further comprises a decoupling cable, and the master decoupling member drives the carriage to move through the decoupling cable.
  • a guide assembly is provided on the carriage, one end of the decoupling cable is fixed on the main decoupling member, and the other end of the decoupling cable is guided by the guide assembly and fixed on the main decoupling member. on the mount.
  • the decoupling cable includes a first decoupling cable and a second decoupling cable
  • the guide assembly includes a third guide part and a fourth guide part respectively provided at both ends of the carriage, the first decoupling cable The other end of the coupling cable is fixed on the mounting seat after being guided by the third guide portion, and the other end of the second decoupling cable is fixed on the mounting seat after being guided by the fourth guide portion.
  • the cable segment of the first decoupling cable between the third guide portion and the mount is parallel to the first guide mechanism.
  • the decoupling mechanism further includes a fifth guide portion, and the first decoupling cable is guided by the fifth guide portion and then connected to the mounting seat after being guided by the third guide portion. .
  • the cable segment of the first decoupling cable between the fifth guide portion and the third guide portion is parallel to the first guide mechanism.
  • the mounting seat is further provided with a first guide wheel, and the first pair of cables is guided by the first guide wheel and then extended to the end effector through the guide of the first guide portion, The direction of movement of the carriage is parallel to the portion of the first pair of cables between the first guide wheel and the first guide portion.
  • the rate of change in length of the first pair of cables or the second pair of cables due to movement of the carriage is proportional to the linear speed at which the main decoupling member rotates.
  • the main decoupling member is arranged coaxially with the driving unit.
  • the main decoupling member rotates coaxially with the drive unit.
  • a slave operation device includes a mechanical arm and the above-mentioned surgical instrument, the surgical instrument is mounted on the mechanical arm, and the mechanical arm is used for manipulating the movement of the surgical instrument.
  • a surgical robot the surgical robot includes a master operation device and the above-mentioned slave operation device, and the slave operation device performs corresponding operations according to the instructions of the master operation device.
  • the surgical instrument of the present invention uses a mechanical structure to release the coupling relationship between the drive cable for manipulating the pitch motion of the end effector and the drive cable for manipulating the yaw motion of the end effector.
  • the return clearance of the decoupling mechanism can more accurately and controllably release the coupling relationship between the pitch motion and the yaw motion of the manipulation end effector drive cable.
  • the use of mechanical decoupling can reduce the program algorithm of the entire surgical robot and make the surgical robot operation is more stable.
  • FIG. 1 is a schematic structural diagram of a slave operating device of a surgical robot according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a main operation console of a surgical robot according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a robotic arm of a slave operating device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a surgical instrument according to an embodiment of the present invention.
  • 5A-5D are schematic structural diagrams of an end effector according to an embodiment of the present invention.
  • FIG. 5E is a schematic diagram of the structure of the drive cable in the long axis according to an embodiment of the present invention.
  • FIG. 6A is a perspective view of a first support frame of an end effector according to an embodiment of the present invention.
  • FIG. 6B is a top view of the first support frame of the end effector according to an embodiment of the present invention.
  • 6C is a top view of a first support frame of an end effector according to another embodiment of the present invention.
  • FIGS. 7A-7B are schematic diagrams of an end effector in a pitch state according to an embodiment of the present invention.
  • FIG. 7C is a schematic diagram of the end effector in the embodiment shown in FIG. 7A in a pitch-yaw-opening and closing state;
  • FIG. 8A is a schematic diagram of a driving device according to an embodiment of the present invention.
  • FIG. 8B and 8C are partial schematic views of the first driving cable and the second driving cable being wound on the guide wheel in the driving device shown in FIG. 8A;
  • 8D-8E are schematic diagrams of a decoupling process of the driving device of FIG. 8A;
  • FIG. 9A is a schematic diagram of a driving device according to an embodiment of the present invention.
  • FIG. 9B is a schematic diagram of a decoupling process of the driving device shown in FIG. 9A;
  • FIG. 10A is a schematic diagram of a driving device according to an embodiment of the present invention.
  • FIG. 10B is a schematic diagram of a decoupling process of the driving device shown in FIG. 10A ;
  • FIG. 11A is a perspective view of a driving device according to an embodiment of the present invention.
  • FIG. 11B is a top view of the driving device of FIG. 11A;
  • 11C is a perspective view of the slave decoupling member and the mounting seat of the drive device shown in FIG. 11A ;
  • Fig. 11D is an exploded view of the slave decoupling member and the mount shown in Fig. 11C;
  • Fig. 11E is a perspective view of the carriage of the drive device shown in Fig. 11A;
  • FIG. 11F is a schematic diagram of a decoupling process of the driving device shown in FIG. 11A ;
  • FIG. 12A is a perspective view of a slave decoupling member and a mounting seat of a driving device according to another embodiment of the present invention.
  • Figure 12B is an exploded view of Figure 12A;
  • Figure 12C is a side view of the mount of Figures 12A and 12B.
  • distal end and proximal end are used herein as orientation words, which are commonly used in the field of interventional medical devices, wherein “distal end” means the end away from the operator during surgery, and “proximal end” means surgery The end closest to the operator during the process.
  • a minimally invasive surgical robot generally includes a slave operation device and a master operation console.
  • the operation console 200 performs related control operations on the slave operation device 100
  • the slave operation device 100 performs a surgical operation on the human body according to the input instruction of the master operation console 200 .
  • the master operation console 200 and the slave operation device 100 can be placed in the same operating room or in different rooms, and even the master operation console 200 and the slave operation device 100 can be far apart, for example, the master operation console 200 and the slave operation console 200
  • the devices 100 are located in different cities.
  • the master operation console 200 and the slave operation device 100 can transmit data through wired or wireless methods.
  • the master operation console 200 and the slave operation device 100 are located in In an operating room, data transmission is performed between the two through a wired method.
  • Another example is that the master operation console 200 and the slave operation device 100 are in different cities, and long-distance data transmission is performed between the two through 5G wireless signals.
  • the slave operating device 100 includes multiple robotic arms 110 , each robotic arm 110 includes multiple joints and a gripper arm 130 , and the multiple joints are linked to realize the movement of multiple degrees of freedom of the gripper arm 130 .
  • a surgical instrument 120 for performing a surgical operation is installed on the holding arm 130, the surgical instrument 120 enters the human body through a trocar 140 fixed at the distal end of the holding arm 130, and the mechanical arm 110 is used to manipulate the surgical instrument 120 to move to Perform surgery.
  • the surgical instrument 120 is detachably mounted on the arm 130 , so that the surgical instrument 120 of different types can be exchanged at any time or the surgical instrument 120 can be removed to rinse or sterilize the surgical instrument 120 . As shown in FIG.
  • the holding arm 130 includes a holding arm body 131 and an instrument mounting frame 132 .
  • the instrument mounting frame 132 is used to install the surgical instrument 120 , and the instrument mounting frame 132 can slide on the holding arm body 131 to drive the operation.
  • the instrument 120 is advanced or withdrawn along the arm body 131 .
  • the surgical instrument 120 includes a driving device 170 located at the proximal end of the surgical instrument 120 and an end effector 150 at the distal end, and a long shaft 160 located between the driving device 170 and the end effector 150.
  • the driving device 170 For connecting with the instrument mounting bracket 132 of the holding arm 130, the instrument mounting bracket 132 has a plurality of actuators (not shown in the figure), and the plurality of actuators are engaged with the driving device 170 to connect the actuators
  • the driving force is transmitted to the driving device 170 .
  • the long shaft 160 is used to connect the driving device 170 and the end instrument 150.
  • the long shaft 160 is hollow for a driving cable to pass through. surgical operation.
  • FIGS. 5A-5D are schematic structural diagrams of an end effector 150 according to an embodiment of the present invention.
  • the end effector 150 includes a first bracket 210 and a second bracket 220 , and the distal end of the first bracket 210 includes a first bracket 210 .
  • the strut 314 and the second strut 315, the proximal end of the first bracket 210 includes a base frame 316, one end of the base frame 316 is connected with the long shaft 160, and extends from the other end of the base frame 316 toward the distal end of the end effector 150 to form a first A strut 314 and a second strut 315, the first strut 314, the second strut 315 and the base frame 316 form a generally U-shaped clip structure.
  • a first pin 311 and a second pin 312 are provided between the first pillar 314 and the second pillar 315.
  • One end of the first pin 311 is fixedly connected to the first pillar 314, and the other end of the first pin 311 is fixedly connected to the second pillar 315.
  • one end of the second pin 312 is fixedly connected to the first pillar 314, and the other end is fixedly connected to the second pillar 315.
  • the second pin 312 and the first pin 311 are arranged side by side on the first pillar 314 and the second pillar 315. On the pillar 315 , the first pin 311 is closer to the bottom frame 316 of the first bracket 210 than the second pin 312 is.
  • the first bracket 210 is not shown in FIG. 5B and FIG. 5C.
  • the first pin 311 is provided with a first pulley block
  • a pulley set includes a first pulley 211 , a second pulley 212 , a third pulley 213 and a fourth pulley 214 arranged on the first pin 311 in sequence
  • a second pulley set is arranged on the second pin 312
  • the second pulley set includes The fifth pulley 215 , the sixth pulley 216 , the seventh pulley 217 and the eighth pulley 218 on the second pin 312 , the first pulley 211 to the eighth pulley 218 are all used to guide the driving cable.
  • the pulleys are all arranged on the first bracket 210 , and there is no pulley on the second bracket 220 , so the volume of the second bracket 220 can be made smaller, so that the volume of the end effector 150 is smaller, and there is no risk of the pulley falling off.
  • the second bracket 210 is provided with a third strut 317 , a fourth strut 318 and a pitch wheel 319 , and a third strut 317 and a fourth strut 318 are formed extending from the pitch wheel 319 along the distal end of the end effector 150 , and the third strut 317
  • the pitch wheel 319 of the second bracket 220 is mounted on the second pin 312, and the second bracket 220 can rotate around AA' passing through the axis of the second pin 312 To achieve the pitching motion of the end effector 150 .
  • a third pin 313 is disposed between the third pillar 317 and the fourth pillar 318 of the second bracket 220.
  • One end of the third pin 313 is fixedly connected to the third pillar 317 and the other end is fixedly connected to the fourth pillar 318.
  • the third pin 313 It is perpendicular to the first pin 311 and the second pin 312 .
  • the clamping part of the end effector 150 includes a first clamping part 230 and a second clamping part 240 , and the first clamping part 230 and the second clamping part 240 are rotatably disposed on the second bracket 220 through the third pin 313 .
  • the first clamping part 230 and the second clamping part 240 can rotate around the axis BB′ passing through the third pin 313 to realize the opening and closing and/or yaw movement of the end effector 150
  • the first clamping part 230 And the second clamping part 240 may be a jaw for clamping tissue, or a stapler for suturing, or a cauterizer for electrocautery, and the like.
  • the direction marks shown in FIGS. 5A and 5B are for the convenience of describing the winding method of the drive cable on the end effector 150 , and the distal end and the proximal end in the marks refer to the end effector 150
  • the distal and proximal directions, front, rear, left, and right refer to the front, rear, left, and right directions of the end effector 150 in the perspective of FIGS. 5A and 5B .
  • the drive cable provided on the end effector 150 includes a first A pair of cables and a second pair of cables for manipulating the pitch motion of the end effector 150 A third pair of cables, the first pair of cables including a first drive cable 151A and a second drive cable 151B, wherein the first drive cable 151A and the second drive cable One end of 151B may be joined or separated, as is the case for the second pair of cables and the third pair of cables.
  • the second pair of cables includes a third drive cable 152A and a fourth drive cable 152B, and the third pair of cables includes a fifth drive cable 153A and a sixth drive cable 153B. As shown in FIG. 5E , each drive cable includes 3 segments.
  • the first drive cable 151A includes a first segment of cable 151A1 for connecting to the drive device for connecting to the end effector
  • the second cable 151A2 of the drive, the first cable 151A1 and the second cable 151A2 are connected by a rigid bar 151A3, this structure is more efficient than using the entire driving cable, and it is also easy to generate A situation where multiple drive cables are intertwined within the long shaft 160 .
  • the drive cable may also be a complete and unsegmented cable.
  • the first pair of cables is wound on the first and second sheave blocks in the opposite way that the second pair of cables is wound on the first and second sheave blocks.
  • the first drive cable 151A is wound in the same way on the first pulley block and the second pulley block as the second drive cable 151B is wound on the first pulley block and the second pulley block
  • the third drive cable 152A of the second pair of cables is wound in the same way
  • the windings on the first and second sheaves are the same as the fourth drive cable 152B is wound on the first and second sheaves.
  • the proximal end of the first drive cable 151A is connected to the drive unit in the drive device 170 , and the distal end of the first drive cable 151A extends toward the distal end of the end effector 150 after being guided by the front of the first pulley 211 . , and is guided by the rear of the fifth pulley 215 and then continues to extend along the distal end of the end device 150 and is finally fixed on the first clamping part 230 .
  • the second driving cable 151B is guided by the front of the fourth pulley 214 and then extends toward the distal end of the end effector 150 , and is guided by the rear of the eighth pulley 218 and continues to extend toward the distal end of the end effector 150 and is finally fixed at the end effector 150 . on the first clamping portion 230 .
  • the distal end of the third drive cable 152A extends toward the distal end of the end effector 150 after being guided by the rear of the second pulley 212 , and continues to extend toward the distal end of the end instrument 150 after being guided by the front of the sixth pulley 216 and is fixed
  • the distal end of the fourth driving cable 152B is guided by the rear of the third pulley 213 and then extends toward the distal end of the end effector 150 , and is guided by the front of the seventh pulley 217 and continues to move toward the end effector 150 .
  • the distal end of end instrument 150 extends and transitions over second grip portion 240 .
  • the first drive cable 151A and the second drive cable 151B together drive the first gripping portion 230 to rotate about the axis BB'
  • the third drive cable 152A and the fourth drive cable 152B together drive the second gripping portion 240 to rotate about the axis BB'
  • the first driving cable 151A, the second driving cable 151B, the third driving cable 152A and the fourth driving cable 152B together drive the first clamping part 230 and the second clamping part 240 to perform opening and/or yaw movement.
  • the proximal ends of the fifth drive cable 153A and the sixth drive cable 153B of the third pair of cables go to the drive device 170, the distal ends of the two are received in the annular groove of the pitch wheel 319, and the ends of the two are respectively fixed to the second bracket In 220, the fifth driving cable 153A and the sixth driving cable 153B together drive the second bracket 220 to rotate along the axis AA', and then the second bracket 220 drives the first clamping part 230 and the second clamping part 240 together along the axis AA' Do a pitching motion.
  • the structure of the end effector 150 of the present invention and the winding method of the driving cable are different from those of the existing end effector.
  • the second pulley group performs a pitching motion along with the second bracket.
  • the winding method of the driving cable of the present invention is also different from that of the prior art. After the driving cable of the present invention has undergone the above-mentioned winding method, as shown in FIGS.
  • the first driving cable 151A of the first pair of cables is in the fifth A first part of the cable 151Aa exists between the pulley 215 and the first clamping part 230 , a second part of the cable 151Ba exists between the eighth pulley 218 and the first clamping part 230 for the second driving cable 151B of the first pair of cables, and the second
  • the third drive cable 152A of the pair of cables has a third portion of cable 152Aa between the sixth pulley 216 and the second gripping portion 240, and the fourth drive cable 152B of the second pair of cables is between the seventh pulley 217 and the first gripping portion
  • the first part of the cable 151Aa and the second part of the cable 151Ba are always on the same side of the plane M, and the third part of the cable 152Aa and the fourth part of the cable 152Ba are always on the same side of the other side of the plane M, so that the first pair of cables and the second pair of cables are always on the same side of the plane M.
  • the winding of the cable on the end effector 150 is relatively simple and neat, and the assembly is also relatively easy.
  • the first drive cable 151A and the second drive cable 151B run from the first bracket 210 (the first bracket 210 is not shown in FIGS. 5C and 5D for ease of illustration of the drive cable) to the first pulley 211 and
  • the fourth pulley 214 has the fifth part of the cable 151Ab and the sixth part of the cable 151Bb, and the third drive cable 152A and the fourth drive cable 151B from the first bracket 210 to the second pulley 212 and the third pulley 213 respectively.
  • the seven-part cable 152Ab, the eighth-part cable 152Bb, the fifth-part cable 151Ab and the sixth-part cable 151Bb are all located on the same side of the plane P, which refers to the plane passing through the axis of the first pin 311 and the axis of the second pin 312 at the same time , the seventh portion of the cable 152Ab and the eighth portion of the cable 152Bb are both located on the same side of the other side of the plane P.
  • the bottom frame 316 of the first bracket 210 has a plurality of through holes for the driving cables to pass through, and the plurality of through holes include the fifth portion of the cables 151Ab for the first driving cables 151A through the first through hole 219a, the second through hole 219b for the passage of the sixth portion of the cable 151Bb of the second drive cable 151B, the third through hole 219c for the passage of the seventh portion of the cable 152Ab of the third drive cable 152A, A fourth through hole 219d through which the eighth portion cable 152Bb of the fourth drive cable 152B passes, a fifth through hole 219e through which the fifth drive cable 153A passes, and a sixth through hole 219f through which the sixth drive cable 153B passes.
  • the first and second drive cables 151A and 151B the third and fourth drive cables 152A and 152B to simultaneously undergo the same change (eg, simultaneous increase or decrease in length) during the pitching motion of the end effector 150
  • the first The through hole 219a and the second through hole 219b are located on the same side of the plane P
  • the third through hole 219c and the fourth through hole are located on the other side of the plane P, and they pass through the first through hole 219a and the second through hole 219b.
  • the straight line at the center of the circle is parallel to the line passing through the center of the third through hole 219c and the center of the fourth through hole 219d. Due to this parallel relationship, the driving cable can pass through the holes on the bottom frame 316 of the first bracket 210.
  • the through hole extends straight to the first pulley block, so that the driving efficiency of the driving cable is relatively high.
