WO2022065591A1 - Electrode slurry for forming electrode coating layer, and method for manufacturing membrane electrode assembly for fuel cell by using same - Google Patents
Electrode slurry for forming electrode coating layer, and method for manufacturing membrane electrode assembly for fuel cell by using same Download PDFInfo
- Publication number
- WO2022065591A1 WO2022065591A1 PCT/KR2020/017231 KR2020017231W WO2022065591A1 WO 2022065591 A1 WO2022065591 A1 WO 2022065591A1 KR 2020017231 W KR2020017231 W KR 2020017231W WO 2022065591 A1 WO2022065591 A1 WO 2022065591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- fuel cell
- coating layer
- membrane
- electrode assembly
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/881—Electrolytic membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8896—Pressing, rolling, calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a membrane-electrode assembly for a fuel cell, and more particularly, an electrode coating layer for minimizing defects while increasing process efficiency in the process of manufacturing a membrane-electrode assembly for a fuel cell through a direct coating process It relates to an electrode slurry for forming and a method for manufacturing a membrane-electrode assembly for a fuel cell using the same.
- a fuel cell system is a kind of power generation system that directly converts chemical energy applied on a fuel film into electrical energy in a fuel cell stack without converting it into heat by combustion.
- a fuel cell system is largely composed of a fuel cell stack that generates electric energy, a fuel supply system that supplies fuel (hydrogen) to the fuel cell stack, an air supply system that supplies oxygen in the air, which is an oxidizing agent required for electrochemical reactions, to the fuel cell stack, and It consists of a heat and water management system that removes the reaction heat of the fuel cell stack to the outside of the system and controls the operating temperature of the fuel cell stack.
- a fuel cell stack is an electrical energy generating device in which unit cells are repeatedly stacked, and in this case, the unit cell is a minimum fuel cell component for generating electrical energy by reacting hydrogen and oxygen.
- This unit cell structure is a stacked structure in the order of a membrane-electrode assembly (MEA), a gas diffusion layer (GDL), and a gasket.
- MEA membrane-electrode assembly
- GDL gas diffusion layer
- gasket a gasket
- the membrane-electrode assembly for fuel cell is manufactured by coating an electrode slurry in which an active material, a conductive material, a binder, and a solvent are mixed on an electrolyte membrane in which hydrogen ions move, and then drying it at a high temperature.
- an electrode slurry in which an active material, a conductive material, a binder, and a solvent are mixed
- electrolyte membrane in which hydrogen ions move
- an object of the present invention is to provide an electrode slurry for forming an electrode coating layer to minimize defects caused by residual solvents or high-temperature conditions in the process of forming an electrode coating layer, and a method for manufacturing a membrane-electrode assembly for a fuel cell using the same. .
- the method for manufacturing a membrane-electrode assembly for a fuel cell according to the present invention includes preparing an electrode slurry including an active material and an additive having a boiling point of 200° C. or higher, applying the electrode slurry on an electrolyte membrane to form an electrode coating layer, the electrode and drying the coating layer.
- the additive comprises at least one of glycerol and 1,5-pentanediol.
- the electrode slurry further comprises a conductive material and a binder.
- the electrode slurry further comprises, after the drying step, the step of pressing the electrolyte membrane on which the electrode coating layer is formed through a press device.
- the electrode slurry for forming the electrode coating layer according to the present invention is prepared by including an active material and an additive having a boiling point of 200° C. or higher.
- the electrode slurry for forming an electrode coating layer according to the present invention and a method for manufacturing a membrane-electrode assembly for a fuel cell using the same form the electrode coating layer through an electrode slurry containing an additive having a boiling point of 200° C. or higher, in the process of forming the electrode coating layer Defects caused by residual solvents or high-temperature conditions can be minimized.
- FIG. 1 is a flow chart showing a method for manufacturing a membrane-electrode assembly for a fuel cell using double-sided direct coating according to an embodiment of the present invention.
- FIGS. 2 to 14 are views for explaining each step of the membrane-electrode assembly manufacturing method for a fuel cell using double-sided direct coating according to an embodiment of the present invention.
- FIGS. 2 to 14 are a fuel cell membrane using double-sided direct coating according to an embodiment of the present invention- It is a view for explaining each step of the electrode assembly manufacturing method.
- a flat plate 90 is prepared, and as shown in FIG. 3 , the first electrolyte membrane 10 is positioned on one surface 91 of the flat plate 90 .
- the flat plate 90 may be a hot plate capable of setting a temperature. That is, by controlling the temperature of the flat plate 90, it is possible to dry the first and second electrode coating layers 52 and 152 in steps S40 or S80 to be described later.
- the first electrolyte membrane 10 includes an ion conductor.
- the ion conductor may be a cation conductor having a cation exchange group capable of transporting a cation such as a proton, or an anion conductor having an anion exchange group capable of transporting an anion such as a hydroxy ion, carbonate or bicarbonate.
- the cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and combinations thereof, and generally a sulfonic acid group or a carboxyl group. .
- the cationic conductor includes a fluorine-based polymer including the cation exchange group and containing fluorine in its main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly hydrocarbon polymers such as carbonate, polystyrene, polyphenylene sulfide, polyetheretherketone, polyetherketone, polyarylethersulfone, polyphosphazene or polyphenylquinoxaline; partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; sulfone imides and the like.
- the polymer may include a cation exchange group selected from the group consisting of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, and derivatives thereof in the side chain, and the specific Examples include poly(perfluorosulfonic acid), poly(perfluorocarboxylic acid), copolymers of tetrafluoroethylene containing sulfonic acid groups and fluorovinylethers, defluorinated sulfided polyetherketones or mixtures thereof fluorine-based polymers; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimi Sulfonated polybenzimidazole (SPBI), sulfonated polysul
- S-PI Sulfonated polyimide
- S-PAES sul
- Anionic conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates.
- Anionic conductors are commercially available in the hydroxide or halide (usually chloride) form, and anion conductors are industrial water (water) conductors. purification), metal separation or catalytic processes, and the like.
