WO2022067737A1 - 一种充电模块以及充电系统 - Google Patents

一种充电模块以及充电系统 Download PDF

Info

Publication number
WO2022067737A1
WO2022067737A1 PCT/CN2020/119596 CN2020119596W WO2022067737A1 WO 2022067737 A1 WO2022067737 A1 WO 2022067737A1 CN 2020119596 W CN2020119596 W CN 2020119596W WO 2022067737 A1 WO2022067737 A1 WO 2022067737A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
charging
power
inverter
electric vehicle
Prior art date
Application number
PCT/CN2020/119596
Other languages
English (en)
French (fr)
Inventor
张彦忠
姚晓锋
胡海斌
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to PCT/CN2020/119596 priority Critical patent/WO2022067737A1/zh
Priority to EP20955761.0A priority patent/EP4195450A4/en
Priority to CN202080101054.0A priority patent/CN115968526B/zh
Publication of WO2022067737A1 publication Critical patent/WO2022067737A1/zh
Priority to US18/168,529 priority patent/US20230391218A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the embodiments of the present application relate to the field of circuits, and in particular, to a charging module and a charging system.
  • the photovoltaic array converts solar energy into electrical energy, which can be used to power the loads in the home, and can also be used to charge the electronic equipment in the home.
  • the existing charging pile can use the solar energy converted electric energy to charge the electric vehicle through the on-board charger (OBC) in a high-power manner.
  • OBC on-board charger
  • the existing charging pile can use the electric energy converted from solar energy to charge the electric vehicle in a high-power manner, which improves the output power of the charging pile.
  • the charging pile needs to cooperate with the OBC to charge the electric vehicle, the power upper limit of the OBC has not been increased, and the charging pile is limited by the OBC power upper limit during charging, so the actual power of charging the electric vehicle during the actual charging process is low. Charging is slow.
  • the application provides a charging module and a charging system.
  • the charging system includes a charging module. After the charging module receives electrical energy converted from solar energy through a photovoltaic interface, it does not need to cooperate with an OBC, and uses DC power to charge an electric vehicle through the DC charging module.
  • the charging module provided by the present application does not need to be limited by the OBC charging power when charging the electric vehicle, which improves the actual power for charging the electric vehicle and improves the charging speed.
  • a first aspect of the present application provides a charging module, which includes a DC charging module, a functional interface, an inverter, and a control and guide module, wherein the functional interface includes a photovoltaic interface; the DC charging module communicates with the photovoltaic through the photovoltaic interface. the module is electrically connected; the first end of the inverter is electrically connected with the photovoltaic module and the DC charging module; the control and guide module is electrically connected with the DC charging module; the control and guide module is used to confirm that the charging module is successfully connected to the electric vehicle; the DC charging module is used to receive the first power output by the photovoltaic module to charge the electric vehicle.
  • the application provides a charging module.
  • the charging module includes a DC charging module, a functional interface, an inverter, and a control and guidance module.
  • the functional interface includes a photovoltaic interface.
  • the DC charging module is used for receiving the first power derived from the photovoltaic module to charge the electric vehicle. In this way, after the DC charging module receives the electric energy converted from solar energy through the photovoltaic interface, it does not need to cooperate with the OBC, and directly uses the DC power to charge the electric vehicle.
  • the charging module provided by the present application does not need to be limited by the OBC charging power when charging the electric vehicle, which improves the actual power for charging the electric vehicle and improves the charging speed.
  • the first end of the inverter is electrically connected to the photovoltaic module, the energy storage module and the DC charging module; the inverter is used to confirm If the charging power of the DC charging module receiving the first power does not reach the target power, the energy storage module is controlled to output the second power; the DC charging module is used to receive the first power and the The second power is used to charge the electric vehicle.
  • the photovoltaic module is a solar power generation device commonly used in households.
  • the photovoltaic module converts solar energy into electrical energy, and inputs the first power to the charging module through the photovoltaic interface. After the charging module receives the first power, it outputs direct current to the electric vehicle through the direct current charging module to charge the electric vehicle. If the inverter confirms that the power of the DC charging module for charging the electric vehicle is less than the target power, the inverter controls the energy storage module to output the second power to the DC charging module in the charging module, and the DC charging module receives the first power and The second power charges the electric vehicle.
  • the charging module uses the electric energy converted from the solar energy in the photovoltaic module and the electric energy stored in the energy storage module to charge the electric vehicle, which improves the charging efficiency of the charging module for the electric vehicle under the premise of environmental protection, and saves the charging time of the electric vehicle.
  • the functional interface further includes a home grid interface; the second end of the inverter is electrically connected to the home grid through the home grid interface; the inverter, For confirming that the charging power of the DC charging module that receives the first power and the second power does not reach the target power, the inverter is controlled to derive a third power; the DC charging module, using After receiving the first power, the second power and the third power, the electric vehicle is charged.
  • the photovoltaic module is a solar power generation device commonly used in households.
  • the photovoltaic module converts solar energy into electrical energy, and inputs the first power to the charging module through the photovoltaic interface.
  • the energy storage module outputs the second power to the DC charging module in the charging module, and the DC charging module receives the first power and the second power to charge the electric vehicle. If the inverter confirms that the charging power of the DC charging module receiving the first power and the second power does not reach the target power, the inverter is controlled to receive the power of the home grid through the home grid interface and then derive the third power.
  • the DC charging module charges the electric vehicle after receiving the first power, the second power and the third power.
  • the charging module uses the electric energy converted from solar energy in the photovoltaic module, the electric energy stored in the energy storage module and the electric energy provided in the home grid to charge the electric vehicle, which maximizes the efficiency of the charging module for charging the electric vehicle and saves the charging time of the electric vehicle. .
  • the functional interface further includes a home grid interface; the first end of the inverter is electrically connected to the photovoltaic module and the DC charging module, and the inverter is electrically connected to the photovoltaic module and the DC charging module.
  • the second end of the inverter is electrically connected to the home grid through the home grid interface; the inverter is configured to confirm that the charging power of the DC charging module receiving the first power does not reach the target power, and then control the The inverter derives a third power; the DC charging module is configured to receive the first power and the third power to charge the electric vehicle.
  • the DC charging module charges the electric vehicle after receiving the first power and the third power.
  • the charging module uses the electric energy converted from the solar energy in the photovoltaic module and the electric energy provided in the home grid to charge the electric vehicle, which improves the charging efficiency of the charging module for the electric vehicle and saves the charging time of the electric vehicle.
  • a second aspect of the present application provides a charging system, the charging system includes a photovoltaic module and a charging module, the photovoltaic module includes a photovoltaic module and a DC boost module, and the charging module includes a DC charging module, an inverter and a control a guide module; the first end of the DC boost module is electrically connected to the photovoltaic module, and the second end of the DC boost module is connected to the DC charging module and the first end of the inverter one end is electrically connected; the first end of the inverter is electrically connected to the DC charging module; the control and guide module is electrically connected to the DC charging module; the control and guide module is used to confirm The charging module is successfully connected with the electric vehicle; the DC charging module is used for receiving the first power derived from the DC boosting module to charge the electric vehicle.
  • the charging module included in the charging system includes a DC charging module, an inverter, and a control and guidance module, and the DC charging module is used to receive the first power derived from the photovoltaic module to charge the electric vehicle.
  • the charging module receives the electric energy converted from solar energy through the photovoltaic interface, it does not need to cooperate with the OBC, and uses the direct current to charge the electric vehicle through the direct current charging module.
  • the charging system provided by the present application does not need to be limited by the OBC charging power when charging the electric vehicle, which increases the actual power for charging the electric vehicle and improves the charging speed.
  • the charging system further includes an energy storage module; the first end of the inverter and the second end of the DC boost module, the energy storage module and the DC charging module is electrically connected; the energy storage module is electrically connected to the second end of the DC boost module, the first end of the inverter and the first end of the DC charging module ; the inverter is used to confirm that the charging power of the DC charging module receiving the first power does not reach the target power, then control the energy storage module to output the second power; the DC charging module, for receiving the first power and the second power to charge the electric vehicle.
  • the photovoltaic module converts solar energy into electrical energy, and outputs electrical energy to the DC booster module.
  • the DC boost module receives the electrical energy input from one or more photovoltaic modules, the DC boost module regulates the voltage of the received electrical energy, and imports the regulated electrical energy into the DC charging module, that is, the photovoltaic module sends the DC charging module to the DC charging module. Group input first power.
  • the DC charging module receives the first power to charge the electric vehicle. If the inverter confirms that the power of the DC charging module for charging the electric vehicle is less than the target power, the inverter controls the energy storage module to output the second power to the DC charging module, and the DC charging module receives the first power and the second power to the DC charging module. Electric car charging.
  • the charging system uses the electric energy converted from the solar energy in the photovoltaic module and the electric energy stored in the energy storage module to charge the electric vehicle, which improves the charging efficiency of the charging module for the electric vehicle under the premise of environmental protection, and saves the charging time of the electric vehicle.
  • the second end of the inverter is electrically connected to a home grid; the inverter is configured to confirm receipt of the first power and the second power If the charging power of the DC charging module does not reach the target power, the inverter is controlled to derive a third power; the DC charging module is used to receive the first power, the second power and the The third power charges the electric vehicle.
  • the photovoltaic module converts solar energy into electrical energy, and outputs electrical energy to the DC booster module.
  • the DC boost module receives the electrical energy input from one or more photovoltaic modules, the DC boost module regulates the voltage of the received electrical energy, and imports the regulated electrical energy into the DC charging module, that is, the photovoltaic module sends the DC charging module to the DC charging module. Group input first power.
  • the energy storage module outputs the second power to the DC charging module, and the DC charging module receives the first power and the second power to charge the electric vehicle. If the inverter confirms that the power charged by the DC charging module for the electric vehicle does not reach the target power, the inverter is controlled to derive the third power after receiving the power from the home grid.
  • the DC charging module charges the electric vehicle after receiving the first power, the second power and the third power.
  • the charging system uses the electric energy converted from solar energy in the photovoltaic module, the electric energy stored in the energy storage module and the electric energy provided in the home grid to charge the electric vehicle, which maximizes the efficiency of the charging module for charging the electric vehicle and saves the charging time of the electric vehicle. .
  • the first end of the inverter is electrically connected to the second end of the DC boosting module and the DC charging module, and the inverter is electrically connected to the second end of the DC boosting module and the DC charging module.
