WO2022067596A1 - 基于标准球阵列的机床几何误差检测方法 - Google Patents

基于标准球阵列的机床几何误差检测方法 Download PDF

Info

Publication number
WO2022067596A1
WO2022067596A1 PCT/CN2020/119142 CN2020119142W WO2022067596A1 WO 2022067596 A1 WO2022067596 A1 WO 2022067596A1 CN 2020119142 W CN2020119142 W CN 2020119142W WO 2022067596 A1 WO2022067596 A1 WO 2022067596A1
Authority
WO
WIPO (PCT)
Prior art keywords
standard
coordinate system
machine tool
array
standard ball
Prior art date
Application number
PCT/CN2020/119142
Other languages
English (en)
French (fr)
Inventor
沈昕
李卫东
牟文平
赵中刚
汪裕杰
彭雨
孙超
高鑫
周力
李仁政
尚江
秦枭品
阮超
姜振喜
王鹏程
Original Assignee
成都飞机工业(集团)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都飞机工业(集团)有限责任公司 filed Critical 成都飞机工业(集团)有限责任公司
Priority to PCT/CN2020/119142 priority Critical patent/WO2022067596A1/zh
Publication of WO2022067596A1 publication Critical patent/WO2022067596A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools

Definitions

  • the invention relates to the field of machine tool error detection, in particular to a machine tool geometric error detection method based on a standard ball array.
  • the five-axis linkage machine tool has the advantages of better surface adaptability, fewer clamping times and number of fixtures, and higher material removal rate in machining parts with complex surfaces. Therefore, five-axis CNC machine tools are widely used in the processing of turbines, propeller blades and complex aircraft structural parts.
  • the modern manufacturing industry has higher and higher requirements on the machining accuracy of parts, so the accuracy requirements of CNC machine tools are also higher and higher.
  • the rigidity of the five-axis linkage CNC machine tool is reduced, and its geometric accuracy is also reduced.
  • the geometric error compensation of the machine tool is the most effective measure to improve the machining accuracy of the five-axis CNC machine tool, and the premise of the geometric error compensation of the machine tool is to obtain the current geometric error information of the machine tool.
  • the geometric error of the five-axis CNC machine tool includes the geometric error of the translation axis and the geometric error of the rotary swing axis.
  • the measurement method of the geometric error of the translation axis has been well solved, and there are standard measurement methods in the national standard and ISO standard.
  • scholars at home and abroad have also proposed 22-line, 14-line, 12-line, and 9-line identification methods based on laser interferometer for the geometric error of translation axis.
  • Traditional methods take a long time to detect and identify geometric errors of machine tools.
  • the present invention aims to provide a method for detecting geometric errors of a machine tool based on a standard ball array, so as to solve the problem that the detection and identification time of the geometric errors of a machine tool is long in the prior art.
  • a method for detecting geometric errors of machine tools based on standard ball arrays which compares and calculates a set of pre-determined standard ball array ball center positions and the standard ball array ball center positions detected on-machine by a CNC machine tool probe. Detect and identify any 1-15 errors of 6 standard ball array coordinate system deviation errors and 15 machine tool geometric errors;
  • 6 standard ball array coordinate system deviation errors include 3 translational deviations and 3 rotational deviations between the standard ball array coordinate system and the CNC machine tool coordinate system; 15 machine tool geometric errors include positioning errors of 3 motion axes, 3 motion errors
  • the verticality error of the axis, the pitch error of the 3 motion axes, the yaw error of the 3 motion axes, and the roll error of the 3 motion axes are as follows:
  • the origin of the coordinate system is located at the center of a sphere in the standard sphere array
  • the XY plane of the coordinate system is parallel to the plane where the standard sphere array is located
  • the X axis of the coordinate system and the rectangle or rectangular grid formed by the standard sphere array are established.
  • a measurement coordinate system with parallel or vertical sides; the position of the center of other standard sphere arrays is represented by the coordinate value of the center of the sphere in this measurement coordinate system;
  • the plane where the standard ball array is located is parallel to the XY plane of the machine tool, and the sides of the rectangle or rectangular grid formed by the standard ball array are parallel or perpendicular to the X axis of the machine tool;
  • the measurement coordinate system is the same as the measurement coordinate system when the position of the center of the standard ball array is determined in advance;
  • the center of the ball 3 is the XY plane to establish a coordinate system, and the direction perpendicular to the XY plane is the Z axis; wherein, the ball 3 is located on the Y axis;
  • the position of the center of each standard ball is measured as P′ 1 (x′ 1 y′ 1 z′ 1 ), P′ 2 (x′ 2 y′ 2 z′ 2 ), P′ 3 ( x' 3 y' 3 z' 3 ), ..., P' n-1 (x' n-1 y' n-1 z' n-1 ), P' n (x' n y' n z' n );