- a polymer doped with a metal hydroxide may be generally used, and specifically, poly(ethersulfone) doped with a metal hydroxide, polystyrene, vinyl-based polymer, poly(vinyl chloride), poly(vinylidene fluoride), Poly(tetrafluoroethylene), poly(benzimidazole), poly(ethylene glycol), etc. can be used.
- step S20 the first sub gasket 30 is attached on the first electrolyte membrane 10 . That is, in step S20, a film-shaped sub gasket 30 is attached on the first electrolyte membrane 10 to secure a space in which the first electrode coating layer 52 is formed.
- the sub gasket 30 is a heat-resistant base film that is at least one of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyethylene (PE), and polypropylene (PP).
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PBT polybutylene terephthalate
- PE polyethylene
- PP polypropylene
- the sub gasket 30 may further include a thermally expansible pressure-sensitive adhesive layer that is at least one of an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a vinyl alkyl ether-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive applied to one surface of the base film.
- a thermally expansible pressure-sensitive adhesive layer that is at least one of an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a vinyl alkyl ether-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive applied to one surface of the base film.
- step S30 as shown in FIGS. 5 and 6 , the electrode slurry 50 is applied on the first electrolyte membrane 10 to which the first sub gasket 30 is attached, and the first electrode coating layer 52 is ) can be formed.
- the electrode slurry 50 may be mixed with an active material, a conductive material, a binder, carbon powder, and an organic solvent.
- Carbon black or activated carbon may be used as the carbon powder used, and the particle size may be 5 nm to 10 ⁇ m.
- the organic solvent one or a mixture of two or more selected from alcohols such as isopropanol, propanol, ethanol, and methanol may be used.
- an additive having a boiling point of 200° C. or higher may be added to the organic solvent.
- an additive of the organic solvent at least one of glycerol and 1,5-pentanediol may be included.
- the glycerol may include 1 to 20% by weight based on the total weight. Accordingly, by adding at least one of glycerol and 1,5-pentanediol to the electrode slurry, defects caused by residual solvent or high temperature conditions in the process of forming the electrode coating layer can be minimized. .
- the electrode slurry 50 may further include a polymer adhesive to increase adhesion during application, and the polymer adhesive includes a polymer electrolyte material having hydrogen ion conductivity, such as perfluorosulfonic acid, PTFE or hydrocarbon.
- a polymer adhesive can be used.
- the viscosity of the electrode slurry 50 is 100 to 2000 mPa It can be adjusted by adding an appropriate amount of an organic solvent so that it may become s.
- the viscosity of the electrode slurry 50 is 100 mPa When it is less than s, the electrode slurry 50 flows out of the doctor blade furnace 70, and 2000 mPa If s is exceeded, the resistance increases when forming a sheet by the doctor blade 70, and irregularities may occur on the surface, making it impossible to form a sheet smoothly.
- the air contained in the electrode slurry 50 may have irregularities or reduce homogeneity when applied, it is preferable to degas the contained air by centrifugal degassing or vacuum degassing.
- the electrode slurry 50 may be applied in the release mold 30 attached to the first electrolyte membrane 10 using the doctor blade 70 to form the electrode coating layer 52 .
- the electrode coating layer 52 formed here may have a thickness of 5 ⁇ m to 100 ⁇ m, which corresponds to the thickness of the release mold 30 .
- the electrode slurry 50 is coated with the electrode slurry 50 in an equal thickness in the sub gasket 30 attached to the first electrolyte membrane 10 by the movement of the doctor blade 70 to form the electrode coating layer 52 . to form
- the first electrode coating layer 52 is dried in step S40.
- various drying methods such as hot air drying, vacuum drying, infrared (IR) drying, etc. may be applied to the drying, and the drying temperature and time may be appropriately adjusted according to the boiling point (BP) of the solvent used.
- the drying temperature may be drying at 60 °C to 150 °C for 05 hours to 10 hours. If the drying temperature is less than 60 °C or the drying time is less than 05 hours, the swelling solvent may remain inside the polymer electrolyte membrane, or a sufficiently dried catalyst layer may not be formed. The membrane may receive chemical damage such as browning, or cracks may occur in the catalyst layer.
- the sub gasket 30 may be removed in a state in which the first electrode coating layer 52 is dried.
- step S50 as shown in FIGS. 7 to 9 , after rotating the flat plate 90 , the second electrolyte membrane 110 is positioned on the other surface 92 of the flat plate 90 .
- step S60 the second sub gasket 130 is attached on the second electrolyte membrane 110 . That is, in step S60, the sub gasket 130 in the form of a film is attached on the second electrolyte membrane 10 to secure a space in which the second electrode coating layer 152 is formed.
- step S70 as shown in FIGS. 11 and 12 , the electrode slurry 50 is applied on the second electrolyte membrane 110 to which the second sub gasket 130 is attached to thereby the second electrode coating layer 152 . ) can be formed.
- step S80 the second electrode coating layer 152 is dried in step S80 , and the second sub gasket 130 may be removed as shown in FIG. 13 .
- the first electrode coating layer 52 and the second electrode coating layer 152 may be compressed through the press device 80 .
- the press device 80 may be a device capable of a hot press process.
- the hot press refers to a process of compressing the first electrode coating layer 52 and the second electrode coating layer 152 under conditions of high temperature and high pressure by applying heat and pressure.
- direct coating is performed on the electrolyte membrane, and both surfaces of the flat plate are directly coated through the rotation of the flat plate. Cost reduction may be possible by shortening process time and reducing manpower.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Fuel Cell (AREA)
Abstract
The present invention relates to: an electrode slurry, which is to form an electrode coating layer, for increasing process efficiency and minimizing defects during manufacturing, through direct coating, a membrane electrode assembly for a fuel cell; and a method for manufacturing a membrane electrode assembly for a fuel cell by using same. The method for manufacturing a membrane electrode assembly for a fuel cell, according to the present invention, comprises the steps of: preparing an electrode slurry comprising an active material and an additive having a boiling point of 200°C or higher; forming an electrode coating layer by applying the electrode slurry onto an electrolyte membrane; and drying the electrode coating layer.
