WO2022068175A1 - 一种空调辐射末端及多房屋空间辐射末端防结露方法 - Google Patents
一种空调辐射末端及多房屋空间辐射末端防结露方法 Download PDFInfo
- Publication number
- WO2022068175A1 WO2022068175A1 PCT/CN2021/087133 CN2021087133W WO2022068175A1 WO 2022068175 A1 WO2022068175 A1 WO 2022068175A1 CN 2021087133 W CN2021087133 W CN 2021087133W WO 2022068175 A1 WO2022068175 A1 WO 2022068175A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fresh air
- water supply
- main pipe
- water
- condensation
- Prior art date
Links
- 238000009833 condensation Methods 0.000 title claims abstract description 93
- 230000005855 radiation Effects 0.000 title claims abstract description 66
- 230000005494 condensation Effects 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000002265 prevention Effects 0.000 title abstract description 6
- 239000003507 refrigerant Substances 0.000 claims abstract description 53
- 238000007791 dehumidification Methods 0.000 claims abstract description 24
- 238000004378 air conditioning Methods 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 282
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 238000003303 reheating Methods 0.000 claims 3
- 230000008569 process Effects 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 6
- 238000001816 cooling Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1405—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0035—Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/22—Means for preventing condensation or evacuating condensate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0063—Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0083—Indoor units, e.g. fan coil units with dehumidification means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/41—Defrosting; Preventing freezing
- F24F11/43—Defrosting; Preventing freezing of indoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/61—Control or safety arrangements characterised by user interfaces or communication using timers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/88—Electrical aspects, e.g. circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/153—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0089—Systems using radiation from walls or panels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/007—Ventilation with forced flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F2003/144—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
- F24F2003/1446—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
- F24F2003/1452—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing heat extracted from the humid air for condensing is returned to the dried air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/22—Means for preventing condensation or evacuating condensate
- F24F2013/221—Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/20—Heat-exchange fluid temperature
Definitions
- the invention relates to the field of air conditioning equipment, and more particularly, to a dew condensation prevention method for the radiation end of an air conditioner and a radiation end of a multi-house space.
- the current capillary network radiation fresh air air conditioning system also has some defects; during use, when the surface temperature of the indoor capillary network is lower than the dew point of the indoor air, condensation is likely to occur, and if the condensation problem is not handled properly, the walls will become moldy.
- the radiant air-conditioning system often adopts the practice of closing the waterway. Although this method can prevent the condensation phenomenon from aggravating in a short time, the condensation phenomenon is still easy to exist.
- the outdoor humidity load is large, but the temperature decreases. This is because the indoor needs to be dehumidified and also needs to be heated. The normal operation mode of the system will lead to the indoor overcooling and large energy consumption; the existing The fresh air system also relies on the work of the outdoor unit during the dehumidification process, which requires a lot of power and energy.
- the system also includes a number of dehumidifiers installed in the room and a central controller, all The central controller is provided with a sensing device for receiving changes in indoor temperature and humidity, the central controller is connected with the heat pump to control the temperature of the water output by the heat pump; connected with the dehumidifier for Control the opening and closing of the dehumidifier.
- the central controller controls the dehumidifier to turn on the dehumidification, and at the same time increases the temperature of the water outlet of the heat pump to avoid condensation; but for the case of a sudden opening of the window, after the heat pump changes the water temperature, the rate of water temperature rise is not only slow, but also consumes electricity, making it difficult to To achieve a more effective anti-condensation.
- the purpose of the present invention is to overcome the technical problems in the prior art that the radiation ends are easy to condense and the energy consumption of anti-condensation is high, and provide an air-conditioning system with anti-condensation at the radiation ends; Utilize, use the condensation heat of dehumidification to heat the wall temperature to prevent the generation of dew condensation.
- the refrigerant in the refrigerant pipeline passes through the plate heat exchanger in the fresh air blower to exchange heat with the fresh air blower for dehumidification and heat exchange;
- the pump in the cold and heat source the pump drives the refrigerant to drive the refrigerant after heat exchange and temperature rise to the radiation end through the refrigerant pipeline to prevent condensation.
- the system used in the method includes a cold and heat source, a fresh air blower and a radiant end
- the fresh air blower includes a plate heat exchanger, a fresh air duct and a compressor
- a heat exchanger is arranged in the fresh air duct
- One end of the plate heat exchanger, one end of the plate heat exchanger and the compressor are connected by pipes to form a refrigerant circuit, and a throttle is arranged on the pipes; in addition, the other end of the plate heat exchanger, the cold and heat source and the radiant end are connected by pipes to form a refrigerant circuit.
- a balance valve is arranged on the upper part; one end of the plate heat exchanger can exchange heat with the other end of the plate heat exchanger; the fresh air fan is also provided with a humidifier, which is connected to the water source through a fresh air water supply pipe.
- the cold and heat source includes a pump, the water outlet of the pump is connected to a first water supply main pipe, the other end of the first water supply main pipe is branched into a second water supply main pipe and a fresh air water supply main pipe, the second water supply main pipe
- the main pipe is connected to the water inlet of the radiation end, and the fresh air water supply main pipe is connected to the water inlet of the other end of the plate heat exchanger;
- the water inlet of the pump is connected to the first return water main pipe, and the other end of the first return water main pipe is branched into the first
- the second return water main pipe and the fresh air return water main pipe are connected to the water outlet of the radiation end, and the fresh air return water main pipe is connected to the water outlet of the other end of the plate heat exchanger.
- the heat exchanger in the fresh air duct includes an evaporator and a reheat heat exchanger, and a fresh air heat exchange throttle is arranged at the first heat exchange port of the plate heat exchanger at one end of the plate heat exchanger.
- a heat exchange port is connected with the first circulation pipe of the fresh air evaporator and the first circulation pipe of the reheat; the first circulation pipe is connected to the refrigerant flow port of the evaporator, and the other refrigerant flow port of the evaporator is connected to the plate changer through the compressor.
- the reheat first circulation pipe is connected to the refrigerant flow port of the reheat heat exchanger, the first circulation pipe is provided with a reheat throttle, and the other refrigerant flow port of the reheat heat exchanger is connected to the plate Replace the second heat exchange port.
- the heat exchanger in the fresh air pipeline further includes a pre-cooling heat exchanger, the water inlet of the pre-cooling heat exchanger is connected to the fresh air water supply main pipe through a pipeline, and a pipeline is provided between the water inlet and the fresh air water supply main pipe.
- the fresh air return water main pipe is connected to the plate exchange return water branch pipe, and the plate exchange return water branch pipe is connected to the heat exchange port at one end of the plate heat exchanger;
- the fresh air water supply main pipe is connected to the plate exchange water supply branch pipe, and the plate exchange water supply branch pipe is connected to the plate heat exchanger
- Another heat exchange port at one end of the heater is provided with a plate exchange water supply regulating valve on the plate exchange water supply branch pipe.