  • ⁇ x , ⁇ y , ⁇ z respectively represent the three translation deviations of the standard ball array coordinate system and the CNC machine tool coordinate system about the X, Y, and Z axes;
  • ⁇ x , ⁇ y , and ⁇ z represent the three rotational deviations about the X, Y, and Z axes of the standard spherical array coordinate system and the CNC machine tool coordinate system, respectively;
  • ⁇ xx , ⁇ yy , and ⁇ zz respectively represent the positioning errors of the three motion axes;
  • the advantage of using the standard ball array-based machine tool geometric error detection method in this solution is that the detection period is short, so that this method can not only be used for the detection of machine tool geometric errors in a constant temperature environment, but also for machine tool thermal errors during machining intervals. Tracking detection and identification.
  • the standard ball array is composed of n standard balls, and n ⁇ 4.
  • the standard ball array is composed of standard balls arranged on the same plane.
  • the standard ball array is composed of standard ball sub-arrays arranged on different planes parallel to each other.
  • Standard spheres that lie on the same plane are arranged according to rectangular vertices or rectangular grid intersections.
  • the sides of the rectangle or rectangular grid formed by the standard ball sub-arrays on different planes are all parallel or perpendicular to each other.
  • connection can also be a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, and it can be internal communication between two components.
  • connection can also be a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, and it can be internal communication between two components.
  • This embodiment proposes a method for detecting the geometric error of a machine tool based on a standard ball array. Calculate, use the formula to detect and identify the deviation error of the 6 standard ball array coordinate system and any 1-15 errors of the 15 machine tool geometric errors;
  • 6 standard ball array coordinate system deviation errors include 3 translational deviations and 3 rotational deviations between the standard ball array coordinate system and the CNC machine tool coordinate system; 15 machine tool geometric errors include positioning errors of 3 motion axes, 3 motion errors
  • the verticality error of the axis, the pitch error of the 3 motion axes, the yaw error of the 3 motion axes, and the roll error of the 3 motion axes are as follows:
  • the origin of the coordinate system is located at the center of a sphere in the standard sphere array
  • the XY plane of the coordinate system is parallel to the plane where the standard sphere array is located
  • the X axis of the coordinate system and the rectangle or rectangular grid formed by the standard sphere array are established.
  • a measurement coordinate system with parallel or vertical sides; the position of the center of other standard sphere arrays is represented by the coordinate value of the center of the sphere in this measurement coordinate system;
  • the plane where the standard ball array is located is parallel to the XY plane of the machine tool, and the sides of the rectangle or rectangular grid formed by the standard ball array are parallel or perpendicular to the X axis of the machine tool;
  • the measurement coordinate system is the same as the measurement coordinate system when the position of the center of the standard ball array is determined in advance;
  • the center of the ball 3 is the XY plane to establish a coordinate system, and the direction perpendicular to the XY plane is the Z axis; wherein, the ball 3 is located on the Y axis;
  • the center positions of each standard ball are measured as P′ 1 (x′ 1 y′ 1 z′ 1 ), P′ 2 (x′ 2 y′ 2 z′ 2 ), P′ 3 ( x' 3 y' 3 z' 3 ), ..., P' n-1 (x' n-1 y' n-1 z' n-1 ), P' n (x' n y' n z' n );
  • ⁇ x , ⁇ y , ⁇ z respectively represent the three translation deviations of the standard ball array coordinate system and the CNC machine tool coordinate system about the X, Y, and Z axes;
  • ⁇ x , ⁇ y , and ⁇ z represent the three rotational deviations about the X, Y, and Z axes of the standard spherical array coordinate system and the CNC machine tool coordinate system, respectively;
  • ⁇ xx , ⁇ yy , and ⁇ zz respectively represent the positioning errors of the three motion axes;
  • the advantage of using the standard ball array-based machine tool geometric error detection method in this solution is that the detection period is short, so that this method can not only be used for the detection of machine tool geometric errors in a constant temperature environment, but also for machine tool thermal errors during machining intervals. Tracking detection and identification.
  • the standard sphere array is composed of n standard spheres and n ⁇ 4.
  • the standard sphere array is composed of standard spheres arranged on the same plane, and may also be composed of standard sphere sub-arrays arranged on different planes that are parallel to each other.
  • the standard spheres located on the same plane are arranged according to rectangular vertices or intersections of rectangular grids.
  • the sides of the rectangle or rectangular grid formed by the standard ball sub-arrays on different planes are all parallel or perpendicular to each other.