  • the second end is electrically connected to the home grid; the inverter is configured to confirm that the charging power of the DC charging module receiving the first power does not reach the target power, and then control the inverter to derive a third power ; the DC charging module is used for receiving the first power and the third power to charge the electric vehicle.
  • the DC charging module charges the electric vehicle after receiving the first power and the third power.
  • the charging system uses the electric energy converted from the solar energy in the photovoltaic module and the electric energy provided in the home grid to charge the electric vehicle, which improves the charging efficiency of the charging module for the electric vehicle and saves the charging time of the electric vehicle.
  • the photovoltaic module further includes an optimizer; a first end of the optimizer is electrically connected to the photovoltaic module, and a second end of the optimizer is connected to the photovoltaic module. The first end of the DC boosting module is electrically connected.
  • the optimizer can monitor and optimize the power of each photovoltaic module.
  • the optimizer can make other photovoltaic modules The modules cooperate with each other to output the original power before the mismatch, which can prevent the output power of the photovoltaic module from being reduced due to the mismatch of a certain photovoltaic module.
  • the charging module further includes an electricity meter; the first end of the electricity meter is electrically connected to the second end of the inverter, and the second end of the electricity meter is electrically connected to the second end of the electricity meter. Describe the electrical connection to the home grid.
  • the inverter can know the amount of electricity output by the home grid when charging the electric vehicle through the electricity meter, so that the charging system can more reasonably control the output power of the inverter and reasonably control the charging cost.
  • the DC boost module has one input or multiple inputs.
  • DC PLC communication is used between the inverter, the energy storage module and the DC charging module, or, the inverter, the energy storage module RS485 communication is adopted between the module and the DC charging module, or CAN communication is adopted between the inverter, the energy storage module and the DC charging module.
  • Fig. 1 is the charging schematic diagram of the existing electric vehicle
  • FIG. 2 is a schematic structural diagram of a charging module provided by the present application.
  • FIG. 3 is another schematic structural diagram of the charging module provided by the application.
  • FIG. 4 is another schematic structural diagram of the charging module provided by the application.
  • FIG. 5 is a schematic diagram of an embodiment of the charging module provided by the present application for charging an electric vehicle
  • FIG. 6 is a schematic diagram of another embodiment of the charging module provided by the present application for charging an electric vehicle
  • FIG. 7 is a topology diagram of a charging system provided by the present application.
  • FIG. 8 is a schematic diagram of an embodiment of a charging system provided by the present application.
  • FIG. 9 is another topology diagram of the charging system provided by the present application.
  • FIG. 10 is another topology diagram of the charging system provided by the present application.
  • Electric vehicle refers to a vehicle that is powered by on-board power supply and driven by a motor, and meets the requirements of road traffic and safety regulations. Due to its smaller impact on the environment than traditional cars, its prospects are widely optimistic.
  • FIG. 1 is a schematic diagram of charging of an existing electric vehicle.
  • an AC charging method is usually used to charge the electric vehicle.
  • the home switchboard is electrically connected to the power grid, and the home switchboard is connected separately to the AC charging pile.
  • the AC charging head of the AC charging pile is connected to the AC charging socket of the electric vehicle. In this way, the AC charging pile can be matched with the AC charging socket through the electric vehicle.
  • the OBC for charging electric vehicles.
  • the charging module provided by the present application can be a household charging pile.
  • the charging module provided by the present application does not need to cooperate with the OBC, and can directly charge the electric vehicle with direct current by using the electric energy converted from solar energy in a high-power manner. The actual power for charging electric vehicles is increased, and the charging speed is increased.
  • the charging module provided in this application can be in the form of a charging pile, the charging module can also be in the form of a charging gun, and the charging module can also be in other implementation forms, which are not specifically limited here.
  • FIG. 2 is a schematic structural diagram of the charging module provided by the present application.
  • the charging module 10 includes a DC charging module 101 , a functional interface 102 , an inverter 103 and a control guide module 104 , and the functional interface 102 includes a photovoltaic interface 105 ;
  • the DC charging module 101 is electrically connected to the photovoltaic module 106 through the photovoltaic interface 105 ; the first end of the inverter 103 is electrically connected to the photovoltaic module 106 and the DC charging module 101 ; the control guide module 104 is electrically connected to the DC charging module 101 ; Control and guide module 104 for confirming that the charging module 10 is successfully connected to the electric vehicle; DC charging module 101 for receiving the first power output by the photovoltaic module 106 to charge the electric vehicle.
  • the control and guide module can be used to confirm whether the connection between the charging module and the electric vehicle is successful.
  • the charging module will charge the electric vehicle.
  • data can be exchanged between the control guide module and the electric vehicle.
  • the charging module may inform the electric vehicle of the maximum charging power of the charging module by controlling the guiding module.
  • the electric vehicle may inform the charging pile of the type of the battery that needs to be charged on the electric vehicle through the control guide module.
  • other data may also be exchanged between the charging module and the electric vehicle through the control and guidance module, which is not specifically limited here.
  • the photovoltaic module 106 is a solar power generation device commonly used in households.
  • the photovoltaic module 106 converts solar energy into electrical energy, and inputs the first power to the charging module 10 through the photovoltaic interface 105 .
  • the charging module 10 After receiving the first power, the charging module 10 outputs DC power to the electric vehicle through the DC charging module 101, thus realizing the charging of the electric vehicle.
  • the present application provides a charging module and a charging system, and the charging system includes a charging module.
  • the charging module includes a DC charging module, a functional interface, an inverter and a control and guide module, and the functional interface includes a photovoltaic interface.
  • the DC charging module is used for receiving the first power derived from the photovoltaic module to charge the electric vehicle. In this way, after the charging module receives the electric energy converted from solar energy through the photovoltaic interface, it does not need to cooperate with the OBC, and uses the direct current to charge the electric vehicle through the direct current charging module.
  • the charging module provided by the present application does not need to be limited by the OBC charging power when charging the electric vehicle, which improves the actual power for charging the electric vehicle and improves the charging speed.
  • FIG. 3 is another schematic structural diagram of the charging module provided by the present application.
  • the charging module 20 provided in the embodiment of the present application includes a DC charging module 201 , a functional interface 202 , an inverter 203 and a control guide module 204 , wherein the functional Interface 202 includes photovoltaic interface 205
  • the first end of the inverter 203 is electrically connected to the photovoltaic module 206 , the DC charging module 201 and the energy storage module 207 .
  • the inverter 203 is used for confirming that the charging power of the DC charging module 201 receiving the first power does not reach the target power, and then controlling the energy storage module 207 to output the second power.
  • the DC charging module 201 is used for receiving the first power and the second power to charge the electric vehicle.
  • the photovoltaic module 206 is a solar power generation device commonly used in households.
  • the photovoltaic module 206 converts solar energy into electrical energy, and inputs the first power to the charging module 20 through the photovoltaic interface 205 .
  • the charging module 20 After receiving the first power, the charging module 20 outputs the DC power to the electric vehicle through the DC charging module 201 to charge the electric vehicle.
  • the inverter 203 confirms that the power of the DC charging module 201 for charging the electric vehicle is less than the target power
  • the inverter 203 controls the energy storage module 207 to output the second power to the DC charging module 201 in the charging module 20, and the DC charging module Group 201 receives the first power and the second power to charge the electric vehicle.
  • the charging module uses the electric energy converted from solar energy and the electric energy stored in the energy storage module to charge the electric vehicle, which improves the efficiency of the charging module for charging the electric vehicle under the premise of environmental protection, and saves the charging time of the electric vehicle.
  • FIG. 4 is another schematic structural diagram of the charging module provided by the present application.
  • the charging module 30 is electrically connected to the photovoltaic module 306 and the energy storage module 307 , and the charging module 30 includes a DC charging module 301 , a functional interface 302 , an inverter 303 and The control guide module 304, optionally, the functional interface 302 includes a home grid interface 308 in addition to the photovoltaic interface 305.
  • the second end of the inverter 303 is electrically connected to the home grid through the home grid interface 308 .
  • the inverter 303 is used for confirming that the charging power of the DC charging module 301 receiving the first power and the second power does not reach the target power, and then controlling the inverter 303 to derive the third power;
  • the DC charging module 301 is used for receiving the first power, the second power and the third power to charge the electric vehicle.
  • the photovoltaic module 306 is a solar power generation device commonly used in households.
  • the photovoltaic module 306 converts solar energy into electrical energy, and inputs the first power to the charging module 30 through the photovoltaic interface 305 .
  • the energy storage module 307 outputs the second power to the DC charging module 301 in the charging module 30, and the DC charging module 301 receives the first power and the second power to charge the electric vehicle. If the inverter 303 confirms that the charging power of the DC charging module 301 receiving the first power and the second power does not reach the target power, the inverter 303 is controlled to receive the power of the home grid through the home grid interface 308 and then derive the third power.
  • the DC charging module 301 charges the electric vehicle after receiving the first power, the second power and the third power.
  • the charging module uses the electric energy converted from solar energy in the photovoltaic module, the electric energy stored in the energy storage module and the electric energy provided in the home grid to charge the electric vehicle, which maximizes the efficiency of the charging module for charging the electric vehicle and saves the charging time of the electric vehicle. .
  • Scenario 1 The charging module uses the green charging mode to charge the electric vehicle.
  • the charging module uses the green mode to charge the electric vehicle, the charging module only uses the electric energy provided by the photovoltaic module to charge the electric vehicle.
  • FIG. 5 is a schematic diagram of an embodiment of the charging module provided by the present application for charging an electric vehicle.
  • the inverter After the charging module starts charging the electric vehicle (that is, after the DC charging module receives the first power to charge the electric vehicle), when the inverter confirms that the power charged by the charging module to the electric vehicle is less than the target power, the inverter will The inverter confirms whether the energy storage module included in the photovoltaic module is discharged (ie, the inverter confirms whether the energy storage module outputs the second power). If the inverter confirms that the energy storage module is discharged, the inverter controls the energy storage module to increase the discharge power (that is, the inverter controls the energy storage module to increase the output second power), so that the DC charging module receives the first power and the second power. The power to charge the electric vehicle after the second power is higher than the target power.
  • the inverter confirms whether the energy storage module is charged; if the inverter confirms that the energy storage module is in the charging state, the inverter The energy storage module is controlled to reduce the charging power so as to increase the first power output by the photovoltaic module.
  • the inverter controls the energy storage module to discharge (that is, the energy storage module outputs the second power), so that the DC charging module receives the first power and the second power and then charges the electric vehicle with a higher power than target power.
