WO2022067512A1 - 通信方法及通信设备 - Google Patents

通信方法及通信设备 Download PDF

Info

Publication number
WO2022067512A1
WO2022067512A1 PCT/CN2020/118858 CN2020118858W WO2022067512A1 WO 2022067512 A1 WO2022067512 A1 WO 2022067512A1 CN 2020118858 W CN2020118858 W CN 2020118858W WO 2022067512 A1 WO2022067512 A1 WO 2022067512A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication device
information
configuration information
sidelink
Prior art date
Application number
PCT/CN2020/118858
Other languages
English (en)
French (fr)
Inventor
彭文杰
王君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/118858 priority Critical patent/WO2022067512A1/zh
Priority to CN202080105564.5A priority patent/CN116326027A/zh
Publication of WO2022067512A1 publication Critical patent/WO2022067512A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a communication method and a communication device.
  • terminals can communicate directly with each other through a sidelink.
  • a typical application scenario of sidelink communication is vehicle to X (V2X).
  • V2X vehicle to X
  • each vehicle can be understood as a terminal, and data transmission can be performed directly between terminals through sidelink, thereby effectively reducing communication delay.
  • This application describes a communication method and a communication device to realize data transmission between terminals.
  • a communication method comprising: a first communication device sending a correspondence between sidelink configuration information and sidelink logical channel information to a network device; the first communication device receives data from the network device the wireless link configuration information; the first communication device performs first communication with the second communication device based on the wireless link configuration information. Based on this communication method, flexible configuration of communication between terminals can be realized, and the possibility of system adaptation can be improved.
  • the first communication device receives the sidelink configuration information from the network device; the first communication device communicates with the second communication device based on the sidelink configuration information The device conducts a second communication. Therefore, the communication device can acquire the sidelink configuration information for terminal-to-terminal SL communication.
  • the first communication device sends indication information to the network device, which is used to indicate that the communication with the second communication device is based on at least one of the following manners: the side link and the Data offloading on the wireless link; data duplication on the side link and the wireless link; communication entirely via the wireless link. Therefore, the communication device can independently determine one of multiple communication modes, which reduces the design complexity of the network device.
  • the first communication device sends indication information to the network device, which is used to indicate that the communication type between the first communication device and the second communication device is unicast, multicast or broadcast . Therefore, the communication device can autonomously determine one of multiple communication types, reducing the design complexity of the network device.
  • the first communication device sends the identification of the second communication device to the network device.
  • the identifier of the second communication device may also be sent to the network device together with the indication information, so as to realize flexible communication in combination with the communication type or communication method.
  • the first communication device receives a first message from the network device for requesting the logical channel information.
  • the first message includes at least one of the following: the sidelink configuration information; and indication information, which is used to indicate that the communication type between the first communication device and the second communication device is Unicast or Multicast.
  • the radio link configuration information includes radio link bearer configuration information and the side link logical channel information.
  • the communication device is a terminal, and the network device is a base station; or, the network device device is a centralized unit CU.
  • a communication method comprising: a network device receiving a correspondence between sidelink configuration information and sidelink logical channel information from a first communication device; The two communication devices respectively send wireless link configuration information for the first communication between the first communication device and the second communication device.
  • the network device sends the sidelink configuration information to the first communication device, which is used for the second communication between the first communication device and the second communication device.
  • the method further includes: receiving, by the network device, first indication information from the first communication device, which is used to indicate that the communication between the first communication device and the second communication device is based on At least one of the following: offloading data on the side link and the wireless link; duplicating data on the side link and the wireless link; communicating entirely via the wireless link.
  • the method further includes: receiving, by the network device, an identifier of the second communication device from the first communication device.
  • the method further includes: the first communication device sends indication information to the network device, which is used to indicate that the communication type between the first communication device and the second communication device is unicast or group broadcast.
  • the method further includes: the network device sends a first message to the first communication device for requesting the logical channel information.
  • the first message includes at least one of the following: the sidelink configuration information; and indication information, which is used to indicate that the communication type between the first communication device and the second communication device is Unicast or Multicast.
  • the method further includes: the network device receives second indication information from the second communication device, which is used to instruct the network device to provide the side link configuration information and the wireless link configuration information.
  • the second indication information includes at least one of the following: the indication information is used to indicate that the communication type between the first communication device and the second communication device is unicast or multicast; the side link configuration information; the identifier of the first communication device.
  • the second indication information is further used to indicate that the communication between the first communication device and the second communication device is based on at least one of the following manners: the side link and all data offload on the wireless link; data duplication on the side link and the wireless link; communication entirely via the wireless link.
  • the method further includes: sending, by the network device, to the second communication device, a target identifier and a source identifier corresponding to the data sent by the first communication device to the second communication device.
  • the radio link configuration information includes radio link bearer configuration information and the side link logical channel information.
  • a communication method including: a second communication device sends indication information to a network device, used to instruct the network device to provide a dual-interface configuration; the second communication device receives wireless data from the network device link configuration information; the second communication device performs first communication with the first communication device based on the wireless link configuration information.
  • the indication information includes at least one of the following: quality of service of the side link; information of the side link logical channel; indication information for indicating that the first communication device is connected to the The communication type of the second communication device is unicast or multicast; the identification of the first communication device; indicating that the communication with the second communication device is based on at least one of the following methods: the side link and the wireless data offloading on the link; duplication of data on the side link and the wireless link; or communication entirely via the wireless link.
  • the radio link configuration information includes radio link bearer configuration information and the side link logical channel information.
  • an apparatus for sidelink communication can be used to perform the operations of the communication device in the first aspect, the third aspect and any possible implementations thereof.
  • the apparatus may include a module unit for performing each operation of the communication device in any possible implementation manner of the first aspect and the third aspect.
  • an apparatus for sidelink communication can be used to perform the operations of the network device in the second aspect and any possible implementations thereof.
  • the apparatus may include a module unit for performing various operations of the network device in any possible implementation manner of the second aspect.
  • a terminal device in a sixth aspect, includes: a processor, a transceiver, and a memory. Wherein, the processor, the transceiver and the memory communicate with each other through an internal connection path.
  • the memory is used to store instructions and the processor is used to execute the instructions stored by the memory.
  • the execution causes the terminal device to execute any method in any possible implementation manners of the first aspect and the third aspect, or the execution causes the terminal.
  • the apparatus implements the apparatus provided in the fourth aspect.
  • a network device comprising: a processor, a transceiver and a memory.
  • the processor, the transceiver and the memory communicate with each other through an internal connection path.
  • the memory is used to store instructions and the processor is used to execute the instructions stored by the memory.
  • the processor executes the instructions stored in the memory, the execution causes the network device to perform any method in any possible implementations of the second aspect, or the execution causes the network device to implement the fifth device provided in the aspect.
  • a chip system including a memory and a processor, where the memory is used for storing a computer program, and the processor is used for calling and running the computer program from the memory, so that the system on which the chip system is installed is
  • the communication device performs any of the methods of the above-mentioned first to third aspects and possible implementations thereof.
  • a computer program product comprising: computer program code, when the computer program code is used by a communication unit, a processing unit or a transceiver of a communication device (eg, a network device or a terminal device) .
  • a communication device eg, a network device or a terminal device
  • the communication device is caused to execute any method in the first aspect to the third aspect and possible implementations thereof.
  • a computer-readable storage medium stores a program, and the program causes a device (eg, a network device or a communication device) to perform the above-mentioned first to third aspects and the same. any of the possible embodiments.
  • a computer program is provided.
  • the computer program When the computer program is executed on a computer, it will cause the computer to implement any method in the first aspect to the third aspect and possible implementations thereof. .
  • FIG. 1a is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1b is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1c is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2a is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2b is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2c is a schematic diagram of a protocol stack provided by an embodiment of the present application.
  • 3-3e is a schematic flowchart of multiple communication methods provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • an embodiment of the present invention proposes a technical solution based on the communication system shown in FIG. 1a, which is used to improve data transmission in the system. effectiveness.
  • FIG. 1a is a schematic diagram of a possible system architecture to which this embodiment of the present application is applicable.
  • the system architecture shown in FIG. 1 a includes a second device 101 and a first device 102 .
  • the second device in this embodiment of the present application may be connected to the first device in a wireless manner, that is, the second device may communicate with the first device through a wireless network.
  • FIG. 1a is only a schematic structural diagram of a communication system, and the number of first devices and the number of second devices in the communication system are not limited in this embodiment of the present application.
  • the wireless manner may be understood as side link communication and/or wireless link communication.
  • the first device and the second device in the above-described system architecture may perform side-link communication.
  • FIG. 1b which is a schematic diagram of a side-link communication scenario, as shown in FIG. 1b, the communication scenario may include a network device 105 and one or more terminal devices (eg, terminal device 1061, terminal device 1062).
  • the network device 105 and the terminal device 1061 and the terminal device 1062 can perform data transmission through air interface resources, and data transmission between the terminal device 1061 and the terminal device 1062 can be performed through side link resources.
  • the first device may be the terminal device 1061
  • the second device may be the terminal device 1062, or vice versa.
  • FIG. 1b is a schematic diagram of a side-link communication scenario
  • the communication scenario may include a network device 105 and one or more terminal devices (eg, terminal device 1061, terminal device 1062).
  • the network device 105 and the terminal device 1061 and the terminal device 1062 can perform data transmission through air interface resources, and data transmission between the terminal device 1061 and the
  • the data channel for uplink data transmission between the network device 105 and the terminal device may be carried in an uplink (UL) carrier (such as the first UL carrier) .
  • UL uplink
  • a data channel for data transmission by the terminal device 1061 and the terminal device 1062 may be carried in the SL carrier.
  • the SL carrier may be a UL carrier (eg, a second UL carrier), and the first UL carrier and the second UL carrier may be the same carrier.
  • Sidelink (sidelink, SL) communication refers to a technology that allows terminal devices to communicate with each other, and resources used to carry communication between terminal devices may be referred to as sidelink resources. Since the side-link communication can realize direct communication between different terminal devices, it can realize higher data rate, lower delay and lower power consumption. Sidelink communications may include, for example, vehicle-to-vehicle, vehicle-to-infrastructure, vehicle-to-pedestrians. Understandably, in both the industrial Internet communication scenario and the wireless mesh network communication scenario, the side link communication technology can be used.
  • the communication system at least includes a centralized unit (centralized unit, CU) 10c and a distributed unit (distributed, DU) 11c.
  • the above-mentioned DU 11c communicates with the terminal 12c.
  • some functions of the NR base station are deployed in the CU, and the remaining functions are deployed in the DU.
  • the number of DUs can be one or more, and multiple DUs can share one CU to save costs and facilitate network expansion.
  • the segmentation of the CU and the DU can be performed according to the protocol stack.
  • Radio Resource Control RRC
  • service data Adaptation protocol service data adaptation protocol, SDAP
  • packet data convergence protocol Packet Data Convergence Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the CU and DU can be connected through the F1 interface.
  • CU stands for NR base station and NR core network connection.
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be sent to the CU through the DU.
  • the DU may not parse the signaling, but directly encapsulate it through the protocol layer and transparently transmit it to the terminal device or CU.
  • the sending or receiving of the signaling by the DU includes this scenario.
  • the signaling of the RRC or PDCP layer is finally processed as the signaling of the PHY layer and sent to the terminal device, or is converted from the received signaling of the PHY layer.
  • the signaling of the RRC or PDCP layer can also be considered to be sent by the DU, or sent by the DU and the radio frequency device.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • V2X vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2N vehicle-to-network
  • the network device in the above-mentioned communication system can be any device with a wireless transceiver function or a chip that can be provided in the device, and the device includes but is not limited to: evolved Node B (evolved Node B, eNB), wireless Network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB , or home Node B, HNB), donor base station (donor eNB, DeNB), base band unit (base band Unit, BBU), access point (access point, AP) in wireless fidelity (wireless fidelity, WIFI) systems, Wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., and can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or a group
  • 5G
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless chain
  • the functions of the road control radio link control, RLC
  • media access control media access control, MAC
  • physical (physical, PHY) layers The functions of the road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network equipment in the access network RAN, and the CU may also be divided into network equipment in the core network CN, which is not limited herein.
  • terminal equipment in the above communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user Terminal, terminal, wireless communication device, user agent or user equipment.
  • UE user equipment
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • the aforementioned terminal equipment and the chips that can be provided in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • the concepts involved in the present application are briefly introduced first.
  • the communication system of Sidelink is similar to the wireless communication system, and can also support broadcast, unicast, and multicast transmission methods. Broadcasting is similar to the base station broadcasting system information to the terminal. For example, the base station sends broadcast service data without encryption to the UE. Any other UE within the effective receiving range can receive the broadcast service data if they are interested in the broadcast service.
  • Unicast is similar to data communication after a radio resource control (RRC) connection is established between a UE and a base station, and a unicast connection needs to be established between the two UEs first. After the unicast connection is established, the two UEs can communicate data based on the negotiated identity, and the data can be encrypted or unencrypted.
  • RRC radio resource control
  • Multicast communication refers to the communication between all UEs in a communication group, and any UE in the group can send and receive data of the multicast service.
  • the above identifier is for layer 2 (layer 2, L2) of the UE.
  • the upper layer of the UE is the PC5-S layer, which is used for terminal-to-terminal communication.
  • the upper layer may be called a non-access stratum (NAS) layer, a V2X layer or a PC5-S layer.
  • Layer 2 of the UE may be the AS layer, which is used for communication between the terminal and the base station.
  • the target identifier corresponds to a broadcast service
  • the source identifier can be understood as the identifier of the sender UE
  • the target identifier is an L2 identifier allocated by the receiver UE for the unicast connection
  • the source identifier is the sender UE.
  • the target identifier corresponds to a group
  • the source identifier can be understood as the identifier of the sender UE.
  • SL side link
  • data transmission between terminal devices may not be transferred through network devices, that is, SL may be a transmission link between terminal devices.
  • vehicles can obtain road condition information or receive information services in time through V2V, V2I, V2P, or V2N. These communication methods can be collectively referred to as V2X communication.
  • Figures (1), (2), and (3) in Figure 2b are schematic diagrams of V2V, V2I, and V2P, respectively.
  • 110 is a network device.
  • the network equipment may be E-UTRAN.
  • 120 may represent vehicles
  • 130 may represent roadside infrastructure
  • 140 may represent pedestrians.
  • V2V communication and V2I communication as an example, as shown in Figure (1) in Figure 2b, through V2V communication between vehicles, information such as their own vehicle speed, driving direction, specific location, and whether they have stepped on the emergency brake can be recorded.
  • roadside infrastructure such as a roadside unit (RSU)
  • RSU roadside unit
  • Sidelink resources are resources used for terminal-to-terminal communication.
  • the sidelink resources may include sidelink resources in the frequency domain and sidelink resources in the time domain. This application mainly discusses the sidelink resources in the frequency domain, and the sidelink resources that appear later can be understood as referring to the sidelink resources in the frequency domain.
  • the side link in this application may also be called a side link or a side link, and the side link will be uniformly described below.
  • sidelink resources may include sidelink transmission resources and sidelink reception resources.
  • the sidelink transmission resources are used for transmitting information, such as transmitting control information and/or data.
  • Sidelink receive resources are used to receive information, such as receive control information and/or data.
  • the sidelink signal may include control information and/or data and/or feedback information carried on the sidelink channel.
  • control information may be information used for scheduling data, such as downlink control information (Downlink control information, DCI) and sidelink control information (sidelink control information, SCI) in the prior art.
  • the feedback information may refer to feedback information, such as uplink control information (Uplink control information, UCI), sidelink feedback information (SFCI) and the like in the prior art.
  • Control information may be carried through a control channel, such as PSCCH, a physical sidelink control channel.
  • the feedback information may be carried through a feedback channel, such as PSFCH, a physical sidelink feedback channel.
  • the data may refer to a generalized signal, a data packet, or a transport block or a codeword.
  • Data can be carried through a data channel, such as PSSCH, physical side link shared channel, etc.
  • Communication in the NR sideline network can be differentiated based on service flows. For example, IP flows or Ethernet flows can be understood as corresponding to different services.
  • the above service flows are classified into different QoS flows based on different QoS parameters or characteristics.
  • the base station maps the above-mentioned QoS flow to a sidelink data radio bearer (DRB), or defines a mapping relationship between the above-mentioned QoS flow and the sidelink DRB.
  • DRB sidelink data radio bearer
  • the base station maps different QoS flows to different sidelink DRBs or maps QoS flows with similar similar parameters to the same sidelink DRB.
  • the terminal will establish a sidelink DRB based on the above mapping relationship, and send the corresponding QoS flow to other terminals through the sidelink DRB.
