JP2009026536A - Electrolyte membrane-electrode assembly for solid polymer fuel cell and manufacturing method thereof, catalyst transfer film used for this, and solid polymer fuel cell - Google Patents

Electrolyte membrane-electrode assembly for solid polymer fuel cell and manufacturing method thereof, catalyst transfer film used for this, and solid polymer fuel cell Download PDF

Info

Publication number
JP2009026536A
JP2009026536A JP2007187024A JP2007187024A JP2009026536A JP 2009026536 A JP2009026536 A JP 2009026536A JP 2007187024 A JP2007187024 A JP 2007187024A JP 2007187024 A JP2007187024 A JP 2007187024A JP 2009026536 A JP2009026536 A JP 2009026536A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
catalyst
proton conductive
fuel cell
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007187024A
Other languages
Japanese (ja)
Inventor
Hironobu Nishimura
浩宣 西村
Rei Hiromitsu
礼 弘光
Yoshikazu Osada
美和 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007187024A priority Critical patent/JP2009026536A/en
Publication of JP2009026536A publication Critical patent/JP2009026536A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte membrane-electrode assembly for a solid polymer fuel cell in which one layer consisting of a proton conductive material is arranged between an electrolyte membrane and a catalyst layer and formation of a proton conductive path is secured to obtain an effect to prevent deterioration of power generation performance, to provide a manufacturing method thereof, to provide a catalyst transfer film used for the electrolyte membrane-electrode assembly, and to provide a solid polymer fuel cell. <P>SOLUTION: The electrolyte membrane-electrode assembly (33) has at least a catalyst layer (22) and a porous electrode layer (27) laminated on both surfaces of an electrolyte membrane (24). The electrolyte membrane (24) is constructed of a proton conductive material enveloping a filler, and at least a part of the filler is exposed from the electrolyte membrane (24), a proton conductive material layer (23) exists between the electrolyte membrane (24) and at least one of the catalyst layer (22), moreover, the filler and the proton conductive material layer (23) are in direct contact. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体高分子形燃料電池用電解質膜−電極接合体とその製造方法、これに用いる触媒転写フィルム、及び固体高分子形燃料電池に関する。   The present invention relates to an electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell, a method for producing the same, a catalyst transfer film used therefor, and a polymer electrolyte fuel cell.

固体高分子形燃料電池はプロトン伝導性を有する固体高分子膜を電解質とし、この膜の両面に燃料極及び空気極を接合して構成され、燃料極に水素、空気極に酸素あるいは空気を供給して電気化学反応により発電するシステムである。各電極では下記反応が起こっている。   A polymer electrolyte fuel cell is made up of a solid polymer membrane with proton conductivity as an electrolyte, and a fuel electrode and an air electrode are joined to both sides of this membrane. Hydrogen is supplied to the fuel electrode and oxygen or air is supplied to the air electrode. This is a system that generates electricity through an electrochemical reaction. The following reactions occur at each electrode.

燃料極:H2 → 2H+ + 2e-
空気極:(1/2)O2 + 2H+ + 2e- → H2
全反応:H2 + (1/2)O2 → H2
これらの反応式からわかるように、発電時に生成するのは水のみである。燃料電池は次世代のクリーンエネルギーシステムの一つとして注目されている。
Fuel electrode: H 2 → 2H + + 2e
Air electrode: (1/2) O 2 + 2H + + 2e → H 2 O
Total reaction: H 2 + (1/2) O 2 → H 2 O
As can be seen from these reaction equations, only water is generated during power generation. Fuel cells are attracting attention as one of the next generation clean energy systems.

そして、固体高分子形燃料電池は、メタノールを燃料として供給しても発電させることが可能であり、この場合は特に直接メタノール燃料電池と呼ばれる。各電極では下記反応が起こっている。   The polymer electrolyte fuel cell can generate electric power even when methanol is supplied as a fuel. In this case, the polymer electrolyte fuel cell is particularly called a direct methanol fuel cell. The following reactions occur at each electrode.

燃料極:CH3OH+H2O→6H++6e-+CO2
空気極:(3/2)O2+6H++6e-→3H2
全反応:CH3OH+(3/2)O2→2H2O+CO2
固体高分子形燃料電池は、電解質膜としてプロトン伝導性高分子電解質膜を用い、その両面に触媒層を配置し、ついでその両面に電極基材を配置し、更にこれをセパレータで挟んだ構造をしている。電解質膜の両面に触媒層を配置したもの(即ち、触媒層/電解質膜/触媒層の層構成のもの)は、電解質膜−触媒層接合体(略称:CCM)と称されており、さらに、その電解質膜−触媒層接合体の両面に電極基材を配置したもの(即ち、電極基材/触媒層/電解質膜/触媒層/電極基材の層構成のもの)は、電解質膜−電極接合体(略称:MEA)と称されている。
Fuel electrode: CH 3 OH + H 2 O → 6H + + 6e + CO 2
Air electrode: (3/2) O 2 + 6H + + 6e → 3H 2 O
All reactions: CH 3 OH + (3/2) O 2 → 2H 2 O + CO 2
A polymer electrolyte fuel cell has a structure in which a proton conductive polymer electrolyte membrane is used as an electrolyte membrane, a catalyst layer is arranged on both sides thereof, an electrode base material is arranged on both sides thereof, and this is further sandwiched between separators. is doing. The one in which the catalyst layers are arranged on both surfaces of the electrolyte membrane (that is, the layer configuration of catalyst layer / electrolyte membrane / catalyst layer) is called an electrolyte membrane-catalyst layer assembly (abbreviation: CCM), An electrode base material disposed on both surfaces of the electrolyte membrane-catalyst layer assembly (ie, electrode base material / catalyst layer / electrolyte membrane / catalyst layer / electrode base material layer structure) is an electrolyte membrane-electrode joint. It is called a body (abbreviation: MEA).

プロトン伝導性高分子電解質膜としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このようなプロトン伝導性高分子電解質膜の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。   Examples of proton conductive polymer electrolyte membranes include, for example, perfluorosulfonic acid-based fluorine ion exchange resins, and more specifically, perfluorocarbon sulfonic acid-based ones in which C—H bonds of hydrocarbon-based ion exchange membranes are substituted with fluorine. Examples include polymers (PFS polymers). By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such a proton conductive polymer electrolyte membrane include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and “Aciplex” manufactured by Asahi Kasei Corporation. "(Registered trademark)", "Gore Select" (registered trademark) manufactured by Gore, and the like.