Abstract

一种基于标准球阵列的机床几何误差检测方法,将一组经过预先测定的标准球阵列球心位置与经数控机床测头在机检测出的标准球阵列球心位置进行比较与计算,利用运动学齐次变换和最小二乘法公式对6项标准球阵列坐标系偏离误差以及15项机床几何误差中的任意1-15项误差进行检测与辨识;步骤如下:先建立坐标系原点位于标准球子阵列中某一球球心、坐标系XY平面与该标准球子阵列所在平面平行、坐标系X轴与该标准球子阵列所构成的矩形或矩形网格的边平行或垂直的测量坐标系;其他标准球阵列球心位置由其球心在该测量坐标系中的坐标值表示。其解决了机床几何误差检测辨识时间长的问题,检测周期短。

Description

基于标准球阵列的机床几何误差检测方法 技术领域
本发明涉及机床误差检测领域,具体而言,涉及基于标准球阵列的机床几何误差检测方法。
背景技术
由于五轴联动机床在加工具有复杂曲面的零件中具有更好的曲面适应性、更少的装夹次数和夹具数量、更高的材料切除率等优点。因此五轴联动数控机床被广泛用于涡轮、螺旋桨叶片和复杂飞机结构件的加工等。
现代制造业对零件的加工精度的要求越来越高,从而对数控机床的精度要求也越来越高。由于五轴联动数控机床增加了两个回转摆动轴,和三轴联动机床相比,其刚度有所降低,同时其几何精度也有所降低。机床几何误差补偿是当前提高五轴联动数控机床加工精度的最有效措施,而机床几何误差补偿的前提是必须获得机床当前的几何误差信息。
五轴联动数控机床的几何误差包括平动轴几何误差及回转摆动轴几何误差,平动轴几何误差测量方法已经得到很好的解决,国标及ISO标准中均有标准的测量方法。此外,国内外学者还针对平动轴几何误差提出了基于激光干涉仪的二十二线、十四线、十二线、九线等辨识方法。传统方法对机床几何误差进行检测和辨识时间长。
发明内容
本发明旨在提供一种基于标准球阵列的机床几何误差检测方法,以解决现有技术中机床几何误差检测辨识时间长的问题。
本发明的实施例是这样实现的:
一种基于标准球阵列的机床几何误差检测方法,将一组经过预先测定的标准球阵列球心位置与经数控机床测头在机检测出的标准球阵列球心位置进行比较与计算,利用公式对6项标准球阵列坐标系偏离误差以及15项机床几何误差中的任意1-15项误差进行检测与辨识;
其中,6项标准球阵列坐标系偏离误差包括标准球阵列坐标系与数控机床坐标系的3项平移偏差及3项旋转偏差;15项机床几何误差包括3个运动轴的定位误差、3个运动轴的垂直度误差、3个运动轴的仰俯误差、3个运动轴的偏航误差和3个运动轴的滚转误差,步骤如下:
先建立坐标系原点位于标准球子阵列中某一球球心、坐标系XY平面与该标准球子阵列所在平面平行、坐标系X轴与该标准球子阵列所构成的矩形或矩形网格的边平行或垂直的测量坐标系;其他标准球阵列球心位置由其球心在该测量坐标系中的坐标值表示;
所述标准球阵列在机床上检测时,标准球子阵列所在平面与机床XY平面平行,且标准球子阵列所构成的矩形或矩形网格的边与机床X轴平行或垂直;在机床上对标准球阵列进行测量时,测量坐标系与预先测定标准球阵列球心位置时使用一致的测量坐标系;
在标准球阵列中以球1球心位置P 1(x 1 y 1 z 1)为原点,以球1球心与球2球心连线为X轴,以球1球心、球2球心以及球3球心为XY平面建立坐标系,以垂直于XY平面的方向为Z轴;其中,球3位于Y轴;
记空间标准球阵列中各标准球球心理论位置为P 1(x 1 y 1 z 1)、P 2(x 2 y 2 z 2)、P 3(x 3 y 3 z 3)、…、P n-1(x n-1 y n-1 z n-1)、P n(x n y n z n),其中x 1=y 1=z 1=y 2=z 2=z 3=0;
在机床上使用机床测头测得各标准球球心位置为P′ 1(x′ 1 y′ 1 z′ 1)、 P′ 2(x′ 2 y′ 2 z′ 2)、P′ 3(x′ 3 y′ 3 z′ 3)、……、P′ n-1(x′ n-1 y′ n-1 z′ n-1)、P′ n(x′ n y′ n z′ n);
当存在机床误差时,机床运动的实际位置p′ a
Figure PCTCN2020119142-appb-000001
令:
f=(x+δ x+zε y-yε z+xδ xx+yδ yx+zδ zx+zxε xy+zyε yy+zzε zy-yxε xz-yyε yz-yzε zz-x′) 2+(y+δ y-zε x+xε z+xδ xy+yδ yy+zδ zy-zxε xx-zyε yx-zzε zx+xxε xz+xyε yz+xzε zz-y′) 2+(z+δ z+yε x-xε y+xδ xz+yδ yz+zδ zz+yxε xx+yyε yx+yzε zx-xxε xy-xyε yy-xzε zy-z′) 2