  • the sidelink DRB is a DRB used to transmit data between terminals.
  • Uplink data can be classified according to different types of terminal transmission services, and correspond to different logical channels.
  • the logical channel information may be a logical channel (logic channel, LCH) identifier and/or a logical channel group (logic channel group, LCG) identifier.
  • LCH logic channel
  • LCG logic channel group
  • Those skilled in the art can understand that any identifier used to identify the above-mentioned logical channel or logical channel group is within the protection scope of the present invention.
  • the LCG may be composed of at least one LCH, for example, 4 LCHs or 8 LCHs can respectively constitute one LCG, the difference is that the LCG data amount composed of different numbers of LCHs is different.
  • the uplink resource types corresponding to different LCHs may be the same or different, the uplink resource types corresponding to different LCHs in one LCG may be the same or different, and one LCH may correspond to at least one uplink resource type.
  • the priority order of different LCHs/LCGs may be determined by the characteristics of the uplink data carried by them.
  • the priority order of the LCH/LCG can be understood as the order in which the terminal sends uplink data to the base station.
  • the priority order of the LCH/LCG can be determined according to any one or more of the following conditions:
  • the data size of the uplink data is the data size of the uplink data
  • the priority of the LCG may be associated with the LCH within the LCG.
  • the LCG includes LCH1 and LCH2, wherein the priority of LCG1 is higher than that of LCG2.
  • the priority of the LCG may refer to the priority of the LCG1 or be the same as the priority of the LCG1.
  • UEs within the network coverage will obtain the SL bearer configuration from the base station.
  • both the SL bearer identifier and the SL logical channel identifier of the UE are provided by the base station.
  • the base station can know the corresponding relationship of the above identifiers, and can ensure that the SL bearer identifier and the SL logical channel identifier provided to the two UEs match each other.
  • the base station sends to the UE the correspondence between the side link (hereinafter referred to as SL) bearer and the air interface (hereinafter referred to as Uu) bearer.
  • the base station may send to the UE the correspondence between the SL bearer identifier and the Uu bearer identifier, and the correspondence between the SL logical channel identifier and the Uu logical channel identifier.
  • Another possibility is to consider the scenario where the UEs at the receiving end and the transmitting end do not belong to the same base station coverage, that is, UE1 and UE2 are connected to different base stations, so that the configurations provided by the two base stations for the two UEs cannot match each other.
  • the base station sends the partial configuration of the SL bearer to the UE.
  • the rest of the configuration for the SL bearer such as the SL logical channel identifier, is generally allocated by the UE itself. For unidirectional bearers, UEs do not need to exchange logical channel identifiers in advance.
  • the sender UE carries the SL logical channel identifier during data transmission, and the receiver UE establishes the SL bearer/SL logical channel for data reception after receiving the data. No need to rely on base station configuration. At this time, the SL bearer/SL logical channel established by the receiver UE is not controlled by the base station, so the base station cannot configure the corresponding relationship between the Uu bearer and the SL bearer for the dual interface connection of the receiver UE.
  • the base station configures the terminal and the terminal based on the Uu and PC5 dual interfaces to realize the matching of the Uu bearer and the SL bearer, thereby improving the communication efficiency between the terminals.
  • any one of the following communication modes between the terminal and the terminal is realized: dual communication based on the Uu and PC5 interfaces, only communication based on the Uu interface , or only communication based on the PC5 interface.
  • data distribution or data replication can be realized, which will be described in detail below.
  • FIG. 3 is a schematic flowchart of a communication method provided by the present application.
  • the communication device is used as the terminal, and the network device is used as the base station for description.
  • the above-mentioned communication device and network device may all be chips, or implemented by chips, which are not limited in this embodiment of the present application.
  • the method includes:
  • the first communication device sends the correspondence between the sidelink configuration information and the sidelink logical channel information to the network device.
  • the first communication device receives wireless link configuration information from the network device.
  • the first communication device performs first communication with the second communication device based on the wireless link configuration information
  • the terminal may send the correspondence between the sidelink configuration information and the sidelink logical channel information to the network device for communication between terminals.
  • the base station receives the correspondence between the sidelink configuration information and the sidelink logical channel information from the terminal, and sends the wireless link configuration information to the terminal for communication between the terminals.
  • the above correspondence is sent by the terminal to the CU through the DU.
  • the DU does not parse the corresponding relationship, but directly encapsulates it through the protocol layer and transparently transmits it to the CU.
  • the CU parses the above correspondence, it further needs to inform the DU of the correspondence, so that the DU generates a corresponding radio link configuration for the terminal, and the specific content of the radio link configuration can be referred to below.
  • the dual interface configuration means that the SL data can be transmitted through the Uu interface and/or the PC5 interface.
  • the base station forwards the SL data packet of the UE at the sending end to the UE at the receiving end through the Uu interface, or directly sends the SL data of the UE at the sending end to the UE at the receiving end through the PC5 interface.
  • the SL data packet may be a side-link packet data aggregation protocol data packet, which will be described in detail below in conjunction with a protocol stack configured with dual interfaces.
  • the protocol stack of the terminal based on sidelink communication includes at least one of the following protocol layers: a sidelink Service Data Adaptation Protocol (SDAP) layer, a sidelink Packet Data Convergence Protocol (PDCP, Packet Data Convergence Protocol) layer, side link radio link control (RLC, Radio Link Control) layer, side link media access control (MAC, Media Access Control) layer and side link physical (PHY, Physical) layer.
  • SDAP sidelink Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • PHY Physical
  • the above SL PDCP layer is mainly used for compressing and decompressing/encrypting and decrypting information;
  • the SL RLC layer is mainly used to implement the related functions of automatic repeat request (ARQ, Automatic Repeat Request), segment and concatenate or pair the information.
  • the segmented and concatenated information is reorganized;
  • the SL MAC layer is mainly used to select the combination of transmission formats, and to implement the related functions of scheduling and Hybrid Automatic Repeat Request (HARQ, Hybrid Automatic Repeat Request);
  • the SL PHY layer is mainly used for The MAC layer and the upper layer provide information transmission services, and perform coding and modulation processing or demodulation and decoding processing according to the selected transmission format combination.
  • the terminal protocol stack can be aggregated on any one of the PDCP layer, the RLC layer, or the MAC layer. For example, aggregation at the PDCP layer can improve the reliability of information transmission through encryption and decryption.
  • the above adaptation layer is used for data conversion between the base station and the terminal protocol stack. By setting the adaptation layer, the data conversion between the protocol stacks can be ensured, and the configuration of the protocol stack in the base station is more flexible.
  • the terminal protocol stack may be directly connected to at least one protocol layer of the base station side protocol stack through an internal interface.
  • the terminal protocol stack can be directly connected to the protocol stack in the base station side protocol stack. at least one protocol layer.
  • Mode 1 The UE at the sending end triggers the dual-interface configuration, and actively reports to the base station the identifier of the SL logical channel allocated by itself for the SL communication.
  • the base station triggers dual interface configuration. For example, the base station requests the allocated SL logical channel identifier from the transmitting end UE, and provides the transmitting end UE with the configuration information of the radio link such as the configuration information of the Uu interface. For another example, the base station queries the sending end UE for the SL logical channel identifier, and provides the sending end UE with configuration information of the Uu interface. Alternatively, the base station first provides the SL configuration to the UE at the transmitting end, and then the UE indicates the SL logical channel identifier to the base station.
  • Manner 3 The receiving UE triggers the dual interface configuration, and sends the SL logical channel for receiving data from the transmitting UE to the base station.
  • This embodiment of the present invention does not limit the sequence relationship between 301 and 302 .
  • the UE at the transmitting end may first report the correspondence between the SL configuration and the SL logical channel to the base station, and then receive the radio link configuration from the base station; or, the base station may first report to the UE at the transmitting end.
  • the radio link configuration is sent, and the correspondence between the SL configuration and the SL logical channel is obtained from the UE at the sending end.
  • the radio link configuration may be respectively sent to the UE at the transmitting end and the UE at the receiving end.
  • the radio link configuration may include radio link bearer configuration information, or further include side link logical channel information.
  • the radio link bearer configuration may be the RLC bearer configuration of the Uu interface, the RLC bearer enables the sidelink packet data convergence protocol (packet data convergence protocol, PDCP) packet data unit (packet data unit, PDU) between the UE and the base station transmission between.
  • PDCP packet data convergence protocol
  • PDU packet data unit
  • the method further includes receiving, by the communication device, sidelink configuration information sent by the network device.
  • the communication device may determine the correspondence between the sidelink configuration information and the sidelink logical channel information, and then send the information to the network device.
  • the UE at the transmitting end may perform PC5 interface communication with the UE at the receiving end based on the acquired sidelink configuration information.
  • the UE receives the sidelink configuration sent by the base station, where the sidelink configuration may be sent by the base station to the UE through broadcasting or through dedicated RRC signaling.
  • the base station sends the sidelink configuration to the UE through a broadcast message.
  • the base station sends the sidelink configuration to the UE through RRC dedicated signaling.
  • the access network device sends system information or RRC public information to the terminal.
  • System information or common RRC information may be cell-level parameters.
  • sidelink resources can be configured for a group of terminals.
  • the access network device can send system information or RRC public information to a group of terminals.
  • the system information Or RRC public information is used to configure sidelink resources for each terminal. Since system information or RRC common information is sent to a group of terminals, the sidelink resources configured in the system information or RRC common information can be used for multicast transmission between terminals in the group.
  • the sender UE can use the system If the sidelink resources configured in the information configuration or the RRC public information are configured to multicast data and/or control information, other terminals in the group, such as the receiver UE, can receive data or control information on the sidelink resources.
  • the RRC dedicated information is sent by the access network device to the terminal.
  • the RRC dedicated information may be a terminal-level parameter (or referred to as a UE-level parameter), and parameter configuration is performed for the terminal.
  • a single terminal can be configured with sidelink resources.
  • the access network device can send RRC dedicated information to a single terminal, and the RRC dedicated information is used to configure sidelink resources for the terminal. . Since the RRC dedicated information is sent to a single terminal, the sidelink resources configured in the RRC dedicated information can be used for unicast transmission between terminals. broadcast data or control information.
  • sidelink resources are preconfigured for the terminal by the operator, or sidelink resources are preconfigured for the terminal in a predefined manner in a standard protocol.
  • side link resources can be configured for one or more terminals.
  • the operator's network management system can send pre-configuration information to each terminal respectively, and the pre-configuration information is used for each terminal. Configure sidelink resources respectively. Since the pre-configuration information is sent to multiple terminals, the sidelink resources configured in the pre-configuration information can be used for broadcast transmission between terminals.
  • terminal 1 can use the side-link resources configured in the pre-configuration information to broadcast data and/or or control information, other terminals, such as terminal 2, can receive data and/or control information on the sidelink resource.
  • the sidelink resources configured by the pre-configuration information may also be used for multicast transmission and/or unicast transmission, which is not limited in this application.
  • the above-mentioned side link configuration information may be an SL bearer indication.
  • the SL bearer indication is used to indicate at least one SL bearer, and the sending end UE can send SL data to the receiving end UE through the SL bearer.
  • the SL bearer indication may include a bearer configuration index, such as a configuration index of a sidelink radio bearer Uu interface (slrb-Uu-ConfigIndex) and/or a configuration index of a sidelink radio link control bearer (sl-RLC-BearerConfigIndex) ), the above bearer configuration index generally corresponds to one SL bearer.
  • the above-mentioned sidelink logical channel information may include a sidelink logical channel identifier (sl-LogicalChannelIdentity), and one logical channel identifier generally corresponds to one logical channel or one logical channel group.
  • the first communication device sends indication information to the network device, which is used to indicate that the communication with the second communication device is based on at least one of the following manners: the side link and the wireless link Data offload on the road; data duplication on the side link and the wireless link; communication entirely via the wireless link.
  • data transmission can be split between PC5 and Uu, or duplication, or only Uu (Uu only).
  • PC5 and Uu perform offloading, for example, part of the data of UE1 is sent from PC5 to UE2, and another part is sent from Uu to UE2.
  • PC5 and Uu duplication are, for example, the data of UE1 is copied into two copies, one is sent from PC5, and the other is sent from Uu.
  • Uu only, for example, all data of UE1 is sent from Uu to UE2.
  • the SL PDCP data packet of UE1 is sent to the base station through the Uu RLC layer, Uu MAC layer, and Uu PHY layer of the UE1 protocol stack, and the base station corresponds to the Uu PHY layer, Uu MAC layer, and Uu RLC layer of the protocol stack of UE1.
  • the Uu RLC layer, Uu MAC layer, and Uu PHY layer of the protocol stack corresponding to UE2 are finally passed to the Uu PHY layer, Uu MAC layer, and Uu RLC layer of UE2.
  • the method further includes that the first communication device sends a communication type or indication information to the network device, where the indication information is used to indicate the communication type between the first communication device and the second communication device.
  • the communication type can be unicast, multicast or broadcast.
  • the network device sends the above-mentioned communication type or indication information to the first communication device.
  • broadcast transmission can be called broadcast sidelink signal communication, also called sidelink communication of broadcast service, or sidelink communication whose transmission type is broadcast;
  • multicast transmission can be called multicast sidelink signal communication, also called broadcast sidelink communication.
  • unicast communication can be called unicast sidelink signal communication, or sidelink communication of unicast service, or sidelink communication of unicast service, or transmission type of unicast sidelink communication.
  • the method further includes the first communication device sending the identifier of the second communication device to the network device.
  • the identification is associated with the above-mentioned communication type or indication information.
  • the terminal identifier may include a wireless network temporary identifier or a layer 2 (layer 2, L2) identifier.
  • the L2 identifier is used to indicate at least one of a sidelink destination identifier or a sidelink source identifier.
  • the wireless network temporary identifier may be an identity identifier used to identify the terminal, and the value may be 0 to 65535.
  • the sidelink target identifier may refer to the L2 identifier allocated by the terminal on the receiving side of the sidelink communication for the above-mentioned unicast connection.
  • the identifier corresponding to the terminal of the receiving target of the sidelink signal may refer to an L2 identifier allocated to the above-mentioned unicast connection by the terminal on the sending side of the side-link communication.
  • the identifier corresponding to the terminal from which the sidelink signal is sent may refer to an L2 identifier allocated to the above-mentioned unicast connection by the terminal on the sending side of the side-link communication.
  • the method further includes: receiving, by the first communication device, a first message from the network device for requesting the logical channel information.
  • the first message includes at least one of the following: the sidelink configuration information; and indication information, used to indicate that the communication type between the first communication device and the second communication device is unicast or group broadcast.
  • the method further includes: receiving, by the network device, second indication information from the second communication device, which is used to instruct the network device to provide the wireless link configuration information.
  • the second indication information may include at least one of the following: the indication information is used to indicate that the communication type between the first communication device and the second communication device is unicast or multicast; the side link logical channel information; the identifier of the first communication device.
  • the second indication information may also be used to indicate that the communication between the first communication device and the second communication device is based on at least one of the following manners: the side link and the data on the wireless link offloading; duplication of data on the side link and the wireless link; communicating entirely via the wireless link.
  • the method further includes: sending, by the network device, to the second communication device, a target identifier and a source identifier corresponding to the data sent by the first communication device to the second communication device.
  • the target ID and source ID are used for multicast transmission.
  • the UE at the transmitting end is collectively referred to as UE1
  • the UE at the receiving end is collectively referred to as UE2.
  • UE1 the UE at the transmitting end
  • UE2 the UE at the receiving end
  • this implementation includes the following steps.
  • An SL unicast connection is established between UE1 and UE2.
  • the base station sends the SL configuration to UE1.
  • UE1 sends the correspondence between the SL bearer configuration index and the SL logical channel identifier to the base station.
  • the dual interface configuration is triggered by UE1.
  • UE1 determines to trigger the configuration, it can send a report message to the base station, where the report message carries the SL bearer configuration index and its corresponding SL logical channel identifier.
  • indication information of a unicast connection between UE1 and UE2 may also be reported, where the indication information may be an identifier or an index.
  • UE1 can decide whether to activate the dual interface configuration. For example, the UE1 determines to trigger the above configuration by itself, or determines to trigger the above configuration according to a preset rule. For example, trigger when the amount of data to be transmitted is greater than the threshold value, or trigger when the reliability is lower than the threshold value, or trigger when the rate is lower than the threshold value.
  • the threshold value may be obtained by the UE1 from a network device such as a base station or a core network. When UE1 obtains multiple rules from the network, it can carry indication information in the report message, indicating that the report rule is triggered.
  • UE1 sends indication information to the base station, which is used to indicate that the communication with UE2 is based on at least one of the following methods: data offloading on side links and wireless links; data duplication on side links and wireless links; complete Communicate via a wireless link.
  • the indication information may also be carried in the above-mentioned reporting message.
  • the UE1 may also carry the identity of the UE2 in the report message, such as the serving cell identity of the UE2 and/or the cell radio network temporary identity (C-RNTI) of the UE2.
  • the UE1 can receive the RRC message through the PC5 interface, and obtain the identity of the UE2 from the UE2.
  • the base station provides the RLC bearer configuration of the Uu interface for UE1.
  • the base station may provide UE1 with the configuration of the RLC bearer on the Uu interface.
  • the configuration of the Uu RLC bearer includes at least one of the following Uu interfaces: RLC entity configuration, logical channel configuration, and media access control (media access control, MAC) configuration.
  • the Uu RLC bearer configuration may further include the sidelink logical channel identifier or the SL bearer indication as described above.
  • the SL bearer indication may configure an index for the SL bearer (such as slrb-Uu-ConfigIndex or sl-RLC-BearerConfigIndex described above).
  • the base station may also send unicast connection indication information to UE1.
  • the base station provides UE1 with a duplication configuration of SL PDCP, or provides UE1 with a data volume threshold value of SL PDCP for offloading operation.
  • the base station can also provide the SL RLC bearer release configuration for UE1, which is used to instruct UE1 to release the SL RLC bearer, so as to realize the transmission of Uu interface only (Uu only).
  • the base station provides a Uu RLC bearer configuration for UE2.
  • a Uu RLC bearer In order to implement data transmission between UE1 and UE2 through the base station, in addition to establishing a Uu RLC bearer between UE1 and the base station, a Uu RLC bearer also needs to be established between UE2 and the base station.