  • the first through holes 219a, the second through holes 219b, the third through holes 219c, and the fourth through holes 219d are located on the four vertices of the trapezoid, respectively, so that the first driving cable 151A and the second driving cable 151B Through the first pulley 211 and the fourth pulley 214 on the outside, the third drive cable 152A and the fourth drive cable 152B pass through the second pulley 212 and the third pulley 213 on the inside, respectively, in order to make the driving end effector 150 pitch motion
  • the fifth through hole 219e and the sixth through hole 219f are located in the first through hole 219a, the second through hole 219b, the third through hole 219c, The outside of the trapezoid formed by the fourth through hole 219d.
  • the first through hole 319a, the second through hole 319b, the third through hole 319c and the fourth through hole 319d in the first bracket 310 are respectively located on the four vertices of the parallelogram, and the fifth through hole Both the hole 319e and the sixth through hole 319f are located outside the parallelogram formed by the first through hole 319a, the second through hole 319b, the third through hole 319c, and the fourth through hole 319d.
  • the fifth part of the first drive cable and the sixth part of the second drive cable are located on opposite sides of the plane P, respectively, and the seventh part of the third drive cable and the eighth part of the fourth drive cable are also respectively Located on the opposite sides of the plane P, reflected in the distribution of the through holes on the first bracket for the driving cables to pass through, the two through holes for the first driving cables and the second driving cables of the first pair of cables to pass through are located on different sides of the plane P, respectively. On the opposite side of the plane P, the two passes through which the third and fourth driving cables of the second pair of cables pass are also located on opposite sides of the plane P, respectively.
  • the end effector of the present invention is safer than the prior art, and the driving cable and pulley are not easy to fall off compared with the prior art , the assembly of the end device is also easier, and the volume of the entire end device is also smaller.
  • the end device of the present invention has the above-mentioned advantages over the prior art, the end device of the present invention also brings new challenges, that is, the driving device of the existing end effector cannot drive the end effector of the present invention, more specifically Certainly, the method of decoupling the third pair of cables and the coupling relationship of the first pair of cables and the second pair of cables used in the existing end effector driving device is no longer applicable to the end effector of the present invention.
  • the coupling relationship between the third pair of cables and the first pair of cables and/or the second pair of cables of the end device 150 will be described in detail below.
  • the first part of the cable 151Aa, the second part of the cable 151Ba, the third part of the cable 152Aa and the fourth part of the cable 152Ba respectively leave the fifth pulley 215, the eighth pulley 218, the sixth pulley 216 and the seventh pulley 217 tangent points are located on the plane a, the plane a is through the first axis AA' and perpendicular to the above The plane of plane P.
  • the driving device 170 needs to pull the fifth driving cable 153A or the sixth driving cable 153B of the third pair of cables, so that the second bracket 220 drives the first clamping portion 230 and the first clamping portion 230 and the sixth driving cable 153B.
  • the two clamping parts 240 are tilted together around the first axis AA′.
  • the driving device 170 pulls the sixth driving cable 153B, so that the second bracket 220 , the first clamping part 230 and the second clamping part 230
  • the holding portion 240 pitches around the first axis AA′.
  • the end effector 150 only performs the pitch movement, the lengths of the first part of the cable 151Aa, the second part of the cable 151Ba, the third part of the cable 152Aa and the fourth part of the cable 153Ba need to be kept constant Otherwise, the yaw or opening and closing motion of the end effector 150 will be caused.
  • the first driving cable 151A and the second driving cable 151B are wound around the rotatable first driving unit 171 in opposite directions, the third driving cable 152A and the fourth driving cable 152B Winding around the rotatable second drive unit 172 in opposite directions, and the first drive unit 171 and the second drive unit 172 are rotatably fixed on their rotational axes, so the first drive unit 171 and the second drive unit 172 It cannot be translated, so the length of the first driving cable 151A and the second driving cable 151B cannot be increased or decreased simultaneously by rotating the first driving unit 171 , and similarly, rotating the second driving unit 172 cannot make the third driving cable.
  • the lengths of 152A and the fourth drive cable 152B are simultaneously increased or decreased, and as described above, the first and second drive cables 151A and 151B must be executed at the ends in order to successfully perform the pitching motion of the end effector 150.
  • the lengths on the actuator 150 increase or decrease at the same time, the lengths of the third drive cable 152A and the fourth drive cable 152B on the end effector must simultaneously decrease or increase, so the movement of the third pair of cables is limited by the first pair of cables, Second pair of cables.
  • the relationship in which the change of one element is restricted by another element is called a coupling relationship, that is, there is a coupling relationship between one element and another element.
  • This restricted relationship for the first pair of cables, the second pair of cables, and the third pair of cables may be such that the third pair of cables is restricted to the first pair of cables and/or the second pair of cables, resulting in a third pair of cables.
  • the cable is completely immobile, so that the end effector cannot achieve pitching motion, or the third pair of cables is limited by the first pair of cables and/or the second pair of cables, so the first pair of cables, the second pair of cables and the third pair of cables are limited.
  • any cable movement between the three pairs of cables will cause undesired movement of the other cables, resulting in the undesired movement of the end effector and the inability to perform the desired operation.
  • the third pair of cables is manipulating the end effector
  • the movement of the third pair of cables will simultaneously cause the movement of the first pair of cables and/or the second pair of cables, thereby
  • the end effector moves in pitch, it will cause the opening and/or yaw movement of the end effector, so that the pitch movement of the end effector interacts with the opening and/or yaw movement, and the pitch movement of the end effector is related to the opening and closing.
  • the engaging and/or offset movements are not independent of each other, so that the end effector 150 cannot properly perform the surgical operation. It is therefore necessary to release this coupling relationship between the third pair of cables and the first and/or second pair of cables so that the movement of the third pair of cables is no longer restricted to the first and/or second pair of cables , the movement between the two can be independent of each other, do not interfere with or influence each other, and this decoupling of the coupling relationship between the third pair of cables and the first pair of cables and/or the second pair of cables is called decoupling.
  • an existing decoupling method is to use a software algorithm for decoupling.
  • the main operation console 200 controls the third drive unit to drive the movement of the third pair of cables, and also controls the first drive unit and the third pair of cables.
  • Two driving units drive the first pair of cables and the second pair of cables to move, so that the wrap angle length of the first pair of cables and the second pair of cables on the pulley increases or decreases with the movement of the third pair of cables, but this decoupling method It is required that the first part of the cable 151Aa and the second part of the cable 151Ba of the first pair of cables on the end effector are located on opposite sides of the plane M, respectively, and the third part of the cable 152Aa and the fourth part of the cable 152Ba of the second pair of cables are also located on the plane respectively.
  • first drive cable 151A and the second drive cable 151B of the first pair of cables form a loop across plane M
  • the third drive cable 152A and the fourth drive cable 152B of the second pair of cables also form a loop
  • the first part of the cable 151Aa and the second part of the cable 151Ba of the first pair of cables on the end effector of the embodiment shown in FIG. 5A of the present invention are located on the same side of the plane M
  • the third part of the cable 153Aa of the second pair of cables and the second part of the cable 151Aa are located on the same side of the plane M.
  • the four-part cable 153Ba is also located on the same side of the plane M, so the existing software decoupling method cannot decouple the end effector of this type of the present invention.
  • the use of software algorithm decoupling method will lead to complicated control procedures of the surgical robot, which is prone to errors, and this method of software algorithm decoupling will make each drive unit of the drive mechanism of the surgical instrument lose its independence.
  • the device has three drive units that drive three pairs of cables respectively. Ideally, the control of each drive unit is opposite to each other.
  • the software algorithm is used for decoupling, it is necessary to control the above three drive units to move together, resulting in three Each drive unit loses its independence and is prone to control errors.
  • the present invention proposes a solution of mechanical decoupling, in which a mechanical decoupling mechanism is set in the driving device 170 of the surgical instrument 120, so as to avoid the disadvantages of the software algorithm decoupling described above.
  • FIG. 8A is a schematic diagram of a driving device 170 according to an embodiment of the present invention, and the driving device 170 is suitable for driving the end effector shown in FIG. 5A .
  • the driving device 170 includes a first driving unit 171 and a second driving unit 172 for driving the end effector 150 to perform opening, closing and/or yaw motion, a third driving unit 173 for driving the end effector 150 to perform a pitching motion, and The fourth driving unit 174 for driving the long shaft 160 to rotate.
  • the first driving cable 151A and the second driving cable 151B of the first pair of cables are wound on the first driving unit 171 in opposite winding manners, respectively, and the third driving cable 152A and the fourth driving cable 152B of the second pair of cables are wound in opposite directions, respectively.
  • the fifth driving cable 153A and the sixth driving cable 153B of the third pair of cables are respectively wound on the third driving unit 173 in the opposite winding manner, and the seventh driving cable 154A and the sixth driving cable
  • the eight drive cables 154B are respectively wound around the fourth drive unit 174 in opposite winding manners.
  • the first driving unit 171 pulls or releases the first driving cable 151A or the second driving cable 151B so that the first driving cable 151A or the second driving cable 151B is pulled or released.
  • the clamping portion 230 rotates around its third pin 313, and when the actuator within the instrument mount 132 drives the second drive unit 172 to rotate with its axis 172A, the second drive unit 172 pulls or releases the second drive cable 152A or
  • the third drive cable 152B rotates the second gripping portion 240 about the third pin 313, and the first gripping portion 230 and the second gripping portion 240 move about the third pin 313 so that the end effector 150 performs opening and/or closing Yaw movement.
  • the actuator driving shaft 173A in the instrument mounting frame 132 rotates and drives the third driving unit 173 to rotate, the third driving unit 173 pulls or releases the fifth driving cable 153A or the sixth driving cable 153B, so that the second bracket 220 Rotation about the axis AA' of the second pin 312 enables the end effector 150 to perform a pitching motion.
  • the actuator in the instrument mounting frame 132 drives the fourth driving unit 174 to rotate with its shaft 174A, the fourth driving unit 174 pulls or releases the seventh driving cable 154A or the eighth driving cable 154B to realize the self-rotation of the driving long shaft 160 sports.
  • the driving device 170 also includes a decoupling mechanism for releasing the coupling relationship between the third pair of cables, the first pair of cables, and the second pair of cables on the side of the end effector 150.
  • the decoupling mechanism includes a main decoupling member 1761 and a slave
  • the decoupling member 176, the slave decoupling member 176 includes a carriage 1762, a first guide portion 1763 and a second guide portion 1764 connected to both ends of the carriage 1762, and the main decoupling member 1761 passes through the first decoupling cable 1767 and the second decoupling portion 1767.
  • the coupling cable 1768 is connected to the carriage 1762, and the master decoupling member 1761 manipulates the movement of the slave decoupling member by driving the first decoupling cable 1767 and the second decoupling cable 1768.
  • the first decoupling cable 1767 and the second decoupling cable 1768 are wound around the main decoupling member 1761 in opposite ways, the main decoupling member 1761 and the third driving unit 173 move at the same angular velocity, the main decoupling member 1761 and the third
  • the driving unit 173 may be disposed on the same shaft 173A, so the main decoupling member 1761 and the third driving unit 173 rotate coaxially with the shaft 173A.
  • the main decoupling member 1761 and the third driving unit 173 may also be They are respectively set on different rotation axes.
  • the main decoupling member 1761 and the third driving unit 173 have different radii.
  • the radius of the main decoupling member 1761 is r2, and the radius of the third driving unit 173 is R2, where r2 ⁇ R2. Release of the first decoupling cable 1767 or the second decoupling cable 1768 enables movement from the decoupling.
  • the main decoupling member 1761 and the third driving unit 173 can be driven from the same power source, and the power source is the actuator in the above-mentioned slave operating device.
  • the main decoupling member and the third driving unit are provided On different rotating shafts, but still receive the same driving force as the third driving unit, for example, the same actuator is connected to and drives the main decoupling member and the third driving unit in different ways, using The same power source drives the third drive unit and the main decoupling element at the same time, which can make the control of decoupling simpler.
  • the decoupling mechanism does not need to detect the coupling state separately. are the same control information, but the structure on the transmission side is different.
  • the first driving cable 151A and the second driving cable 151B are guided by the third guide wheel 177A, the first guide portion 1763 and the third guide wheel 177C successively and then enter the long shaft and then extend all the way to the end effector 150 .
  • the third driving cable 152A and the fourth driving cable 152B are guided by the second guide wheel 177B, the second guide portion 1764 and the fourth guide wheel 177D successively and then enter the long shaft and extend to the end effector 150 .
  • the fifth drive cable 153A and the sixth drive cable 153B are guided by the fifth guide wheel 177E and the sixth guide wheel 177F respectively and then enter the long shaft and extend all the way to the end effector 150.
  • the first drive cable 151A to the sixth drive How the cable 153B is connected to the end effector 150 has been described in detail above and will not be repeated here.
  • the decoupling process is shown in FIG. 8D, when the third driving unit 173 rotates counterclockwise (first direction) with its shaft 173A, the third driving unit 173 pulls the sixth driving cable 153B and simultaneously releases the fifth driving cable 153A , so that the second bracket 220 of the end effector 150 rotates around the axis AA' of the second pin 312 as shown in FIGS. 7A and 7B , and the entire end effector 150 performs a pitching motion.
  • the wrap angle lengths of the first driving cable 151A and the second driving cable 151B on the fifth pulley 215 and the eighth pulley 218 respectively need to be increased by L at the same time.
  • the third driving cable 152A and the fourth The wrap angle length of the driving cable 152B on the sixth pulley 216 and the seventh pulley 217 needs to be reduced by L at the same time so that the end effector 150 can perform the pitching motion smoothly. Since the main decoupling member 1761 of the decoupling mechanism rotates coaxially 173 with the third driving unit 173, when the third driving unit 173 rotates counterclockwise with the shaft 173A, the main decoupling member 1761 also rotates counterclockwise with the shaft 173A. , at this time, the main decoupling member 1761 pulls the first decoupling cable 1767 and releases the second decoupling cable 1768 at the same time.
  • the pulling of the decoupling cable 1767 moves along the A direction by a distance of L/2, and at this time, due to the movement from the decoupling member, the lengths of the first driving cable 151A and the second driving cable 151B in the driving device 170 will decrease by L at the same time, That is, the length of the first pair of cables in the driving device 170 is reduced by 2L, and correspondingly, the lengths of the third driving cable 152A and the fourth driving cable 152B in the driving device 170 will increase by L at the same time, that is, the second pair of cables in the driving device 170.
  • the inner length is increased by 2L.
  • the reduction in length of the first drive cable 151A and the second drive cable 151B within the drive device 170 is thus required by the angular wrapping length of the first drive cable 151A and the second drive cable 151B on the fifth pulley 215 and the eighth pulley 218, respectively
  • the increase in length of the third drive cable 152A and the fourth drive cable 152B within the drive device 170 is equal to the increase in the length of the third drive cable 152A and the fourth drive cable 152B on the sixth pulley 216 and the seventh pulley 217.
  • the required reduction in angular length is equal. Conversely, as shown in FIG.
  • the main decoupling member 1761 of the decoupling mechanism drives the slave decoupling member 176 to always be in a straight line movement, and the change in length of the first drive cable 151A, the second drive cable 151B, the third drive cable 152A, and the fourth cable 152B resulting from the movement of the decoupling member 176 is always linear.
  • the first decoupling cable 1767 is fixed to one end of the slave decoupling member 176 in the direction of movement from the decoupling member 176 after being redirected by the seventh guide wheel 1765.
  • the second decoupling cable 1768 passes through The eighth guide wheel 1766 is reoriented and fixed to the other end of the secondary decoupling member 176 along the movement direction of the secondary decoupling member 176 , so the movement of the main decoupling member 1761 will cause the secondary decoupling member 176 to move in a straight line.
  • the portion of the first decoupling cable 1767 between the seventh guide pulley 1765 and the slave decoupling member 176 and the portion of the second decoupling cable 1768 between the eighth guide pulley 1766 and the slave decoupling member 176 are the same as the slave decoupling member 176 .
  • the moving direction of the coupling member 176 is parallel.
  • the length change speed of the first decoupling cable 1767 and the second decoupling cable 1768 is proportional to the rotational speed of the main decoupling member 1761.
  • the moving speed of the coupling member 176 is also proportional to the rotational linear speed of the main decoupling member 1761 and the third driving unit 173, so that the decoupling process is precisely controllable.
  • the first guide pulley 177A, the first guide portion 1763 and the third guide pulley 177C all have two pulleys arranged side by side, and the two pulleys are used to guide the first driving cable 151A and the third pulley respectively.
  • Two drive cables 151B, the first drive cable 151A has a first decoupling portion cable 151Ac formed between the third guide wheel 177C and the first guide portion 1763, and is formed between the first guide portion 1763 and the first guide wheel 177A.
  • the third decoupling portion cable 151Ad, the second drive cable 151B is formed with the second decoupling portion cable 151Bc between the third guide wheel 177C and the first guide portion 1763 formed between the first guide portion 1763 and the first guide wheel 177A
  • the second guide part 1764, the second guide pulley 177B and the fourth guide pulley 177D also have two pulleys side by side.
  • the third drive cable 152A and the fourth drive cable 152B has a fifth decoupling portion cable 152Ac and a sixth decoupling portion cable 152Bc between the fourth guide wheel 177D and the second guide portion 1764, respectively, and a seventh decoupling portion cable 152Bc between the second guide portion 1764 and the third guide wheel 177B.
  • the decoupling part cable 152Ad and the eighth decoupling part cable (in FIG.