  • the inverter After the charging module starts charging the electric vehicle, when the inverter confirms that the power charged by the charging module to the electric vehicle is greater than the target power, the inverter confirms whether the energy storage module is discharged. If the inverter confirms that the energy storage module is discharged, the inverter controls the energy storage module to reduce the discharge power in order to save electric energy. If the inverter confirms that the energy storage module is not discharged, the inverter confirms whether the energy storage module is charged. If the inverter confirms that the energy storage module is in a charged state, the inverter controls the energy storage module to increase the charging power to save energy. electrical energy.
  • the inverter can control the photovoltaic module to charge the electric vehicle with the electric energy converted from the solar energy by monitoring the information of the grid-connected point meter, and then supply power to the household load. If there is remaining energy, the inverter controls the photovoltaic module to charge the energy storage module and stores the excess energy. When the radiation is insufficient during the day or there is no solar radiation at night, the inverter controls the energy storage module to discharge to charge the electric vehicle. When the electric vehicle is fully charged, the energy storage module can be discharged to power household loads.
  • Scenario 2 The charging module uses the fast charging mode to charge the electric vehicle.
  • the charging module may use the electric energy provided by the photovoltaic module to charge the electric vehicle, or the charging module may use the electric energy provided by the photovoltaic module and the energy storage module to charge the electric vehicle.
  • Electric vehicle charging alternatively, the charging module can charge the electric vehicle with the electrical energy provided by the photovoltaic module, the energy storage module and the home grid.
  • the inverter sets the output power of the photovoltaic module to the maximum value, the inverter sets the energy storage module and the inverter to the discharging mode, and the storage The discharge power of the energy module and the inverter is set to zero. If the inverter confirms that the power charged by the charging module to the electric vehicle is less than the target power, the inverter increases the power discharged by the energy storage module.
  • the inverter controls the power of the home grid to output electrical energy to the inverter to increase, the power discharged from the inverter to the charging module increases, and again Increase the discharge power of the energy storage module until the inverter confirms that the charging power of the DC charging module is greater than the target power.
  • FIG. 6 is a schematic diagram of another embodiment of the charging module provided by the present application for charging an electric vehicle.
  • the inverter when the charging module uses the fast charging mode to start charging the electric vehicle, the inverter sets the charging power of the solar charging in the photovoltaic module to the maximum value, the energy storage module and the inverter are set to the discharging mode, and discharge Power is zero. If the inverter confirms that the power charged by the charging module to the electric vehicle is less than the target power, it increases the power discharged by the energy storage module to the charging module. After increasing the discharge power of the energy storage module, the inverter can confirm again whether the power charged by the charging module to the electric vehicle is less than the target power, and if it is less than the target power, increase the power discharged by the inverter to the charging module.
  • the application provides a charging module, the charging module includes a DC charging module and a functional interface, the functional interface includes a photovoltaic interface, and the DC charging module is electrically connected to the photovoltaic module through the photovoltaic interface.
  • the DC charging module is used for receiving the first power derived from the photovoltaic module to charge the electric vehicle. In this way, after the charging module receives the electric energy converted from solar energy through the photovoltaic interface, it does not need to cooperate with the OBC, and uses the direct current to charge the electric vehicle through the direct current charging module.
  • the charging module provided by the present application does not need to be limited by the OBC charging power when charging the electric vehicle, which improves the actual power for charging the electric vehicle and improves the charging speed.
  • FIG. 7 is a topology diagram of the charging system provided by the present application.
  • the charging system includes a photovoltaic module 401 and a charging module 402 , the photovoltaic module 401 includes a photovoltaic module 403 and a DC boost module 404 , and the charging module 402 includes a DC charging module 405 and an inverter 406 and control the guide module 407;
  • the first end of the DC boosting module 404 is electrically connected to the photovoltaic module 403, and the second end of the DC boosting module 404 is electrically connected to the DC charging module 405 and the first end of the inverter 406;
  • the first end of the inverter 406 is electrically connected to the DC charging module 405;
  • the control guide module 407 is electrically connected with the DC charging module
  • the DC charging module 405 is used for receiving the first power derived from the DC boosting module 404 to charge the electric vehicle.
  • the photovoltaic module 401 is a solar power generation device commonly used in households.
  • the photovoltaic module 403 converts solar energy into electrical energy, and outputs the electrical energy to the DC boosting module 404 .
  • the DC boost module 404 receives the electrical energy input from one or more photovoltaic modules 403, the DC boost module 404 boosts the received electrical energy, and imports the boosted electrical energy into the DC charging module 405 (ie, the photovoltaic module). Input the first power to the DC charging module 405).
  • the DC charging module 405 receives the first power to charge the electric vehicle.
  • FIG. 8 is a schematic diagram of an embodiment of a charging system provided by the present application.
  • the DC boost module can be one input, that is, a DC boost module is connected to a photovoltaic module, so that a DC boost module can receive a photovoltaic module Group input energy.
  • the DC boost module can be multi-input, that is, one DC boost module is connected to multiple photovoltaic modules, so that one DC boost module can receive electrical energy input by multiple photovoltaic modules.
  • FIG. 7 is described by taking one input as an example.
  • the DC boosting module may be one input or multiple inputs, which is not specifically limited here.
  • FIG. 9 is another topology diagram of the charging system provided by the present application.
  • the charging system includes a photovoltaic module 501 and a charging module 502 .
  • the photovoltaic module 501 includes a photovoltaic module 503 and a DC boost module 504, and the charging module 502 includes a DC charging module 505, an inverter 506, and a control and guide module 507.
  • the charging system may also include an energy storage Module 508.
  • the first end of the inverter 506 is electrically connected to the second end of the DC boosting module 504 , the energy storage module 508 and the DC charging module 505 .
  • the energy storage module 508 is electrically connected to the second end of the DC boosting module 504 , the first end of the inverter 506 and the first end of the DC charging module 505 .
  • the inverter 506 is used for confirming that the charging power of the DC charging module 505 receiving the first power does not reach the target power, and then controlling the energy storage module 508 to output the second power.
  • the DC charging module is used for receiving the first power and the second power to charge the electric vehicle.
  • the photovoltaic module 503 converts solar energy into electrical energy, and outputs electrical energy to the DC boosting module 504 .
  • the DC boost module 504 receives the electrical energy input from one or more photovoltaic modules 503, the DC boost module 504 boosts the received electrical energy, and imports the boosted electrical energy into the DC charging module 505 (ie, the photovoltaic module). Input the first power to the DC charging module 505).
  • the DC charging module 505 receives the first power to charge the electric vehicle.
  • the inverter 506 determines that the power of the DC charging module 505 for charging the electric vehicle is less than the target power
  • the inverter 506 controls the energy storage module 507 to output the second power to the DC charging module 505, and the DC charging module 505 receives the first power The power and the second power charge the electric vehicle.
  • the charging system uses the electric energy converted from the solar energy in the photovoltaic module 501 and the electric energy stored in the energy storage module 508 to charge the electric vehicle, which improves the efficiency of the charging module 502 for charging the electric vehicle under the premise of environmental protection, and saves the charging time of the electric vehicle.
  • the input mode of the DC boosting module 504 is similar to the input mode of the DC boosting module shown in the embodiment shown in FIG. 8 , and details are not described here.
  • FIG. 10 is another topology diagram of the charging system provided by the present application.
  • the charging system includes a photovoltaic module 601 , a charging module 602 and an energy storage module 608 .
  • the photovoltaic module 601 includes a photovoltaic module 603 and a DC boosting module 604
  • the charging module 602 includes a DC charging module 605 , an inverter 606 and a control and guide module 607 .
  • the second end of the inverter 606 is electrically connected to the home grid.
  • the inverter 606 is used to confirm that the charging power of the DC charging module 605 that receives the first power and the second power does not reach the target power, and then controls the inverter 606 to derive the third power;
  • the DC charging module 605 is used for receiving the first power, the second power and the third power to charge the electric vehicle.
  • the photovoltaic module 603 converts solar energy into electrical energy, and outputs the electrical energy to the DC boosting module 604 .
  • the DC boost module 604 receives the electrical energy input from one or more photovoltaic modules 603, and the DC boost module 604 regulates the voltage of the received electrical energy, and imports the regulated electrical energy into the DC charging module 605 (ie, the photovoltaic module). Input the first power to the DC charging module 605).
  • the energy storage module 607 outputs the second power to the DC charging module 605, and the DC charging module 605 receives the first power and the second power to charge the electric vehicle.
  • the inverter 606 If the inverter 606 confirms that the power charged by the DC charging module 605 for the electric vehicle does not reach the target power, the inverter 606 is controlled to receive the power of the home grid and then derive the third power.
  • the DC charging module 605 charges the electric vehicle after receiving the first power, the second power and the third power.
  • the charging system uses the electric energy converted from solar energy in the photovoltaic module 601, the electric energy stored in the energy storage module 608 and the electric energy provided in the home grid to charge the electric vehicle, which maximizes the efficiency of the charging module 602 for charging the electric vehicle and saves the electric vehicle. charging time.
  • the input mode of the DC boosting module 604 is similar to the input mode of the DC boosting module shown in the embodiment shown in FIG. 8 , and details are not repeated here.
  • the charging system provided in the embodiments shown in the above-mentioned FIG. 9 and FIG. 10 also has different implementation scenarios, and the specific implementation is similar to the implementation shown in the above-mentioned FIG. 5 and FIG. 6 . No further elaboration here.
  • the photovoltaic module may further include an optimizer, and the first end of the optimizer is electrically connected to the photovoltaic module , the second end of the optimizer is electrically connected with the first end of the DC boosting module.
  • the optimizer can monitor and optimize the power of each photovoltaic module.
  • a photovoltaic module in a photovoltaic array including multiple photovoltaic modules has a mismatch problem, it can prevent the mismatch of a certain photovoltaic module As a result, the output power of the photovoltaic module is reduced.
  • the charging module may further include an electric meter, the first end of the electric meter is electrically connected to the second end of the inverter, and the first end of the electric meter is electrically connected to the second end of the inverter.
  • the two ends are electrically connected to the home grid.
  • the inverter can know the amount of electricity output by the home grid when charging the electric vehicle through the electricity meter, so that the charging system can control the output power of the inverter more reasonably and control the charging cost reasonably.
  • a direct current power carrier (direct current power) may be used between the inverter, the energy storage module and the DC charging module.
  • line comunication, DC PLC) communication can be used between the inverter, the energy storage module and the DC charging module.
  • RS485 communication can be used between the inverter, the energy storage module and the DC charging module.
  • a controller area network (CAN) can be used for communication between the inverter, the energy storage module and the DC charging module. Other methods may be used to communicate between them, which is not limited here.
  • the present application provides a charging system.
  • the charging module included in the charging system includes a DC charging module, and the DC charging module is used to receive the first power derived from the photovoltaic module to charge the electric vehicle.
  • the charging module receives the electric energy converted from solar energy through the photovoltaic interface, it does not need to cooperate with the OBC, and uses the direct current to charge the electric vehicle through the direct current charging module.
  • the charging system provided by the present application does not need to be limited by the OBC charging power when charging the electric vehicle, which increases the actual power for charging the electric vehicle and improves the charging speed.