  • the base station provides the Uu RLC bearer configuration for UE2, and the specific configuration content can refer to the above step 404, that is, the base station provides the Uu RLC bearer configuration for UE1.
  • the configuration provided by the base station to UE2 uses the SL logical channel identity to indicate the SL bearer to UE2.
  • the execution order of the above steps 404 and 405 is not limited in this embodiment, that is, the base station can configure UE1 first, UE1 can configure UE2 after the completion of the configuration; or configure UE2 first, and then configure UE1 after UE2 has responded to the configuration; Configure UE1 and UE2.
  • the dual interface configuration triggered by UE1 is enabled, so that data transmission between UE1 and UE2 can be flexibly performed based on the dual interface.
  • PC5 and Uu dual interfaces are selected for off-stream transmission to improve throughput; on the other hand, Uu only or Uu and PC5 dual interfaces are selected for data replication to improve reliability.
  • the base station initiates the provision of dual interface configuration for UE1 and UE2.
  • 501 and 502 are similar to 401 and 402 in the first implementation manner, and details are not described below.
  • the base station sends a first message to UE1 for querying sidelink logical channel information.
  • the base station decides to configure a dual interface configuration for the UE, for example, when it is identified that the current PC5 interface is in poor condition or that the current PC5 interface cannot meet the current service requirements of the UE, the base station triggers 503. Specifically, the current PC5 interface is in a poor state, which may be related to the fact that the measurement result of the PC5 interface is lower than the threshold value, or that there are many data transmission failures on the PC5 interface.
  • the first message carries the SL bearer configuration index, which is used to indicate the logical channel information of which bearer of the unicast connection is queried.
  • the first message may further include a unicast connection identifier (target identifier), which is used to indicate which unicast connection is queried for logical channel information.
  • Steps 504 to 506 are similar to steps 403 to 405 in the first embodiment, and will not be repeated here.
  • 601 and 602 are similar to 401 and 402 in the first implementation.
  • the base station provides a Uu RLC bearer configuration for UE1.
  • UE1 feeds back a second configuration message to the base station, where the second message includes the SL logical channel identifier.
  • UE1 may reply to the base station with a second message to indicate that the configuration is complete. Therefore, UE1 may also carry the SL logical channel identifier corresponding to the SL bearer configuration index indicated in step 2 in the second message.
  • the base station completes configuration and query through a message.
  • Step 605 is the same as step 405 in the first implementation.
  • the SL logical channel identifier allocated by UE1 is obtained by means of a query initiated by the base station, and the configuration of UE2 is further completed based on the SL logical channel identifier, so that UE1 and UE2 can pass through the base station through the base station. to communicate.
  • the dual interface configuration is initiated by UE1, where UE1 is the sender of SL data.
  • UE1 will receive the SL bearer configuration index from the base station, thereby establishing the SL bearer, and assigning the SL logical channel identifier to the SL bearer.
  • UE2 is an SL bearer established after receiving the SL data of UE1, and adopts the logical channel identifier received when receiving the SL data.
  • the receiving end UE that is, UE2 initiates the dual interface configuration for the following two scenarios.
  • 701 and 702 are the same as 401 and 402 in the first implementation.
  • UE2 sends indication information to the base station.
  • UE2 decides whether to initiate dual interface configuration.
  • UE2 obtains the rules from the base station in advance, for example, N consecutive data packets are lost, or N consecutive data packets are lost within a fixed time period, or M data packets are lost within a fixed period of time.
  • the indication information sent by the UE2 to the base station is used to instruct the base station to provide a dual interface configuration.
  • the indication information includes the SL quality of service (quality of service, QoS) monitored by the UE2.
  • QoS quality of service
  • the indication information includes indication information of a unicast connection. Further, it may also include at least one of the following: the SL logical channel identifier, the identifier of UE1, and instructing PC5 and Uu to perform offload, duplication, or Uu only.
  • the identity of the UE1 is, for example, the serving cell identity of the UE1 and/or the cell radio network temporary identity (C-RNTI) of the UE1.
  • the indication information sent by the UE2 to the base station may be understood as requesting the base station to provide a dual interface configuration, or providing auxiliary information to the base station to assist the base station in making a decision.
  • Steps 704 to 707 are similar to steps 503 to 506 of the scenario 1 in the second implementation manner.
  • the SL logical channel identifier can also be used in the query message instead of the SL bearer configuration index. By querying the SL bearer configuration index, the QoS requirements of the bearer are determined, and the configuration is completed.
  • 801 to 802 are the same as 401 to 402 in the first implementation.
  • 803 is the same as 703 in scenario 1 in the third implementation manner above.
  • Steps 804 to 806 are similar to steps 603 to 605 in the second scenario of the second implementation manner.
  • the SL bearer configuration index may be replaced by the SL logical channel identifier in the configuration message sent by the base station to the UE1.
  • this implementation mode 3 triggers the dual-interface configuration through the receiving UE, and the base station completes the configuration of the receiving UE and the transmitting UE, so that the UE on both sides of the transceiver can communicate through the PC5 interface and the Uu interface, improving the terminal performance.
  • the reliability of communication with the terminal is not limited to the requirements of the receiving UE, this implementation mode 3 triggers the dual-interface configuration through the receiving UE, and the base station completes the configuration of the receiving UE and the transmitting UE, so that the UE on both sides of the transceiver can communicate through the PC5 interface and the Uu interface, improving the terminal performance. The reliability of communication with the terminal.
  • the first three implementations are described by taking the SL unicast communication between UE1 and UE2 as an example.
  • the final effect is that UE1 and UE2 can perform unicast communication through the PC5 interface, and the data of the unicast connection can also be forwarded by the base station.
  • Mode 4 the scenario is extended to SL multicast communication, that is, UE1 needs to send SL data to multiple UEs in the group through the PC5 interface.
  • the Uu interface of the base station can be used for data transmission, because the receiving UE includes multiple UEs.
  • the base station needs to forward the data to multiple UEs through unicast on the Uu. data, resulting in excessive air interface overhead. Therefore, in the fourth method, it is considered that the base station simultaneously forwards the data of the transmitting end UE to multiple receiving end UEs in a multicast (multicast) manner.
  • the way that the base station sends data in a multicast manner is similar to the Multimedia Broadcast Multicast Service (MBMS) or the single cell point to multipoint (SC-PTM) mechanism of the LTE system.
  • MBMS Multimedia Broadcast Multicast Service
  • SC-PTM single cell point to multipoint
  • the difference between the protocol stack of multicast communication and the protocol stack of unicast communication is that the communication between the base station and the receiver UE is not based on a unicast data radio bearer (DRB), but a radio bearer based on multicast multicast. (multicast radio bearer, MRB).
  • DRB unicast data radio bearer
  • MRB multicast radio bearer
  • the dual-interface configuration can be triggered by the sender UE, the base station or the receiver UE.
  • the difference is that the configuration provided by the base station to the receiving UE may specifically include at least one of the following:
  • It carries the target identifier and source identifier used by the UE1 in the group (ie, the sending end UE) to send data, and replaces the identifier of the unicast connection carried in the first to third methods.
  • the base station When the base station provides the configuration for the receiving UE, in addition to the C-RNTI used for air interface communication, it can also provide an identifier for receiving air interface multicast broadcast data, such as group radio network temporary identity (G-RNTI) .
  • G-RNTI group radio network temporary identity
  • the base station further provides UE2 with an air interface resource configuration for multicast broadcast data.
  • the multicast broadcast configuration when providing the configuration to the receiving UE, the multicast broadcast configuration is included.
  • Each set of configuration corresponds to the indication information of the sending end UE in a group, including the target identifier and the source identifier used by the sending end UE when sending data.
  • the UE is supported to send data to other UEs in the SL group through the base station, so as to realize dual-interface communication of the SL multicast service, thereby improving the throughput and reliability of the SL multicast communication.
  • FIG. 4 it is a schematic diagram of a hardware structure of a communication apparatus 40 according to an embodiment of the present application.
  • the communication device 40 includes at least one processor 401 , a communication bus 402 , a memory 403 and at least one communication interface 404 .
  • the processor 401 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 402 may include a path to communicate information between the above-described components.
  • Communication interface 404 using any transceiver-like device, for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • Memory 403 may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of storage devices that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • the memory can exist independently and be connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 403 is used for storing the application code for executing the solution of the present application, and the execution is controlled by the processor 401 .
  • the processor 401 is configured to execute the application program code stored in the memory 403, thereby implementing the communication method provided by the foregoing embodiments of the present application.
  • the processor 401 may also perform functions related to processing in the communication method provided in the above-mentioned embodiments of the present application, and the communication interface 404 is responsible for communicating with other devices or networks.
  • This embodiment of the present application This is not specifically limited.
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4 .
  • the communication apparatus 40 may include multiple processors, such as the processor 401 and the processor 408 in FIG. 4 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions). It will be appreciated that FIG. 4 only shows a simplified design of the communication device 40 . In practical applications, the communication device may include any number of input devices, output devices, processors, memories, and communication interfaces, and the arbitrary number of communication units may provide the above-mentioned functions individually or in combination.
  • the communication apparatus 40 may further include an output device 405 and an input device 406 .
  • the output device 405 is in communication with the processor 401 and can display information in a variety of ways.
  • the output device 405 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • Input device 406 is in communication with processor 401 and can accept user input in a variety of ways.
  • the input device 406 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the communication apparatus 40 provided in this embodiment of the present application may be a chip, a terminal, a base station, a CU or a DU, or a device having a similar structure in FIG. 4 .
  • This embodiment of the present application does not limit the type of the communication device 40 .
  • FIG. 5 is a schematic structural diagram of a communication device 500 for a communication method provided by an embodiment of the present application.
  • the communication device may be a terminal, a base station, a device with terminal or base station functions, or a chip in various embodiments.
  • the communication apparatus 500 may include: a processing unit 510 and a transceiver unit 530 .
  • the transceiver unit in the above communication device may include a receiving module and a transmitting module, which may be connected based on an antenna.
  • the transceiving unit 530 may be used to support the transceiving of information between the communication device and the network device.
  • the above-mentioned transceiver unit 530 may be configured to perform the processing performed by the communication device or the network device in the communication method described in the above-mentioned embodiment.
  • the communication apparatus may be a terminal device or a chip configured in the terminal device, and the description will be given below using the first communication device or the second communication device as the execution subject.
  • the first communication device sends the corresponding relationship between the sidelink configuration information and the sidelink logical channel information to the network device; the first communication device receives the wireless link configuration from the network device information; the first communication device performs first communication with the second communication device based on the wireless link configuration information. Based on this communication method, flexible configuration of communication between terminals can be realized, and the possibility of system adaptation can be improved.
  • the first communication device receives the sidelink configuration information from the network device; the first communication device performs a second communication with the second communication device based on the sidelink configuration information. communication. Therefore, the communication device can acquire the sidelink configuration information for terminal-to-terminal SL communication.
  • the first communication device sends indication information to the network device, which is used to indicate that the communication with the second communication device is based on at least one of the following manners: on the side link and the wireless link. data offloading; data duplication on the side link and the wireless link; communication entirely via the wireless link. Therefore, the communication device can independently determine one of multiple communication modes, which reduces the design complexity of the network device.
  • the first communication device sends indication information to the network device, which is used to indicate that the communication type between the first communication device and the second communication device is unicast, multicast or broadcast. Therefore, the communication device can independently determine one of multiple communication modes, which reduces the design complexity of the network device.
  • the first communication device sends the identification of the second communication device to the network device.
  • the identifier of the second communication device may also be sent to the network device together with the indication information, so as to realize flexible communication in combination with the communication type or communication method.
  • the first communication device receives a first message from the network device for requesting the logical channel information.
  • the first message includes at least one of the following: the sidelink configuration information; and indication information, used to indicate that the communication type between the first communication device and the second communication device is unicast or group broadcast.
  • the radio link configuration information includes radio link bearer configuration information and the side link logical channel information.
  • the second communication device sends indication information to the network device, which is used to instruct the network device to provide a dual-interface configuration; the second communication device receives the wireless link configuration from the network device information; the second communication device performs first communication with the first communication device based on the wireless link configuration information.
  • the indication information includes at least one of the following: quality of service of the side link; information of the side link logical channel; indication information for instructing the first communication device to communicate with the second
  • the communication type of the device is unicast or multicast; the identification of the first communication device; indicating that the communication with the second communication device is based on at least one of the following methods: the side link and the wireless link Data offloading; data replication on the side link and the wireless link; or, communicating entirely via the wireless link.
  • the radio link configuration information includes radio link bearer configuration information and the side link logical channel information.
  • the communication apparatus may be a network device or a chip configured in the network device, which will be described below with the network device as the execution body.
  • the network device receives the correspondence between the sidelink configuration information and the sidelink logical channel information from the first communication device; the network device sends the information to the first communication device and the second communication device.
  • the wireless link configuration information is respectively sent for the first communication between the first communication device and the second communication device.
  • the network device sends the sidelink configuration information to the first communication device, which is used for the second communication between the first communication device and the second communication device.
  • the network device receives first indication information from the first communication device, which is used to indicate that the communication between the first communication device and the second communication device is based on at least one of the following Mode: data offload on the side link and the wireless link; data duplication on the side link and the wireless link; communication entirely via the wireless link.
  • the method further includes: receiving, by the network device, an identifier of the second communication device from the first communication device.
  • the method further includes: the first communication device sends indication information to the network device, which is used to indicate that the communication type between the first communication device and the second communication device is unicast or multicast.
  • the method further includes: the network device sends a first message to the first communication device for requesting the logical channel information.
  • the first message includes at least one of the following: the sidelink configuration information; and indication information, used to indicate that the communication type between the first communication device and the second communication device is unicast or group broadcast.
  • the method further includes: the network device receives second indication information from the second communication device, which is used to instruct the network device to provide the side link configuration information and the wireless link configuration information.
  • the second indication information includes at least one of the following: the indication information is used to indicate that the communication type between the first communication device and the second communication device is unicast or multicast; the side link configuration information; the identifier of the first communication device.
  • the second indication information is further used to indicate that the communication between the first communication device and the second communication device is based on at least one of the following manners: the side link and the wireless link Data offloading on the side link and the wireless link; data duplication on the wireless link; communication entirely via the wireless link.
  • the method further includes: sending, by the network device, to the second communication device, a target identifier and a source identifier corresponding to the data sent by the first communication device to the second communication device.
  • the radio link configuration information includes radio link bearer configuration information and the side link logical channel information.
  • the above-mentioned communication device or network device is presented in the form of dividing each functional module or unit in an integrated manner.
  • a “module” or “unit” herein may refer to an Application-Specific Integrated Circuit (ASIC), a circuit, a processor and memory executing one or more software or firmware programs, an integrated logic circuit, and/or other A device that can provide the above functions.
  • ASIC Application-Specific Integrated Circuit
  • the apparatus 500 can respectively take the form shown in FIG. 4 .
  • the function/implementation process of the transceiver unit 530 in FIG. 5 may be implemented by the processor 401 and the memory 403 in FIG. 4 .
  • the processor 401 may call the application code stored in the memory 403 for execution, which is not limited in this embodiment of the present application.
  • the function/implementation process of the transceiver unit 530 in FIG. 5 may be implemented by the processor 401 in FIG. 4 , or by the communication interface 404 in FIG. 4 , which is not limited in this embodiment of the present application.
  • the processor 401 may call the application code stored in the memory 403 for execution, which is not limited in this embodiment of the present application.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor for supporting a communication device to implement the above communication method.
  • the system-on-a-chip also includes memory.
  • the memory is used to save the necessary program instructions and data of the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which are not specifically limited in this embodiment of the present application.
  • the controller/processor for implementing the above-mentioned base station, terminal, base station or terminal of the present invention may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable A gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the steps of the method or algorithm described in conjunction with the disclosure of the present invention may be implemented in a hardware manner, or may be implemented in a manner of a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage known in the art in the medium.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the terminal or in the base station.
  • the processor and the storage medium may also exist in the terminal or the base station as discrete components.
  • the functions described in the present invention may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.
  • each network element such as a terminal, a communication device, etc.
  • each network element includes corresponding hardware structures and/or software modules for performing each function.
  • the present invention can be implemented in hardware or a combination of hardware and computer software in conjunction with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置。该方法包括:第一通信设备向网络设备发送旁链路配置信息和旁链路逻辑信道信息的对应关系;所述第一通信设备接收来自所述网络设备的无线链路配置信息;所述第一通信设备基于所述无线链路配置信息,与第二通信设备进行第一通信,从而提升网络通信的灵活配置。