  • the length variation of the cable 151Ac is equal to the length variation of the second decoupling portion cable 151Bc, so the first decoupling portion cable 151Ac and the second decoupling portion cable 151Bc pass through the center of the third guide wheel 177C and are perpendicular to the third
  • the plane of the axis c1 of the guide wheel 177C forms an included angle ⁇ of equal magnitude, and the fifth decoupling part cable 152Ac and the seventh decoupling part cable 152Bc and the seventh guide wheel 177D also have the same setting, which can make the decoupling process
  • the first decoupling portion cable 151Ac and the second decoupling portion cable 151Bc have the same amount of change in length
  • the fifth decoupling portion cable 152Ac and the seventh decoupling portion cable 152Bc have the same amount of length
  • the axial distance H1 between the first decoupling part cable 151Ac and the second decoupling part cable 151Bc and the first guide wheel 1764 and the fourth guide wheel 177B is approximately equal.
  • the first decoupling Partial cable 151Ac and second decoupling part cable 151Bc are substantially parallel to the direction of movement from the decoupling member so that the first decoupling part during decoupling due to first decoupling part cable 151Ac and second decoupling part cable 151Bc
  • the cable 151Ac and the second decoupling portion cable 151Bc have less nonlinear variation, enabling more precise decoupling.
  • the third decoupling portion cable 151Ad, the fourth decoupling portion cable 151Bd, the seventh decoupling portion cable 152Ad, and the eighth decoupling portion cable are parallel to the direction of movement from the decoupling member 176, so that the The speed of change in the lengths of the third decoupling portion cable 151Ad, the fourth decoupling portion cable 151Bd, the seventh decoupling portion cable 152Ad, and the eighth decoupling portion cable due to the movement of the slave decoupling member during decoupling is similar to that of the slave decoupling portion cable.
  • the speed of the movement of the decoupling member 176 is proportional to the relationship, so during the decoupling process, the speed of the length change of any one of the first driving cable 151A to the fourth driving cable 152B in the driving device 170 is proportional to the speed of the length change from the decoupling member 176
  • the moving speed of the slave decoupling member 176 is proportional to the rotational linear speed of the main decoupling member 1761 and the third driving unit 173 . Therefore, during the decoupling process, the length change speed of any one of the first driving cable 151A to the fourth driving cable 152B in the driving device 170 and the rotational linear speed of the main decoupling member 1761 and the third driving unit 173 are also equal to each other.
  • the length variation of the first pair of cables and the second pair of cables on the end effector 150 can be precisely controlled by the main decoupling member 173 and the third driving unit 173 to achieve precise and controllable decoupling.
  • Figure 8D shows the decoupling process of this embodiment.
  • the main decoupling member 1761 rotates counterclockwise by L/2 arc length, and the secondary decoupling member 176 moves L/2 along the A direction correspondingly. distance, the lengths of the first decoupling portion cable 151Ac, the third decoupling portion cable 151Ad, the second decoupling portion cable 151Bc, and the fourth decoupling portion cable 151Bd are simultaneously reduced by L/2, so that the first drive cable 151A and the second The drive cables 151B are simultaneously reduced in length L within the drive 170, ie the first pair of cables is reduced in length by 2L within the drive.
  • the lengths of the fifth decoupling section cable 152Ac, sixth decoupling section cable 152Ad, seventh decoupling section cable 152Bc, and eighth decoupling section cable are simultaneously increased by L/2, so that the third drive cable 152A and the fourth The drive cables 152B are simultaneously increased in length L within the drive 170, ie the length of the second pair of cables within the drive is increased by 2L.
  • the pitch pulley 319 of the second bracket 220 is used for accommodating and guiding the annular groove 319A of the fifth driving cable 153A and the sixth driving cable 153B.
  • the groove bottom radius is R1
  • the end effector 150 pitches the fifth drive cable 153A or the sixth drive cable 153B can form a wrap angle in the annular groove.
  • the main decoupling member 1761 and the third driving unit 173 rotate coaxially, at this time, correspondingly, the main decoupling member 1761 releases the first decoupling cable 1767 and simultaneously pulls the second decoupling cable 1768, so that the first decoupling cable 1768 is pulled.
  • the above relationship shows that the ratio of the radius of the third drive unit 173 to the radius of the main decoupling member 1761 is twice the ratio of the radius of the groove bottom of the annular groove 319A of the pitch wheel 319 to the radius of the second pulley block, resulting in this 2-fold relationship
  • the slave decoupling member has two guide parts, that is, the first guide part 1763 and the second guide part 1764 .
  • the number of guide parts of the slave decoupling member 176 may also be other numbers, so that the ratio of the radius of the third drive unit to the radius of the main decoupling member and the ratio of the radius of the pitch wheel to the radius of the second pulley block
  • the slave decoupling member can have N guide parts, and the ratio of the radius of the third drive unit to the radius of the main decoupling member is the groove bottom radius of the annular groove of the pitch wheel and the radius of the second pulley block N times the ratio, that is:
  • the number of guide portions of the slave decoupling member increases, the volume of the slave decoupling member also increases accordingly.
  • the radius of the above-mentioned driving unit and the radius of the main decoupling member both refer to the radius of the part on which the driving cable or the decoupling cable is wound, such as the radius of the winch, and the radius of the pulley refers to the radius of the groove bottom of the pulley.
  • the wrap angle length of the driving cable around the pulley can be calculated by the power.
  • the radius of the pulley has different interpretations in different literatures (such as the radius of the bottom groove, the radius of the groove bottom), the radius of the pulley in the invention is all A parameter used to measure the wrap angle length of the drive cable around the pulley.
  • the length changes of the first pair of cables and the second pair of cables on the side of the end effector 150 required for the pitching motion of the end effector 150 are all caused by the decoupling mechanism 176 .
  • the inner length variation is accurately provided, so that the movement of the third pair of cables is no longer restricted by the first pair of cables and the second pair of cables, so as to achieve precise decoupling between the third pair of cables and the first and second pairs of cables .
  • the lengths of the first part of the cable 151Aa, the second part of the cable 151Ba, the third part of the cable 152Aa and the fourth part of the cable 153Ba can be kept constant, and the entire first pair of cables, the second pair of cables
  • the tension of the first drive unit 171 and the second drive unit 172 are completely independent of the third drive unit 173 because only the shaft 173A of the third drive unit 173 moves during the whole decoupling process.
  • the main decoupling member 1761 and the coupling source that causes the coupling relationship that is, the third driving unit 173 rotate coaxially
  • the main decoupling member 1761 and the coupling source third driving unit 173 move at the same angular velocity, and the two are physically complete Synchronous motion, do not need the main operation setting to give the signal to control the decoupling mechanism, the motion of the decoupling mechanism runs synchronously with the motion of the coupling source, and the decoupling mechanism synchronizes the third drive unit for decoupling without any delay, and is controlled by the coupling source first.
  • the amount of change in length of the first pair of cables and the second pair of cables on the end effector 150 side caused by the three drive units 173 can be completely and precisely mapped to the first and second pairs of cables on the decoupling mechanism 176 Therefore, the decoupling mechanism 176 can completely and accurately release the coupling relationship between the third pair of cables, the first pair of cables, and the second pair of cables.
  • the so-called precise decoupling refers to the rotation of the third drive unit. How many degrees and how much distance the decoupling member will move, the relationship between the two is determined, and the above equations for the ratio of each radius have been given.
  • the slave decoupling member 176 is always driven by the main decoupling member 1761 to move to the corresponding position, rather than being driven by the first pair of cables or the second pair of cables, the first pair of cables and the second pair of cables in the whole decoupling process.
  • the pair of cables is basically unstressed on the slave decoupling member, so the tension of the first pair of cables and the second pair of cables is basically unchanged during the decoupling process, which increases the use of the first pair of cables and the second pair of cables Longevity and accuracy of end effector 150 control.
  • FIGS. 9A and 10B illustrate a driving device 270 according to another embodiment of the present invention.
  • the driving device 270B includes a first driving unit 271 , a second driving unit 272 , a third driving unit 273 , a third driving unit 274 and a decoupling mechanism 276, when the first driving unit 271 rotates with its axis 271A, the first driving unit 271 pulls or releases the first driving cable 151A or the second driving cable 151B to make the first clamping part 230 rotate around the third pin 313, when the actuator in the instrument mount 132 drives the second drive unit 272 to rotate with its shaft 272A, the second drive unit 272 pulls or releases the second drive cable 152A or the third drive cable 152B so that the second gripping portion 240 Rotating around the third pin 313 , the first gripping portion 230 and the second gripping portion 240 move around the third pin 313 so that the end effector 150 performs opening and/or yaw motion.
  • the actuator in the instrument mount 132 drives the third drive unit 273 to rotate with its shaft 273A
  • the third drive unit 173 pulls or releases the fifth drive cable 153A or the sixth drive cable 153B so that the second bracket 220 Rotation about the axis AA' of the second pin enables the end effector 150 to perform a pitching motion.
  • the decoupling mechanism 276 includes a master decoupling member 2761 and a slave decoupling member.
  • the master decoupling member 2761 is a gear that rotates coaxially with the third drive unit 273.
  • the first guide part 2763 and the second guide part 2764 of the guide part, the first drive cable 151A and the second drive cable 151B enter the long shaft 160 through the first guide part 2763 of the decoupling part, the second drive cable 152A and the second drive cable 151B
  • the two drive cables 152B enter the long shaft 160 through the second guide portion 2764 of the decoupling member.
  • the length between 277D is simultaneously increased by L/2, so that the length of the first drive cable 151A and the second drive cable 151B within the drive device 270 is reduced by L as a whole, and the third drive cable 152A and the fourth drive cable 152B are within the drive device 270.
  • the decoupling mechanism 276 in the driving device 270 provides the change in the length of the first driving cable 151A to the fourth driving cable 152B on the side of the end effector 150 required for the pitching motion of the end effector 150, thereby releasing the first In the coupling relationship between the three pairs of cables, the first pair of cables and the second pair of cables, the movement of the third pair of cables is no longer restricted by the first pair of cables and/or the second pair of cables.
  • the driving device 270B includes a first driving unit 371 , a second driving unit 372 , a third driving unit 373 , a fourth driving unit 374 and a decoupling mechanism 376, except that the structure of the decoupling mechanism 376 is different from that of the two embodiments, other components are basically the same as those of the above two embodiments, which will not be repeated here.
  • the decoupling mechanism 376 includes a main decoupling member 3761 that rotates coaxially with the third driving unit 373 , and a decoupling cam 3762 that is fixedly connected to the main decoupling member 3761 or integrally formed, and the two ends of the decoupling cam 3762 are respectively connected by the first guide. part 3763 and second guide part 3764.
  • the decoupling cam 3762 also rotates counterclockwise with the shaft 373A driven by the main decoupling member 3761, thereby causing the first drive cable 151A and the second drive cable
  • the length of 151B between the first guide pulley 377A and the third guide pulley 377C is reduced by L, while the length of the third drive cable 152A and the fourth drive cable 152B between the second guide pulley 377B and the fourth guide pulley 377D is increased Therefore, the decoupling mechanism 376 in the driving device 370 can provide the length variation of the first driving cable 151A to the fourth driving cable 152B on the side of the end effector 150 required by the
  • the driving device 470 includes a main body 478, and the main body 478 is provided with a first driving unit 471, a second driving unit 472, a third driving unit 473 and a fourth driving unit
  • the long shaft 160 is connected to the main body 478 through a bearing.
  • the decoupling mechanism 476 includes a main decoupling member 4761 and a slave decoupling member 4762. Both the main decoupling member 4761 and the third drive unit 473 are connected to the shaft 476A.
  • the coupling member 4761 rotates coaxially with the shaft 473A together with the third driving unit 473.
  • the main decoupling member 4761 is arranged at the lower part of the third driving unit 473, that is, the main decoupling member 4761 is closer to the far side of the driving device than the third driving unit 473. end.
  • the slave decoupling member 4762 includes a carriage 4765 and a first guide portion 4763 and a second guide portion 4764 provided at both ends of the carriage 4765.
  • the carriage 4765 is slidably connected to the mounting seat 477, and the mounting seat 477 is fixedly mounted on the body 478 , the mounting base 477 is provided with a guide mechanism for guiding the movement of the carriage 4765, the guide mechanism constrains the carriage 4765 to move along the guide direction, the guide mechanism includes a first guide part and a second guide part matched with the first guide part, the second guide The part includes a first guide wheel 476A, a second guide wheel 476B, a third guide wheel 476C, and a fourth guide wheel 476D.
  • the first guide wheel 476A, the second guide wheel 476B, the third guide wheel 476C, and the fourth guide wheel 476D are formed A sliding area in which the carriage 4765 slides, whereby the carriage 4765 can be constrained to slide within the sliding area on the mount 477 .
  • the first driving cable 151A and the second driving cable 151B are wound around the first driving unit 471 in the opposite winding manner. After being guided by the first guide portion 4763 provided on the carriage 4765 and then guided by the third guide wheel 477C provided on the mounting seat 477, it enters the long shaft 160, and extends along the distal end of the long shaft 160 and is finally fixed to the on the first clamping portion 230 of the end effector 150 .
  • the third drive cable 152A and the fourth drive cable 152B are wound around the second drive unit 472 in opposite windings, and the third drive cable 152A and the fourth drive cable 152B are guided by the second guide wheel 477B provided on the mounting seat Then, it is guided by the second guide portion 4764 provided on the carriage 4765, and then guided by the fourth guide wheel 477D provided on the mounting seat 477, and then enters the long shaft 160, and extends along the distal end of the long shaft 160 to the end. Fixed to the second clamping portion 240 of the end effector 150 .
  • the fifth driving cable 153A and the sixth driving cable 153B enter the long shaft 160 after being guided by the fifth guide wheel 477E, and extend along the distal end of the long shaft 160 and are finally fixed to the second bracket 220 .
  • the other ends of the seventh drive cable 154A and the eighth drive cable 154B wound around the fourth drive unit 474 are wound around the proximal end of the long shaft 160, as in the previous embodiments, the third pair of cables and the first pair of cables ,
  • the second pair of cables also has a coupling relationship on the side of the end effector.
  • the mounting seat 477 includes a first boss 4771, the mounting seat 477 is fixed to the body 478 through the first boss 4771, and the first boss 4771 is provided with a second boss 4772, a third boss 4773 and a fourth boss 4774 .
  • the second boss 4772 has a first mounting hole 4791 and a second mounting hole 4792, and the second guide wheel 476B and the third guide wheel 476C are respectively mounted to the second boss 4772 through the second mounting hole 4792 and the first mounting hole 4791 superior.
  • the third boss 4773 has a third mounting hole 4793 and a fourth mounting hole 4794, and the first guide wheel 477A and the second guide wheel 477B are respectively mounted to the third boss 4773 through the third mounting hole 4793 and the fourth mounting hole 4794 .
  • the fourth boss 4774 has a fifth installation hole 4795, the first guide wheel 476A and the sixth guide wheel 4769 located below the first guide wheel 4796A are installed into the sixth installation hole 4796 through the same shaft, and the sixth guide wheel 4796 For guiding the first decoupling cable 4767 and the second decoupling cable 4768.
  • the fifth boss 4775 has a seventh mounting hole 4797 , and the fourth guide wheel 476D is mounted on the fifth boss 4775 through the ninth mounting hole 4799 .
  • the fourth boss 4774 and the fifth boss 4775 have a certain height difference, which is approximately equal to the sixth guide Height of wheel 4769.
  • the mounting seat 477 also has a first mounting post 4776 and a second mounting post 4777.
  • the first mounting post 4776 and the second mounting post 4777 are arranged diagonally opposite to each other, and the first mounting post 4776 and the second mounting post 4777 are provided with the first mounting post 4776 and the second mounting post 4777.
  • the fifth guide wheel 477E is mounted on the first mounting post 4776 and the second mounting post 4777 through the sixth mounting hole 4796, for preventing the fifth driving cable 153A and the sixth driving cable 153B
  • the limiting pin 477F disengaged from the fifth guide wheel 477E is mounted on the first mounting post 4776 and the second mounting post 4777 through the seventh mounting hole 4797, and the first mounting post 4776 is diagonally opposite to the second mounting post 4777
  • the arrangement can enable the fifth guide wheel 477E to guide the drive cable coming from the oblique direction.
  • first mounting post 4776 and the second mounting post 4777 and the third boss 4773 there are mounting grooves 4798 and wire-passing holes 4775.
  • the third guide wheel 477C and the fourth guide wheel 477D are mounted on the mounting seat 477 through the mounting groove 4795.
  • the wire hole 4775 is located between the third guide wheel 477C and the fourth guide wheel 477D installed in the installation slot 4798, and the wire hole 4775 communicates with the long shaft 160 for guiding the driving cable into the long shaft 160.
  • a first sliding rail 4766A and a second sliding rail 4766B are provided from both sides of the sliding frame 4765 of the decoupling member 4762 .
  • the first sliding rail 4766A and the The second slide rail 4766B can slide in the sliding area formed by the first guide wheel 476A, the second guide wheel 476B, the third guide wheel 476C and the fourth guide wheel 476D, and the first slide rail 4766A is slidably arranged on the aligned second guides On the wheel 476B and the third guide wheel 476C, the second slide rail is slidably arranged on the aligned first guide wheel 476A and the fourth guide wheel 476D.
  • Both ends of the carriage 4765 have a first installation space 4767 and a second installation space 4768 respectively, and the first guide part 4763 and the second guide part 4764 are installed in the first installation space 4787 and the second installation space 4788 respectively.
  • the carriage 4765 also has a central opening 4781 for accommodating the first mounting post 4776, the second mounting post 4777 and the third boss 4773, and the first mounting post 4776, the second mounting post 4777 and the third boss The stage 4773 cooperates to limit the sliding travel of the carriage 4765 within the sliding area on the mount 477 .
  • One end of the carriage 4765 has a first guide groove 4684 and a first fixing hole 4782, and the other end has a second guide groove 4685 and a second fixing hole 4783.
  • the first guide groove 4784 is used to guide the first decoupling cable 4767 to be fixed to the first In the fixing hole 4782
  • the second guide groove 4785 is used to guide the second decoupling cable 4768 to be fixed into the second fixing hole 4783 .
  • the first guide groove 4684 and the second guide groove 4685 are offset from each other in the height direction of the carriage 4765, so that the first decoupling cable 4767 and the second decoupling cable 4768 can be fixed to the carriage 4765 without interfering with each other.