これらのパーフルオロカーボンスルホン酸系ポリマーは、上記のとおり電解質膜として高い性能を示すが、一方で、コストが高いという問題がある。また、80℃以上の高温域においては著しい劣化がみられたり、電解質膜の乾燥によりプロトン伝導性が著しく低下したりするといった不具合もみられる。さらに、含水により膨潤して大きな寸法変化を示すために、起動・停止(加湿・乾燥)の繰り返しにおいて電解質膜上に形成した触媒層が剥離するという問題も生じる。これらの欠点を補うために、高分子電解質膜に高分子繊維や無機粒子などのフィラーを埋め込むことで、高温条件下での保水性を増したり、寸法変化を抑制したりという工夫が提案されている(例えば特許文献1〜2)。
特開2003−157862号公報 特開平6−111827号公報
These perfluorocarbon sulfonic acid-based polymers exhibit high performance as an electrolyte membrane as described above, but have a problem of high cost. In addition, there is a problem that remarkable deterioration is observed at a high temperature range of 80 ° C. or higher, and proton conductivity is remarkably lowered by drying of the electrolyte membrane. Furthermore, since it swells due to water content and shows a large dimensional change, there also arises a problem that the catalyst layer formed on the electrolyte membrane is peeled off after repeated start / stop (humidification / drying). In order to make up for these drawbacks, proposals have been made to embed fillers such as polymer fibers and inorganic particles in the polymer electrolyte membrane to increase water retention under high temperature conditions and to suppress dimensional changes. (For example, Patent Documents 1 and 2).
JP 2003-157862 A JP-A-6-1111827

しかし、フィラーの一部が電解質膜の表面に露出すると、触媒層との接合においてプロトン伝導パスの断裂が生じ、発電性能低下の原因となる
本発明は、前記従来の問題を解決するため、電解質膜と触媒層の間に、プロトン伝導性材料からなる層を一層配置し、プロトン伝導パス形成が確実となり、発電性能低下を抑制する効果が得られる固体高分子形燃料電池用電解質膜−電極接合体とその製造方法、これに用いる触媒転写フィルム、及び固体高分子形燃料電池を提供する。
However, if a part of the filler is exposed on the surface of the electrolyte membrane, the proton conduction path is broken at the junction with the catalyst layer, which causes a decrease in power generation performance. An electrolyte membrane-electrode junction for a polymer electrolyte fuel cell in which a layer made of a proton conductive material is disposed between the membrane and the catalyst layer to ensure the formation of a proton conduction path and to suppress the deterioration of power generation performance. And a catalyst transfer film used therefor, and a polymer electrolyte fuel cell.

本発明の固体高分子形燃料電池用電解質膜−電極接合体は、電解質膜の両表面に少なくとも触媒層と、多孔質電極層が積層された電解質膜−電極接合体であって、前記電解質膜はフィラーを内包するプロトン伝導性材料で構成され、前記フィラーの少なくとも一部は前記電解質膜から露出しており、前記電解質膜と触媒層の少なくとも一方の間にはプロトン伝導性材料層が存在し、前記フィラーと前記プロトン伝導性材料層とは直接接触していることを特徴とする。   The electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell of the present invention is an electrolyte membrane-electrode assembly in which at least a catalyst layer and a porous electrode layer are laminated on both surfaces of the electrolyte membrane, the electrolyte membrane Is composed of a proton conductive material containing a filler, at least a part of the filler is exposed from the electrolyte membrane, and a proton conductive material layer exists between at least one of the electrolyte membrane and the catalyst layer. The filler and the proton conductive material layer are in direct contact with each other.

本発明の触媒転写フィルムは、基材フィルム上に、触媒粒子および電解質バインダーからなる触媒層が形成され、さらにその上にプロトン伝導性材料層が形成されていることを特徴とする。   The catalyst transfer film of the present invention is characterized in that a catalyst layer composed of catalyst particles and an electrolyte binder is formed on a base film, and a proton conductive material layer is further formed thereon.

本発明の固体高分子形燃料電池は、前記のいずれかの固体高分子形燃料電池用電解質膜−電極接合体を組み込んだものである。   The polymer electrolyte fuel cell of the present invention incorporates any one of the above electrolyte membrane-electrode assemblies for polymer electrolyte fuel cells.

本発明の固体高分子形燃料電池用電解質膜−電極接合体の製造方法は、基材フィルム上に、触媒粒子および電解質バインダーからなる触媒層が形成され、さらにその上にプロトン伝導性材料層が形成された触媒転写フィルムのプロトン伝導性材料層側を、電解質膜に向けて配置する工程と、前記触媒転写フィルム−電解質膜−触媒転写フィルム積層体を、熱プレスする工程と、前記熱プレスされた触媒転写フィルム−電解質膜−触媒転写フィルム積層体から、基材フィルムを剥離し、電解質膜−触媒層接合体を得る工程と、前記電解質膜−触媒層接合体の両面に、一対の電極基材を配置する工程とを含む。   In the method for producing an electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell of the present invention, a catalyst layer comprising catalyst particles and an electrolyte binder is formed on a base film, and a proton conductive material layer is further formed thereon. The step of arranging the proton conductive material layer side of the formed catalyst transfer film toward the electrolyte membrane, the step of hot pressing the catalyst transfer film-electrolyte membrane-catalyst transfer film laminate, and the heat pressing The step of peeling the base film from the catalyst transfer film-electrolyte membrane-catalyst transfer film laminate to obtain an electrolyte membrane-catalyst layer assembly, and a pair of electrode groups on both surfaces of the electrolyte membrane-catalyst layer assembly Placing the material.

本発明の別の固体高分子形燃料電池用電解質膜−電極接合体の製造方法は、電極基材上に、触媒粒子と電解質バインダーからなる触媒層が形成され、さらにその上にプロトン伝導性材料層が形成されたガス拡散電極のプロトン伝導性材料層側を、電解質膜に向けて配置する工程と、前記ガス拡散電極−電解質膜−ガス拡散電極積層体を熱プレスする工程とを含む。   In another method for producing an electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell according to the present invention, a catalyst layer comprising catalyst particles and an electrolyte binder is formed on an electrode substrate, and a proton conductive material is further formed thereon. A step of disposing the proton conductive material layer side of the gas diffusion electrode formed with the layer toward the electrolyte membrane, and a step of hot pressing the gas diffusion electrode-electrolyte membrane-gas diffusion electrode laminate.

本発明は、電解質膜と触媒層の間に、プロトン伝導性材料からなる層を一層配置し、プロトン伝導パス形成が確実となり、発電性能低下を抑制する効果が得られる固体高分子形燃料電池用電解質膜−電極接合体とその製造方法、これに用いる触媒転写フィルム、及び固体高分子形燃料電池を提供できる。   The present invention is for a polymer electrolyte fuel cell in which a layer made of a proton conductive material is disposed between an electrolyte membrane and a catalyst layer, the formation of a proton conduction path is ensured, and the effect of suppressing a decrease in power generation performance is obtained. An electrolyte membrane-electrode assembly and a production method thereof, a catalyst transfer film used therefor, and a polymer electrolyte fuel cell can be provided.

本発明において、電解質膜はフィラーを内包するプロトン伝導性材料から構成されている。   In the present invention, the electrolyte membrane is composed of a proton conductive material containing a filler.