Description

通信方法及通信设备 技术领域
本发明涉及无线通信技术领域,尤其涉及一种通信方法及通信设备。
背景技术
随着无线通信技术的发展,衍生出面向未来的通信系统,如第五代移动通信(the 5th Generation mobile communication,5G)系统或新无线(new radio,NR)系统。在上述通信系统中,终端与终端之间可以通过旁链路(sidelink)直接通信。sidelink通信的一个典型应用场景即车联网(vehicle to X,V2X)。在车联网中,每辆车可以理解为一个终端,终端与终端之间可以通过sidelink直接进行数据传输,从而有效减少通信时延。
在现有技术中,无法实现终端与终端之间存在旁链路连接的情况下,基于无线链路进行通信。
发明内容
本申请描述了一种通信方法及通信设备,以实现终端与终端之间的数据传输。
第一方面,提供一种通信方法,该方法包括:第一通信设备向网络设备发送旁链路配置信息和旁链路逻辑信道信息的对应关系;所述第一通信设备接收来自所述网络设备的无线链路配置信息;所述第一通信设备基于所述无线链路配置信息,与第二通信设备进行第一通信。基于该通信方式,可以实现终端与终端之间通信的灵活配置,提升系统适配可能性。
在一个可能的实现方式中,所述第一通信设备接收来自所述网络设备的所述旁链路配置信息;所述第一通信设备基于所述旁链路配置信息,与所述第二通信设备进行第二通信。因此,通信设备可以获取旁链路配置信息,用于终端与终端之间的SL通信。
在一个可能的实现方式中,所述第一通信设备向所述网络设备发送指示信息,用于指示与所述第二通信设备的通信基于以下至少一种方式:所述旁链路和所述无线链路上的数据分流;所述旁链路和所述无线链路上的数据复制;完全经由所述无线链路进行通信。因此,通信设备可以自主确定多种通信方式中的一种,降低网络设备的设计复杂度。
在一个可能的实现方式中,所述第一通信设备向所述网络设备发送指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播、组播或广播。因此,通信设备可以自主确定多种通信类型中的一种,降低网络设备的设计复杂度。
在一个可能的实现方式中,所述第一通信设备向所述网络设备发送所述第二通信设备的标识。一般而言,上述第二通信设备的标识也可以连同上述指示信息一并发送给网络设备,从而结合通信类型或通信方式,实现灵活通信。
在一个可能的实现方式中,所述第一通信设备接收来自所述网络设备的第一消息,用于请求所述逻辑信道信息。
在一个可能的实现方式中,所述第一消息包括以下至少一种:所述旁链路配置信息;指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播或组播。
在一个可能的实现方式中,所述无线链路配置信息包括无线链路承载配置信息和所述旁链路逻辑信道信息。
在一个可能的实现方式中,所述通信设备为终端,所述网络设备为基站;或,所述网络设备装置为集中式单元CU。
第二方面,提供一种通信方法,包括:网络设备接收来自第一通信设备的旁链路配置信息和旁链路逻辑信道信息的对应关系;所述网络设备向所述第一通信设备和第二通信设备分别发送无线链路配置信息,用于所述第一通信设备与第二通信设备之间的第一通信。
在一个可能的实现方式中,所述网络设备向所述第一通信设备发送所述旁链路配置信息,用于所述第一通信设备与所述第二通信设备之间的第二通信。
在一个可能的实现方式中,还包括:所述网络设备接收来自所述第一通信设备的第一指示信息,用于指示所述第一通信设备与所述第二通信设备之间的通信基于以下至少一种方式:所述旁链路和所述无线链路上的数据分流;所述旁链路和所述无线链路上的数据复制;完全经由所述无线链路进行通信。
在一个可能的实现方式中,还包括:所述网络设备接收来自所述第一通信设备的所述第二通信设备的标识。
在一个可能的实现方式中,还包括:所述第一通信设备向所述网络设备发送指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播或组播。
在一个可能的实现方式中,还包括:所述网络设备向所述第一通信设备发送第一消息,用于请求所述逻辑信道信息。
在一个可能的实现方式中,所述第一消息包括以下至少一种:所述旁链路配置信息;指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播或组播。
在一个可能的实现方式中,还包括:所述网络设备接收来自所述第二通信设备的第二指示信息,用于指示所述网络设备提供所述旁链路配置信息和所述无线链路配置信息。
在一个可能的实现方式中,所述第二指示信息包括以下至少一种:所述指示信息,用于指示所述第一通信设备与所述第二通信设备之间的通信类型为单播或组播;所述旁链路配置信息;所述第一通信设备的标识。
在一个可能的实现方式中,所述第二指示信息,还用于指示所述第一通信设备与所述第二通信设备之间的通信基于以下至少一种方式:所述旁链路和所述无线链路上的数据分流;所述旁链路和所述无线链路上的数据复制;完全经由所述无线链路进行通信。
在一个可能的实现方式中,还包括:所述网络设备向所述第二通信设备发送所述第一通信设备向所述第二通信设备发送数据对应的目标标识和源标识。
在一个可能的实现方式中,所述无线链路配置信息包括无线链路承载配置信息和所述旁链路逻辑信道信息。
第三方面,提供了一种通信方法,包括:第二通信设备向网络设备发送指示信息,用于指示所述网络设备提供双接口配置;所述第二通信设备接收来自所述网络设备的无线链路配置信息;所述第二通信设备基于所述无线链路配置信息,与第一通信设备进行第一通信。
在一个可能的实现方式中,所述指示信息包括以下至少一种:所述旁链路的服务质量;所述旁链路逻辑信道信息;指示信息,用于指示所述第一通信设备与所述第二通信设备的 通信类型为单播或组播;所述第一通信设备的标识;指示与所述第二通信设备的通信基于以下至少一种方式:所述旁链路和所述无线链路上的数据分流;所述旁链路和所述无线链路上的数据复制;或,完全经由所述无线链路进行通信。
在一个可能的实现方式中,所述无线链路配置信息包括无线链路承载配置信息和所述旁链路逻辑信道信息。
第四方面,提供了一种用于旁链路通信的装置,所述装置可以用来执行第一方面、第三方面及其任意可能的实现方式中的通信设备的操作。具体地,所述装置可以包括用于执行上述第一方面、第三方面的任意可能的实现方式中的通信设备的各个操作的模块单元。
第五方面,提供了一种用于旁链路通信的装置,所述装置可以用来执行第二方面及其任意可能的实现方式中的网络设备的操作。具体地,所述装置可以包括用于执行上述第二方面的任意可能的实现方式中的网络设备的各个操作的模块单元。
第六方面,提供了一种终端设备,所述终端设备包括:处理器、收发器和存储器。其中,所述处理器、收发器和存储器之间通过内部连接通路互相通信。所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令。当所述处理器执行所述存储器存储的指令时,所述执行使得所述终端设备执行第一方面、第三方面的任意可能的实现方式中的任一方法,或者所述执行使得所述终端设备实现第四方面提供的装置。
第七方面,提供了一种网络设备,所述网络设备包括:处理器、收发器和存储器。其中,所述处理器、收发器和存储器之间通过内部连接通路互相通信。所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令。当所述处理器执行所述存储器存储的指令时,所述执行使得所述网络设备执行第二方面的任意可能的实现方式中的任一方法,或者所述执行使得所述网络设备实现第五方面提供的装置。
第八方面,提供了一种芯片系统,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从存储器中调用并运行所述计算机程序,使得安装有所述芯片系统的通信设备执行上述第一方面至第三方面及其可能的实施方式中的任一方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被通信设备(例如,网络设备或终端设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一方面至第三方面及其可能的实施方式中的任一方法。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得设备(例如,网络设备或通信设备)执行上述第一方面至第三方面及其可能的实施方式中的任一方法。
第十一方面,提供了一种计算机程序,所述计算机程序在某一计算机上执行时,将会使所述计算机实现上述第一方面至第三方面及其可能的实施方式中的任一方法。
附图说明
图1a为本申请实施例提供的一种通信系统示意图;
图1b为本申请实施例提供的一种通信系统示意图;
图1c为本申请实施例提供的一种通信系统示意图;
图2a为本申请实施例提供的一种通信系统示意图;
图2b为本申请实施例提供的一种通信系统示意图;
图2c为本申请实施例提供的一种协议栈示意图;
图3-3e为本申请实施例提供的多种通信方法的流程示意图;
图4为本申请实施例提供的一种通信装置的结构示意图;
图5为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
为了解决现有技术中无法针对不同通信系统进行终端与中间之间的数据传输的问题,本发明实施例基于图1a所述的通信系统提出了一种技术方案,用于提高系统系统中数据传输的有效性。
图1a为本申请实施例适用的一种可能的系统架构示意图。如图1a所示的系统架构包括第二设备101和第一设备102。本申请实施例中的第二设备可以通过无线方式与第一设备连接,即第二设备可以通过无线网络与第一设备进行通信。应理解,图1a仅为通信系统的一个架构示意图,本申请实施例中对通信系统中第一设备的数量、第二设备的数量不作限定。在本实施例中,无线方式可以理解为旁链路通信和/或无线链路通信。
在一个示例中,上述系统架构中的第一设备和第二设备可以进行旁链路通信。参见图1b,为旁链路通信场景示意图,如图1b所示,该通信场景中可以包括网络设备105以及一个或多个终端设备(比如终端设备1061、终端设备1062)。网络设备105与终端设备1061、终端设备1062可以通过空口资源进行数据传输,终端设备1061和终端设备1062之间可以通过旁链路资源进行数据传输。其中,第一设备可以为终端设备1061,第二设备可以为终端设备1062,或者反之。图1b中,以上行传输为例,网络设备105与终端设备(终端设备1061或终端设备1062)进行上行数据传输的数据信道可以承载在上行(uplink,UL)载波(比如第一UL载波)中。终端设备1061和终端设备1062进行数据传输的数据信道可以承载在SL载波中。在一个示例中,SL载波可以为UL载波(比如第二UL载波),第一UL载波和第二UL载波可以为同一载波。
旁链路(sidelink,SL)通信是指允许终端设备之间进行相互通信的技术,用于承载终端设备通信的资源可以称为旁链路资源。由于旁链路通信能够实现不同终端设备之间的直接通信,从而能够实现较高的数据速率、较低的时延和较低的功耗。旁链路通信可以包括比如车对车(vehicle-to-vehicle)、车对基础设施(vehicle-to-infrastructure)、车对用户(vehicle-to-pedestrians)。可以理解地,工业互联网通信场景和无线网格网络通信场景中,均可以使用旁链路通信技术。
如图1c所示,该通信系统至少包括集中式单元(centralized unit,CU)10c和分布式单元(distributed,DU)11c。上述DU11c与终端12c通信。例如,将NR基站的部分功能部署在CU,将剩余功能部署在DU。此时,DU数量可以为一个或多个,多个DU可以共用一个CU,以节省成本,易于网络扩展。具体而言,CU和DU的切分可以按照协议栈切分,其中一种可能的方式是将以下协议层中的至少一个部署在CU:无线资源控制(Radio Resource Control,RRC)层、服务数据适配协议(service data adaptation protocol,SDAP) 层、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层。其余协议层中的至少一个部署在DU:无线链路控制(Radio Link Control,RLC)层、介质访问控制(Media Access Control,MAC)层或、物理层。CU和DU之间可以通过F1接口连接。CU代表NR基站和NR核心网连接。本领域的技术人员可以理解,上述CU和DU可以位于不同物理实体或独立于NR基站。换言之,CU和DU结合,可以得以实现NR基站的功能或取代NR基站。
在以上网络架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装后透传给终端设备或CU。以下实施例中如果涉及这种信令在DU和终端设备之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端设备,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频装置发送的。
本发明实施例描述的系统架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。本申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆网系统中的通信。其中,车辆网系统中的通信方式统称为V2X(X代表任何事物),例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)通信,车辆与路边基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
应理解,上述通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、宿主基站(donor eNB,DeNB)、基带单元(base band Unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或, 传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
还应理解,上述通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。为了便于理解本申请,在介绍本申请提供的通信方法前,首先对本申请涉及的概念做简要介绍。
为了便于理解,首先对本申请实施例涉及的相关术语和相关技术做一简单介绍。
旁链路通信的传播类型
Sidelink的通信系统与无线通信系统类似,同样可以支持广播、单播、组播的传输方式。广播类似于基站向终端广播系统信息,例如基站向UE不做加密,发送广播业务数据,任何在有效接收范围内的其他UE,如果对该广播业务感兴趣都可以接收该广播业务数据。单播类似于UE与基站之间建立无线资源控制(radio resource control,RRC)连接之后进行的数据通信,需要两个UE之间首先建立单播连接。在建立单播连接之后,两个UE可以基于协商的标识进行数据通信,该数据可以是加密或不加密。相比于广播通信,在单播通信中,只能是建立了单播连接的两个UE之间才能进行该单播通信。组播通信是指一个通信组内所有UE之间的通信,组内任一UE都可以收发该组播业务的数据。
基于上述任意一种的传播类型,在sidelink上进行数据传输时,需要携带源标识(source ID)和目标标识(destination ID)。在本实施例中,上述标识针对UE的层2(layer 2,L2)而言。具体而言,UE的上层为PC5-S层,用于终端与终端之间的通信。该上层可以称为非接入(Non-access stratum,NAS)层、V2X层或PC5-S层。UE的层2可以为AS层,用于终端与基站之间的通信。针对广播,目标标识对应一个广播业务,源标识可以理解为 是发送端UE的标识;针对单播,目标标识为接收端UE为该单播连接分配的一个L2标识,源标识为发送端UE为该单播连接分配的一个L2标识;针对组播,目标标识对应一个组,源标识可以理解为是发送端UE的标识。
一种可能的方式,如图2a和图2b所示,通过D2D或V2X的旁链路(side link,SL)进行数据收发。其中SL指的是如图2a和图2b中所示的D2D和SL链路。在SL中,终端设备之间的数据传输可以不经过网络设备进行中转,即SL可以为终端设备之间的传输链路。
如图2b所示,车辆可以通过V2V、V2I、V2P或者V2N来及时获取路况信息或接收信息服务,这些通信方式可以统称为V2X通信。图2b中的图(1)、图(2)、图(3)分别是V2V、V2I、V2P的示意图。其中,110为网络设备。例如,该网络设备可以是E-UTRAN。120可以表示车辆,130可以表示路边基础设施,140可以表示行人。以最常见的V2V通信和V2I通信为例,如图2b中的图(1)所示,车辆之间通过V2V通信,可以将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等信息广播给周围车辆,周围车辆的驾驶员通过获取该类信息,可以更好的感知视距外的交通状况,从而对危险状况作出提前预判进而作出避让。而对于图2b中的图(2)所示的V2I通信,除了上述安全信息的交互外,路边基础设施,例如,路侧单元(road side unit,RSU)可以为车辆提供各类服务信息和数据网络的接入,不停车收费、车内娱乐等功能都极大的提高了交通智能化。
旁链路资源
旁链路资源是用于终端和终端之间的通信的资源。旁链路资源可以包括频域的旁链路资源和时域的旁链路资源。本申请主要讨论的是频域的旁链路资源,后续出现的旁链路资源可以理解为指频域的旁链路资源。此外,本申请中的旁链路又可以称为侧行或侧行链路,以下就旁链路进行统一描述。
从传输类型角度,旁链路资源可以包括旁链路发送资源和旁链路接收资源。其中,旁链路发送资源用于发送信息,如发送控制信息和/或数据。旁链路接收资源用于接收信息,如接收控制信息和/或数据。
可选的,旁链路信号可以包括承载于旁链路信道上的控制信息和/或数据和/或反馈信息。