  • the decoupling process of this embodiment is shown in FIG. 11F , when the third driving unit 473 rotates counterclockwise (first direction) along with the shaft 473A driven by the actuator, because the main decoupling member 4761 and the third driving unit 473 pass through The same shaft 473A is connected to the actuator, at this time the main decoupling member 4761 and the third drive unit 473 rotate counterclockwise with the shaft 473A at the same angular velocity, the third drive unit 473 pulls the sixth drive cable 153B and releases the fifth drive at the same time Cable 153A causes end effector 150 to perform a pitching motion as shown in Figures 7A and 7B, while primary decoupling member 4761 pulls in second decoupling cable 4768 and simultaneously releases first decoupling cable 4767, thereby allowing The decoupling member 4762 moves in the A direction shown in FIG.
  • the lengths of the third drive cable 152A and the fourth drive cable 152B between the second guide portion 4764 and the second guide pulley 477B, and the length between the second guide portion 4764 and the fourth guide pulley 477D are simultaneously
  • the increase of L/2 increases the length of the third drive cable 152A and the fourth drive cable 152B within the drive by L, respectively, and the length of the first pair of cables within the drive by 2L.
  • the decoupling mechanism 276 in the drive device 370 thus provides the first drive cable 151A, the second drive cable 151B, the third drive cable 152A, and the fourth drive cable 152B required for the pitching motion of the end effector 150 on the end effector 150 .
  • the end effector 150 can smoothly perform the pitching operation.
  • the driving device of another embodiment of the present invention is shown in FIGS. 12A and 12B . Since the driving unit and the cable of the driving device of this embodiment are basically the same as those of the embodiment shown in FIG. 11A , the driving device of this embodiment only shows For the mounting base 571, the carriage 572 and some components associated therewith, for the components shown, reference may be made to the embodiment shown in FIG. 11A .
  • the carriage 5721 includes a first arm 5721 and a second arm 5722.
  • the first arm 5721 and the second arm 5722 are connected by two third arms 5723.
  • the first arm 5721 and the second arm 5722 are connected by two third arms 5723.
  • An installation space 5724 for installing the first guide portion 4763 and the second guide portion 4764 is provided on the two arms 5722 .
  • the third arm 5723 may be one or multiple.
  • the mounting seat 571 includes a first cylinder 5711, a second cylinder 5712 and a third cylinder 5713 which are arranged in a "mountain" shape on the main body of the mounting seat 571.
  • the first guide wheel 477A and the third guide wheel 477C are installed on the On the third cylinder 5713
  • the fifth guide wheel 477E is installed on the second cylinder 5712
  • the second guide wheel 477B and the fourth guide wheel 477D are installed between the second cylinder 4712 and the third cylinder 4713 .
  • the first arm 5721 and the second arm 5722 of the carriage 572 are located on both sides of the wire inlet 5715, respectively, the third arm 5723 spans the mounting seat 571, and one of the third arms 5723 is located on the first column 5711 and the second column 5712 In the middle, another third arm 5723 is located on the body of the mounting seat 571 and is located on the other side of the third cylinder 5713 relative to the wire inlet 5715, so that the carriage 572 is in the shape of a "mouth", and the wire inlet 5715 and the second The cylinder 5712 and the third cylinder 5713 are accommodated in the opening in the middle of the carriage 572 .
  • the driving device also includes a passive guide mechanism 573, the guide mechanism 573 includes an outer cylinder 5731 (second guide portion) and a straight shaft 5732 (first guide portion) that can move relative to the outer cylinder 5731, and the straight shaft 5732 passes through the outer cylinder 5731 and passes through the outer cylinder 5731.
  • the straight shaft 5731 In sliding connection with the outer cylinder 5731, the straight shaft 5731 is substantially parallel to the third arm 5723, and the straight shaft 5732 moves along its own axial direction.
  • the way that the straight shaft 5732 and the outer cylinder 5731 are slidably connected can be that the straight shaft 5732 is indirectly connected to the inner wall of the outer cylinder 5731 through a plurality of balls to reduce the sliding friction between the two, or the straight shaft 5732 and the outer cylinder 5731
  • the outer walls are directly connected, and the surfaces in contact with the two are made of materials with small friction coefficients.
  • the mounting seat 571 is provided with a mounting hole 5714 for mounting the guide mechanism 573, one end of the mounting hole 5714 has a first opening 5714, the inner diameter of the first opening 5714 is substantially equal to the outer diameter of the outer cylinder 5731 of the
  • the barrel 5731 is better fixed in the mounting hole 5714, the other end of the mounting hole 5714 has a bottom 5714b, the bottom 5714b has a second opening 5714c, the second opening 5714c is used to allow the straight shaft 5732 to pass through, and the inner diameter of the second opening 5714c is less than
  • the inner diameter of the first opening 5714a enables the bottom 5714b to abut against one end of the outer cylinder 5731.
  • the mounting seat 571 further includes a baffle 5716.
  • the body of the baffle 5716 has a third opening 5716a that allows the straight shaft 5732 to pass through.
  • the baffle 5716 The cylindrical body of 1 abuts the other end of the outer cylinder 5731, and the baffle 5716 and the bottom 5714b together fix the outer cylinder 5731 of the guide mechanism 573 in the mounting hole 5714.
  • Both ends of the straight shaft 5732 of the guide mechanism 573 are respectively fixed on the first arm 5721 and the second arm 5722 of the carriage 572, so that the movement of the carriage 572 is constrained by the guide mechanism 573.
  • the first decoupling cable 5767 and the second decoupling cable 5768 are pulled and moved, they are restricted by the guiding mechanism 5713 and can only move along the axial direction of the straight shaft 5732.
  • the upper part does not move in the radial direction of the outer cylinder 5731, so that the carriage 572 is also constrained by the guide mechanism 573 so as not to move in other directions except for the movement in the axial direction of the straight shaft 573, thereby reducing the number of carriages 572.
  • the return clearance of the decoupling mechanism increases the rigidity of the decoupling mechanism, making the decoupling mechanism of the decoupling mechanism more accurate.
  • the driving device may use only one linear bearing 573, and the other side of the carriage 572 uses the second guide wheel 476B of the embodiment shown in FIG. 11C . and the third guide wheel 476C guides the carriage 572 .
  • a guide assembly for guiding the decoupling cable is also provided on the carriage 572.
  • the guide assembly includes a third guide portion 5741 for guiding the first decoupling cable 5767 and the second decoupling cable 5768 of the decoupling cable respectively. and the fourth guide portion 5742, one end of the first decoupling cable 5767 is wound around the main decoupling member 4761, the other end is fixed on the mounting seat 571 after being guided by the third guide portion 5741, and the other end of the second decoupling cable 5768 passes through The fourth guide portion 5742 is guided on the rear fixed mounting seat 571 .
  • the first decoupling cable 4767 and the second decoupling cable 4768 are directly fixed on the carriage 4765 , the first decoupling cable 5767 and the second decoupling cable 5768 in this embodiment pass through respectively
  • the third guide portion 5741 and the fourth guide portion 5742 are fixed on the mounting seat 571 after being guided, so that the third guide portion 5741 and the fourth guide portion 5742 act as moving pulleys, so that the main decoupling member 4761 can use the driving carriage Half of the driving force of 4765 can drive the movement of the carriage 572 through the decoupling cable, reducing the load of driving the third driving unit 473 and the main decoupling member 4761.
  • the decoupling mechanism is also provided with a third guide portion 5743, and the first decoupling cable 4767 and the second decoupling cable 4768 are guided by the fifth guide portion 5743 and then respectively guided by the third guide portion 5741 and the fourth guide After the wheel 5742 is guided, it is finally fixed on the mounting seat 571.