- the cold and heat source includes a pump, the water outlet of the pump is connected to the first water supply main pipe, and the water inlet of the pump is connected to the first return water main pipe; the radiation ends are provided with a plurality of A water supply main pipe is connected to one end of the second water supply main pipe, and the other end of the second water supply main pipe is branched with a plurality of water supply branch pipes, each water supply branch pipe is respectively connected with a water inlet of a radiating end; the first return water main pipe is connected to the second water return main pipe At one end, the other end of the second return water main pipe is branched with a plurality of return water branch pipes, and each return water branch pipe is respectively connected with a water outlet of a radiation end.
- the first return water main pipe is connected to the fresh air water supply pipe through the radiation water supply pipe, and the radiation water supply pipe is provided with a fresh air water supply valve; and/or the fresh air water supply pipe is provided with a fresh air water supply valve; and/ Or the fresh air water supply pipe is provided with a water supply pressure reducing valve and/or a water supply constant pressure differential valve and/or a water supply filter near the water source.
- the first water supply main pipe is provided with a water supply main pipe valve and/or a water supply main pipe check valve and/or a water supply main pipe exhaust valve; and/or the first return water main pipe is provided with a return water main pipe valve and/or Return header filter and/or return header vent valve;
- the fresh air water supply main pipe is provided with a fresh air water supply valve and/or a fresh air water supply filter; and/or the fresh air return water main pipe is provided with a fresh air return valve;
- the water inlet and outlet of the radiant end are provided with sub-collectors, and/or the return water branch pipe is provided with a sub-collection water outlet valve, and/or the water supply branch pipe is provided with a sub-collection water inlet valve and/or a radiant water source filter.
- the anti-condensation method for a multi-room space radiation terminal air-conditioning system of the present invention includes the following steps:
- each house space anti-condensation measuring instrument measures the dew point temperature t0, and the wall temperature measuring instrument measures the wall temperature t, when t-t0 ⁇ t1, the room space dew condensation condition is marked as state A; and the total The timer starts to count T and alarm;
- Step (2) determine whether t satisfies t ⁇ t2;
- Step (4) determine whether t ⁇ t3;
- Step (5) judge whether the state of all alarm rooms is B;
- Step (6) determine whether t-t0 ⁇ t4, and whether the dew point temperature t0 is less than the heat pump setting water temperature t6-t5;
- a kind of anti-condensation method for the radiation end of the air conditioner of the present invention when the dehumidification heat exchanger in the fresh air blower refrigerates and dehumidifies, the refrigerant in the refrigerant pipeline passes through the plate heat exchanger in the fresh air fan and exchanges heat with the dehumidification heat of the fresh air fan Increase the temperature; turn on the pump in the cold and heat source, the pump drives the refrigerant to drive the refrigerant after heat exchange and heat up to the radiation end through the refrigerant pipeline to achieve anti-condensation; the condensation heat generated by the dehumidification process in the fresh air blower to the indoor radiation
- the end provides a heat source, so as to avoid the occurrence of condensation, reduce the loss of electric energy, and prevent condensation quickly.
- An anti-condensation method for an air-conditioning system with a multi-room space radiation terminal of the present invention based on the above-mentioned anti-condensation method, combined with the measurement of each house space to obtain the dew point temperature t0, and the wall temperature t measured by the wall temperature measuring instrument to calculate the temperature difference and
- the control of parameters such as timing time can effectively utilize the dehumidification and condensation heat in the fresh air fan, avoid condensation indoors, especially in many rooms, and has a good energy saving effect.
- FIG. 1 is a schematic diagram of the overall structure of a system used in a method for preventing condensation at the radiation end of an air conditioner
- FIG. 2 is a schematic structural diagram of a fresh air fan in a system used in a method for preventing condensation at the radiation end of an air conditioner.
- the refrigerant in the refrigerant pipeline passes through the plate heat exchanger 230 in the fresh air fan 200 and the fresh air fan 200 to dehumidify Heat exchange and temperature rise; turn on the pump in the cold and heat source 100, and the pump drives the refrigerant to drive the refrigerant after heat exchange and temperature rise to the radiation end 300 through the refrigerant pipeline to prevent condensation.
- the specific steps for preventing condensation are:
- each house space anti-condensation measuring instrument measures the dew point temperature t0, and the wall temperature measuring instrument measures the wall temperature t, when t-t0 ⁇ t1, the room space dew condensation condition is marked as state A; and the total The timer starts to count T and alarm;
- Step (2) determine whether t satisfies t ⁇ t2;
- the anti-condensation work is a method for anti-condensation of a radiation terminal air-conditioning system described in this embodiment
- Step (4) determine whether t ⁇ t3;
- Step (5) judge whether the state of all alarm rooms is B;
- Step (6) determine whether t-t0 ⁇ t4, and whether the dew point temperature t0 is less than the heat pump setting water temperature t6-t5;
- t1 is 2°C
- t2 is 22°C
- t3 is 24°C
- t4 is 3°C
- t5 is 1°C
- t6 is the water temperature set by the heat pump, 12°C ⁇ t6 ⁇ 20°C
- T1 is 30min
- t1 is 2°C
- t2 is 20°C
- t3 is 24°C
- t4 is 3°C
- t5 is 1°C
- T1 is 30 minutes
- T2 is 5 minutes.
- the dew point temperature is calculated by using the formulas such as the temperature and humidity parameters, and other automatic control is realized by conventional automatic control software and hardware such as single-chip microcomputer and processor.
- an air conditioning system with anti-condensation at the radiation end used in the above-mentioned anti-condensation method includes a cold and heat source 100 , a fresh air fan 200 and a radiation end 300 ; wherein the cold and heat source 100 includes a pump machine.
- the heat release end of the dehumidification process condenser in the fresh air fan 200, the pump and the radiant end 300 in the system form a refrigerant circuit through pipes; the refrigerant circuit is used to transfer the heat of the heat release end of the dehumidification process condenser through the refrigerant in the refrigerant circuit. to radiant end 300.
- the fresh air blower 200 includes a plate heat exchanger 230, a fresh air duct 210 and a compressor 220, and a dehumidification heat exchanger is arranged in the fresh air duct 210.