Abstract

一种充电模块以及充电系统,充电系统中包括充电模块(10)。充电模块(10)包括直流充电模组(101)、功能接口(102)、逆变器(103)以及控制引导模组(104),功能接口(102)包括光伏接口(105)。直流充电模组(101),用于接收光伏模块(106)导出的第一功率向电动汽车充电。这样,充电模块(10)通过光伏接口(105)接收到太阳能转化的电能后,无需与OBC配合,通过直流充电模组(101)采用直流电为电动汽车充电。该的充电模块(10)在为电动汽车充电时无需受到OBC充电功率的限制,提升了为电动汽车充电的实际功率,提升了充电速度。

Description

一种充电模块以及充电系统 技术领域
本申请实施例涉及电路领域,尤其涉及一种充电模块以及充电系统。
背景技术
随着新能源技术的发展,越来越多的家庭安装光伏电站。利用自家屋顶上的空间架设光伏阵列,光伏阵列将太阳能转化成电能,这部分电能可以用于为家中负载供电,也可以用于为家中的电子设备充电。
随着电动汽车(electric vehicle,EV)的普及,越来越多的家庭购买电动汽车,拥有电动汽车的家庭经常在车库安装一个充电桩给电动汽车充电。当前电动汽车所采用的电池的电量较大,电池充满电所需要的时间较长,充电费用较高。为了节省充电时间以及充电费用,现有的充电桩可以利用太阳能转化的电能采用高功率的方式通过车载充电器(on-board charger,OBC)为电动汽车充电。
现有的充电桩可以利用太阳能转化的电能采用高功率的方式给电动汽车充电,提升了充电桩的输出功率。但由于充电桩需要与OBC配合为电动汽车充电,OBC的功率上限并没有提升,充电桩在充电时受到OBC功率上限的限制,因此在实际的充电过程中为电动汽车充电的实际功率较低,充电速度缓慢。
发明内容
本申请提供了一种充电模块以及充电系统,充电系统中包括充电模块,充电模块通过光伏接口接收到太阳能转化的电能后,无需与OBC配合,通过直流充电模组采用直流电为电动汽车充电。本申请提供的充电模块在为电动汽车充电时无需受到OBC充电功率的限制,提升了为电动汽车充电的实际功率,提升了充电速度。
本申请第一方面提供一种充电模块,包括直流充电模组、功能接口、逆变器以及控制引导模组,所述功能接口包括光伏接口;所述直流充电模组通过所述光伏接口与光伏模块电连接;所述逆变器的第一端与所述光伏模块以及所述直流充电模组电连接;所述控制引导模组与所述直流充电模组电连接;所述控制引导模组,用于确认所述充电模块与电动汽车连接成功;所述直流充电模组,用于接收所述光伏模块输出的第一功率向所述电动汽车充电。
本申请提供了一种充电模块,充电模块包括直流充电模组、功能接口、逆变器以及控制引导模组,功能接口包括光伏接口。直流充电模组用于接收光伏模块导出的第一功率向电动汽车充电。这样,直流充电模组通过光伏接口接收到太阳能转化的电能后,无需与OBC配合,直接采用直流电为电动汽车充电。本申请提供的充电模块在为电动汽车充电时无需受到OBC充电功率的限制,提升了为电动汽车充电的实际功率,提升了充电速度。
在第一方面的一种可能的实现方式中,所述逆变器的第一端与所述光伏模块、储能模块以及所述直流充电模组电连接;所述逆变器,用于确认接收所述第一功率的所述直流充 电模组的充电功率没有达到目标功率,则控制所述储能模块输出第二功率;所述直流充电模组,用于接收所述第一功率以及所述第二功率向电动汽车充电。
该种可能的实现方式中,光伏模块是家庭常用的太阳能发电设备。光伏模块把太阳能转化为电能,通过光伏接口向充电模块输入第一功率。充电模块接收到第一功率后,通过直流充电模组向电动汽车输出直流电进而实现为电动汽车充电。若逆变器确认直流充电模组为电动汽车充电的功率小于目标功率时,逆变器控制储能模块向充电模块中的直流充电模组输出第二功率,直流充电模组接收第一功率以及第二功率向电动汽车充电。充电模块采用光伏模块中太阳能转化的电能以及储能模块中存储的电能为电动汽车充电,在环保的前提下提升了充电模块为电动汽车充电的效率,节省了电动汽车充电的时间。
在第一方面的一种可能的实现方式中,所述功能接口还包括家庭电网接口;所述逆变器的第二端通过所述家庭电网接口与家庭电网电连接;所述逆变器,用于确认接收所述第一功率以及所述第二功率的所述直流充电模组的充电功率没有达到目标功率,则控制所述逆变器导出第三功率;所述直流充电模组,用于接收所述第一功率、所述第二功率以及所述第三功率向电动汽车充电。
该种可能的实现方式中,光伏模块是家庭常用的太阳能发电设备。光伏模块把太阳能转化为电能,通过光伏接口向充电模块输入第一功率。储能模块向充电模块中的直流充电模组输出第二功率,直流充电模组接收第一功率以及第二功率向电动汽车充电。若逆变器确认接收第一功率以及第二功率的直流充电模组的充电功率没有达到目标功率,则控制逆变器通过家庭电网接口接收家庭电网的功率之后导出第三功率。直流充电模组接收第一功率、第二功率以及第三功率后向电动汽车充电。充电模块采用光伏模块中太阳能转化的电能、储能模块中存储的电能以及家庭电网中提供的电能为电动汽车充电,最大化提升了充电模块为电动汽车充电的效率,节省了电动汽车充电的时间。
在第一方面的一种可能的实现方式中,所述功能接口还包括家庭电网接口;所述逆变器的第一端与所述光伏模块以及所述直流充电模组电连接,所述逆变器的第二端通过所述家庭电网接口与家庭电网电连接;所述逆变器,用于确认接收所述第一功率的所述直流充电模组的充电功率没有达到目标功率,则控制所述逆变器导出第三功率;所述直流充电模组,用于接收所述第一功率以及所述第三功率向电动汽车充电。
该种可能的实现方式中,直流充电模组接收第一功率以及第三功率后向电动汽车充电。充电模块采用光伏模块中太阳能转化的电能以及家庭电网中提供的电能为电动汽车充电,提升了充电模块为电动汽车充电的效率,节省了电动汽车充电的时间。
本申请第二方面提供一种充电系统,充电系统包括光伏模块以及充电模块,所述光伏模块包括光伏模组以及直流升压模组,所述充电模块包括直流充电模组、逆变器以及控制引导模组;所述直流升压模组的第一端与所述光伏模组电连接,所述直流升压模组的第二端与所述直流充电模组以及所述逆变器的第一端电连接;所述逆变器的第一端与所述直流充电模组电连接;所述控制引导模组与所述直流充电模组电连接;所述控制引导模组,用于确认所述充电模块与电动汽车连接成功;所述直流充电模组,用于接收所述直流升压模组导出的第一功率向所述电动汽车充电。
本申请中,充电系统中包括的充电模块包括直流充电模组、逆变器以及控制引导模组,直流充电模组用于接收光伏模块导出的第一功率向电动汽车充电。这样,充电模块通过光伏接口接收到太阳能转化的电能后,无需与OBC配合,通过直流充电模组采用直流电为电动汽车充电。本申请提供的充电系统在为电动汽车充电时无需受到OBC充电功率的限制,提升了为电动汽车充电的实际功率,提升了充电速度。
在第二方面的一种可能的实现方式中,所述充电系统还包括储能模块;所述逆变器的第一端与所述直流升压模组的第二端、所述储能模块以及所述直流充电模组电连接;所述储能模块与所述直流升压模组的第二端、所述逆变器的第一端以及所述直流充电模组的第一端电连接;所述逆变器,用于确认接收所述第一功率的所述直流充电模组的充电功率没有达到目标功率,则控制所述储能模块输出第二功率;所述直流充电模组,用于接收所述第一功率以及所述第二功率向电动汽车充电。
该种可能的实现方式中,光伏模组把太阳能转化为电能,向直流升压模组输出电能。直流升压模组接收一个或多个光伏模组输入的电能,直流升压模组对接收到的电能调压,将调压之后的电能导入至直流充电模组,即光伏模块向直流充电模组输入第一功率。直流充电模组接收第一功率向电动汽车充电。若逆变器确认直流充电模组为电动汽车充电的功率小于目标功率时,逆变器控制储能模块向直流充电模组输出第二功率,直流充电模组接收第一功率以及第二功率向电动汽车充电。充电系统采用光伏模块中太阳能转化的电能以及储能模块中存储的电能为电动汽车充电,在环保的前提下提升了充电模块为电动汽车充电的效率,节省了电动汽车充电的时间。
在第二方面的一种可能的实现方式中,所述逆变器的第二端与家庭电网电连接;所述逆变器,用于确认接收所述第一功率以及所述第二功率的所述直流充电模组的充电功率没有达到目标功率,则控制所述逆变器导出第三功率;所述直流充电模组,用于接收所述第一功率、所述第二功率以及所述第三功率向电动汽车充电。
该种可能的实现方式中,光伏模组把太阳能转化为电能,向直流升压模组输出电能。直流升压模组接收一个或多个光伏模组输入的电能,直流升压模组对接收到的电能调压,将调压之后的电能导入至直流充电模组,即光伏模块向直流充电模组输入第一功率。储能模块向直流充电模组输出第二功率,直流充电模组接收第一功率以及第二功率向电动汽车充电。若逆变器确认直流充电模组为电动汽车充电的功率没有到达目标功率,则控制逆变器接收家庭电网的功率之后导出第三功率。直流充电模组接收第一功率、第二功率以及第三功率后向电动汽车充电。充电系统采用光伏模块中太阳能转化的电能、储能模块中存储的电能以及家庭电网中提供的电能为电动汽车充电,最大化提升了充电模块为电动汽车充电的效率,节省了电动汽车充电的时间。
在第二方面的一种可能的实现方式中,所述逆变器的第一端与所述直流升压模组的第二端以及所述直流充电模组电连接,所述逆变器的第二端与家庭电网电连接;所述逆变器,用于确认接收所述第一功率的所述直流充电模组的充电功率没有达到目标功率,则控制所述逆变器导出第三功率;所述直流充电模组,用于接收所述第一功率以及所述第三功率向电动汽车充电。
该种可能的实现方式中,直流充电模组接收第一功率以及第三功率后向电动汽车充电。充电系统采用光伏模块中太阳能转化的电能以及家庭电网中提供的电能为电动汽车充电,提升了充电模块为电动汽车充电的效率,节省了电动汽车充电的时间。
