WO2022065964A1 - Heat pump - Google Patents

Heat pump Download PDF

Info

Publication number
WO2022065964A1
WO2022065964A1 PCT/KR2021/013175 KR2021013175W WO2022065964A1 WO 2022065964 A1 WO2022065964 A1 WO 2022065964A1 KR 2021013175 W KR2021013175 W KR 2021013175W WO 2022065964 A1 WO2022065964 A1 WO 2022065964A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
pipe
refrigerant
heat exchanger
temperature
Prior art date
Application number
PCT/KR2021/013175
Other languages
French (fr)
Korean (ko)
Inventor
오승택
신정섭
강수진
전봉길
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2022065964A1 publication Critical patent/WO2022065964A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a heat pump.
  • the present disclosure relates to a heat pump capable of preventing an excessive increase in the temperature of a refrigerant discharged from a compressor and increasing a refrigerant circulation amount.
  • a heat pump refers to a device that cools and cools a room through the process of compression, condensation, expansion, and evaporation of a refrigerant. If the outdoor heat exchanger of the heat pump functions as a condenser, but the indoor heat exchanger functions as an evaporator, the room may be cooled. Conversely, when the outdoor heat exchanger of the heat pump functions as an evaporator, but the indoor heat exchanger functions as a condenser, the room may be heated.
  • the compressor operates at a high compression ratio and the temperature of the refrigerant discharged from the compressor may increase excessively.
  • internal components of the compressor may be damaged, and the amount of refrigerant circulation may be reduced, and thus heating performance may be deteriorated.
  • Japanese Patent Laid-Open No. 28166706 discloses a technique of injecting a refrigerant into a compressor after supercooling some of the refrigerant that has passed through a condenser. can be a huge burden on
  • Japanese Laid-Open Patent Publication No. 21243793 discloses a technique of supercooling by heat-exchanging a gaseous refrigerant sucked into a compressor with a first expanded liquid refrigerant through a condenser outlet, but re-evaporated refrigerant In the process of liquefaction, cycle performance is expected to decrease, and there is a problem in that the material cost increases due to the additional configuration.
  • the present disclosure aims to solve the above and other problems.
  • Another object may be to provide a heat pump capable of preventing an excessive increase in the temperature of the refrigerant discharged from the compressor.
  • Another object may be to provide a heat pump capable of preventing deterioration of heating performance by increasing the amount of refrigerant circulating through a refrigerant pipe in a cold region environment.
  • Another object may be to provide a heat pump capable of preventing damage due to liquid compression of the compressor by controlling the dryness of the refrigerant injected into the compressor to a certain level or more.
  • Another object may be to provide a heat pump capable of improving the compression ratio between the high-pressure stage and the low-pressure stage of the compressor by increasing the pressure of the refrigerant injected into the compressor to a certain level or more.
  • a compressor for compressing the refrigerant; a heat exchanger through which the refrigerant discharged from the compressor can be introduced and having a first heat exchanger and a second heat exchanger; a switching valve selectively guiding the refrigerant discharged from the compressor to the first heat exchanger or the second heat exchanger; a main expansion valve installed in a main pipe connecting the first heat exchanger and the second heat exchanger to expand the refrigerant flowing through the flow path of the main pipe; an injection pipe having one end connected to the main pipe between the first heat exchanger and the main expansion valve and the other end connected to the compressor; an injection valve installed on the injection pipe to control an opening degree of a flow path of the injection pipe; and a supercooler installed in the main pipe between one end of the injection pipe and the main expansion valve, wherein the main pipe includes a first heat exchange pipe positioned inside the supercooler, and the injection pipe includes the It is located inside the supercooler and provides a heat pump including
  • a heat pump capable of preventing an excessive increase in the temperature of the refrigerant discharged from the compressor.
  • a heat pump capable of preventing deterioration of heating performance by increasing the amount of refrigerant circulating through a refrigerant pipe in a cold region environment.
  • a heat pump capable of preventing damage due to liquid compression of the compressor by controlling the dryness of the refrigerant injected into the compressor to a certain level or more.
  • a heat pump capable of improving the compression ratio between the high-pressure stage and the low-pressure stage of the compressor by increasing the pressure of the refrigerant injected into the compressor to a certain level or more.
  • FIG. 1 is a diagram illustrating a configuration of a heat pump according to an embodiment of the present disclosure and a flow of a refrigerant while performing a heating operation.
  • FIG. 2 is a diagram illustrating a configuration of a heat pump and a flow of a refrigerant while performing a cooling operation according to an embodiment of the present disclosure.
  • FIG. 3 is a control system diagram of a heat pump according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating a configuration of a heat pump and a flow of a refrigerant while performing a flash gas injection operation according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a flowchart illustrating a control method for switching from a heating operation to a flash gas injection operation of a heat pump according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart illustrating a method of determining whether a flash gas injection condition is satisfied according to an example of the present disclosure.
  • FIG. 7 is a flowchart illustrating a method of determining whether a flash gas injection condition is satisfied according to another example of the present disclosure.
  • FIG. 8 is a flowchart illustrating a method for controlling a flash gas injection operation of a heat pump according to an exemplary embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating a configuration of a heat pump according to an embodiment of the present disclosure and a flow of a refrigerant while a high-efficiency operation is performed.
  • FIG. 10 is a flowchart illustrating a method for controlling a high-efficiency operation of a heat pump according to an exemplary embodiment of the present disclosure.
  • the heat pump 1 includes a compressor 2 , a switching valve 3 , a first heat exchanger 4 , a second heat exchanger 5 , an accumulator 6 , an expansion valve E, It may include a subcooler (7), a pump (8) and a radiator (9).
  • the compressor 2 may compress the refrigerant flowing in from the accumulator 6 to discharge the refrigerant of high temperature and high pressure.
  • the accumulator 6 may provide the gaseous refrigerant to the compressor 2 through the first pipe P1 .
  • the second pipe P2 may be installed between the compressor 2 and the switching valve 3 to provide a flow path of the refrigerant from the compressor 2 to the switching valve 3 .
  • the compressor 2 may be an inverter compressor capable of controlling the amount of refrigerant and the discharge pressure of the refrigerant by adjusting the operating frequency.
  • the refrigerant may be an R32 refrigerant.
  • the switching valve 3 the refrigerant discharged from the compressor 2 and passing through the second pipe P2 may be introduced.
  • the switching valve 3 switches the flow path according to the operation mode of the heat pump, and selects the refrigerant introduced by spitting the second pipe P2 to the first heat exchanger 4 or the second heat exchanger 5 .
  • the switching valve 3 may be a four-way valve.
  • the sixth pipe P6 may be installed between the switching valve 3 and the accumulator 6 to provide a flow path of the refrigerant from the switching valve 3 to the accumulator 6 .
  • the first heat exchanger 4 may exchange heat between the refrigerant and the heat transfer medium.
  • the heat transfer direction between the refrigerant and the heat transfer medium in the first heat exchanger 4 may be different depending on the operation mode of the heat pump.
  • the third pipe (P3) is installed between the switching valve (3) and the first heat exchanger (4), it can provide a flow path of the refrigerant connecting the switching valve (3) and the first heat exchanger (4). .
  • the heat transfer medium is room air, and heat exchange may be performed between the refrigerant and the room air in the first heat exchanger 4 .
  • an indoor fan (not shown) may be disposed on one side of the first heat exchanger 4 to control the amount of air provided to the first heat exchanger 4 .
  • the heat transfer medium is water
  • heat exchange may be performed between the refrigerant and water in the first heat exchanger 4 .
  • the water that has passed through the first heat exchanger 4 is supplied to the radiator 9 installed in the room or a pipe installed on the floor to cool the indoor space, or to heat or cool water stored in a hot water tank (not shown). It can be used to supply hot or cold water to the room.
  • the heat pump 1 may be referred to as an air-to-water heat pump (AWHP).
  • the first heat exchanger 4 may be referred to as a water-refrigerant heat exchanger.
  • the heat pump 1 may include a pump 8 and a radiator 9 .
  • the radiator 9 may be installed indoors, and heated or cooled water may be introduced while passing through the first heat exchanger 4 .
  • heated water passes through the radiator 9 and radiates heat to the surroundings, so that the indoor space can be heated.
  • the cooled water passes through the radiator 9 and absorbs heat from the surroundings, so that the indoor space can be cooled.
  • the heat pump 1 may be provided with a water pipe or FCU (Fan Coil Unit) installed on the floor of the room instead of or together with the radiator 9 .
  • the first water pipe Q1 may be installed between the pump 8 and the first heat exchanger 4 to provide a flow path of the refrigerant connecting the pump 8 and the first heat exchanger 4 .
  • the second water pipe Q2 may be installed between the first heat exchanger 4 and the radiator 9 to provide a water passage connecting the first heat exchanger 4 and the radiator 9 .
  • the third water pipe Q3 may be installed between the radiator 9 and the pump 8 to provide a water passage connecting the radiator 9 and the pump 8 .
  • the second heat exchanger 5 may exchange heat between the refrigerant and the heat transfer medium.
  • the heat transfer direction between the refrigerant and the heat transfer medium in the second heat exchanger 5 may be different depending on the operation mode of the heat pump. Meanwhile, the second heat exchanger 5 may be referred to as an outdoor heat exchanger.
  • the heat transfer medium is outdoor air, and heat exchange may be performed between the refrigerant and outdoor air in the second heat exchanger 5 .
  • an outdoor fan (not shown) may be disposed on one side of the second heat exchanger 5 to control the amount of air provided to the second heat exchanger 5 .
  • the fifth pipe (P5) is installed between the switching valve (3) and the second heat exchanger (5), it can provide a flow path of the refrigerant connecting the switching valve (3) and the second heat exchanger (5). .
  • the expansion valve (E) may include a first expansion valve (E1) and a second expansion valve (E2).
  • the first expansion valve E1 and the second expansion valve E2 may be installed on the fourth pipe P4 to adjust the degree of opening of the flow path of the fourth pipe P4 .
  • the fourth pipe (P4) is installed between the first heat exchanger (4) and the second heat exchanger (5), the refrigerant flow path connecting the first heat exchanger (4) and the second heat exchanger (5) can provide Meanwhile, the fourth pipe P4 may be referred to as a main pipe.
  • the first expansion valve (E1) is disposed closer to the first heat exchanger (4) than the second heat exchanger (5), and the second expansion valve (E2) is second to the first heat exchanger (4). It may be disposed close to the heat exchanger 5 .
  • the first expansion valve E1 and the second expansion valve E2 may be Electronic Expansion Valves (EEVs). Meanwhile, the first expansion valve E1 may be referred to as a sub-expansion valve, and the second expansion valve E2 may be referred to as a main expansion valve.
  • the supercooler 7 may be installed in the fourth pipe P4 between the first expansion valve E1 and the second expansion valve E2 .
  • the first heat exchange pipe P4a and the second heat exchange pipe P7a may be positioned inside the supercooler 7 .
  • the first heat exchange pipe P4a and the second heat exchange pipe P7a may be adjacent to each other.
  • the first heat exchange pipe P4a and the second heat exchange pipe P7a may face each other.
  • the first heat exchange pipe P4a may be a part of the fourth pipe P4 described above, and the second heat exchange pipe P7a may be a part of a seventh pipe P7 to be described later.
  • one end of the seventh pipe (P7) is connected to the first point (a1) of the fourth pipe (P4) between the first expansion valve (E1) and the supercooler (7), the seventh pipe (P7) The other end may be connected to the compressor (2).
  • the seventh pipe P7 may be referred to as an injection pipe.
  • the injection valve V1 may be installed in the seventh pipe P7 to adjust the opening degree of the flow path of the seventh pipe P7 .
  • the second heat exchange pipe P7a may be located between the injection valve V1 and the other end of the seventh pipe P7.
  • the injection valve V1 may be a solenoid valve or an Electronic Expansion Valve (EEV).
  • the eighth pipe P8 may provide a flow path for guiding the refrigerant discharged from the compressor 2 to the seventh pipe P7 .
  • one end of the eighth pipe (P8) is connected to the second point (a2) of the second pipe (P2) between the compressor (2) and the switching valve (3), and the other end of the eighth pipe (P8) is It may be connected to the third point a3 of the seventh pipe P7 between the supercooler 7 and the compressor 2 .
  • the eighth pipe P8 may be referred to as a bypass pipe.
  • bypass valve V2 is installed in the eighth pipe P8 to adjust the opening degree of the flow path of the eighth pipe P8.
  • the bypass valve V2 may be a solenoid valve or an Electronic Expansion Valve (EEV).
  • the controller C (not shown) may control the operation of the heat pump 1 .
  • the control unit C may be electrically connected to each component of the heat pump 1 .
  • the control unit C may control each configuration of the heat pump 1 according to the operation mode of the heat pump 1 .
  • the heat pump 1 as an AWHP will be described as an example, but the type of heat pump applicable to the present disclosure is not limited thereto, and the refrigerant and the indoor air in the first heat exchanger 4 are The type of heat pump with which the is heat-exchanged can also be applied to the present disclosure.
  • the controller C may control the operation of the heat pump 1 to perform a heating operation or a cooling operation.
  • the control unit C adjusts the flow path of the switching valve 3 so that the refrigerant discharged from the compressor 2 is transferred to the first heat exchanger 4 .
  • the first expansion valve E1 may be fully opened, but the second expansion valve E2 may be opened at an initial opening degree.
  • the control unit C may close the injection valve V1 and the bypass valve V2.
  • the control unit (C) may drive the compressor (2) to circulate the refrigerant in the refrigerant pipe (P), and drive the pump (8) to circulate water in the water pipe (Q).
  • the heating operation signal may be a signal arbitrarily input by the user.
  • the heating operation signal is provided to the controller C by a thermostat provided in the indoor space when the indoor temperature sensed by the indoor temperature sensor is lower than the desired temperature set by the user by a certain level or more. It may be a signal to
  • the low-temperature, low-pressure refrigerant flowing into the compressor 2 from the accumulator 6 through the first pipe P1 may be compressed in the compressor 2 and discharged in a high-temperature and high-pressure state.
  • the refrigerant discharged from the compressor 2 may flow into the first heat exchanger 4 through the second pipe P2 , the switching valve 3 , and the third pipe P3 in sequence.
  • water may be introduced from the pump 8 into the first heat exchanger 4 through the first water pipe Q1 .
  • the refrigerant may be condensed.
  • the first heat exchanger 4 may function as a condenser.
  • the temperature of the water introduced into the first heat exchanger 4 through the first water pipe Q1 may be increased.
  • Water heated while passing through the first heat exchanger 4 may flow into the radiator 9 through the second water pipe Q2 to heat the indoor space.
  • the water passing through the radiator 9 and the temperature is lowered may return to the pump 8 through the third water pipe (Q3).
  • the first heat exchanger 4 may be a plate heat exchanger including a plurality of heat transfer plates stacked on each other.
  • the refrigerant and water may flow through a flow path formed between the plurality of heat transfer plates and exchange heat with each other in a non-contact manner.
  • the first heat exchanger 4 may be a water tank in which a port through which water is introduced or discharged is formed. In this case, water is stored in the water tank, and a pipe through which a refrigerant flows is provided in a coil shape along an outer circumferential surface of the water tank, so that the refrigerant and water can exchange heat with each other in a non-contact manner.
  • the refrigerant condensed while passing through the first heat exchanger 4 may pass through the fourth pipe P4 .
  • the first expansion valve E1 may be completely opened, so that the refrigerant passing through the first expansion valve E1 may not be expanded.
  • the second expansion valve E2 may be opened to a predetermined opening degree to expand the refrigerant passing through the second expansion valve E2 .
  • the refrigerant expanded through the second expansion valve E2 may be introduced into the second heat exchanger 5 through the distributor 5a.
  • the refrigerant may be evaporated.
  • the second heat exchanger 5 may be referred to as an evaporator.
  • the refrigerant evaporated through the second heat exchanger (5) is the header (5b), the fifth pipe (P5), the switching valve (3), the sixth pipe (P6), the accumulator (6), and the first pipe (P1) It may be introduced into the compressor (2) through in turn. Accordingly, the cycle for the heating operation of the above-described heat pump can be completed.
  • the controller C adjusts the flow path of the switching valve 3 so that the refrigerant discharged from the compressor 2 is transferred to the second heat exchanger 5 . , and the second expansion valve E2 is fully opened, but the first expansion valve E1 may be opened at an initial opening degree.
  • the control unit C may close the injection valve V1 and the bypass valve V2.
  • the control unit (C) may drive the compressor (2) to circulate the refrigerant in the refrigerant pipe (P), and drive the pump (8) to circulate water in the water pipe (Q).
  • the cooling operation signal may be a signal arbitrarily input by the user.
  • the cooling operation signal is provided to the controller C by a thermostat provided in the indoor space when the indoor temperature detected by the indoor temperature sensor is higher than the desired temperature set by the user. It may be a signal to
  • the low-temperature, low-pressure refrigerant flowing into the compressor 2 from the accumulator 6 through the first pipe P1 may be compressed in the compressor 2 and discharged in a high-temperature and high-pressure state.
  • the refrigerant discharged from the compressor 2 may be introduced into the second heat exchanger 5 through the second pipe P2 , the switching valve 3 , the fifth pipe P5 and the header 5b in sequence.
  • the refrigerant may be condensed.
  • the second heat exchanger 5 may function as a condenser.
  • the refrigerant condensed while passing through the second heat exchanger 5 may pass through the fourth pipe P4.
  • the second expansion valve E2 may be completely opened, so that the refrigerant passing through the second expansion valve E2 may not be expanded.
  • the first expansion valve E1 may be opened to a predetermined opening degree to expand the refrigerant passing through the first expansion valve E1.
  • the refrigerant expanded through the first expansion valve E1 may be introduced into the first heat exchanger 4 .
  • water may be introduced from the pump 8 into the first heat exchanger 4 through the first water pipe Q1 .
  • the refrigerant may be evaporated.
  • the first heat exchanger 4 may function as an evaporator.
  • the temperature of the water introduced into the first heat exchanger 4 through the first water pipe Q1 may be decreased.
  • Water cooled while passing through the first heat exchanger 4 may flow into the radiator 9 through the second water pipe Q2 to cool the indoor space.
  • the water passing through the radiator 9 and having an increased temperature may return to the pump 8 through the third water pipe Q3.
  • the refrigerant evaporated while passing through the first heat exchanger 4 passes through the third pipe P3, the switching valve 3, the sixth pipe P6, the accumulator 6, and the first pipe P1 in order. may be introduced into the compressor (2). Accordingly, the cycle for the cooling operation of the above-described heat pump may be completed.
  • control unit (C) is electrically connected to the temperature sensor (Sa) and the pressure sensor (Sb), information about the temperature or pressure of the refrigerant flowing through the refrigerant pipe (P) of the heat pump (1) can be obtained.
  • control unit (C) is electrically connected to the above-described compressor (2), the switching valve (3), the first expansion valve (E1), the second expansion valve (E2), the injection valve (V1) and the bypass valve (V2). connected to each other to control their respective operations.
  • the temperature sensor Sa may include a first temperature sensor Sa1, a second temperature sensor Sa2, a third temperature sensor Sa3, a fourth temperature sensor Sa4, a fifth temperature sensor Sa5 and At least one of the sixth temperature sensors Sa6 may be included.
  • the first temperature sensor Sa1 may be installed in the first pipe P1 to detect the temperature of the refrigerant sucked into the compressor 2 .
  • the second temperature sensor Sa2 may be installed in the second pipe P2 to detect the temperature of the refrigerant discharged from the compressor 2 .
  • the third temperature sensor Sa3 may be installed in the first heat exchanger 4 to detect the temperature of the refrigerant passing through the first heat exchanger 4 .
  • the fourth temperature sensor Sa4 may be installed in the second heat exchanger 5 to detect the temperature of the refrigerant passing through the second heat exchanger 5 .
  • the fifth temperature sensor Sa5 is installed in the seventh pipe P7 between the injection valve V1 and the supercooler 7 to detect the temperature of the refrigerant flowing into the second heat exchange pipe P7a.
  • the sixth temperature sensor Sa6 may be installed in the seventh pipe P7 between the supercooler 7 and the compressor 2 to detect the temperature of the refrigerant passing through the second heat exchange pipe P7a.
  • the pressure sensor Sb may include at least one of a first pressure sensor Sb1 , a second pressure sensor Sb2 , a third pressure sensor Sb3 , and a fourth pressure sensor Sb4 .
  • the first pressure sensor Sb1 may be installed in the first pipe P1 to detect the pressure of the refrigerant sucked into the compressor 2 .
  • the second pressure sensor Sb2 may be installed in the third pipe P3 to sense the pressure of the refrigerant passing through the third pipe P3 .
  • the third pressure sensor Sb3 may be installed in the fifth pipe P5 to detect the pressure of the refrigerant passing through the fifth pipe P5.
  • the fourth pressure sensor Sb4 may be installed in the seventh pipe P7 between the injection valve V1 and the supercooler 7 to detect the pressure of the refrigerant passing through the injection valve V1 .
  • the controller C may or may not inject the flash gas into the compressor 2 by determining whether the flash gas injection condition is satisfied during the heating operation.
  • the control unit (C) fully opens the first expansion valve (E1) and opens the second expansion valve (E2) to the initial opening degree,
  • the injection valve V1 and the bypass valve V2 may be closed (S11).
  • the control unit C may drive the compressor 2 (S12) to perform a heating operation of the heat pump.
  • the controller C may determine whether the flash gas injection condition is satisfied (S20).
  • the flash gas refers to a refrigerant of two phases, which will be described in more detail later.
  • the controller C may control the flash gas to be injected into the compressor 2 (S30). If the flash gas injection condition is not satisfied in S20 (No in S20), the controller C may maintain a state in which the flash gas is not injected into the compressor 2 (S40).
  • whether the flash gas injection condition is satisfied in the aforementioned S20 may be determined based on the compressor suction superheat degree.
  • the controller C may obtain information about the compressor suction temperature Ti, which is the temperature of the refrigerant sucked into the compressor 2 from the first temperature sensor Sa1 (S21). Then, the control unit C may obtain information on the evaporation temperature Te, which is the saturation temperature of the refrigerant evaporated in the second heat exchanger 5 functioning as an evaporator, from the fourth temperature sensor Sa4 (S22) .
  • the controller C may determine whether the compressor suction superheat, which is the difference between the compressor suction temperature Ti and the evaporation temperature Te, is less than the first reference temperature a1 ( S23 ).
  • the first reference temperature a1 may be 0 °C.
  • the compressor suction temperature Ti is smaller than the evaporation temperature Te, the heat pump is operated in a cold region environment, the amount of refrigerant sucked into the compressor 2 is insufficient, and the compressor 2 has a high compression ratio. The operation may cause a problem in that the temperature of the refrigerant discharged from the compressor 2 is excessively increased.
  • whether the flash gas injection condition is satisfied in the aforementioned S20 may be determined based on the compressor discharge superheat degree.
  • the controller C may obtain information about the compressor discharge temperature To, which is the temperature of the refrigerant discharged from the compressor 2, from the second temperature sensor Sa2 (S21'). Then, the control unit C may obtain information about the condensation temperature Tc, which is the saturation temperature of the refrigerant condensed in the first heat exchanger 4 functioning as a condenser from the third temperature sensor Sa3 (S22') ).
  • the controller C may determine whether the compressor discharge superheat, which is the difference between the compressor discharge temperature To and the condensing temperature Tc, exceeds the second reference temperature a2 ( S23 ′).
  • the second reference temperature a2 may be a temperature of 10 to 30 °C. In this case, a problem in that the temperature of the refrigerant discharged from the compressor 2 is excessively high may occur.
  • the controller C may control the flash gas to be injected into the compressor 2 .
  • the controller C may open the injection valve V1 to the initial opening degree (S31) and decrease the opening degree of the second expansion valve E2 (S32).
  • the injection refrigerant which is a part of the refrigerant flowing through the flow path of the fourth pipe P4 may be bypassed from the first point a1 to the seventh pipe P7 (see FIG. 4 ).
  • the injection refrigerant may be expanded while passing through the injection valve V1 and may pass through the supercooler 7 through the second heat exchange pipe P7a.
  • the main refrigerant which is the remaining refrigerant except for the injection refrigerant, among refrigerants flowing through the flow path of the fourth pipe P4 may pass through the supercooler 7 through the first heat exchange pipe P4a.
  • the supercooler 7 thermal energy is transferred from the main refrigerant flowing through the first heat exchange pipe P4a to the injection refrigerant flowing through the second heat exchange pipe P7a, and the main refrigerant is supercooled , at least a portion of the injection refrigerant may be evaporated.
  • the injection refrigerant that has passed through the supercooler 7 may be injected into the compressor 2 .
  • the injection refrigerant may be injected into the compressor 2 at an intermediate pressure corresponding to a pressure between the pressure of the refrigerant sucked into the compressor 2 and the pressure of the refrigerant discharged from the compressor 2 .
  • the injection refrigerant injected into the compressor 2 may be a flash gas as a two-phase refrigerant.
  • the supercooled refrigerant is injected into the compressor (2), damage to the compressor (2) by droplets is concerned, and when the overheated refrigerant is injected into the compressor (2), the temperature of the refrigerant discharged from the compressor (2) It can be difficult to lower.
  • the injection refrigerant is injected into the compressor 2 as a flash gas, the injection refrigerant will be vaporized while flowing into the compression chamber, so that the risk of damage to the compressor by the above-mentioned droplets can be reduced.
  • the amount of refrigerant sucked into the compressor 2 may be increased and the temperature of the refrigerant discharged from the compressor 2 may be lowered.
  • the control unit C may obtain information about the compressor discharge temperature To, which is the temperature of the refrigerant discharged from the compressor 2 , from the second temperature sensor Sa2 ( S33 ). Then, the controller C may determine whether the compressor discharge temperature To is less than the target discharge temperature Ttarget (S34).
  • the target discharge temperature Ttarget is a temperature determined in response to a demand load of the heat pump 1 or the compressor 2 , and may increase in proportion to the demand load.
  • the target discharge temperature Ttarget may be 75°C.
  • the controller C may return to S32. Accordingly, while the opening degree of the injection valve V1 is maintained, the opening degree of the second expansion valve E2 is reduced than before, so that the amount of refrigerant bypassed from the first point a1 to the seventh pipe P7 is increased. can be increased. As a result, the amount of the injected refrigerant injected into the compressor (2) increases, so that the temperature of the refrigerant discharged from the compressor (2) can be lowered.
  • the controller C may determine whether the compressor discharge temperature To is less than the minimum temperature Tm ( S35).
  • the minimum temperature Tm is a temperature determined in response to a required load of the heat pump 1 or the compressor 2 , and may be defined as a minimum temperature for achieving the required load.
  • the minimum temperature Tm may be 1 to 3°C smaller than the target discharge temperature Ttarget.
  • the controller C may return to S33. Accordingly, the opening degree of the injection valve V1 and the opening degree of the second expansion valve E2 are maintained, so that the same flash gas injection as before can be performed.
  • the controller C may increase the opening degree of the second expansion valve E2. Accordingly, while the opening degree of the injection valve V1 is maintained, the opening degree of the second expansion valve E2 is increased than before, so that the amount of refrigerant bypassed from the first point a1 to the seventh pipe P7 is increased. can be reduced. As a result, the amount of the injected refrigerant injected into the compressor (2) is reduced, so that the temperature of the refrigerant discharged from the compressor (2) can be increased.
  • the controller C adjusts the opening degree of the bypass valve V2 according to the required load of the heat pump 1 , and the refrigerant discharged from the compressor 2 . It can be controlled so that a part of it is injected into the compressor (2) together with the injection refrigerant that has passed through the above-described supercooler (7).
  • the control unit C may determine whether the required load of the heat pump 1 exceeds the reference load (S50).
  • S50 is the compressor (2) to satisfy the indoor heating requirements (ie, heating temperature), such as when the outside air is minus 35 ° C or the target discharge temperature of the refrigerant discharged from the compressor 2 is 75 ° C or higher. This can be satisfied when it is necessary to compress the refrigerant at a high compression ratio.
  • the bypass valve V2 may be opened at a predetermined opening according to the size of the required load to be described later.
  • the bypass refrigerant which is a part of the refrigerant flowing through the flow path of the second pipe P2
  • the bypass refrigerant passes through the bypass valve V2, expands, and may be introduced into the seventh pipe P7 at the third point a3.
  • the operation having such a flow of the refrigerant may be referred to as a high-efficiency operation of the heat pump.
  • the bypass refrigerant may be mixed with the injection refrigerant that has passed through the supercooler 7 at the third point a3 of the seventh pipe P7 to be injected into the compressor 2 .
  • the pressure of the refrigerant injected into the compressor 2 increases due to the bypass refrigerant, and the pressure between the high-pressure end and the low-pressure end of the compressor 2 increases. Compression ratio may be improved to improve compression efficiency or heating performance.
  • the bypass refrigerant is mixed with the injection refrigerant, at least a portion of the injection refrigerant is evaporated, and thus the dryness of the refrigerant injected into the compressor 2 may be increased.
  • the dryness of the refrigerant injected into the compressor 2 can be controlled to a certain level or higher, and as a result, the compressor reliability can be secured by preventing liquid compression of the compressor. there is.
  • the refrigerant having a dryness greater than or equal to a certain level is injected into the compressor 2 , the temperature of the refrigerant discharged from the compressor 2 may be stably managed.
  • the controller C determines that the required load of the heat pump 1 exceeds the first load L1. It can be determined whether or not (S61).
  • the controller C may open the bypass valve V2 to the first opening (S62).
  • the bypass refrigerant which is a part of the refrigerant flowing through the flow path of the second pipe P2
  • the bypass refrigerant passes through the bypass valve V2 opened to the first opening degree, expands, and flows into the seventh pipe P7 at the third point a3, thereby discharging the supercooler 7 described above. It can be injected into the compressor (2) together with the injection refrigerant that has passed.
  • the control unit C may determine whether the required load of the heat pump 1 exceeds the second load L2 (S63). ).
  • the second load L2 is smaller than the first load L1, and for example, the compression ratio required for the compressor 2 in the second load L2 is from the first load L1 to the compressor 2 It may be smaller than the required compression ratio.
  • the control unit C may open the bypass valve V2 to the second opening.
  • the bypass refrigerant which is a part of the refrigerant flowing through the flow path of the second pipe P2
  • the bypass refrigerant passes through the bypass valve V2 opened to the second opening degree, expands, and flows into the seventh pipe P7 at the third point a3, thereby discharging the supercooler 7 described above. It can be injected into the compressor (2) together with the injection refrigerant that has passed.
  • the control unit C may open the bypass valve V2 to the third opening (S65). .
  • the bypass refrigerant which is a part of the refrigerant flowing through the flow path of the second pipe P2
  • the bypass refrigerant passes through the bypass valve V2 opened to the third opening degree, expands, and flows into the seventh pipe P7 at the third point a3, thereby discharging the supercooler 7 described above. It can be injected into the compressor (2) together with the injection refrigerant that has passed.
  • the opening degree of the bypass valve V2 may be increased, thereby increasing the amount of the bypass refrigerant mixed with the injection refrigerant. That is, the second opening degree may be smaller than the first opening degree, and the third opening degree may be smaller than the second opening degree.
  • the amount of the bypass refrigerant passing through the bypass valve V2 opened to the second opening may be smaller than the amount of the bypass refrigerant passing through the bypass valve V2 opened to the first opening.
  • the amount of the bypass refrigerant passing through the bypass valve V2 opened to the third opening may be smaller than the amount of the bypass refrigerant passing through the bypass valve V2 opened to the second opening.
  • a compressor for compressing a refrigerant; a heat exchanger through which the refrigerant discharged from the compressor can be introduced and having a first heat exchanger and a second heat exchanger; a switching valve selectively guiding the refrigerant discharged from the compressor to the first heat exchanger or the second heat exchanger; a main expansion valve installed in a main pipe connecting the first heat exchanger and the second heat exchanger to expand the refrigerant flowing through the flow path of the main pipe; an injection pipe having one end connected to the main pipe between the first heat exchanger and the main expansion valve and the other end connected to the compressor; an injection valve installed on the injection pipe to control an opening degree of a flow path of the injection pipe; and a supercooler installed in the main pipe between one end of the injection pipe and the main expansion valve, wherein the main pipe includes a first heat exchange pipe positioned inside the supercooler, and the injection pipe includes the It is located inside the supercooler and provides a heat pump including a second heat exchange pipe adjacent
  • control unit for controlling an opening degree of the main expansion valve and an opening degree of the injection valve, wherein the control unit, when a heating operation signal is received, the refrigerant discharged from the compressor
  • the heating operation may be performed by forming a flow path of the switching valve to guide the heat exchanger to the first heat exchanger, opening the main expansion valve to an initial opening degree, and closing the injection valve.
  • the control unit when the flash gas injection condition is satisfied during the heating operation, the control unit opens the injection valve to an initial opening degree, and reduces the opening degree of the main expansion valve. to perform a flash gas injection operation.
  • the controller may include a compressor suction superheat degree that is a difference between a compressor suction temperature, which is a temperature of the refrigerant sucked into the compressor, and an evaporation temperature, which is a saturation temperature of the refrigerant passing through the second heat exchanger.
  • a compressor suction superheat degree that is a difference between a compressor suction temperature, which is a temperature of the refrigerant sucked into the compressor, and an evaporation temperature, which is a saturation temperature of the refrigerant passing through the second heat exchanger.
  • the control unit the compressor discharge superheat which is the difference between the compressor discharge temperature, which is the temperature of the refrigerant discharged from the compressor, and the condensation temperature, which is the saturation temperature of the refrigerant passing through the first heat exchanger When ? exceeds the second reference temperature, it may be determined that the flash gas injection condition is satisfied.
  • the control unit determines the opening degree of the injection valve. maintained, and the degree of opening of the main expansion valve can be reduced.
  • the compressor discharge temperature when it is determined that, in the flash gas injection operation, the compressor discharge temperature is less than the target discharge temperature and is equal to or greater than a minimum temperature smaller than the target discharge temperature, the The opening degree of the injection valve and the opening degree of the main expansion valve may be maintained.
  • the control unit when it is determined that the compressor discharge temperature is less than the target discharge temperature and less than the minimum temperature in the flash gas injection operation, the control unit maintains the opening degree of the injection valve And, it is possible to increase the opening degree of the main expansion valve.
  • a bypass pipe having one end connected to a discharge pipe connecting the compressor and the switching valve and the other end connected to the injection pipe between the supercooler and the compressor;
  • the bypass valve may further include a bypass valve installed on the bypass pipe to adjust an opening degree of a flow path of the bypass pipe.
  • control unit when the required load of the compressor exceeds a reference load while the flash gas injection operation is being performed, the control unit may include the bypass valve in proportion to the size of the required load. can increase the degree of
  • the control unit when the required load exceeds a first load while the flash gas injection operation is being performed, the control unit opens the bypass valve to a first opening degree, and When the demand load exceeds a second load smaller than the first load, the bypass valve is opened to a second opening degree smaller than the first opening degree, and when the demand load is less than or equal to the second load but exceeds the reference load , the bypass valve may be opened at a third opening degree smaller than the second opening degree.
  • the injection valve and the bypass valve may be an Electronic Expansion Valve (EEV).
  • EV Electronic Expansion Valve
  • the first heat exchanger may be a water-refrigerant heat exchanger for exchanging a refrigerant and water in a non-contact manner
  • the second heat exchanger may be an outdoor heat exchanger for exchanging a refrigerant and outdoor air.
  • configuration A described in a specific embodiment and/or drawings may be combined with configuration B described in other embodiments and/or drawings. That is, even if the coupling between the components is not directly described, it means that the coupling is possible except for the case where it is described that the coupling is impossible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A heat pump is disclosed. The heat pump of the present disclosure comprises: a compressor for compressing a refrigerant; a heat exchanger through which the refrigerant discharged from the compressor can be introduced and which includes a first heat exchanger and a second heat exchanger; a switching valve which selectively guides the refrigerant discharged from the compressor, to the first heat exchanger or the second heat exchanger; a main expansion valve which is installed in a main pipe connecting the first heat exchanger and the second heat exchanger and expands the refrigerant flowing through a flow path of the main pipe; an injection pipe having one end connected to the main pipe between the first heat exchanger and the main expansion valve and the other end connected to the compressor; an injection valve which is installed on the injection pipe to control an opening degree of a flow path of the injection pipe; and a supercooler which is installed in the main pipe between one end of the injection pipe and the main expansion valve, wherein the main pipe includes a first heat exchange pipe positioned inside the supercooler, and the injection pipe includes a second heat exchange pipe positioned inside the supercooler and adjacent to the first heat exchange pipe.