- the machine 220 is connected by a pipeline to form a refrigerant circuit, and a throttle is set on the pipeline; in addition, the other end of the plate heat exchanger 230, the cold and heat source 100 and the radiation end 300 are connected by a pipeline to form a refrigerant circuit, and the pipeline is provided with a balance valve
- one end of the plate heat exchanger 230 and the other end of the plate heat exchanger 230 can conduct heat exchange
- the dehumidification process condenser in the fresh air fan 200 is the dehumidification heat exchanger arranged in the fresh air duct 210
- the heat exchanger in the fresh air duct 210 includes an evaporator 212 and a reheat heat exchanger 213, and the evaporator 212 can be used as
- the other end of the plate heat exchanger 230, the cold and heat source 100 and the radiation end 300 are connected by pipes to form a refrigerant circuit, and a balance valve is provided on the pipes to maintain the stable operation of the refrigerant in the circuit; one end of the plate heat exchanger 230 is connected to Heat exchange can be performed between the other ends of the plate heat exchanger 230; during the dehumidification process of the fresh air blower 200, the condensed heat at one end of the plate heat exchanger 230 passes through the plate heat exchanger 230 and transfers heat to the other end of the plate heat exchanger 230, and then The other end of the plate heat exchanger 230, the cold and heat source 100 and the radiant end 300 are connected by pipes to form a refrigerant circuit, and the condensation heat is transferred to the radiant end 300, so as to realize the anti-condensation of the radiant end 300, and make full use of the fresh air fan
- the condensation heat of 200 dehumidification process greatly improves the utilization rate of energy, reduces energy consumption and
- the cold and heat source 100 includes a pump, the water outlet of the pump is connected to the first water supply main pipe 450, and the other end of the first water supply main pipe 450 is branched into the second water supply main pipe 422 and the fresh air water supply main pipe 430,
- the second water supply main pipe 422 is connected to the water inlet of the radiant end 300
- the fresh air water supply main pipe 430 is connected to the water inlet of the other end of the plate heat exchanger 230
- the water inlet of the pump is connected to the first return water main pipe 460
- the other end of the first return water main pipe 460 is branched into a second return water main pipe 412 and a fresh air return water main pipe 440.
- the second return water main pipe 412 is connected to the water outlet of the radiation terminal 300, and the fresh air return water main pipe 440 is connected to the plate exchange A water outlet at the other end of the heater 230; further forming a refrigerant circuit;
- the first water supply main pipe 450 is provided with a water supply main pipe valve 451 and/or a water supply main pipe check valve 452 and/or a water supply main pipe exhaust valve 453; and/or
- the first return water main pipe 460 is provided with a return water main pipe valve 461 and/or a return water main pipe filter 462 and/or a return water main pipe exhaust valve 463;
- the fresh air water supply main pipe 430 is provided with a fresh air water supply valve 432 and/or fresh air water supply The filter 433; and/or the fresh air return water main pipe 440 is provided with a fresh air return valve 441.
- the heat exchanger in the fresh air duct 210 includes an evaporator 212 and a reheat heat exchanger 213, and a fresh air heat exchanger is provided at the first heat exchange port 481 of the plate heat exchanger 230 at one end of the plate heat exchanger 230.
- the heat restrictor 483, the first heat exchange port 481 of the plate exchange is connected to the first circulation pipe 484 of the fresh air evaporator and the first circulation pipe 485 of the reheat; the first circulation pipe 484 is connected to the refrigerant flow port of the evaporator 212, and the evaporator
- the other refrigerant flow port 212 is connected to the second heat exchange port 482 of the plate exchange through the compressor 220; the reheat first circulation pipe 485 is connected to the refrigerant flow port of the reheat heat exchanger 213.
- the reheat restrictor 486 and another refrigerant flow port of the reheat heat exchanger 213 are connected to the second heat exchange port 482 of the plate exchange.
- the fresh air return water main pipe 440 is connected with the plate exchange return water branch pipe 443, and the plate exchange return water branch pipe 443 is connected to the heat exchange port at one end of the plate heat exchanger 230;
- the fresh air water supply main pipe 430 is connected with the plate exchange water supply branch pipe 436,
- the plate exchange water supply branch pipe 436 is connected to another heat exchange port at one end of the plate heat exchanger 230, and the plate exchange water supply branch pipe 436 is provided with a plate exchange water supply regulating valve 437
- the above structure can meet the requirements of the fresh air fan 200 for cooling, heating and dehumidification of the fresh air.
- the fresh air fan 200 is also provided with a humidifier 214.
- the humidifier 214 is connected to the water source through the fresh air water supply pipe 470.
- the humidifier 214 It can meet the needs of fresh air humidification.
- the heat exchanger in the fresh air pipe 210 also includes a pre-cooling heat exchanger 211, the water inlet of the pre-cooling heat exchanger 211 is connected to the fresh air water supply main pipe 430 through a pipe, and the water inlet is connected to the fresh air water supply main pipe 430.
- the pipeline is provided with a pre-cooling water supply regulating valve 435; the water outlet of the pre-cooling heat exchanger 211 is connected to the fresh air return water main pipe 440 through the pipeline; and/or the fresh air water supply main pipe 430 is provided with a fresh air water supply dynamic balance valve 431.
- the water outlet of the pump of the cold and heat source 100 is connected to the first water supply main pipe 450, and the water inlet of the pump is connected to the first return water main pipe 460; the radiation ends 300 are provided with multiple, the first The water supply main pipe 450 is connected to one end of the second water supply main pipe 422, and the other end of the second water supply main pipe 422 is branched with a plurality of water supply branch pipes 421, and each water supply branch pipe 421 is respectively connected to a water inlet of a radiation end 300; the first return water main pipe 460 is connected to To one end of the second return water main pipe 412 , the other end of the second return water main pipe 412 is branched with a plurality of return water branch pipes 411 , and each return water branch pipe 411 is connected to a water outlet of a radiation terminal 300 respectively.
- the water supply branch pipe 421 is provided with a radiation water supply dynamic balance valve 423; the water inlet and outlet of the radiation end 300 are provided with a sub-water collector 301, and/or the return water branch pipe 411 is provided with a sub-collection water outlet valve 304, and/or water supply
- the branch pipe 421 is provided with a manifold water inlet valve 302 and/or a radiation water source filter 303 .
- the first return water main pipe 460 is connected to the fresh air water supply pipe 470 through the radiation water supply pipe 413 , and the radiation water supply pipe 413 is provided with a fresh air water supply valve 471 .