在第二方面的一种可能的实现方式中,所述光伏模块还包括优化器;所述优化器的第一端与所述光伏模组电连接,所述优化器的第二端与所述直流升压模组的第一端电连接。
该种可能的实现方式中,优化器能够监控并优化每块光伏模组的电能,包含多块光伏模组的光伏阵列中的某一块光伏模组出现失配问题时,优化器可以使得其他光伏模组相互配合输出失配前原有的功率,因而能够防止由于某一块光伏模组失配而导致光伏模块输出功率降低。
在第二方面的一种可能的实现方式中,所述充电模块还包括电表;所述电表的第一端与所述逆变器的第二端电连接,所述电表的第二端与所述家庭电网电连接。
该种可能的实现方式中,逆变器能够通过电表得知为电动汽车充电时家庭电网所输出的电量,从而使充电系统更合理地控制逆变器的输出功率,合理控制充电成本。
在第二方面的一种可能的实现方式中,所述直流升压模组为一路输入或多路输入。
在第二方面的一种可能的实现方式中,所述逆变器、所述储能模块以及所述直流充电模组之间采用DC PLC通讯,或,所述逆变器、所述储能模块以及所述直流充电模组之间采用RS485通讯,或,所述逆变器、所述储能模块以及所述直流充电模组之间采用CAN通讯。
附图说明
图1为现有电动汽车的充电示意图;
图2为本申请提供的充电模块的一结构示意图;
图3为本申请提供的充电模块的另一结构示意图;
图4为本申请提供的充电模块的另一结构示意图;
图5为本申请提供的充电模块向电动汽车充电的一实施例示意图;
图6为本申请提供的充电模块向电动汽车充电的另一实施例示意图;
图7为本申请提供的充电系统的一拓扑图;
图8为本申请提供的充电系统的一实施例示意图;
图9为本申请提供的充电系统的另一拓扑图;
图10为本申请提供的充电系统的另一拓扑图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示 或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。由于对环境影响相对传统汽车较小,其前景被广泛看好。
图1为现有电动汽车的充电示意图。
如图1所示,当前电动汽车充电时,通常使用交流充电的方式为电动汽车充电。家庭配电盘与电网电连接,从家庭配电盘单独连接一路给交流充电桩,交流充电桩的交流充电头连接电动汽车的交流充电插座,这样,交流充电桩便可以通过电动汽车上与交流充电插座相配合的OBC为电动汽车充电。
上述充电方案中,交流充电桩采用电网的电能为电动汽车充电时,电动汽车充电所需要的电能多,充电费用高。
随着新能源技术的发展,越来越多的家庭安装光伏电站。利用自家屋顶上的空间架设光伏阵列,光伏阵列将太阳能转化成电能,这部分电能可以用于为家中负载供电,也可以用于为家中的电子设备充电。电动汽车普及后,越来越多的家庭购买电动汽车,拥有电动汽车的家庭经常在车库安装一个充电桩给电动汽车充电。本申请提供的充电模块便可以是一种家用充电桩。本申请提供的充电模块无需与OBC配合,可以利用太阳能转化的电能采用高功率的方式使用直流电直接为电动汽车充电。提升了为电动汽车充电的实际功率,提升了充电速度。
可选的,本申请提供的充电模块的形式可以是充电桩,充电模块的形式也可以是充电枪,充电模块还可以是其他的实现形式,具体此处不做限定。
下面将结合图2详细描述本申请所提供的充电模块的多种实现方式,图2为本申请提供的充电模块的一结构示意图。
请参阅图2,本申请中,充电模块10包括直流充电模组101、功能接口102、逆变器103以及控制引导模组104,功能接口102包括光伏接口105;
直流充电模101组通过光伏接口105与光伏模块106电连接;逆变器103的第一端与光伏模块106以及直流充电模组101电连接;控制引导模组104与直流充电模组101电连接;控制引导模组104,用于确认充电模块10与电动汽车连接成功;直流充电模组101,用于接收光伏模块106输出的第一功率向电动汽车充电。
本申请中,控制引导模组可以用于确认充电模块与电动汽车之间的连接是否成功,当控制引导模组确认充电模块与电动汽车连接成功后,充电模块才会向电动汽车充电。此外,控制引导模组与电动汽车之间还可以交互数据。例如,可选的,充电模块可以通过控制引导模组告知电动汽车该充电模块的最大充电功率。可选的,电动汽车可以通过控制引导模组告知充电桩该电动汽车上需要被充电的电池的类型。可选的,充电模块与电动汽车之间还可以通过控制引导模组交互其他数据,具体此处不做限定。
本申请中,光伏模块106是家庭常用的太阳能发电设备。光伏模块106把太阳能转化为电能,通过光伏接口105向充电模块10输入第一功率。充电模块10接收到第一功率后,通过直流充电模组101向电动汽车输出直流电,这样便实现了向电动汽车充电。
本申请提供了一种充电模块以及充电系统,充电系统中包括充电模块。充电模块包括直流充电模组、功能接口、逆变器以及控制引导模组,功能接口包括光伏接口。直流充电模组用于接收光伏模块导出的第一功率向电动汽车充电。这样,充电模块通过光伏接口接收到太阳能转化的电能后,无需与OBC配合,通过直流充电模组采用直流电为电动汽车充电。本申请提供的充电模块在为电动汽车充电时无需受到OBC充电功率的限制,提升了为电动汽车充电的实际功率,提升了充电速度。
图3是本申请提供的充电模块的另一结构示意图。
请参阅图3,本申请中,与图2相类似的,本申请实施例提供的充电模块20包括直流充电模组201、功能接口202、逆变器203以及控制引导模组204,其中,功能接口202包括光伏接口205
逆变器203的第一端与光伏模块206、直流充电模组201以及储能模块207电连接。
逆变器203,用于确认接收第一功率的直流充电模组201的充电功率没有达到目标功率,则控制储能模块207输出第二功率。
直流充电模组201,用于接收第一功率以及第二功率向电动汽车充电。
本申请中,光伏模块206是家庭常用的太阳能发电设备。光伏模块206把太阳能转化为电能,通过光伏接口205向充电模块20输入第一功率。充电模块20接收到第一功率后,通过直流充电模组201向电动汽车输出直流电进而实现为电动汽车充电。若逆变器203确认直流充电模组201为电动汽车充电的功率小于目标功率时,逆变器203控制储能模块207向充电模块20中的直流充电模组201输出第二功率,直流充电模组201接收第一功率以及第二功率向电动汽车充电。充电模块采用太阳能转化的电能以及储能模块中存储的电能为电动汽车充电,在环保的前提下提升了充电模块为电动汽车充电的效率,节省了电动汽车充电的时间。
图4是本申请提供的充电模块的另一结构示意图。
请参阅图4,本申请中,与图3相类似的,充电模块30与光伏模块306以及储能模块307电连接,充电模块30包括直流充电模组301、功能接口302、逆变器303以及控制引导模组304,可选的,功能接口302除了包括光伏接口305之外,还包括家庭电网接口308。
逆变器303的第二端通过家庭电网接口308与家庭电网电连接。
逆变器303,用于确认接收第一功率以及第二功率的直流充电模组301的充电功率没有达到目标功率,则控制逆变器303导出第三功率;
直流充电模组301,用于接收第一功率、第二功率以及第三功率向电动汽车充电。
本申请中,光伏模块306是家庭常用的太阳能发电设备。光伏模块306把太阳能转化为电能,通过光伏接口305向充电模块30输入第一功率。储能模块307向充电模块30中的直流充电模组301输出第二功率,直流充电模组301接收第一功率以及第二功率向电动汽车充电。若逆变器303确认接收第一功率以及第二功率的直流充电模组301的充电功率 没有达到目标功率,则控制逆变器303通过家庭电网接口308接收家庭电网的功率之后导出第三功率。直流充电模组301接收第一功率、第二功率以及第三功率后向电动汽车充电。充电模块采用光伏模块中太阳能转化的电能、储能模块中存储的电能以及家庭电网中提供的电能为电动汽车充电,最大化提升了充电模块为电动汽车充电的效率,节省了电动汽车充电的时间。
本申请实施例中,充电模块向电动汽车充电时具有多种不同的充电场景,多种不同的充电场景将在下面的实施例中具体说明。
场景1:充电模块采用绿色充电模式向电动汽车充电。
本申请实施例中,若充电模块采用绿色模式向电动汽车充电,则充电模块只采用光伏组件所提供的电能向电动汽车充电。
图5为本申请提供的充电模块向电动汽车充电的一实施例示意图。
如图5所示,充电模块向电动汽车开始充电之后(即直流充电模组接收第一功率向电动汽车充电之后),逆变器确认充电模块向电动汽车充电的功率小于目标功率时,逆变器确认光伏模块中包括的储能模块是否放电(即逆变器确认储能模块是否输出第二功率)。若逆变器确认储能模块放电后,逆变器控制储能模块增加放电功率(即逆变器控制储能模块增大输出的第二功率),以便直流充电模组接收第一功率以及第二功率之后向电动汽车充电的功率高于目标功率。若逆变器确认储能模块并未放电(即储能模块并未输出第二功率),逆变器确认储能模块是否充电,若逆变器确认储能模块处于充电状态,则逆变器控制储能模块减小充电功率,以便增大光伏模块输出的第一功率。当充电功率减小为0时,逆变器控制储能模块放电(即储能模块输出第二功率),以便直流充电模组接收第一功率以及第二功率之后向电动汽车充电的功率高于目标功率。
充电模块向电动汽车开始充电之后,逆变器确认充电模块向电动汽车充电的功率大于目标功率时,逆变器确认储能模块是否放电。若逆变器确认储能模块放电后,逆变器控制储能模块减小放电功率,以便节约电能。若逆变器确认储能模块并未放电,则逆变器确认储能模块是否充电,若逆变器确认储能模块处于充电状态,则逆变器控制储能模块增大充电功率,以便节约电能。
