WO2022065126A1 - Abutment gap estimation device, abutment gap control device, abutment gap estimation method, and abutment gap control method - Google Patents

Abutment gap estimation device, abutment gap control device, abutment gap estimation method, and abutment gap control method Download PDF

Info

Publication number
WO2022065126A1
WO2022065126A1 PCT/JP2021/033666 JP2021033666W WO2022065126A1 WO 2022065126 A1 WO2022065126 A1 WO 2022065126A1 JP 2021033666 W JP2021033666 W JP 2021033666W WO 2022065126 A1 WO2022065126 A1 WO 2022065126A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ring
piston
gap
estimated
Prior art date
Application number
PCT/JP2021/033666
Other languages
French (fr)
Japanese (ja)
Inventor
拓朗 三田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2022065126A1 publication Critical patent/WO2022065126A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/08Cooling of piston exterior only, e.g. by jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction

Definitions

  • the present disclosure relates to a joint gap estimation device, a joint gap control device, a joint gap estimation method, and a joint gap control method.
  • Patent Documents 1 and 2 Conventionally, a method of adjusting the size of the joint of a piston ring provided on a piston of an internal combustion engine is known (see, for example, Patent Documents 1 and 2).
  • the size of the joint of the piston ring is estimated based on the engine cooling water temperature and the fuel injection amount history.
  • the size of the joint of the piston ring is estimated based on the amount of blow-by gas.
  • An object of the present disclosure is to provide a joint gap estimation device, a joint gap control device, a joint gap estimation method, and a joint gap control method that can appropriately estimate the size of a joint of a piston ring.
  • the joint gap estimation device includes a temperature estimation unit for other parts that estimates the temperature of other parts other than the ring groove in the piston constituting the internal combustion engine, and the temperature of the other part estimated by the temperature estimation unit for other parts. Based on the ring groove temperature estimation unit that estimates the temperature of the ring groove and the temperature of the ring groove estimated by the ring groove temperature estimation unit, the temperature of the piston ring mounted on the ring groove is set. It includes a piston ring temperature estimation unit for estimating, and a gap estimation unit for estimating the size of the gap at the abutment of the piston ring based on the temperature of the piston ring estimated by the piston ring temperature estimation unit.
  • the abutment gap control device controls the size of the abutment gap based on the abutment gap estimation device described above and the size of the abutment gap of the piston ring estimated by the abutment gap estimation device.
  • a gap control unit is provided.
  • the method for estimating the gap between the joints is a step of estimating the temperature of a portion other than the ring groove in the piston constituting the internal combustion engine, and the ring groove in the piston based on the estimated temperature of the other portion. Based on the step of estimating the temperature, the step of estimating the temperature of the piston ring mounted on the ring groove based on the estimated temperature of the ring groove, and the step of estimating the temperature of the estimated piston ring. The step of estimating the size of the gap at the joint of the piston ring is performed.
  • the abutment gap control method is based on the step of executing the above-mentioned abutment gap estimation method and the size of the abutment gap of the piston ring estimated by the execution of the abutment gap estimation method. Perform steps to control the size of the gap.
  • a joint gap estimation device it is possible to provide a joint gap estimation device, a joint gap control device, a joint gap estimation method, and a joint gap control method that can appropriately estimate the size of the joint of a piston ring.
  • Sectional drawing which shows the schematic structure of the engine which concerns on one Embodiment of this disclosure.
  • Top view showing the structure of the piston ring which concerns on one Embodiment of this disclosure.
  • a block diagram showing a configuration of a joint gap control device according to an embodiment of the present disclosure.
  • a graph showing the relationship between the temperature of the mouth portion and the temperature of the ring groove in the state where the cooling oil is injected and the state where the cooling oil is not injected according to the embodiment of the present disclosure.
  • a flowchart showing an example of the operation of the joint gap control device according to the embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an engine.
  • the engine 10 shown in FIG. 1 is a diesel engine mounted on an automobile such as a truck.
  • the engine 10 includes a cylinder 20 and a piston 40.
  • the internal combustion engine of the present disclosure is not limited to a diesel engine, and may be a gasoline engine or the like.
  • the cylinder 20 is provided with a cooling passage 21.
  • the cooling water of the cylinder 20 is supplied to the cooling passage 21.
  • a liner 22 is provided on the inner peripheral surface of the cylinder 20.
  • the liner 22 may not be provided.
  • An injector 24 is provided on the cylinder head 23 above the cylinder 20 so as to face the center of the top surface of the piston 40.
  • the cylinder head 23 is provided with an intake port 25 and an exhaust port 26 so as to be located on the left and right sides of the injector 24.
  • the intake port 25 and the exhaust port 26 are provided with an intake valve 27 and an exhaust valve 28, respectively.
  • the piston 40 is installed so as to be able to reciprocate in the cylinder 20 along the liner 22.
  • the piston 40 is made of, for example, an aluminum alloy.
  • a cavity 42 is provided on the top surface of the piston upper portion 41 of the piston 40.
  • the piston upper portion 41 has a cooling channel 44 formed along the circumferential direction, an introduction hole 45 for introducing oil into the cooling channel 44, and a discharge hole 46 for discharging oil from the cooling channel 44. It is provided. Oil is introduced into the cooling channel 44 from the oil jet 61 through the introduction hole 45. The introduced oil circulates in the cooling channel 44 and is discharged from the discharge hole 46, so that the piston 40 is efficiently cooled.
  • the oil injected from the oil jet 61 may be referred to as "cooling oil”.
  • a ring groove 47 formed along the circumferential direction is provided on the outer periphery of the piston upper portion 41 of the piston 40.
  • a piston ring 48 that is in sliding contact with the liner 22 is mounted on the ring groove 47.
  • the piston ring 48 includes a first joint surface 48A and a second joint surface 48B.
  • the piston ring 48 When the piston ring 48 is heated by the combustion of the engine 10 shown by the chain double-dashed line in FIG. 2 (heat state), the piston ring 48 has a standard temperature (for example, 25 ° C., which is room temperature) (cold) shown by the solid line in FIG. It expands and becomes larger than the state of (between). Due to this expansion, the gap C between the first joint surface 48A and the second joint surface 48B during hot weather (hereinafter, may be referred to as “joint gap C”) is smaller than the gap C during cold weather. Become.
  • the size of the joint opening gap C of the piston ring 48 when it is cold is set to a size so that the above-mentioned problems do not occur when it is hot.
  • a clearance P is provided between the skirt portion 49 of the piston 40 and the cylinder 20.
  • the skirt portion 49 of the piston 40 is provided with a pair of pin boss portions 50 facing each other (only one pin boss portion 50 is shown in FIG. 1).
  • the pair of pin boss portions 50 are each provided with pin fitting holes 51 penetrating from the center side of the piston 40 toward the outer peripheral side of the piston.
  • the upper end of the connecting rod 53 is connected to the pin fitting hole 51 via the piston pin 52.
  • the lower end of the connecting rod 53 is connected to the crankshaft 55 via the crankpin 54.
  • the crankshaft 55 converts the reciprocating motion of the piston 40 into a rotary motion.
  • the oil jet 61 includes a supply valve 62 and a nozzle 63.
  • the supply valve 62 When the supply valve 62 is “closed”, the cooling oil is not injected from the nozzle 63.
  • the supply valve 62 When the supply valve 62 is “open”, cooling oil is injected from the nozzle 63. Since the configuration of the oil jet 61 is known, detailed description thereof will be omitted.
  • An oil passage 65 is provided between the oil jet 61 and an oil pan (not shown).
  • the oil passage 65 is provided with a variable oil pump 64 capable of changing the flow rate of oil.
  • the portion of the oil passage 65 on the oil jet 61 side of the variable oil pump 64 is connected to a supply passage (not shown) that supplies oil to a portion of the engine 10 that requires lubrication.
  • the variable oil pump 64 supplies the oil (lubricating oil) stored in the oil pan to a portion requiring lubrication, an oil jet 61, or the like.
  • FIG. 3 is a block diagram showing a configuration of a joint gap control device.