Figure PCTCN2020119142-appb-000002
得:
Figure PCTCN2020119142-appb-000003
Figure PCTCN2020119142-appb-000004
Figure PCTCN2020119142-appb-000005
得:
Figure PCTCN2020119142-appb-000006
Figure PCTCN2020119142-appb-000007
Figure PCTCN2020119142-appb-000008
得:
Figure PCTCN2020119142-appb-000009
Figure PCTCN2020119142-appb-000010
Figure PCTCN2020119142-appb-000011
得:
Figure PCTCN2020119142-appb-000012
Figure PCTCN2020119142-appb-000013
公式中:
δ x、δ y、δ z分别表示标准球阵列坐标系与数控机床坐标系的关于X、Y、Z轴的3项平移偏差;
ε x、ε y、ε z分别表示标准球阵列坐标系与数控机床坐标系的关于X、Y、Z轴的3项旋转偏差;
15项机床几何误差中,δ xx、δ yy、δ zz分别表示3个运动轴的定位误差;δ xy=δ yx、δ yz=δ zy、δ zx=δ xz分别表示3个运动轴的垂直度误差;ε xx、ε xy、ε xzyx、ε yy、ε yzzx、ε zy、ε zz分别表示3个运动轴的仰俯误差、3个运动轴的偏航误差和3个运动轴的滚转误差;
解上述4组矩阵形式表示的方程组成的方程组,计算出标准球阵列坐标系与数控机床坐标系的3项平移偏差、3项旋转偏差以及15项机床几何误差。
采用本方案中的基于标准球阵列的机床几何误差检测方法的优势在于检测周期短,使得该方法不仅可以用于恒温环境下对机床几何误差的检测还可以用于在机床加工间歇对机床热误差进行跟踪检测与辨识。
在一种实施方式中:
所述的标准球阵列由n个标准球组成n≥4。
在一种实施方式中:
所述的标准球阵列由在同一平面上排列的标准球构成。
在一种实施方式中:
所述的标准球阵列由分别在相互平行的不同平面上排列的标准球子阵列构成。
在一种实施方式中:
位于同一平面的标准球按照矩形顶点或矩形网格交点排列。
在一种实施方式中:
所述的标准球阵列中不同平面上的标准球子阵列所构成的矩形或矩形网格的边均相互平行或垂直。
具体实施方式
在本发明的描述中,需要说明的是,若出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,本发明的描述中若出现术语“第一”、 “第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,本发明的描述中若出现“水平”、“竖直”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例
本实施例提出一种基于标准球阵列的机床几何误差检测方法,将一组经过预先测定的标准球阵列球心位置与经数控机床测头在机检测出的标准球阵列球心位置进行比较与计算,利用公式对6项标准球阵列坐标系偏离误差以及15项机床几何误差中的任意1-15项误差进行检测与辨识;
其中,6项标准球阵列坐标系偏离误差包括标准球阵列坐标系与数控机床坐标系的3项平移偏差及3项旋转偏差;15项机床几何误差包括3个运动轴的定位误差、3个运动轴的垂直度误差、3个运动轴的仰俯误差、3个运动轴的偏航误差和3个运动轴的滚转误差,步骤如下:
先建立坐标系原点位于标准球子阵列中某一球球心、坐标系XY平面与该标准球子阵列所在平面平行、坐标系X轴与该标准球子阵列所构成的矩形或矩形网格的边平行或垂直的测量坐标系;其他标准球阵列球心位置由其球心在该测量坐标系中的坐标值表示;
所述标准球阵列在机床上检测时,标准球子阵列所在平面与机床XY平面平行,且标准球子阵列所构成的矩形或矩形网格的边与机床X轴平行或垂直;在机床上对标准球阵列进行测量时,测量坐标系与预先测定标准球阵列球心位置时使用一致的测量坐标系;
在标准球阵列中以球1球心位置P 1(x 1 y 1 z 1)为原点,以球1球心与球2球心连线为X轴,以球1球心、球2球心以及球3球心为XY平面建立坐标系,以垂直于XY平面的方向为Z轴;其中,球3位于Y轴;
记空间标准球阵列中各标准球球心理论位置为P 1(x 1 y 1 z 1)、P 2(x 2 y 2 z 2)、P 3(x 3 y 3 z 3)、…、P n-1(x n-1 y n-1 z n-1)、P n(x n y n z n),其中x 1=y 1=z 1=y 2=z 2=z 3=0;