Description

히트펌프heat pump
본 개시는 히트펌프(heat pump)에 관한 것이다. 특히, 본 개시는 압축기에서 토출되는 냉매의 온도가 과도하게 상승하는 것을 방지하고, 냉매 순환량을 증대시킬 수 있는 히트펌프에 관한 것이다.The present disclosure relates to a heat pump. In particular, the present disclosure relates to a heat pump capable of preventing an excessive increase in the temperature of a refrigerant discharged from a compressor and increasing a refrigerant circulation amount.
일반적으로 히트펌프는 냉매의 압축, 응축, 팽창 및 증발과정을 통해 실내를 냉난방시키는 장치를 말한다. 히트펌프의 실외열교환기가 응축기로 기능하되, 실내열교환기가 증발기로 기능하면, 실내는 냉방될 수 있다. 이와 반대로, 히트펌프의 실외열교환기가 증발기로 기능하되, 실내열교환기가 응축기로 기능하면, 실내는 난방될 수 있다.In general, a heat pump refers to a device that cools and cools a room through the process of compression, condensation, expansion, and evaporation of a refrigerant. If the outdoor heat exchanger of the heat pump functions as a condenser, but the indoor heat exchanger functions as an evaporator, the room may be cooled. Conversely, when the outdoor heat exchanger of the heat pump functions as an evaporator, but the indoor heat exchanger functions as a condenser, the room may be heated.
한편, 외기 온도가 0 ℃ 이하인 한랭지 환경에서 히트펌프를 이용해 실내를 난방할 경우, 압축기가 높은 압축비로 동작되어 압축기에서 토출되는 냉매의 온도가 과도하게 상승될 수 있다. 이로 인하여, 압축기의 내부 부품이 손상될 수 있고, 냉매 순환량이 감소되어 난방 성능이 저하될 수 있다.On the other hand, when the room is heated using a heat pump in a cold region environment where the outside temperature is 0° C. or less, the compressor operates at a high compression ratio and the temperature of the refrigerant discharged from the compressor may increase excessively. As a result, internal components of the compressor may be damaged, and the amount of refrigerant circulation may be reduced, and thus heating performance may be deteriorated.
일본 공개특허 제28166706호(공개일자: 2016년 9월 15일)는 응축기를 통과한 냉매 중 일부를 과냉각한 후 압축기로 인젝션하는 기술을 개시하나, 과냉각된 액상 냉매를 압축기로 인젝션하는 것은 압축기 운전에 큰 부담이 될 수 있다.Japanese Patent Laid-Open No. 28166706 (published date: September 15, 2016) discloses a technique of injecting a refrigerant into a compressor after supercooling some of the refrigerant that has passed through a condenser. can be a huge burden on
일본 공개특허 제21243793호(공개일자: 2009년 10월 22일)는 압축기로 흡입되는 기상 냉매를 응축기 출구를 지나 1차 팽창된 액상 냉매와 열교환시킴으로써 과냉하는 기술을 개시하지만, 증발된 냉매를 재액화하는 과정에서 사이클 성능 하락이 예상되고, 추가적인 구성으로 인해 재료비가 상승하는 문제가 있었다.Japanese Laid-Open Patent Publication No. 21243793 (published date: October 22, 2009) discloses a technique of supercooling by heat-exchanging a gaseous refrigerant sucked into a compressor with a first expanded liquid refrigerant through a condenser outlet, but re-evaporated refrigerant In the process of liquefaction, cycle performance is expected to decrease, and there is a problem in that the material cost increases due to the additional configuration.
본 개시는 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present disclosure aims to solve the above and other problems.
또 다른 목적은 압축기에서 토출되는 냉매의 온도가 과도하게 상승하는 것을 방지할 수 있는 히트펌프를 제공하는 것일 수 있다.Another object may be to provide a heat pump capable of preventing an excessive increase in the temperature of the refrigerant discharged from the compressor.
또 다른 목적은 한랭지 환경에서 냉매배관을 순환하는 냉매의 양을 증대시켜 난방 성능의 저하를 방지할 수 있는 히트펌프를 제공하는 것일 수 있다.Another object may be to provide a heat pump capable of preventing deterioration of heating performance by increasing the amount of refrigerant circulating through a refrigerant pipe in a cold region environment.
또 다른 목적은 압축기로 인젝션되는 냉매의 건도를 일정 수준 이상으로 제어하여 압축기의 액압축에 따른 손상을 방지할 수 있는 히트펌프를 제공하는 것일 수 있다.Another object may be to provide a heat pump capable of preventing damage due to liquid compression of the compressor by controlling the dryness of the refrigerant injected into the compressor to a certain level or more.
또 다른 목적은 압축기로 인젝션되는 냉매의 압력을 일정 수준 이상으로 상승시켜 압축기의 고압단과 저압단 사이의 압축비를 개선할 수 있는 히트펌프를 제공하는 것일 수 있다.Another object may be to provide a heat pump capable of improving the compression ratio between the high-pressure stage and the low-pressure stage of the compressor by increasing the pressure of the refrigerant injected into the compressor to a certain level or more.
상기 또는 다른 목적을 달성하기 위한 본 개시의 일 측면에 따르면, 냉매를 압축하는 압축기; 상기 압축기에서 토출되는 냉매가 유입 가능하고, 제1 열교환기와 제2 열교환기를 구비하는 열교환기; 상기 압축기에서 토출되는 냉매를 상기 제1 열교환기 또는 상기 제2 열교환기로 선택적으로 안내하는 절환밸브; 상기 제1 열교환기와 상기 제2 열교환기를 잇는 메인 배관에 설치되고, 상기 메인 배관의 유로를 유동하는 냉매를 팽창시키는 메인 팽창밸브; 일단이 상기 제1 열교환기와 상기 메인 팽창밸브 사이에서 상기 메인 배관에 연결되고, 타단이 상기 압축기에 연결되는 인젝션 배관; 상기 인젝션 배관에 설치되어, 상기 인젝션 배관의 유로의 개도를 조절하는 인젝션 밸브; 그리고, 상기 인젝션 배관의 일단과 상기 메인 팽창밸브 사이에서 상기 메인 배관에 설치되는 과냉각기를 포함하고, 상기 메인 배관은 상기 과냉각기의 내부에 위치하는 제1 열교환배관을 포함하고, 상기 인젝션 배관은 상기 과냉각기의 내부에 위치하고, 상기 제1 열교환배관에 인접하는 제2 열교환배관을 포함하는 히트펌프를 제공한다.According to an aspect of the present disclosure for achieving the above or other object, a compressor for compressing the refrigerant; a heat exchanger through which the refrigerant discharged from the compressor can be introduced and having a first heat exchanger and a second heat exchanger; a switching valve selectively guiding the refrigerant discharged from the compressor to the first heat exchanger or the second heat exchanger; a main expansion valve installed in a main pipe connecting the first heat exchanger and the second heat exchanger to expand the refrigerant flowing through the flow path of the main pipe; an injection pipe having one end connected to the main pipe between the first heat exchanger and the main expansion valve and the other end connected to the compressor; an injection valve installed on the injection pipe to control an opening degree of a flow path of the injection pipe; and a supercooler installed in the main pipe between one end of the injection pipe and the main expansion valve, wherein the main pipe includes a first heat exchange pipe positioned inside the supercooler, and the injection pipe includes the It is located inside the supercooler and provides a heat pump including a second heat exchange pipe adjacent to the first heat exchange pipe.
본 개시에 따른 히트펌프의 효과에 대해 설명하면 다음과 같다.The effect of the heat pump according to the present disclosure will be described as follows.
본 개시의 적어도 하나의 실시 예에 의하면, 압축기에서 토출되는 냉매의 온도가 과도하게 상승하는 것을 방지할 수 있는 히트펌프를 제공할 수 있다.According to at least one embodiment of the present disclosure, it is possible to provide a heat pump capable of preventing an excessive increase in the temperature of the refrigerant discharged from the compressor.
본 개시의 적어도 하나의 실시 예에 의하면, 한랭지 환경에서 냉매배관을 순환하는 냉매의 양을 증대시켜 난방 성능의 저하를 방지할 수 있는 히트펌프를 제공할 수 있다.According to at least one embodiment of the present disclosure, it is possible to provide a heat pump capable of preventing deterioration of heating performance by increasing the amount of refrigerant circulating through a refrigerant pipe in a cold region environment.
본 개시의 적어도 하나의 실시 예에 의하면, 압축기로 인젝션되는 냉매의 건도를 일정 수준 이상으로 제어하여 압축기의 액압축에 따른 손상을 방지할 수 있는 히트펌프를 제공할 수 있다.According to at least one embodiment of the present disclosure, it is possible to provide a heat pump capable of preventing damage due to liquid compression of the compressor by controlling the dryness of the refrigerant injected into the compressor to a certain level or more.
본 개시의 적어도 하나의 실시 예에 의하면, 압축기로 인젝션되는 냉매의 압력을 일정 수준 이상으로 상승시켜 압축기의 고압단과 저압단 사이의 압축비를 개선할 수 있는 히트펌프를 제공할 수 있다.According to at least one embodiment of the present disclosure, it is possible to provide a heat pump capable of improving the compression ratio between the high-pressure stage and the low-pressure stage of the compressor by increasing the pressure of the refrigerant injected into the compressor to a certain level or more.
본 개시의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 본 개시의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 개시의 바람직한 실시 예와 같은 특정 실시 예는 단지 예시로 주어진 것으로 이해되어야 한다.Further scope of applicability of the present disclosure will become apparent from the following detailed description. However, it should be understood that the detailed description and specific embodiments such as preferred embodiments of the present disclosure are given by way of example only, since various changes and modifications within the spirit and scope of the present disclosure may be clearly understood by those skilled in the art.
도 1은 본 개시의 실시 예에 따른 히트펌프의 구성 및 난방운전을 수행하는 동안의 냉매의 흐름을 도시한 도면이다.1 is a diagram illustrating a configuration of a heat pump according to an embodiment of the present disclosure and a flow of a refrigerant while performing a heating operation.
도 2는 본 개시의 실시 예에 따른 히트펌프의 구성 및 냉방운전을 수행하는 동안의 냉매의 흐름을 도시한 도면이다.2 is a diagram illustrating a configuration of a heat pump and a flow of a refrigerant while performing a cooling operation according to an embodiment of the present disclosure.
도 3은 본 개시의 실시 예에 따른 히트펌프의 제어 계통도이다.3 is a control system diagram of a heat pump according to an embodiment of the present disclosure.
도 4는 본 개시의 실시 예에 따른 히트펌프의 구성 및 플래시 가스 인젝션 운전을 수행하는 동안의 냉매의 흐름을 도시한 도면이다.4 is a diagram illustrating a configuration of a heat pump and a flow of a refrigerant while performing a flash gas injection operation according to an exemplary embodiment of the present disclosure.
도 5는 본 개시의 실시 예에 따른 히트펌프의 난방운전으로부터 플래시 가스 인젝션 운전으로 전환되는 제어방법에 관한 순서도이다.5 is a flowchart illustrating a control method for switching from a heating operation to a flash gas injection operation of a heat pump according to an embodiment of the present disclosure.
도 6은 본 개시의 일 예에 따른 플래시 가스 인젝션 조건 만족 여부를 판단하는 방법에 관한 순서도이다.6 is a flowchart illustrating a method of determining whether a flash gas injection condition is satisfied according to an example of the present disclosure.
도 7은 본 개시의 다른 예에 따른 플래시 가스 인젝션 조건 만족 여부를 판단하는 방법에 관한 순서도이다.7 is a flowchart illustrating a method of determining whether a flash gas injection condition is satisfied according to another example of the present disclosure.
도 8은 본 개시의 실시 예에 따른 히트펌프의 플래시 가스 인젝션 운전의 제어방법에 관한 순서도이다.8 is a flowchart illustrating a method for controlling a flash gas injection operation of a heat pump according to an exemplary embodiment of the present disclosure.
도 9는 본 개시의 실시 예에 따른 히트펌프의 구성 및 고효율 운전을 수행하는 동안의 냉매의 흐름을 도시한 도면이다.9 is a diagram illustrating a configuration of a heat pump according to an embodiment of the present disclosure and a flow of a refrigerant while a high-efficiency operation is performed.
도 10은 본 개시의 실시 예에 따른 히트펌프의 고효율 운전의 제어방법에 관한 순서도이다.10 is a flowchart illustrating a method for controlling a high-efficiency operation of a heat pump according to an exemplary embodiment of the present disclosure.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, the embodiments disclosed in the present specification will be described in detail with reference to the accompanying drawings, but the same or similar components are assigned the same reference numbers regardless of reference numerals, and redundant description thereof will be omitted.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.The suffixes "module" and "part" for components used in the following description are given or mixed in consideration of only the ease of writing the specification, and do not have distinct meanings or roles by themselves.
또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.In addition, in describing the embodiments disclosed in the present specification, if it is determined that detailed descriptions of related known technologies may obscure the gist of the embodiments disclosed in this specification, the detailed description thereof will be omitted. In addition, the accompanying drawings are only for easy understanding of the embodiments disclosed in this specification, and the technical idea disclosed herein is not limited by the accompanying drawings, and all changes included in the spirit and scope of the present invention , should be understood to include equivalents or substitutes.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including an ordinal number such as 1st, 2nd, etc. may be used to describe various elements, but the elements are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being “connected” or “connected” to another component, it may be directly connected or connected to the other component, but it is understood that other components may exist in between. it should be On the other hand, when it is said that a certain element is "directly connected" or "directly connected" to another element, it should be understood that the other element does not exist in the middle.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The singular expression includes the plural expression unless the context clearly dictates otherwise.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present application, terms such as “comprises” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.
도 1을 참조하면, 히트펌프(1)는 압축기(2), 절환밸브(3), 제1 열교환기(4), 제2 열교환기(5), 어큐뮬레이터(6), 팽창밸브(E), 과냉각기(7), 펌프(8) 그리고 라디에이터(9)를 포함할 수 있다.Referring to FIG. 1 , the heat pump 1 includes a compressor 2 , a switching valve 3 , a first heat exchanger 4 , a second heat exchanger 5 , an accumulator 6 , an expansion valve E, It may include a subcooler (7), a pump (8) and a radiator (9).
압축기(2)는 어큐뮬레이터(6)로부터 유입된 냉매를 압축하여 고온, 고압의 냉매를 토출할 수 있다. 이때, 어큐뮬레이터(6)는 제1 배관(P1)을 통해 압축기(2)에 기상냉매를 제공할 수 있다. 한편, 제2 배관(P2)은 압축기(2)와 절환밸브(3) 사이에 설치되어, 압축기(2)로부터 절환밸브(3)로 이어지는 냉매의 유로를 제공할 수 있다. 예를 들면, 압축기(2)는 운전 주파수를 조절하여 냉매량 및 냉매의 토출압력을 제어할 수 있는 인버터 압축기일 수 있다. 예를 들면, 냉매는 R32 냉매일 수 있다.The compressor 2 may compress the refrigerant flowing in from the accumulator 6 to discharge the refrigerant of high temperature and high pressure. In this case, the accumulator 6 may provide the gaseous refrigerant to the compressor 2 through the first pipe P1 . Meanwhile, the second pipe P2 may be installed between the compressor 2 and the switching valve 3 to provide a flow path of the refrigerant from the compressor 2 to the switching valve 3 . For example, the compressor 2 may be an inverter compressor capable of controlling the amount of refrigerant and the discharge pressure of the refrigerant by adjusting the operating frequency. For example, the refrigerant may be an R32 refrigerant.
절환밸브(3)는 압축기(2)에서 토출되어 제2 배관(P2)을 통과한 냉매가 유입될 수 있다. 그리고, 절환밸브(3)는 히트펌프의 운전모드에 따라 유로를 절환하여, 제2 배관(P2)을 토하여 유입된 냉매를 제1 열교환기(4) 또는 제2 열교환기(5)로 선택적으로 안내할 수 있다. 예를 들면, 절환밸브(3)는 사방밸브일 수 있다. 한편, 제6 배관(P6)은 절환밸브(3)와 어큐뮬레이터(6) 사이에 설치되어, 절환밸브(3)로부터 어큐뮬레이터(6)로 이어지는 냉매의 유로를 제공할 수 있다.In the switching valve 3 , the refrigerant discharged from the compressor 2 and passing through the second pipe P2 may be introduced. In addition, the switching valve 3 switches the flow path according to the operation mode of the heat pump, and selects the refrigerant introduced by spitting the second pipe P2 to the first heat exchanger 4 or the second heat exchanger 5 . can be guided by For example, the switching valve 3 may be a four-way valve. Meanwhile, the sixth pipe P6 may be installed between the switching valve 3 and the accumulator 6 to provide a flow path of the refrigerant from the switching valve 3 to the accumulator 6 .