Description
본 발명은 연료전지용 막-전극접합체에 관한 것으로, 더욱 상세하게는 직접 코팅(Direct Coating) 공정을 통한 연료전지용 막-전극접합체를 제조 과정에서, 공정 효율을 높이면서, 불량을 최소화하기 위한 전극 코팅층 형성을 위한 전극 슬러리 및 이를 이용한 연료전지용 막-전극접합체 제조 방법에 관한 것이다.The present invention relates to a membrane-electrode assembly for a fuel cell, and more particularly, an electrode coating layer for minimizing defects while increasing process efficiency in the process of manufacturing a membrane-electrode assembly for a fuel cell through a direct coating process It relates to an electrode slurry for forming and a method for manufacturing a membrane-electrode assembly for a fuel cell using the same.
일반적으로 연료전지 시스템은 연료가 막 위에 도포 한 가지고 있는 화학에너지를 연소에 의해 열로 바꾸지 않고 연료전지 스택 내에서 전기화학적으로 직접 전기에너지로 변환시키는 일종의 발전 시스템이다.In general, a fuel cell system is a kind of power generation system that directly converts chemical energy applied on a fuel film into electrical energy in a fuel cell stack without converting it into heat by combustion.
연료전지 시스템은 크게 전기에너지를 발생시키는 연료전지 스택, 연료전지 스택에 연료(수소)를 공급하는 연료공급 시스템, 연료전지 스택에 전기 화학 반응에 필요한 산화제인 공기 중의 산소를 공급하는 공기공급 시스템 및 연료전지 스택의 반응열을 시스템 외부로 제거하고 연료전지 스택의 운전온도를 제어하는 열, 물 관리 시스템으로 구성된다.A fuel cell system is largely composed of a fuel cell stack that generates electric energy, a fuel supply system that supplies fuel (hydrogen) to the fuel cell stack, an air supply system that supplies oxygen in the air, which is an oxidizing agent required for electrochemical reactions, to the fuel cell stack, and It consists of a heat and water management system that removes the reaction heat of the fuel cell stack to the outside of the system and controls the operating temperature of the fuel cell stack.
이러한 연료전지 시스템에서는 연료인 수소와 공기 중의 산소에 의한 전기 화학 반응에 의해 전기를 발생시키고, 반응부산물로 열과 물을 배출하게 된다.In such a fuel cell system, electricity is generated by an electrochemical reaction between hydrogen as a fuel and oxygen in the air, and heat and water are discharged as reaction byproducts.
연료전지 스택은 단위 셀을 반복적으로 적층하여 쌓은 전기에너지 발생 장치이며, 이때 단위 셀은 수소와 산소가 반응하여 전기에너지를 발생시키기 위한 최소한의 연료전지 구성요소이다.A fuel cell stack is an electrical energy generating device in which unit cells are repeatedly stacked, and in this case, the unit cell is a minimum fuel cell component for generating electrical energy by reacting hydrogen and oxygen.
이러한 단위 셀 구조는 막-전극접합체(Membrane Electrode Assembly, MEA), 가스확산층(Gas Diffusion Layer, GDL), 가스켓 순으로 적층된 구조이다.This unit cell structure is a stacked structure in the order of a membrane-electrode assembly (MEA), a gas diffusion layer (GDL), and a gasket.
여기서, 연료전지용 막-전극접합체를 제조방법은 활물질, 도전재, 바인더 및 용매가 혼합되어있는 전극 슬러리를 수소이온이 이동하는 전해질막 위에 도포 한 후 고온의 상태에서 건조시켜 제작한다. 이 과정에서 전해질막이 팽창(swelling)하는 문제가 발생되어, 전극이 갈라져 불량이 발생되는 문제점이 있었다.Here, the membrane-electrode assembly for fuel cell is manufactured by coating an electrode slurry in which an active material, a conductive material, a binder, and a solvent are mixed on an electrolyte membrane in which hydrogen ions move, and then drying it at a high temperature. In this process, there was a problem in that the electrolyte membrane swells, causing the electrode to crack and cause a defect.
따라서 본 발명의 목적은 전극 코팅층을 형성하는 과정에서 잔존 용매나 고온 조건에 의해 발생되는 불량을 최소화하기 위한 전극 코팅층 형성을 위한 전극 슬러리 및 이를 이용한 연료전지용 막-전극접합체 제조 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide an electrode slurry for forming an electrode coating layer to minimize defects caused by residual solvents or high-temperature conditions in the process of forming an electrode coating layer, and a method for manufacturing a membrane-electrode assembly for a fuel cell using the same. .
본 발명에 따른 연료전지용 막-전극접합체 제조 방법은 활물질 및 끓는점이 200℃ 이상의 첨가제를 포함하는 전극 슬러리를 제조하는 단계, 전해질막 상에 상기 전극 슬러리를 도포하여 전극 코팅층을 형성하는 단계, 상기 전극 코팅층을 건조하는 단계를 포함한다.The method for manufacturing a membrane-electrode assembly for a fuel cell according to the present invention includes preparing an electrode slurry including an active material and an additive having a boiling point of 200° C. or higher, applying the electrode slurry on an electrolyte membrane to form an electrode coating layer, the electrode and drying the coating layer.
본 발명에 따른 연료전지용 막-전극접합체 제조 방법에 있어서, 상기 첨가제는, 글리세롤(glycerol) 및 1,5-펜탄디올(1, 5-pentanediol) 중 적어도 하나를 포함하는 것을 특징으로 한다.In the method for manufacturing a membrane-electrode assembly for a fuel cell according to the present invention, the additive comprises at least one of glycerol and 1,5-pentanediol.