上記電解質膜を構成するプロトン伝導性材料は、燃料電池用に用いられる一般的なプロトン伝導性材料であり、例えば、フッ素系プロトン伝導性高分子材料、炭化水素系プロトン伝導性材料、無機プロトン伝導性材料、有機−無機ハイブリッドプロトン伝導性材料、イオン液体、およびこれらの混合物からなる群からなる。フッ素系プロトン伝導性高分子材料は、ナフィオン(商品名)、フレミオン(商品名)、アシプレックス(商品名)等がある。炭化水素系プロトン伝導性材料はリン酸含浸ポリベンズイミダゾール(PBI)、アルキルスルホン酸含浸ポリベンズイミダゾール(PBI)、スルホン化4−フェノキシベンゾイル−1,4−フェニレン(SPPBP)、スルホン化ポリエーテルエーテルケトン(SPEEK)、スチレン−エチレン/ブチレン/エチレンブロック共重合体等がある。無機プロトン伝導性材料としては、酸化タングステンや酸化スズの水和物などの金属水和酸化物、SiO2−H3PO4やSiO2−TiO2−P25などの多元系シリカ、TiO2−H3PO4などの金属リン酸化合物、リンタングステン酸やリンモリブデン酸などのヘテロポリ酸複合体、CsHSO4やCsH2PO4、SnXIn(1-X)27などの無機酸素酸塩などが例示できる。有機−無機ハイブリッド材料としては、シリカとポリエチレンオキシド(PEO)やポリプロピレンオキシド(PPO)、またはポリテトラメチレンオキシド(PTMO)などのポリエーテルポリマーからなるハイブリッド材料や、さらにこれらにタングストリン酸などの固体酸を添加したものが例として挙げられる。イオン液体としては、1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド(EMI−TFSI)や、1−エチル−3−メチルイミダゾリウムトリフレート(EMI−Tf)、1−エチル−3−メチルイミダゾリウム フルオロヒドロジェネレート(EMIm(HF)nF)などが例として挙げられる。 The proton conductive material constituting the electrolyte membrane is a general proton conductive material used for fuel cells, such as a fluorine-based proton conductive polymer material, a hydrocarbon-based proton conductive material, and an inorganic proton conductive material. Material, organic-inorganic hybrid proton conductive material, ionic liquid, and a mixture thereof. Examples of the fluorine-based proton conductive polymer material include Nafion (trade name), Flemion (trade name), and Aciplex (trade name). Hydrocarbon proton conductive materials are phosphoric acid impregnated polybenzimidazole (PBI), alkylsulfonic acid impregnated polybenzimidazole (PBI), sulfonated 4-phenoxybenzoyl-1,4-phenylene (SPPBP), sulfonated polyether ether Examples include ketones (SPEEK) and styrene-ethylene / butylene / ethylene block copolymers. Examples of inorganic proton conductive materials include metal hydrated oxides such as tungsten oxide and tin oxide hydrate, multi-component silica such as SiO 2 —H 3 PO 4 and SiO 2 —TiO 2 —P 2 O 5 , TiO 2. Metal phosphate compounds such as 2- H 3 PO 4 , heteropoly acid complexes such as phosphotungstic acid and phosphomolybdic acid, inorganic substances such as CsHSO 4 , CsH 2 PO 4 , Sn X In (1-X) P 2 O 7 Examples thereof include oxyacid salts. Organic-inorganic hybrid materials include hybrid materials made of polyether polymers such as silica and polyethylene oxide (PEO), polypropylene oxide (PPO), or polytetramethylene oxide (PTMO), and solids such as tungstophosphoric acid. An example to which an acid is added is given. Examples of the ionic liquid include 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (EMI-TFSI), 1-ethyl-3-methylimidazolium triflate (EMI-Tf), 1-ethyl- An example is 3-methylimidazolium fluorohydrogenate (EMIm (HF) nF).

上記フィラーは、上記電解質膜に対して、機械強度、寸法安定性、耐熱性、化学的安定性、保水性などの向上を目的に内包されるており、例えば、高分子フィブリルや無機粒子材料が用いられる。上記高分子フィブリルの例としては、ポリテトラフルオロエチレン、ポリイミド、ポリエチレンテレフタレート、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等をあげることができる。また、無機粒子材料としては、シリカ、アルミナ、ジルコニア、チタニア、マグネシア、酸化モリブデン、酸化タングステン、酸化亜鉛、酸化錫、チタン酸バリウム、チタン酸アルミ、炭化珪素、窒化珪素などを挙げることができる。また、上記無機粒子材料は、機械強度向上等を目的に異種金属元素が添加されていてもよい。例えば、ジルコニアに関しては、イットリウムを添加した部分安定化ジルコニア(”YSZ”と呼称される)などが例として挙げられる。上記無機粒子材料は、球状粒子の積層体でもよいし、多孔体でもよいし、鱗片状粒子の自己組織化構造体であってもよい。   The filler is included for the purpose of improving mechanical strength, dimensional stability, heat resistance, chemical stability, water retention and the like with respect to the electrolyte membrane. For example, polymer fibrils and inorganic particle materials are included. Used. Examples of the polymer fibrils include polytetrafluoroethylene, polyimide, polyethylene terephthalate, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyetherimide, polyarylate, polyethylene naphthalate, Ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. it can. Examples of the inorganic particle material include silica, alumina, zirconia, titania, magnesia, molybdenum oxide, tungsten oxide, zinc oxide, tin oxide, barium titanate, aluminum titanate, silicon carbide, and silicon nitride. Further, the inorganic particle material may be added with a different metal element for the purpose of improving the mechanical strength. For example, as for zirconia, partially stabilized zirconia to which yttrium is added (referred to as “YSZ”) can be cited as an example. The inorganic particle material may be a laminated body of spherical particles, a porous body, or a self-organized structure of scaly particles.

以下、本発明に係る固体高分子形燃料電池用電解質膜及びその製造方法の実施形態について図面を参照しつつ説明する。   Hereinafter, embodiments of an electrolyte membrane for a polymer electrolyte fuel cell and a method for producing the same according to the present invention will be described with reference to the drawings.

図1A−Dは、比較例におけるフィラーを内包する電解質膜の模式的断面図である。フィラーは、図1Aでは高分子フィブリル2、図1Bでは無機粒子材料3、図1Cでは鱗片状粒子材料4をそれぞれ表している。1はプロトン伝導性材料である。これらの電解質膜10の表面には、複数の矢印で示すようにフィラー2〜4の一部が露出しており、図1Dの左側に示すように、触媒層9との接合に際して、双方向の矢印で示すプロトン伝導パスの断絶による性能低下を引き起こすおそれがある。図1Dにおいて、1はプロトン伝導性材料、5はフィラー(支持体)、7は触媒粒子、8は電解質バインダーである。上記プロトン伝導パスの断絶とは、例えば、電解質バインダー8とプロトン伝導性材料1の間にプロトン伝導性に乏しいフィラー5が存在することにより、電解質バインダー8とプロトン伝導性材料1が接触しない状態を指す。   1A to 1D are schematic cross-sectional views of an electrolyte membrane containing a filler in a comparative example. The filler represents the polymer fibril 2 in FIG. 1A, the inorganic particle material 3 in FIG. 1B, and the scaly particle material 4 in FIG. 1C. 1 is a proton conductive material. A part of the fillers 2 to 4 are exposed on the surfaces of these electrolyte membranes 10 as indicated by a plurality of arrows, and as shown on the left side of FIG. There is a risk of performance degradation due to the interruption of the proton conduction path indicated by the arrow. In FIG. 1D, 1 is a proton conductive material, 5 is a filler (support), 7 is catalyst particles, and 8 is an electrolyte binder. The disconnection of the proton conduction path means, for example, a state where the electrolyte binder 8 and the proton conductive material 1 are not in contact with each other due to the presence of the filler 5 having poor proton conductivity between the electrolyte binder 8 and the proton conductive material 1. Point to.