제1 열교환기(4)는 냉매와 열전달매체를 열교환시킬 수 있다. 제1 열교환기(4)에서 냉매와 열전달매체 간의 열전달 방향은 히트펌프의 운전모드에 따라 다를 수 있다. 한편, 제3 배관(P3)은 절환밸브(3)와 제1 열교환기(4) 사이에 설치되어, 절환밸브(3)와 제1 열교환기(4)를 잇는 냉매의 유로를 제공할 수 있다.The first heat exchanger 4 may exchange heat between the refrigerant and the heat transfer medium. The heat transfer direction between the refrigerant and the heat transfer medium in the first heat exchanger 4 may be different depending on the operation mode of the heat pump. On the other hand, the third pipe (P3) is installed between the switching valve (3) and the first heat exchanger (4), it can provide a flow path of the refrigerant connecting the switching valve (3) and the first heat exchanger (4). .
예를 들면, 열전달매체는 실내공기이며, 제1 열교환기(4)에서 냉매와 실내공기 간에 열교환이 이루어질 수 있다. 이 경우, 실내팬(미도시)이 제1 열교환기(4)의 일측에 배치되어 제1 열교환기(4)로 제공되는 공기의 양을 조절할 수 있다.For example, the heat transfer medium is room air, and heat exchange may be performed between the refrigerant and the room air in the first heat exchanger 4 . In this case, an indoor fan (not shown) may be disposed on one side of the first heat exchanger 4 to control the amount of air provided to the first heat exchanger 4 .
다른 예를 들면, 열전달매체는 물이며, 제1 열교환기(4)에서 냉매와 물 간에 열교환이 이루어질 수 있다. 이 경우, 제1 열교환기(4)를 통과한 물은 실내에 설치된 라디에이터(9) 또는 바닥에 설치된 배관 등에 공급되어 실내 공간을 냉난방시키거나, 온수탱크(미도시)에 저장된 물을 가열하거나 냉각시켜 실내에 온수 또는 냉수를 공급하는 데 이용될 수 있다. 이때, 히트펌프(1)는 물-냉매 히트펌프(Air-to-Water Heat Pump, AWHP)로 칭할 수 있다. 그리고, 제1 열교환기(4)는 물-냉매 열교환기로 칭할 수 있다.For another example, the heat transfer medium is water, and heat exchange may be performed between the refrigerant and water in the first heat exchanger 4 . In this case, the water that has passed through the first heat exchanger 4 is supplied to the radiator 9 installed in the room or a pipe installed on the floor to cool the indoor space, or to heat or cool water stored in a hot water tank (not shown). It can be used to supply hot or cold water to the room. In this case, the heat pump 1 may be referred to as an air-to-water heat pump (AWHP). In addition, the first heat exchanger 4 may be referred to as a water-refrigerant heat exchanger.
이 경우, 히트펌프(1)는 펌프(8)와 라디에이터(9)를 포함할 수 있다. 펌프(8)가 구동되면, 물은 수배관(Q)을 순환할 수 있다. 라디에이터(9)는 실내에 설치되어, 제1 열교환기(4)를 통과하며 가열되거나 냉각된 물이 유입될 수 있다. 예를 들면, 가열된 물이 라디에이터(9)를 통과하며 주위로 열을 방출하여 실내 공간이 난방될 수 있다. 예를 들면, 냉각된 물이 라디에이터(9)를 통과하며 주위로부터 열을 흡수하여 실내 공간이 냉방될 수 있다. 한편, 히트펌프(1)는 라디에이터(9)를 대신하거나, 이와 함께 실내 바닥에 설치되는 수배관 또는 FCU(Fan Coil Unit) 등을 구비할 수도 있다.In this case, the heat pump 1 may include a pump 8 and a radiator 9 . When the pump 8 is driven, water can circulate in the water pipe Q. The radiator 9 may be installed indoors, and heated or cooled water may be introduced while passing through the first heat exchanger 4 . For example, heated water passes through the radiator 9 and radiates heat to the surroundings, so that the indoor space can be heated. For example, the cooled water passes through the radiator 9 and absorbs heat from the surroundings, so that the indoor space can be cooled. On the other hand, the heat pump 1 may be provided with a water pipe or FCU (Fan Coil Unit) installed on the floor of the room instead of or together with the radiator 9 .
한편, 제1 수배관(Q1)은 펌프(8)와 제1 열교환기(4) 사이에 설치되어, 펌프(8)와 제1 열교환기(4)를 잇는 냉매의 유로를 제공할 수 있다. 그리고, 제2 수배관(Q2)은 제1 열교환기(4)와 라디에이터(9) 사이에 설치되어, 제1 열교환기(4)와 라디에이터(9)를 잇는 물의 유로를 제공할 수 있다. 또한, 제3 수배관(Q3)은 라디에이터(9)와 펌프(8) 사이에 설치되어, 라디에이터(9)와 펌프(8)를 잇는 물의 유로를 제공할 수 있다.Meanwhile, the first water pipe Q1 may be installed between the pump 8 and the first heat exchanger 4 to provide a flow path of the refrigerant connecting the pump 8 and the first heat exchanger 4 . In addition, the second water pipe Q2 may be installed between the first heat exchanger 4 and the radiator 9 to provide a water passage connecting the first heat exchanger 4 and the radiator 9 . In addition, the third water pipe Q3 may be installed between the radiator 9 and the pump 8 to provide a water passage connecting the radiator 9 and the pump 8 .
제2 열교환기(5)는 냉매와 열전달매체를 열교환시킬 수 있다. 제2 열교환기(5)에서 냉매와 열전달매체 간의 열전달 방향은 히트펌프의 운전모드에 따라 다를 수 있다. 한편, 제2 열교환기(5)는 실외열교환기로 칭할 수 있다.The second heat exchanger 5 may exchange heat between the refrigerant and the heat transfer medium. The heat transfer direction between the refrigerant and the heat transfer medium in the second heat exchanger 5 may be different depending on the operation mode of the heat pump. Meanwhile, the second heat exchanger 5 may be referred to as an outdoor heat exchanger.
예를 들면, 열전달매체는 실외공기이며, 제2 열교환기(5)에서 냉매와 실외공기 간에 열교환이 이루어질 수 있다. 이 경우, 실외팬(미도시)이 제2 열교환기(5)의 일측에 배치되어 제2 열교환기(5)로 제공되는 공기의 양을 조절할 수 있다. 한편, 제5 배관(P5)은 절환밸브(3)와 제2 열교환기(5) 사이에 설치되어, 절환밸브(3)와 제2 열교환기(5)를 잇는 냉매의 유로를 제공할 수 있다.For example, the heat transfer medium is outdoor air, and heat exchange may be performed between the refrigerant and outdoor air in the second heat exchanger 5 . In this case, an outdoor fan (not shown) may be disposed on one side of the second heat exchanger 5 to control the amount of air provided to the second heat exchanger 5 . On the other hand, the fifth pipe (P5) is installed between the switching valve (3) and the second heat exchanger (5), it can provide a flow path of the refrigerant connecting the switching valve (3) and the second heat exchanger (5). .
팽창밸브(E)는 제1 팽창밸브(E1)와 제2 팽창밸브(E2)를 포함할 수 있다. 제1 팽창밸브(E1)와 제2 팽창밸브(E2)는 제4 배관(P4)에 설치되어, 제4 배관(P4)의 유로를 개도를 조절할 수 있다. 여기서, 제4 배관(P4)은 제1 열교환기(4)와 제2 열교환기(5) 사이에 설치되어, 제1 열교환기(4)와 제2 열교환기(5)를 잇는 냉매의 유로를 제공할 수 있다. 한편, 제4 배관(P4)은 메인 배관으로 칭할 수 있다.The expansion valve (E) may include a first expansion valve (E1) and a second expansion valve (E2). The first expansion valve E1 and the second expansion valve E2 may be installed on the fourth pipe P4 to adjust the degree of opening of the flow path of the fourth pipe P4 . Here, the fourth pipe (P4) is installed between the first heat exchanger (4) and the second heat exchanger (5), the refrigerant flow path connecting the first heat exchanger (4) and the second heat exchanger (5) can provide Meanwhile, the fourth pipe P4 may be referred to as a main pipe.
예를 들면, 제1 팽창밸브(E1)는 제2 열교환기(5)보다 제1 열교환기(4)에 가깝게 배치되고, 제2 팽창밸브(E2)는 제1 열교환기(4)보다 제2 열교환기(5)에 가깝게 배치될 수 있다. 예를 들면, 제1 팽창밸브(E1)와 제2 팽창밸브(E2)는 EEV(Electronic Expansion Valve)일 수 있다. 한편, 제1 팽창밸브(E1)는 서브 팽창밸브로 칭하고, 제2 팽창밸브(E2)는 메인 팽창밸브로 칭할 수 있다.For example, the first expansion valve (E1) is disposed closer to the first heat exchanger (4) than the second heat exchanger (5), and the second expansion valve (E2) is second to the first heat exchanger (4). It may be disposed close to the heat exchanger 5 . For example, the first expansion valve E1 and the second expansion valve E2 may be Electronic Expansion Valves (EEVs). Meanwhile, the first expansion valve E1 may be referred to as a sub-expansion valve, and the second expansion valve E2 may be referred to as a main expansion valve.
과냉각기(7)는 제1 팽창밸브(E1)와 제2 팽창밸브(E2) 사이에서 제4 배관(P4)에 설치될 수 있다. 그리고, 과냉각기(7)의 내부에 제1 열교환배관(P4a)과 제2 열교환배관(P7a)이 위치할 수 있다. 제1 열교환배관(P4a)과 제2 열교환배관(P7a)은 서로 인접할 수 있다. 예를 들면, 제1 열교환배관(P4a)과 제2 열교환배관(P7a)은 서로 마주할 수 있다.The supercooler 7 may be installed in the fourth pipe P4 between the first expansion valve E1 and the second expansion valve E2 . In addition, the first heat exchange pipe P4a and the second heat exchange pipe P7a may be positioned inside the supercooler 7 . The first heat exchange pipe P4a and the second heat exchange pipe P7a may be adjacent to each other. For example, the first heat exchange pipe P4a and the second heat exchange pipe P7a may face each other.
여기서, 제1 열교환배관(P4a)은 전술한 제4 배관(P4)의 일부이고, 제2 열교환배관(P7a)은 후술할 제7 배관(P7)의 일부일 수 있다. 이때, 제7 배관(P7)의 일단은 제1 팽창밸브(E1)와 과냉각기(7) 사이에서 제4 배관(P4)의 제1 지점(a1)에 연결되고, 제7 배관(P7)의 타단은 압축기(2)에 연결될 수 있다. 한편, 제7 배관(P7)은 인젝션 배관으로 칭할 수 있다.Here, the first heat exchange pipe P4a may be a part of the fourth pipe P4 described above, and the second heat exchange pipe P7a may be a part of a seventh pipe P7 to be described later. At this time, one end of the seventh pipe (P7) is connected to the first point (a1) of the fourth pipe (P4) between the first expansion valve (E1) and the supercooler (7), the seventh pipe (P7) The other end may be connected to the compressor (2). Meanwhile, the seventh pipe P7 may be referred to as an injection pipe.
그리고, 인젝션 밸브(V1)는 제7 배관(P7)에 설치되어, 제7 배관(P7)의 유로의 개도를 조절할 수 있다. 이 경우, 제2 열교환배관(P7a)은 인젝션 밸브(V1)와 제7 배관(P7)의 타단 사이에 위치할 수 있다. 예를 들면, 인젝션 밸브(V1)는 솔레노이드 밸브이거나 EEV(Electronic Expansion Valve)일 수 있다.In addition, the injection valve V1 may be installed in the seventh pipe P7 to adjust the opening degree of the flow path of the seventh pipe P7 . In this case, the second heat exchange pipe P7a may be located between the injection valve V1 and the other end of the seventh pipe P7. For example, the injection valve V1 may be a solenoid valve or an Electronic Expansion Valve (EEV).
한편, 제8 배관(P8)은 압축기(2)에서 토출된 냉매를 제7 배관(P7)으로 안내하는 유로를 제공할 수 있다. 구체적으로, 제8 배관(P8)의 일단은 압축기(2)와 절환밸브(3) 사이에서 제2 배관(P2)의 제2 지점(a2)에 연결되고, 제8 배관(P8)의 타단은 과냉각기(7)와 압축기(2) 사이에서 제7 배관(P7)의 제3 지점(a3)에 연결될 수 있다. 한편, 제8 배관(P8)은 바이패스 배관으로 칭할 수 있다.Meanwhile, the eighth pipe P8 may provide a flow path for guiding the refrigerant discharged from the compressor 2 to the seventh pipe P7 . Specifically, one end of the eighth pipe (P8) is connected to the second point (a2) of the second pipe (P2) between the compressor (2) and the switching valve (3), and the other end of the eighth pipe (P8) is It may be connected to the third point a3 of the seventh pipe P7 between the supercooler 7 and the compressor 2 . Meanwhile, the eighth pipe P8 may be referred to as a bypass pipe.
그리고, 바이패스 밸브(V2)는 제8 배관(P8)에 설치되어, 제8 배관(P8)의 유로의 개도를 조절할 수 있다. 예를 들면, 바이패스 밸브(V2)는 솔레노이드 밸브이거나 EEV(Electronic Expansion Valve)일 수 있다.In addition, the bypass valve V2 is installed in the eighth pipe P8 to adjust the opening degree of the flow path of the eighth pipe P8. For example, the bypass valve V2 may be a solenoid valve or an Electronic Expansion Valve (EEV).
제어부(C, 미도시)는 히트펌프(1)의 동작을 제어할 수 있다. 제어부(C)는 히트펌프(1)의 각 구성과 전기적으로 연결될 수 있다. 제어부(C)는 히트펌프(1)의 운전모드에 따라, 히트펌프(1)의 각 구성을 제어할 수 있다.The controller C (not shown) may control the operation of the heat pump 1 . The control unit C may be electrically connected to each component of the heat pump 1 . The control unit C may control each configuration of the heat pump 1 according to the operation mode of the heat pump 1 .
이하, 간략한 설명을 위해, AWHP로서 히트펌프(1)를 예로 들어 설명하나, 본 개시에 적용할 수 있는 히트펌프의 유형이 이에 한정되는 것은 아니고, 제1 열교환기(4)에서 냉매와 실내공기가 열교환되는 히트펌프의 유형도 본 개시에 적용할 수 있다.Hereinafter, for a brief description, the heat pump 1 as an AWHP will be described as an example, but the type of heat pump applicable to the present disclosure is not limited thereto, and the refrigerant and the indoor air in the first heat exchanger 4 are The type of heat pump with which the is heat-exchanged can also be applied to the present disclosure.
도 1 및 2를 참조하면, 제어부(C)는 히트펌프(1)의 동작을 제어하여, 난방운전 또는 냉방운전을 수행할 수 있다.1 and 2 , the controller C may control the operation of the heat pump 1 to perform a heating operation or a cooling operation.
<히트펌프의 난방운전 모드><Heating operation mode of heat pump>
도 1을 참조하면, 히트펌프(1)에 난방운전 신호가 수신되면, 제어부(C)는 절환밸브(3)의 유로를 조절하여 압축기(2)에서 토출되는 냉매가 제1 열교환기(4)로 안내되도록 하고, 제1 팽창밸브(E1)를 완전 개방하되 제2 팽창밸브(E2)를 초기 개도로 개방할 수 있다. 그리고, 제어부(C)는 인젝션 밸브(V1)와 바이패스 밸브(V2)는 폐쇄할 수 있다. 또한, 제어부(C)는 압축기(2)를 구동시켜 냉매배관(P)에서 냉매를 순환시키고, 펌프(8)를 구동시켜 수배관(Q)에서 물을 순환시킬 수 있다.Referring to FIG. 1 , when a heating operation signal is received by the heat pump 1 , the control unit C adjusts the flow path of the switching valve 3 so that the refrigerant discharged from the compressor 2 is transferred to the first heat exchanger 4 . , the first expansion valve E1 may be fully opened, but the second expansion valve E2 may be opened at an initial opening degree. In addition, the control unit C may close the injection valve V1 and the bypass valve V2. In addition, the control unit (C) may drive the compressor (2) to circulate the refrigerant in the refrigerant pipe (P), and drive the pump (8) to circulate water in the water pipe (Q).
예를 들면, 난방운전 신호는 사용자가 임의로 입력하는 신호일 수 있다. 다른 예를 들면, 난방운전 신호는 실내측 온도센서가 감지한 실내온도가 사용자가 설정한 희망온도보다 일정 수준 이상으로 낮을 때, 실내 공간에 구비된 써모스탯(thermostat)이 제어부(C)에 제공하는 신호일 수 있다.For example, the heating operation signal may be a signal arbitrarily input by the user. For another example, the heating operation signal is provided to the controller C by a thermostat provided in the indoor space when the indoor temperature sensed by the indoor temperature sensor is lower than the desired temperature set by the user by a certain level or more. It may be a signal to
구체적으로, 어큐뮬레이터(6)로부터 제1 배관(P1)을 통해 압축기(2)로 유입되는 저온, 저압의 냉매는 압축기(2)에서 압축되어 고온, 고압의 상태로 토출될 수 있다. 압축기(2)에서 토출되는 냉매는 제2 배관(P2), 절환밸브(3) 그리고 제3 배관(P3)을 차례로 거쳐 제1 열교환기(4)로 유입될 수 있다. 그리고, 펌프(8)로부터 제1 수배관(Q1)을 통해 제1 열교환기(4)로 물이 유입될 수 있다.Specifically, the low-temperature, low-pressure refrigerant flowing into the compressor 2 from the accumulator 6 through the first pipe P1 may be compressed in the compressor 2 and discharged in a high-temperature and high-pressure state. The refrigerant discharged from the compressor 2 may flow into the first heat exchanger 4 through the second pipe P2 , the switching valve 3 , and the third pipe P3 in sequence. In addition, water may be introduced from the pump 8 into the first heat exchanger 4 through the first water pipe Q1 .
제1 열교환기(4)에서 냉매로부터 물로 열 에너지가 전달됨에 따라, 냉매는 응축될 수 있다. 이때, 제1 열교환기(4)는 응축기로 기능할 수 있다. 그리고, 냉매와 물 간의 열교환에 따라, 제1 수배관(Q1)을 통해 제1 열교환기(4)로 유입된 물의 온도가 상승될 수 있다. 제1 열교환기(4)를 통과하며 가열된 물은 제2 수배관(Q2)을 통해 라디에이터(9)로 유입되어 실내 공간을 난방시킬 수 있다. 그리고, 라디에이터(9)를 통과하며 온도가 하강된 물은 제3 수배관(Q3)을 통해 펌프(8)로 복귀할 수 있다.As thermal energy is transferred from the refrigerant to the water in the first heat exchanger 4 , the refrigerant may be condensed. In this case, the first heat exchanger 4 may function as a condenser. And, according to the heat exchange between the refrigerant and water, the temperature of the water introduced into the first heat exchanger 4 through the first water pipe Q1 may be increased. Water heated while passing through the first heat exchanger 4 may flow into the radiator 9 through the second water pipe Q2 to heat the indoor space. And, the water passing through the radiator 9 and the temperature is lowered may return to the pump 8 through the third water pipe (Q3).
예를 들면, 제1 열교환기(4)는 서로 적층되는 복수의 전열판들을 구비하는 판형 열교환기일 수 있다. 이 경우, 냉매와 물은 복수의 전열판들 사이에 형성되는 유로를 유동하며 비접촉식으로 서로 열교환을 할 수 있다. 다른 예를 들면, 제1 열교환기(4)는 물이 유입되거나 토출되는 포트가 형성되는 물탱크일 수 있다. 이 경우, 상기 물탱크에 물이 저장되고, 냉매가 유동하는 배관이 상기 물탱크의 외주면을 따라서 코일 형태로 구비되어, 냉매와 물이 비접촉식으로 서로 열교환을 할 수 있다.For example, the first heat exchanger 4 may be a plate heat exchanger including a plurality of heat transfer plates stacked on each other. In this case, the refrigerant and water may flow through a flow path formed between the plurality of heat transfer plates and exchange heat with each other in a non-contact manner. As another example, the first heat exchanger 4 may be a water tank in which a port through which water is introduced or discharged is formed. In this case, water is stored in the water tank, and a pipe through which a refrigerant flows is provided in a coil shape along an outer circumferential surface of the water tank, so that the refrigerant and water can exchange heat with each other in a non-contact manner.