  • FIG. 4 is a graph showing the relationship between the temperature of the mouth portion and the temperature of the ring groove in the state where the cooling oil is injected and the state where the cooling oil is not injected.
  • the abutment gap control device 100 includes an abutment gap estimation device 110, a storage unit 120, and a gap control unit 130.
  • the gap estimation device 110 and the gap control unit 130 have, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like as hardware.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the joint gap estimation device 110 includes an acquisition unit 111, a mouth temperature estimation unit 112, a determination unit 113, a ring groove temperature estimation unit 114, a cylinder temperature estimation unit 115, a piston ring temperature estimation unit 116, and a gap estimation unit. 117 and.
  • the acquisition unit 111 acquires engine status information representing the engine status from various sensors.
  • the mouth temperature estimation unit 112 estimates the temperature of the mouth portion 43 of the cavity 42 of the piston 40.
  • the mouth portion 43 is a portion of the piston 40 where the temperature is highest.
  • the temperature of the mouth portion 43 estimated by the mouth temperature estimation unit 112 may be referred to as “estimated mouth portion temperature”.
  • the mouth temperature estimation unit 112 is an example of another unit temperature estimation unit, and the mouth unit 43 is an example of another unit.
  • the determination unit 113 determines whether or not the oil jet 61 injects cooling oil toward the piston 40.
  • the ring groove temperature estimation unit 114 estimates the temperature of the ring groove 47 in the piston 40 based on the temperature estimation information stored in the storage unit 120 and the estimated mouth temperature estimated by the mouth temperature estimation unit 112. do.
  • the temperature of the ring groove 47 estimated by the ring groove temperature estimation unit 114 may be referred to as an “estimated ring groove temperature”.
  • the cylinder temperature estimation unit 115 estimates the temperature of the cylinder 20.
  • the temperature of the cylinder 20 estimated by the cylinder temperature estimation unit 115 may be referred to as an “estimated cylinder temperature”.
  • the piston ring temperature estimation unit 116 estimates the temperature of the piston ring 48 based on the estimated ring groove temperature obtained by the processing of the ring groove temperature estimation unit 114 and the estimated cylinder temperature estimated by the cylinder temperature estimation unit 115. do.
  • the temperature of the piston ring 48 estimated by the piston ring temperature estimation unit 116 may be referred to as an “estimated ring temperature”.
  • the piston ring temperature estimation unit 116 selects a predetermined time constant from a plurality of time constants stored in the storage unit 120, and corrects the estimated ring temperature using the selected time constant.
  • the temperature of the piston ring 48 corrected by using the time constant may be referred to as “corrected ring temperature”.
  • the gap estimation unit 117 estimates the size of the abutment gap C based on the estimated cylinder temperature and the correction ring temperature.
  • the storage unit 120 stores the mouth temperature estimation map.
  • the mouth temperature estimation map is a map showing the relationship between the rotation speed of the crankshaft 55, the fuel injection amount, and the estimated temperature of the mouth portion 43.
  • the mouth temperature estimation map is used for estimating the estimated mouth temperature in the mouth temperature estimation unit 112.
  • the storage unit 120 stores the first estimation formula represented by the following formula (1) and the second estimation formula represented by the formula (2).
  • the first estimation formula is an example of the first estimation information
  • the second estimation formula is an example of the second estimation information.
  • the temperature estimation information is composed of the first estimation formula and the second estimation formula.
  • the first estimation formula and the second estimation formula are used for estimating the estimated ring groove temperature in the ring groove temperature estimation unit 114.
  • the first estimation formula and the second estimation formula are not limited to the formulas (1) and (2). Further, the first estimation information and the second estimation information may be in a map format such as a mouth temperature estimation map.
  • T ON ⁇ ON ⁇ TK + ⁇ ON ⁇ ⁇ ⁇ (1)
  • T OFF ⁇ OFF ⁇ TK + ⁇ OFF ⁇ ⁇ ⁇ (2)
  • T OFF Cooling oil is injected Estimated ring groove temperature when not in place ⁇ OFF, ⁇ OFF : Coefficient when cooling oil is not injected
  • the first estimation formula and the second estimation formula are obtained, for example, as follows.
  • the relationship between the temperature of the mouth portion 43 and the temperature of the ring groove 47 in the state where the cooling oil is injected and the state where the cooling oil is not injected is obtained.
  • the temperature of the mouth portion 43 is set regardless of whether or not the cooling oil is injected. It can be seen that there is a linear relationship between the temperature and the temperature of the ring groove 47.
  • the first-order approximation formula of the data when the cooling oil is injected is obtained as the first estimation formula
  • the first-order approximation formula of the data when the cooling oil is not injected is obtained as the second estimation formula.
  • the temperature of the mouth portion 43 is the same, the temperature of the ring groove 47 when the cooling oil is injected is lower than the temperature of the ring groove 47 when the cooling oil is not injected. Therefore, the coefficient ⁇ ON of the first estimation formula is smaller than the coefficient ⁇ OFF of the second estimation formula.
  • the temperature of the mouth portion 43 and the temperature of the ring groove 47 used for creating the first estimation formula and the second estimation formula may be values obtained by simulation or may be measured values.
  • the storage unit 120 has a first time constant, a second time constant, a third time constant, a fourth time constant, a fifth time constant, a sixth time constant, a seventh time constant, and an eighth time constant. Memorize the time constant.
  • the first to eighth time constants indicate the degree of change rate of the temperature of the piston ring 48.
  • the first to eighth time constants are used to calculate the corrected ring temperature in the piston ring temperature estimation unit 116.
  • the first to fourth time constants are selected when the cooling oil is not injected into the piston 40.
  • the first time constant is selected when the estimated ring temperature has dropped, fuel injection has not been performed, and the engine 10 has stopped.
  • the second time constant is selected when the estimated ring temperature has dropped, fuel injection has not been performed, and the engine 10 is running.
  • the value of the first time constant is larger than the value of the second time constant.
  • the third time constant is selected when the estimated ring temperature has dropped and fuel injection is taking place.
  • the temperature of the piston 40 changes significantly with respect to the change in the fuel injection amount, and the rate of decrease in the temperature of the piston ring 48 is the fuel injection. Is equal to or faster than if was not done. Therefore, the value of the third time constant is smaller than the value of the first time constant, and is equal to or smaller than the value of the second time constant.
  • the fourth time constant is selected when the estimated ring temperature is rising.
  • the value of the fourth time constant is larger than the value of the third time constant.
  • the fifth to eighth time constants are selected in a state where the cooling oil is injected into the piston 40.
  • the fifth time constant is selected when the estimated ring temperature has dropped, fuel injection has not been performed, and the engine 10 has stopped.
  • the temperature of the piston ring 48 drops faster than when the cooling oil is not injected into the piston 40. Therefore, the value of the fifth time constant is smaller than the value of the first time constant.
  • the sixth time constant is selected when the estimated ring temperature has dropped, fuel injection has not been performed, and the engine 10 is running.
  • the temperature of the piston ring 48 drops faster than when the cooling oil is not injected into the piston 40. Therefore, the value of the sixth time constant is smaller than the value of the second time constant.
  • the seventh time constant is selected when the estimated ring temperature has dropped and fuel injection is taking place.
  • the temperature of the piston ring 48 drops faster than when the cooling oil is not injected into the piston 40. Therefore, the value of the seventh time constant is smaller than the value of the third time constant.
  • the eighth time constant is selected when the estimated ring temperature is rising.
  • the temperature rise rate of the piston ring 48 is faster than that in the case where the cooling oil is not injected into the piston 40. Therefore, the value of the eighth time constant is smaller than the value of the fourth time constant.
  • the acquisition unit 111 provides engine state information such as the rotation speed of the crank shaft 55 of the engine 10, the fuel injection amount to the combustion chamber 11 surrounded by the piston 40 of the engine 10, the cylinder 20 and the cylinder head 23, the fuel injection timing, and the fuel. Injection pressure, presence / absence of injection of cooling oil to piston 40, oil pressure of cooling oil, oil temperature of cooling oil, intake air temperature, intake pressure, intake air amount, intake air temperature, cooling water temperature of cylinder 20, exhaust Acquires the operation signal of the brake, the exhaust temperature, the EGR (Exhaust Gas Recirculation) gas flow rate, and the like.