在机床上使用机床测头测得各标准球球心位置为P′ 1(x′ 1 y′ 1 z′ 1)、P′ 2(x′ 2 y′ 2 z′ 2)、P′ 3(x′ 3 y′ 3 z′ 3)、……、P′ n-1(x′ n-1 y′ n-1 z′ n-1)、P′ n(x′ n y′ n z′ n);
当存在机床误差时,机床运动的实际位置p′ a
Figure PCTCN2020119142-appb-000014
令:
f=(x+δ x+zε y-yε z+xδ xx+yδ yx+zδ zx+zxε xy+zyε yy+zzε zy-yxε xz-yyε yz-yzε zz-x′) 2+(y+δ y-zε x+xε z+xδ xy+yδ yy+zδ zy-zxε xx-zyε yx-zzε zx+xxε xz+xyε yz+xzε zz-y′) 2+(z+δ z+yε x-xε y+xδ xz+yδ yz+zδ zz+yxε xx+yyε yx+yzε zx-xxε xy-xyε yy-xzε zy-z′) 2
Figure PCTCN2020119142-appb-000015
得:
Figure PCTCN2020119142-appb-000016
Figure PCTCN2020119142-appb-000017
得:
Figure PCTCN2020119142-appb-000018
Figure PCTCN2020119142-appb-000019
得:
Figure PCTCN2020119142-appb-000020
Figure PCTCN2020119142-appb-000021
得:
Figure PCTCN2020119142-appb-000022
公式中:
δ x、δ y、δ z分别表示标准球阵列坐标系与数控机床坐标系的关于X、Y、Z轴的3项平移偏差;
ε x、ε y、ε z分别表示标准球阵列坐标系与数控机床坐标系的关于X、 Y、Z轴的3项旋转偏差;
15项机床几何误差中,δ xx、δ yy、δ zz分别表示3个运动轴的定位误差;δ xy=δ yx、δ yz=δ zy、δ zx=δ xz分别表示3个运动轴的垂直度误差;ε xx、ε xy、ε xzyx、ε yy、ε yzzx、ε zy、ε zz分别表示3个运动轴的仰俯误差、3个运动轴的偏航误差和3个运动轴的滚转误差;
解上述4组矩阵形式表示的方程组成的方程组,计算出标准球阵列坐标系与数控机床坐标系的3项平移偏差、3项旋转偏差以及15项机床几何误差。
采用本方案中的基于标准球阵列的机床几何误差检测方法的优势在于检测周期短,使得该方法不仅可以用于恒温环境下对机床几何误差的检测还可以用于在机床加工间歇对机床热误差进行跟踪检测与辨识。
本实施例中,所述的标准球阵列由n个标准球组成n≥4。可选地,所述的标准球阵列由在同一平面上排列的标准球构成,也可以由分别在相互平行的不同平面上排列的标准球子阵列构成。
本实施例中,位于同一平面的标准球按照矩形顶点或矩形网格交点排列。所述的标准球阵列中不同平面上的标准球子阵列所构成的矩形或矩形网格的边均相互平行或垂直。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种基于标准球阵列的机床几何误差检测方法,其特征在于:
    将一组经过预先测定的标准球阵列球心位置与经数控机床测头在机检测出的标准球阵列球心位置进行比较与计算,利用公式对6项标准球阵列坐标系偏离误差以及15项机床几何误差中的任意1-15项误差进行检测与辨识;
    其中,6项标准球阵列坐标系偏离误差包括标准球阵列坐标系与数控机床坐标系的3项平移偏差及3项旋转偏差;15项机床几何误差包括3个运动轴的定位误差、3个运动轴的垂直度误差、3个运动轴的仰俯误差、3个运动轴的偏航误差和3个运动轴的滚转误差,步骤如下:
    先建立坐标系原点位于标准球子阵列中某一球球心、坐标系XY平面与该标准球子阵列所在平面平行、坐标系X轴与该标准球子阵列所构成的矩形或矩形网格的边平行或垂直的测量坐标系;其他标准球阵列球心位置由其球心在该测量坐标系中的坐标值表示;
    所述标准球阵列在机床上检测时,标准球子阵列所在平面与机床XY平面平行,且标准球子阵列所构成的矩形或矩形网格的边与机床X轴平行或垂直;在机床上对标准球阵列进行测量时,测量坐标系与预先测定标准球阵列球心位置时使用一致的测量坐标系;
    在标准球阵列中以球1球心位置P 1(x 1 y 1 z 1)为原点,以球1球心与球2球心连线为X轴,以球1球心、球2球心以及球3球心为XY平面建立坐标系,以垂直于XY平面的方向为Z轴;其中,球3位于Y轴;