본 발명에 따른 연료전지용 막-전극접합체 제조 방법에 있어서, 상기 전극 슬러리는 도전재 및 바인더를 더 포함하는 것을 특징으로 한다.In the method for manufacturing a membrane-electrode assembly for a fuel cell according to the present invention, the electrode slurry further comprises a conductive material and a binder.
본 발명에 따른 연료전지용 막-전극접합체 제조 방법에 있어서, 상기 전극 슬러리는, 상기 건조하는 단계 이후에, 상기 전극 코팅층이 형성된 전해질막을 프레스 장치를 통해 압착하는 단계를 더 포함하는 것을 특징으로 한다.In the method for manufacturing a membrane-electrode assembly for a fuel cell according to the present invention, the electrode slurry further comprises, after the drying step, the step of pressing the electrolyte membrane on which the electrode coating layer is formed through a press device.
본 발명에 따른 전극 코팅층 형성을 위한 전극 슬러리는 활물질 및 끓는점이 200℃ 이상의 첨가제를 포함하여 제조된다.The electrode slurry for forming the electrode coating layer according to the present invention is prepared by including an active material and an additive having a boiling point of 200° C. or higher.
또한 본 발명에 따른 전극 코팅층 형성을 위한 전극 슬러리 및 이를 이용한 연료전지용 막-전극접합체 제조 방법은 끓는점이 200℃ 이상의 첨가제를 포함하는 전극 슬러리를 통해 전극 코팅층을 형성함으로써, 전극 코팅층을 형성하는 과정에서 잔존 용매나 고온 조건에 의해 발생되는 불량을 최소화할 수 있다.In addition, the electrode slurry for forming an electrode coating layer according to the present invention and a method for manufacturing a membrane-electrode assembly for a fuel cell using the same, form the electrode coating layer through an electrode slurry containing an additive having a boiling point of 200° C. or higher, in the process of forming the electrode coating layer Defects caused by residual solvents or high-temperature conditions can be minimized.
도 1은 본 발명의 실시예에 따른 양면 직접 코팅을 이용한 연료전지용 막-전극접합체 제조 방법을 나타낸 순서도이다.1 is a flow chart showing a method for manufacturing a membrane-electrode assembly for a fuel cell using double-sided direct coating according to an embodiment of the present invention.
도 2 내지 도 14는 본 발명의 실시예에 따른 양면 직접 코팅을 이용한 연료전지용 막-전극접합체 제조 방법의 각 단계를 설명하기 위한 도면이다.2 to 14 are views for explaining each step of the membrane-electrode assembly manufacturing method for a fuel cell using double-sided direct coating according to an embodiment of the present invention.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.It should be noted that, in the following description, only the parts necessary for understanding the embodiments of the present invention will be described, and descriptions of other parts will be omitted in the scope not disturbing the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in the present specification and claims described below should not be construed as being limited to their ordinary or dictionary meanings, and the inventors have appropriate concepts of terms to describe their invention in the best way. It should be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined in Accordingly, the embodiments described in this specification and the configurations shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical spirit of the present invention, so various equivalents that can be substituted for them at the time of the present application It should be understood that there may be variations and variations.
도 1은 본 발명의 실시예에 따른 양면 직접 코팅을 이용한 연료전지용 막-전극접합체 제조 방법을 나타낸 순서도이고, 도 2 내지 도 14는 본 발명의 실시예에 따른 양면 직접 코팅을 이용한 연료전지용 막-전극접합체 제조 방법의 각 단계를 설명하기 위한 도면이다.1 is a flow chart showing a method for manufacturing a membrane-electrode assembly for a fuel cell using double-sided direct coating according to an embodiment of the present invention, and FIGS. 2 to 14 are a fuel cell membrane using double-sided direct coating according to an embodiment of the present invention- It is a view for explaining each step of the electrode assembly manufacturing method.
먼저 S10 단계에서 도 2에 도시된 바와 같이, 평판 플레이트(90)를 준비하고, 도 3에 도시된 바와 같이, 평판 플레이트(90)의 일면(91) 상에 제1 전해질막(10)을 위치시킨다. 여기서 평판 플레이트(90)는 온도 설정이 가능한 핫 플레이트가 될 수 있다. 즉 평판 플레이트(90)의 온도를 조절함으로써, 후술할 S40 또는 S80 단계에서 제1 및 제2 전극 코팅층(52, 152)의 건조가 가능하다.First, in step S10, as shown in FIG. 2 , a flat plate 90 is prepared, and as shown in FIG. 3 , the first electrolyte membrane 10 is positioned on one surface 91 of the flat plate 90 . make it Here, the flat plate 90 may be a hot plate capable of setting a temperature. That is, by controlling the temperature of the flat plate 90, it is possible to dry the first and second electrode coating layers 52 and 152 in steps S40 or S80 to be described later.
이때 제1 전해질 막(10)은 이온 전도체를 포함한다. 이온 전도체는 프로톤과 같은 양이온을 전달할 수 있는 양이온 교환 그룹을 가지는 양이온 전도체이거나, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 전달할 수 있는 음이온 교환 그룹을 가지는 음이온 전도체일 수 있다.In this case, the first electrolyte membrane 10 includes an ion conductor. The ion conductor may be a cation conductor having a cation exchange group capable of transporting a cation such as a proton, or an anion conductor having an anion exchange group capable of transporting an anion such as a hydroxy ion, carbonate or bicarbonate.
양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.The cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and combinations thereof, and generally a sulfonic acid group or a carboxyl group. .
양이온 전도체는 상기 양이온 교환 그룹을 포함하며, 주쇄에 불소를 포함하는 플루오르계 고분자; 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리 카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자; 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자; 술폰 이미드 등을 들 수 있다.The cationic conductor includes a fluorine-based polymer including the cation exchange group and containing fluorine in its main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly hydrocarbon polymers such as carbonate, polystyrene, polyphenylene sulfide, polyetheretherketone, polyetherketone, polyarylethersulfone, polyphosphazene or polyphenylquinoxaline; partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; sulfone imides and the like.