可选的,控制信息可以是用于调度数据的信息,比如现有技术中的下行控制信息(Downlink control information,DCI),旁链路控制信息(sidelink control information,SCI)。反馈信息可以是指反馈的信息,比如现有技术中的上行控制信息(Uplink control information,UCI),旁链路反馈信息(SFCI)等。控制信息可以通过控制信道承载,比如PSCCH,物理旁链路控制信道。反馈信息可以通过反馈信道承载,比如PSFCH,物理旁链路反馈信道。
可选的,数据可以是指广义的信号,也可以是指数据包,还可以是传输块或码字。数据可以通过数据信道承载,比如PSSCH,物理旁链路共享信道等。
旁链路数据无线承载
NR侧行网络中的通信可以基于业务流的方式进行区分,如IP流或以太网流可以理解 为对应不同的业务。上述业务流基于不同的QoS参数或特性,会区分为不同QoS流。具体而言,基站会将上述QoS流映射为sidelink数据无线承载(data radio bearer,DRB),或定义上述QoS流与sidelink DRB的映射关系。例如,基站将不同QoS流映射为不同sidelink DRB或将具有类似相近参数的QoS流映射为相同sidelink DRB。终端会基于上述映射关系,建立sidelink DRB,并将对应的QoS流通过该sidelink DRB发送给其他终端。其中,sidelink DRB是用于终端与终端之间传输数据的DRB。
逻辑信道
可以按照终端传输业务的不同类型,将上行数据进行分类,并对应不同的逻辑信道。相应的,逻辑信道信息可以为逻辑信道(logic channel,LCH)标识和/或逻辑信道组(logic channel group,LCG)标识。本领域的技术人员可以理解,但凡用于识别上述逻辑信道或逻辑信道组的标识,均在本发明保护范围之内。LCG可以由至少一个LCH组成,例如4个LCH或8个LCH均可分别构成一个LCG,区别在于不同数量的LCH所组成的LCG数据量大小各有不同。一般而言,不同LCH所对应的上行资源类型可以相同或不同,一个LCG中的不同LCH所对应的上行资源类型可以相同或不同,一个LCH可以对应至少一个上行资源类型。又如,不同LCH/LCG的优先级顺序可以由其所携带的上行数据本身的特性所决定。该LCH/LCG的优先级顺序可以理解为为终端向基站发送上行数据的先后顺序。例如,根据以下任意一种或多种情况,可以确定该LCH/LCG的优先级顺序:
上行数据对于时延要求的严格程度;
上行数据的数据量大小;
上行数据在缓存区的等待时间;或
上行数据类型。
又或者,LCG的优先级可以关联该LCG内的LCH。例如,LCG包括LCH1和LCH2,其中,LCG1的优先级高于LCG2的优先级。此时,该LCG的优先级可以参考LCG1优先级或与LCG1的优先级相同。
在V2X系统中,不论是广播、单播还是组播,网络覆盖范围内的UE会从基站获取SL承载配置。
一种可能性为,UE的SL承载标识和SL逻辑信道标识均由基站提供。例如,单播连接的两个UE都在该基站的服务范围内,基站能够知道上述标识的对应关系,并且能够保证向两个UE提供的SL承载标识和SL逻辑信道标识相互匹配。进一步的,基站向UE发送旁链路(以下简称为SL)承载与空口(以下简称为Uu)承载的对应关系。具体而言,基站可以向UE发送SL承载标识和Uu承载标识的对应关系,以及SL逻辑信道标识和Uu逻辑信道标识的对应关系。
另一种可能性为,考虑接收端和发送端的UE不属于同一个基站覆盖的场景,即UE1与UE2连接不同基站,会导致两个基站分别为两个UE提供的配置无法相互匹配。此时,基站向UE发送SL承载的部分配置。针对SL承载的其余配置,如SL逻辑信道标识,一般由UE自行分配。针对单向承载,UE之间可以不用提前交互逻辑信道标识,发送端UE在数据传输时携带SL逻辑信道标识,接收端UE在收到数据后,自行建立SL承载/SL逻辑信道进行数据接收,无需依赖基站配置。此时,接收端UE建立的SL承载/SL逻辑信道 不受基站控制,故而基站无法配置接收端UE进行双接口连接的Uu承载和SL承载的对应关系。
本发明实施例中,基站在配置终端与终端之间基于Uu和PC5双接口,实现Uu承载和SL承载的匹配,从而提升终端与终端之间的通信效率。另外,针对上述双接口的配置或者连接,可以理解为,基于上述配置或链接,实现终端与终端之间的以下任意一种通信方式:基于Uu和PC5接口的双通信,仅基于Uu接口的通信,或仅基于PC5接口的通信。其中,基于Uu和PC5接口的双通信,可以实现数据分流或数据复制,以下会做详细描述。
图3是本申请提供的一种通信方法的示意性流程图。其中,在常规sidelink场景中,以通信设备为终端,网络设备为基站进行描述。上述通信设备、网络设备均可为芯片,或由芯片实现,本申请实施例对此不做限定。
该方法包括:
301、第一通信设备向网络设备发送旁链路配置信息和旁链路逻辑信道信息的对应关系。
302、所述第一通信设备接收来自所述网络设备的无线链路配置信息。
303、所述第一通信设备基于所述无线链路配置信息,与第二通信设备进行第一通信
本发明实施例中,以终端为例,终端可以向网络设备发送旁链路配置信息和旁链路逻辑信道信息的对应关系,用于终端与终端之间的通信。或者,以基站为例,基站接收来自终端的旁链路配置信息和旁链路逻辑信道信息的对应关系,并向终端发送无线链路配置信息,用于终端与终端之间的通信。
可选的,就接入网设备包括CU和DU的网络架构而言,上述对应关系由终端通过DU发送给CU。例如,DU不对该对应关系进行解析,而直接通过协议层封装后透传给CU。CU解析出上述对应关系之后,进一步需要将该对应关系告知DU,用于DU为终端生成相应无线链路配置,该无线链路配置具体内容可以参考下文。
本领域的技术人员可以理解,该双接口配置指SL数据可以通过Uu接口和/或PC5接口进行传输。具体的,基站将发送端UE的SL数据包通过Uu接口转发给接收端UE,或者发送端UE的SL数据通过PC5接口直接发送给接收端UE。该SL数据包可以为旁链路分组数据汇聚协议数据包,以下结合双接口配置的协议栈进行详细描述。
如图2c所示,基于旁链路通信的终端的协议栈包括以下至少一个协议层:旁链路业务数据适配(Service Data Adaptation Protocol,SDAP)层,旁链路分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)层、旁链路无线链路控制(RLC,Radio Link Control)层、旁链路媒体接入控制(MAC,Media Access Control)层和旁链路物理(PHY,Physical)层。基于旁链路通信的基站的协议栈包括以下至少一个协议层:Uu RLC,Uu MAC和Uu PHY。
上述SL PDCP层主要用于对信息进行压缩和解压缩/加密和解密;SL RLC层主要用于实现自动重传请求(ARQ,Automatic Repeat Request)的相关功能,对信息进行分段和级联或对分段和级联的信息进行重组;SL MAC层主要用于对传输格式组合的选择,实现调度和混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)的相关功能;SL PHY层主要用于为MAC层和高层提供信息传输的服务,根据选择的传输格式组合进行编码调 制处理或解调解码处理。因此,在本发明实施例中,可以使终端协议栈聚合在上述PDCP层、RLC层或MAC层中的任一协议层上。例如,聚合在PDCP层可以通过加解密方式提升信息传输的可靠度。上述适配层用于对数据进行在基站与终端协议栈之间的转换处理,通过设置适配层,能够确保数据在协议栈之间的转换,使协议栈在基站中的配置更加灵活。
可选地,在本发明实施例中,终端协议栈可以通过内部接口直接连接在基站侧协议栈的至少一协议层上。具体地说,如果在终端与终端之间传输的数据在经过基站协议栈的至少一协议层时无需进行(例如,格式)转换,则可以将该终端协议栈直接连接在基站侧协议栈中的至少一个协议层上。
上述方法可以通过以下三种方式进行触发:
方式1、发送端UE触发双接口配置,主动向基站上报自己为SL通信分配的SL逻辑信道标识。
方式2、基站触发双接口配置。例如,基站向发送端UE请求分配的SL逻辑信道标识,并向发送端UE提供无线链路配置如Uu接口的配置信息。又如,基站向发送端UE查询SL逻辑信道标识,并向发送端UE提供Uu接口的配置信息。或者,基站先向发送端UE提供SL配置,随后UE向基站指示SL逻辑信道标识。
方式3、接收端UE触发双接口配置,向基站发送用于接收来自于发送端UE数据的SL逻辑信道。本发明实施例不限定301和302的先后时序关系。以方式2为例,基站触发双接口配置而言,发送端UE可以先向基站上报SL配置和SL逻辑信道的对应关系,再从基站接收无线链路配置;或者,基站可以先向发送端UE发送无线链路配置,再从发送端UE获取SL配置和SL逻辑信道的对应关系。
另外,就302中的基站而言,可以向发送端UE和接收端UE分别发送无线链路配置。具体的,该无线链路配置可以包括无线链路承载配置信息,或进一步包括旁链路逻辑信道信息。例如,无线链路承载配置可以为Uu接口的RLC承载配置,该RLC承载使能旁链路分组数据汇聚协议(packet data convergence protocol,PDCP)分组数据单元(packet data unit,PDU)在UE与基站之间的传输。
可选的,该方法还包括所述通信设备接收所述网络设备发送的旁链路配置信息。一方面,基于上述旁链路配置信息,通信设备可以确定该旁链路配置信息和旁链路逻辑信道信息的对应关系,随后发送给网络设备。另一方面,发送端UE可以基于获取的旁链路配置信息,与接收端UE进行PC5接口的通信。
在本实施例中,UE接收基站发送的sidelink配置,所述sidelink配置可以是基站通过广播,或通过RRC专用信令发给UE。例如,当UE处于空闲态或非激活态时,基站通过广播消息向UE发送sidelink配置。当UE处于连接态时,基站通过RRC专用信令向UE发送sidelink配置。
比如由接入网设备向终端发送系统信息或RRC公共信息。系统信息或公共RRC信息可以是小区级的参数。通过系统信息配置或RRC公共信息的配置的方式,可以为一组终端配置旁链路资源,在具体实现中,可以由接入网设备向一组终端发送系统信息或RRC公共信息,该系统信息或RRC公共信息用于为各个终端配置旁链路资源。由于系统信息或RRC公共信息是发给一组终端的,因此系统信息配置或RRC公共信息配置的旁链路资源可以用于组内的终端之间的组播传输,比如发送端UE可以使用系统信息配置或RRC公共信息配置 的旁链路资源组播数据和/或控制信息,则组内的其它终端,如接收端UE可以在该旁链路资源上接收数据或控制信息。
又如由接入网设备向终端发送RRC专用信息。RRC专用信息可以是终端级的参数(或称为UE级的参数),针对该终端进行参数配置。针对RRC专用信息的配置方式,可以为单个终端配置旁链路资源,在具体实现中,可以由接入网设备向单个终端发送RRC专用信息,该RRC专用信息用于为终端配置旁链路资源。由于RRC专用信息是发给单个终端的,因此RRC专用信息配置的旁链路资源可以用于终端之间的单播传输,比如终端1可以使用RRC专用信息配置的旁链路资源向终端2单播发送数据或控制信息。
又或者,由运营商为终端预先配置旁链路资源或者在标准协议中通过预定义的方式为终端预配置旁链路资源。通过预配置的配置方式,可以为一个或多个终端配置旁链路资源,在具体实现中,可以由运营商的网管系统向各个终端分别发送预配置信息,该预配置信息用于为各个终端分别配置旁链路资源。由于预配置信息是发给多个终端的,因此预配置信息配置的旁链路资源可以用于终端之间的广播传输,比如终端1可以使用预配置信息配置的旁链路资源广播数据和/或控制信息,则其它终端,如终端2可以在该旁链路资源上接收数据和/或控制信息。当然,实际应用中,预配置信息配置的旁链路资源还可以用于组播传输和/或用于单播传输,本申请不做限定。
在本发明实施例中,上述旁链路配置信息可以为SL承载指示。所述SL承载指示为用于指示至少一个SL承载,发送端UE可以通过该SL承载向接收端UE发送SL数据。具体的,该SL承载指示可以包括承载配置索引如旁链路无线承载Uu接口的配置索引(slrb-Uu-ConfigIndex)和/或旁链路无线链路控制承载的配置索引(sl-RLC-BearerConfigIndex),上述承载配置索引一般对应一个SL承载。上述旁链路逻辑信道信息可以包括旁链路逻辑信道标识(sl-LogicalChannelIdentity),一个逻辑信道标识一般对应一个逻辑信道或一个逻辑信道组。
本发明实施例中,所述第一通信设备向所述网络设备发送指示信息,用于指示与所述第二通信设备的通信基于以下至少一种方式:所述旁链路和所述无线链路上的数据分流;所述旁链路和所述无线链路上的数据复制;完全经由所述无线链路进行通信。举例而言,数据传输可以通过PC5和Uu分流,或者复制(duplication),或者仅Uu(Uu only)。PC5和Uu做分流例如为UE1的数据一部分从PC5发送至UE2,另一部分从Uu发送至UE2。PC5和Uu duplication例如为UE1的数据复制成两份,一份从PC5发送,一份从Uu发送。Uu only例如为UE1的数据全部从Uu发送至UE2。示例性的,UE1的SL PDCP数据包经由UE1协议栈的Uu RLC层,Uu MAC层,Uu PHY层,通过基站对应UE1的协议栈的Uu PHY层,Uu MAC层,Uu RLC层,发送至基站对应UE2的协议栈的Uu RLC层,Uu MAC层,Uu PHY层,最终传递给UE2的Uu PHY层,Uu MAC层,Uu RLC层。
可选的,本方法还包括第一通信设备向所述网络设备发送通信类型或者指示信息,所述指示信息用于指示所述第一通信设备与所述第二通信设备的通信类型。例如,该通信类型可以单播、组播或广播。或者,网络设备向第一通信设备发送上述通信类型或指示信息。
具体的,广播传输可以称为广播sidelink信号通信,也可以称为,广播业务的sidelink通信,或者传输类型为广播的sidelink的通信;组播传输可以称为组播sidelink信号通信,也可以称为,组播业务的sidelink通信,或者传输类型为组播的sidelink的通信;单播通 信可以称为单播sidelink信号通信,也可以称为,单播业务的sidelink通信,或者传输类型为单播的sidelink的通信。
可选的,本方法还包括第一通信设备向所述网络设备发送所述第二通信设备的标识。通常而言,该标识关联上述通信类型或指示信息。本申请中终端标识可以包括无线网络临时标识或层2(layer 2,L2)标识。该L2标识用于指示旁链路目的标识或旁链路源标识中的至少一项。其中,无线网络临时标识可以是用于标识终端的一个身份标识,取值可以是0至65535。旁链路目标标识可以指旁链路通信的接收侧的终端为上述单播连接分配的L2标识。比如旁链路信号的接收目标的终端对应的标识。旁链路源标识可以是指旁链路通信的发送侧的终端为上述单播连接分配的L2标识。比如旁链路信号的发送来源的终端对应的标识。
就方式2即基站触发双接口配置而言,该方法还包括:所述第一通信设备接收来自所述网络设备的第一消息,用于请求所述逻辑信道信息。可选的,所述第一消息包括以下至少一种:所述旁链路配置信息;指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播或组播。
就方式3即接收端UE触发双接口配置而言,该方法还包括:所述网络设备接收来自所述第二通信设备的第二指示信息,用于指示所述网络设备提供所述无线链路配置信息。
具体的,所述第二指示信息可以包括以下至少一种:所述指示信息,用于指示所述第一通信设备与所述第二通信设备之间的通信类型为单播或组播;所述旁链路逻辑信道信息;所述第一通信设备的标识。
所述第二指示信息,还可以用于指示所述第一通信设备与所述第二通信设备之间的通信基于以下至少一种方式:所述旁链路和所述无线链路上的数据分流;所述旁链路和所述无线链路上的数据复制;完全经由所述无线链路进行通信。
可选的,该方法还包括:所述网络设备向所述第二通信设备发送所述第一通信设备向所述第二通信设备发送数据对应的目标标识和源标识。该目标标识和源标识用于组播传输。
以下就上述三种方式进行详细描述。为简便描述,下文中将发送端UE统称为UE1,将接收端UE统称为UE2。并且,以单播举例而言,本领域的技术人员可以理解,本发明各实施例可以同样用于组播和广播。
1、发送端UE触发双接口配置的实现方式一
如图3a所示,本实现方式包括步骤如下。
401:UE1与UE2之间建立SL单播连接。
402:基站向UE1发送SL配置。
403:UE1向基站发送SL承载配置索引和SL逻辑信道标识的对应关系。
在本实施例中,由UE1触发双接口配置,当UE1确定要触发该配置时,可以向基站发送上报消息,该上报消息携带SL承载配置索引及其对应的SL逻辑信道标识。可选的,还可以上报UE1与UE2之间单播连接的指示信息,该指示信息可以是标识或索引。
可选的,UE1可以决策是否激活双接口配置。例如,UE1自行确定触发上述配置,或根据预设规则确定触发上述配置。例如,在待传数据量大于门限值时触发,或在可靠性低于门限值时触发,又或速率低于门限值时触发。具体而言,该门限值可以为UE1从网络设备例如基站或者核心网获取。当UE1从网络获取多个规则时,可以在上报消息中携带 指示信息,指示触发该上报规则。
可选的,UE1向基站发送指示信息,用于指示与UE2的通信基于以下至少一种方式:旁链路和无线链路上的数据分流;旁链路和无线链路上的数据复制;完全经由无线链路进行通信。该指示信息同样可以携带在上述上报消息中。
进一步,UE1还可以在上报消息中携带UE2的标识,例如UE2的服务小区标识和/或UE2的小区无线网络临时标识(cell radio network temporary identity,C-RNTI)。UE1可以通过PC5接口接收RRC消息,并从UE2获取该UE2的标识。
404:基站为UE1提供Uu接口的RLC承载配置。
为了实现UE1通过基站与UE2进行数据传输,基站可以为UE1提供Uu接口上的RLC承载的配置。