    记空间标准球阵列中各标准球球心理论位置为P 1(x 1 y 1 z 1)、P 2(x 2 y 2 z 2)、P 3(x 3 y 3 z 3)、…、P n-1(x n-1 y n-1 z n-1)、P n(x n y n z n),其中x 1=y 1=z 1=y 2=z 2=z 3=0;
    在机床上使用机床测头测得各标准球球心位置为P 1′(x′ 1 y′ 1 z′ 1)、P 2′(x′ 2 y′ 2 z′ 2)、P 3′(x′ 3 y′ 3 z′ 3)、……、P′ n-1(x′ n-1 y′ n-1 z′ n-1)、P n′(x′ n y′ n z′ n);
    当存在机床误差时,机床运动的实际位置p′ a
    Figure PCTCN2020119142-appb-100001
    令:
    f=(x+δ x+zε y-yε z+xδ xx+yδ yx+zδ zx+zxε xy+zyε yy+zzε zy-yxε xz-yyε yz-yzε zz-x′) 2+(y+δ y-zε x+xε z+xδ xy+yδ yy+zδ zy-zxε xx-zyε yx-zzε zx+xxε xz+xyε yz+xzε zz-y′) 2+(z+δ z+yε x-xε y+xδ xz+yδ yz+zδ zz+yxε xx+yyε yx+yzε zx-xxε xy-xyε yy-xzε zy-z′) 2
    Figure PCTCN2020119142-appb-100002
    得:
    Figure PCTCN2020119142-appb-100003
    Figure PCTCN2020119142-appb-100004
    得:
    Figure PCTCN2020119142-appb-100005
    Figure PCTCN2020119142-appb-100006
    得:
    Figure PCTCN2020119142-appb-100007
    Figure PCTCN2020119142-appb-100008
    Figure PCTCN2020119142-appb-100009
    得:
    Figure PCTCN2020119142-appb-100010
    Figure PCTCN2020119142-appb-100011
    公式中:
    δ x、δ y、δ z分别表示标准球阵列坐标系与数控机床坐标系的关于X、Y、Z轴的3项平移偏差;
    ε x、ε y、ε z分别表示标准球阵列坐标系与数控机床坐标系的关于X、Y、Z轴的3项旋转偏差;
    15项机床几何误差中,δ xx、δ yy、δ zz分别表示3个运动轴的定位误差;δ xy=δ yx、δ yz=δ zy、δ zx=δ xz分别表示3个运动轴的垂直度误差;ε xx、ε xy、ε xzyx、ε yy、ε yzzx、ε zy、ε zz分别表示3个运动轴的仰俯误差、3个运动轴的偏航误差和3个运动轴的滚转误差;
    解上述4组矩阵形式表示的方程组成的方程组,计算出标准球阵列坐标系与数控机床坐标系的3项平移偏差、3项旋转偏差以及15项机床几何误差。
  2. 根据权利要求1所述的基于标准球阵列的机床几何误差检测方法,其特征在于:
    所述的标准球阵列由n个标准球组成n≥4。
  3. 根据权利要求2所述的基于标准球阵列的机床几何误差检测方法,其特征在于:
    所述的标准球阵列由在同一平面上排列的标准球构成。
  4. 根据权利要求2所述的基于标准球阵列的机床几何误差检测方法, 其特征在于:
    所述的标准球阵列由分别在相互平行的不同平面上排列的标准球子阵列构成。
  5. 根据权利要求3或4所述的基于标准球阵列的机床几何误差检测方法,其特征在于:
    位于同一平面的标准球按照矩形顶点或矩形网格交点排列。
  6. 根据权利要求4所述的基于标准球阵列的机床几何误差检测方法,其特征在于:
    所述的标准球阵列中不同平面上的标准球子阵列所构成的矩形或矩形网格的边均相互平行或垂直。
PCT/CN2020/119142 2020-09-30 2020-09-30 基于标准球阵列的机床几何误差检测方法 WO2022067596A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119142 WO2022067596A1 (zh) 2020-09-30 2020-09-30 基于标准球阵列的机床几何误差检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119142 WO2022067596A1 (zh) 2020-09-30 2020-09-30 基于标准球阵列的机床几何误差检测方法