보다 구체적으로, 양이온 전도체가 수소 이온 양이온 전도체인 경우 상기 고분자들은 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 포함할 수 있으며, 그 구체적인 예로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자; 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(sulfonated polyquinoxaline), 술폰화된 폴리케톤(sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(sulfonated polyarylene ether), 술폰화된폴리아릴렌에테르니트릴(sulfonated polyarylene ethernitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(sulfonated polyarylene ether ether nitrile), 폴리아릴렌에테르술폰케톤(sulfonated polyarylene ether sulfone ketone), 및 이들의 혼합물을 포함하는 탄화수소계 고분자를 들 수 있으나, 이에 한정되는 것은 아니다.More specifically, when the cation conductor is a hydrogen ion cation conductor, the polymer may include a cation exchange group selected from the group consisting of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, and derivatives thereof in the side chain, and the specific Examples include poly(perfluorosulfonic acid), poly(perfluorocarboxylic acid), copolymers of tetrafluoroethylene containing sulfonic acid groups and fluorovinylethers, defluorinated sulfided polyetherketones or mixtures thereof fluorine-based polymers; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimi Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene, sulfonated poly Sulfonated polyquinoxaline, sulfonated polyketone, sulfonated polyphenylene oxide, sulfonated polyether sulfone, sulfonated polyether ketone polyether ketone), sulfonated polyphenylene sulfone, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone, sulfonated polyphenyl sulfonated polyphenylene sulfide sulfone nitrile, sulfonated polyarylene ether, sulfonated polyarylene ethernitrile, sulfonated polyarylene ether nitrile polyarylene ether ether nitrile), polyarylene ether sulfone ketone (sulfonated polyarylene ether sulfone ketone), and mixtures thereof and a hydrocarbon-based polymer including water, but is not limited thereto.
음이온 전도체는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.Anionic conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates. Anionic conductors are commercially available in the hydroxide or halide (usually chloride) form, and anion conductors are industrial water (water) conductors. purification), metal separation or catalytic processes, and the like.
음이온 전도체로는 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.As the anion conductor, a polymer doped with a metal hydroxide may be generally used, and specifically, poly(ethersulfone) doped with a metal hydroxide, polystyrene, vinyl-based polymer, poly(vinyl chloride), poly(vinylidene fluoride), Poly(tetrafluoroethylene), poly(benzimidazole), poly(ethylene glycol), etc. can be used.
다음으로 S20 단계에서 도 4에 도시된 바와 같이 제1 전해질막(10) 상에 제1 서브 가스캣(30)을 부착한다. 즉 S20 단계에서는 제1 전해질막(10) 상에 필름 형태의 서브 가스캣(30)을 부착하여, 제1 전극 코팅층(52)이 형성되는 공간을 확보한다.Next, in step S20 , as shown in FIG. 4 , the first sub gasket 30 is attached on the first electrolyte membrane 10 . That is, in step S20, a film-shaped sub gasket 30 is attached on the first electrolyte membrane 10 to secure a space in which the first electrode coating layer 52 is formed.
여기서 서브 가스캣(30)은 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌(PE) 및 폴리프로필렌(PP) 중 적어도 어느 하나인 내열성의 베이스 필름을 포함할 수 있다.Here, the sub gasket 30 is a heat-resistant base film that is at least one of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyethylene (PE), and polypropylene (PP). may include
또한 서브 가스캣(30)은 베이스 필름의 일면에 도포된 아크릴계 점착제, 고무계 점착제, 비닐알킬에테르계 점착제 및 실리콘계 점착제 중 적어도 어느 하나인 열팽창성 점착제층을 더 포함할 수 있다.In addition, the sub gasket 30 may further include a thermally expansible pressure-sensitive adhesive layer that is at least one of an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a vinyl alkyl ether-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive applied to one surface of the base film.
다음으로 S30 단계에서 도 5 및 도 6에 도시된 바와 같이, 제1 서브 가스캣(30)이 부착된 제1 전해질막(10) 상에 전극 슬러리(50)를 도포하여 제1 전극 코팅층(52)을 형성할 수 있다.Next, in step S30, as shown in FIGS. 5 and 6 , the electrode slurry 50 is applied on the first electrolyte membrane 10 to which the first sub gasket 30 is attached, and the first electrode coating layer 52 is ) can be formed.
여기서 전극 슬러리(50)는 활물질, 도전재, 바인더, 탄소 분말, 유기 용매가 혼합될 수 있다. Here, the electrode slurry 50 may be mixed with an active material, a conductive material, a binder, carbon powder, and an organic solvent.
사용되는 탄소 분말로는 카본블랙이나 활성탄소를 사용할 수 있으며, 입자크기는 5 nm 내지 10㎛일 수 있다. 그리고 유기 용매는 이소프로판올, 프로판올, 에탄올, 메탄올 등의 알콜에서 선택된 하나 또는 둘 이상을 혼합한 것을 사용할 수 있다.Carbon black or activated carbon may be used as the carbon powder used, and the particle size may be 5 nm to 10 μm. And as the organic solvent, one or a mixture of two or more selected from alcohols such as isopropanol, propanol, ethanol, and methanol may be used.
특히 본 발명의 실시예에 따른 전극 슬러리(50)는 끓는점이 200℃ 이상의 첨가제를 유기 용매에 첨가할 수 있다. 이때 유기 용매의 첨가제로 글리세롤(glycerol) 및 1,5-펜탄디올(1, 5-pentanediol) 중 적어도 하나를 포함할 수 있다. 이때 글리세롤은 전체 중량에 대하여 1 ~ 20 중량%를 포함할 수 있다. 이에 따라 글리세롤 및 1,5-펜탄디올(1, 5-pentanediol) 중 적어도 하나를 전극 슬러리에 첨가함에 따라, 전극 코팅층을 형성하는 과정에서 잔존 용매나 고온 조건에 의해 발생되는 불량을 최소화할 수 있다.In particular, in the electrode slurry 50 according to the embodiment of the present invention, an additive having a boiling point of 200° C. or higher may be added to the organic solvent. In this case, as an additive of the organic solvent, at least one of glycerol and 1,5-pentanediol may be included. In this case, the glycerol may include 1 to 20% by weight based on the total weight. Accordingly, by adding at least one of glycerol and 1,5-pentanediol to the electrode slurry, defects caused by residual solvent or high temperature conditions in the process of forming the electrode coating layer can be minimized. .