- the water source is used to replenish the refrigerant circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Thermal Sciences (AREA)
- Human Computer Interaction (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本发明的一种空调辐射末端防结露方法,属于空气调节设备领域;新风机中的除湿换热器制冷进行除湿时,冷媒管道中的冷媒通过新风机中的板式换热器与新风机除湿热换热升温;开启冷热源中的泵机,泵机驱动冷媒将换热升温后的冷媒通过冷媒管道驱动至辐射末端中,实现防结露;通过新风机中除湿过程产生的冷凝热对室内的辐射末端提供热源,从而避免结露现象的发生,并且减少电能的损耗。以及本发明的一种多房屋空间辐射末端空调系统防结露方法,基于上述防结露方法,结合每个房屋空间测量得到露点温度t0、壁温测量仪测量得到壁温t算出温差以及计时时间等参数的控制,有效利用新风机中的除湿冷凝热,避免室内尤其多房间的结露,并且节能效果好。
Description
本发明涉及空气调节设备领域,更具体地说,涉及一种空调辐射末端及多房屋空间辐射末端防结露方法。
随着人们生活水平的不断提高和科技的不断进步,用户对室内环境的要求越来越高;传统的强制对流热交换空调采用室内风内循环对流传热的形式改变室内温湿度,该种方式容易造成室内用户的不适感。而在20世纪80年代末,由德国人DonadHerbst发明了毛细管网平面辐射系统引起了广泛关注。此后几十年,这种隐形的空气调节系统,被陆续应用于众多高端商业建筑、政府大楼、银行、公用设施以及医疗建设中。而发展到今天,毛细管网辐射温控技术已经与新风技术相结合,毛细管网毛细管网提供显热,新风处理机组提供潜热以及换气所需的新风;该种空调系统相比较于传统空气调节方式具有运行稳定安全、无吹风感、低噪音、舒适节能以及室内温度均匀等显著优势。
但目前毛细管网辐射新风空调系统也存在一些缺陷;使用过程中,当室内毛细管网表面温度低于室内空气露点时容易发生结露,对结露问题处理不好就会导致壁面发霉。目前,辐射空调系统常采用关闭水路的做法,此种方法虽然短时间内可以防止结露现象加重,但是结露现象依然容易存在。另外,尤其是在过渡季节时,室外湿负荷很大,但温度降低,这是室内需要除湿的同时还需要制热,正常的系统运行模式会导致室内过冷,能耗较大;现有的新风系统在除湿过程中也依赖于室外机的做工,该种方式需要耗费大量的电力能源。
经检索,上海朗诗建筑科技有限公司公开过名称为“一种变水温实现防结露的辐射空调系统”的专利(公开号:CN202166137U),该专利公开的空调系统包括安装在室内的辐射空调系统;用于向所述辐射空调系统提供冷水或者热水的热泵;用于向室内送入新风的新风送风系统;所述系统还包括安装在室内的若干除湿机以及一中央控制器,所述中央控制器内设有一用于接收室内温度、湿度变化的传感装置,所述中央控制器与所述热泵连接用于控制所述热泵输出的水温温度;与所述除湿机相连接用于控制所述除湿机的启闭。本专利通过中央控制器控制除湿机开启除湿,同时升高热泵的出水温度以避免结露;但是对于突然开窗的情况,热泵更改水温后,水温上升的速率不仅较慢,而且耗费电能,难以做到做到更有效的防结露。
发明内容
1.发明要解决的技术问题
本发明的目的在于克服现有技术中,辐射末端容易结露以及防结露能耗高的技术问题,提供一种辐射末端防结露的空调系统;通过对新风机中的除湿过程冷凝热进行利用,利用除湿的冷凝热加热壁温来防止结露的产生。
2.技术方案
为达到上述目的,本发明提供的技术方案为:
本发明的一种空调辐射末端防结露方法,新风机中的除湿换热器制冷进行除湿时,冷媒管道中的冷媒通过新风机中的板式换热器与新风机除湿热换热升温;开启冷热源中的泵机,泵机驱动冷媒将换热升温后的冷媒通过冷媒管道驱动至辐射末端中,实现防结露。
优选地,所述方法使用的系统,包括冷热源、新风机和辐射末端,所述新风机包括板式换热器、新风管道和压缩机,新风管道内设置有换热器,所述换热器、板式换热器一端和压缩机通过管道连接构成冷媒回路,管道上设置有节流器;另外板式换热器的另一端、冷热源和辐射末端通过管道连接构成冷媒回路,所述管道上设置有平衡阀;其中板式换热器一端与板式换热器的另一端之间可进行换热;所述新风机还设置有加湿器,所述加湿器通过新风补水管与水源相连。
优选地,所述冷热源中包括泵机,所述泵机的出水口与第一供水总管相连,第一供水总管的另一端分支为第二供水总管和新风供水总管,所述第二供水总管连通至辐射末端的进水口,所述新风供水总管连通至板式换热器另一端的进水口;泵机的进水口与第一回水总管相连,第一回水总管的另一端分支为第二回水总管和新风回水总管,所述的第二回水总管连通至辐射末端的出水口,新风回水总管连通至板式换热器另一端的出水口。
优选地,所述新风管道内的换热器包括蒸发器和再热换热器,所述板式换热器一端的板换第一换热口处设置有新风换热节流器,板换第一换热口连通有新风蒸发器第一流通管和再热第一流通管;第一流通管连通至蒸发器的冷媒流动口,蒸发器的另一个冷媒流动口通过压缩机连通至板换第二换热口;再热第一流通管连通至再热换热器的冷媒流动口,第一流通管上设置有再热节流器,再热换热器的另一个冷媒流动口连通至板换第二换热口。
优选地,所述新风管道内的换热器还包括预冷换热器,所述预冷换热器的进水口通过管道与新风供水总管相连,进水口与新风供水总管之间管道上设置有预冷供水调节阀;预冷换热器的出水口通过管道与新风回水总管相连;和/或新风供水总管上设置有新风供水动态平衡阀。
优选地,新风回水总管与板换回水支管相连,板换回水支管连通至板式换热器一端的换热口;新风供水总管与板换供水支管相连,板换供水支管连通至板式换热器一端的另一个换热口,板换供水支管上设置有板换供水调节阀。
优选地,所述冷热源中包括泵机,所述泵机的出水口与第一供水总管相连,泵机的进水口与第一回水总管相连;所述辐射末端设置有多个,第一供水总管连通至第二供水总管一端,第二供水总管另一端分支有多个供水支管,每个供水支管分别与一个辐射末端的进水口相连;第一回水总管连通至第二回水总管一端,第二回水总管另一端分支有多个回水支管,每个回水支管管分别与一个辐射末端的出水口相连。
优选地,所述第一回水总管通过辐射补水管连通至新风补水管上,所述辐射补水管上设置有新风补水阀;和/或所述新风补水管上设置有新风补水阀;和/或新风补水管靠近水源处设置有补水减压阀和/或补水定压差阀和/或补水过滤器。
优选地,所述第一供水总管上设置有供水总管阀门和/或供水总管止回阀和/或供水总管排气阀;和/或第一回水总管上设置有回水总管阀门和/或回水总管过滤器和/或回水总管排气阀;
和/或新风供水总管上设置有新风供水阀门和/或新风供水过滤器;和/或新风回水总管上设置有新风回水阀门;
和/或辐射末端的进水口和出水口处设置有分集水器,和/或回水支管上设置有分集水出水阀门,和/或供水支管上设置有分集水进水阀门和/或辐射水源过滤器。
本发明的一种多房屋空间辐射末端空调系统防结露方法,步骤为:
步骤(1)、每个房屋空间防结露测量仪测量得到露点温度t0,壁温测量仪测量得到壁温t,t-t0≤t1时,该房间空间结露状况标记为状态A;并且总计时器开始进行计时T,并且进行报警;
步骤(2)、判断t是否满足t≥t2;
当t≥t2时,该房间空间结露状况标记为状态B,该房间末端关闭;
当t<t2时,所有状态A的房间进行防结露作业,所述防结露作业为上述的一种辐射末端空调系统防结露方法;
步骤(3)、T是否>T1