한편, 제1 열교환기(4)를 통과하며 응축된 냉매는 제4 배관(P4)을 통과할 수 있다. 이때, 제1 팽창밸브(E1)는 완전 개방되어, 제1 팽창밸브(E1)를 통과하는 냉매를 팽창시키지 않을 수 있다. 다만, 제2 팽창밸브(E2)는 일정 개도로 개방되어, 제2 팽창밸브(E2)를 통과하는 냉매를 팽창시킬 수 있다. 제2 팽창밸브(E2)를 통과하며 팽창된 냉매는 분배기(5a)를 통해 제2 열교환기(5)로 유입될 수 있다.Meanwhile, the refrigerant condensed while passing through the first heat exchanger 4 may pass through the fourth pipe P4 . At this time, the first expansion valve E1 may be completely opened, so that the refrigerant passing through the first expansion valve E1 may not be expanded. However, the second expansion valve E2 may be opened to a predetermined opening degree to expand the refrigerant passing through the second expansion valve E2 . The refrigerant expanded through the second expansion valve E2 may be introduced into the second heat exchanger 5 through the distributor 5a.
제2 열교환기(5)에서 냉매로 실외공기의 열 에너지가 전달됨에 따라, 냉매는 증발될 수 있다. 이때, 제2 열교환기(5)는 증발기로 칭할 수 있다. 제2 열교환기(5)를 통과하며 증발된 냉매는 헤더(5b), 제5 배관(P5), 절환밸브(3), 제6 배관(P6), 어큐뮬레이터(6) 그리고 제1 배관(P1)을 차례로 거쳐 압축기(2)로 유입될 수 있다. 이로써, 전술한 히트펌프의 난방운전을 위한 사이클이 완성될 수 있다.As thermal energy of outdoor air is transferred from the second heat exchanger 5 to the refrigerant, the refrigerant may be evaporated. In this case, the second heat exchanger 5 may be referred to as an evaporator. The refrigerant evaporated through the second heat exchanger (5) is the header (5b), the fifth pipe (P5), the switching valve (3), the sixth pipe (P6), the accumulator (6), and the first pipe (P1) It may be introduced into the compressor (2) through in turn. Accordingly, the cycle for the heating operation of the above-described heat pump can be completed.
<히트펌프의 냉방운전 모드><Cooling operation mode of heat pump>
도 2를 참조하면, 히트펌프(1)에 냉방운전 신호가 수신되면, 제어부(C)는 절환밸브(3)의 유로를 조절하여 압축기(2)에서 토출되는 냉매가 제2 열교환기(5)로 안내되도록 하고, 제2 팽창밸브(E2)를 완전 개방하되 제1 팽창밸브(E1)를 초기 개도로 개방할 수 있다. 그리고, 제어부(C)는 인젝션 밸브(V1)와 바이패스 밸브(V2)는 폐쇄할 수 있다. 또한, 제어부(C)는 압축기(2)를 구동시켜 냉매배관(P)에서 냉매를 순환시키고, 펌프(8)를 구동시켜 수배관(Q)에서 물을 순환시킬 수 있다.Referring to FIG. 2 , when a cooling operation signal is received by the heat pump 1 , the controller C adjusts the flow path of the switching valve 3 so that the refrigerant discharged from the compressor 2 is transferred to the second heat exchanger 5 . , and the second expansion valve E2 is fully opened, but the first expansion valve E1 may be opened at an initial opening degree. In addition, the control unit C may close the injection valve V1 and the bypass valve V2. In addition, the control unit (C) may drive the compressor (2) to circulate the refrigerant in the refrigerant pipe (P), and drive the pump (8) to circulate water in the water pipe (Q).
예를 들면, 냉방운전 신호는 사용자가 임의로 입력하는 신호일 수 있다. 다른 예를 들면, 냉방운전 신호는 실내측 온도센서가 감지한 실내온도가 사용자가 설정한 희망온도보다 일정 수준 이상으로 높을 때, 실내 공간에 구비된 써모스탯(thermostat)이 제어부(C)에 제공하는 신호일 수 있다.For example, the cooling operation signal may be a signal arbitrarily input by the user. For another example, the cooling operation signal is provided to the controller C by a thermostat provided in the indoor space when the indoor temperature detected by the indoor temperature sensor is higher than the desired temperature set by the user. It may be a signal to
구체적으로, 어큐뮬레이터(6)로부터 제1 배관(P1)을 통해 압축기(2)로 유입되는 저온, 저압의 냉매는 압축기(2)에서 압축되어 고온, 고압의 상태로 토출될 수 있다. 압축기(2)에서 토출되는 냉매는 제2 배관(P2), 절환밸브(3), 제5 배관(P5) 그리고 헤더(5b)를 차례로 거쳐 제2 열교환기(5)로 유입될 수 있다.Specifically, the low-temperature, low-pressure refrigerant flowing into the compressor 2 from the accumulator 6 through the first pipe P1 may be compressed in the compressor 2 and discharged in a high-temperature and high-pressure state. The refrigerant discharged from the compressor 2 may be introduced into the second heat exchanger 5 through the second pipe P2 , the switching valve 3 , the fifth pipe P5 and the header 5b in sequence.
제2 열교환기(5)에서 냉매로부터 실외공기로 열 에너지가 전달됨에 따라, 냉매는 응축될 수 있다. 이때, 제2 열교환기(5)는 응축기로 기능할 수 있다. 제2 열교환기(5)를 통과하며 응축된 냉매는 제4 배관(P4)을 통과할 수 있다. 이때, 제2 팽창밸브(E2)는 완전 개방되어, 제2 팽창밸브(E2)를 통과하는 냉매를 팽창시키지 않을 수 있다. 다만, 제1 팽창밸브(E1)는 일정 개도로 개방되어, 제1 팽창밸브(E1)를 통과하는 냉매를 팽창시킬 수 있다. 제1 팽창밸브(E1)를 통과하며 팽창된 냉매는 제1 열교환기(4)로 유입될 수 있다. 그리고, 펌프(8)로부터 제1 수배관(Q1)을 통해 제1 열교환기(4)로 물이 유입될 수 있다.As heat energy is transferred from the refrigerant to the outdoor air in the second heat exchanger 5, the refrigerant may be condensed. In this case, the second heat exchanger 5 may function as a condenser. The refrigerant condensed while passing through the second heat exchanger 5 may pass through the fourth pipe P4. In this case, the second expansion valve E2 may be completely opened, so that the refrigerant passing through the second expansion valve E2 may not be expanded. However, the first expansion valve E1 may be opened to a predetermined opening degree to expand the refrigerant passing through the first expansion valve E1. The refrigerant expanded through the first expansion valve E1 may be introduced into the first heat exchanger 4 . In addition, water may be introduced from the pump 8 into the first heat exchanger 4 through the first water pipe Q1 .
제1 열교환기(4)에서 냉매로 물의 열 에너지가 전달됨에 따라, 냉매는 증발될 수 있다. 이때, 제1 열교환기(4)는 증발기로 기능할 수 있다. 그리고, 냉매와 물 간의 열교환에 따라, 제1 수배관(Q1)을 통해 제1 열교환기(4)로 유입된 물의 온도가 하강될 수 있다. 제1 열교환기(4)를 통과하며 냉각된 물은 제2 수배관(Q2)을 통해 라디에이터(9)로 유입되어 실내 공간을 냉방시킬 수 있다. 그리고, 라디에이터(9)를 통과하며 온도가 상승된 물은 제3 수배관(Q3)을 통해 펌프(8)로 복귀할 수 있다.As thermal energy of water is transferred from the first heat exchanger 4 to the refrigerant, the refrigerant may be evaporated. In this case, the first heat exchanger 4 may function as an evaporator. And, according to the heat exchange between the refrigerant and water, the temperature of the water introduced into the first heat exchanger 4 through the first water pipe Q1 may be decreased. Water cooled while passing through the first heat exchanger 4 may flow into the radiator 9 through the second water pipe Q2 to cool the indoor space. And, the water passing through the radiator 9 and having an increased temperature may return to the pump 8 through the third water pipe Q3.
한편, 제1 열교환기(4)를 통과하며 증발된 냉매는 제3 배관(P3), 절환밸브(3), 제6 배관(P6), 어큐뮬레이터(6) 그리고 제1 배관(P1)을 차례로 거쳐 압축기(2)로 유입될 수 있다. 이로써, 전술한 히트펌프의 냉방운전을 위한 사이클이 완성될 수 있다.Meanwhile, the refrigerant evaporated while passing through the first heat exchanger 4 passes through the third pipe P3, the switching valve 3, the sixth pipe P6, the accumulator 6, and the first pipe P1 in order. may be introduced into the compressor (2). Accordingly, the cycle for the cooling operation of the above-described heat pump may be completed.
도 3을 참조하면, 제어부(C)는 온도센서(Sa)와 압력센서(Sb)에 전기적으로 연결되어, 히트펌프(1)의 냉매배관(P)을 유동하는 냉매의 온도 또는 압력에 관한 정보를 획득할 수 있다. 한편, 제어부(C)는 전술한 압축기(2), 절환밸브(3), 제1 팽창밸브(E1), 제2 팽창밸브(E2), 인젝션 밸브(V1) 및 바이패스 밸브(V2)에 전기적으로 연결되어, 이들 각각의 동작을 제어할 수 있다.3, the control unit (C) is electrically connected to the temperature sensor (Sa) and the pressure sensor (Sb), information about the temperature or pressure of the refrigerant flowing through the refrigerant pipe (P) of the heat pump (1) can be obtained. On the other hand, the control unit (C) is electrically connected to the above-described compressor (2), the switching valve (3), the first expansion valve (E1), the second expansion valve (E2), the injection valve (V1) and the bypass valve (V2). connected to each other to control their respective operations.
예를 들면, 온도센서(Sa)는 제1 온도센서(Sa1), 제2 온도센서(Sa2), 제3 온도센서(Sa3), 제4 온도센서(Sa4), 제5 온도센서(Sa5) 및 제6 온도센서(Sa6) 중 적어도 하나를 포함할 수 있다.For example, the temperature sensor Sa may include a first temperature sensor Sa1, a second temperature sensor Sa2, a third temperature sensor Sa3, a fourth temperature sensor Sa4, a fifth temperature sensor Sa5 and At least one of the sixth temperature sensors Sa6 may be included.
제1 온도센서(Sa1)는 제1 배관(P1)에 설치되어 압축기(2)로 흡입되는 냉매의 온도를 감지할 수 있다. 제2 온도센서(Sa2)는 제2 배관(P2)에 설치되어 압축기(2)에서 토출되는 냉매의 온도를 감지할 수 있다. 제3 온도센서(Sa3)는 제1 열교환기(4)에 설치되어 제1 열교환기(4)를 통과하는 냉매의 온도를 감지할 수 있다. 제4 온도센서(Sa4)는 제2 열교환기(5)에 설치되어 제2 열교환기(5)를 통과하는 냉매의 온도를 감지할 수 있다. 제5 온도센서(Sa5)는 인젝션 밸브(V1)와 과냉각기(7) 사이에서 제7 배관(P7)에 설치되어, 제2 열교환배관(P7a)으로 유입되는 냉매의 온도를 감지할 수 있다. 제6 온도센서(Sa6)는 과냉각기(7)와 압축기(2) 사이에서 제7 배관(P7)에 설치되어, 제2 열교환배관(P7a)을 통과한 냉매의 온도를 감지할 수 있다.The first temperature sensor Sa1 may be installed in the first pipe P1 to detect the temperature of the refrigerant sucked into the compressor 2 . The second temperature sensor Sa2 may be installed in the second pipe P2 to detect the temperature of the refrigerant discharged from the compressor 2 . The third temperature sensor Sa3 may be installed in the first heat exchanger 4 to detect the temperature of the refrigerant passing through the first heat exchanger 4 . The fourth temperature sensor Sa4 may be installed in the second heat exchanger 5 to detect the temperature of the refrigerant passing through the second heat exchanger 5 . The fifth temperature sensor Sa5 is installed in the seventh pipe P7 between the injection valve V1 and the supercooler 7 to detect the temperature of the refrigerant flowing into the second heat exchange pipe P7a. The sixth temperature sensor Sa6 may be installed in the seventh pipe P7 between the supercooler 7 and the compressor 2 to detect the temperature of the refrigerant passing through the second heat exchange pipe P7a.
예를 들면, 압력센서(Sb)는 제1 압력센서(Sb1), 제2 압력센서(Sb2), 제3 압력센서(Sb3) 및 제4 압력센서(Sb4) 중 적어도 하나를 포함할 수 있다.For example, the pressure sensor Sb may include at least one of a first pressure sensor Sb1 , a second pressure sensor Sb2 , a third pressure sensor Sb3 , and a fourth pressure sensor Sb4 .
제1 압력센서(Sb1)는 제1 배관(P1)에 설치되어, 압축기(2)로 흡입되는 냉매의 압력을 감지할 수 있다. 제2 압력센서(Sb2)는 제3 배관(P3)에 설치되어 제3 배관(P3)을 통과하는 냉매의 압력을 감지할 수 있다. 제3 압력센서(Sb3)는 제5 배관(P5)에 설치되어 제5 배관(P5)을 통과하는 냉매의 압력을 감지할 수 있다. 제4 압력센서(Sb4)는 인젝션 밸브(V1)와 과냉각기(7) 사이에서 제7 배관(P7)에 설치되어, 인젝션 밸브(V1)를 통과한 냉매의 압력을 감지할 수 있다.The first pressure sensor Sb1 may be installed in the first pipe P1 to detect the pressure of the refrigerant sucked into the compressor 2 . The second pressure sensor Sb2 may be installed in the third pipe P3 to sense the pressure of the refrigerant passing through the third pipe P3 . The third pressure sensor Sb3 may be installed in the fifth pipe P5 to detect the pressure of the refrigerant passing through the fifth pipe P5. The fourth pressure sensor Sb4 may be installed in the seventh pipe P7 between the injection valve V1 and the supercooler 7 to detect the pressure of the refrigerant passing through the injection valve V1 .
도 4 및 5를 참조하면, 제어부(C)는 난방운전을 수행하는 도중에, 플래시 가스 인젝션 조건이 만족되는지를 판단하여, 압축기(2)에 플래시 가스를 인젝션 하거나 인젝션 하지 않을 수 있다.4 and 5 , the controller C may or may not inject the flash gas into the compressor 2 by determining whether the flash gas injection condition is satisfied during the heating operation.
도 1을 참조하여 전술한 바와 같이, 난방운전 신호가 수신되면(S10), 제어부(C)는 제1 팽창밸브(E1)를 완전 개방하고 제2 팽창밸브(E2)를 초기 개도로 개방하되, 인젝션 밸브(V1)와 바이패스 밸브(V2)를 폐쇄할 수 있다(S11). 그리고, 제어부(C)는 압축기(2)를 구동하여(S12), 히트펌프의 난방운전을 수행할 수 있다.As described above with reference to FIG. 1, when a heating operation signal is received (S10), the control unit (C) fully opens the first expansion valve (E1) and opens the second expansion valve (E2) to the initial opening degree, The injection valve V1 and the bypass valve V2 may be closed (S11). Then, the control unit C may drive the compressor 2 (S12) to perform a heating operation of the heat pump.
S12 이후에, 제어부(C)는 플래시 가스 인젝션 조건이 만족되는지를 판단할 수 있다(S20). 여기서, 플래시 가스는 2상(two pahse)의 냉매를 일컫는 것으로서, 보다 상세히는 후술한다. S20에서 플래시 가스 인젝션 조건이 만족되면(S20에서 Yes), 제어부(C)는 압축기(2)로 플래시 가스가 인젝션되도록 제어할 수 있다(S30). S20에서 플래시 가스 인젝션 조건이 불만족되면(S20에서 No), 제어부(C)는 압축기(2)로 플래시 가스가 인젝션되지 않는 상태를 유지할 수 있다(S40).After S12, the controller C may determine whether the flash gas injection condition is satisfied (S20). Here, the flash gas refers to a refrigerant of two phases, which will be described in more detail later. When the flash gas injection condition is satisfied in S20 (Yes in S20), the controller C may control the flash gas to be injected into the compressor 2 (S30). If the flash gas injection condition is not satisfied in S20 (No in S20), the controller C may maintain a state in which the flash gas is not injected into the compressor 2 (S40).
도 5 및 6을 참조하면, 전술한 S20에서 플래시 가스 인젝션 조건의 만족 여부는 압축기 흡입 과열도를 기준으로 판단될 수 있다.5 and 6 , whether the flash gas injection condition is satisfied in the aforementioned S20 may be determined based on the compressor suction superheat degree.
구체적으로, 제어부(C)는 제1 온도센서(Sa1)로부터 압축기(2)로 흡입되는 냉매의 온도인 압축기 흡입 온도(Ti)에 관한 정보를 획득할 수 있다(S21). 그리고, 제어부(C)는 제4 온도센서(Sa4)로부터 증발기로 기능하는 제2 열교환기(5)에서 증발되는 냉매의 포화온도인 증발온도(Te)에 관한 정보를 획득할 수 있다(S22).Specifically, the controller C may obtain information about the compressor suction temperature Ti, which is the temperature of the refrigerant sucked into the compressor 2 from the first temperature sensor Sa1 (S21). Then, the control unit C may obtain information on the evaporation temperature Te, which is the saturation temperature of the refrigerant evaporated in the second heat exchanger 5 functioning as an evaporator, from the fourth temperature sensor Sa4 (S22) .
그리고, 제어부(C)는 압축기 흡입 온도(Ti)와 증발온도(Te)의 차이인 압축기 흡입 과열도가 제1 기준온도(a1) 미만인지를 판단할 수 있다(S23). 예를 들면, 제1 기준온도(a1)는 0 ℃일 수 있다. 이 경우, 압축기 흡입 온도(Ti)가 증발온도(Te)보다 작은 것으로, 히트펌프가 한랭지 환경에서 동작되어, 압축기(2)로 흡입되는 냉매의 양이 부족하고, 압축기(2)가 높은 압축비로 동작되어 압축기(2)에서 토출되는 냉매의 온도가 과도하게 상승되는 문제가 발생할 수 있다.Then, the controller C may determine whether the compressor suction superheat, which is the difference between the compressor suction temperature Ti and the evaporation temperature Te, is less than the first reference temperature a1 ( S23 ). For example, the first reference temperature a1 may be 0 °C. In this case, since the compressor suction temperature Ti is smaller than the evaporation temperature Te, the heat pump is operated in a cold region environment, the amount of refrigerant sucked into the compressor 2 is insufficient, and the compressor 2 has a high compression ratio. The operation may cause a problem in that the temperature of the refrigerant discharged from the compressor 2 is excessively increased.
S23에서 압축기 흡입 과열도가 제1 기준온도(a1) 미만인 것으로 판단되면(S23에서 Yes), 플래시 가스 인젝션 조건이 만족된 것으로 판단할 수 있다(S24). S23에서 압축기 흡입 과열도가 제1 기준온도(a1) 이상인 것으로 판단되면(S23에서 No), 플래시 가스 인젝션 조건이 불만족된 것으로 판단할 수 있다(S25). If it is determined in S23 that the compressor suction superheat is less than the first reference temperature a1 (Yes in S23), it may be determined that the flash gas injection condition is satisfied (S24). If it is determined in S23 that the compressor suction superheat is equal to or higher than the first reference temperature a1 (No in S23), it may be determined that the flash gas injection condition is unsatisfactory (S25).