  • EGR exhaust Gas Recirculation
  • the mouth temperature estimation unit 112 of the mouth portion 43 of the piston 40 is based on the rotation speed and fuel injection amount of the crankshaft 55 acquired by the acquisition unit 111 and the mouth temperature estimation map stored in the storage unit 120. Estimate the temperature.
  • the mouth temperature estimation unit 112 corrects the temperature estimated based on the mouth temperature estimation map or the like using the information such as the fuel injection timing acquired by the acquisition unit 111, and estimates the corrected value as the estimated mouth temperature. do.
  • the determination unit 113 determines whether or not the cooling oil is injected toward the piston 40 based on the engine state information acquired by the acquisition unit 111.
  • the ring groove temperature estimation unit 114 uses the mouth temperature estimation unit to the first estimation formula (formula (1)) stored in the storage unit 120.
  • the estimated ring groove temperature is obtained by substituting the estimated mouth temperature estimated in 112.
  • the ring groove temperature estimation unit 114 uses the mouth temperature estimation unit to the second estimation formula (formula (2)) stored in the storage unit 120.
  • the estimated ring groove temperature is obtained by substituting the estimated mouth temperature estimated in 112.
  • the cylinder temperature estimation unit 115 estimates the estimated cylinder temperature based on the temperature of the cooling water of the cylinder 20 acquired by the acquisition unit 111.
  • the cylinder temperature estimation unit 115 may estimate the estimated cylinder temperature based on the measurement result of the sensor that measures the temperature of the cylinder 20 or the liner 22. Further, the cylinder temperature estimation unit 115 may correct the estimated cylinder temperature by using the estimated ring groove temperature, or may correct the estimated cylinder temperature by using a value representing the heat supply amount of the piston 40 such as the fuel injection amount.
  • the piston ring temperature estimation unit 116 estimates the ring based on the amount of heat radiated from the ring groove 47 to the piston ring 48 based on the estimated ring groove temperature and the amount of heat radiated from the piston ring 48 to the cylinder 20 based on the estimated cylinder temperature. Calculate the temperature.
  • the heat dissipation amount Q IN from the ring groove 47 to the piston ring 48 can be obtained based on the following (3).
  • the heat dissipation amount Q OUT from the piston ring 48 to the cylinder 20 can be obtained based on the following (4).
  • Q IN (T PIST -T RING ) / R PIST-RING ... (3)
  • Q OUT (T RING -T CYLI ) / R RING-CYLI ... (4)
  • T PIST Estimated ring groove temperature
  • T RING Estimated ring temperature
  • R PIST-RING Thermal resistance between piston 40 and piston ring 48
  • T CYLI Estimated cylinder temperature
  • R RING-CYLI Between piston ring 48 and cylinder 20 Thermal resistance
  • the estimated ring temperature T RING is expressed by the following equation (5).
  • T RING (R RING-CYLI x T PIST + R PIST-RING x T CYLI ) / (R PIST-RING + R RING-CYLI ) ... (5)
  • the piston ring temperature estimation unit 116 substitutes the estimated ring groove temperature T RING obtained by the processing of the ring groove temperature estimation unit 114 and the estimated cylinder temperature T CYLI estimated by the cylinder temperature estimation unit 115 into the equation (5). By doing so, the estimated ring temperature T RING is calculated.
  • the formula for calculating the estimated ring temperature T RING is not limited to the formula (5). Further, the information used for calculating the estimated ring temperature T RING may be in a map format such as a mouth temperature estimation map.
  • the estimated ring temperature and the actual temperature of the piston ring 48 may differ depending on the state of the engine 10. In particular, in a situation where the state of the engine 10 changes transiently, the difference between the estimated ring temperature and the actual temperature of the piston ring 48 is remarkable. Then, depending on the state of the engine 10, the time constant indicating the degree of change in the estimated ring temperature changes.
  • the piston ring temperature estimation unit 116 further corrects the estimated ring temperature by using the time constant corresponding to the state of the engine 10, and calculates the corrected ring temperature.
  • the piston ring temperature estimation unit 116 determines the change status of the estimated ring temperature, the operating state of the engine 10, and the injection state of cooling oil to the piston 40 from among the plurality of time constants stored in the storage unit 120. Based on, select a given time constant. The piston ring temperature estimation unit 116 corrects the estimated ring temperature based on a predetermined time constant selected.
  • the piston ring temperature estimation unit 116 adds the value obtained by dividing the difference value between the newly estimated estimated ring temperature and the estimated ring temperature estimated one cycle before by a predetermined time constant to the estimated ring temperature one cycle before. By doing so, the estimated ring temperature is corrected. Thereby, the estimated ring temperature can be corrected to correspond to the speed of change in the temperature of the actual piston ring 48.
  • the piston ring temperature estimation unit 116 selects a relatively small time constant. As a result, the corrected ring temperature is greatly affected by the newly estimated estimated ring temperature.
  • the piston ring temperature estimation unit 116 selects a relatively large time constant. As a result, the corrected ring temperature is greatly affected by the estimated ring temperature estimated in the past.
  • the piston ring temperature estimation unit 116 calculates the corrected ring temperature T PSC using, for example, the following equation (6).
  • the formula for calculating the correction ring temperature is not limited to the formula (6).
  • T PSC T PSO + ⁇ ⁇ ( TPS-T PSO ) / ⁇ ⁇ ⁇ ⁇ (6)
  • T PSO Estimated ring temperature estimated one cycle before T PS : Estimated ring temperature newly estimated
  • Predetermined value
  • Time constant
  • the gap estimation unit 117 estimates the size C SIZE (see FIG. 2) of the joint gap C of the piston ring 48 when it is hot, based on the estimated cylinder temperature and the correction ring temperature.
  • the gap estimation unit 117 calculates the amount of change dC (see FIG. 2) of the abutment gap C using, for example, the following equation (7).
  • the formula for calculating the amount of change dC in the gap C is not limited to the formula (7).
  • dC ⁇ ⁇ D ⁇ (K RING ⁇ ⁇ RING ⁇ dT RING -K CYLI ⁇ ⁇ CYLI ⁇ dT CYLI ) ⁇ ⁇ ⁇ (7)
  • Pi D Inner diameter (nominal diameter) of the cylinder 20 (liner 22) at standard temperature
  • K RING , K CYLI Predetermined value
  • ⁇ RING Linear expansion coefficient of piston ring 48 dT RING : Correction of ring temperature increase from standard temperature ( TPSC -standard temperature)
  • ⁇ CYLI Linear expansion coefficient of cylinder 20 dT CYLI : Estimated increase in cylinder temperature from standard temperature (T CYLI -standard temperature)
  • the gap estimation unit 117 estimates the size C SIZE of the abutment gap C based on the following equation (8).
  • the formula for calculating the size C SIZE of the joint gap C is not limited to the formula (8).
  • C SIZE C STD -dC ... (8)
  • C STD The size of the abutment gap C at standard temperature
  • the gap control unit 130 controls the following joint gap controls A, B, in order to control the size C SIZE of the joint gap C based on the size C SIZE of the joint gap C obtained by the joint gap estimation device 110. Performs any one of C and D. It should be noted that at least two of the joint gap control A, B, C, and D may be performed.
  • Abutment gap control A When the cooling oil is not injected, the supply valve 62 is controlled to inject the cooling oil having a reference amount of injection amount per unit time. Abutment gap control B: The reference amount of cooling oil is injected. If so, the variable oil pump 64 is controlled to increase the injection amount of cooling oil per unit time. Abutment clearance control C: Reduce the supply amount of cooling water to the cylinder 20 per unit time. Abutment clearance control D: Piston. Reduce the amount of heat supplied to 40
  • the temperature of the piston 40 is lowered by cooling with the newly injected reference amount of cooling oil.