  • the carriage 752 is constrained by the guide mechanism 573 to move in the direction of linear motion (ie, the direction of the straight axis 573) and the first decoupling cable 4767 at the first decoupling cable 4767.
  • the cable segment between the third 5741 and the mounting seat 571 and the cable segment between the third guide portion 5741 and the fifth guide portion 5743 are parallel.
  • the carriage 572 is constrained by the guide mechanism 573 to move in the direction of linear motion.
  • the cable segment of the second decoupling cable 4768 between the fourth guide portion 5742 and the mount 571 and the cable segment between the fourth guide portion 5742 and the fifth guide portion 5743 are parallel.
  • the speed at which the carriage 572 is pulled along the straight line by the first decoupling cable 4767 and the second decoupling cable 4768 is proportional to the linear speed of the main decoupling member 4761, and since the main decoupling member 4761 and the third driving unit 473 are coaxially arranged, so that the linear motion speed of the carriage 572 is proportional to the linear speed of the third drive unit 143, so that there is no nonlinear change in the length of the cable or the motion of the carriage during the entire decoupling process, so that Make the decoupling process precisely controllable.
  • one of the first decoupling cable 4767 and the second decoupling cable 4768 is guided through the fifth guide portion 5743 , and the other cable is also guided through the reasonable arrangement of the main decoupling member. It can be kept parallel to the direction of movement of the guide mechanism.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

一种手术器械(120)、从操作设备(100)及手术机器人,其中手术器械(120)包括末端执行器(150)、驱动装置(170, 270, 370, 470)及缆绳,驱动装置(170, 270, 370, 470)被配置为通过缆绳驱动末端执行器(150)运动,缆绳包括用于驱动末端执行器(150)执行偏航运动第一对缆绳和第二对缆绳和用于驱动末端执行器(150)执行俯仰运动第三对缆绳,由于偏航运动与俯仰运动正交,因此第三对缆绳在末端执行器(150)上与第一对缆绳、第二对缆绳之间存在耦合关系,驱动装置(170, 270, 370, 470)具有用于解除耦合关系的解耦机构(176, 276, 376, 476),解耦机构(176, 276, 376, 476)包括主解耦件(1761, 2761, 3761, 4761)、滑架(1762, 4765, 572)及引导机构(573),主解耦件(1761, 2761, 3761, 4761)驱动滑架(1762, 4765, 572)沿引导机构(573)所引导的方向运动,从而使第一对缆绳和第二对缆绳的在驱动装置(170, 270, 370, 470)内的长度适应于末端执行器(150)的俯仰运动而改变,从而解除耦合关系。

Description

手术器械、从操作设备及手术机器人
本申请要求于2020年9月30日提交中国专利局,申请号为202011063721.9,发明名称为“手术器械、从操作设备及手术机器人”,及于2021年1月6日提交中国专利局,申请号为202110015212.7,发明名称为“手术器械、从操作设备及手术机器人”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗器械领域,特别是涉及一种手术器械以及应用该手术器械的从操作设备以及具有该从操作设备的手术机器人。
背景技术
微创手术是指利用腹腔镜、胸腔镜等现代医疗器械及相关设备在人体腔体内部施行手术的一种手术方式。相比传统手术方式微创手术具有创伤小、疼痛轻、恢复快等优势。
随着科技的进步,微创手术机器人技术逐渐成熟,并被广泛应用。微创手术机器人通常包括主操作控制台及从操作设备,主操作控制台用于根据医生的操作向从操作设备发送控制命令,以控制从操作设备,从操作设备用于响应主操作控制台发送的控制命令,并进行相应的手术操作。
从操作设备上连接有可以与从操作设备可拆卸的手术器械,手术器械包括驱动装置和用于执行手术的末端执行器,驱动装置用于将手术器械连接到从操作设备并接收来自从操作设备的驱动力以驱动末端执行器运动,驱动装置通过驱动缆绳与末端执行器连接,驱动装置通过驱动缆绳来操纵末端执行器的运动。末端执行器一般包括三个自由度的运动,即自转、俯仰运动和偏航运动,有些末端执行器还具有自转运动,其中偏航运动由一组的驱动缆绳控制的,俯仰运动的驱动缆绳是由另外一组的驱动缆绳控制的,由于末端执行器的俯仰运动和偏航运动正交,因此在末端执行器进行俯仰运动时,控制俯仰的驱动缆绳 与控制偏航的驱动缆绳之间存在耦合关系,即控制俯仰的驱动缆绳的运动受限制于控制偏航的驱动缆绳,因此需要解除两者之间的这种耦合关系。现有技术采用的是软件解耦的方法,但软件解耦的方法的算法比较复杂,增加了系统控制程序的复杂度,而且软件解耦的方法会在数据采集的时候存在误差,因此不能精确的解除两者之间的耦合关系。
发明内容
基于此,为解决上述问题,本发明提供了一种手术器械、从操作设备及具有该手术器械的手术机器人,其中手术器械包括末端执行器、驱动装置及缆绳,所述缆绳包括用于驱动所述末端执行器执行偏航运动的第一对缆绳和第二对缆绳,及用于驱动所述末端执行器执行俯仰运动的第三对缆绳,所述驱动装置包括:
引导机构,所述引导机构包括第一引导部和第二引导部;
驱动单元,所述第三对缆绳的一端连接在所述第三驱动单元上,所述驱动单元通过所述第三对缆绳操纵所述末端执行器的俯仰运动;
解耦机构,所述解耦机构包括主解耦件和从解耦件,所述从解耦件包括滑架,所述第一引导部与所述滑架相连接,所述第一引导部用于与所述第二引导部配合以相对所述第二引导部沿引导方向运动,所述主解耦件用于驱动所述滑架沿所述引导方向运动,从而增加所述第一对缆绳和所述第二对缆绳中的其中一对缆绳在所述驱动装置内的长度并减少其中另一对缆绳在所述驱动装置内的长度,以使所述驱动单元驱动所述末端执行器执行俯仰运动。
优选地,所述驱动装置还包括安装座,所述滑架滑动地设置在所述安装座上,所述第二引导部安装在所述安装座上。
优选地,所述第一引导部包括直轴,所述第二引导部包括外筒,所述直轴穿设于所述外筒,所述直轴被配置为相对于所述外筒沿直线运动。
优选地,所述安装座上还具有用于安装所述外筒的安装孔,所述安装孔一端具有内径基本等于所述外筒的外径的第一开口,所述安装孔另一端具有抵持所述外筒的底部,所述底部上具有用于供所述直轴通过的第二开口。
优选地,所述第二开口的内径小于所述第一开口的内径。
优选地,所述引导机构还包括挡板,所述挡板安装在所述第一开口处用于将所述外筒固定在所述安装孔内。
优选地,所述挡板上具有第三开口,所述第三开口用于供所述直轴通过。
优选地,所述第三口的内径基本等于所述第二开口的内径。
优选地,所述滑架包括第一臂和第二臂,所述直轴连接于所述第一臂和所述第二臂之间。
优选地,所述滑架还包括第三臂,所述第三臂连接于所述第一臂和所述第二臂。
优选地,所述直轴与所述第三臂平行。
优选地,所述第一臂和所述第二臂上分别设置有第一导向部和第二导向部,所述第一导向部和第二导向部分别用于为所述第一对缆绳和所述第二对缆绳导向。
优选地,所述安装座上设置有进线口,所述第一对缆绳至第三对缆绳穿过所述进线口延伸至所述末端执行器,所述第一臂和所述第二臂分别位于所述进线口两侧。
优选地,所述第一引导部包括与所述滑架固定连接的滑轨,所述第二引导部包括相互对齐的第一引导轮和第二引导轮,所述滑轨滑动安装在所述第一引导轮和所述第二引导轮上。
优选地,所述从解耦件还包括解耦缆绳,所述主解耦件通过所述解耦缆绳驱动所述滑架运动。
优选地,所述滑架上设置有导向组件,所述解耦缆绳的一端固定在所述主解耦件上,所述解耦缆绳的另一端经过所述导向组件的导向后固定在所述安装座上。
优选地,所述解耦缆绳包括第一解耦缆绳和第二解耦缆绳,所述导向组件包括分别设置在所述滑架两端的第三导向部和第四导向部,所述第一解耦缆绳的另一端经过所述第三导向部的导向后固定在所述安装座上,所述第二解耦缆绳另一端经过所述第四导向部的导向后固定在所述安装座上。
优选地,所述第一解耦缆绳在第三导向部与安装座之间的缆绳段与所述第一引导机构平行。
优选地,所述解耦机构还第五导向部,所述第一解耦缆线经过所述第五导向部的导向后再经过所述第三导向部的导向后连接到所述安装座上。
优选地,所述第一解耦缆绳在所述第五导向部与所述第三导向部之间的缆绳段与所述第一引导机构平行。
优选地,所述安装座上还设置有第一导向轮,所述第一对缆绳通过所述第一导向轮的导向后再通过所述第一导向部的导向延伸至所述末端执行器,所述滑架的运动方向与所述第一对缆绳在所述第一导向轮和所述第一导向部之间的部分平行。
优选地,所述第一对缆绳或第二对缆绳因所述滑架运动而引起的长度的变化速度与所述主解耦件旋转的线速度成正比。
优选地,所述主解耦件与所述驱动单元同轴设置。
优选地,所主解耦件与所述驱动单元同轴旋转。
一种从操作设备,所述从操作设备包括机械臂和上述手术器械,所述手术器械安装在所述机械臂上,所述机械臂用于操纵所述手术器械运动。
一种手术机器人,所述手术机器人包括主操作设备上述从操作设备,所述从操作设备根据所述主操作设备的指令执行相应操作。
本发明的手术器械使用机械结构解除操纵末端执行器俯仰运动的驱动缆绳与操纵末端执行器偏航运动的驱动缆绳之间的耦合关系,在使用引导机构引导解耦机构运动,消除解耦过程中解耦机构的回程间隙,能更精确可控地解除操纵末端执行器俯仰运动与偏航运动的驱动缆绳之间的耦合关系,使用机械解耦能减少了整个手术机器人的程序算法,使手术机器人的运行更加稳定。
附图说明
图1为本发明一实施例的手术机器人的从操作设备的结构示意图;
图2为本发明一实施例的手术机器人的主操作控制台的结构示意图;
图3为本发明一实施例的从操作设备的机械臂的结构示意图;
图4为本发明一实施例的手术器械的结构示意图;
图5A-5D为本发明一实施例的末端执行器的结构示意图;
图5E为本发明一实施例的驱动缆绳在长轴内的结构示意图
图6A为本发明一实施例的末端执行器的第一支撑架的立体图;
图6B为本发明一实施例的末端执行器的第一支撑架的俯视图;
图6C为本发明另一实施例的末端执行器的第一支撑架的俯视图;
图7A-7B为本发明一实施例的末端执行器的俯仰状态下的示意图;
图7C为图7A所示的实施例中的末端执行器在俯仰-偏航-开合状态下的示意图;
图8A为本发明一实施例的驱动装置的示意图;
图8B和8C为图8A所示的驱动装置中的第一驱动缆绳和第二驱动缆绳在导向轮上绕线的局部示意图;
图8D-8E为图8A的驱动装置的解耦过程示意图;
图9A为本发明一实施例的驱动装置的示意图;
图9B为图9A所示的驱动装置的解耦过程示意图;
图10A为本发明一实施例的驱动装置的示意图;
图10B为图10A所示的驱动装置的解耦过程示意图;
图11A为本发明一实施例的驱动装置的立体图;
图11B为图11A的驱动装置的俯视图;
图11C为图11A所示的驱动装置的从解耦件与安装座立体图;
图11D为图11C所示的从解耦件与安装座的爆炸图;
图11E为图11A所示驱动装置的滑架的立体图;
图11F为图11A所示驱动装置的解耦过程的示意图;
图12A为本发明另一实施例的驱动装置的从解耦件和安装座立体图;
图12B为图12A的爆炸图;
图12C为图12A和图12B中的安装座的侧视图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“耦合”另一个元件,表明至少一个元件的变化会受另一个元件的限制,“解耦”即解除耦合关系,表明具有耦合关系的两个元件不再具有耦合关系,一个元件的变化不再受另一元件的限制。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。本文所使用的术语“远端”、“近端”作为方位词,该方位词为介入医疗器械领域惯用术语,其中“远端”表示手术过程中远离操作者的一端,“近端”表示手术过程中靠近操作者的一端。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
微创手术机器人一般包括从操作设备和主操作控制台,图1所示为本发明一实施例的从操作设备100,图2为本发明一实施例的主操作控制台200,外科医生在主操作控制台200上进行对从操作设备100的相关控制操作,从操作设备100根据主操作控制台200的输入指令执行对人体的外科手术。主操作控制台200和从操作设备100可以置于一个手术室内,也可以置于不同的房间,甚至主操作控制台200和从操作设备100可以相距很远,例如主操作控制台200和从操作设备100分别位于不同的城市,主操作控制台200与从操作设备100可以通过有线的方式进行数据的传输,也可以通过无线方式进行数据的传输,例如主操作控制台200与从操作设备100位于一个手术室内,两者之间通过有线的方式进行数据的传输,又如主操作控制台200与从操作设备100分别在不 同的城市,两者之间通过5G无线信号进行远距离数据传输。
如图1所示,从操作设备100包括多个机械臂110,每个机械臂110包括多个关节和一个持械臂130,多个关节联动以实现持械臂130的多个自由度的运动,持械臂130上安装有用于执行外科手术的手术器械120,手术器械120穿过固定在持械臂130远端的套管针140进入人体体内,机械臂110用于操纵手术器械120运动以执行手术。手术器械120可拆卸地安装在持械臂130上,从而可以随时更换不同类型的手术器械120或取下手术器械120以对手术器械120进行冲洗或消毒。如图3所示,持械臂130包括持械臂本体131和器械安装架132,器械安装架132用于安装手术器械120,器械安装架132可以在持械臂本体131上滑动,进而带动手术器械120沿持械臂本体131前进或退出。
如图4所示,手术器械120包括分别位于手术器械120近端的驱动装置170和远端的末端执行器150,以及位于驱动装置170和末端执行器150之间的长轴160,驱动装置170用于与持械臂130的器械安装架132相连接,器械安装架132内具有多个致动器(图未示出),多个致动器与驱动装置170进行接合,以将致动器的驱动力传输给驱动装置170。长轴160用于连接驱动装置170和末端器械150,长轴160是中空的,供驱动缆绳穿过,驱动装置170通过驱动缆绳操纵的末端执行器150的运动,以使末端执行器150执行相关手术操作。
图5A-图5D为本发明一实施例的末端执行器150的结构示意图,如图5A所示末端执行器150包括第一支架210和第二支架220,第一支架210的远端包括第一支柱314和第二支柱315,第一支架210的近端包括底架316,底架316的一端与长轴160相连接,从底架316的另一端朝末端执行器150的远端延伸形成第一支柱314和第二支柱315,第一支柱314、第二支柱315以及底架316形成大致U型夹的结构。
在第一支柱314与第二支柱315之间设置有第一销311和第二销312,第一销311一端固定连接在第一支柱314上,其另一端固定连接在第二支柱315上,同样的,第二销312的一端固定连接在第一支柱314上,其另一端固定连接在第二支柱315上,第二销312与第一销311并排地设置在第一支柱314和第二支柱315上,其中第一销311比第二销312更靠近第一支架210的底架316。
为更好的展示末端执行器150的近端的结构,在图5B和图5C中没有显示第一支架210,如图5B和图5C所示,第一销311上设置有第一滑轮组,第一滑轮组包括依次设置在第一销311上的第一滑轮211、第二滑轮212、第三滑轮213和第四滑轮214,第二销312上设置有第二滑轮组,第二滑轮组包括依次设置在第二销312上的第五滑轮215、第六滑轮216、第七滑轮217以及第八滑轮218,第一滑轮211至第八滑轮218都是用于引导驱动缆绳,由于用于引导驱动缆绳的滑轮都设置在第一支架上210,第二支架220上没有滑轮,因此第二支架220的体积可以制造的更小,使得末端执行器150的体积更小,并且不会存在滑轮脱落的风险。
第二支架210上设置有第三支柱317、第四支柱318以及俯仰轮319,从俯仰轮319上沿末端执行器150的远端延伸形成第三支柱317和第四支柱318,第三支柱317、第四支柱318以及俯仰轮319构成大致U型架的形状,第二支架220的俯仰轮319安装在第二销312上,第二支架220可以围绕经过第二销312的轴线的AA’旋转以实现末端执行器150的俯仰运动。
第二支架220的第三支柱317和第四支柱318之间设置有第三销313,第三销313一端固定连接在第三支柱317另一端固定连接在第四支柱318上,第三销313与第一销311、第二销312相互垂直。末端执行器150的夹持部包括第一夹持部230和第二夹持部240,第一夹持部230和第二夹持部240通过第三销313可转动地设置在第二支架220上,第一夹持部230和第二夹持部240可以围绕经过第三销313的轴线BB’旋转,以实现末端执行器150的开合和/或偏航运动,第一夹持部230和第二夹持部240可以是用于夹持组织的钳夹,或用于缝合的吻合器、或者用于电烧灼的烧灼器等。
如图5A-5D所示,图5A和5B所示中的方向标识是为了更方便描述驱动缆绳在末端执行器150上的绕线方式,标识中的远端和近端是指末端执行器150的远端和近端方向,前、后、左、右是指在图5A和5B是视角下末端执行器150的前部方向、后部方向、左部方向以及右部方向,其他如图虽然没有方向标识,但能根据图5A和5B较容易的推导出末端器械执行器150方向,设置在末端执行器150的驱动缆绳包括用于操纵末端执行器150开合和/或偏航运动第一对缆 绳和第二对缆绳,用于操纵末端执行器150俯仰运动第三对缆绳,第一对缆绳包括第一驱动缆绳151A和第二驱动缆绳151B,其中第一驱动缆绳151A和第二驱动缆绳151B的一端可以是连在一起也可以是分开的,对于第二对缆绳和第三对缆绳是如此。第二对缆绳包括第三驱动缆绳152A和第四驱动缆绳152B,第三对缆绳包括第五驱动缆绳153A以及第六驱动缆绳153B。如图5E所示,每条驱动缆绳都包括3段,以第一驱动缆绳151A为例,第一驱动缆绳151A包括用于连接到驱动装置内的第一段缆绳151A1,用于连接到末端执行器的第二段缆绳151A2,第一段缆绳151A1和第二段缆绳151A2之间使用刚性的条形件151A3相连接,这样的结构相比使用整条驱动缆绳传输效率更高,而且也容易产生多条驱动缆绳在长轴160内交缠的情况。可以理解的是,在其他的一些实施例中,驱动缆绳也可以一条完整而未分段的缆绳。