本申请中,当白天太阳辐照充足时,逆变器可以通过监测并网点电表信息,控制光伏模块采用太阳能转化后的电能给电动汽车充电,然后再为家庭负载供电。若还有剩余能量时,逆变器控制光伏模块给储能模块充电,把多余的能量存储起来。当白天辐照不足或晚上没有太阳辐照时,逆变器控制储能模块放电为电动汽车充电。当电动汽车充满电后,储能模块可以放电为家庭负载用电。
场景2:充电模块采用快速充电模式向电动汽车充电。
本申请中,若充电模块采用快速充电模式向电动汽车充电,则充电模块可以采用光伏模块所提供的电能向电动汽车充电,或者,充电模块可以采用光伏模块以及储能模组所提供的电能向电动汽车充电,或者,充电模块可以采用光伏模块、储能模组以及家用电网所提供的电能向电动汽车充电。
本申请中,充电模块采用快速充电模式向电动汽车开始充电之后,逆变器将光伏模块 的输出功率设置为最大值,逆变器将储能模块以及逆变器设置为放电模式,且将储能模块以及逆变器的放电功率设置为零。若逆变器确认充电模块向电动汽车充电的功率小于目标功率,则逆变器增加储能模块放电的功率。若逆变器再次确认充电模块向电动汽车充电的功率小于目标功率,则逆变器控制家庭电网向逆变器输出电能的功率增大,逆变器向充电模块放电的功率增大,且再次增加储能模块放电的功率,直至逆变器确认直流充电模块的充电功率大于目标功率为止。
图6为本申请提供的充电模块向电动汽车充电的另一实施例示意图。
如图6所示,充电模块采用快充模式向电动汽车开始充电时,逆变器将光伏模块中太阳能充电的充电功率设置为最大值,储能模块以及逆变器设置为放电模式,且放电功率为零。若逆变器确认充电模块向电动汽车充电的功率小于目标功率,则增加储能模块向充电模块放电的功率。增加储能模块的放电功率之后,逆变器可以再次确认充电模块向电动车充电的功率是否小于目标功率,若小于目标功率则增加逆变器向充电模块放电的功率。
本申请提供了一种充电模块,充电模块包括直流充电模组以及功能接口,功能接口包括光伏接口,直流充电模组通过光伏接口与光伏模块电连接。直流充电模组,用于接收光伏模块导出的第一功率向电动汽车充电。这样,充电模块通过光伏接口接收到太阳能转化的电能后,无需与OBC配合,通过直流充电模组采用直流电为电动汽车充电。本申请提供的充电模块在为电动汽车充电时无需受到OBC充电功率的限制,提升了为电动汽车充电的实际功率,提升了充电速度。
上述实施例说明了本申请提供的一种充电模块的不同的实施方式,下面将详细说明本申请提供的一种包括充电模块的充电系统。
图7是本申请提供的充电系统的一拓扑图。
请参阅图7,本申请中,充电系统包括光伏模块401以及充电模块402,光伏模块401包括光伏模组403以及直流升压模组404,充电模块402包括直流充电模组405、逆变器406以及控制引导模组407;
直流升压模组404的第一端与光伏模组403电连接,直流升压模组404的第二端与直流充电模组405以及逆变器406的第一端电连接;
逆变器406的第一端与直流充电模组405电连接;
控制引导模组407与直流充电模组电连接;
控制引导模组407,用于确认充电模块402与电动汽车连接成功;
直流充电模组405,用于接收直流升压模组404导出的第一功率向电动汽车充电。
本申请中,光伏模块401是家庭常用的太阳能发电设备。光伏模组403把太阳能转化为电能,向直流升压模组404输出电能。直流升压模组404接收一个或多个光伏模组403输入的电能,直流升压模组404对接收到的电能升压,将升压之后的电能导入至直流充电模组405(即光伏模块向直流充电模组405输入第一功率)。直流充电模组405接收第一功率向电动汽车充电。
图8是本申请提供的充电系统的一实施例示意图。
请参阅图8,本申请中,可选的,直流升压模组可以为一路输入,即一个直流升压模 组与一个光伏模组连接,这样,一个直流升压模组可以接收一个光伏模组输入的电能。可选的,直流升压模组可以为多路输入,即一个直流升压模组与多个光伏模组连接,这样,一个直流升压模组可以接收多个光伏模组输入的电能。上述图7所示实施例以一路输入为例进行说明,具体实施时直流升压模组可以为一路输入也可以为多路输入,具体此处不做限定。
图9是本申请提供的充电系统的另一拓扑图。
请参阅图9,本申请中,与图7所示实施例相类似的,充电系统包括光伏模块501以及充电模块502。其中,光伏模块501包括光伏模组503以及直流升压模组504,充电模块502包括直流充电模组505、逆变器506以及控制引导模组507,可选的,充电系统还可以包括储能模块508。
逆变器506的第一端与直流升压模组504的第二端、储能模块508以及直流充电模组505电连接。
储能模块508与直流升压模组504的第二端、逆变器506的第一端以及直流充电模组505的第一端电连接。
逆变器506,用于确认接收第一功率的直流充电模组505的充电功率没有达到目标功率,则控制储能模块508输出第二功率。
直流充电模组,用于接收第一功率以及第二功率向电动汽车充电。
本申请中,光伏模组503把太阳能转化为电能,向直流升压模组504输出电能。直流升压模组504接收一个或多个光伏模组503输入的电能,直流升压模组504对接收到的电能升压,将升压之后的电能导入至直流充电模组505(即光伏模块向直流充电模组505输入第一功率)。直流充电模组505接收第一功率向电动汽车充电。若逆变器506确认直流充电模组505为电动汽车充电的功率小于目标功率时,逆变器506控制储能模块507向直流充电模组505输出第二功率,直流充电模组505接收第一功率以及第二功率向电动汽车充电。充电系统采用光伏模块501中太阳能转化的电能以及储能模块508中存储的电能为电动汽车充电,在环保的前提下提升了充电模块502为电动汽车充电的效率,节省了电动汽车充电的时间。
本申请中,直流升压模组504的输入方式与图8所示实施例所展示的直流升压模组的输入方式相类似,具体此处不做赘述。
图10是本申请提供的充电系统的另一拓扑图。
请参阅图10,本申请中,与图9所示实施例相类似的,充电系统包括光伏模块601、充电模块602以及储能模块608。其中,光伏模块601包括光伏模组603以及直流升压模组604,充电模块602包括直流充电模组605、逆变器606以及控制引导模组607。
其中,逆变器606的第二端与家庭电网电连接。
逆变器606,用于确认接收第一功率以及第二功率的直流充电模组605的充电功率没有达到目标功率,则控制逆变器606导出第三功率;
直流充电模组605,用于接收第一功率、第二功率以及第三功率向电动汽车充电。
本申请中,光伏模组603把太阳能转化为电能,向直流升压模组604输出电能。直流 升压模组604接收一个或多个光伏模组603输入的电能,直流升压模组604对接收到的电能调压,将调压之后的电能导入至直流充电模组605(即光伏模块向直流充电模组605输入第一功率)。储能模块607向直流充电模组605输出第二功率,直流充电模组605接收第一功率以及第二功率向电动汽车充电。若逆变器606确认直流充电模组605为电动汽车充电的功率没有到达目标功率,则控制逆变器606接收家庭电网的功率之后导出第三功率。直流充电模组605接收第一功率、第二功率以及第三功率后向电动汽车充电。充电系统采用光伏模块601中太阳能转化的电能、储能模块608中存储的电能以及家庭电网中提供的电能为电动汽车充电,最大化提升了充电模块602为电动汽车充电的效率,节省了电动汽车充电的时间。
本申请中,直流升压模组604的输入方式与图8所示实施例所展示的直流升压模组的输入方式相类似,具体此处不做赘述。
本申请中,基于上述图9以及图10所示的实施例中所提供的充电系统也具有不同的实施场景,具体的实施方式与上述图5、图6所示的实施方式相类似,具体此处不做赘述。
本申请中,基于上述图7、图9以及图10所示的实施例中所提供的充电系统,可选的,光伏模块还可以包括优化器,优化器的第一端与光伏模组电连接,优化器的第二端与直流升压模组的第一端电连接。
本申请中,优化器能够监控并优化每块光伏模组的电能,包含多块光伏模组的光伏阵列中的某一块光伏模组出现失配问题时,能够防止由于某一块光伏模组失配而导致光伏模块输出功率降低。
本申请中,基于上述图10所示的实施例中所提供的充电系统,可选的,充电模块还可以包括电表,电表的第一端与逆变器的第二端电连接,电表的第二端与家庭电网电连接。逆变器能够通过电表得知为电动汽车充电时家庭电网所输出的电量,从而使充电系统更合理地控制逆变器的输出功率,合理控制充电成本。
本申请中,基于上述图9以及图10所示的实施例中所提供的充电系统,可选的,逆变器、储能模块以及直流充电模组之间可以采用直流电力载波(direct current power line comunication,DC PLC)通讯。可选的,逆变器、储能模块以及直流充电模组之间可以采用RS485通讯。可选的,逆变器、储能模块以及直流充电模组之间可以采用控制器局域网络(controler area network,CAN)通讯,可选的,逆变器、储能模块以及直流充电模组之间可以采用其他方式通讯,具体此处不做限定。
本申请提供了一种充电系统,充电系统中包括的充电模块包括直流充电模组,直流充电模组用于接收光伏模块导出的第一功率向电动汽车充电。这样,充电模块通过光伏接口接收到太阳能转化的电能后,无需与OBC配合,通过直流充电模组采用直流电为电动汽车充电。本申请提供的充电系统在为电动汽车充电时无需受到OBC充电功率的限制,提升了为电动汽车充电的实际功率,提升了充电速度。
以上对本申请实施例所提供的充电模块以及充电系统进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。同时,对于本领域的一般技术人员,依据本申请的思想,在具 体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (12)