  • the temperature of the piston ring 48 also decreases.
  • the piston ring 48 contracts, and the abutment gap C becomes large.
  • the injection amount of the cooling oil becomes larger than the reference amount, the cooling capacity of the cooling oil is improved, and the temperature of the piston 40 is lowered.
  • the piston ring 48 contracts and the abutment gap C becomes larger.
  • the abutment gap control D When the abutment gap control D is performed, the temperature of the piston ring 48 drops, the piston ring 48 contracts, and the abutment gap C becomes large. As a result, contact and wear of the abutment portion of the piston ring 48 are suppressed.
  • the control for reducing the amount of heat supplied to the piston 40 the control for reducing the fuel injection amount to the combustion chamber 11 and the fuel injection timing for the combustion chamber 11 are delayed (the crank shaft 55 is higher than the position where the position of the piston 40 is the highest).
  • the control for increasing the EGR gas flow rate At least one control can be exemplified.
  • the acquisition unit 111 of the joint gap control device 100 acquires engine state information (step S1).
  • the mouth temperature estimation unit 112 of the abutment gap control device 100 includes the rotation speed and fuel injection amount of the crankshaft 55 included in the engine state information acquired by the acquisition unit 111, and the mouth temperature stored in the storage unit 120.
  • the estimated mouth temperature is estimated based on the estimation map and the like (step S2).
  • the determination unit 113 of the joint gap control device 100 determines whether or not the cooling oil is injected based on the information regarding the presence or absence of the injection of the cooling oil included in the engine state information acquired by the acquisition unit 111. Is determined (step S3).
  • the ring groove temperature estimation unit 114 of the abutment gap control device 100 has the first estimation formula stored in the storage unit 120.
  • the estimated ring groove temperature is estimated based on (Equation (1)) and the estimated mouth temperature (step S4).
  • the ring groove temperature estimation unit 114 has a second estimation formula (formula (2)) stored in the storage unit 120. )) And the estimated mouth temperature, and the estimated ring groove temperature is estimated (step S5).
  • the cylinder temperature estimation unit 115 of the joint gap control device 100 determines the estimated cylinder temperature based on the temperature of the cooling water of the cylinder 20 included in the engine state information acquired by the acquisition unit 111. Is estimated (step S6).
  • the piston ring temperature estimation unit 116 estimates the estimated ring temperature based on the calculation formula (formula (5)), the estimated ring groove temperature, and the estimated cylinder temperature (step S7).
  • the piston ring temperature estimation unit 116 is based on the operating state of the engine 10 and the injection state of the cooling oil included in the engine state information acquired by the acquisition unit 111, and the change state of the estimated ring temperature. Select the time constant (step S8).
  • the piston ring temperature estimation unit 116 calculates the correction ring temperature based on the calculation formula (formula (6)), the time constant selected in step S8, and the estimated ring temperature (step S9).
  • the estimated ring temperature T PSO estimated one cycle before the equation (6) does not exist.
  • the oil temperature, the cooling water temperature, the estimated mouth temperature separately calculated, or a preset value may be used as the estimated ring temperature T PSO .
  • the gap estimation unit 117 of the joint gap control device 100 is based on the calculation formulas (formulas (7) and (8)), the estimated cylinder temperature, and the correction ring temperature, and the size C of the joint gap C. Estimate the SIZE (step S10).
  • the gap control unit 130 of the joint gap control device 100 determines whether or not the size C SIZE of the joint gap C is less than the lower limit value (step S11).
  • step S11 NO
  • the gap control unit 130 stops the injection of the cooling oil (step S12).
  • the gap control unit 130 stops the injection of the cooling oil (step S12).
  • the gap control unit 130 determines whether or not to end the joint gap control (step S13).
  • the gap control unit 130 ends the process when it is determined to end the joint gap control (step S13: YES), for example, when the operation of the engine 10 is completed. On the other hand, when the gap control unit 130 determines that the joint gap control is not terminated (step S13: NO), the joint gap control device 100 performs the process of step S1.
  • the gap control unit 130 determines that the size C SIZE of the joint gap C is less than the lower limit value (step S11: YES)
  • the gap control unit 130 sprays a reference amount of cooling oil (joint gap control A) to reduce the size C of the joint gap C. It is determined whether or not the size C SIZE is equal to or greater than the lower limit (step S14). For example, when the size C SIZE of the abutment gap C is less than the lower limit value and is equal to or larger than the first threshold value, the gap control unit 130 sets the size C SIZE of the abutment gap C to the lower limit value by injecting a reference amount of cooling oil.
  • the gap control unit 130 determines that the size C SIZE of the abutment gap C does not exceed the lower limit value due to the injection of the reference amount of cooling oil.
  • step S14 When the gap control unit 130 determines that the size C SIZE of the abutment gap C becomes equal to or greater than the lower limit value by injecting a reference amount of cooling oil (step S14: YES), the gap control unit 130 controls the supply valve 62 to control the reference amount. The injection of the cooling oil is started (the joint gap control A is performed) (step S15). After that, the gap control unit 130 performs the process of step S13.
  • the gap control unit 130 determines that the size C SIZE of the joint gap C does not exceed the lower limit value due to the injection of the reference amount of cooling oil (step S14: NO).
  • the injection amount of the cooling oil is increased (the gap control).
  • the gap control it is determined whether or not the size C SIZE of the abutment gap C becomes equal to or greater than the lower limit value (step S16). For example, in the gap control unit 130, when the size C SIZE of the abutment gap C is less than the first threshold value and equal to or more than the second threshold value, the size C SIZE of the abutment gap C is the lower limit due to the increase in the injection amount of the cooling oil.
  • the value is equal to or greater than the value, and if it is less than the second threshold value, it is determined that the size C SIZE of the abutment gap C does not exceed the lower limit value due to the increase in the injection amount of the cooling oil.
  • step S16 When the gap control unit 130 determines that the size C SIZE of the joint gap C becomes equal to or higher than the lower limit value due to the increase in the injection amount of the cooling oil (step S16: YES), the gap control unit 130 controls the variable oil pump 64 to inject the cooling oil. The amount is increased by a predetermined amount (the joint gap control B is performed) (step S17). After that, the gap control unit 130 performs the process of step S13.
  • step S16 determines that the size C SIZE of the joint gap C does not exceed the lower limit value due to the increase in the injection amount of the cooling oil (step S16: NO), as shown in FIG. 7, to the cylinder 20. It is determined whether or not the size C SIZE of the joint gap C becomes equal to or greater than the lower limit value by reducing the supply amount of the cooling water (joint gap control C) (step S18). For example, in the gap control unit 130, when the size C SIZE of the abutment gap C is less than the second threshold value and equal to or more than the third threshold value, the size C SIZE of the abutment gap C is the lower limit due to the decrease in the supply amount of the cooling water.
  • the value is equal to or greater than the value, and if it is less than the third threshold value, it is determined that the size C SIZE of the abutment gap C does not exceed the lower limit value due to the decrease in the supply amount of the cooling water.
  • step S18 determines that the size C SIZE of the abutment gap C becomes equal to or greater than the lower limit due to the decrease in the supply amount of the cooling water (step S18: YES)
  • the gap control unit 130 sets the supply amount of the cooling water to the cylinder 20 to a predetermined amount. Decrease (perform abutment gap control C) (step S19). After that, the gap control unit 130 performs the process of step S13.
  • step S18 determines that the size C SIZE of the joint gap C does not exceed the lower limit due to the decrease in the supply amount of cooling water (step S18: NO)
  • the contact or wear of the joint portion of the piston ring 48 is caused. It is determined whether or not there is a possibility of occurrence (step S20). For example, the gap control unit 130 determines that if the size C SIZE of the abutment gap C is less than the third threshold value and is greater than or equal to the fourth threshold value, there is no possibility of contact or wear of the abutment portion, and the fourth If it is less than the threshold value of, it is determined that there is a possibility that contact or wear of the abutment portion may occur.