도 5 및 7을 참조하면, 전술한 S20에서 플래시 가스 인젝션 조건의 만족 여부는 압축기 토출 과열도를 기준으로 판단될 수 있다.5 and 7 , whether the flash gas injection condition is satisfied in the aforementioned S20 may be determined based on the compressor discharge superheat degree.
구체적으로, 제어부(C)는 제2 온도센서(Sa2)로부터 압축기(2)에서 토출되는 냉매의 온도인 압축기 토출 온도(To)에 관한 정보를 획득할 수 있다(S21'). 그리고, 제어부(C)는 제3 온도센서(Sa3)로부터 응축기로 기능하는 제1 열교환기(4)에서 응축되는 냉매의 포화온도인 응축온도(Tc)에 관한 정보를 획득할 수 있다(S22').Specifically, the controller C may obtain information about the compressor discharge temperature To, which is the temperature of the refrigerant discharged from the compressor 2, from the second temperature sensor Sa2 (S21'). Then, the control unit C may obtain information about the condensation temperature Tc, which is the saturation temperature of the refrigerant condensed in the first heat exchanger 4 functioning as a condenser from the third temperature sensor Sa3 (S22') ).
그리고, 제어부(C)는 압축기 토출 온도(To)와 응축온도(Tc)의 차이인 압축기 토출 과열도가 제2 기준온도(a2)를 초과하는지를 판단할 수 있다(S23'). 예를 들면, 제2 기준온도(a2)는 10 내지 30 ℃의 온도일 수 있다. 이 경우, 압축기(2)에서 토출되는 냉매의 온도가 과도히 높은 문제가 발생할 수 있다.Then, the controller C may determine whether the compressor discharge superheat, which is the difference between the compressor discharge temperature To and the condensing temperature Tc, exceeds the second reference temperature a2 ( S23 ′). For example, the second reference temperature a2 may be a temperature of 10 to 30 °C. In this case, a problem in that the temperature of the refrigerant discharged from the compressor 2 is excessively high may occur.
S23'에서 압축기 토출 과열도가 제2 기준온도(a2)를 초과한 것으로 판단되면(S23'에서 Yes), 플래시 가스 인젝션 조건이 만족된 것으로 판단할 수 있다(S24'). S23'에서 압축기 토출 과열도가 제2 기준온도(a2) 이하인 것으로 판단되면(S23'에서 No), 플래시 가스 인젝션 조건이 불만족된 것으로 판단할 수 있다(S25').If it is determined in S23' that the compressor discharge superheat has exceeded the second reference temperature a2 (Yes in S23'), it may be determined that the flash gas injection condition is satisfied (S24'). If it is determined in S23' that the compressor discharge superheat is equal to or less than the second reference temperature a2 (No in S23'), it may be determined that the flash gas injection condition is unsatisfactory (S25').
도 5 및 8을 참조하면, 전술한 S30에서 제어부(C)는 압축기(2)로 플래시 가스가 인젝션되도록 제어할 수 있다.5 and 8 , in S30 described above, the controller C may control the flash gas to be injected into the compressor 2 .
구체적으로, 제어부(C)는 인젝션 밸브(V1)를 초기 개도로 개방하고(S31), 제2 팽창밸브(E2)의 개도를 감소시킬 수 있다(S32). 그 결과, 제4 배관(P4)의 유로를 유동하는 냉매 중 일부인 인젝션 냉매가 제1 지점(a1)에서 제7 배관(P7)으로 바이패스 될 수 있다(도 4 참조). 그리고, 상기 인젝션 냉매는 인젝션 밸브(V1)를 통과하며 팽창되어 제2 열교환배관(P7a)을 통해 과냉각기(7)를 통과할 수 있다.Specifically, the controller C may open the injection valve V1 to the initial opening degree (S31) and decrease the opening degree of the second expansion valve E2 (S32). As a result, the injection refrigerant which is a part of the refrigerant flowing through the flow path of the fourth pipe P4 may be bypassed from the first point a1 to the seventh pipe P7 (see FIG. 4 ). In addition, the injection refrigerant may be expanded while passing through the injection valve V1 and may pass through the supercooler 7 through the second heat exchange pipe P7a.
이때, 제4 배관(P4)의 유로를 유동하는 냉매 중 상기 인젝션 냉매를 제외한 나머지 냉매인 메인 냉매가 제1 열교환배관(P4a)을 통해 과냉각기(7)를 통과할 수 있다. 이 경우, 과냉각기(7)에서, 제1 열교환배관(P4a)을 유동하는 상기 메인 냉매로부터 제2 열교환배관(P7a)을 유동하는 상기 인젝션 냉매로 열 에너지가 전달되어, 상기 메인 냉매는 과냉되고, 상기 인젝션 냉매의 적어도 일부가 증발될 수 있다.At this time, the main refrigerant, which is the remaining refrigerant except for the injection refrigerant, among refrigerants flowing through the flow path of the fourth pipe P4 may pass through the supercooler 7 through the first heat exchange pipe P4a. In this case, in the supercooler 7, thermal energy is transferred from the main refrigerant flowing through the first heat exchange pipe P4a to the injection refrigerant flowing through the second heat exchange pipe P7a, and the main refrigerant is supercooled , at least a portion of the injection refrigerant may be evaporated.
그리고, 과냉각기(7)를 통과한 상기 인젝션 냉매는 압축기(2)로 인젝션될 수 있다. 이때, 상기 인젝션 냉매는 압축기(2)로 흡입되는 냉매의 압력과 압축기(2)에서 토출되는 냉매의 압력 사이의 압력에 해당하는 중간 압력으로 압축기(2)로 인젝션될 수 있다.And, the injection refrigerant that has passed through the supercooler 7 may be injected into the compressor 2 . In this case, the injection refrigerant may be injected into the compressor 2 at an intermediate pressure corresponding to a pressure between the pressure of the refrigerant sucked into the compressor 2 and the pressure of the refrigerant discharged from the compressor 2 .
예를 들면, 압축기(2)로 인젝션되는 상기 인젝션 냉매는 2상(two phase)의 냉매로서 플래시 가스(flash gas)일 수 있다. 이와 비교하여, 과냉된 냉매를 압축기(2)로 인젝션하면 액적에 의한 압축기(2)의 손상이 우려되고, 과열된 냉매를 압축기(2)로 인젝션하면 압축기(2)에서 토출되는 냉매의 온도를 낮추기 어려울 수 있다. 이에 반하여, 상기 인젝션 냉매가 플래시 가스로서 압축기(2)로 인젝션되면, 상기 인젝션 냉매는 압축실에 유입되면서 기화될 것이므로, 전술한 액적에 의한 압축기의 손상의 우려가 줄어들 수 있다.For example, the injection refrigerant injected into the compressor 2 may be a flash gas as a two-phase refrigerant. In comparison, when the supercooled refrigerant is injected into the compressor (2), damage to the compressor (2) by droplets is concerned, and when the overheated refrigerant is injected into the compressor (2), the temperature of the refrigerant discharged from the compressor (2) It can be difficult to lower. On the other hand, when the injection refrigerant is injected into the compressor 2 as a flash gas, the injection refrigerant will be vaporized while flowing into the compression chamber, so that the risk of damage to the compressor by the above-mentioned droplets can be reduced.
이에 따라, 압축기(2)로 플래시 가스가 인젝션되면, 압축기(2)로 흡입되는 냉매량을 증대시킬 수 있고, 압축기(2)에서 토출되는 냉매의 온도를 낮출 수 있다.Accordingly, when the flash gas is injected into the compressor 2 , the amount of refrigerant sucked into the compressor 2 may be increased and the temperature of the refrigerant discharged from the compressor 2 may be lowered.
한편, S32 이후에, 제어부(C)는 제2 온도센서(Sa2)로부터 압축기(2)에서 토출되는 냉매의 온도인 압축기 토출 온도(To)에 관한 정보를 획득할 수 있다(S33). 그리고, 제어부(C)는 압축기 토출 온도(To)가 목표 토출 온도(Ttarget) 미만인지를 판단할 수 있다(S34). 여기서, 목표 토출 온도(Ttarget)는 히트펌프(1) 또는 압축기(2)의 요구 부하에 대응하여 정해지는 온도로서, 상기 요구 부하에 비례하여 증가할 수 있다. 예를 들면, 목표 토출 온도(Ttarget)는 75 ℃일 수 있다.Meanwhile, after S32 , the control unit C may obtain information about the compressor discharge temperature To, which is the temperature of the refrigerant discharged from the compressor 2 , from the second temperature sensor Sa2 ( S33 ). Then, the controller C may determine whether the compressor discharge temperature To is less than the target discharge temperature Ttarget (S34). Here, the target discharge temperature Ttarget is a temperature determined in response to a demand load of the heat pump 1 or the compressor 2 , and may increase in proportion to the demand load. For example, the target discharge temperature Ttarget may be 75°C.
S34에서 압축기 토출 온도(To)가 목표 토출 온도(Ttarget) 이상인 것으로 판단되면(S34에서 No), 제어부(C)는 S32로 리턴할 수 있다. 이로써, 인젝션 밸브(V1)의 개도는 유지된 채, 제2 팽창밸브(E2)의 개도가 이전보다 감소되어, 제1 지점(a1)에서 제7 배관(P7)으로 바이패스 되는 냉매의 양이 증가될 수 있다. 그 결과, 압축기(2)로 인젝션되는 상기 인젝션 냉매의 양이 증가하여, 압축기(2)에서 토출되는 냉매의 온도를 낮출 수 있다.If it is determined in S34 that the compressor discharge temperature To is equal to or greater than the target discharge temperature Ttarget (No in S34), the controller C may return to S32. Accordingly, while the opening degree of the injection valve V1 is maintained, the opening degree of the second expansion valve E2 is reduced than before, so that the amount of refrigerant bypassed from the first point a1 to the seventh pipe P7 is increased. can be increased. As a result, the amount of the injected refrigerant injected into the compressor (2) increases, so that the temperature of the refrigerant discharged from the compressor (2) can be lowered.
S34에서 압축기 토출 온도(To)가 목표 토출 온도(Ttarget) 미만인 것으로 판단되면(S34에서 Yes), 제어부(C)는 압축기 토출 온도(To)가 최소 온도(Tm) 미만인지를 판단할 수 있다(S35). 여기서, 최소 온도(Tm)는 히트펌프(1) 또는 압축기(2)의 요구 부하에 대응하여 정해지는 온도로서, 상기 요구 부하 달성을 위한 최소한의 온도로 정의될 수 있다. 예를 들면, 최소 온도(Tm)는 목표 토출 온도(Ttarget)보다 1 내지 3 ℃ 작을 수 있다.If it is determined in S34 that the compressor discharge temperature To is less than the target discharge temperature Ttarget (Yes in S34), the controller C may determine whether the compressor discharge temperature To is less than the minimum temperature Tm ( S35). Here, the minimum temperature Tm is a temperature determined in response to a required load of the heat pump 1 or the compressor 2 , and may be defined as a minimum temperature for achieving the required load. For example, the minimum temperature Tm may be 1 to 3°C smaller than the target discharge temperature Ttarget.
S35에서 압축기 토출 온도(To)가 최소 온도(Tm) 이상인 것으로 판단되면(S35에서 Yes), 제어부(C)는 S33으로 리턴할 수 있다. 이로써, 인젝션 밸브(V1)의 개도와 제2 팽창밸브(E2)의 개도가 유지되어, 이전과 마찬가지의 플래시 가스 인젝션이 수행될 수 있다.If it is determined in S35 that the compressor discharge temperature To is equal to or higher than the minimum temperature Tm (Yes in S35), the controller C may return to S33. Accordingly, the opening degree of the injection valve V1 and the opening degree of the second expansion valve E2 are maintained, so that the same flash gas injection as before can be performed.
S35에서 압축기 토출 온도(To)가 최소 온도(Tm) 미만인 것으로 판단되면(S35에서 No), 제어부(C)는 제2 팽창밸브(E2)의 개도를 증가시킬 수 있다. 이로써, 인젝션 밸브(V1)의 개도는 유지된 채, 제2 팽창밸브(E2)의 개도가 이전보다 증가되어, 제1 지점(a1)에서 제7 배관(P7)으로 바이패스 되는 냉매의 양이 감소될 수 있다. 그 결과, 압축기(2)로 인젝션되는 상기 인젝션 냉매의 양이 감소하여, 압축기(2)에서 토출되는 냉매의 온도를 높일 수 있다.If it is determined in S35 that the compressor discharge temperature To is less than the minimum temperature Tm (No in S35), the controller C may increase the opening degree of the second expansion valve E2. Accordingly, while the opening degree of the injection valve V1 is maintained, the opening degree of the second expansion valve E2 is increased than before, so that the amount of refrigerant bypassed from the first point a1 to the seventh pipe P7 is increased. can be reduced. As a result, the amount of the injected refrigerant injected into the compressor (2) is reduced, so that the temperature of the refrigerant discharged from the compressor (2) can be increased.
도 9 및 10을 참조하면, 전술한 S30 이후에, 제어부(C)는 히트펌프(1)의 요구 부하에 따라, 바이패스 밸브(V2)의 개도를 조절하여, 압축기(2)에서 토출되는 냉매 중 일부가 전술한 과냉각기(7)를 통과한 상기 인젝션 냉매와 함께 압축기(2)로 인젹센되도록 제어할 수 있다.9 and 10 , after the aforementioned S30 , the controller C adjusts the opening degree of the bypass valve V2 according to the required load of the heat pump 1 , and the refrigerant discharged from the compressor 2 . It can be controlled so that a part of it is injected into the compressor (2) together with the injection refrigerant that has passed through the above-described supercooler (7).
S30 이후에, 제어부(C)는 히트펌프(1)의 요구 부하가 기준 부하를 초과하는지를 판단할 수 있다(S50). 예를 들면, S50는 외기가 영하 35 ℃이거나, 압축기(2)에서 토출되는 냉매의 목표 토출온도가 75 ℃ 이상인 경우 등 실내의 난방 요구 조건(즉, 난방 온도)를 충족하기 위하여 압축기(2)가 고압축비로 냉매를 압축하는 것이 필요한 경우에 만족될 수 있다.After S30, the control unit C may determine whether the required load of the heat pump 1 exceeds the reference load (S50). For example, S50 is the compressor (2) to satisfy the indoor heating requirements (ie, heating temperature), such as when the outside air is minus 35 ° C or the target discharge temperature of the refrigerant discharged from the compressor 2 is 75 ° C or higher. This can be satisfied when it is necessary to compress the refrigerant at a high compression ratio.
S50에서 히트펌프(1)의 요구 부하가 기준 부하를 초과하는 것으로 판단되면(S50에서 Yes), 후술하는 요구 부하의 크기에 따라서 바이패스 밸브(V2)가 일정 개도로 개방될 수 있다. 이 경우, 제2 배관(P2)의 유로를 유동하는 냉매 중 일부인 바이패스 냉매가 제2 지점(a2)에서 제8 배관(P8)으로 바이패스 될 수 있다. 그리고, 상기 바이패스 냉매는 바이패스 밸브(V2)를 통과하며 팽창되어 제3 지점(a3)에서 제7 배관(P7)으로 유입될 수 있다. 한편, 이와 같은 냉매의 흐름을 가지는 운전을 히트펌프의 고효율 운전이라 칭할 수 있다.When it is determined in S50 that the required load of the heat pump 1 exceeds the reference load (Yes in S50), the bypass valve V2 may be opened at a predetermined opening according to the size of the required load to be described later. In this case, the bypass refrigerant, which is a part of the refrigerant flowing through the flow path of the second pipe P2, may be bypassed from the second point a2 to the eighth pipe P8. In addition, the bypass refrigerant passes through the bypass valve V2, expands, and may be introduced into the seventh pipe P7 at the third point a3. On the other hand, the operation having such a flow of the refrigerant may be referred to as a high-efficiency operation of the heat pump.
이에 따라, 제7 배관(P7)의 제3 지점(a3)에서 상기 바이패스 냉매가 전술한 과냉각기(7)를 통과한 상기 인젝션 냉매와 혼합되어 압축기(2)로 인젝션될 수 있다. 이때, 상기 인젝션 냉매만이 압축기(2)로 인젝션되는 경우와 비교하여, 상기 바이패스 냉매로 인하여 압축기(2)로 인젝션되는 냉매의 압력이 상승하고, 압축기(2)의 고압단과 저압단 사이의 압축비가 개선되어 압축 효율 내지 난방 성능이 향상될 수 있다.Accordingly, the bypass refrigerant may be mixed with the injection refrigerant that has passed through the supercooler 7 at the third point a3 of the seventh pipe P7 to be injected into the compressor 2 . At this time, compared to the case where only the injection refrigerant is injected into the compressor 2 , the pressure of the refrigerant injected into the compressor 2 increases due to the bypass refrigerant, and the pressure between the high-pressure end and the low-pressure end of the compressor 2 increases. Compression ratio may be improved to improve compression efficiency or heating performance.
그리고, 상기 바이패스 냉매가 상기 인젝션 냉매에 혼합됨에 따라, 상기 인젝션 냉매의 적어도 일부가 증발되어, 상기 압축기(2)로 인젝션되는 냉매의 건도가 높아질 수 있다. 다시 말해, 상기 바이패스 냉매를 상기 인젝션 냉매에 혼합시켜, 압축기(2)로 인젝션되는 냉매의 건도를 일정 수준 이상으로 제어할 수 있고, 그 결과 압축기의 액압축을 방지하여 압축기 신뢰성을 확보할 수 있다. 또한, 일정 수준 이상의 건도를 가지는 냉매가 압축기(2)로 인젝션됨에 따라, 압축기(2)에서 토출되는 냉매의 온도를 안정적으로 관리할 수 있다.In addition, as the bypass refrigerant is mixed with the injection refrigerant, at least a portion of the injection refrigerant is evaporated, and thus the dryness of the refrigerant injected into the compressor 2 may be increased. In other words, by mixing the bypass refrigerant with the injection refrigerant, the dryness of the refrigerant injected into the compressor 2 can be controlled to a certain level or higher, and as a result, the compressor reliability can be secured by preventing liquid compression of the compressor. there is. In addition, as the refrigerant having a dryness greater than or equal to a certain level is injected into the compressor 2 , the temperature of the refrigerant discharged from the compressor 2 may be stably managed.
구체적으로, S50에서 히트펌프(1)의 요구 부하가 기준 부하를 초과하는 것으로 판단되면(S50에서 Yes), 제어부(C)는 히트펌프(1)의 요구 부하가 제1 부하(L1)를 초과하는지를 판단할 수 있다(S61).Specifically, when it is determined in S50 that the required load of the heat pump 1 exceeds the reference load (Yes in S50), the controller C determines that the required load of the heat pump 1 exceeds the first load L1. It can be determined whether or not (S61).