  1. 一种充电模块,其特征在于,包括直流充电模组、功能接口、逆变器以及控制引导模组,所述功能接口包括光伏接口;
    所述直流充电模组通过所述光伏接口与光伏模块电连接;
    所述逆变器的第一端与所述光伏模块以及所述直流充电模组电连接;
    所述控制引导模组与所述直流充电模组电连接;
    所述控制引导模组,用于确认所述充电模块与电动汽车连接成功;
    所述直流充电模组,用于接收所述光伏模块输出的第一功率向所述电动汽车充电。
  2. 根据权利要求1所述的充电模块,其特征在于,
    所述逆变器的第一端与所述光伏模块、储能模块以及所述直流充电模组电连接;
    所述逆变器,用于确认接收所述第一功率的所述直流充电模组的充电功率没有达到目标功率,则控制所述储能模块输出第二功率;
    所述直流充电模组,用于接收所述第一功率以及所述第二功率向所述电动汽车充电。
  3. 根据权利要求2所述的充电模块,所述功能接口还包括家庭电网接口;
    所述逆变器的第二端通过所述家庭电网接口与家庭电网电连接;
    所述逆变器,用于确认接收所述第一功率以及所述第二功率的所述直流充电模组的充电功率没有达到目标功率,则控制所述逆变器导出第三功率;
    所述直流充电模组,用于接收所述第一功率、所述第二功率以及所述第三功率向所述电动汽车充电。
  4. 根据权利要求1所述的充电模块,其特征在于,所述功能接口还包括家庭电网接口;
    所述逆变器的第一端与所述光伏模块以及所述直流充电模组电连接,所述逆变器的第二端通过所述家庭电网接口与家庭电网电连接;
    所述逆变器,用于确认接收所述第一功率的所述直流充电模组的充电功率没有达到目标功率,则控制所述逆变器导出第三功率;
    所述直流充电模组,用于接收所述第一功率以及所述第三功率向所述电动汽车充电。
  5. 一种充电系统,其特征在于,包括光伏模块以及充电模块,所述光伏模块包括光伏模组以及直流升压模组,所述充电模块包括直流充电模组、逆变器以及控制引导模组;
    所述直流升压模组的第一端与所述光伏模组电连接,所述直流升压模组的第二端与所述直流充电模组以及所述逆变器的第一端电连接;
    所述逆变器的第一端与所述直流充电模组电连接;
    所述控制引导模组与所述直流充电模组电连接;
    所述控制引导模组,用于确认所述充电模块与电动汽车连接成功;
    所述直流充电模组,用于接收所述直流升压模组导出的第一功率向所述电动汽车充电。
  6. 根据权利要求5所述的充电系统,其特征在于,所述充电系统还包括储能模块;
    所述逆变器的第一端与所述直流升压模组的第二端、所述储能模块以及所述直流充电模组电连接;
    所述储能模块与所述直流升压模组的第二端、所述逆变器的第一端以及所述直流充电 模组的第一端电连接;
    所述逆变器,用于确认接收所述第一功率的所述直流充电模组的充电功率没有达到目标功率,则控制所述储能模块输出第二功率;
    所述直流充电模组,用于接收所述第一功率以及所述第二功率向所述电动汽车充电。
  7. 根据权利要求6所述的充电系统,其特征在于,
    所述逆变器的第二端与家庭电网电连接;
    所述逆变器,用于确认接收所述第一功率以及所述第二功率的所述直流充电模组的充电功率没有达到目标功率,则控制所述逆变器导出第三功率;
    所述直流充电模组,用于接收所述第一功率、所述第二功率以及所述第三功率向所述电动汽车充电。
  8. 根据权利要求5所述的充电系统,其特征在于,
    所述逆变器的第一端与所述直流升压模组的第二端以及所述直流充电模组电连接,所述逆变器的第二端与家庭电网电连接;
    所述逆变器,用于确认接收所述第一功率的所述直流充电模组的充电功率没有达到目标功率,则控制所述逆变器导出第三功率;
    所述直流充电模组,用于接收所述第一功率以及所述第三功率向所述电动汽车充电。
  9. 根据权利要求5至8任一项所述的充电系统,其特征在于,所述光伏模块还包括优化器;
    所述优化器的第一端与所述光伏模组电连接,所述优化器的第二端与所述直流升压模组的第一端电连接。
  10. 根据权利要求5至9任一项所述的充电系统,其特征在于,所述充电模块还包括电表;
    所述电表的第一端与所述逆变器的第二端电连接,所述电表的第二端与所述家庭电网电连接。
  11. 根据权利要求5至10任一项所述的充电系统,其特征在于,所述直流升压模组为一路输入或多路输入。
  12. 根据权利要求5至11任一项所述的充电系统,其特征在于,所述逆变器、所述储能模块以及所述直流充电模组之间采用直流电力载波DC PLC通讯,或,所述逆变器、所述储能模块以及所述直流充电模组之间采用RS485通讯,或,所述逆变器、所述储能模块以及所述直流充电模组之间采用控制器局域网络CAN通讯。
PCT/CN2020/119596 2020-09-30 2020-09-30 一种充电模块以及充电系统 WO2022067737A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/119596 WO2022067737A1 (zh) 2020-09-30 2020-09-30 一种充电模块以及充电系统
EP20955761.0A EP4195450A4 (en) 2020-09-30 2020-09-30 CHARGING BLOCK AND CHARGING SYSTEM
CN202080101054.0A CN115968526B (zh) 2020-09-30 2020-09-30 一种充电模块以及充电系统
US18/168,529 US20230391218A1 (en) 2020-09-30 2023-02-13 Charging module and charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119596 WO2022067737A1 (zh) 2020-09-30 2020-09-30 一种充电模块以及充电系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/168,529 Continuation US20230391218A1 (en) 2020-09-30 2023-02-13 Charging module and charging system