또한 전극 슬러리(50)는 도포 시 접착력을 높이기 위해 고분자 접착제를 더 포함시킬 수 있으며, 이러한 고분자 접착제로는 퍼풀루오로설포닉산(perfluorosulfonic acid)과 같이 수소이온 전도성이 있는 고분자 전해질 물질이나 PTFE 또는 탄화수소계의 고분자 접착제를 사용할 수 있다.In addition, the electrode slurry 50 may further include a polymer adhesive to increase adhesion during application, and the polymer adhesive includes a polymer electrolyte material having hydrogen ion conductivity, such as perfluorosulfonic acid, PTFE or hydrocarbon. A polymer adhesive can be used.
전극 슬러리(50)의 점도는 100~2000 m㎩s가 되도록 유기 용매를 적정량 첨가하여 조정할 수 있다. 전극 슬러리(50)의 점도가 100 m㎩s를 하회하면 닥터 블레이드로(70)의 외부로 전극 슬러리(50)가 유출되고, 2000 m㎩s를 초과하면 닥터 블레이드(70)에 의해 시트화할 때에 저항이 커져서 표면에 요철이 발생할 수 있어 원활히 시트화할 수 없게 된다.The viscosity of the electrode slurry 50 is 100 to 2000 mPa It can be adjusted by adding an appropriate amount of an organic solvent so that it may become s. The viscosity of the electrode slurry 50 is 100 mPa When it is less than s, the electrode slurry 50 flows out of the doctor blade furnace 70, and 2000 mPa If s is exceeded, the resistance increases when forming a sheet by the doctor blade 70, and irregularities may occur on the surface, making it impossible to form a sheet smoothly.
또한 전극 슬러리(50)는 함유된 공기가 도포 시 요철이 생기거나, 균질성을 저하하는 경우도 있기 때문에, 함유된 공기를 원심 탈기나 진공 탈기법에 의해 탈기하는 것이 바람직하다.In addition, since the air contained in the electrode slurry 50 may have irregularities or reduce homogeneity when applied, it is preferable to degas the contained air by centrifugal degassing or vacuum degassing.
전극 슬러리(50)는 닥터 블레이드(70) 이용하여 제1 전해질막(10) 위에 부착된 박리틀(30) 안에 도포되어 전극 코팅층(52)을 형성할 수 있다. 여기서 형성된 전극 코팅층(52)은 박리틀(30)의 두께에 대응되는 5㎛ 내지 100㎛의 두께를 가질 수 있다.The electrode slurry 50 may be applied in the release mold 30 attached to the first electrolyte membrane 10 using the doctor blade 70 to form the electrode coating layer 52 . The electrode coating layer 52 formed here may have a thickness of 5 μm to 100 μm, which corresponds to the thickness of the release mold 30 .
전극 슬러리(50)는 닥터 블레이드(70)의 이동에 의해 제1 전해질막(10) 위에 부착된 서브 가스캣(30) 안에 전극 슬러리(50)를 균등한 두께로 도포되어 전극 코팅층(52)을 형성한다.The electrode slurry 50 is coated with the electrode slurry 50 in an equal thickness in the sub gasket 30 attached to the first electrolyte membrane 10 by the movement of the doctor blade 70 to form the electrode coating layer 52 . to form
다음으로 S40 단계에서 제1 전극 코팅층(52)을 건조시킨다. 여기서 건조는 열풍 건조, 진공(Vacuum) 건조, 적외선(IR) 건조 등 다양한 건조 방식을 적용할 수 있고, 건조 온도와 시간은 사용되는 용매의 끓는점(BP)에 따라 적절하게 조절할 수 있다. 예를 들어, 건조 온도는 60 ℃ 내지 150 ℃에서 05 시간 내지 10 시간 동안 건조시키는 것일 수 있다. 건조 온도가 60 ℃ 미만이거나 건조 시간이 05 시간 미만인 경우에는 팽윤 용매가 고분자 전해질 막 내부에 잔류해 있거나, 충분히 건조된 촉매층을 형성하지 못할 수 있고, 건조 온도가 150 ℃를 초과하는 경우에는 고분자 전해질 막에 갈변 현상이 발생하는 등 화학적 데미지를 받을 수 있거나, 촉매층에 균열 등이 발생할 수 있다. S40 단계 이후에 제1 전극 코팅층(52)이 건조된 상태에서 서브 가스캣(30)을 제거할 수 있다.Next, the first electrode coating layer 52 is dried in step S40. Here, various drying methods such as hot air drying, vacuum drying, infrared (IR) drying, etc. may be applied to the drying, and the drying temperature and time may be appropriately adjusted according to the boiling point (BP) of the solvent used. For example, the drying temperature may be drying at 60 °C to 150 °C for 05 hours to 10 hours. If the drying temperature is less than 60 ℃ or the drying time is less than 05 hours, the swelling solvent may remain inside the polymer electrolyte membrane, or a sufficiently dried catalyst layer may not be formed. The membrane may receive chemical damage such as browning, or cracks may occur in the catalyst layer. After step S40, the sub gasket 30 may be removed in a state in which the first electrode coating layer 52 is dried.
다음으로 S50 단계에서 도 7 내지 도 9에 도시된 바와 같이, 평판 플레이트(90)를 회전시킨 후 평판 플레이트(90)의 타면(92)에 제2 전해질막(110)을 위치시킨다.Next, in step S50, as shown in FIGS. 7 to 9 , after rotating the flat plate 90 , the second electrolyte membrane 110 is positioned on the other surface 92 of the flat plate 90 .