S61에서 요구 부하가 제1 부하(L1)를 초과하는 것으로 판단되면(S61에서 Yes), 제어부(C)는 바이패스 밸브(V2)를 제1 개도로 개방할 수 있다(S62). 그 결과, 제2 배관(P2)의 유로를 유동하는 냉매 중 일부인 바이패스 냉매가 제2 지점(a2)에서 제8 배관(P8)으로 바이패스 될 수 있다. 그리고, 상기 바이패스 냉매는 상기 제1 개도로 개방된 바이패스 밸브(V2)를 통과하며 팽창되어 제3 지점(a3)에서 제7 배관(P7)으로 유입되어, 전술한 과냉각기(7)를 통과한 상기 인젝션 냉매와 함께 압축기(2)로 인젝션될 수 있다.If it is determined in S61 that the required load exceeds the first load L1 (Yes in S61), the controller C may open the bypass valve V2 to the first opening (S62). As a result, the bypass refrigerant, which is a part of the refrigerant flowing through the flow path of the second pipe P2, may be bypassed from the second point a2 to the eighth pipe P8. In addition, the bypass refrigerant passes through the bypass valve V2 opened to the first opening degree, expands, and flows into the seventh pipe P7 at the third point a3, thereby discharging the supercooler 7 described above. It can be injected into the compressor (2) together with the injection refrigerant that has passed.
S61에서 요구 부하가 제1 부하(L1) 이하인 것으로 판단되면(S61에서 No), 제어부(C)는 히트펌프(1)의 요구 부하가 제2 부하(L2)를 초과하는지를 판단할 수 있다(S63). 여기서, 제2 부하(L2)는 제1 부하(L1)보다 작으며, 예를 들어 제2 부하(L2)에서 압축기(2)에 요구되는 압축비는 제1 부하(L1)에서 압축기(2)에 요구되는 압축비보다 작을 수 있다.If it is determined in S61 that the required load is less than or equal to the first load L1 (No in S61), the control unit C may determine whether the required load of the heat pump 1 exceeds the second load L2 (S63). ). Here, the second load L2 is smaller than the first load L1, and for example, the compression ratio required for the compressor 2 in the second load L2 is from the first load L1 to the compressor 2 It may be smaller than the required compression ratio.
S63에서 요구 부하가 제1 부하(L1) 이하이되 제2 부하(L2)를 초과하는 것으로 판단되면(S63에서 Yes), 제어부(C)는 바이패스 밸브(V2)를 제2 개도로 개방할 수 있다(S64). 그 결과, 제2 배관(P2)의 유로를 유동하는 냉매 중 일부인 바이패스 냉매가 제2 지점(a2)에서 제8 배관(P8)으로 바이패스 될 수 있다. 그리고, 상기 바이패스 냉매는 상기 제2 개도로 개방된 바이패스 밸브(V2)를 통과하며 팽창되어 제3 지점(a3)에서 제7 배관(P7)으로 유입되어, 전술한 과냉각기(7)를 통과한 상기 인젝션 냉매와 함께 압축기(2)로 인젝션될 수 있다.If it is determined in S63 that the required load is less than or equal to the first load L1 but exceeds the second load L2 (Yes in S63), the control unit C may open the bypass valve V2 to the second opening. There is (S64). As a result, the bypass refrigerant, which is a part of the refrigerant flowing through the flow path of the second pipe P2, may be bypassed from the second point a2 to the eighth pipe P8. In addition, the bypass refrigerant passes through the bypass valve V2 opened to the second opening degree, expands, and flows into the seventh pipe P7 at the third point a3, thereby discharging the supercooler 7 described above. It can be injected into the compressor (2) together with the injection refrigerant that has passed.
S63에서 요구 부하가 제2 부하(L2) 이하이되 기준 부하를 초과하는 것으로 판단되면(S63에서 No), 제어부(C)는 바이패스 밸브(V2)를 제3 개도로 개방할 수 있다(S65). 그 결과, 제2 배관(P2)의 유로를 유동하는 냉매 중 일부인 바이패스 냉매가 제2 지점(a2)에서 제8 배관(P8)으로 바이패스 될 수 있다. 그리고, 상기 바이패스 냉매는 상기 제3 개도로 개방된 바이패스 밸브(V2)를 통과하며 팽창되어 제3 지점(a3)에서 제7 배관(P7)으로 유입되어, 전술한 과냉각기(7)를 통과한 상기 인젝션 냉매와 함께 압축기(2)로 인젝션될 수 있다.When it is determined in S63 that the required load is less than or equal to the second load L2 but exceeds the reference load (No in S63), the control unit C may open the bypass valve V2 to the third opening (S65). . As a result, the bypass refrigerant, which is a part of the refrigerant flowing through the flow path of the second pipe P2, may be bypassed from the second point a2 to the eighth pipe P8. In addition, the bypass refrigerant passes through the bypass valve V2 opened to the third opening degree, expands, and flows into the seventh pipe P7 at the third point a3, thereby discharging the supercooler 7 described above. It can be injected into the compressor (2) together with the injection refrigerant that has passed.
한편, 요구 부하의 크기가 커질수록 바이패스 밸브(V2)의 개도를 증가시켜, 상기 인젝션 냉매와 혼합되는 상기 바이패스 냉매의 양을 증가시킬 수 있다. 즉, 상기 제2 개도는 상기 제1 개도보다 작고, 상기 제3 개도는 상기 제2 개도보다 작을 수 있다. 이 경우, 상기 제2 개도로 개방된 바이패스 밸브(V2)를 통과하는 상기 바이패스 냉매의 양은 상기 제1 개도로 개방된 바이패스 밸브(V2)를 통과하는 상기 바이패스 냉매의 양보다 작을 수 있다. 그리고, 상기 제3 개도로 개방된 바이패스 밸브(V2)를 통과하는 상기 바이패스 냉매의 양은 상기 제2 개도로 개방된 바이패스 밸브(V2)를 통과하는 상기 바이패스 냉매의 양보다 작을 수 있다. 이로써, 상대적으로 큰 요구 부하에서 압축기(2)로 인젝션되는 냉매의 압력이 상승하여, 압축 효율을 보다 상승시킬 수 있다.Meanwhile, as the size of the required load increases, the opening degree of the bypass valve V2 may be increased, thereby increasing the amount of the bypass refrigerant mixed with the injection refrigerant. That is, the second opening degree may be smaller than the first opening degree, and the third opening degree may be smaller than the second opening degree. In this case, the amount of the bypass refrigerant passing through the bypass valve V2 opened to the second opening may be smaller than the amount of the bypass refrigerant passing through the bypass valve V2 opened to the first opening. there is. In addition, the amount of the bypass refrigerant passing through the bypass valve V2 opened to the third opening may be smaller than the amount of the bypass refrigerant passing through the bypass valve V2 opened to the second opening. . Accordingly, the pressure of the refrigerant injected into the compressor 2 at a relatively large demand load increases, and compression efficiency can be further increased.
본 개시의 일 측면에 따르면, 냉매를 압축하는 압축기; 상기 압축기에서 토출되는 냉매가 유입 가능하고, 제1 열교환기와 제2 열교환기를 구비하는 열교환기; 상기 압축기에서 토출되는 냉매를 상기 제1 열교환기 또는 상기 제2 열교환기로 선택적으로 안내하는 절환밸브; 상기 제1 열교환기와 상기 제2 열교환기를 잇는 메인 배관에 설치되고, 상기 메인 배관의 유로를 유동하는 냉매를 팽창시키는 메인 팽창밸브; 일단이 상기 제1 열교환기와 상기 메인 팽창밸브 사이에서 상기 메인 배관에 연결되고, 타단이 상기 압축기에 연결되는 인젝션 배관; 상기 인젝션 배관에 설치되어, 상기 인젝션 배관의 유로의 개도를 조절하는 인젝션 밸브; 그리고, 상기 인젝션 배관의 일단과 상기 메인 팽창밸브 사이에서 상기 메인 배관에 설치되는 과냉각기를 포함하고, 상기 메인 배관은 상기 과냉각기의 내부에 위치하는 제1 열교환배관을 포함하고, 상기 인젝션 배관은 상기 과냉각기의 내부에 위치하고, 상기 제1 열교환배관에 인접하는 제2 열교환배관을 포함하는 히트펌프를 제공한다.According to an aspect of the present disclosure, a compressor for compressing a refrigerant; a heat exchanger through which the refrigerant discharged from the compressor can be introduced and having a first heat exchanger and a second heat exchanger; a switching valve selectively guiding the refrigerant discharged from the compressor to the first heat exchanger or the second heat exchanger; a main expansion valve installed in a main pipe connecting the first heat exchanger and the second heat exchanger to expand the refrigerant flowing through the flow path of the main pipe; an injection pipe having one end connected to the main pipe between the first heat exchanger and the main expansion valve and the other end connected to the compressor; an injection valve installed on the injection pipe to control an opening degree of a flow path of the injection pipe; and a supercooler installed in the main pipe between one end of the injection pipe and the main expansion valve, wherein the main pipe includes a first heat exchange pipe positioned inside the supercooler, and the injection pipe includes the It is located inside the supercooler and provides a heat pump including a second heat exchange pipe adjacent to the first heat exchange pipe.
또 본 개시의 다른(another) 측면에 따르면, 상기 메인 팽창밸브의 개도와 상기 인젝션 밸브의 개도를 제어하는 제어부를 더 포함하고, 상기 제어부는, 난방운전 신호가 수신되면, 상기 압축기에서 토출되는 냉매가 상기 제1 열교환기로 안내되도록 상기 절환밸브의 유로를 형성하고, 상기 메인 팽창밸브를 초기 개도로 개방하고, 상기 인젝션 밸브를 폐쇄하여 난방운전을 수행할 수 있다.According to another aspect of the present disclosure, further comprising a control unit for controlling an opening degree of the main expansion valve and an opening degree of the injection valve, wherein the control unit, when a heating operation signal is received, the refrigerant discharged from the compressor The heating operation may be performed by forming a flow path of the switching valve to guide the heat exchanger to the first heat exchanger, opening the main expansion valve to an initial opening degree, and closing the injection valve.
또 본 개시의 다른(another) 측면에 따르면, 상기 제어부는, 상기 난방운전을 수행하는 도중에, 플래시 가스 인젝션 조건이 만족되면, 상기 인젝션 밸브를 초기 개도로 개방하고, 상기 메인 팽창밸브의 개도를 감소시켜 플래시 가스 인젝션 운전을 수행할 수 있다.According to another aspect of the present disclosure, when the flash gas injection condition is satisfied during the heating operation, the control unit opens the injection valve to an initial opening degree, and reduces the opening degree of the main expansion valve. to perform a flash gas injection operation.
또 본 개시의 다른(another) 측면에 따르면, 상기 제어부는, 상기 압축기로 흡입되는 냉매의 온도인 압축기 흡입 온도와 상기 제2 열교환기를 통과하는 냉매의 포화온도인 증발온도의 차이인 압축기 흡입 과열도가 제1 기준온도 미만이면, 상기 플래시 가스 인젝션 조건이 만족된 것으로 판단할 수 있다.Further, according to another aspect of the present disclosure, the controller may include a compressor suction superheat degree that is a difference between a compressor suction temperature, which is a temperature of the refrigerant sucked into the compressor, and an evaporation temperature, which is a saturation temperature of the refrigerant passing through the second heat exchanger. When is less than the first reference temperature, it may be determined that the flash gas injection condition is satisfied.
또 본 개시의 다른(another) 측면에 따르면, 상기 제어부는, 상기 압축기에서 토출되는 냉매의 온도인 압축기 토출 온도와 상기 제1 열교환기를 통과하는 냉매의 포화온도인 응축온도의 차이인 압축기 토출 과열도가 제2 기준온도를 초과하면, 상기 플래시 가스 인젝션 조건이 만족된 것으로 판단할 수 있다.Also, according to another aspect of the present disclosure, the control unit, the compressor discharge superheat which is the difference between the compressor discharge temperature, which is the temperature of the refrigerant discharged from the compressor, and the condensation temperature, which is the saturation temperature of the refrigerant passing through the first heat exchanger When ? exceeds the second reference temperature, it may be determined that the flash gas injection condition is satisfied.
또 본 개시의 다른(another) 측면에 따르면, 상기 제어부는, 상기 플래시 가스 인젝션 운전에서, 상기 압축기에서 토출되는 냉매의 온도인 압축기 토출 온도가 목표 토출 온도 이상인 것으로 판단되면, 상기 인젝션 밸브의 개도를 유지하고, 상기 메인 팽창밸브의 개도를 감소시킬 수 있다.According to another aspect of the present disclosure, when it is determined that, in the flash gas injection operation, the compressor discharge temperature, which is the temperature of the refrigerant discharged from the compressor, is equal to or higher than the target discharge temperature, the control unit determines the opening degree of the injection valve. maintained, and the degree of opening of the main expansion valve can be reduced.
또 본 개시의 다른(another) 측면에 따르면, 상기 제어부는, 상기 플래시 가스 인젝션 운전에서, 상기 압축기 토출 온도가 상기 목표 토출 온도 미만이되, 상기 목표 토출 온도보다 작은 최소 온도 이상인 것으로 판단되면, 상기 인젝션 밸브의 개도와 상기 메인 팽창밸브의 개도를 유지할 수 있다.According to another aspect of the present disclosure, when it is determined that, in the flash gas injection operation, the compressor discharge temperature is less than the target discharge temperature and is equal to or greater than a minimum temperature smaller than the target discharge temperature, the The opening degree of the injection valve and the opening degree of the main expansion valve may be maintained.
또 본 개시의 다른(another) 측면에 따르면, 상기 제어부는, 상기 플래시 가스 인젝션 운전에서, 상기 압축기 토출 온도가 상기 목표 토출 온도 미만이고, 상기 최소 온도 미만인 것으로 판단되면, 상기 인젝션 밸브의 개도를 유지하고, 상기 메인 팽창밸브의 개도를 증가시킬 수 있다.According to another aspect of the present disclosure, when it is determined that the compressor discharge temperature is less than the target discharge temperature and less than the minimum temperature in the flash gas injection operation, the control unit maintains the opening degree of the injection valve And, it is possible to increase the opening degree of the main expansion valve.
또 본 개시의 다른(another) 측면에 따르면, 일단이 상기 압축기와 상기 절환밸브를 잇는 토출배관에 연결되고, 타단이 상기 과냉각기와 상기 압축기 사이에서 상기 인젝션 배관에 연결되는 바이패스 배관; 그리고, 상기 바이패스 배관에 설치되어, 상기 바이패스 배관의 유로의 개도를 조절하는 바이패스 밸브를 더 포함할 수 있다.According to another aspect of the present disclosure, a bypass pipe having one end connected to a discharge pipe connecting the compressor and the switching valve and the other end connected to the injection pipe between the supercooler and the compressor; The bypass valve may further include a bypass valve installed on the bypass pipe to adjust an opening degree of a flow path of the bypass pipe.
또 본 개시의 다른(another) 측면에 따르면, 상기 제어부는, 상기 플래시 가스 인젝션 운전을 수행하는 도중에, 상기 압축기의 요구 부하가 기준 부하를 초과하면, 상기 요구 부하의 크기에 비례하여 상기 바이패스 밸브의 개도를 증가시킬 수 있다.According to another aspect of the present disclosure, when the required load of the compressor exceeds a reference load while the flash gas injection operation is being performed, the control unit may include the bypass valve in proportion to the size of the required load. can increase the degree of
또 본 개시의 다른(another) 측면에 따르면, 상기 제어부는, 상기 플래시 가스 인젝션 운전을 수행하는 도중에, 상기 요구 부하가 제1 부하를 초과하면, 상기 바이패스 밸브를 제1 개도로 개방하고, 상기 요구 부하가 상기 제1 부하보다 작은 제2 부하를 초과하면, 상기 바이패스 밸브를 상기 제1 개도보다 작은 제2 개도로 개방하고, 상기 요구 부하가 상기 제2 부하 이하이되 상기 기준 부하를 초과하면, 상기 바이패스 밸브를 상기 제2 개도보다 작은 제3 개도로 개방할 수 있다.According to another aspect of the present disclosure, when the required load exceeds a first load while the flash gas injection operation is being performed, the control unit opens the bypass valve to a first opening degree, and When the demand load exceeds a second load smaller than the first load, the bypass valve is opened to a second opening degree smaller than the first opening degree, and when the demand load is less than or equal to the second load but exceeds the reference load , the bypass valve may be opened at a third opening degree smaller than the second opening degree.
또 본 개시의 다른(another) 측면에 따르면, 상기 인젝션 밸브와 상기 바이패스 밸브는, EEV(Electronic Expansion Valve)일 수 있다.Also, according to another aspect of the present disclosure, the injection valve and the bypass valve may be an Electronic Expansion Valve (EEV).
또 본 개시의 다른(another) 측면에 따르면, 상기 제1 열교환기는, 냉매와 물을 비접촉식으로 열교환시키는 물-냉매 열교환기이고, 상기 제2 열교환기는, 냉매와 실외공기를 열교환시키는 실외열교환기일 수 있다.According to another aspect of the present disclosure, the first heat exchanger may be a water-refrigerant heat exchanger for exchanging a refrigerant and water in a non-contact manner, and the second heat exchanger may be an outdoor heat exchanger for exchanging a refrigerant and outdoor air. there is.
앞에서 설명된 본 개시의 어떤 실시예들 또는 다른 실시예들은 서로 배타적이거나 구별되는 것은 아니다. 앞서 설명된 본 개시의 어떤 실시예들 또는 다른 실시예들은 각각의 구성 또는 기능이 병용되거나 조합될 수 있다.Any or other embodiments of the present disclosure described above are not mutually exclusive or distinct. Certain embodiments or other embodiments of the present disclosure described above may be combined or combined with respective configurations or functions.
예를 들어 특정 실시예 및/또는 도면에 설명된 A 구성과 다른 실시예 및/또는 도면에 설명된 B 구성이 결합될 수 있음을 의미한다. 즉, 구성 간의 결합에 대해 직접적으로 설명하지 않은 경우라고 하더라도 결합이 불가능하다고 설명한 경우를 제외하고는 결합이 가능함을 의미한다.For example, it means that configuration A described in a specific embodiment and/or drawings may be combined with configuration B described in other embodiments and/or drawings. That is, even if the coupling between the components is not directly described, it means that the coupling is possible except for the case where it is described that the coupling is impossible.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.The above detailed description should not be construed as restrictive in all respects and should be considered as exemplary. The scope of the present invention should be determined by a reasonable interpretation of the appended claims, and all modifications within the equivalent scope of the present invention are included in the scope of the present invention.