具体的,该Uu RLC承载的配置包括以下Uu接口的至少一个:RLC实体配置、逻辑信道配置、媒体介入控制(media access control,MAC)配置。为实现SL承载与Uu RLC承载的关联,该Uu RLC承载配置还可以包括如上文所述的旁链路逻辑信道标识或SL承载指示。具体的,该SL承载指示可以为SL承载配置索引(如上文描述的slrb-Uu-ConfigIndex或sl-RLC-BearerConfigIndex)。可选的,基站还可以向UE1发送单播连接的指示信息。
可选的,基站为UE1提供SL PDCP的duplication配置,或者为UE提供SL PDCP做分流操作的数据量门限值。
进一步,基站还可以为UE1提供SL RLC承载释放配置,用于指示UE1释放SL RLC承载,实现仅Uu接口(Uu only)的传输。
405:基站为UE2提供Uu RLC承载配置。
为了实现UE1通过基站与UE2进行数据传输,除了需要在UE1和基站之间建立Uu RLC承载,也需要在UE2与基站之间建立Uu RLC承载。例如,基站为UE2提供Uu RLC承载配置,具体配置内容可以参考上述步骤404,即基站为UE1提供Uu RLC承载配置。一般而言,基站给UE2提供的配置使用SL逻辑信道标识向UE2指示SL承载。
上述步骤404和步骤405的执行顺序在本实施例中并不限定,即基站可以先配置UE1,UE1回复配置完成后再配置UE2;或先配置UE2,UE2回复配置完成后再配置UE1;或同时配置UE1和UE2。
基于该方式1,使能UE1触发的双接口配置,从而UE1与UE2之间基于双接口可以灵活进行数据传输。一方面,选择PC5和Uu双接口分流传输,从而提升吞吐量;另一方面,选择Uu only或者Uu和PC5双接口进行数据复制,从而提升可靠性。
2、基站触发双接口配置的实现方式二
与实现方式一不同之处在于,在方式二中由基站发起为UE1和UE2提供双接口配置。
以下就两种场景进行详细描述。
实现方式二中场景一的步骤如图3b所示。
501和502与实现方式一中的401和402类似,以下不再赘述。
503:基站向UE1发送第一消息,用于查询旁链路逻辑信道信息。
可选的,基站决定给UE配置双接口配置,例如当识别出当前PC5接口状况不佳或者 认为当前PC5接口满足不了UE当前业务需求,基站触发503。具体的,当前PC5接口状况不佳可以是PC5接口的测量结果低于门限值,或者PC5接口上数据传输失败较多等相关情况。
可选的,第一消息携带SL承载配置索引,用于指示查询该单播连接的哪个承载的逻辑信道信息。进一步,该第一消息中还可以包括单播连接标识(目标标识),用于指示查询哪个单播连接的逻辑信道信息。
步骤504~506与实施例一中的步骤403~405类似,此处不再赘述。
可以看到,在上述场景一中,基站对UE1的查询和配置需要通过两步完成,可能增加配置过程的时长,以下场景二则进一步避免了该问题。
实现方式二中场景二的步骤如图3c所示。
601和602与实现方式一中的401和402类似。
603:基站为UE1提供Uu RLC承载配置。
该配置的具体设计可以参考方式1中的404。需要注意的是,针对场景二,基站向UE1发送指示信息前,基站并不知道UE1分配的SL逻辑信道标识,故基站向UE1发送的Uu RLC承载配置一般包括SL承载配置索引。
604:UE1向基站反馈配置第二消息,该第二消息包括SL逻辑信道标识。
在本场景中,UE1收到基站配置后,可以向基站回复第二消息,用于指示配置完成。故而,UE1还可以在该第二消息中携带步骤2中指示的SL承载配置索引对应的SL逻辑信道标识。
通过步骤603和步骤604,基站通过一条消息完成了配置和查询。
步骤605与实现方式一中的步骤405相同。
本方式二中,针对基站触发双接口配置的场景,通过基站发起查询的方式获取UE1分配的SL逻辑信道标识,并进一步基于该SL逻辑信道标识完成对UE2的配置,从而实现UE1和UE2通过基站进行通信。
3、接收端UE触发双接口配置的实现方式三
在方式一中由UE1发起双接口配置,其中UE1是SL数据的发送端。作为发送端UE,UE1会从基站接收SL承载配置索引,从而建立SL承载,并为SL承载分配SL逻辑信道标识。而作为接收端UE,UE2是在收到UE1的SL数据之后建立的SL承载,并采用接收SL数据时收到的逻辑信道标识。
在本方式三中,由接收端UE,即UE2发起双接口配置,针对以下两种场景。
实现方式三中场景一的步骤如图3d所示。
701和702与实现方式一的401和402相同。
703:UE2向基站发送指示信息。
在本实施例中,UE2决策是否发起双接口配置。示例性的,UE2提前从基站获取规则,例如连续N个数据包丢失,或者固定时长内连续N个数据包丢失,或者固定时长内丢M个数据包等。
UE2向基站发送的指示信息用于指示基站提供双接口配置。
可选的,指示信息中包括UE2监测到的SL服务质量(quality of service,QoS)。
可选的,指示信息中包括单播连接的指示信息。进一步,还可以包括以下至少一种:SL逻辑信道标识,UE1的标识,以及指示PC5和Uu做分流,duplication,或者Uu only。上述标识或指示可以参考方式一中的403。该UE1的标识,例如为UE1的服务小区标识和/或UE1的小区无线网络临时标识(cell radio network temporary identity,C-RNTI)。
可选的,UE2向基站发送的该指示信息可以理解为请求基站提供双接口配置,或者向基站提供辅助信息用于协助基站进行决策。
步骤704~步骤707与实现方式二中的场景一步骤503~步骤506类似。作为替代方案,也可以在查询消息中使用SL逻辑信道标识,而不是SL承载配置索引。通过查询到SL承载配置索引,从而确定承载的QoS要求,完成配置。
实现方式三中场景二的步骤如图3e所示。
801~802与实现方式一中的401~402相同。
803与上述实现方式三中场景一的703相同。
804~806与实现方式二的场景二中步骤603~步骤605类似。类似的,作为替代方案,基站给UE1的配置消息中可以用SL逻辑信道标识来替换SL承载配置索引。
本实现方式三针对接收端UE的需求,通过接收端UE触发双接口配置,并由基站完成接收端UE和发送端UE的配置,实现收发双侧UE通过PC5接口和Uu接口进行通信,提高终端与终端之间通信的可靠性。
4、双接口配置SL组播通信的实现方式四
前面三个实现方式都是以UE1与UE2之间执行SL单播通信为例进行说明的,最终效果是UE1和UE2之间可以通过PC5接口进行单播通信,也可以将该单播连接的数据通过基站进行转发。
而在方式四中将场景扩展到SL组播通信,即UE1需要通过PC5接口向组内多个UE发送SL数据。为了提升组播通信的性能,可以借助基站的Uu接口进行数据传输,因为接收端UE包括多个UE,按照上述三种实现方式,则基站在Uu上通过单播方式需要分别向多个UE转发数据,导致空口开销过大。因此在本方式四中,考虑基站以多播(multicast)方式同时向多个接收端UE转发发送端UE的数据。其中,基站以多播方式发送数据的方式类似LTE系统的多媒体广播多播业务(Multimedia Broadcast Multicast Service,MBMS)或单个小区点到多点(single cell point to multipoint,SC-PTM)机制。
组播通信的协议栈与单播通信的协议栈区别在于基站和接收端UE之间的通信不是基于单播的数据无线承载(data radio bearer,DRB),而是基于组播多播的无线承载(multicast radio bearer,MRB)。
在组播场景中,可以由发送端UE、基站或者接收端UE触发双接口配置。区别在于,基站给接收端UE提供的配置,具体可以包括以下至少一种:
携带组内UE1(即发送端UE)发送数据所使用的目标标识和源标识,替换方式一至方式三中携带的单播连接的标识。
基站为接收端UE提供配置时,除了空口通信时使用的C-RNTI之外,还可以提供接 收空口多播广播数据的标识,例如组无线网络临时标识(group radio network temporary identity,G-RNTI)。可选的,基站还会向UE2提供多播广播数据的空口资源配置。
考虑到一个SL组内有多个UE有数据发送需求,在给接收端UE提供配置时,包括多播广播配置。每套配置对应一个组内发送端UE的指示信息,包括该发送端UE发送数据时使用的目标标识和源标识。
在本方式四中,支持UE通过基站向SL组内的其他UE发送数据,实现SL组播业务的双接口通信,从而提升SL组播通信的吞吐量和可靠性。
如图4所示,为本申请实施例提供的一种通信装置40的硬件结构示意图。该通信装置40包括至少一个处理器401,通信总线402,存储器403以及至少一个通信接口404。
处理器401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线402可包括一通路,在上述组件之间传送信息。
通信接口404,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的应用程序代码,并由处理器401来控制执行。处理器401用于执行存储器403中存储的应用程序代码,从而实现本申请上述实施例提供的通信方法。
或者,可选的,本申请实施例中,也可以是处理器401执行本申请上述实施例提供的通信方法中的处理相关的功能,通信接口404负责与其他设备或网络通信,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置40可以包括多个处理器,例如图4中的处理器401和处理器408。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。可以理解的是,图4仅仅示出了通信装置40的简化设计。在实际应用中,该通信装置可以包含任意数量的输入设备,输 出设备,处理器,存储器,通信接口,该任意数量的通信单元可以单独提供或以组合方式提供上述功能。
在具体实现中,作为一种实施例,通信装置40还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备406和处理器401通信,可以以多种方式接受用户的输入。例如,输入设备406可以是鼠标、键盘、触摸屏设备或传感设备等。
此外,如上所述,本申请实施例提供的通信装置40可以为芯片、终端、基站、CU或DU,或者有图4中类似结构的设备。本申请实施例不限定通信装置40的类型。
图5为本申请实施例提供的通信方法的通信装置500的结构示意图,该通信装置可以为各实施例中的终端、基站、具有终端或基站功能的装置、或芯片,等。以下出现的术语或名词,可以结合上文的描述理解其含义或功能;以下出现的步骤或动作,同样可以结合上文的描述理解其具体细节或实现方式。如图5所示,该通信装置500可以包括:处理单元510和收发单元530。或者,上述通信设备中的收发单元可以包括接收模块和发送模块,其可以基于天线连接。
收发单元530可以用于支持通信设备与网络设备之间收发信息。或者,上述收发单元530可以用于执行上述实施例描述的通信方法中由通信设备或网络设备进行的处理。
在一种可能的设计中,该通信装置可以为终端设备或配置于终端设备中的芯片,以下以第一通信设备或第二通信设备为执行主体进行描述。
在一种可能的实现方式中,第一通信设备向网络设备发送旁链路配置信息和旁链路逻辑信道信息的对应关系;所述第一通信设备接收来自所述网络设备的无线链路配置信息;所述第一通信设备基于所述无线链路配置信息,与第二通信设备进行第一通信。基于该通信方式,可以实现终端与终端之间通信的灵活配置,提升系统适配可能性。
可选的,所述第一通信设备接收来自所述网络设备的所述旁链路配置信息;所述第一通信设备基于所述旁链路配置信息,与所述第二通信设备进行第二通信。因此,通信设备可以获取旁链路配置信息,用于终端与终端之间的SL通信。
可选的,所述第一通信设备向所述网络设备发送指示信息,用于指示与所述第二通信设备的通信基于以下至少一种方式:所述旁链路和所述无线链路上的数据分流;所述旁链路和所述无线链路上的数据复制;完全经由所述无线链路进行通信。因此,通信设备可以自主确定多种通信方式中的一种,降低网络设备的设计复杂度。
可选的,所述第一通信设备向所述网络设备发送指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播、组播或广播。因此,通信设备可以自主确定多种通信方式中的一种,降低网络设备的设计复杂度。
可选的,所述第一通信设备向所述网络设备发送所述第二通信设备的标识。一般而言,上述第二通信设备的标识也可以连同上述指示信息一并发送给网络设备,从而结合通信类型或通信方式,实现灵活通信。
可选的,所述第一通信设备接收来自所述网络设备的第一消息,用于请求所述逻辑信 道信息。
可选的,所述第一消息包括以下至少一种:所述旁链路配置信息;指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播或组播。
可选的,所述无线链路配置信息包括无线链路承载配置信息和所述旁链路逻辑信道信息。
在另一种可能的实现方式中,第二通信设备向网络设备发送指示信息,用于指示所述网络设备提供双接口配置;所述第二通信设备接收来自所述网络设备的无线链路配置信息;所述第二通信设备基于所述无线链路配置信息,与第一通信设备进行第一通信。
可选的,所述指示信息包括以下至少一种:所述旁链路的服务质量;所述旁链路逻辑信道信息;指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播或组播;所述第一通信设备的标识;指示与所述第二通信设备的通信基于以下至少一种方式:所述旁链路和所述无线链路上的数据分流;所述旁链路和所述无线链路上的数据复制;或,完全经由所述无线链路进行通信。
可选的,所述无线链路配置信息包括无线链路承载配置信息和所述旁链路逻辑信道信息。
在另一种可能的设计中,该通信装置可以为网络设备或配置于网络设备中的芯片,以下以网络设备为执行主体进行描述。
在一种可能的实现方式中,网络设备接收来自第一通信设备的旁链路配置信息和旁链路逻辑信道信息的对应关系;所述网络设备向所述第一通信设备和第二通信设备分别发送无线链路配置信息,用于所述第一通信设备与第二通信设备之间的第一通信。
可选的,所述网络设备向所述第一通信设备发送所述旁链路配置信息,用于所述第一通信设备与所述第二通信设备之间的第二通信。
可选的,还包括:所述网络设备接收来自所述第一通信设备的第一指示信息,用于指示所述第一通信设备与所述第二通信设备之间的通信基于以下至少一种方式:所述旁链路和所述无线链路上的数据分流;所述旁链路和所述无线链路上的数据复制;完全经由所述无线链路进行通信。
可选的,还包括:所述网络设备接收来自所述第一通信设备的所述第二通信设备的标识。
可选的,还包括:所述第一通信设备向所述网络设备发送指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播或组播。
可选的,还包括:所述网络设备向所述第一通信设备发送第一消息,用于请求所述逻辑信道信息。
可选的,所述第一消息包括以下至少一种:所述旁链路配置信息;指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播或组播。
可选的,还包括:所述网络设备接收来自所述第二通信设备的第二指示信息,用于指示所述网络设备提供所述旁链路配置信息和所述无线链路配置信息。
可选的,所述第二指示信息包括以下至少一种:所述指示信息,用于指示所述第一通信设备与所述第二通信设备之间的通信类型为单播或组播;所述旁链路配置信息;所述第一通信设备的标识。
可选的,所述第二指示信息,还用于指示所述第一通信设备与所述第二通信设备之间 的通信基于以下至少一种方式:所述旁链路和所述无线链路上的数据分流;所述旁链路和所述无线链路上的数据复制;完全经由所述无线链路进行通信。
可选的,还包括:所述网络设备向所述第二通信设备发送所述第一通信设备向所述第二通信设备发送数据对应的目标标识和源标识。
可选的,所述无线链路配置信息包括无线链路承载配置信息和所述旁链路逻辑信道信息。
在本实施例中,上述通信设备或网络设备以采用集成的方式划分各个功能模块或单元的形式来呈现。这里的“模块”或“单元”可以指特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到装置500可以分别采用图4所示的形式。比如,图5中的收发单元530的功能/实现过程可以通过图4的处理器401和存储器403来实现。具体的,可以通过由处理器401来调用存储器403中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,可选的,图5中的收发单元530的功能/实现过程可以通过图4的处理器401来实现,或通过图4的通信接口404来实现,本申请实施例对此不作任何限制。具体的,可以通过由处理器401来调用存储器403中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
可选的,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持通信设备实现上述的通信方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
用于执行本发明上述基站、终端、基站或终端的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端或基站中。当然,处理器和存储介质也可以作为分立组件存在于终端或基站中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计 算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
上述本发明提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本发明实施例提供的通信方法进行了介绍。可以理解的是,各个网元,例如终端、通信装置等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (31)