다음으로 S60 단계에서 도 10에 도시된 바와 같이, 제2 전해질막(110) 상에 제2 서브 가스캣(130)을 부착한다. 즉 S60 단계에서는 제2 전해질막(10) 상에 필름 형태의 서브 가스캣(130)을 부착하여, 제2 전극 코팅층(152)이 형성되는 공간을 확보한다.Next, as shown in FIG. 10 in step S60 , the second sub gasket 130 is attached on the second electrolyte membrane 110 . That is, in step S60, the sub gasket 130 in the form of a film is attached on the second electrolyte membrane 10 to secure a space in which the second electrode coating layer 152 is formed.
다음으로 S70 단계에서 도 11 및 도 12에 도시된 바와 같이, 제2 서브 가스캣(130)이 부착된 제2 전해질막(110) 상에 전극 슬러리(50)를 도포하여 제2 전극 코팅층(152)을 형성할 수 있다.Next, in step S70, as shown in FIGS. 11 and 12 , the electrode slurry 50 is applied on the second electrolyte membrane 110 to which the second sub gasket 130 is attached to thereby the second electrode coating layer 152 . ) can be formed.
다음으로 S80 단계에서 제2 전극 코팅층(152)을 건조시키며, 도 13에 도시된 바와 같이 제2 서브 가스캣(130)을 제거할 수 있다.Next, the second electrode coating layer 152 is dried in step S80 , and the second sub gasket 130 may be removed as shown in FIG. 13 .
그리고 S90 단계에서 도 14에 도시된 바와 같이, 제1 전극 코팅층(52) 및 제2 전극 코팅층(152)을 프레스 장치(80)를 통해 압착할 수 있다. 여기서 프레스 장치(80)는 핫 프레스 공정이 가능한 장치가 될 수 있다. 여기서 핫 프레스란 열과 압력을 가해 고온 고압의 조건에서 제1 전극 코팅층(52) 및 제2 전극 코팅층(152)을 압착시키는 공정을 의미한다.And as shown in FIG. 14 in step S90, the first electrode coating layer 52 and the second electrode coating layer 152 may be compressed through the press device 80 . Here, the press device 80 may be a device capable of a hot press process. Here, the hot press refers to a process of compressing the first electrode coating layer 52 and the second electrode coating layer 152 under conditions of high temperature and high pressure by applying heat and pressure.
이와 같이, 본 발명의 실시예에 따른 양면 직접 코팅을 이용한 연료전지용 막-전극접합체 제조 방법은 전해질 막에 직접 코팅을 수행하되, 평판 플레이트의 회전을 통해 평판 플레이트의 양면 모두 직접 코팅을 수행함으로써, 공정 시간 단축 및 인력감소로 원가 절감이 가능할 수 있다.As described above, in the method for manufacturing a membrane-electrode assembly for a fuel cell using double-sided direct coating according to an embodiment of the present invention, direct coating is performed on the electrolyte membrane, and both surfaces of the flat plate are directly coated through the rotation of the flat plate. Cost reduction may be possible by shortening process time and reducing manpower.
또한 본 발명의 실시예에 따른 양면 직접 코팅을 이용한 연료전지용 막-전극접합체 제조 방법은 글리세롤을 첨가함에 따라, 전극 코팅층을 형성하는 과정에서 잔존 용매나 고온 조건에 의해 발생되는 불량을 최소화할 수 있다.In addition, in the method for manufacturing a membrane-electrode assembly for a fuel cell using double-sided direct coating according to an embodiment of the present invention, as glycerol is added, defects caused by residual solvent or high-temperature conditions in the process of forming the electrode coating layer can be minimized. .
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다. 또한, 본 명세서와 도면에서 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다.On the other hand, the embodiments disclosed in the present specification and drawings are merely presented as specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is apparent to those of ordinary skill in the art to which the present invention pertains that other modifications based on the technical spirit of the present invention can be implemented in addition to the embodiments disclosed herein. In addition, although specific terms have been used in the present specification and drawings, these are only used in a general sense to easily explain the technical contents of the present invention and help the understanding of the present invention, and are not intended to limit the scope of the present invention.
Claims (5)
- 활물질 및 끓는점이 200℃ 이상의 첨가제를 포함하는 전극 슬러리를 제조하는 단계;preparing an electrode slurry including an active material and an additive having a boiling point of 200° C. or higher;전해질막 상에 상기 전극 슬러리를 도포하여 전극 코팅층을 형성하는 단계;forming an electrode coating layer by applying the electrode slurry on an electrolyte membrane;상기 전극 코팅층을 건조하는 단계;drying the electrode coating layer;를 포함하는 것을 특징으로 하는 연료전지용 막-전극접합체 제조 방법.A fuel cell membrane-electrode assembly manufacturing method comprising a.
- 제1항에 있어서,According to claim 1,상기 첨가제는,The additive is글리세롤(glycerol) 및 1,5-펜탄디올(1, 5-pentanediol) 중 적어도 하나를 포함하는 것을 특징으로 하는 연료전지용 막-전극접합체 제조 방법.A membrane-electrode assembly manufacturing method for a fuel cell, comprising at least one of glycerol and 1,5-pentanediol.
- 제1항에 있어서,According to claim 1,상기 전극 슬러리는,The electrode slurry,도전재 및 바인더를 더 포함하는 것을 특징으로 하는 연료전지용 막-전극접합체 제조 방법.Membrane-electrode assembly manufacturing method for fuel cell, characterized in that it further comprises a conductive material and a binder.
- 제1항에 있어서,According to claim 1,상기 전극 슬러리는,The electrode slurry,상기 건조하는 단계 이후에,After the drying step,상기 전극 코팅층이 형성된 전해질막을 프레스 장치를 통해 압착하는 단계;compressing the electrolyte membrane on which the electrode coating layer is formed through a press device;를 더 포함하는 것을 특징으로 하는 연료전지용 막-전극접합체 제조 방법.Membrane-electrode assembly manufacturing method for a fuel cell, characterized in that it further comprises.