  • step S20 determines that contact or wear of the abutment portion may occur (step S20: YES)
  • the gap control unit 130 controls to reduce the amount of heat supplied to the piston 40 (step S21). After that, the gap control unit 130 performs the process of step S13.
  • step S20 determines that there is no possibility of contact or wear of the abutment portion (step S20: NO).
  • the gap control unit 130 performs the process of step S13.
  • the joint gap estimation device 110 of the joint gap control device 100 estimates the estimated mouth portion temperature of the mouth portion 43 of the cavity 42 of the piston 40, and estimates the ring based on the estimated mouth portion temperature and the temperature estimation information. Estimate the groove temperature.
  • the joint gap estimation device 110 estimates the estimated ring temperature of the piston ring 48 based on the estimated ring groove temperature, and estimates the size C SIZE of the joint gap C based on the estimated ring temperature. Therefore, the size C SIZE of the abutment gap C can be appropriately estimated based on the estimated ring temperature obtained based on the estimated ring groove temperature close to the actual temperature of the piston ring 48.
  • the abutment gap control device 100 can appropriately control the size C SIZE of the abutment gap C based on the appropriately estimated size C SIZE of the abutment gap C. As a result, wear of the cylinder 20 and the piston ring 48 can be suppressed, seizure of the sliding surface of the cylinder 20 and the piston ring 48 can be suppressed, and the durability of the engine 10 can be improved.
  • the joint gap estimation device 110 estimates the estimated ring groove temperature using different estimation formulas depending on whether or not the cooling oil is injected. Therefore, the estimated ring groove temperature can be estimated more appropriately depending on whether or not the piston 40 is cooled by the cooling oil. As a result, the size C SIZE of the abutment gap C can be estimated accurately.
  • the joint gap estimation device 110 calculates the corrected ring temperature obtained by correcting the estimated ring temperature based on a time constant indicating the degree of change in the temperature of the piston ring 48. Therefore, the temperature of the piston ring 48 at the time of estimation can be estimated more appropriately. As a result, the size C SIZE of the abutment gap C can be estimated accurately.
  • the joint gap estimation device 110 is selected from a plurality of time constants at a predetermined time based on the change state of the temperature of the piston ring 48, the rotation speed of the crankshaft 55, the fuel injection amount, and the injection state of the cooling oil.
  • the correction ring temperature is calculated using the constant. Therefore, the actual temperature of the piston ring 48 can be estimated accurately. As a result, the size C SIZE of the abutment gap C can be estimated more accurately.
  • the joint gap estimation device 110 estimates the size C SIZE of the joint gap C based on the correction ring temperature and the estimated cylinder temperature. In this way, by reflecting the expansion of the cylinder 20 in addition to the expansion of the piston ring 48, the size C SIZE of the abutment gap C can be estimated more accurately.
  • the ring groove temperature estimation unit 114 may estimate the estimated ring groove temperature using the same estimation formula regardless of whether or not the cooling oil is injected.
  • the first-order approximation formula of the data when the cooling oil is injected and the data when the cooling oil is not injected, which is shown in FIG. 4 is obtained as an estimation formula and estimated by this estimation formula. Substitute the mouth temperature.
  • the gap estimation unit 117 may estimate the size C SIZE of the abutment gap C based on the estimated ring temperature.
  • the mouth temperature estimation part 112 is illustrated, but it is a specific part of the top surface or the outer peripheral surface of the piston upper portion 41 which is an example of the other part, and the temperature is higher than that of the ring groove 47.
  • the other part temperature estimation unit that estimates the temperature of the high portion may be applied, and the ring groove temperature estimation unit 114 may estimate the temperature of the skirt portion 49 based on the temperature estimated by the other part temperature estimation unit.
  • Such a configuration using another temperature estimation unit is useful for a gasoline engine in which a cavity does not exist in the piston.
  • the gap control unit 130 may control the supply valve 62 without controlling the variable oil pump 64 in the joint gap control B to increase the injection amount of the cooling oil per unit time.
  • the first to eighth time constants were used properly, but it is not limited to this.
  • the time constant may be further subdivided based on the temperature change state of the piston ring 48, the engine operating state, and the injection state of the cooling oil. Other parameters may be taken into consideration when subdividing the time constant.
  • the gap estimation unit 117 estimates the size C SIZE of the abutment gap C based on the estimated ring temperature and the estimated cylinder temperature without providing the piston ring temperature estimation unit 116 with a function to correct the estimated ring temperature. You may do so.
  • the configuration of the present disclosure can be applied to a joint gap estimation device, a joint gap control device, a joint gap estimation method, and a joint gap control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

This abutment gap estimation device comprises: a part temperature estimation unit that estimates the temperature of a part other than a ring groove in a piston constituting an internal combustion engine; a ring groove temperature estimation unit that estimates the temperature of the ring groove on the basis of the temperature of the part estimated by the part temperature estimation unit; a piston ring temperature estimation unit that estimates the temperature of a piston ring on the basis of the temperature of the ring groove estimated by the ring groove temperature estimation unit; and a gap estimation unit that estimates the size of an abutment gap of the piston ring on the basis of the temperature of the piston ring estimated by the piston ring temperature estimation unit.

Description

合口隙間推定装置、合口隙間制御装置、合口隙間推定方法および合口隙間制御方法Abutment gap estimation device, abutment gap control device, abutment gap estimation method and abutment gap control method
 本開示は、合口隙間推定装置、合口隙間制御装置、合口隙間推定方法および合口隙間制御方法に関する。 The present disclosure relates to a joint gap estimation device, a joint gap control device, a joint gap estimation method, and a joint gap control method.
 従来、内燃機関のピストンに設けられたピストンリングの合口の大きさを調整する方法が知られている(例えば、特許文献1、2参照)。 Conventionally, a method of adjusting the size of the joint of a piston ring provided on a piston of an internal combustion engine is known (see, for example, Patent Documents 1 and 2).
 特許文献1に記載の方法では、エンジン冷却水温と、燃料噴射量履歴と、に基づいて、ピストンリングの合口の大きさを推定する。 In the method described in Patent Document 1, the size of the joint of the piston ring is estimated based on the engine cooling water temperature and the fuel injection amount history.
 特許文献2に記載の方法では、ブローバイガス量に基づいて、ピストンリングの合口の大きさを推定する。 In the method described in Patent Document 2, the size of the joint of the piston ring is estimated based on the amount of blow-by gas.
日本国特開2019-127840号公報Japanese Patent Application Laid-Open No. 2019-127840 日本国特開2010-285944号公報Japanese Patent Application Laid-Open No. 2010-285944
 しかしながら、特許文献1,2に記載の方法では、ピストンリングの合口の大きさが適切に推定されていないおそれがある。 However, with the methods described in Patent Documents 1 and 2, there is a possibility that the size of the joint of the piston ring is not properly estimated.
 本開示の目的は、ピストンリングの合口の大きさを適切に推定できる合口隙間推定装置、合口隙間制御装置、合口隙間推定方法および合口隙間制御方法を提供することである。 An object of the present disclosure is to provide a joint gap estimation device, a joint gap control device, a joint gap estimation method, and a joint gap control method that can appropriately estimate the size of a joint of a piston ring.
 本開示に係る合口隙間推定装置は、内燃機関を構成するピストンにおけるリング溝以外の他部の温度を推定する他部温度推定部と、前記他部温度推定部で推定された前記他部の温度に基づいて、前記リング溝の温度を推定するリング溝温度推定部と、前記リング溝温度推定部で推定された前記リング溝の温度に基づいて、前記リング溝に装着されるピストンリングの温度を推定するピストンリング温度推定部と、前記ピストンリング温度推定部で推定された前記ピストンリングの温度に基づいて、前記ピストンリングの合口の隙間の大きさを推定する隙間推定部と、を備える。 The joint gap estimation device according to the present disclosure includes a temperature estimation unit for other parts that estimates the temperature of other parts other than the ring groove in the piston constituting the internal combustion engine, and the temperature of the other part estimated by the temperature estimation unit for other parts. Based on the ring groove temperature estimation unit that estimates the temperature of the ring groove and the temperature of the ring groove estimated by the ring groove temperature estimation unit, the temperature of the piston ring mounted on the ring groove is set. It includes a piston ring temperature estimation unit for estimating, and a gap estimation unit for estimating the size of the gap at the abutment of the piston ring based on the temperature of the piston ring estimated by the piston ring temperature estimation unit.