计时T>T1时,所有房间关闭防结露作业,未报警房间恢复报警前状态;时间T2后冷热源恢复报警前工作模式,进入步骤(6);
计时T≤T1时,进入步骤(4);
步骤(4)、判断t是否≥t3;
当t≥t3时,该房间空间结标记为状态B,该房间末端关闭;
当t<t3时,进入步骤(3);
步骤(5)、判断所有报警房间状态是否为B;
全为B时,所有房间关闭防结露作业,未报警房间恢复报警前状态;时间T2后热泵恢 复报警前工作模式;
不全为B时,进入骤(2);
步骤(6)、判断t-t0≥t4,且露点温度t0是否小于热泵设置水温t6-t5;
当t-t0≥t4时,且t0≤t6-t5,计时器计时T清零,该房间空间结露状况标记为防结露报警解除状态。
其它条件下,保持当前状态运行。
3.有益效果
采用本发明提供的技术方案,与已有的公知技术相比,具有如下显著效果:
(1)本发明的一种空调辐射末端防结露方法,新风机中的除湿换热器制冷进行除湿时,冷媒管道中的冷媒通过新风机中的板式换热器与新风机除湿热换热升温;开启冷热源中的泵机,泵机驱动冷媒将换热升温后的冷媒通过冷媒管道驱动至辐射末端中,实现防结露;通过新风机中除湿过程产生的冷凝热对室内的辐射末端提供热源,从而避免结露现象的发生,并且减少电能的损耗,且防结露速度快。
(2)本发明的一种多房屋空间辐射末端空调系统防结露方法,基于上述防结露方法,结合每个房屋空间测量得到露点温度t0、壁温测量仪测量得到壁温t算出温差以及计时时间等参数的控制,有效利用新风机中的除湿冷凝热,避免室内尤其多房间的结露,并且节能效果好。
图1为一种空调辐射末端防结露方法所使用系统的整体结构示意图;
图2为一种空调辐射末端防结露方法所使用系统中新风机结构示意图。
示意图中的标号说明:
100、冷热源;
200、新风机;210、新风管道;211、预冷换热器;212、蒸发器;213、再热换热器;214、加湿器;220、压缩机;230、板式换热器;
300、辐射末端;301、分集水器;302、分集水进水阀门;303、辐射水源过滤器;304、分集水出水阀门;
411、回水支管;412、第二回水总管;460、第一回水总管;461、回水总管阀门;462、回水总管过滤器;463、回水总管排气阀;
440、新风回水总管;441、新风回水阀门;442、预冷回水支管;443、板换回水支管;
450、第一供水总管;451、供水总管阀门;452、供水总管止回阀;453、供水总管排气阀;422、第二供水总管;421、供水支管;423、辐射供水动态平衡阀;
430、新风供水总管;431、新风供水动态平衡阀;432、新风供水阀门;433、新风供水过滤器;434、预冷供水支管;435、预冷供水调节阀;436、板换供水支管;437、板换供水调节阀;
413、辐射补水管;417、辐射补水阀;470、新风补水管;471、新风补水阀;472、补水减压阀;473、补水定压差阀;474、补水过滤器;
481、板换第一换热口;482、板换第二换热口;483、新风换热节流器;484、新风蒸发器第一流通管;491、新风蒸发器第二流通管;485、再热第一流通管;486、再热节流器;492、再热第二流通管。
为进一步了解本发明的内容,结合附图和实施例对本发明作详细描述。
本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴;除此之外,本发明的各个实施例之间并不是相互独立的,而是可以进行组合的。
本实施例的一种辐射末端空调系统防结露方法,新风机200中的除湿换热器制冷进行除湿时,冷媒管道中的冷媒通过新风机200中的板式换热器230与新风机200除湿热换热升温;开启冷热源100中的泵机,泵机驱动冷媒将换热升温后的冷媒通过冷媒管道驱动至辐射末端300中,实现防结露。
另外本实施例的一种多房屋空间辐射末端空调系统防结露方法,防结露的具体步骤为:
步骤(1)、每个房屋空间防结露测量仪测量得到露点温度t0,壁温测量仪测量得到壁温t,t-t0≤t1时,该房间空间结露状况标记为状态A;并且总计时器开始进行计时T,并且进行报警;
步骤(2)、判断t是否满足t≥t2;
当t≥t2时,该房间空间结露状况标记为状态B,该房间末端关闭;
当t<t2时,所有状态A的房间进行防结露作业,所述防结露作业为本实施例所述的一种辐射末端空调系统防结露方法;
步骤(3)、T是否>T1
计时T>T1时,所有房间关闭防结露作业,未报警房间恢复报警前状态;时间T2后冷热源恢复报警前工作模式,进入步骤(6);
计时T≤T1时,进入步骤(4);
步骤(4)、判断t是否≥t3;
当t≥t3时,该房间空间结标记为状态B,该房间末端关闭;
当t<t3时,进入步骤(3);
步骤(5)、判断所有报警房间状态是否为B;
全为B时,所有房间关闭防结露作业,未报警房间恢复报警前状态;时间T2后热泵恢复报警前工作模式;
不全为B时,进入骤(2);
步骤(6)、判断t-t0≥t4,且露点温度t0是否小于热泵设置水温t6-t5;
当t-t0≥t4时,且t0≤t6-t5,计时器计时T清零,该房间空间结露状况标记为防结露报警解除状态;
其它条件下,保持当前状态运行。
本实施例中,t1为2℃,t2为22℃,t3为24℃,t4为3℃,t5为1℃,t6为热泵设置的水温,12℃≤t6≤20℃;T1为30min,T2为5min。通过上述防结露方法,有效利用新风机200中的除湿冷凝热,避免室内尤其多房间的结露,并且节能效果好,并且防结露速度快。
本实施例中,t1为2℃,t2为20℃,t3为24℃,t4为3℃,t5为1℃;T1为30min,T2为5min。通过上述防结露方法,有效利用新风机200中的除湿冷凝热,避免室内尤其多房间的结露,并且节能效果好。
需要说明的是,上述过程中露点温度通过温度、湿度参数使用马格拉斯等公式进行计算得出,其他自动化控制则采用如单片机、处理器等常规自动控制软硬件来实现。
如图1~2所示,上述防结露方法所使用的一种辐射末端防结露的空调系统,包括冷热源100、新风机200和辐射末端300;其中冷热源100中包括有泵机。新风机200中的除湿过程冷凝器的放热端与系统中的泵机和辐射末端300通过管道构成冷媒回路;冷媒回路用于将除湿过程冷凝器的放热端的热量通过冷媒回路中的冷媒传递至辐射末端300。
更具体的,所述新风机200包括板式换热器230、新风管道210和压缩机220,新风管道210内设置有除湿换热器,所述除湿换热器、板式换热器230一端和压缩机220通过管道连接构成冷媒回路,管道上设置有节流器;另外板式换热器230的另一端、冷热源100和辐射末端300通过管道连接构成冷媒回路,所述管道上设置有平衡阀;其中板式换热器230一端与板式换热器230的另一端之间可进行换热,新风机200中的除湿过程冷凝器即为设置于新 风管道210中的除湿换热器,本实施例中,所述新风管道210内的换热器包括蒸发器212和再热换热器213,蒸发器212可以作为除湿换热器;通过蒸发器212、板式换热器230一端和压缩机220通过管道连接构成的冷媒回路,蒸发器212可以进行降温除湿,板式换热器230一端可以将热量与板式换热器230另一端进行换热。
板式换热器230的另一端、冷热源100和辐射末端300通过管道连接构成冷媒回路,所述管道上设置有平衡阀,以维持该回路冷媒的稳定运行;其中板式换热器230一端与板式换热器230的另一端之间可进行换热;新风机200在除湿过程中,板式换热器230一端冷凝热通过板式换热器230换热至板式换热器230的另一端,再通过板式换热器230的另一端、冷热源100和辐射末端300通过管道连接构成冷媒回路,将冷凝热传递至辐射末端300内,从而实现辐射末端300的防结露,并且充分利用新风机200除湿过程的冷凝热,大大提高了能源的利用率,降低能耗的同时降低设备运行负担。