Publications (1)

Publication Number Publication Date
WO2022067737A1 true WO2022067737A1 (zh) 2022-04-07

Family

ID=80951107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119596 WO2022067737A1 (zh) 2020-09-30 2020-09-30 一种充电模块以及充电系统

Country Status (4)

Country Link
US (1) US20230391218A1 (zh)
EP (1) EP4195450A4 (zh)
CN (1) CN115968526B (zh)
WO (1) WO2022067737A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120310438A1 (en) * 2011-06-03 2012-12-06 Karl Kaiser High dynamic dc-voltage controller for photovoltaic inverter
CN106786769A (zh) * 2017-01-19 2017-05-31 江苏绿国新能源科技有限公司 家庭分布式光伏能量转换装置
CN207098629U (zh) * 2017-07-12 2018-03-13 北京昆兰新能源技术有限公司 一种光储充结合的移动式储能供电系统
CN108944554A (zh) * 2018-08-21 2018-12-07 深圳市华力特电气有限公司 一种光储一体式充电桩
CN111231728A (zh) * 2020-02-27 2020-06-05 国网山东省电力公司潍坊供电公司 光伏储能充放电一体化能量控制系统及方法
CN111541288A (zh) * 2020-05-08 2020-08-14 量一度(苏州)传感科技有限公司 新能源电动汽车车载便携式发电充电系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041819A (ja) * 2008-08-05 2010-02-18 Kansai Electric Power Co Inc:The 太陽光発電装置用の充電制御装置
US20120249065A1 (en) * 2011-04-01 2012-10-04 Michael Bissonette Multi-use energy management and conversion system including electric vehicle charging
JP5857218B2 (ja) * 2011-11-21 2016-02-10 パナソニックIpマネジメント株式会社 電力供給システム
WO2014068733A1 (ja) * 2012-10-31 2014-05-08 Jfeエンジニアリング株式会社 電気自動車用急速充電器
CN104348245B (zh) * 2014-10-10 2017-02-15 深圳市索阳新能源科技有限公司 一种高效太阳能混合动力车充电站
CN106712257A (zh) * 2017-02-10 2017-05-24 北京新科聚能光电技术有限公司 光伏储能全直流电动汽车充电站
JP6956384B2 (ja) * 2017-12-27 2021-11-02 パナソニックIpマネジメント株式会社 充電制御システム、電力供給システム、充電制御方法、プログラム
CN108281982A (zh) * 2018-02-24 2018-07-13 青海百能汇通新能源科技有限公司 电量传输电路以及电动汽车充电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120310438A1 (en) * 2011-06-03 2012-12-06 Karl Kaiser High dynamic dc-voltage controller for photovoltaic inverter
CN106786769A (zh) * 2017-01-19 2017-05-31 江苏绿国新能源科技有限公司 家庭分布式光伏能量转换装置
CN207098629U (zh) * 2017-07-12 2018-03-13 北京昆兰新能源技术有限公司 一种光储充结合的移动式储能供电系统
CN108944554A (zh) * 2018-08-21 2018-12-07 深圳市华力特电气有限公司 一种光储一体式充电桩
CN111231728A (zh) * 2020-02-27 2020-06-05 国网山东省电力公司潍坊供电公司 光伏储能充放电一体化能量控制系统及方法
CN111541288A (zh) * 2020-05-08 2020-08-14 量一度(苏州)传感科技有限公司 新能源电动汽车车载便携式发电充电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4195450A4 *

Also Published As

Publication number Publication date
CN115968526A (zh) 2023-04-14
CN115968526B (zh) 2024-01-09
EP4195450A1 (en) 2023-06-14
EP4195450A4 (en) 2023-10-04
US20230391218A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
CN106427640A (zh) 分布式能源与基于磁共振耦合技术的电动汽车无线供电一体化系统
CN109733249B (zh) 一种新能源汽车充电系统及其控制方法
CN103647329A (zh) 一种二级均衡充电系统及其应用
KR20140114330A (ko) 전기 배터리 충전 설비 및 방법
CN101917046A (zh) 一种充电机及其控制策略
CN112810470B (zh) 车载充电机v2v快充系统及其控制方法
CN106877472B (zh) 一种用于车载充电机的输出继电器控制电路及其控制方法
CN104348235A (zh) 光伏-蓄电池微电网为电动汽车无线充电系统
CN112793450A (zh) 一种可返向控电智能充电桩
CN101593985B (zh) 一种自发电的充电装置及充电方法
CN204391860U (zh) 电动汽车充电系统和电动汽车充电车
CN213619646U (zh) 一种房车电源管理系统
CN212304790U (zh) 带有太阳能电池板的车载微电网及其聚合而成的发电厂
CN113381460A (zh) 一种充电控制方法、装置及电动汽车
WO2022067737A1 (zh) 一种充电模块以及充电系统
Naik et al. Research on Electric Vehicle Charging System: Key Technologies, Communication Techniques, Control Strategies and Standards
CN102195307A (zh) 节能型快速充电装置以及方法
CN105811862A (zh) 一种储能电站、储能方法
CN113381459B (zh) 一种充电控制方法、装置及电动汽车
CN213973653U (zh) 一种低速电动车用充电装置
CN204236256U (zh) 新能源汽车的电源系统
CN204615493U (zh) 一种高效离网型太阳能逆变电源
CN209552966U (zh) 一种电动汽车储能系统
CN201616692U (zh) 节能型快速充电装置
CN109066956A (zh) 使用梯次利用电池储能及无线电能传输装置的风-光-储电动汽车移动充电装置及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020955761

Country of ref document: EP

Effective date: 20230307

NENP Non-entry into the national phase

Ref country code: DE