図1Dの左側(双方向の矢印の上から×印を付与した部分)に示すような触媒層9との接合に際して、プロトン伝導パスの断絶による性能低下を防止するため、図2A−D(本発明の一例)に示すように、フィラー2〜4を内包する電解質膜10の表面にプロトン伝導性材料層11,11a,11bが形成された電解質膜10とする。フィラーは、図2Aでは高分子フィブリル2、図2Bでは無機粒子材料3、図2Cでは鱗片状粒子材料4をそれぞれ表している。これらの電解質膜10の表面はプロトン伝導性材料層11が形成されており、図1A−Dで露出していたフィラーは被覆されている。この場合、触媒層9との接合に際して、双方向の矢印で示すプロトン伝導パスが断絶することなく、性能低下が引き起こされることはない(図2D)。   In order to prevent performance degradation due to the disconnection of the proton conduction path at the time of joining with the catalyst layer 9 as shown on the left side of FIG. As shown in an example of the invention, an electrolyte membrane 10 in which proton conductive material layers 11, 11a, and 11b are formed on the surface of an electrolyte membrane 10 including fillers 2 to 4 is used. The filler represents the polymer fibril 2 in FIG. 2A, the inorganic particle material 3 in FIG. 2B, and the scaly particle material 4 in FIG. 2C. A proton conductive material layer 11 is formed on the surfaces of these electrolyte membranes 10 and the filler exposed in FIGS. 1A to 1D is covered. In this case, at the time of joining with the catalyst layer 9, the proton conduction path indicated by the two-way arrow is not interrupted, and the performance is not deteriorated (FIG. 2D).

上記プロトン伝導性材料層は、フッ素系プロトン伝導性高分子材料、炭化水素系プロトン伝導性材料、無機プロトン伝導性材料、有機−無機ハイブリッドプロトン伝導性材料、およびこれらの混合物からなる群から選択されることが好ましい。フッ素系プロトン伝導性高分子材料は、ナフィオン(商品名)、フレミオン(商品名)、アシプレックス(商品名)等がある。炭化水素系プロトン伝導性材料はリン酸含浸ポリベンズイミダゾール(PBI)、アルキルスルホン酸含浸ポリベンズイミダゾール(PBI)、スルホン化4−フェノキシベンゾイル−1,4−フェニレン(SPPBP)、スルホン化ポリエーテルエーテルケトン(SPEEK)、スチレン−エチレン/ブチレン/エチレンブロック共重合体等がある。無機プロトン伝導性材料としては、酸化タングステンや酸化スズの水和物などの金属水和酸化物、SiO2−H3PO4やSiO2−TiO2−P25などの多元系シリカ、TiO2−H3PO4などの金属リン酸化合物、リンタングステン酸やリンモリブデン酸などのヘテロポリ酸複合体、CsHSO4やCsH2PO4、SnXIn(1-X)27などの無機酸素酸塩などが例示できる。有機−無機ハイブリッド材料としては、シリカとポリエチレンオキシド(PEO)やポリプロピレンオキシド(PPO)、またはポリテトラメチレンオキシド(PTMO)などのポリエーテルポリマーからなるハイブリッド材料や、さらにこれらにタングストリン酸などの固体酸を添加したものが例として挙げられる。 The proton conductive material layer is selected from the group consisting of a fluorine-based proton conductive polymer material, a hydrocarbon proton conductive material, an inorganic proton conductive material, an organic-inorganic hybrid proton conductive material, and a mixture thereof. It is preferable. Examples of the fluorine-based proton conductive polymer material include Nafion (trade name), Flemion (trade name), and Aciplex (trade name). Hydrocarbon proton conductive materials are phosphoric acid impregnated polybenzimidazole (PBI), alkylsulfonic acid impregnated polybenzimidazole (PBI), sulfonated 4-phenoxybenzoyl-1,4-phenylene (SPPBP), sulfonated polyether ether Examples include ketones (SPEEK) and styrene-ethylene / butylene / ethylene block copolymers. Examples of inorganic proton conductive materials include metal hydrated oxides such as tungsten oxide and tin oxide hydrate, multi-component silica such as SiO 2 —H 3 PO 4 and SiO 2 —TiO 2 —P 2 O 5 , TiO 2. Metal phosphate compounds such as 2- H 3 PO 4 , heteropoly acid complexes such as phosphotungstic acid and phosphomolybdic acid, inorganic substances such as CsHSO 4 , CsH 2 PO 4 , Sn X In (1-X) P 2 O 7 Examples thereof include oxyacid salts. Organic-inorganic hybrid materials include hybrid materials made of polyether polymers such as silica and polyethylene oxide (PEO), polypropylene oxide (PPO), or polytetramethylene oxide (PTMO), and solids such as tungstophosphoric acid. An example to which an acid is added is given.

上記電解質膜上への、上記プロトン伝導性材料層のコーティングにおいて、ナイフコートやグラビアコート、バーコート、スクリーン印刷など公知の方法を用いることができる。また、コーティング処理は枚葉で行ってもよいし、長尺の電解質膜上に連続的にコーティングすることにより任意の長さの長尺の膜を成膜してもよい。   In the coating of the proton conductive material layer on the electrolyte membrane, a known method such as knife coating, gravure coating, bar coating, or screen printing can be used. Further, the coating treatment may be performed on a single sheet, or a long film having an arbitrary length may be formed by continuously coating a long electrolyte film.

上記プロトン伝導性材料層は、厚さが0.01〜10.00μmである。上記プロトン伝導性材料層の厚さが約10.00μmを超えると膜抵抗が大きくなり、発電性能の低下が懸念されるようになる。また、上記プロトン伝導性材料層の厚さが約0.01μm未満になると、電解質膜から露出したフィラーの被覆が不十分となり、プロトン伝導パスの切断による発電性能が低下する。このように、電解質膜から露出したフィラーを被覆し、十分なプロトン伝導パスを形成するためには、上記電解質膜を被覆するプロトン伝導性材料層の厚さが、適切な領域にある必要がある。   The proton conductive material layer has a thickness of 0.01 to 10.00 μm. When the thickness of the proton conductive material layer exceeds about 10.00 μm, the membrane resistance increases, and there is a concern about the decrease in power generation performance. On the other hand, if the thickness of the proton conductive material layer is less than about 0.01 μm, the filler exposed from the electrolyte membrane is not sufficiently covered, and the power generation performance due to the cutting of the proton conduction path is lowered. Thus, in order to cover the filler exposed from the electrolyte membrane and form a sufficient proton conduction path, the thickness of the proton conductive material layer covering the electrolyte membrane needs to be in an appropriate region. .