具体的,所述冷热源100中包括泵机,所述泵机的出水口与第一供水总管450相连,第一供水总管450的另一端分支为第二供水总管422和新风供水总管430,所述第二供水总管422连通至辐射末端300的进水口,所述新风供水总管430连通至板式换热器230另一端的进水口;泵机的进水口与第一回水总管460相连,第一回水总管460的另一端分支为第二回水总管412和新风回水总管440,所述的第二回水总管412连通至辐射末端300的出水口,新风回水总管440连通至板式换热器230另一端的出水口;进而构成冷媒回路;所述第一供水总管450上设置有供水总管阀门451和/或供水总管止回阀452和/或供水总管排气阀453;和/或第一回水总管460上设置有回水总管阀门461和/或回水总管过滤器462和/或回水总管排气阀463;新风供水总管430上设置有新风供水阀门432和/或新风供水过滤器433;和/或新风回水总管440上设置有新风回水阀门441。
在新风机200内,所述新风管道210内的换热器包括蒸发器212和再热换热器213,所述板式换热器230一端的板换第一换热口481处设置有新风换热节流器483,板换第一换热口481连通有新风蒸发器第一流通管484和再热第一流通管485;第一流通管484连通至蒸发器212的冷媒流动口,蒸发器212的另一个冷媒流动口通过压缩机220连通至板换第二换热口482;再热第一流通管485连通至再热换热器213的冷媒流动口,第一流通管485上设置有再热节流器486,再热换热器213的另一个冷媒流动口连通至板换第二换热口482。本实施例中,新风回水总管440与板换回水支管443相连,板换回水支管443连通至板式换热器230一端的换热口;新风供水总管430与板换供水支管436相连,板换供水支管436连通至板式换热器230一端的另一个换热口,板换供水支管436上设置有板换供水调节阀437
上述结构可以满足新风机200对于新风的降温、升温以及除湿的需求,另外所述新风机 200还设置有加湿器214,所述加湿器214通过新风补水管470与水源相连,所述加湿器214可以满足对新风加湿的需要。
另外,所述新风管道210内的换热器还包括预冷换热器211,所述预冷换热器211的进水口通过管道与新风供水总管430相连,进水口与新风供水总管430之间管道上设置有预冷供水调节阀435;预冷换热器211的出水口通过管道与新风回水总管440相连;和/或新风供水总管430上设置有新风供水动态平衡阀431。
对于辐射末端300,所述冷热源100的泵机出水口与第一供水总管450相连,泵机的进水口与第一回水总管460相连;所述辐射末端300设置有多个,第一供水总管450连通至第二供水总管422一端,第二供水总管422另一端分支有多个供水支管421,每个供水支管421分别与一个辐射末端300的进水口相连;第一回水总管460连通至第二回水总管412一端,第二回水总管412另一端分支有多个回水支管411,每个回水支管411管分别与一个辐射末端300的出水口相连。供水支管421上设置有辐射供水动态平衡阀423;辐射末端300的进水口和出水口处设置有分集水器301,和/或回水支管411上设置有分集水出水阀门304,和/或供水支管421上设置有分集水进水阀门302和/或辐射水源过滤器303。
另外需要说明的是,所述第一回水总管460通过辐射补水管413连通至新风补水管470上,所述辐射补水管413上设置有新风补水阀471。在冷媒回路中,如果在缺水状态下,使得水源对冷媒回路进行补水。
在上文中结合具体的示例性实施例详细描述了本发明。但是,应当理解,可在不脱离由所附权利要求限定的本发明的范围的情况下进行各种修改和变型。详细的描述和附图应仅被认为是说明性的,而不是限制性的,如果存在任何这样的修改和变型,那么它们都将落入在此描述的本发明的范围内。此外,背景技术旨在为了说明本技术的研发现状和意义,并不旨在限制本发明或本申请和本发明的应用领域。
更具体地,尽管在此已经描述了本发明的示例性实施例,但是本发明并不局限于这些实施例,而是包括本领域技术人员根据前面的详细描述可认识到的经过修改、省略、例如各个实施例之间的组合、适应性改变和/或替换的任何和全部实施例。权利要求中的限定可根据权利要求中使用的语言而进行广泛的解释,且不限于在前述详细描述中或在实施该申请期间描述的示例,这些示例应被认为是非排他性的。在任何方法或过程权利要求中列举的任何步骤可以以任何顺序执行并且不限于权利要求中提出的顺序。因此,本发明的范围应当仅由所附权利要求及其合法等同物来确定,而不是由上文给出的说明和示例来确定。
Claims (10)
- 一种空调辐射末端防结露方法,其特征在于,新风机(200)中的除湿换热器制冷进行除湿时,冷媒管道中的冷媒通过新风机(200)中的板式换热器(230)与新风机(200)除湿热换热升温;开启冷热源(100)中的泵机,泵机驱动冷媒将换热升温后的冷媒通过冷媒管道驱动至辐射末端(300)中,实现防结露。
- 根据权利要求1所述的一种空调辐射末端防结露方法,其特征在于,所述方法使用的系统,包括冷热源(100)、新风机(200)和辐射末端(300),所述新风机(200)包括板式换热器(230)、新风管道(210)和压缩机(220),新风管道(210)内设置有换热器,所述换热器、板式换热器(230)一端和压缩机(220)通过管道连接构成冷媒回路,管道上设置有节流器;另外板式换热器(230)的另一端、冷热源(100)和辐射末端(300)通过管道连接构成冷媒回路,所述管道上设置有平衡阀;其中板式换热器(230)一端与板式换热器(230)的另一端之间可进行换热;所述新风机(200)还设置有加湿器(214),所述加湿器(214)通过新风补水管(470)与水源相连。
- 根据权利要求2所述的一种空调辐射末端防结露方法,其特征在于,所述冷热源(100)中包括泵机,所述泵机的出水口与第一供水总管(450)相连,第一供水总管(450)的另一端分支为第二供水总管(422)和新风供水总管(430),所述第二供水总管(422)连通至辐射末端(300)的进水口,所述新风供水总管(430)连通至板式换热器(230)另一端的进水口;泵机的进水口与第一回水总管(460)相连,第一回水总管(460)的另一端分支为第二回水总管(412)和新风回水总管(440),所述的第二回水总管(412)连通至辐射末端(300)的出水口,新风回水总管(440)连通至板式换热器(230)另一端的出水口。
- 根据权利要求2所述的一种空调辐射末端防结露方法,其特征在于,所述新风管道(210)内的换热器包括蒸发器(212)和再热换热器(213),所述板式换热器(230)一端的板换第一换热口(481)处设置有新风换热节流器(483),板换第一换热口(481)连通有新风蒸发器第一流通管(484)和再热第一流通管(485);第一流通管(484)连通至蒸发器(212)的冷媒流动口,蒸发器(212)的另一个冷媒流动口通过压缩机(220)连通至板换第二换热口(482);再热第一流通管(485)连通至再热换热器(213)的冷媒流动口,第一流通管(485)上设置有再热节流器(486),再热换热器(213)的另一个冷媒流动口连通至板换第二换热口(482)。
- 根据权利要求3所述的一种空调辐射末端防结露方法,其特征在于,所述新风管道(210)内的换热器还包括预冷换热器(211),所述预冷换热器(211)的进水口通过管道与新风供水总管(430)相连,进水口与新风供水总管(430)之间管道上设置有预冷供水调节阀(435);预冷换热器(211)的出水口通过管道与新风回水总管(440)相连;和/或新风供水 总管(430)上设置有新风供水动态平衡阀(431)。