在末端执行器150一侧上,第一对缆绳在第一滑轮组和第二滑轮组上的绕线方式与第二对缆绳在第一滑轮组和第二滑轮组上的绕线方式相反,第一对缆绳的第一驱动缆绳151A在第一滑轮组和第二滑轮组上的绕线方式与第二驱动缆绳151B在第一滑轮组和第二滑轮组上的绕线方式相同,第二对缆绳的第三驱动缆绳152A在第一滑轮组和第二滑轮组上的绕线方式相同与第四驱动缆绳152B在第一滑轮组和第二滑轮组上的绕线方式相同。具体地,第一驱动缆绳151A的近端连接到驱动装置170内的驱动单元上,第一驱动缆绳151A的远端经过第一滑轮211的前部的导向后朝末端执行器150的远端延伸,并经过第五滑轮215的后部后导向后继续沿末端器械150的远端延伸并最后固定在第一夹持部230上。第二驱动缆绳151B经过第四滑轮214的前部导向后朝末端执行器150的远端延伸,并经过第八滑轮218的后部导向后继续朝末端执行器150的远端延伸并最后固定在第一夹持部230上。第三驱动缆绳152A的远端经过第二滑轮212后部的导向后朝末端执行器150的远端延伸,并经过第六滑轮216的前部导向后继续朝末端器械150的远端延伸并固定在第二夹持部240上,第四驱动缆绳152B的远端经过第三滑轮213的后部导向后朝末端执行器150的远端延伸,并经过第七滑轮217的前部导向后继续朝末端器械150的远端延伸并过渡在第二夹持部240上。
第一驱动缆绳151A和第二驱动缆绳151B一起驱动第一夹持部230围绕轴线BB’旋转,第三驱动缆绳152A和第四驱动缆绳152B一起驱动第二夹持部240围绕轴线BB’旋转,进而第一驱动缆绳151A、第二驱动缆绳151B、第三驱动缆绳152A以及第四驱动缆绳152B一起驱动第一夹持部230和第二夹持部240执行开合和/或偏航运动。
第三对缆绳的第五驱动缆绳153A和第六驱动缆绳153B的近端到驱动装置170,两者的远端被容纳在俯仰轮319的环形槽内,两者的末端分别固定在第二支架220内,第五驱动缆绳153A和第六驱动缆绳153B一起驱动第二支架220沿轴线AA’旋转,进而第二支架220带动第一夹持部230和第二夹持部240一起沿轴线AA’进行俯仰运动。
本发明末端执行器150的结构和驱动缆绳的绕线方式都和现有的末端执行器不同,现有的末端执行器的第一滑轮组设置在末端执行器的第一支架上,第二滑轮组设置在第二支架上,第二滑轮组跟随第二支架的一起进行俯仰运动。另外本发明驱动缆绳的绕线方式也与现有技术不同,本发明的驱动缆绳经过上述的绕线方式后,如图5A-5D所示,第一对缆绳的第一驱动缆绳151A在第五滑轮215与第一夹持部230之间存在第一部分缆绳151Aa,第一对缆绳的第二驱动缆绳151B在第八滑轮218与第一夹持部230之间存在第二部分缆绳151Ba,第二对缆绳的第三驱动缆绳152A在第六滑轮216与第二夹持部240之间存在第三部分缆绳152Aa,第二对缆绳的第四驱动缆绳152B在第七滑轮217与第一夹持部240之间存在第四部分缆绳152Ba,其中,无论末端执行器150如何俯仰运动,第一部分缆绳151Aa与第二部分缆绳151Ba始终位于平面M的同侧,第三部分缆绳152Aa与第四部分缆绳152Ba始终位于平面M的另一侧的同侧,平面M为经过第二销312的轴线AA’并垂直第三销313的轴线BB’的平面。第一部分缆绳151Aa与第二部分缆绳151Ba始终位于平面M的同侧,第三部分缆绳152Aa与第四部分缆绳152Ba始终位于平面M的另一侧的同侧,使得第一对缆绳和第二对缆绳在末端执行器150上的绕线比较简单、工整,装配时也较容易。
如图5C、5D所示,第一驱动缆绳151A和第二驱动缆绳151B从第一支架210(图5C和图5D中为便于展示驱动缆绳未显示第一支架210)分别到第一 滑轮211和第四滑轮214之间具有第五部分缆绳151Ab和第六部分缆绳151Bb,第三驱动缆绳152A和第四驱动缆绳151B从第一支架210分别到第二滑轮212和第三滑轮213之间具有第七部分缆绳152Ab和第八部分缆绳152Bb,第五部分缆绳151Ab和第六部分缆绳151Bb都位于平面P的同侧,平面P是指同时经过第一销311的轴线和第二销312的轴线平面,第七部分缆绳152Ab和第八部分缆绳152Bb都位于平面P的另一侧的同侧。
如图6A和6B所述,第一支架210的底架316上具有多个用于为驱动缆绳穿过的通孔,多个通孔包括用于为第一驱动缆绳151A的第五部分缆绳151Ab的通过第一通孔219a,用于第二驱动缆绳151B的第六部分缆绳151Bb通过的第二通孔219b,用于第三驱动缆绳152A的七部分缆绳152Ab通过的第三通孔219c、用于第四驱动缆绳152B的第八部分缆绳152Bb通过的第四通孔219d、用于第五驱动缆绳153A通过的第五通孔219e以及用于第六驱动缆绳153B通过的第六通孔219f。为了使第一驱动缆绳151A和第二驱动缆绳151B、第三驱动缆绳152A和第四驱动缆绳152B在末端执行器150俯仰运动时能同时进行相同的变化(例如长度同时增加或减少),第一通孔219a和第二通孔219b位于平面P的同一侧,第三通孔219c和第四通孔位于平面P的另一侧,而且即经过第一通孔219a又经过第二通孔219b的圆心的直线与即经过第三通孔219c的圆心又经过第四通孔219d的圆心的直线平行,由于存在这种平行关系,可以使得驱动缆绳能穿过第一支架210的底架316上的通孔笔直延伸至第一滑轮组,从而使驱动缆绳驱动效率比较高。
如图6B所示,第一通孔219a、第二通孔219b、第三通孔219c以及第四通孔219d分别位于梯形的四个顶点上,使得第一驱动缆绳151A和第二驱动缆绳151B分别通过外侧的第一滑轮211和第四滑轮214,第三驱动缆绳152A和第四驱动缆绳152B分别通过位于内侧的第二滑轮212和第三滑轮213,为了使在驱动末端执行器150俯仰运动时第五驱动缆绳153A和第六驱动缆绳153B的驱动力损失较小,第五通孔219e和第六通孔219f都位于第一通孔219a、第二通孔219b、第三通孔219c、第四通孔219d组成的梯形的外部。
另一实施例如图6C所示位于第一支架310中的第一通孔319a第二通孔 319b、第三通孔319c以及第四通孔319d分别位于平行四边形的四个顶点上,第五通孔319e和第六通孔319f都位于第一通孔319a、第二通孔319b、第三通孔319c、第四通孔319d组成的平行四边形的外部。
现有技术的第一驱动缆绳的第五部分缆绳和第二驱动缆绳的六部分缆绳分别位于平面P的异侧,第三驱动缆绳的七部分缆绳和第四驱动缆绳的第八部分缆绳也分别位于平面P的异侧,反映在第一支架上的供驱动缆绳通过的通孔分布上则供第一对缆绳的第一驱动缆绳和第二驱动缆绳通过的两通孔分别位于平面P的异侧,供第二对缆绳的第三驱动缆绳和第四驱动缆绳通过的两通过也分别位于平面P的异侧。由于本发明的末端执行器和现有的末端执行器存在整个结构和绕线方式的不同,使得本发明的末端执行器相对于现有技术更安全,驱动缆绳和滑轮相对现有技术不容易脱落,末端器械的装配也更加容易,整个末端器械的体积也更小。虽然本发明的末端器械相对于现有技术存在上述优点,但本发明的末端器械也带来了新的挑战,即现有的末端执行器的驱动装置无法驱动本发明的末端执行器,更具体地,现有的末端执行的驱动装置使用的解耦第三对缆绳和第一对缆绳、第二对缆绳的耦合关系的方法不再适用本发明的末端执行器。
以下详细说明末端器械150的第三对缆绳和第一对缆绳和/或第二对缆绳之间的耦合关系,如图5所示,第一部分缆绳151Aa、第二部分缆绳151Ba、第三部分缆绳152Aa以及第四部分缆绳152Ba分别离开第五滑轮215、第八滑轮218、第六滑轮216和第七滑轮217的切点都为位于平面a上,平面a为经过第一轴线AA’并垂直上述平面P的平面。
当欲使末端执行器150执行俯仰运动时,则需驱动装置170收拉第三对缆绳的第五驱动缆绳153A或第六驱动缆绳153B,使得第二支架220带动第一夹持部230和第二夹持部240一起围绕第一轴线AA’俯仰运动,如图7A和7B所示,驱动装置170收拉第六驱动缆绳153B,使得第二支架220以及第一夹持部230和第二夹持部240围绕第一轴线AA’俯仰运动,若末端执行器150只执行俯仰运动,则需要维持第一部分缆绳151Aa、第二部分缆绳151Ba、第三部分缆绳152Aa以及第四部分缆绳153Ba的长度恒定不变,否则会引起末端执行器150 的偏航或开合运动。
在末端执行器150从图5A-5D所示的笔直状态旋转到图7A-7B所示的俯仰状态的过程中,在驱动装置170收拉第六驱动缆绳153B时,假若末端执行器150需要转过的目标俯仰角度是α,则平面a需要从图5D中的位置也旋转α角度到图7A的平面b的位置,假若第一滑轮组和第二滑轮组的半径均为r1,为了使末端执行器150成功旋转目标的俯仰角度α,此时必须使得第一驱动缆绳151A和第二驱动缆绳151B分别在第五滑轮215和第八滑轮218上的包角长度同时增加长度L,其中L=α*r1,而相应的第三驱动缆绳152A和第四驱动缆绳152B分别在在第六滑轮216和第七滑轮217上的包角长度同时减少了长度L。而如图8A所示,在驱动装置170内,第一驱动缆绳151A和第二驱动缆绳151B以相反方向绕在可旋转的第一驱动单元171上,第三驱动缆绳152A和第四驱动缆绳152B以相反方向绕在可旋转的第二驱动单元172上,而第一驱动单元171和第二驱动单元172是旋转地固定在其旋转轴线上的,故第一驱动单元171和第二驱动单元172是无法平移的,因此仅依靠旋转第一驱动单元171无法使得第一驱动缆绳151A和第二驱动缆绳151B的长度同时增加或减少,同样地,旋转第二驱动单元172也无法使得第三驱动缆绳152A和第四驱动缆绳152B的长度同时增加或减少,而如上所述,若要成功使末端执行器150的执行俯仰运动又必须要使得第一驱动缆绳151A和第二驱动缆绳151B的在末端执行器150上的长度同时增加或减少,第三驱动缆绳152A和第四驱动缆绳152B的在末端执行器上的长度必须同时减少或增加,故第三对缆绳的运动受限制于第一对缆绳、第二对缆绳。
将这种一个元件的变化受另一个元件的限制的关系称之为耦合关系,即一个元件与另一元件之间存在耦合关系。对于第一对缆绳、第二对缆绳以及第三对缆绳而言这种受限制的关系即可以是第三对缆绳由于受限制于第一对缆绳和/或第二对缆绳,从而导致第三对缆绳完全无法运动,使得末端执行器无法实现俯仰运动,也可以是第三对缆绳由于受限制于第一对缆绳和/或第二对缆绳,从而第一对缆绳、第二对缆绳和第三对缆绳之间的任一条缆绳运动,都会引发其他缆绳不期望的运动,从而导致末端执行器也发生不期望的运动而无法执行 期望的操作,例如,当第三对缆绳在操纵末端执行器俯仰运动时,由于第三对缆绳与第一对缆绳和/或第二对缆绳之间存在耦合关系,第三对缆绳的运动会同时导致第一对缆绳和/或第二对缆绳的运动,从而末端执行器在俯仰运动的同时会引起末端执行器的开合和/或偏航运动,导致末端执行器的俯仰运动与开合和/或偏移运动相互影响,末端执行器的俯仰运动与开合和/或偏移运动相互不独立,使得末端执行器150无法正确的执行手术操作。因此需要解除第三对缆绳和第一对缆绳和/或第二对缆绳之间的这种耦合关系,使第三对缆绳的运动不再受限制于第一对缆绳和/或第二对缆绳,两者之间的运动能相互独立、互不干扰或影响,将这种解除第三对缆绳和第一对缆绳和/或第二对缆绳之间这种耦合关系称之为解耦。
对于如何解除上述耦合关系,一种现有的解耦方法是使用软件算法进行解耦,主操作控制台200控制第三驱动单元驱动第三对缆绳运动的同时,也控制第一驱动单元和第二驱动单元驱动第一对缆绳和第二对缆绳运动,以使第一对缆绳和第二对缆绳随第三对缆绳的运动在滑轮上的包角长度增加或减少,但这种解耦方法需要使末端执行器上的第一对缆绳的第一部分缆绳151Aa和第二部分缆绳151Ba分别位于平面M的异侧,第二对缆绳的第三部分缆绳152Aa和第四部分缆绳152Ba也分别位于平面M的异侧,以使第一对缆绳的第一驱动缆绳151A和第二驱动缆绳151B形成一条跨越平面M的回路,第二对缆绳的第三驱动缆绳152A和第四驱动缆绳152B也形成一条跨越平面M的回路,才有可能通过实现通过软件控制驱动单元的运动而实现解耦。然而本发明图5A所示的实施例的末端执行器上的第一对缆绳的第一部分缆绳151Aa和第二部分缆绳151Ba位于平面M的同侧,第二对缆绳的第三部分缆绳153Aa和第四部分缆绳153Ba也位于平面M的同侧,因此现有的软件解耦方法是无法解耦本发明这种类型的末端执行器的。另外使用软件算法解耦的方法会导致手术机器人的控制程序复杂,容易出错,而且这种软件算法解耦的方法会使得手术器械的驱动机构的每个驱动单元失去独立性,具体而言,驱动装置内具有分别驱动三对缆绳的三个驱动单元,理想的状况各驱动单元的控制是彼此对立的,然而当使用软件算法解耦时,需要同时控制上述三个驱动单元一起运动,从而导致三个驱动 单元失去了独立性,容易出现控制错误。
本发明提出了机械解耦的方案,在手术器械120的驱动装置170中设置一种机械解耦机构,从而避免上述软件算法解耦的弊端。
如图8A所示为本发明一实施例的驱动装置170的示意图,该驱动装置170适用于驱动图5A所示的末端执行器。驱动装置170包括用于驱动末端执行器150执行开合和/或偏航运动的第一驱动单元171和第二驱动单元172,用于驱动末端执行器150俯仰运动的第三驱动单元173,以及用于驱动长轴160自转运动的第四驱动单元174。第一对缆绳的第一驱动缆绳151A和第二驱动缆绳151B分别以相反的缠绕方式绕在第一驱动单元171上,第二对缆绳的第三驱动缆绳152A和第四驱动缆绳152B分别以相反的缠绕方式绕在第二驱动单元172上,第三对缆绳的第五驱动缆绳153A和第六驱动缆绳153B分别以相反的缠绕方式绕在第三驱动单元173上,第七驱动缆绳154A和第八驱动缆绳154B分别以相反的缠绕方式绕在第四驱动单元174上。
当器械安装架132内的致动器驱动轴171A旋转带动第一驱动单元171随其轴旋转时,第一驱动单元171收拉或释放第一驱动缆绳151A或第二驱动缆绳151B以使第一夹持部230围绕其第三销313旋转,当器械安装架132内的致动器驱动第二驱动单元172随其轴172A旋转时,第二驱动单元172收拉或释放第二驱动缆绳152A或第三驱动缆绳152B以使第二夹持部240围绕第三销313旋转,第一夹持部230与第二夹持部240围绕第三销313运动使得末端执行器150执行开合和/或偏航运动。当器械安装架132内的致动器驱动轴173A旋转带动第三驱动单元173旋转时,第三驱动单元173收拉或者释放第五驱动缆绳153A或第六驱动缆绳153B时以使第二支架220围绕第二销312的轴线AA’旋转从而实现末端执行器150执行俯仰运动。当器械安装架132内的致动器驱动第四驱动单元174随其轴174A旋转时,第四驱动单元174收拉或释放第七驱动缆绳154A或第八驱动缆绳154B实现驱动长轴160的自转运动。
驱动装置170还包括用于解除第三对缆绳与第一对缆绳、第二对缆绳之间在末端执行器150一侧的耦合关系的解耦机构,解耦机构包括主解耦件1761和从解耦件176,从解耦件176包括滑架1762和连接在滑架1762两端的第一导 向部1763、第二导向部1764,主解耦件1761通过第一解耦缆绳1767和第二解耦缆绳1768与滑架1762连接,主解耦件1761通过驱动第一解耦缆绳1767和第二解耦缆绳1768进而操纵从解耦件的运动。第一解耦缆绳1767和第二解耦缆绳1768以相反方式绕在主解耦件1761上,主解耦件1761与第三驱动单元173以相同的角速度运动,主解耦件1761与第三驱动单元173可以设置在同一轴173A上,因此主解耦件1761是与第三驱动单元173随轴173A同轴旋转,其他一些实施例中,主解耦件1761与第三驱动单元173也可以分别设置在不同的旋转轴上。主解耦件1761和第三驱动单元173具有不同的半径,主解耦件1761的半径为r2,第三驱动单元173的半径为R2,其中r2<R2,主解耦件1761通过收拉或释放第一解耦缆绳1767或第二解耦缆绳1768实现从解耦件的运动。主解耦件1761与第三驱动单元173可以接收来自相同的动力源驱动,动力源即为上述的从操作设备中的致动器,在其他实施例中主解耦件与第三驱动单元设置在不同的旋转轴上,但依然接收所述与第三驱动单元同源的驱动力,例如相同的致动器上通过不同的方式的分别连接并驱动主解耦件和第三驱动单元,使用同一动力源来同时驱动第三驱动单元和主解耦件可以使解耦的控制更加简单,解耦机构不要需要单独再检测耦合状态,主解耦件和耦合源(即第三驱动单元)接收的是相同的控制信息,而在传动侧的结构不同。
如图8A,第一驱动缆绳151A和第二驱动缆绳151B先后通过第三导向轮177A、第一导向部1763以及第三导向轮177C的导向后进入长轴内后一直延伸连接到末端执行器150。第三驱动缆绳152A和第四驱动缆绳152B先后通过第二导向轮177B、第二导向部1764以及第四导向轮177D的导向后进入长轴内后一直延伸连接到末端执行器150。第五驱动缆绳153A和第六驱动缆绳153B分别通过第五导向轮177E和六导向轮177F的导向后进入长轴内后一直延伸连接到末端执行器150,至于第一驱动缆绳151A至第六驱动缆绳153B如何于末端执行器150连接,前面已经详细描述过,这里不再赘述。
解耦过程如图8D所示,当第三驱动单元173随其轴173A沿逆时针(第一方向)旋转时,第三驱动单元173收拉第六驱动缆绳153B并同时释放第五驱动缆绳153A,使得末端执行器150的第二支架220如图7A和7B围绕第二销 312的轴线AA’旋转,整个末端执行器150执行俯仰运动。如上所述,此时第一驱动缆绳151A和第二驱动缆绳151B分别在第五滑轮215和第八滑轮218上的包角长度需要同时增加L,与此同时,第三驱动缆绳152A和第四驱动缆绳152B在第六滑轮216和第七滑轮217上的包角长度需要同时减少L才能使末端执行器150顺利地执行俯仰运动。由于解耦机构的主解耦件1761与第三驱动单元173同轴173旋转,因此在第三驱动单元173随轴173A逆时针旋转的同时,主解耦件1761也同样随轴173A逆时针旋转,此时主解耦件1761收拉第一解耦缆绳1767并同时释放第二解耦缆绳1768,假如主解耦件1761转过的弧长为L/2,则从解耦件在第一解耦缆绳1767的拉动下沿A方向运动L/2距离,此时由于从解耦件的运动,使得第一驱动缆绳151A和第二驱动缆绳151B在驱动装置170内的长度将同时减少L,即第一对缆绳在驱动装置170内的长度减少2L,相应地,第三驱动缆绳152A和第四驱动缆绳152B在驱动装置170内的长度将同时增加L,即第二对缆绳在驱动装置170内的长度增加2L。
由此第一驱动缆绳151A和第二驱动缆绳151B在驱动装置170内的长度减少量与第一驱动缆绳151A和第二驱动缆绳151B分别在第五滑轮215和第八滑轮218上包角长度需要的增加量相等,第三驱动缆绳152A和第四驱动缆绳152B在驱动装置170内的长度增加量与第三驱动缆绳152A和第四驱动缆绳152B在第六滑轮216和第七滑轮217上的包角长度需要的减少量相等。相反地,如图8E所示,当第三驱动单元173和主解耦件1761一起顺时针(第二方向)旋转时,第一驱动缆绳151A和第二驱动缆绳151B在驱动装置170内的长度增加量与第一驱动缆绳151A和第二驱动缆绳151B分别在第五滑轮215和第八滑轮218上包角长度需要的减少量相等,第三驱动缆绳152A和第四驱动缆绳152B在驱动装置170内的长度减少量与第三驱动缆绳152A和第四驱动缆绳152B在第六滑轮216和第七滑轮217上的包角长度需要的增加量相等。由此第一对缆绳和第二缆绳在因末端执行器俯仰运动而引起的在末端执行器一侧上长度变化量全部由第一对缆绳和第二缆绳在驱动装置内的长度变化提供,因此第三对缆绳的运动将不再受第一对缆绳、第二对缆绳的限制,解耦机构实现了解除第三对缆绳与第一对缆绳、第二对缆绳之间的耦合关系。
为了使在解耦机构能精确可控地解除第一对缆绳与第二对缆绳、第三对缆绳之间的耦合关系,解耦机构的主解耦件1761驱动从解耦件176始终沿直线运动,并且使得从解耦件176运动引起的第一驱动缆绳151A、第二驱动缆绳151B、第三驱动缆绳152A以及第四缆绳152B的长度变化始终是线性的。如9A-9C所示,第一解耦缆绳1767通过第七导向轮1765重新定向后沿从解耦件176的运动方向固定到从解耦件176一端,同样地,第二解耦缆绳1768通过第八导向轮1766重新定向后沿从解耦件176的运动方向固定到从解耦件176的另一端,因此主解耦件1761的运动将使得从解耦件176沿直线运动。并且第一解耦缆绳1767在第七导向轮1765与从解耦件176之间的部分以及第二解耦缆绳1768在第八导向轮1766与从解耦件176之间的部分都与从解耦件176的运动方向平行,在解耦的过程中,第一解耦缆绳1767和第二解耦缆绳1768的长度改变速度与主解耦件1761的旋转线速度成正比例关系,因此,从解耦件176的运动速度与主解耦件1761和第三驱动单元173的旋转线速度也成正比例关系,从而使解耦过程精确可控。