図3は、図2に示す本発明の電解質膜を用いた電解質膜−触媒層接合体の断面を示す模式図である。図3に示すように、電解質膜12の両面に、それぞれ触媒粒子および電解質バインダーからなる触媒層13,13’が形成されている。   FIG. 3 is a schematic view showing a cross section of an electrolyte membrane-catalyst layer assembly using the electrolyte membrane of the present invention shown in FIG. As shown in FIG. 3, catalyst layers 13 and 13 'made of catalyst particles and an electrolyte binder are formed on both surfaces of the electrolyte membrane 12, respectively.

図4は本発明の一実施形態における電解質膜−電極接合体の断面図である。電解質膜12の上に触媒層13と電極基材14とからなる燃料極15が配置され、前記電解質膜12の下には触媒層13’と電極基材16とからなる空気極17が配置されている。そして、これらの両外側にさらにリブ付きセパレータおよび集電体(図示せず)が配置されることによって、単セル(燃料電池)が構成される。プロトンは燃料極15から電解質膜12内を通過して空気極17に流れる。また、電子は燃料極15から外部回路を介して空気極17に流れる。これにより燃料極15と空気極17との間に電気が流れる。   FIG. 4 is a cross-sectional view of the electrolyte membrane-electrode assembly in one embodiment of the present invention. A fuel electrode 15 composed of a catalyst layer 13 and an electrode base material 14 is disposed on the electrolyte membrane 12, and an air electrode 17 composed of a catalyst layer 13 ′ and an electrode base material 16 is disposed under the electrolyte membrane 12. ing. And a single cell (fuel cell) is comprised by arrange | positioning the separator with a rib and a collector (not shown) further on both these outer sides. Protons flow from the fuel electrode 15 through the electrolyte membrane 12 to the air electrode 17. Further, electrons flow from the fuel electrode 15 to the air electrode 17 via an external circuit. As a result, electricity flows between the fuel electrode 15 and the air electrode 17.

図5A−Dは、本発明の一実施形態における触媒転写フィルム20の断面図である。図5Aに示すように、転写基材21の上に触媒粒子と電解質バインダーからなる触媒層22が形成され、触媒層22の上に、プロトン伝導性材料層23が配置されている。図5Bに示すように、フィラーを内包する電解質膜24の少なくとも一方の面に、上記触媒転写フィルム20を、プロトン伝導性材料層23が電解質膜24に接する向きに重ね合わせ、熱プレス(例えば135〜150℃、3〜6MPa)を行うことより、上記電解質膜24上に触媒層22,22を接合し、ついで、転写基材21,21を剥離することにより電解質膜−触媒層接合体30を形成する(図5C)。さらに、上記電解質膜−触媒層接合体30の両面に電極基材25,26を配置することにより、電解質膜−電極接合体31を得る(図5D)。   5A to 5D are cross-sectional views of the catalyst transfer film 20 in one embodiment of the present invention. As shown in FIG. 5A, a catalyst layer 22 made of catalyst particles and an electrolyte binder is formed on a transfer substrate 21, and a proton conductive material layer 23 is arranged on the catalyst layer 22. As shown in FIG. 5B, the catalyst transfer film 20 is overlaid on at least one surface of the electrolyte membrane 24 encapsulating the filler so that the proton conductive material layer 23 is in contact with the electrolyte membrane 24, and hot pressing (for example, 135 To 150 ° C., 3 to 6 MPa), the catalyst layers 22 and 22 are bonded onto the electrolyte membrane 24, and then the transfer base materials 21 and 21 are peeled to form the electrolyte membrane-catalyst layer assembly 30. Form (FIG. 5C). Furthermore, the electrolyte membrane-electrode assembly 31 is obtained by disposing the electrode base materials 25 and 26 on both surfaces of the electrolyte membrane-catalyst layer assembly 30 (FIG. 5D).

図6A−Bは、本発明の一実施形態におけるガス拡散電極32の断面図である。導電性のある電極基材27の上に、触媒粒子と電解質バインダーからなる触媒層22が形成され、この触媒層22の上に、プロトン伝導性材料層23が配置されている(図6A)。フィラーを内包する電解質膜24の両面に、一対の上記ガス拡散電極32を、プロトン伝導性材料層23が電解質膜24に接する向きに重ね合わせ、熱プレス(例えば135〜150℃、3〜6MPa)を行うことより、上記電解質膜24上に触媒層22を接合し、電解質膜−電極接合体33を得る(図6B)。上記ガス拡散電極32において、電極基材27と触媒層22の間に、平坦化層もしくは拡散層と呼ばれる、カーボン材料からなる多孔質層が形成されていてもよい。   6A-B are cross-sectional views of the gas diffusion electrode 32 in one embodiment of the present invention. A catalyst layer 22 composed of catalyst particles and an electrolyte binder is formed on a conductive electrode substrate 27, and a proton conductive material layer 23 is disposed on the catalyst layer 22 (FIG. 6A). A pair of the gas diffusion electrodes 32 are overlapped on both surfaces of the electrolyte membrane 24 containing the filler so that the proton conductive material layer 23 is in contact with the electrolyte membrane 24, and hot pressing (for example, 135 to 150 ° C., 3 to 6 MPa). As a result, the catalyst layer 22 is bonded onto the electrolyte membrane 24 to obtain an electrolyte membrane-electrode assembly 33 (FIG. 6B). In the gas diffusion electrode 32, a porous layer made of a carbon material called a planarization layer or a diffusion layer may be formed between the electrode base material 27 and the catalyst layer 22.

上記転写基材は、例えば、ポリイミド、ポリエチレンテレフタレート、ポリテトラフルオロエチレン(PTFE)等の高分子フィルムだけでなく、アート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙などの非塗工紙であっても良い。これらは転写用基材の一例を示すものであり、塗布・乾燥による触媒層の塗膜形成が可能であり、かつ、熱転写工程において触媒層を剥離可能である基材であれば、これらに限定するものではない。   The transfer substrate is not only a polymer film such as polyimide, polyethylene terephthalate, polytetrafluoroethylene (PTFE), but also coated paper such as art paper, coated paper, lightweight coated paper, notebook paper, copy paper, etc. The non-coated paper may be used. These are examples of transfer base materials, and are limited to these as long as they can form a coating film on the catalyst layer by coating and drying and can peel the catalyst layer in the thermal transfer step. Not what you want.