- 根据权利要求3所述的一种空调辐射末端防结露方法,其特征在于,新风回水总管(440)与板换回水支管(443)相连,板换回水支管(443)连通至板式换热器(230)一端的换热口;新风供水总管(430)与板换供水支管(436)相连,板换供水支管(436)连通至板式换热器(230)一端的另一个换热口,板换供水支管(436)上设置有板换供水调节阀(437)。
- 根据权利要求2所述的一种空调辐射末端防结露方法,其特征在于,所述冷热源(100)中包括泵机,所述泵机的出水口与第一供水总管(450)相连,泵机的进水口与第一回水总管(460)相连;所述辐射末端(300)设置有多个,第一供水总管(450)连通至第二供水总管(422)一端,第二供水总管(422)另一端分支有多个供水支管(421),每个供水支管(421)分别与一个辐射末端(300)的进水口相连;第一回水总管(460)连通至第二回水总管(412)一端,第二回水总管(412)另一端分支有多个回水支管(411),每个回水支管(411)管分别与一个辐射末端(300)的出水口相连。
- 根据权利要求2所述的一种空调辐射末端防结露方法,其特征在于,所述第一回水总管(460)通过辐射补水管(413)连通至新风补水管(470)上,所述辐射补水管(413)上设置有新风补水阀(471);和/或所述新风补水管(470)上设置有新风补水阀(471);和/或新风补水管(470)靠近水源处设置有补水减压阀(472)和/或补水定压差阀(473)和/或补水过滤器(474)。
- 根据权利要求1~8任一项所述的一种空调辐射末端防结露方法,其特征在于,所述第一供水总管(450)上设置有供水总管阀门(451)和/或供水总管止回阀(452)和/或供水总管排气阀(453);和/或第一回水总管(460)上设置有回水总管阀门(461)和/或回水总管过滤器(462)和/或回水总管排气阀(463);和/或新风供水总管(430)上设置有新风供水阀门(432)和/或新风供水过滤器(433);和/或新风回水总管(440)上设置有新风回水阀门(441);和/或辐射末端(300)的进水口和出水口处设置有分集水器(301),和/或回水支管(411)上设置有分集水出水阀门(304),和/或供水支管(421)上设置有分集水进水阀门(302)和/或辐射水源过滤器(303)。
- 一种多房屋空间辐射末端空调系统防结露方法,其特征在于,步骤为:步骤(1)、每个房屋空间防结露测量仪测量得到露点温度t0,壁温测量仪测量得到壁温t,t-t0≤t1时,该房间空间结露状况标记为状态A;并且总计时器开始进行计时T,并且进行报警;步骤(2)、判断t是否满足t≥t2;当t≥t2时,该房间空间结露状况标记为状态B,该房间末端关闭;当t<t2时,所有状态A的房间进行防结露作业,所述防结露作业为权利要求1~9任一项所述的一种辐射末端空调系统防结露方法;步骤(3)、T是否>T1计时T>T1时,所有房间关闭防结露作业,未报警房间恢复报警前状态;时间T2后冷热源恢复报警前工作模式,进入步骤(6);计时T≤T1时,进入步骤(4);步骤(4)、判断t是否≥t3;当t≥t3时,该房间空间结标记为状态B,该房间末端关闭;当t<t3时,进入步骤(3);步骤(5)、判断所有报警房间状态是否为B;全为B时,所有房间关闭防结露作业,未报警房间恢复报警前状态;时间T2后热泵恢复报警前工作模式;不全为B时,进入骤(2);步骤(6)、判断t-t0≥t4,且露点温度t0是否小于热泵设置水温t6-t5;当t-t0≥t4时,且t0≤t6-t5,计时器计时T清零,该房间空间结露状况标记为防结露报警解除状态;其它条件下,保持当前状态运行。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/608,338 US12078382B2 (en) | 2020-09-30 | 2021-04-14 | Method for anti-condensation at air conditioner radiation terminal and radiation terminals in multi-room space |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011058970.9 | 2020-09-30 | ||
CN202011058970.9A CN112178778B (zh) | 2020-09-30 | 2020-09-30 | 一种空调辐射末端及多房屋空间辐射末端防结露方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022068175A1 true WO2022068175A1 (zh) | 2022-04-07 |
Family
ID=73946259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/087133 WO2022068175A1 (zh) | 2020-09-30 | 2021-04-14 | 一种空调辐射末端及多房屋空间辐射末端防结露方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12078382B2 (zh) |
CN (1) | CN112178778B (zh) |
WO (1) | WO2022068175A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114135962A (zh) * | 2021-09-18 | 2022-03-04 | 江苏高科应用科学研究所有限公司 | 一种新风机组的控制方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112178778B (zh) * | 2020-09-30 | 2021-05-14 | 南京慧和建筑技术有限公司 | 一种空调辐射末端及多房屋空间辐射末端防结露方法 |
CN118089156A (zh) * | 2022-11-22 | 2024-05-28 | 广东美的制冷设备有限公司 | 除露控制方法、装置、辐射空调系统及存储介质 |
CN117232061A (zh) * | 2023-09-19 | 2023-12-15 | 南京长江都市建筑设计股份有限公司 | 一种地库除湿防结露系统及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08200882A (ja) * | 1995-01-27 | 1996-08-06 | Hitachi Metals Ltd | 空気調和装置 |
CN202166137U (zh) * | 2011-07-19 | 2012-03-14 | 上海朗诗建筑科技有限公司 | 一种变水温实现防结露的辐射空调系统 |
CN104729149A (zh) * | 2015-04-01 | 2015-06-24 | 江南大学 | 一种内置水盘管的热泵机组及其运行方法 |
CN206113121U (zh) * | 2016-08-30 | 2017-04-19 | 江苏赛诺浦节能科技有限公司 | 一种用于温湿度独立控制空调系统的新风除湿机组 |
CN206234930U (zh) * | 2016-11-28 | 2017-06-09 | 中机中联工程有限公司 | 一种基于高温冷冻水的温湿分控新风机组 |