 本開示に係る合口隙間制御装置は、上述の合口隙間推定装置と、前記合口隙間推定装置で推定された前記ピストンリングの合口の隙間の大きさに基づいて、前記合口の隙間の大きさを制御する隙間制御部と、を備える。 The abutment gap control device according to the present disclosure controls the size of the abutment gap based on the abutment gap estimation device described above and the size of the abutment gap of the piston ring estimated by the abutment gap estimation device. A gap control unit is provided.
 本開示に係る合口隙間推定方法は、内燃機関を構成するピストンにおけるリング溝以外の他部の温度を推定するステップと、前記推定された前記他部の温度に基づいて、前記ピストンにおけるリング溝の温度を推定するステップと、前記推定された前記リング溝の温度に基づいて、前記リング溝に装着されるピストンリングの温度を推定するステップと、前記推定された前記ピストンリングの温度に基づいて、前記ピストンリングの合口の隙間の大きさを推定するステップと、を実行する。 The method for estimating the gap between the joints according to the present disclosure is a step of estimating the temperature of a portion other than the ring groove in the piston constituting the internal combustion engine, and the ring groove in the piston based on the estimated temperature of the other portion. Based on the step of estimating the temperature, the step of estimating the temperature of the piston ring mounted on the ring groove based on the estimated temperature of the ring groove, and the step of estimating the temperature of the estimated piston ring. The step of estimating the size of the gap at the joint of the piston ring is performed.
 本開示に係る合口隙間制御方法は、上述の合口隙間推定方法を実行するステップと、前記合口隙間推定方法の実行により推定された前記ピストンリングの合口の隙間の大きさに基づいて、前記合口の隙間の大きさを制御するステップと、を実行する。 The abutment gap control method according to the present disclosure is based on the step of executing the above-mentioned abutment gap estimation method and the size of the abutment gap of the piston ring estimated by the execution of the abutment gap estimation method. Perform steps to control the size of the gap.
 本開示によれば、ピストンリングの合口の大きさを適切に推定できる合口隙間推定装置、合口隙間制御装置、合口隙間推定方法および合口隙間制御方法を提供することができる。 According to the present disclosure, it is possible to provide a joint gap estimation device, a joint gap control device, a joint gap estimation method, and a joint gap control method that can appropriately estimate the size of the joint of a piston ring.
本開示の一実施の形態に係るエンジンの概略構成を示す断面図Sectional drawing which shows the schematic structure of the engine which concerns on one Embodiment of this disclosure. 本開示の一実施の形態に係るピストンリングの構成を示す平面図Top view showing the structure of the piston ring which concerns on one Embodiment of this disclosure. 本開示の一実施の形態に係る合口隙間制御装置の構成を示すブロック図A block diagram showing a configuration of a joint gap control device according to an embodiment of the present disclosure. 本開示の一実施の形態に係る冷却用オイルが噴射されている状態および冷却用オイルが噴射されていない状態における口元部の温度とリング溝の温度との関係を示すグラフA graph showing the relationship between the temperature of the mouth portion and the temperature of the ring groove in the state where the cooling oil is injected and the state where the cooling oil is not injected according to the embodiment of the present disclosure. 本開示の一実施の形態に係る合口隙間制御装置の動作の一例を示すフローチャートA flowchart showing an example of the operation of the joint gap control device according to the embodiment of the present disclosure. 本開示の一実施の形態に係る合口隙間制御装置の動作の一例を示すフローチャートA flowchart showing an example of the operation of the joint gap control device according to the embodiment of the present disclosure. 本開示の一実施の形態に係る合口隙間制御装置の動作の一例を示すフローチャートA flowchart showing an example of the operation of the joint gap control device according to the embodiment of the present disclosure.
[実施の形態]
 以下、本開示の一実施の形態について説明する。
[Embodiment]
Hereinafter, an embodiment of the present disclosure will be described.
〔エンジンの概略構成〕
 まず、本開示の合口隙間制御装置によって制御されるエンジンの概略構成について説明する。エンジンは、内燃機関の一例である。図1は、エンジンの概略構成を示す断面図である。
[Outline configuration of engine]
First, a schematic configuration of an engine controlled by the joint gap control device of the present disclosure will be described. The engine is an example of an internal combustion engine. FIG. 1 is a cross-sectional view showing a schematic configuration of an engine.
 図1に示すエンジン10は、例えば、トラックのような自動車に搭載されるディーゼルエンジンである。エンジン10は、シリンダ20と、ピストン40と、を備える。なお、本開示の内燃機関は、ディーゼルエンジンに限定されず、ガソリンエンジン等であっても良い。 The engine 10 shown in FIG. 1 is a diesel engine mounted on an automobile such as a truck. The engine 10 includes a cylinder 20 and a piston 40. The internal combustion engine of the present disclosure is not limited to a diesel engine, and may be a gasoline engine or the like.
 シリンダ20には、冷却通路21が設けられている。冷却通路21には、シリンダ20の冷却水が供給される。シリンダ20の内周面には、ライナ22が設けられている。なお、ライナ22は設けられていなくても良い。シリンダ20の上部のシリンダヘッド23には、インジェクタ24が、ピストン40の頂面中央に対向するように設けられている。シリンダヘッド23には、インジェクタ24の左右に位置するように、吸気ポート25および排気ポート26がそれぞれ設けられている。吸気ポート25および排気ポート26には、それぞれ吸気用バルブ27および排気用バルブ28が設けられている。 The cylinder 20 is provided with a cooling passage 21. The cooling water of the cylinder 20 is supplied to the cooling passage 21. A liner 22 is provided on the inner peripheral surface of the cylinder 20. The liner 22 may not be provided. An injector 24 is provided on the cylinder head 23 above the cylinder 20 so as to face the center of the top surface of the piston 40. The cylinder head 23 is provided with an intake port 25 and an exhaust port 26 so as to be located on the left and right sides of the injector 24. The intake port 25 and the exhaust port 26 are provided with an intake valve 27 and an exhaust valve 28, respectively.
 ピストン40は、ライナ22に沿ってシリンダ20内を往復運動が可能なように設置されている。ピストン40は、例えばアルミニウム合金等で構成されている。 The piston 40 is installed so as to be able to reciprocate in the cylinder 20 along the liner 22. The piston 40 is made of, for example, an aluminum alloy.
 ピストン40のピストン上部41の頂面には、キャビティ42が設けられている。ピストン上部41には、周方向に沿って形成されたクーリングチャンネル44と、クーリングチャンネル44にオイルを導入するための導入孔45と、クーリングチャンネル44からオイルを排出するための排出孔46と、が設けられている。クーリングチャンネル44には、オイルジェット61から、導入孔45を介してオイルが導入される。この導入されたオイルがクーリングチャンネル44を循環して、排出孔46から排出されることによって、ピストン40が効率的に冷却される。なお、オイルジェット61から噴射されるオイルを「冷却用オイル」という場合がある。ピストン40のピストン上部41の外周には、周方向に沿って形成されたリング溝47が設けられている。リング溝47には、ライナ22と摺接するピストンリング48が装着されている。 A cavity 42 is provided on the top surface of the piston upper portion 41 of the piston 40. The piston upper portion 41 has a cooling channel 44 formed along the circumferential direction, an introduction hole 45 for introducing oil into the cooling channel 44, and a discharge hole 46 for discharging oil from the cooling channel 44. It is provided. Oil is introduced into the cooling channel 44 from the oil jet 61 through the introduction hole 45. The introduced oil circulates in the cooling channel 44 and is discharged from the discharge hole 46, so that the piston 40 is efficiently cooled. The oil injected from the oil jet 61 may be referred to as "cooling oil". A ring groove 47 formed along the circumferential direction is provided on the outer periphery of the piston upper portion 41 of the piston 40. A piston ring 48 that is in sliding contact with the liner 22 is mounted on the ring groove 47.