如图8B-8C所示,第一导向轮177A、第一导向部1763以及第三导向轮177C都是具有并排的两个滑轮的结构,两个滑轮分别用于引导第一驱动缆绳151A和第二驱动缆绳151B,第一驱动缆绳151A在第三导向轮177C和第一导向部1763之间形成有第一解耦部分缆绳151Ac,在第一导向部1763和第一导向轮177A之间形成有第三解耦部分缆绳151Ad,第二驱动缆绳151B在第三导向轮177C和第一导向部1763之间形成有第二解耦部分缆绳151Bc,在第一导向部1763和第一导向轮177A形成有第四解耦部分缆绳151Bd,同样的,第二导向部1764、第二导向轮177B以及第四导向轮177D也都是具有并排两个滑轮的结构,第三驱动缆绳152A和第四驱动缆绳152B分别在第四导向轮177D和第二导向部1764之间具有第五解耦部分缆绳152Ac和第六解耦部分缆绳152Bc,在第二导向部1764和第三导向轮177B之间具有第七解耦部分缆绳152Ad和第八解耦部分缆绳(图8A中被第七解耦部分缆绳152Ad遮挡不可见),为使能更精确的解耦,需要在解耦过程中使第一解耦部分缆绳151Ac的长度变化量与第二解耦部分缆绳151Bc的长度变化量相等,因此第一解耦部分缆绳151Ac和第二 解耦部分缆绳151Bc分别与经过第三导向轮177C中心处且垂直第三导向轮177C的轴线c1的平面形成大小相等的夹角θ,第五解耦部分缆绳152Ac和第七解耦部分缆绳152Bc与第七导向轮177D也具有相同的设置,这样可以使得在解耦过程中第一解耦部分缆绳151Ac和第二解耦部分缆绳151Bc的长度变化量相同,第五解耦部分缆绳152Ac和第七解耦部分缆绳152Bc的长度变化量相同。另外由于θ比较小使得第一解耦部分缆绳151Ac和第二解耦部分缆绳151Bc与第一导向轮1764和第四导向轮177B的轴间距H1大致相等,在解耦过程中,第一解耦部分缆绳151Ac和第二解耦部分缆绳151Bc与从解耦件运动方向大致平行,从而使得由于第一解耦部分缆绳151Ac和第二解耦部分缆绳151Bc引起的解耦过程中第一解耦部分缆绳151Ac和第二解耦部分缆绳151Bc非线性变化较小,实现更精确的解耦。
如图8C所示,第三解耦部分缆绳151Ad、第四解耦部分缆绳151Bd、第七解耦部分缆绳152Ad以及第八解耦部分缆绳与从解耦件176运动方向平行,这样可以使得在解耦过程中由于从解耦件运动引起的第三解耦部分缆绳151Ad、第四解耦部分缆绳151Bd、第七解耦部分缆绳152Ad以及第八解耦部分缆绳的长度的变化的速度与从解耦件176运动的速度成正比例关系,故在解耦过程中,第一驱动缆绳151A至第四驱动缆绳152B中的任一条驱动缆绳在驱动装置170内的长度变化速度与从解耦件176的移动速度成正比例关系,由上所述,从解耦件176的移动速度与主解耦件1761及第三驱动单元173的旋转线速度成正比例关系。故在解耦过程中,第一驱动缆绳151A至第四驱动缆绳152B中的任一条驱动缆绳在驱动装置170内的长度变化速度与主解耦件1761及第三驱动单元173的旋转线速度也成正比例关系,从而通过主解耦件173及第三驱动单元173精确控制第一对缆绳和第二对缆绳在末端执行器150上的长度变化量,实现精确可控地解耦。
如图8D所示为本实施例的解耦过程,相对于9A所示的状态,主解耦件1761逆时针旋转L/2弧长,从解耦件176相应地沿A方向运动L/2距离,第一解耦部分缆绳151Ac、第三解耦部分缆绳151Ad、第二解耦部分缆绳151Bc以及第四解耦部分缆绳151Bd的长度同时减少L/2,从而第一驱动缆绳151A和第 二驱动缆绳151B同时在驱动装置170内同时减少长度L,即第一对缆绳在驱动装置内长度减少2L。同样的,第五解耦部分缆绳152Ac、第六解耦部分缆绳152Ad、第七解耦部分缆绳152Bc以及第八解耦部分缆绳的长度同时增加L/2,从而第三驱动缆绳152A和第四驱动缆绳152B同时在驱动装置170内同时增加长度L,即第二对缆绳在驱动装置内的长度增加2L。
再次回到图7A,若本实施例中第二滑轮组的半径都为r1,第二支架220的俯仰轮319上用于容纳并引导第五驱动缆绳153A和第六驱动缆绳153B的环形槽319A的槽底半径为R1,当末端执行器150俯仰运动时,第五驱动缆绳153A或第六驱动缆绳153B的能在该环形槽中形成包角。当末端执行器150从图5D所示的零位状态旋转到图7A所示状态的过程中,若末端执行器150俯仰的角度为α时,第五驱动缆绳153A在俯仰轮319上的环形槽319A中的包角长度增加了L1,第六驱动缆绳153B在俯仰轮319上的环形槽319A中的包角长度同时减少了L1,其中L1=α*R1,由于末端执行器150的俯仰运动是由驱动装置170内的第三驱动单元173驱动的,如图8D所示,此时假若第三驱动单元173为使末端执行器150俯仰运动的角度为α沿逆时针(第一方向)所转过的角度为β,第三驱动单元173释放第五驱动缆绳153A并同时收拉第六驱动缆绳153B,使得第五驱动缆绳153A绕在第三驱动单元173上的长度减少了L1,第六驱动缆绳153B绕在第三驱动单元173的长度增加了L1,其中L1=β*R2。由于主解耦件1761和第三驱动单元173同轴旋转,此时相应地,主解耦件1761释放第一解耦缆绳1767并同时收拉第二解耦缆绳1768,使得第一解耦缆绳1767绕在主解耦件1761上的长度减少了L/2,即第一解耦缆绳1767被释放了L/2,第二解耦缆绳1768绕在主解耦件1761上的长度增加了L/2,其中L/2=β*r2,从而滑架1762沿A方向移动了L/2距离,使第一驱动缆绳151A和第二驱动缆绳151B在驱动装置170内长度都分别减少L,第三驱动缆绳152A和第四驱动缆绳152B在驱动装置170内的长度都分别增加L,由前面所述可知,L=α*r1。综上所述,通过以上四个式子:L1=α*R1,L1=β*R2,L/2=β*r2,L=α*r1可以得到以下关系:
Figure PCTCN2021092683-appb-000001
上述关系式表明第三驱动单元173的半径与主解耦件1761的半径之比为俯仰轮319的环形槽319A的槽底半径与第二滑轮组半径之比的2倍,引起该2倍的关系是因为从解耦件具有2个导向部,即第一导向部1763和第二导向部1764。在其他实施例中,从解耦件176的导向部个数也可以为其他数量,从而第三驱动单元的半径与主解耦件的半径之比和俯仰轮的半径与第二滑轮组半径之比的关系也与之发生变化,例如从解耦件可以具有N个导向部,第三驱动单元的半径与主解耦件的半径之比为俯仰轮的环形槽的槽底半径与第二滑轮组半径之比的N倍,即:
Figure PCTCN2021092683-appb-000002
但是从解耦件的导向部个数的增加相应的从解耦件的体积也相应的增加,比较优选的是上述实施例中从解耦件使用2个导向部。可以理解的是,上述驱动单元的半径和主解耦件的半径都是指驱动缆绳或解耦缆绳绕在其上面的部分的半径,例如绞盘的半径,滑轮的半径是指滑轮的槽底半径,以次方能计算驱动缆绳绕在滑轮上的包角长度,尽管在不同的文献中对滑轮的半径有着不同的解释(例如底槽半径、槽底半径),但发明中的滑轮半径都是用来衡量驱动缆绳绕在滑轮上的包角长度的参数。
由此末端执行器150俯仰运动所需要第一对缆绳、第二对缆绳在末端执行器150一侧的长度变化量全部由解耦机构176引起第一对缆绳、第二对缆绳在驱动装置170内长度变化量准确提供,使得第三对缆绳的运动不再受第一对缆绳、第二对缆绳的限制,实现第三对缆绳和第一对缆绳、第二对缆绳之间的精确解耦。在整个解耦过程中可以始终维持第一部分缆绳151Aa、第二部分缆绳151Ba、第三部分缆绳152Aa以及第四部分缆绳153Ba的长度都是恒定不变的,整个第一对缆绳、第二对缆绳的张紧度也始终维持不变,而且由于整个解耦过程中,只有第三驱动单元173的轴173A运动,第一驱动单元171和第二驱动单元172与第三驱动单元173完全独立。另外,由于主解耦件1761与与引起耦合关系的耦合源即第三驱动单元173同轴旋转运动,从而主解耦件1761与耦合源第三驱动单元173同角速度运动,两者物理上完全同步运动,不要需要主操作设置给与信号控制解耦机构,解耦机构的运动与耦合源的运动同步运转,解耦 机构同步第三驱动单元进行解耦,没有任何延迟,而且由耦合源第三驱动单元173引起的第一对缆绳和第二对缆绳在末端执行器150一侧的长度变化量,可以完全地、精确地映射到第一对缆绳和第二对缆绳在解耦机构176上的长度变化量,从而解耦机构176可以完全地、精确地解除掉第三对缆绳与第一对缆绳、第二对缆绳之间的耦合关系,所谓精确地解耦是指第三驱动单元旋转多少度,从解耦件则会移动多少距离,两者之间的关系是确定的,上述各半径比例等式已经给出。另外,由于从解耦件176始终是被主解耦件1761驱动而移动到相应位置,而不是由第一对缆绳或第二对缆绳带动的,整个解耦过程中第一对缆绳和第二对缆绳在从解耦件上基本上是不受力的,故第一对缆绳和第二对缆绳在解耦过程中的张力基本不变,增加了第一对缆绳和第二对缆绳的使用寿命与对末端执行器150控制的精确度。
图9A和10B示出了本发明的另一实施例的驱动装置270,驱动装置270B包括第一驱动单元271、第二驱动单元272、第三驱动单元273、第三驱动单元274以及解耦机构276,第一驱动单元271随其轴271A旋转时,第一驱动单元271收拉或释放第一驱动缆绳151A或第二驱动缆绳151B以使第一夹持部230围绕第三销313旋转,当器械安装架132内的致动器驱动第二驱动单元272随其轴272A旋转时,第二驱动单元272收拉或释放第二驱动缆绳152A或第三驱动缆绳152B以使第二夹持部240围绕第三销313旋转,第一夹持部230与第二夹持部240围绕第三销313运动使得末端执行器150执行开合和/或偏航运动。当器械安装架132内的致动器驱动第三驱动单元273随其轴273A旋转时,第三驱动单元173收拉或者释放第五驱动缆绳153A或第六驱动缆绳153B时以使第二支架220围绕第二销的轴线AA’旋转从而实现末端执行器150执行俯仰运动。
解耦机构276包括主解耦件2761和从解耦件,主解耦件2761为与第三驱动单元273同轴旋转的齿轮,从解耦件包括齿条2762和连接在齿条2762两端的第一导向部2763和导向部第二导向部2764,第一驱动缆绳151A和第二驱动缆绳151B通过从解耦件的第一导向部2763后进入长轴160内,第二驱动缆绳152A和第二驱动缆绳152B通过从解耦件的第二导向部2764后进入长轴160内。
如图9B所示,当第三驱动单元273和主解耦件273一起随轴273A逆时针旋转时,第三驱动单元273收拉第六驱动缆绳153B同时释放第五驱动缆绳153A,末端执行器150如图7A、7B所示执行俯仰运动,与此同时,如果主解耦件2761逆时针转过的弧长为L/2,从解耦件在主解耦件2761驱动下沿A方向运动的长度也为L/2,第一驱动缆绳151A和第二驱动缆绳151B在第一导向部2763和第一导向轮277A之间的长度、以及在第一导向部2763和第三导向轮277C之间的长度都同时减少L/2,第三驱动缆绳152A和第四驱动缆绳152B在第二导向部2764和第二导向轮277B之间的长度、以及在第二导向部2764和第四导向轮277D之间的长度同时增加L/2,从而第一驱动缆绳151A和第二驱动缆绳151B在驱动装置270内的长度整体减少L,第三驱动缆绳152A和第四驱动缆绳152B在驱动装置270内的长度整体增加L。由此驱动装置270内的解耦机构276提供了末端执行器150俯仰运动所需要的第一驱动缆绳151A至第四驱动缆绳152B在末端执行器150一侧的长度的变化量,从而解除了第三对缆绳与第一对缆绳、第二对缆绳之间的耦合关系,第三对缆绳的运动不再受第一对缆绳和/或第二对缆绳的限制。
图10A、11B示出了本发明的另一实施例的驱动装置370,驱动装置270B包括第一驱动单元371、第二驱动单元372、第三驱动单元373、第四驱动单元374以及解耦机构376,除解耦机构376结构与两个实施例不同以外,其他部件与上述两个实施例基本相同,这里不再赘述。解耦机构376包括与第三驱动单元373同轴旋转的主解耦件3761,与主解耦件3761固定连接或一体成型的解耦凸轮3762,解耦凸轮3762两端分别连接由第一导向部3763和第二导向部3764。
如图10B所示,当主解耦件3761与第三驱动单元373一起随轴373A逆时针旋转时,第三驱动单元373收拉第六驱动缆绳153B并同时释放第五驱动缆绳153A,末端执行器150如图7A-7C所示执行俯仰运动,与此同时,解耦凸轮3762在主解耦件3761的驱驶下也随轴373A逆时针旋转,从而使得第一驱动缆绳151A和第二驱动缆绳151B在第一导向轮377A和第三导向轮377C之间的长度减少了L,同时第三驱动缆绳152A和第四驱动缆绳152B在第二导向轮377B和第四导向轮377D之间的长度增加了L,因此驱动装置370内的解耦机构376 可以提供末端执行器150因俯仰运动所需要的第一驱动缆绳151A至第四驱动缆绳152B在末端执行器150一侧的长度变化量,从而解除了第三对缆绳与第一对缆绳、第二对缆绳之间的耦合关系,第三对缆绳的运动不再受第一对缆绳和/或第二对缆绳的限制。
图11A-11F示出了本发明另一实施例的驱动装置,驱动装置470包括本体478,本体478上设置有第一驱动单元471、第二驱动单元472、第三驱动单元473和第四驱动单元474,长轴160通过轴承与本体478连接,解耦机构476包括主解耦件4761和从解耦件4762,主解耦件4761和第三驱动单元473都连接在轴476A上,主解耦件4761与第三驱动单元473一起随轴473A同轴旋转,主解耦件4761设置在第三驱动单元473的下部,即主解耦件4761比第三驱动单元473更靠近驱动装置的远端。从解耦件4762包括滑架4765和设置在滑架4765两端的第一导向部4763和第二导向部4764,滑架4765滑动地连接在安装座477上,安装座477固定安装在本体478上,安装座477上设置有引导滑架4765运动的引导机构,引导机构约束滑架4765沿引导方向运动,引导机构包括第一引导部和与第一引导部配合的第二引导部,第二引导部包括第一引导轮476A、第二引导轮476B、第三引导轮476C以及第四引导轮476D,第一引导轮476A、第二引导轮476B、第三引导轮476C以及第四引导轮476D形成一个供滑架4765在其中滑动的滑动区域,由此滑架4765可以被限制在安装座477上的滑动区域内滑动。
第一驱动缆绳151A和第二驱动缆绳151B以相反绕线方式绕在第一驱动单元471上,第一驱动缆绳151A和第二驱动缆绳151B经过设置在安装座477第一导向轮477A的导向再经过设置在滑架4765上的第一导向部4763的导向然后经过设置在安装座477上的第三导向轮477C的导向后进入长轴160内,并一直沿长轴160远端延伸最后固定到末端执行器150上的第一夹持部230上。第三驱动缆绳152A和第四驱动缆绳152B以相反绕线方式绕在第二驱动单元472上,第三驱动缆绳152A和第四驱动缆绳152B经过设置在安装座上的第二导向轮477B的导向后再经过设置再滑架4765上的第二导向部4764的导向然后经过设置在安装座477上的第四导向轮477D的导向后进入长轴160内,并一直沿长 轴160远端延伸最后固定到末端执行器150的第二夹持部240上。五驱动缆绳153A和第六驱动缆绳153B经过第五导向轮477E的导向后进入长轴160内,并一直沿长轴160的远端延伸最后固定到第二支架220上。绕在第四驱动单元474上的第七驱动缆绳154A和第八驱动缆绳154B的另一端绕在长轴160的近端,和上面的几个实施例一样,第三对缆绳和第一对缆绳、第二对缆绳在末端执行器一侧同样存在着耦合关系。
安装座477包括第一凸台4771,安装座477通过第一凸台4771固定到本体478上,第一凸台4771上设置有第二凸台4772、第三凸台4773以及第四凸台4774。第二凸台4772上具有第一安装孔4791和第二安装孔4792,第二引导轮476B和第三引导轮476C分别通过第二安装孔4792和第一安装孔4791安装到第二凸台4772上。第三凸台4773上具有第三安装孔4793和第四安装孔4794,第一导向轮477A和第二导向轮477B分别通过第三安装孔4793和第四安装孔4794安装到第三凸台4773。第四凸台4774上具有第五安装孔4795,第一引导轮476A和位于第一引导轮4796A下方的第六导向轮4769通过同一根轴安装到第六安装孔4796中,第六导向轮4796用于为第一解耦缆绳4767和第二解耦缆绳4768导向。第五凸台4775上具有第七安装孔4797,第四引导轮476D通过第九安装孔4799安装到第五凸台4775上。为了保持第一引导轮476A和第四引导轮476D安装到安装座477上后可以位于同一高度,第四凸台4774和第五凸台4775具有一定的高度差,该高度差大致等于第六导向轮4769的高度。
安装座477上还具有第一安装柱4776和第二安装柱4777,第一安装柱4776上和第二安装柱4777斜对着设置,第一安装柱4776和第二安装柱4777上设置有第六安装孔4796和第七安装孔4797,第五导向轮477E通过第六安装孔4796安装到第一安装柱4776和第二安装柱4777上,用于防止第五驱动缆绳153A和第六驱动缆绳153B从第五导向轮477E中脱离的限位销477F通过第七安装孔4797安装到第一安装柱4776和第二安装柱4777上,第一安装柱4776上和第二安装柱4777斜对着设置可以使得第五导向轮477E能引导从斜向方向上过来的驱动缆绳。
第一安装柱4776和第二安装柱4777与第三凸台4773之间具有安装槽 4798和过线孔4775,第三导向轮477C和第四导向轮477D通过安装槽4795安装到安装座477上,过线孔4775位于安装槽4798为安装到安装座477上的第三导向轮477C和第四导向轮477D之间,过线孔4775与长轴160联通用于将驱动缆绳引导入长轴160内。
如图11C和图11E所示,从解耦件4762的滑架4765两侧设有第一滑轨4766A和第二滑轨4766B,滑架4765连接到安装座477后,第一滑轨4766A和第二滑轨4766B可以在第一引导轮476A、第二引导轮476B、第三引导轮476C以及第四引导轮476D形成的滑动区域内滑动,第一滑轨4766A滑动设置在对齐的第二引导轮476B和第三引导轮476C上,第二滑轨滑动设置在对齐的第一引导轮476A和第四引导轮476D上。滑架4765的两端分别具有第一安装空间4767和第二安装空间4768,第一导向部4763和第二导向部4764分别安装到第一安装空间4787和第二安装空间4788内。滑架4765还具有中心开口4781,中心开口4781用于容纳第一安装柱4776、第二安装柱4777以及第三凸台4773,并和第一安装柱4776、第二安装柱4777以及第三凸台4773配合以限制滑架4765在安装座477上滑动区域内的滑动行程。
滑架4765一端具有第一引导槽4684和第一固定孔4782,另一端具有第二引导槽4685和第二固定孔4783,第一引导槽4784用于引导第一解耦缆绳4767固定到第一固定孔4782中,第二引导槽4785用于引导第二解耦缆绳4768固定到第二固定孔4783中。第一引导槽4684和第二引导槽4685在滑架4765的高度方向相互错开,以使第一解耦缆绳4767和第二解耦缆绳4768能不相互干涉的固定到滑架4765上。
本实施例的解耦过程如图11F所示,当第三驱动单元473随轴473A受致动器驱动逆时针(第一方向)旋转时,由于主解耦件4761和第三驱动单元473通过同一轴473A连接到致动器,此时主解耦件4761与第三驱动单元473以相同角速度随轴473A逆时针旋转,第三驱动单元473收拉第六驱动缆绳153B并同时释放第五驱动缆绳153A,使得末端执行器150执行如图7A和7B所示的俯仰运动,与此同时,主解耦件4761收拉第二解耦缆绳4768并同时释放第一解耦缆绳4767,从而使得从解耦件4762沿图11F所示A方向运动,若图11F中的 从解耦件4762相对于图10B中的从解耦件4762所在的零位状态沿A方向运动了距离L/2,则第一驱动缆绳151A和第二驱动缆绳151B在第一导向部4763和第一导向轮477A之间的长度,以及在第一导向部4763和第三导向轮477C之间的长度都同时减少了L/2,从而使得第一驱动缆绳151A和第二驱动缆绳在驱动装置470内的长度减少L,第一对缆绳在驱动装置内长度减少2L。相应地,第三驱动缆绳152A和第四驱动缆绳152B在第二导向部4764和第二导向轮477B之间的长度,以及在第二导向部4764和第四导向轮477D之间的长度都同时增加了L/2,从而使得第三驱动缆绳152A和第四驱动缆绳152B分别在驱动装置内的长度增加了L,第一对缆绳在驱动装置内的长度增加了2L。由此驱动装置370内的解耦机构276提供了末端执行器150俯仰运动所需要的第一驱动缆绳151A、第二驱动缆绳151B、第三驱动缆绳152A以及四驱动缆绳152B在末端执行器150一侧的长度的变化量,从而解除了第三对缆绳和第一对缆绳、第二对缆绳的耦合关系,第三对缆绳的运动不再受第一对缆绳、第二对缆绳的限制,从而使得末端执行器150能顺利的执行俯仰操作。