CN108800355A (zh) * | 2018-06-25 | 2018-11-13 | 袁军 | 一种空气调节方法与系统 |
CN209744650U (zh) * | 2019-03-11 | 2019-12-06 | 南京慧和建筑技术有限公司 | 一种新风-毛细管网空气联合调节系统 |
CN112178778A (zh) * | 2020-09-30 | 2021-01-05 | 南京慧和建筑技术有限公司 | 一种空调辐射末端及多房屋空间辐射末端防结露方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103411278A (zh) * | 2013-08-23 | 2013-11-27 | 机械工业第三设计研究院 | 适用于温湿度独立控制空调系统的新风机组 |
US10712026B2 (en) * | 2016-12-03 | 2020-07-14 | Daniel P. McCarty | Integrated chilled beam / chiller direct outside air system unit |
CN209459131U (zh) * | 2018-11-01 | 2019-10-01 | 浙江羽雁节能科技有限公司 | 一种毛细管辐射空调的防结露系统 |
CN209214143U (zh) * | 2018-11-30 | 2019-08-06 | 上海朗绿建筑科技股份有限公司 | 双冷源新风除湿机组 |
-
2020
- 2020-09-30 CN CN202011058970.9A patent/CN112178778B/zh active Active
-
2021
- 2021-04-14 WO PCT/CN2021/087133 patent/WO2022068175A1/zh active Application Filing
- 2021-04-14 US US17/608,338 patent/US12078382B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08200882A (ja) * | 1995-01-27 | 1996-08-06 | Hitachi Metals Ltd | 空気調和装置 |
CN202166137U (zh) * | 2011-07-19 | 2012-03-14 | 上海朗诗建筑科技有限公司 | 一种变水温实现防结露的辐射空调系统 |
CN104729149A (zh) * | 2015-04-01 | 2015-06-24 | 江南大学 | 一种内置水盘管的热泵机组及其运行方法 |
CN206113121U (zh) * | 2016-08-30 | 2017-04-19 | 江苏赛诺浦节能科技有限公司 | 一种用于温湿度独立控制空调系统的新风除湿机组 |
CN206234930U (zh) * | 2016-11-28 | 2017-06-09 | 中机中联工程有限公司 | 一种基于高温冷冻水的温湿分控新风机组 |
CN108800355A (zh) * | 2018-06-25 | 2018-11-13 | 袁军 | 一种空气调节方法与系统 |
CN209744650U (zh) * | 2019-03-11 | 2019-12-06 | 南京慧和建筑技术有限公司 | 一种新风-毛细管网空气联合调节系统 |
CN112178778A (zh) * | 2020-09-30 | 2021-01-05 | 南京慧和建筑技术有限公司 | 一种空调辐射末端及多房屋空间辐射末端防结露方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114135962A (zh) * | 2021-09-18 | 2022-03-04 | 江苏高科应用科学研究所有限公司 | 一种新风机组的控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112178778B (zh) | 2021-05-14 |
US20220341624A1 (en) | 2022-10-27 |
US12078382B2 (en) | 2024-09-03 |
CN112178778A (zh) | 2021-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022068175A1 (zh) | 一种空调辐射末端及多房屋空间辐射末端防结露方法 | |
WO2016179884A1 (zh) | 变制冷剂流量的辐射空调系统 | |
WO2020140196A1 (zh) | 一种基于红外传感技术的室内舒适健康环境控制辐射空调系统 | |
CN105605753B (zh) | 基于多联机与新风机复合空调系统的新风送风温控系统 | |
CN110608495A (zh) | 一种多调节方式集成空调系统及其工作方法 | |
CN104697085A (zh) | 分户组合式辐射空调系统、控制方法及相应的控制系统 | |
CN109210727A (zh) | 毛细管网与空调并联的室内温控系统 | |
CN103673107A (zh) | 空调器及其控制方法、控制装置 | |
CN209744650U (zh) | 一种新风-毛细管网空气联合调节系统 | |
CN108286755A (zh) | 一种自带冷源的空气处理机组 | |
Gu et al. | Performance analysis of a hybrid non-centralized radiant floor cooling system in hot and humid regions | |
CN113483423A (zh) | 一种防结露的毛细管网冷辐射吊顶系统及其工作方法 | |
CN109827304B (zh) | 一种新风-毛细管网空气联合调节系统及其冬、夏季新风温度调节方法 | |
CN208920479U (zh) | 毛细管网与空调并联的室内温控系统 | |
CN205957377U (zh) | 洁净手术室用温湿度独立控制的恒温恒湿空调系统 | |
CN213983826U (zh) | 一种别墅专用土壤源热泵洁净无风空调系统 | |
CN208042334U (zh) | 温湿度独立控制的节能型组合式空调机组 | |
CN205878496U (zh) | 一种新风自交换再热四管制空气处理机组 | |
CN112361477A (zh) | 别墅专用土壤源热泵洁净无风空调系统 | |
JP2016023851A (ja) | 精密温湿度調整方法 | |
CN209819742U (zh) | 一种变频多联辐射供暖制冷空调系统 | |
CN213810866U (zh) | 一种空调辐射末端防结露系统 | |
CN206709326U (zh) | 基于双冷源热回收除湿新风的户式恒温恒湿空调系统 | |
CN112178779B (zh) | 一种辐射末端防结露的空调系统 | |
CN111623494B (zh) | 一种温湿分控空调系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21873841 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21873841 Country of ref document: EP Kind code of ref document: A1 |