  1. 一种通信方法,其特征在于,包括:
    第一通信设备向网络设备发送旁链路配置信息和旁链路逻辑信道信息的对应关系;
    所述第一通信设备接收来自所述网络设备的无线链路配置信息;
    所述第一通信设备基于所述无线链路配置信息,与第二通信设备进行第一通信。
  2. 如权利要求1所述的通信方法,其特征在于,还包括:
    所述第一通信设备接收来自所述网络设备的所述旁链路配置信息;
    所述第一通信设备基于所述旁链路配置信息,与所述第二通信设备进行第二通信。
  3. 如权利要求1或2所述的通信方法,其特征在于,还包括:
    所述第一通信设备向所述网络设备发送指示信息,用于指示与所述第二通信设备的通信基于以下至少一种方式:
    所述旁链路和所述无线链路上的数据分流;
    所述旁链路和所述无线链路上的数据复制;
    完全经由所述无线链路进行通信。
  4. 如权利要求1至3任一项所述的通信方法,其特征在于,还包括:
    所述第一通信设备向所述网络设备发送所述第二通信设备的标识。
  5. 如权利要求1至4任一项所述的通信方法,其特征在于,还包括:
    所述第一通信设备向所述网络设备发送指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播、组播、或广播。
  6. 如权利要求1所述的通信方法,其特征在于,还包括:
    所述第一通信设备接收来自所述网络设备的第一消息,用于请求所述逻辑信道信息。
  7. 如权利要求6所述的通信方法,其特征在于:
    所述第一消息包括以下至少一种:
    所述旁链路配置信息;
    指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播、组播、或广播。
  8. 如权利要求1至7任一项所述的通信方法,其特征在于:
    所述无线链路配置信息包括无线链路承载配置信息和所述旁链路逻辑信道信息。
  9. 一种通信方法,其特征在于,包括:
    网络设备接收来自第一通信设备的旁链路配置信息和旁链路逻辑信道信息的对应关系;
    所述网络设备向所述第一通信设备和第二通信设备分别发送无线链路配置信息,用于所述第一通信设备与第二通信设备之间的第一通信。
  10. 如权利要求9所述的通信方法,其特征在于,还包括:
    所述网络设备向所述第一通信设备发送所述旁链路配置信息,用于所述第一通信设备与所述第二通信设备之间的第二通信。
  11. 如权利要求9或10所述的通信方法,其特征在于,还包括:
    所述网络设备接收来自所述第一通信设备的第一指示信息,用于指示所述第一通信设备与所述第二通信设备之间的通信基于以下至少一种方式:
    所述旁链路和所述无线链路上的数据分流;
    所述旁链路和所述无线链路上的数据复制;
    完全经由所述无线链路进行通信。
  12. 如权利要求9至11任一项所述的通信方法,其特征在于,还包括:
    所述网络设备接收来自所述第一通信设备的所述第二通信设备的标识。
  13. 如权利要求9至12任一项所述的通信方法,其特征在于,还包括:
    所述第一通信设备向所述网络设备发送指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播、组播、或广播。
  14. 如权利要求9所述的通信方法,其特征在于,还包括:
    所述网络设备向所述第一通信设备发送第一消息,用于请求所述逻辑信道信息。
  15. 如权利要求14所述的通信方法,其特征在于:
    所述第一消息包括以下至少一种:
    所述旁链路配置信息;
    指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播、组播、或广播。
  16. 如权利要求9所述的通信方法,其特征在于,还包括:
    所述网络设备接收来自所述第二通信设备的第二指示信息,用于指示所述网络设备提供所述旁链路配置信息和所述无线链路配置信息。
  17. 如权利要求16所述的通信方法,其特征在于:
    所述第二指示信息包括以下至少一种:
    所述指示信息,用于指示所述第一通信设备与所述第二通信设备之间的通信类型为单播、组播、或广播;
    所述旁链路配置信息;
    所述第一通信设备的标识。
  18. 如权利要求16或17所述的通信方法,其特征在于:
    所述第二指示信息,还用于指示所述第一通信设备与所述第二通信设备之间的通信基于以下至少一种方式:
    所述旁链路和所述无线链路上的数据分流;
    所述旁链路和所述无线链路上的数据复制;
    完全经由所述无线链路进行通信。
  19. 如权利要求16至18任一项所述的通信方法,其特征在于,还包括:
    所述网络设备向所述第二通信设备发送所述第一通信设备向所述第二通信设备发送数据对应的目标标识和源标识。
  20. 如权利要求9至19任一项所述的通信方法,其特征在于:
    所述无线链路配置信息包括无线链路承载配置信息和所述旁链路逻辑信道信息。
  21. 一种通信方法,其特征在于,包括:
    第二通信设备向网络设备发送指示信息,用于指示所述网络设备提供双接口配置;
    所述第二通信设备接收来自所述网络设备的无线链路配置信息;
    所述第二通信设备基于所述无线链路配置信息,与第一通信设备进行第一通信。
  22. 如权利要求21所述的通信方法,其特征在于:
    所述指示信息包括以下至少一种:
    所述旁链路的服务质量;
    所述旁链路逻辑信道信息;
    指示信息,用于指示所述第一通信设备与所述第二通信设备的通信类型为单播、组播、或广播;
    所述第一通信设备的标识;
    指示与所述第二通信设备的通信基于以下至少一种方式:所述旁链路和所述无线链路上的数据分流;所述旁链路和所述无线链路上的数据复制;或,完全经由所述无线链路进行通信。
  23. 如权利要求21或22任一项所述的通信方法,其特征在于:
    所述无线链路配置信息包括无线链路承载配置信息和所述旁链路逻辑信道信息。
  24. 一种装置,用于执行如权利要求1至23项任一项所述的方法。
  25. 一种装置,其特征在于,所述装置包括处理器、存储器以及存储在存储器上并可在处理器上运行的指令,当所述指令被运行时,使得所述装置执行如权利要求1至8项、或21-23项任一项所述的方法。
  26. 一种装置,其特征在于,所述装置包括处理器、存储器以及存储在存储器上并可在处理器上运行的指令,当所述指令被运行时,使得所述装置执行如权利要求9至20项任一项所述的方法。
  27. 一种终端,其特征在于,包括如权利要求25所述的装置。
  28. 一种基站,其特征在于,包括如权利要求26所述的装置。
  29. 一种通信系统,其特征在于包括如权利要求27所述的终端以及如权利要求28所述的基站。
  30. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至23任一项所述的方法。
  31. 一种计算机程序产品,当其在计算机上运行时,使得计算机执行权利要求1至23任一项所述的方法。
PCT/CN2020/118858 2020-09-29 2020-09-29 通信方法及通信设备 WO2022067512A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/118858 WO2022067512A1 (zh) 2020-09-29 2020-09-29 通信方法及通信设备
CN202080105564.5A CN116326027A (zh) 2020-09-29 2020-09-29 通信方法及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118858 WO2022067512A1 (zh) 2020-09-29 2020-09-29 通信方法及通信设备