 ピストンリング48は、図2に実線に示すように、第1の合口面48Aと、第2の合口面48Bと、を備える。ピストンリング48は、図2に二点鎖線で示すエンジン10の燃焼によって加熱されている状態(熱間の状態)では、図2に実線で示す標準温度(例えば、室温である25℃)(冷間)の状態と比べて膨張して大きくなる。この膨張によって、熱間時における第1の合口面48Aと第2の合口面48Bとの隙間C(以下、「合口隙間C」という場合がある)は、冷間時における合口隙間Cよりも小さくなる。 As shown by the solid line in FIG. 2, the piston ring 48 includes a first joint surface 48A and a second joint surface 48B. When the piston ring 48 is heated by the combustion of the engine 10 shown by the chain double-dashed line in FIG. 2 (heat state), the piston ring 48 has a standard temperature (for example, 25 ° C., which is room temperature) (cold) shown by the solid line in FIG. It expands and becomes larger than the state of (between). Due to this expansion, the gap C between the first joint surface 48A and the second joint surface 48B during hot weather (hereinafter, may be referred to as “joint gap C”) is smaller than the gap C during cold weather. Become.
 熱間時における合口隙間Cが大きすぎると、ブローバイガスの流量が多くなりすぎてしまう。熱間時における合口隙間Cが0になり、第1の合口面48Aと第2の合口面48Bとが接触してしまうと、ピストンリング48に作用する張力が変化してしまい、ピストンリング48とシリンダ20との間の摺動抵抗が増加して、シリンダ20やピストンリング48が摩耗したり、シリンダ20やピストンリング48の摺動面が焼き付いたりするおそれがある。このため、冷間時におけるピストンリング48の合口隙間Cの大きさは、熱間時に上述のような不具合が発生しないような大きさに設定されている。 If the joint gap C during hot weather is too large, the flow rate of blow-by gas will be too large. When the abutment gap C in the hot state becomes 0 and the first abutment surface 48A and the second abutment surface 48B come into contact with each other, the tension acting on the piston ring 48 changes, and the piston ring 48 and the piston ring 48 The sliding resistance between the cylinder 20 and the cylinder 20 increases, and the cylinder 20 and the piston ring 48 may be worn or the sliding surface of the cylinder 20 and the piston ring 48 may be seized. Therefore, the size of the joint opening gap C of the piston ring 48 when it is cold is set to a size so that the above-mentioned problems do not occur when it is hot.
 ピストン40のスカート部49とシリンダ20との間には、クリアランスPが設けられている。クリアランスPに、適切な量のオイルが供給されることによって、スカート部49とシリンダ20との間の潤滑状態が適切に保たれる。ピストン40のスカート部49には、互いに対向する一対のピンボス部50(図1では一方のピンボス部50のみを図示)が設けられている。一対のピンボス部50には、ピストン40の中心側からピストン外周側に向かって貫通するピン嵌入孔51がそれぞれ設けられている。ピン嵌入孔51には、ピストンピン52を介してコンロッド53の上端部が接続されている。コンロッド53の下端部は、クランクピン54を介して、クランクシャフト55に接続されている。クランクシャフト55によって、ピストン40の往復運動が回転運動に変換される。 A clearance P is provided between the skirt portion 49 of the piston 40 and the cylinder 20. By supplying an appropriate amount of oil to the clearance P, the lubrication state between the skirt portion 49 and the cylinder 20 is properly maintained. The skirt portion 49 of the piston 40 is provided with a pair of pin boss portions 50 facing each other (only one pin boss portion 50 is shown in FIG. 1). The pair of pin boss portions 50 are each provided with pin fitting holes 51 penetrating from the center side of the piston 40 toward the outer peripheral side of the piston. The upper end of the connecting rod 53 is connected to the pin fitting hole 51 via the piston pin 52. The lower end of the connecting rod 53 is connected to the crankshaft 55 via the crankpin 54. The crankshaft 55 converts the reciprocating motion of the piston 40 into a rotary motion.
 オイルジェット61は、供給バルブ62と、ノズル63と、を備える。供給バルブ62が「閉」のとき、ノズル63から冷却用オイルは噴射されない。供給バルブ62が「開」のとき、ノズル63から冷却用オイルが噴射される。なお、オイルジェット61の構成については、公知であるため、詳細な説明を省略する。 The oil jet 61 includes a supply valve 62 and a nozzle 63. When the supply valve 62 is “closed”, the cooling oil is not injected from the nozzle 63. When the supply valve 62 is “open”, cooling oil is injected from the nozzle 63. Since the configuration of the oil jet 61 is known, detailed description thereof will be omitted.
 オイルジェット61と図示しないオイルパンとの間には、油路65が設けられている。油路65には、オイルの流量を変化させることができる可変オイルポンプ64が設けられているである。油路65における可変オイルポンプ64よりもオイルジェット61側の部分は、エンジン10の潤滑が必要な部位にオイルを供給する図示しない供給路に接続されている。可変オイルポンプ64は、オイルパンに貯留されたオイル(潤滑油)を、潤滑が必要な部位やオイルジェット61等に供給する。 An oil passage 65 is provided between the oil jet 61 and an oil pan (not shown). The oil passage 65 is provided with a variable oil pump 64 capable of changing the flow rate of oil. The portion of the oil passage 65 on the oil jet 61 side of the variable oil pump 64 is connected to a supply passage (not shown) that supplies oil to a portion of the engine 10 that requires lubrication. The variable oil pump 64 supplies the oil (lubricating oil) stored in the oil pan to a portion requiring lubrication, an oil jet 61, or the like.
〔合口隙間制御装置の構成〕
 次に、合口隙間制御装置の構成について説明する。図3は、合口隙間制御装置の構成を示すブロック図である。図4は、冷却用オイルが噴射されている状態および冷却用オイルが噴射されていない状態における口元部の温度とリング溝の温度との関係を示すグラフである。
[Structure of abutment gap control device]
Next, the configuration of the joint gap control device will be described. FIG. 3 is a block diagram showing a configuration of a joint gap control device. FIG. 4 is a graph showing the relationship between the temperature of the mouth portion and the temperature of the ring groove in the state where the cooling oil is injected and the state where the cooling oil is not injected.
 図3に示すように、合口隙間制御装置100は、合口隙間推定装置110と、記憶部120と、隙間制御部130と、を備える。合口隙間推定装置110および隙間制御部130は、ハードウェアとして、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有する。以下において説明する合口隙間推定装置110および隙間制御部130の各機能は、CPUがROMから読み出したコンピュータプログラムをRAM上で実行することにより実現される。 As shown in FIG. 3, the abutment gap control device 100 includes an abutment gap estimation device 110, a storage unit 120, and a gap control unit 130. The gap estimation device 110 and the gap control unit 130 have, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like as hardware. Each function of the joint gap estimation device 110 and the gap control unit 130 described below is realized by executing a computer program read from the ROM by the CPU on the RAM.
 合口隙間推定装置110は、取得部111と、口元温度推定部112と、判定部113と、リング溝温度推定部114と、シリンダ温度推定部115と、ピストンリング温度推定部116と、隙間推定部117と、を備える。 The joint gap estimation device 110 includes an acquisition unit 111, a mouth temperature estimation unit 112, a determination unit 113, a ring groove temperature estimation unit 114, a cylinder temperature estimation unit 115, a piston ring temperature estimation unit 116, and a gap estimation unit. 117 and.
 取得部111は、各種センサからエンジンの状態を代表するエンジン状態情報を取得する。 The acquisition unit 111 acquires engine status information representing the engine status from various sensors.