Claims (13)

  1. 냉매를 압축하는 압축기;a compressor that compresses the refrigerant;
    상기 압축기에서 토출되는 냉매가 유입 가능하고, 제1 열교환기와 제2 열교환기를 구비하는 열교환기;a heat exchanger through which the refrigerant discharged from the compressor can be introduced and having a first heat exchanger and a second heat exchanger;
    상기 압축기에서 토출되는 냉매를 상기 제1 열교환기 또는 상기 제2 열교환기로 선택적으로 안내하는 절환밸브;a switching valve selectively guiding the refrigerant discharged from the compressor to the first heat exchanger or the second heat exchanger;
    상기 제1 열교환기와 상기 제2 열교환기를 잇는 메인 배관에 설치되고, 상기 메인 배관의 유로를 유동하는 냉매를 팽창시키는 메인 팽창밸브;a main expansion valve installed in a main pipe connecting the first heat exchanger and the second heat exchanger to expand the refrigerant flowing through the flow path of the main pipe;
    일단이 상기 제1 열교환기와 상기 메인 팽창밸브 사이에서 상기 메인 배관에 연결되고, 타단이 상기 압축기에 연결되는 인젝션 배관;an injection pipe having one end connected to the main pipe between the first heat exchanger and the main expansion valve and the other end connected to the compressor;
    상기 인젝션 배관에 설치되어, 상기 인젝션 배관의 유로의 개도를 조절하는 인젝션 밸브; 그리고,an injection valve installed on the injection pipe to control an opening degree of a flow path of the injection pipe; And,
    상기 인젝션 배관의 일단과 상기 메인 팽창밸브 사이에서 상기 메인 배관에 설치되는 과냉각기를 포함하고,and a supercooler installed in the main pipe between one end of the injection pipe and the main expansion valve,
    상기 메인 배관은 상기 과냉각기의 내부에 위치하는 제1 열교환배관을 포함하고,The main pipe includes a first heat exchange pipe located inside the supercooler,
    상기 인젝션 배관은 상기 과냉각기의 내부에 위치하고, 상기 제1 열교환배관에 인접하는 제2 열교환배관을 포함하는 히트펌프.The injection pipe is located inside the supercooler, and the heat pump includes a second heat exchange pipe adjacent to the first heat exchange pipe.
  2. 제1 항에 있어서,According to claim 1,
    상기 메인 팽창밸브의 개도와 상기 인젝션 밸브의 개도를 제어하는 제어부를 더 포함하고,Further comprising a control unit for controlling an opening degree of the main expansion valve and an opening degree of the injection valve,
    상기 제어부는,The control unit is
    난방운전 신호가 수신되면,When a heating operation signal is received,
    상기 압축기에서 토출되는 냉매가 상기 제1 열교환기로 안내되도록 상기 절환밸브의 유로를 형성하고,forming a flow path of the switching valve so that the refrigerant discharged from the compressor is guided to the first heat exchanger;
    상기 메인 팽창밸브를 초기 개도로 개방하고,Open the main expansion valve to the initial opening,
    상기 인젝션 밸브를 폐쇄하여 난방운전을 수행하는 히트펌프.A heat pump for performing a heating operation by closing the injection valve.
  3. 제2 항에 있어서,3. The method of claim 2,
    상기 제어부는,The control unit is
    상기 난방운전을 수행하는 도중에, 플래시 가스 인젝션 조건이 만족되면,During the heating operation, if the flash gas injection condition is satisfied,
    상기 인젝션 밸브를 초기 개도로 개방하고,open the injection valve to the initial opening,
    상기 메인 팽창밸브의 개도를 감소시켜 플래시 가스 인젝션 운전을 수행하는 히트펌프.A heat pump for performing a flash gas injection operation by reducing an opening degree of the main expansion valve.
  4. 제3 항에 있어서,4. The method of claim 3,
    상기 제어부는,The control unit is
    상기 압축기로 흡입되는 냉매의 온도인 압축기 흡입 온도와 상기 제2 열교환기를 통과하는 냉매의 포화온도인 증발온도의 차이인 압축기 흡입 과열도가 제1 기준온도 미만이면,If the compressor suction superheat, which is the difference between the compressor suction temperature, which is the temperature of the refrigerant sucked into the compressor, and the evaporation temperature, which is the saturation temperature of the refrigerant passing through the second heat exchanger, is less than the first reference temperature,
    상기 플래시 가스 인젝션 조건이 만족된 것으로 판단하는 히트펌프.A heat pump that determines that the flash gas injection condition is satisfied.
  5. 제3 항에 있어서,4. The method of claim 3,
    상기 제어부는,The control unit is
    상기 압축기에서 토출되는 냉매의 온도인 압축기 토출 온도와 상기 제1 열교환기를 통과하는 냉매의 포화온도인 응축온도의 차이인 압축기 토출 과열도가 제2 기준온도를 초과하면,When the compressor discharge superheat, which is the difference between the compressor discharge temperature, which is the temperature of the refrigerant discharged from the compressor, and the condensation temperature, which is the saturation temperature of the refrigerant passing through the first heat exchanger, exceeds the second reference temperature,
    상기 플래시 가스 인젝션 조건이 만족된 것으로 판단하는 히트펌프.A heat pump that determines that the flash gas injection condition is satisfied.
  6. 제3 항에 있어서,4. The method of claim 3,
    상기 제어부는,The control unit is
    상기 플래시 가스 인젝션 운전에서,In the flash gas injection operation,
    상기 압축기에서 토출되는 냉매의 온도인 압축기 토출 온도가 목표 토출 온도 이상인 것으로 판단되면,When it is determined that the compressor discharge temperature, which is the temperature of the refrigerant discharged from the compressor, is equal to or higher than the target discharge temperature,
    상기 인젝션 밸브의 개도를 유지하고, 상기 메인 팽창밸브의 개도를 감소시키는 히트펌프.The heat pump maintains the opening degree of the injection valve and reduces the opening degree of the main expansion valve.
  7. 제6 항에 있어서,7. The method of claim 6,
    상기 제어부는,The control unit is
    상기 플래시 가스 인젝션 운전에서,In the flash gas injection operation,
    상기 압축기 토출 온도가 상기 목표 토출 온도 미만이되, 상기 목표 토출 온도보다 작은 최소 온도 이상인 것으로 판단되면,When it is determined that the compressor discharge temperature is less than the target discharge temperature and is higher than or equal to the minimum temperature smaller than the target discharge temperature,
    상기 인젝션 밸브의 개도와 상기 메인 팽창밸브의 개도를 유지하는 히트펌프.A heat pump for maintaining an opening degree of the injection valve and an opening degree of the main expansion valve.
  8. 제7 항에 있어서,8. The method of claim 7,
    상기 제어부는,The control unit is
    상기 플래시 가스 인젝션 운전에서,In the flash gas injection operation,
    상기 압축기 토출 온도가 상기 목표 토출 온도 미만이고, 상기 최소 온도 미만인 것으로 판단되면,When it is determined that the compressor discharge temperature is less than the target discharge temperature and less than the minimum temperature,
    상기 인젝션 밸브의 개도를 유지하고, 상기 메인 팽창밸브의 개도를 증가시키는 히트펌프.The heat pump maintains the opening degree of the injection valve and increases the opening degree of the main expansion valve.
  9. 제3 항에 있어서,4. The method of claim 3,
    일단이 상기 압축기와 상기 절환밸브를 잇는 토출배관에 연결되고, 타단이 상기 과냉각기와 상기 압축기 사이에서 상기 인젝션 배관에 연결되는 바이패스 배관; 그리고,a bypass pipe having one end connected to a discharge pipe connecting the compressor and the switching valve, and the other end being connected to the injection pipe between the supercooler and the compressor; And,
    상기 바이패스 배관에 설치되어, 상기 바이패스 배관의 유로의 개도를 조절하는 바이패스 밸브를 더 포함하는 히트펌프.The heat pump further comprising a bypass valve installed on the bypass pipe to control an opening degree of a flow path of the bypass pipe.
  10. 제9 항에 있어서,10. The method of claim 9,
    상기 제어부는,The control unit is
    상기 플래시 가스 인젝션 운전을 수행하는 도중에, 상기 압축기의 요구 부하가 기준 부하를 초과하면,During the flash gas injection operation, if the required load of the compressor exceeds the reference load,
    상기 요구 부하의 크기에 비례하여 상기 바이패스 밸브의 개도를 증가시키는 히트펌프.A heat pump for increasing an opening degree of the bypass valve in proportion to the size of the required load.
  11. 제10 항에 있어서,11. The method of claim 10,
    상기 제어부는,The control unit is
    상기 플래시 가스 인젝션 운전을 수행하는 도중에,While performing the flash gas injection operation,
    상기 요구 부하가 제1 부하를 초과하면, 상기 바이패스 밸브를 제1 개도로 개방하고,When the required load exceeds the first load, the bypass valve is opened to a first opening,
    상기 요구 부하가 상기 제1 부하보다 작은 제2 부하를 초과하면, 상기 바이패스 밸브를 상기 제1 개도보다 작은 제2 개도로 개방하고,When the demand load exceeds a second load smaller than the first load, opening the bypass valve to a second opening degree smaller than the first opening degree;
    상기 요구 부하가 상기 제2 부하 이하이되 상기 기준 부하를 초과하면, 상기 바이패스 밸브를 상기 제2 개도보다 작은 제3 개도로 개방하는 히트펌프.When the required load is equal to or less than the second load but exceeds the reference load, the heat pump opens the bypass valve at a third opening degree smaller than the second opening degree.
  12. 제11 항에 있어서,12. The method of claim 11,
    상기 인젝션 밸브와 상기 바이패스 밸브는,The injection valve and the bypass valve,
    EEV(Electronic Expansion Valve)인 히트펌프.A heat pump that is an Electronic Expansion Valve (EEV).
  13. 제1 항에 있어서,According to claim 1,
    상기 제1 열교환기는,The first heat exchanger,
    냉매와 물을 비접촉식으로 열교환시키는 물-냉매 열교환기이고,It is a water-refrigerant heat exchanger that heat-exchanges refrigerant and water in a non-contact manner,
    상기 제2 열교환기는,The second heat exchanger,
    냉매와 실외공기를 열교환시키는 실외열교환기인 히트펌프.A heat pump, an outdoor heat exchanger that exchanges heat between refrigerant and outdoor air.
PCT/KR2021/013175 2020-09-28 2021-09-28 Heat pump WO2022065964A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0125943 2020-09-28
KR1020200125943A KR20220043958A (en) 2020-09-28 2020-09-28 Heat pump