上記触媒粒子は、触媒作用を有する材料粒子と導電性担体からなる微粒子であり、上記触媒作用を有する材料粒子は、燃料の酸化能もしくは還元剤の還元能を有する材料であれば特に限定されるものではない。例えば、上記触媒作用を有する材料としては、白金や白金化合物が用いられる。白金化合物としては、ルテニウム、パラジウム、ニッケル、モリブデン、タングステン、イリジウム、コバルト、鉄等からなる群から選ばれる少なくとも1種の金属と、白金との合金等が例として挙げられる。   The catalyst particles are fine particles composed of material particles having a catalytic action and a conductive carrier. The material particles having the catalytic action are particularly limited as long as the material has a fuel oxidizing ability or a reducing agent reducing ability. It is not a thing. For example, platinum or a platinum compound is used as the material having the catalytic action. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, tungsten, iridium, cobalt, iron and the like.

上記導電性担体は、アセチレンブラックやファーネスブラック、活性炭などの炭素材料が主に用いられる。上記触媒粒子は、上記導電性担体を用いないブラック触媒であってもよい。   As the conductive carrier, carbon materials such as acetylene black, furnace black and activated carbon are mainly used. The catalyst particles may be a black catalyst that does not use the conductive carrier.

上記電極基材は、公知であり、燃料極、空気極を構成する各種の電極基材を使用でき、燃料である燃料ガスや燃料液体および酸化剤ガスを効率よく触媒層に供給できるように、多孔質の導電材料が用いられる。例えば、カーボンペーパーやカーボンクロス、炭素繊維製不織布などの多孔質炭素材料が用いられる。   The electrode base material is known, and various electrode base materials constituting a fuel electrode and an air electrode can be used, so that fuel gas, fuel liquid and oxidant gas as fuel can be efficiently supplied to the catalyst layer. A porous conductive material is used. For example, porous carbon materials such as carbon paper, carbon cloth, and carbon fiber nonwoven fabric are used.

以下、実施例を用いて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(1)電解質膜作製
フィラーとして鱗片状シリカ粒子材料(旭硝子エスアイテック社の鱗片状シリカ水スラリー(■サンラブリーLFS■(商品名):HN−050、固形分約14重量%))を、プロトン伝導
性材料として”Nafion”(DuPont社、5重量%■Nafion■(商品名)溶液)
を用いた。組成は、乾燥重量比で鱗片状シリカが10重量%、Nfionが90重量%となるように仕込んだ。鱗片状シリカ水スラリーとNafion溶液を混合し、マグネチックスターラーによる撹拌と超音波撹拌を繰返すことで均一な分散液を作製した。得られた分散液を50−80℃で加熱しながらマグネチックスターラーで撹拌し、分散液を蒸発させながら粘度を調整した。得られた高粘度分散液をポリテトラフルオロエチレン(PTFE)基板上にキャスティングし、約100℃の乾燥オーブン内で静置・乾燥することにより電解質膜を製膜した。得られた電解質膜は、厚さが約110μmであった。
(1) Preparation of electrolyte membrane As a filler, a flaky silica particle material (a flaky silica water slurry (■ Sun Lovely LFS (trade name): HN-050, solid content of about 14% by weight) manufactured by Asahi Glass Stech Co., Ltd.) is protonated. "Nafion" as a conductive material (DuPont, 5 wt% Nafion (trade name) solution)
Was used. The composition was prepared so that the scaly silica was 10% by weight and Nfion was 90% by weight in terms of dry weight. The flaky silica water slurry and the Nafion solution were mixed, and a uniform dispersion was prepared by repeating stirring with a magnetic stirrer and ultrasonic stirring. The resulting dispersion was stirred with a magnetic stirrer while heating at 50-80 ° C., and the viscosity was adjusted while evaporating the dispersion. The obtained high-viscosity dispersion was cast on a polytetrafluoroethylene (PTFE) substrate, and allowed to stand and dried in a drying oven at about 100 ° C. to form an electrolyte membrane. The obtained electrolyte membrane had a thickness of about 110 μm.

(2)触媒転写フィルムの作製
触媒(燃料極用:田中貴金属製Pt−Ru/C(TEC62E58)、空気極用:田中貴金属製Pt/C(TEC10E50E))及び電解質バインダー(DuPont社、5重量%”Nafion”(商品名)溶液)をイソプロピルアルコールを分散媒として混合・撹拌して触媒インクを調製した。転写基材として、ポリエチレンテレフタレートフィルム(東洋紡製、E3120)を用い、上記触媒インクを塗布・乾燥し、触媒転写フィルムを得た。さらに、50℃で加熱することで粘度を調節したNafion溶液を上記触媒転写フィルムの触媒層上に塗布・乾燥し、プロトン伝導性材料層を形成した。
(2) Preparation of catalyst transfer film Catalyst (for fuel electrode: Tanaka Kikinzoku Pt-Ru / C (TEC62E58), air electrode: Tanaka Kikinzoku Pt / C (TEC10E50E)) and electrolyte binder (DuPont, 5% by weight) “Nafion” (trade name) solution) was mixed and stirred with isopropyl alcohol as a dispersion medium to prepare a catalyst ink. A polyethylene terephthalate film (E3120, manufactured by Toyobo Co., Ltd.) was used as a transfer substrate, and the catalyst ink was applied and dried to obtain a catalyst transfer film. Further, a Nafion solution whose viscosity was adjusted by heating at 50 ° C. was applied and dried on the catalyst layer of the catalyst transfer film to form a proton conductive material layer.

(3)発電性能評価(水素燃料)
上記(1)で作製した電解質膜および、上記(2)で作製した一対の触媒転写フィルムを、プロトン伝導性材料層が上記電解質膜に接する向きに重ね、熱プレス(温度:135−150℃、圧力:4−6MPa)により電解質膜上に触媒層を転写・形成し、転写基材を剥離、除去することで電解質膜−触媒層接合体を得た。さらに、上記電解質膜−触媒層接合体を一対のガス拡散層(東レ社製、カーボンペーパー)で挟持し、電解質膜−電極接合体を形成した。上記電解質膜−電極接合体を燃料および酸化剤を供給するための流路を持つセパレータおよび集電体で挟持し、単セルを構成した。アノード極は1.0mg−Pt−Ru/cm2、カソード極は0.5mg−Pt/cm2とした。
(3) Power generation performance evaluation (hydrogen fuel)
The electrolyte membrane produced in the above (1) and the pair of catalyst transfer films produced in the above (2) are stacked in such a direction that the proton conductive material layer is in contact with the electrolyte membrane, and hot pressing (temperature: 135 to 150 ° C., The catalyst layer was transferred and formed on the electrolyte membrane with a pressure of 4-6 MPa), and the transfer substrate was peeled and removed to obtain an electrolyte membrane-catalyst layer assembly. Further, the electrolyte membrane-catalyst layer assembly was sandwiched between a pair of gas diffusion layers (manufactured by Toray Industries, Inc., carbon paper) to form an electrolyte membrane-electrode assembly. The electrolyte membrane-electrode assembly was sandwiched between a separator having a flow path for supplying fuel and an oxidant and a current collector to constitute a single cell. The anode electrode was 1.0 mg-Pt-Ru / cm 2 , and the cathode electrode was 0.5 mg-Pt / cm 2 .