- 활물질 및 끓는점이 200℃ 이상의 첨가제를 포함하여 제조되는 연료전지용-막-전극접합체에 적용되는 전극 코팅층 형성을 위한 전극 슬러리.An electrode slurry for forming an electrode coating layer applied to a fuel cell-membrane-electrode assembly prepared by including an active material and an additive having a boiling point of 200° C. or higher.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0123170 | 2020-09-23 | ||
KR1020200123170A KR20220040233A (en) | 2020-09-23 | 2020-09-23 | Electrode slurry for forming electrode coating layer and method for manufacturing membrane electrode assembly for fuel cell using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022065591A1 true WO2022065591A1 (en) | 2022-03-31 |
Family
ID=80845578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/017231 WO2022065591A1 (en) | 2020-09-23 | 2020-11-30 | Electrode slurry for forming electrode coating layer, and method for manufacturing membrane electrode assembly for fuel cell by using same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20220040233A (en) |
WO (1) | WO2022065591A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006061993A1 (en) * | 2004-12-07 | 2006-06-15 | Toray Industries, Inc. | Film electrode composite element and production method therefor, and fuel cell |
JP2009224197A (en) * | 2008-03-17 | 2009-10-01 | Honda Motor Co Ltd | Membrane-electrode structural body for fuel cell, and its manufacturing method |
KR20140134594A (en) * | 2013-05-13 | 2014-11-24 | 한양대학교 산학협력단 | Ink for fuel cell electrode catalyst layer, catalyst layer for fuel cell electrode using the same, preparing methode of the same, membrane electrode assembly and fuel cell including the same |
KR20170112542A (en) * | 2016-03-31 | 2017-10-12 | 주식회사 엘지화학 | Membrane electrode assembly for polymer electolyte fuel cell and manufacturing method thereof |
KR101830291B1 (en) * | 2016-09-05 | 2018-02-20 | 상명대학교 천안산학협력단 | Highly durable electrode for membrane electrode assembly of polymer electrolyte fuel cells and method for preparing the same |
-
2020
- 2020-09-23 KR KR1020200123170A patent/KR20220040233A/en not_active Application Discontinuation
- 2020-11-30 WO PCT/KR2020/017231 patent/WO2022065591A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006061993A1 (en) * | 2004-12-07 | 2006-06-15 | Toray Industries, Inc. | Film electrode composite element and production method therefor, and fuel cell |
JP2009224197A (en) * | 2008-03-17 | 2009-10-01 | Honda Motor Co Ltd | Membrane-electrode structural body for fuel cell, and its manufacturing method |
KR20140134594A (en) * | 2013-05-13 | 2014-11-24 | 한양대학교 산학협력단 | Ink for fuel cell electrode catalyst layer, catalyst layer for fuel cell electrode using the same, preparing methode of the same, membrane electrode assembly and fuel cell including the same |
KR20170112542A (en) * | 2016-03-31 | 2017-10-12 | 주식회사 엘지화학 | Membrane electrode assembly for polymer electolyte fuel cell and manufacturing method thereof |
KR101830291B1 (en) * | 2016-09-05 | 2018-02-20 | 상명대학교 천안산학협력단 | Highly durable electrode for membrane electrode assembly of polymer electrolyte fuel cells and method for preparing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20220040233A (en) | 2022-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4327732B2 (en) | Solid polymer fuel cell and manufacturing method thereof | |
TWI666242B (en) | Manufacturing method of catalyst transfer sheet, membrane electrode assembly, and manufacturing method of electrolyte membrane covering catalyst layer | |
WO2012153915A2 (en) | Method for manufacturing a membrane-electrode assembly for a polymer electrolyte, and membrane-electrode assembly manufactured thereby | |
CN100462396C (en) | Composite electrolyte membrane | |
KR20110043908A (en) | Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell | |
WO2010128737A1 (en) | Method for preparing membrane-electrode assembly, membrane-electrode assembly prepared therefrom and fuel cell comprising the same | |
US20040115499A1 (en) | Method for producing membrane-electrode structure | |
WO2022114726A1 (en) | Method for manufacturing membrane electrode assembly for fuel cell having reinforcement layer | |
WO2018062972A1 (en) | Method for manufacturing membrane electrode assembly for fuel cell | |
WO2022065591A1 (en) | Electrode slurry for forming electrode coating layer, and method for manufacturing membrane electrode assembly for fuel cell by using same | |
KR20220040232A (en) | Membrane-electrode assembly manufacturing method for fuel cell using complex process | |
CA2485951A1 (en) | Manufacture of a gas diffusion electrode | |
US20160079612A1 (en) | Carbon Paper With Conducting Polymers And Polyols For Fuel Cell And Preparation Method Thereof | |
KR20070095831A (en) | Direct oxidation fuel cell and production method thereof | |
JP4647902B2 (en) | Method for manufacturing membrane-electrode structure | |
KR20090132214A (en) | Membrane and electrode assembly for fuel cell, manufacturing method, and fuel cell using the same | |
CN101953013B (en) | Electrode inks containing coalescing solvents | |
KR20140129721A (en) | Proton exchange membrane for fuel cell, preparation method thereof and fuel cell comprising the same | |
KR20220040231A (en) | Membrane-electrode assembly manufacturing method for fuel cells using double-sided direct coating | |
JP5326458B2 (en) | Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell | |
KR20220058134A (en) | Membrane-electrode assembly manufacturing method for fuel cell using water bath | |
CN104838527B (en) | The manufacture method of electrode for fuel cell piece | |
JP2009026536A (en) | Electrolyte membrane-electrode assembly for solid polymer fuel cell and manufacturing method thereof, catalyst transfer film used for this, and solid polymer fuel cell | |
WO2018221806A1 (en) | Membrane-electrode assembly, method for manufacturing same, and fuel cell including same | |
WO2024014741A1 (en) | Polymer electrolyte membrane and membrane-electrode assembly comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20955389 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20955389 Country of ref document: EP Kind code of ref document: A1 |