Publications (1)

Publication Number Publication Date
WO2022065964A1 true WO2022065964A1 (en) 2022-03-31

Family

ID=80846806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013175 WO2022065964A1 (en) 2020-09-28 2021-09-28 Heat pump

Country Status (2)

Country Link
KR (1) KR20220043958A (en)
WO (1) WO2022065964A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258343A (en) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp Air conditioning system
KR20120092974A (en) * 2011-02-14 2012-08-22 서울대학교산학협력단 Heat pump system and the control method thereof
KR20140123822A (en) * 2013-04-15 2014-10-23 엘지전자 주식회사 Air Conditioner and Controlling method for the same
KR20150048350A (en) * 2013-10-28 2015-05-07 엘지전자 주식회사 Air conditioner
KR20200067425A (en) * 2018-12-04 2020-06-12 엘지전자 주식회사 Heat Pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931848B2 (en) 2008-03-31 2012-05-16 三菱電機株式会社 Heat pump type outdoor unit for hot water supply
JP6458563B2 (en) 2015-03-10 2019-01-30 株式会社富士通ゼネラル Heat pump cycle equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258343A (en) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp Air conditioning system
KR20120092974A (en) * 2011-02-14 2012-08-22 서울대학교산학협력단 Heat pump system and the control method thereof
KR20140123822A (en) * 2013-04-15 2014-10-23 엘지전자 주식회사 Air Conditioner and Controlling method for the same
KR20150048350A (en) * 2013-10-28 2015-05-07 엘지전자 주식회사 Air conditioner
KR20200067425A (en) * 2018-12-04 2020-06-12 엘지전자 주식회사 Heat Pump

Also Published As

Publication number Publication date
KR20220043958A (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2011062348A1 (en) Heat pump
WO2021215695A1 (en) Heat pump system for vehicle
WO2016017939A1 (en) Automotive heat pump system
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2017069472A1 (en) Air conditioner and control method therefor
WO2011149151A1 (en) Hot water supply device associated with heat pump
WO2016114557A1 (en) Air conditioning system
WO2011145780A1 (en) Hot water supply device associated with heat pump
US7272943B2 (en) Control method for multiple heat pump
WO2021157820A1 (en) Air conditioner
WO2019151815A1 (en) Air conditioner
GB2166228A (en) Air conditioner
WO2022014900A1 (en) Vapor injection module and heat pump system using same
WO2019160294A1 (en) Vehicle heat management system
WO2019208942A1 (en) Heat exchange system for vehicle
WO2019147085A1 (en) Air conditioner and control method therefor
WO2022050586A1 (en) Vapor injection module and heat pump system using same
WO2018155871A1 (en) Vehicle heat pump system
WO2020209474A1 (en) Air conditioning apparatus
WO2011062349A1 (en) Heat pump
WO2022065964A1 (en) Heat pump
WO2020197052A1 (en) Air conditioning apparatus
WO2019203621A1 (en) Cooling system of low temperature storage
KR101532781B1 (en) Air conditioning system
KR20070009081A (en) Apparatus for cooling refrigerant in multi-type air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872992

Country of ref document: EP

Kind code of ref document: A1