燃料として水素ガス(0.1NLM、露点80℃)、酸化剤として空気(0.5NLM、露点70℃)をそれぞれ燃料極と空気極に供給し、80℃で上記電解質膜−電極接合体の水素燃料電池の発電性能を評価した。得られた開放起電力は約1.01Vであった。なお、上記「NLM」とは、normal liter per minuteのことを指す。また、デジタル低抵抗計により測定したセル抵抗は、約50mΩであった。   Hydrogen gas (0.1 NLM, dew point 80 ° C.) as the fuel and air (0.5 NLM, dew point 70 ° C.) as the oxidant are supplied to the fuel electrode and the air electrode, respectively, and hydrogen of the above electrolyte membrane-electrode assembly at 80 ° C. The power generation performance of the fuel cell was evaluated. The obtained open electromotive force was about 1.01V. The “NLM” refers to normal liter per minute. The cell resistance measured with a digital low resistance meter was about 50 mΩ.

比較例として、プロトン伝導性材料層の存在しない触媒転写フィルムを用いて、上記方法と同様に作製した電解質膜−電極接合体を用いた水素燃料電池の発電性能評価を行った。電解質膜の厚さは、約110μm、アノード極は1.0mg−Pt−Ru/cm2、カソード極は0.5mg−Pt/cm2とした。その結果、開放起電力は1.01Vと同等の値を示す一方で、セル抵抗は約65mΩであった。これらの結果は、実施例において電解質膜と触媒層の界面にプロトン伝導性材料層を配置することにより、プロトン伝導パスの形成が向上することを示している。 As a comparative example, power generation performance evaluation of a hydrogen fuel cell using an electrolyte membrane-electrode assembly produced in the same manner as described above was performed using a catalyst transfer film having no proton conductive material layer. The thickness of the electrolyte membrane was about 110 μm, the anode electrode was 1.0 mg-Pt-Ru / cm 2 , and the cathode electrode was 0.5 mg-Pt / cm 2 . As a result, the open electromotive force showed a value equivalent to 1.01 V, while the cell resistance was about 65 mΩ. These results indicate that the formation of a proton conduction path is improved by disposing a proton conductive material layer at the interface between the electrolyte membrane and the catalyst layer in the examples.

本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

図1A−Dは、比較例におけるフィラーを内包する電解質膜の模式的断面図である。1A to 1D are schematic cross-sectional views of an electrolyte membrane containing a filler in a comparative example. 図2A−Dは、本発明の一実施形態におけるプロトン伝導性材料層が形成された電解質膜の模式的断面図である。2A to 2D are schematic cross-sectional views of an electrolyte membrane on which a proton conductive material layer is formed according to an embodiment of the present invention. 図3は、図2に示す本発明の電解質膜を用いた電解質膜−触媒層接合体の断面を示す模式図である。FIG. 3 is a schematic view showing a cross section of an electrolyte membrane-catalyst layer assembly using the electrolyte membrane of the present invention shown in FIG. 図4は本発明の一実施形態における電解質膜−電極接合体の断面図である。FIG. 4 is a cross-sectional view of the electrolyte membrane-electrode assembly in one embodiment of the present invention. 図5A−Dは、本発明の一実施形態における触媒転写フィルム20の断面図である。5A to 5D are cross-sectional views of the catalyst transfer film 20 in one embodiment of the present invention. 図6A−Bは、本発明の一実施形態におけるガス拡散電極32の断面図である。6A-B are cross-sectional views of the gas diffusion electrode 32 in one embodiment of the present invention.

符号の説明Explanation of symbols

1 プロトン伝導性材料
2 高分子フィブリル
3 無機粒子材料
4 鱗片状粒子材料
5 フィラー(支持体)
7 触媒粒子
8 電解質バインダー
9,13,13’,22 触媒層
10,12,24 電解質膜
11,11a,11b,23 プロトン伝導性材料層
14,16,25,26,27 電極基材
15 燃料極
17 空気極
20 触媒転写フィルム
21 転写基材
30 電解質膜−触媒層接合体
31,33 電解質膜−電極接合体
32 ガス拡散電極
DESCRIPTION OF SYMBOLS 1 Proton conductive material 2 Polymer fibril 3 Inorganic particle material 4 Scale-like particle material 5 Filler (support)
7 Catalyst Particles 8 Electrolyte Binder 9, 13, 13 ′, 22 Catalyst Layer 10, 12, 24 Electrolyte Membrane 11, 11a, 11b, 23 Proton Conductive Material Layer 14, 16, 25, 26, 27 Electrode Base 15 Fuel Electrode 17 Air electrode 20 Catalyst transfer film 21 Transfer substrate 30 Electrolyte membrane-catalyst layer assembly 31, 33 Electrolyte membrane-electrode assembly 32 Gas diffusion electrode

Claims (8)