Publications (1)

Publication Number Publication Date
WO2022067596A1 true WO2022067596A1 (zh) 2022-04-07

Family

ID=80951015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119142 WO2022067596A1 (zh) 2020-09-30 2020-09-30 基于标准球阵列的机床几何误差检测方法

Country Status (1)

Country Link
WO (1) WO2022067596A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115338691A (zh) * 2022-06-17 2022-11-15 中航西安飞机工业集团股份有限公司 一种数控机床进给轴误差测量方法
CN115562151A (zh) * 2022-10-13 2023-01-03 四川普什宁江机床有限公司 基于数控机床加工导轨面的曲线控制方法
CN116086359A (zh) * 2023-04-07 2023-05-09 杭州键嘉医疗科技股份有限公司 一种手术器械追踪阵列的误差测量装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018436A1 (en) * 1995-11-14 1997-05-22 Lau Kam C On-machine ballbar system and method for using the same
JP2003121134A (ja) * 2001-10-16 2003-04-23 Canon Inc 運動精度の測定方法
CN102151866A (zh) * 2011-03-17 2011-08-17 西安交通大学 一种基于三球的加工中心多工位坐标统一方法
CN102554701A (zh) * 2012-03-07 2012-07-11 天津大学 机床分度误差补偿方法及装置
CN105382631A (zh) * 2015-12-15 2016-03-09 福建工程学院 一种五轴数控机床旋转轴误差的检测设备和方法
CN107273606A (zh) * 2017-06-13 2017-10-20 广州启煌科技有限公司 五轴机床在线测量倾斜轴孔的方法
CN108227622A (zh) * 2018-01-10 2018-06-29 福州大学 基于一维测头与标准球的机床几何误差测量方法及系统
CN110986792A (zh) * 2019-12-13 2020-04-10 合肥工业大学 一种一维球或锥窝阵列的高精度检测装置及检测方法
CN111708321A (zh) * 2020-06-08 2020-09-25 上海交通大学 数控机床刀轴方向动态误差检测装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018436A1 (en) * 1995-11-14 1997-05-22 Lau Kam C On-machine ballbar system and method for using the same
JP2003121134A (ja) * 2001-10-16 2003-04-23 Canon Inc 運動精度の測定方法
CN102151866A (zh) * 2011-03-17 2011-08-17 西安交通大学 一种基于三球的加工中心多工位坐标统一方法
CN102554701A (zh) * 2012-03-07 2012-07-11 天津大学 机床分度误差补偿方法及装置
CN105382631A (zh) * 2015-12-15 2016-03-09 福建工程学院 一种五轴数控机床旋转轴误差的检测设备和方法
CN107273606A (zh) * 2017-06-13 2017-10-20 广州启煌科技有限公司 五轴机床在线测量倾斜轴孔的方法
CN108227622A (zh) * 2018-01-10 2018-06-29 福州大学 基于一维测头与标准球的机床几何误差测量方法及系统
CN110986792A (zh) * 2019-12-13 2020-04-10 合肥工业大学 一种一维球或锥窝阵列的高精度检测装置及检测方法