当第三驱动单元473和主解耦件4761沿与第一方向相反的第二方向(顺时针)旋转时,使得第一驱动缆绳151A和第二驱动缆绳在驱动装置470内的长度增加L,第三驱动缆绳152A和第四驱动缆绳152B分别在驱动装置内的长度减少了L,具体过程和上述沿第一方向旋转刚刚相反,此处不再赘述。
本发明另一实施例的驱动装置如图12A和12B所述,由于本实施例的驱动装置的驱动单元以及缆绳与图11A所示的实施例基本相同,因此本实施例的驱动装置仅展示了安装座571与滑架572以及与之相关联的一些组件,为展示的组件可以参照图11A所示的实施例。如图12A和图12B所示,滑架5721包括第一臂5721和第二臂5722,第一臂5721和第二臂5722之间通过两个第三臂5723相连接,第一臂5721和第二臂5722上设有用于安装第一导向部4763和第二导向部4764的安装空间5724。在其他的一些实施例中,第三臂5723可以为一个也可以为多个。
安装座571包括呈“山”字形分列在安装座571的主体上的第一柱体5711、第二柱体5712及第三柱体5713,第一导向轮477A和第三导向轮477C安装在 第三柱体5713上,第五导向轮477E安装在第二柱体5712上,第二导向轮477B和第四导向轮477D安装在第二柱体4712和第三柱体4713之间。第二柱体4712和第三柱体4713之间具有供第一对至第三对缆绳进入的进线口5715,第一对至第三对缆绳通过第一导向轮477A至第五导导向轮477E,以及第一导向部4763和第二导向部5764的导向后通过进线口5715延伸至末端执行器,至于第一对至第三对缆绳是如何经过第一导向轮477A至第五导导向轮477E,及第一导向部4763和第二导向部5764的导向,可以参照图11B所示的实施例,这里不再复述。
滑架572的第一臂5721和第二臂5722分别位于入线口5715两侧,第三臂5723横跨安装座571,其中一个第三臂5723位于第一柱体5711和第二柱体5712中间,另一第三臂5723位于安装座571本体上且位于第三柱体5713的相对于入线口5715的另一侧,从而滑架572呈“口”字形,入线口5715和第二柱体5712和第三柱体5713容纳在滑架572的中间的开口内。
驱动装置还包括无源的引导机构573,引导机构573包括外筒5731(第二引导部)和可以相对外筒5731运动直轴5732(第一引导部),直轴5732穿过外筒5731并与外筒5731滑动连接,直轴5731基本上与第三臂5723平行,直轴5732沿自身轴向方向运动。直轴5732和外筒5731滑动连接的方式可以是直轴5732通过多个滚珠与外筒5731的内壁间接连接,以减少两者之间的滑动摩擦,也可以是直轴5732与外筒5731的外壁直接连接,两者接触的表面选择摩擦系数小的材料制作而成。
安装座571上设置有用于安装引导机构573的安装孔5714,安装孔5714的一端具有第一开口5714,第一开口5714的内径与引导机构573的外筒5731的外径基本相等,从而将外筒5731比较好的固定在安装孔5714内,安装孔5714的另一端具有底部5714b,底部5714b上具有第二开口5714c,第二开口5714c用于允许直轴5732通过,第二开口5714c的内径小于第一开口5714a的内径,使底部5714b可以与外筒5731的一端相抵持,安装座571还包括挡板5716,挡板5716的本体上具有允许直轴5732通过的第三开口5716a,挡板5716的柱体抵接外筒5731的另一端,挡板5716和底部5714b一起将引导机构573的外筒 5731固定安装在安装孔5714内。
引导机构573的直轴5732的两端分别固定在滑架572的第一臂5721和第二臂5722上,从而滑架572的运动被引导机构573所约束,具体地,滑架572在被第一解耦缆绳5767和第二解耦缆绳5768牵引运动时,被引导机构5713所约束只能沿直轴5732的轴向运动,由于直轴573被外筒5731内壁所约束从而使直轴573基本上不沿外筒5731的径向运动,进而使滑架572也被引导机构573所约束成除沿直轴573的轴向方向的运动外不会有其他方向的运动,从而减少了滑架572的回程间隙,增加了解耦机构的刚性,使解耦机构的解耦更加精准。
本实施例使用的引导机构573为两个,在其他的一些实施例中,驱动装置也可以只是使用一个直线轴承573,滑架572另一边使用图11C所示的实施例的第二引导轮476B、第三引导轮476C对滑架572进行导向。
滑架572的上还设置有为解耦缆线导向的导向组件,具体地,导向组件包括分别为解耦缆绳的第一解耦缆绳5767和第二解耦缆绳5768导向的第三导向部5741和第四导向部5742,第一解耦缆绳5767一端绕在主解耦件4761,另一端经过第三导向部5741的导向后固定在安装座571上,第二解耦缆绳5768的另一端经过第四导向部5742的导向后固定安装座571上。相比较图11F所示的实施例第一解耦缆绳4767和第二解耦缆绳4768直接固定在滑架4765上,本实施例中的第一解耦缆绳5767和第二解耦缆绳5768分别经过第三导向部5741和第四导向部5742的导向后固定在安装座571上,从而第三导向部5741和第四导向部5742相当于动滑轮的作用,使得主解耦件4761可以使用驱动滑架4765一半的驱动力就能通过解耦缆绳驱动滑架572的运动,减少了驱动第三驱动单元473和主解耦件4761的负载。
进一步,解耦机构还设置有第三导向部5743,第一解耦缆绳4767和第二解耦缆绳4768经过第五导向部5743的导向后分别再经过第三导向部5741的导向和第四引导轮5742的导向后最后固定安装座571上,在解耦过程中,滑架752被引导机构573所约束沿直线运动的运动方向(既直轴573的方向)与第一解耦缆绳4767在第三5741与安装座571之间的缆绳段及在第三导向部5741与第五导向部5743之间的缆绳段平行,同样地,滑架572被引导机构573所约束沿 直线运动的运动方向与第二解耦缆绳4768在第四导向部5742与安装座571之间的缆绳段以及在第四导向部5742和第五导向部5743之间的缆绳段平行。因此,滑架572被第一解耦缆绳4767和第二解耦缆绳4768牵引沿直线运动的速度与主解耦件4761的线速度成正比例关系,而由于主解耦件4761与第三驱动单元473同轴设置,从而滑架572的直线运动速度与第三驱动单元143的线速度成正比例关系,使得整个解耦过程中无论缆绳的长度变化还是滑架的运动都没有非线性的变化,从而使解耦过程精确可控。
可以理解的是,在其他的一些实施例中,第一解耦缆绳4767和第二解耦缆绳4768中的一条缆绳经过第五导向部5743导向,另一条缆绳通过合理的设置主解耦件也可以使其与引导机构的运动方向保持平行。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (26)

  1. 一种手术器械,所述手术器械包括末端执行器、驱动装置及缆绳,所述缆绳包括用于驱动所述末端执行器执行偏航运动的第一对缆绳和第二对缆绳,及用于驱动所述末端执行器执行俯仰运动的第三对缆绳,其特征在于,所述驱动装置包括:
    引导机构,所述引导机构包括第一引导部和第二引导部;
    驱动单元,所述第三对缆绳的一端连接在所述第三驱动单元上,所述驱动单元通过所述第三对缆绳操纵所述末端执行器的俯仰运动;
    解耦机构,所述解耦机构包括主解耦件和从解耦件,所述从解耦件包括滑架,所述第一引导部与所述滑架相连接,所述第一引导部用于与所述第二引导部配合以相对所述第二引导部沿引导方向运动,所述主解耦件用于驱动所述滑架沿所述引导方向运动,从而增加所述第一对缆绳和所述第二对缆绳中的其中一对缆绳在所述驱动装置内的长度并减少其中另一对缆绳在所述驱动装置内的长度,以使所述驱动单元驱动所述末端执行器执行俯仰运动。
  2. 如权利要求1所述的手术器械,其特征在于,所述驱动装置还包括安装座,所述滑架滑动地设置在所述安装座上,所述第二引导部安装在所述安装座上。
  3. 如权利要求2所述的手术器械,其特征在于,所述第一引导部包括直轴,所述第二引导部包括外筒,所述直轴穿设于所述外筒,所述直轴被配置为相对于所述外筒沿直线运动。
  4. 如权利要求3所述的手术器械,其特征在于,所述安装座上还具有用于安装所述外筒的安装孔,所述安装孔一端具有内径基本等于所述外筒的外径的第一开口,所述安装孔另一端具有抵持所述外筒的底部,所述底部上具有用于供所述直轴通过的第二开口。
  5. 如权利要求4所述的手术器械,其特征在于,所述第二开口的内径小于所述第一开口的内径。
  6. 如权利要求4所述的手术器械,其特征在于,所述引导机构还包括挡板,所述挡板安装在所述第一开口处用于将所述外筒固定在所述安装孔内。
  7. 如权利要求6所述的手术器械,其特征在于,所述挡板上具有第三开口,所述第三开口用于供所述直轴通过。
  8. 如权利要求7所述的手术器械,其特征在于,所述第三口的内径基本等于所述第二开口的内径。
  9. 如权利要求3所述的手术器械,其特征在于,所述滑架包括第一臂和第二臂,所述直轴连接于所述第一臂和所述第二臂之间。
  10. 如权利要求9所述的手术器械,其特征在于,所述滑架还包括第三臂,所述第三臂连接于所述第一臂和所述第二臂。
  11. 如权利要求10所述的手术器械,其特征在于,所述直轴与所述第三臂平行。
  12. 如权利要求11所述的手术器械,其特征在于,所述第一臂和所述第二臂上分别设置有第一导向部和第二导向部,所述第一导向部和第二导向部分别用于为所述第一对缆绳和所述第二对缆绳导向。
  13. 如权利要求12所述的手术器械,其特征在于,所述安装座上设置有进线口,所述第一对缆绳至第三对缆绳穿过所述进线口延伸至所述末端执行器,所述第一臂和所述第二臂分别位于所述进线口两侧。
  14. 如权利要求1所述的手术器械,其特征在于,所述第一引导部包括与所述滑架固定连接的滑轨,所述第二引导部包括相互对齐的第一引导轮和第二引导轮,所述滑轨滑动安装在所述第一引导轮和所述第二引导轮上。
  15. 如权利要求2-14任一项所述的手术器械,其特征在于,所述从解耦件还包括解耦缆绳,所述主解耦件通过所述解耦缆绳驱动所述滑架运动。
  16. 如权利要求15所述的手术器械,其特征在于,所述滑架上设置有导向组件,所述解耦缆绳的一端固定在所述主解耦件上,所述解耦缆绳的另一端经过所述导向组件的导向后固定在所述安装座上。
  17. 如权利要求16所述的手术器械,其特征在于,所述解耦缆绳包括第一解耦缆绳和第二解耦缆绳,所述导向组件包括分别设置在所述滑架两端的第三导向部和第四导向部,所述第一解耦缆绳的另一端经过所述第三导向部的导向后固定在所述安装座上,所述第二解耦缆绳另一端经过所述第四导向部的导向 后固定在所述安装座上。
  18. 如权利要求17所述的手术器械,其特征在于,所述第一解耦缆绳在第三导向部与安装座之间的缆绳段与所述第一引导机构平行。
  19. 如权利要求18所述的手术器械,其特征在于,所述解耦机构还第五导向部,所述第一解耦缆线经过所述第五导向部的导向后再经过所述第三导向部的导向后连接到所述安装座上。
  20. 如权利要求19所述的手术器械,其特征在于,所述第一解耦缆绳在所述第五导向部与所述第三导向部之间的缆绳段与所述第一引导机构平行。
  21. 如权利要求12所述的手术器械,其特征在于,所述安装座上还设置有第一导向轮,所述第一对缆绳通过所述第一导向轮的导向后再通过所述第一导向部的导向延伸至所述末端执行器,所述滑架的运动方向与所述第一对缆绳在所述第一导向轮和所述第一导向部之间的部分平行。
  22. 如权利要求21所述的手术器械,其特征在于,所述第一对缆绳或第二对缆绳因所述滑架运动而引起的长度的变化速度与所述主解耦件旋转的线速度成正比。
  23. 如权利要求1所述的手术器械,其特征在于,所述主解耦件与所述驱动单元同轴设置。
  24. 如权利要求1所述的手术器械,其特征在于,所主解耦件与所述驱动单元同轴旋转。
  25. 一种从操作设备,其特征在于,所述从操作设备包括机械臂和如权利要求1-24任一项所述的手术器械,所述手术器械安装在所述机械臂上,所述机械臂用于操纵所述手术器械运动。
  26. 一种手术机器人,其特征在于,所述手术机器人包括主操作设备和如权利要求25所述的从操作设备,所述从操作设备根据所述主操作设备的指令执行相应操作。
PCT/CN2021/092683 2020-09-30 2021-05-10 手术器械、从操作设备及手术机器人 WO2022068208A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011063721.9A CN112043393A (zh) 2020-09-30 2020-09-30 手术器械、从操作设备及手术机器人
CN202011063721.9 2020-09-30
CN202110015212.7 2021-01-06
CN202110015212.7A CN112535534A (zh) 2020-09-30 2021-01-06 手术器械、从操作设备及手术机器人

Publications (1)

Publication Number Publication Date
WO2022068208A1 true WO2022068208A1 (zh) 2022-04-07

Family

ID=73606236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092683 WO2022068208A1 (zh) 2020-09-30 2021-05-10 手术器械、从操作设备及手术机器人

Country Status (2)

Country Link
CN (3) CN112043393A (zh)
WO (1) WO2022068208A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112043393A (zh) * 2020-09-30 2020-12-08 深圳市精锋医疗科技有限公司 手术器械、从操作设备及手术机器人
CN112754667A (zh) * 2020-12-19 2021-05-07 深圳市精锋医疗科技有限公司 手术器械、从操作设备及手术机器人
CN113208732A (zh) * 2021-04-30 2021-08-06 康诺思腾机器人(深圳)有限公司 后端传动装置、医疗器械和手术机器人
CN114224497B (zh) * 2022-02-25 2022-07-12 极限人工智能有限公司 手术器械及手术机器人
CN117100409B (zh) * 2023-10-24 2024-02-13 深圳市精锋医疗科技股份有限公司 驱动装置、手术器械及手术机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130158542A1 (en) * 2001-04-19 2013-06-20 Intuitive Surgical Operations, Inc. Surgical systems with robotic surgical tool having pluggable end-effectors
CN103169542A (zh) * 2013-03-22 2013-06-26 哈尔滨工业大学 一种用于腹腔镜微创手术的解耦型手术装置
CN108969106A (zh) * 2018-07-27 2018-12-11 微创(上海)医疗机器人有限公司 伸缩装置和手术机器人
CN112043393A (zh) * 2020-09-30 2020-12-08 深圳市精锋医疗科技有限公司 手术器械、从操作设备及手术机器人
CN212996719U (zh) * 2020-09-30 2021-04-20 深圳市精锋医疗科技有限公司 手术器械、从操作设备及手术机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130158542A1 (en) * 2001-04-19 2013-06-20 Intuitive Surgical Operations, Inc. Surgical systems with robotic surgical tool having pluggable end-effectors
CN103169542A (zh) * 2013-03-22 2013-06-26 哈尔滨工业大学 一种用于腹腔镜微创手术的解耦型手术装置
CN108969106A (zh) * 2018-07-27 2018-12-11 微创(上海)医疗机器人有限公司 伸缩装置和手术机器人
CN112043393A (zh) * 2020-09-30 2020-12-08 深圳市精锋医疗科技有限公司 手术器械、从操作设备及手术机器人
CN112535534A (zh) * 2020-09-30 2021-03-23 深圳市精锋医疗科技有限公司 手术器械、从操作设备及手术机器人
CN212996719U (zh) * 2020-09-30 2021-04-20 深圳市精锋医疗科技有限公司 手术器械、从操作设备及手术机器人

Also Published As

Publication number Publication date
CN112545658A (zh) 2021-03-26
CN112535534A (zh) 2021-03-23
CN112043393A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022068208A1 (zh) 手术器械、从操作设备及手术机器人
JP7233509B2 (ja) 手術器具を回動させるプーリ機構
EP4223248A1 (en) Surgical instrument, slave operating equipment, and surgical robot
WO2021184791A1 (zh) 一种应用于微创手术的蛇形手术机器人
CN212853621U (zh) 手术器械、从操作设备及手术机器人
CN112043390A (zh) 手术器械、从操作设备及手术机器人
CN112043389A (zh) 手术器械、从操作设备及手术机器人
CN112043394A (zh) 手术器械、从操作设备及手术机器人
WO2022227854A1 (zh) 后端传动装置、医疗器械和手术机器人
CN112274251A (zh) 手术器械、从操作设备及手术机器人
CN212438836U (zh) 手术器械、从操作设备及手术机器人
CN112274254A (zh) 手术器械、从操作设备及手术机器人
WO2024149250A1 (zh) 手术器械及手术机器人
CN212996719U (zh) 手术器械、从操作设备及手术机器人
CN213641171U (zh) 手术器械、从操作设备及手术机器人
CN212788688U (zh) 手术器械、从操作设备及手术机器人
CN213310266U (zh) 手术器械、从操作设备及手术机器人
CN112370173A (zh) 手术器械、从操作设备及手术机器人
WO2022068039A1 (zh) 手术器械、从操作设备及手术机器人
CN112043391A (zh) 手术器械、从操作设备及手术机器人
CN112043395A (zh) 手术器械、从操作设备及手术机器人
CN214104617U (zh) 手术器械、从操作设备及手术机器人
CN214805337U (zh) 手术器械、从操作设备及手术机器人
CN213156404U (zh) 手术器械、从操作设备及手术机器人
WO2022227856A1 (zh) 后端传动装置、医疗器械和手术机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873871

Country of ref document: EP

Kind code of ref document: A1