電解質膜の両表面に少なくとも触媒層と、多孔質電極層が積層された電解質膜−電極接合体であって、
前記電解質膜はフィラーを内包するプロトン伝導性材料で構成され、前記フィラーの少なくとも一部は前記電解質膜から露出しており、
前記電解質膜と触媒層の少なくとも一方の間にはプロトン伝導性材料層が存在し、
前記フィラーと前記プロトン伝導性材料層とは直接接触していることを特徴とする固体高分子形燃料電池用電解質膜−電極接合体。
An electrolyte membrane-electrode assembly in which at least a catalyst layer and a porous electrode layer are laminated on both surfaces of the electrolyte membrane,
The electrolyte membrane is composed of a proton conductive material containing a filler, and at least a part of the filler is exposed from the electrolyte membrane,
A proton conductive material layer exists between at least one of the electrolyte membrane and the catalyst layer,
The electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell, wherein the filler and the proton conductive material layer are in direct contact with each other.
前記フィラーは鱗片状粒子材料である請求項1に記載の固体高分子形燃料電池用電解質膜−電極接合体。   The electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the filler is a scaly particle material. 前記フィラーは高分子からなるフィブリル又は無機粒子材料である請求項1に記載の固体高分子形燃料電池用電解質膜−電極接合体。   The electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the filler is a polymer fibril or an inorganic particle material. 前記プロトン伝導性材料層の厚さは、0.01〜10.00μmの範囲である請求項1〜3のいずれかに記載の固体高分子形燃料電池用電解質膜−電極接合体。   4. The electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein a thickness of the proton conductive material layer is in a range of 0.01 to 10.00 μm. 請求項1〜4のいずれかに記載の固体高分子形燃料電池用電解質膜−電極接合体に使用するための触媒転写フィルムであって、
基材フィルム上に、触媒粒子および電解質バインダーからなる触媒層が形成され、さらにその上にプロトン伝導性材料層が形成されていることを特徴とする触媒転写フィルム。
A catalyst transfer film for use in the electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 4,
A catalyst transfer film, wherein a catalyst layer comprising catalyst particles and an electrolyte binder is formed on a base film, and a proton conductive material layer is further formed thereon.
請求項1〜4のいずれかに記載の固体高分子形燃料電池用電解質膜−電極接合体を組み込んだ固体高分子形燃料電池。   A polymer electrolyte fuel cell incorporating the electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 4. 基材フィルム上に、触媒粒子および電解質バインダーからなる触媒層が形成され、さらにその上にプロトン伝導性材料層が形成された触媒転写フィルムのプロトン伝導性材料層側を、電解質膜に向けて配置する工程と、
前記触媒転写フィルム−電解質膜−触媒転写フィルム積層体を、熱プレスする工程と、
前記熱プレスされた触媒転写フィルム−電解質膜−触媒転写フィルム積層体から、基材フィルムを剥離し、電解質膜−触媒層接合体を得る工程と、
前記電解質膜−触媒層接合体の両面に、一対の電極基材を配置する工程とを含む固体高分子形燃料電池用電解質膜−電極接合体の製造方法。
A catalyst layer composed of catalyst particles and an electrolyte binder is formed on the base film, and the proton conductive material layer side of the catalyst transfer film on which the proton conductive material layer is further formed is arranged facing the electrolyte membrane. And a process of
Heat-pressing the catalyst transfer film-electrolyte membrane-catalyst transfer film laminate; and
Peeling the base film from the heat-pressed catalyst transfer film-electrolyte membrane-catalyst transfer film laminate to obtain an electrolyte membrane-catalyst layer assembly;
A method for producing an electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell, comprising a step of disposing a pair of electrode substrates on both surfaces of the electrolyte membrane-catalyst layer assembly.
電極基材上に、触媒粒子と電解質バインダーからなる触媒層が形成され、さらにその上にプロトン伝導性材料層が形成されたガス拡散電極のプロトン伝導性材料層側を、電解質膜に向けて配置する工程と、
前記ガス拡散電極−電解質膜−ガス拡散電極積層体を熱プレスする工程とを含む固体高分子形燃料電池用電解質膜−電極接合体の製造方法。
A catalyst layer composed of catalyst particles and an electrolyte binder is formed on the electrode substrate, and the proton conductive material layer side of the gas diffusion electrode on which the proton conductive material layer is formed is arranged facing the electrolyte membrane. And a process of
A process for producing an electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell, comprising a step of hot pressing the gas diffusion electrode-electrolyte membrane-gas diffusion electrode laminate.
JP2007187024A 2007-07-18 2007-07-18 Electrolyte membrane-electrode assembly for solid polymer fuel cell and manufacturing method thereof, catalyst transfer film used for this, and solid polymer fuel cell Withdrawn JP2009026536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187024A JP2009026536A (en) 2007-07-18 2007-07-18 Electrolyte membrane-electrode assembly for solid polymer fuel cell and manufacturing method thereof, catalyst transfer film used for this, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187024A JP2009026536A (en) 2007-07-18 2007-07-18 Electrolyte membrane-electrode assembly for solid polymer fuel cell and manufacturing method thereof, catalyst transfer film used for this, and solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2009026536A true JP2009026536A (en) 2009-02-05

Family

ID=40398183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187024A Withdrawn JP2009026536A (en) 2007-07-18 2007-07-18 Electrolyte membrane-electrode assembly for solid polymer fuel cell and manufacturing method thereof, catalyst transfer film used for this, and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2009026536A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065876A (en) * 2009-09-17 2011-03-31 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate with edge sealing, membrane electrode assembly with edge seal, and solid polymer fuel cell
US9118056B2 (en) 2011-10-27 2015-08-25 Samsung Electronics Co., Ltd. Electrolyte membrane for fuel cell, method of manufacturing the electrolyte membrane, membrane-electrode assembly for fuel cell including the electrolyte membrane, and fuel cell including the membrane-electrode assembly
CN106898500A (en) * 2015-12-18 2017-06-27 中国科学院大连化学物理研究所 A kind of bifunctional electrodes and preparation and generator unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065876A (en) * 2009-09-17 2011-03-31 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate with edge sealing, membrane electrode assembly with edge seal, and solid polymer fuel cell
US9118056B2 (en) 2011-10-27 2015-08-25 Samsung Electronics Co., Ltd. Electrolyte membrane for fuel cell, method of manufacturing the electrolyte membrane, membrane-electrode assembly for fuel cell including the electrolyte membrane, and fuel cell including the membrane-electrode assembly
CN106898500A (en) * 2015-12-18 2017-06-27 中国科学院大连化学物理研究所 A kind of bifunctional electrodes and preparation and generator unit

Similar Documents

Publication Publication Date Title
US10923752B2 (en) Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same
JP4327732B2 (en) Solid polymer fuel cell and manufacturing method thereof
US8039414B2 (en) Method for preparing metal catalyst and electrode
JP6312666B2 (en) Ion conductive membrane
US20110097651A1 (en) Membrane Electrode Assembly (MEA) Fabrication Procedure on Polymer Electrolyte Membrane Fuel Cell
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
JP2007149642A (en) Electrolyte material for polymer electrolyte fuel cell, electrolyte membrane catalyst layer assembly and electrolyte membrane electrode assembly using the same, and fuel cell
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
Scott Membrane electrode assemblies for polymer electrolyte membrane fuel cells
JP2009026536A (en) Electrolyte membrane-electrode assembly for solid polymer fuel cell and manufacturing method thereof, catalyst transfer film used for this, and solid polymer fuel cell
JP5326458B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2008065987A (en) Electrolyte membrane for solid polymer fuel cell, electrolyte membrane-catalyst layer assembly and electrolyte membrane-electrode assembly using this, and fuel cell
EP2933862B1 (en) Method for producing a fuel cell electrode sheet
JP2009032414A (en) Electrolyte membrane and electrolyte membrane-catalyst layer assembly for solid polymer fuel cell, fuel cell using the same electrolyte membrane-catalyst layer assembly, and laminated body for forming electrode catalyst layer of solid polymer fuel cell
KR101112693B1 (en) Membrane-electrode assembly of fuel cell and preparing method thereof
US8481225B2 (en) Membrane electrode assembly, manufacturing method thereof and fuel cell
JP5126578B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, ELECTROLYTE MEMBRANE-CATALYST LAYER ASSEMBLY AND ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY USING THE SAME, AND FUEL CELL
JP2009021198A (en) Electrolyte membrane for polymer fuel cell, electrolyte-membrane/catalyst-layer junction material and electrolyte membrane/electrode junction material using the same, and fuel cells
KR20090039423A (en) Membrane electrode assembly for fuel cell and fuel cell system including same
JP2009026603A (en) Electrolyte membrane for solid polymer fuel cell, electrolyte membrane-catalyst layer assembly and electrolyte membrane-electrode assembly using this, and fuel cell
KR20090030104A (en) Membrane-electrode assembly for fuel cell, method of producing same and fuel cell system including same
JP2024013435A (en) Film electrode joint body for fuel battery and polymer electrolyte fuel battery
JP2024013436A (en) Film electrode joint body for fuel battery and solid polymer fuel battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005