Publications (1)

Publication Number Publication Date
WO2022067512A1 true WO2022067512A1 (zh) 2022-04-07

Family

ID=80949259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118858 WO2022067512A1 (zh) 2020-09-29 2020-09-29 通信方法及通信设备

Country Status (2)

Country Link
CN (1) CN116326027A (zh)
WO (1) WO2022067512A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662299A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 通信方法、装置及存储介质
CN111436079A (zh) * 2019-01-11 2020-07-21 华硕电脑股份有限公司 用于无线通信中的侧链路资源分配模式配置的方法及设备
CN111565416A (zh) * 2019-02-13 2020-08-21 华为技术有限公司 无线通信的方法、用户设备、网络设备及通信装置
EP3709760A1 (en) * 2019-03-14 2020-09-16 ASUSTek Computer Inc. Method and apparatus for sidelink logical channel establishment in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662299A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 通信方法、装置及存储介质
CN111436079A (zh) * 2019-01-11 2020-07-21 华硕电脑股份有限公司 用于无线通信中的侧链路资源分配模式配置的方法及设备
CN111565416A (zh) * 2019-02-13 2020-08-21 华为技术有限公司 无线通信的方法、用户设备、网络设备及通信装置
EP3709760A1 (en) * 2019-03-14 2020-09-16 ASUSTek Computer Inc. Method and apparatus for sidelink logical channel establishment in a wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE ET AL.: "Consideration on QoS management for NR V2X", 3GPP TSG-RAN WG2 #104 R2-1816988, 16 November 2018 (2018-11-16), XP051480919 *

Also Published As

Publication number Publication date
CN116326027A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2021159906A1 (zh) sidelink中继通信方法、装置、设备及介质
US11438941B2 (en) Communication method and communications apparatus
WO2020020209A1 (zh) 一种通信方法及装置
US20200221538A1 (en) Data transmission method, terminal device, and network device
WO2021128746A1 (zh) 通信方法及装置
WO2020164443A1 (zh) 单播传输的方法和通信装置
EP3952398B1 (en) Radio bearer configuration method, apparatus and system
WO2020143690A1 (zh) 一种无线承载的配置方法、终端及通信装置
WO2019196748A1 (zh) 一种数据传输方法和装置
WO2023001307A1 (zh) 旁链路通信方法及设备
US11259362B2 (en) Method for repeatedly transmitting data and device
US11418925B2 (en) Communication method and apparatus
WO2022082754A1 (zh) 一种通信方法及装置
WO2019158058A1 (zh) 通信方法、第一终端设备和第二终端设备
US20220408342A1 (en) Relay Method, Method for Generating Routing Table, and Device
WO2021244299A1 (zh) 通信方法及通信设备
WO2020200043A1 (zh) 通信方法和通信装置
WO2023030088A1 (zh) 旁链路通信方法及设备
WO2022067512A1 (zh) 通信方法及通信设备
WO2021249425A1 (zh) 一种通信方法及相关装置
WO2022082798A1 (zh) 通信方法及装置
CN113747367B (zh) 一种通信方法及通信装置
WO2021163832A1 (zh) 数据传输的方法和装置
WO2019033416A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023185956A1 (zh) 基于侧行链路的通信方法、装置、存储介质和芯片系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955538

Country of ref document: EP

Kind code of ref document: A1