CN111708321A (zh) * 2020-06-08 2020-09-25 上海交通大学 数控机床刀轴方向动态误差检测装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115338691A (zh) * 2022-06-17 2022-11-15 中航西安飞机工业集团股份有限公司 一种数控机床进给轴误差测量方法
CN115562151A (zh) * 2022-10-13 2023-01-03 四川普什宁江机床有限公司 基于数控机床加工导轨面的曲线控制方法
CN116086359A (zh) * 2023-04-07 2023-05-09 杭州键嘉医疗科技股份有限公司 一种手术器械追踪阵列的误差测量装置及方法
CN116086359B (zh) * 2023-04-07 2023-07-07 杭州键嘉医疗科技股份有限公司 一种手术器械追踪阵列的误差测量装置及方法

Similar Documents

Publication Publication Date Title
WO2022067596A1 (zh) 基于标准球阵列的机床几何误差检测方法
CN110500978B (zh) 点激光传感器的光束方向矢量和零点位置在线标定方法
CN108655827B (zh) 五轴数控机床空间误差辨识方法
US9212906B2 (en) Device for detecting axis coplanarity of orthogonal rotary shafts having built-in intersection and precision detecting method
WO2016101289A1 (zh) 一种五轴机床刀具姿态及刀尖点位置误差同步检测机构
Wang et al. The technical method of geometric error measurement for multi-axis NC machine tool by laser tracker
CN105136031A (zh) 一种五轴联动机床旋转轴的几何误差连续测量方法
CN111678472B (zh) 四轴坐标测量机回转台误差辨识方法
CN103499293B (zh) 一种数控机床的激光跟踪仪虚拟多站式测量方法
CN111912335B (zh) 一种适用于机器人钻铆系统的飞机表面基准孔识别方法
CN103389038A (zh) 激光跟踪仪定目标多站测量的数控机床几何精度检测方法
CN109238199B (zh) 一种机器人旋转轴运动学参数标定方法
CN111982019A (zh) 基于线结构光传感器的叶片截面轮廓高精度检测方法
CN105371793A (zh) 一种五轴机床旋转轴几何误差一次装卡测量方法
CN111664813A (zh) 一种自由面任意孔法矢测量装置、方法及补偿方法
CN110940296A (zh) 一种高超声速飞行器舵偏角测量方法
CN108413983A (zh) 一种sins/usbl一体化定位系统安装误差标定的机械方法
Gao et al. Reverse analysis on the geometric errors of ultra-precision machine
CN112325773A (zh) 一种激光位移传感器的光束方向矢量和原点位置标定方法
Peng et al. Development of an integrated laser sensors based measurement system for large-scale components automated assembly application
CN208720994U (zh) 一种机床五自由度误差测量装置
CN101788265A (zh) 发动机缸体结合面孔组快速测量全局统一标定方法
CN112388388B (zh) 基于标准球阵列的机床几何误差检测方法
Liang et al. A method to decouple the geometric errors for rotary axis in a five-axis CNC machine
CN111360585B (zh) 一种机器人铣削系统中刀具端实时位置误差的获取方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955621

Country of ref document: EP

Kind code of ref document: A1