 口元温度推定部112は、ピストン40のキャビティ42の口元部43の温度を推定する。口元部43は、ピストン40の中で最も温度が高くなる部位である。以下、口元温度推定部112で推定された口元部43の温度を、「推定口元部温度」という場合がある。なお、口元温度推定部112は、他部温度推定部の一例であり、口元部43は、他部の一例である。 The mouth temperature estimation unit 112 estimates the temperature of the mouth portion 43 of the cavity 42 of the piston 40. The mouth portion 43 is a portion of the piston 40 where the temperature is highest. Hereinafter, the temperature of the mouth portion 43 estimated by the mouth temperature estimation unit 112 may be referred to as “estimated mouth portion temperature”. The mouth temperature estimation unit 112 is an example of another unit temperature estimation unit, and the mouth unit 43 is an example of another unit.
 判定部113は、オイルジェット61がピストン40に向けて冷却用オイルを噴射しているか否かを判定する。 The determination unit 113 determines whether or not the oil jet 61 injects cooling oil toward the piston 40.
 リング溝温度推定部114は、記憶部120に記憶された温度推定用情報と、口元温度推定部112で推定された推定口元部温度と、に基づいて、ピストン40におけるリング溝47の温度を推定する。以下、リング溝温度推定部114で推定されたリング溝47の温度を、「推定リング溝温度」という場合がある。 The ring groove temperature estimation unit 114 estimates the temperature of the ring groove 47 in the piston 40 based on the temperature estimation information stored in the storage unit 120 and the estimated mouth temperature estimated by the mouth temperature estimation unit 112. do. Hereinafter, the temperature of the ring groove 47 estimated by the ring groove temperature estimation unit 114 may be referred to as an “estimated ring groove temperature”.
 シリンダ温度推定部115は、シリンダ20の温度を推定する。以下、シリンダ温度推定部115で推定されたシリンダ20の温度を、「推定シリンダ温度」という場合がある。 The cylinder temperature estimation unit 115 estimates the temperature of the cylinder 20. Hereinafter, the temperature of the cylinder 20 estimated by the cylinder temperature estimation unit 115 may be referred to as an “estimated cylinder temperature”.
 ピストンリング温度推定部116は、リング溝温度推定部114の処理で得られ推定リング溝温度と、シリンダ温度推定部115で推定された推定シリンダ温度と、に基づいて、ピストンリング48の温度を推定する。以下、ピストンリング温度推定部116で推定されたピストンリング48の温度を、「推定リング温度」という場合がある。ピストンリング温度推定部116は、記憶部120に記憶されている複数の時定数から、所定の時定数を選択し、選択した時定数を用いて推定リング温度を補正する。以下、時定数を用いて補正されたピストンリング48の温度を、「補正リング温度」という場合がある。 The piston ring temperature estimation unit 116 estimates the temperature of the piston ring 48 based on the estimated ring groove temperature obtained by the processing of the ring groove temperature estimation unit 114 and the estimated cylinder temperature estimated by the cylinder temperature estimation unit 115. do. Hereinafter, the temperature of the piston ring 48 estimated by the piston ring temperature estimation unit 116 may be referred to as an “estimated ring temperature”. The piston ring temperature estimation unit 116 selects a predetermined time constant from a plurality of time constants stored in the storage unit 120, and corrects the estimated ring temperature using the selected time constant. Hereinafter, the temperature of the piston ring 48 corrected by using the time constant may be referred to as “corrected ring temperature”.
 隙間推定部117は、推定シリンダ温度と、補正リング温度と、に基づいて、合口隙間Cの大きさを推定する。 The gap estimation unit 117 estimates the size of the abutment gap C based on the estimated cylinder temperature and the correction ring temperature.
 記憶部120は、口元温度推定マップを記憶する。口元温度推定マップは、クランクシャフト55の回転速度と、燃料噴射量と、口元部43の推定温度と、の関係を示すマップである。口元温度推定マップは、口元温度推定部112における推定口元部温度の推定に用いられる。 The storage unit 120 stores the mouth temperature estimation map. The mouth temperature estimation map is a map showing the relationship between the rotation speed of the crankshaft 55, the fuel injection amount, and the estimated temperature of the mouth portion 43. The mouth temperature estimation map is used for estimating the estimated mouth temperature in the mouth temperature estimation unit 112.
 記憶部120は、以下の式(1)で表される第1の推定式と、式(2)で表される第2の推定式と、を記憶する。第1の推定式は、第1の推定情報の一例であり、第2の推定式は、第2の推定情報の一例である。第1の推定式および第2の推定式によって、温度推定用情報が構成される。第1の推定式および第2の推定式は、リング溝温度推定部114における推定リング溝温度の推定に用いられる。なお、第1の推定式および第2の推定式は、式(1),(2)に限定されない。また、第1の推定情報および第2の推定情報は、口元温度推定マップのようなマップ形式であってもよい。
  TON=αON×TK+βON ・・・ (1)
  TOFF=αOFF×TK+βOFF ・・・ (2)
   TON:冷却用オイルが噴射されているときの推定リング溝温度
   αON,βON:冷却用オイルが噴射されているときの係数
   TK:推定口元部温度
   TOFF:冷却用オイルが噴射されていないときの推定リング溝温度
   αOFF,βOFF:冷却用オイルが噴射されていないときの係数
The storage unit 120 stores the first estimation formula represented by the following formula (1) and the second estimation formula represented by the formula (2). The first estimation formula is an example of the first estimation information, and the second estimation formula is an example of the second estimation information. The temperature estimation information is composed of the first estimation formula and the second estimation formula. The first estimation formula and the second estimation formula are used for estimating the estimated ring groove temperature in the ring groove temperature estimation unit 114. The first estimation formula and the second estimation formula are not limited to the formulas (1) and (2). Further, the first estimation information and the second estimation information may be in a map format such as a mouth temperature estimation map.
T ON = α ON × TK + β ON・ ・ ・ (1)
T OFF = α OFF × TK + β OFF・ ・ ・ (2)
T ON : Estimated ring groove temperature when cooling oil is injected α ON, β ON : Coefficient when cooling oil is injected TK : Estimated mouth temperature T OFF : Cooling oil is injected Estimated ring groove temperature when not in place α OFF, β OFF : Coefficient when cooling oil is not injected
 第1の推定式および第2の推定式は、例えば、以下のようにして求められる。冷却用オイルが噴射されている状態および冷却用オイルが噴射されていない状態における、口元部43の温度と、リング溝47の温度との関係を求める。横軸を口元部43の温度、縦軸をリング溝47の温度としたグラフを作成すると、図4に示すように、冷却用オイルが噴射されているか否かに関係なく、口元部43の温度と、リング溝47の温度との間には、線形の関係があることがわかる。冷却用オイルが噴射されているときのデータの一次近似式を第1の推定式として求め、冷却用オイルが噴射されていないときのデータの一次近似式を第2の推定式として求める。口元部43の温度が同じ場合、冷却用オイルが噴射されているときのリング溝47の温度は、冷却用オイルが噴射されていないときのリング溝47の温度よりも低くなる。このため、第1の推定式の係数αONは、第2の推定式の係数αOFFよりも小さくなる。なお、第1の推定式および第2の推定式の作成に用いる口元部43の温度およびリング溝47の温度は、シミュレーションで求めた値であっても良いし、実測値であっても良い。 The first estimation formula and the second estimation formula are obtained, for example, as follows. The relationship between the temperature of the mouth portion 43 and the temperature of the ring groove 47 in the state where the cooling oil is injected and the state where the cooling oil is not injected is obtained. When a graph is created in which the horizontal axis is the temperature of the mouth portion 43 and the vertical axis is the temperature of the ring groove 47, as shown in FIG. 4, the temperature of the mouth portion 43 is set regardless of whether or not the cooling oil is injected. It can be seen that there is a linear relationship between the temperature and the temperature of the ring groove 47. The first-order approximation formula of the data when the cooling oil is injected is obtained as the first estimation formula, and the first-order approximation formula of the data when the cooling oil is not injected is obtained as the second estimation formula. When the temperature of the mouth portion 43 is the same, the temperature of the ring groove 47 when the cooling oil is injected is lower than the temperature of the ring groove 47 when the cooling oil is not injected. Therefore, the coefficient α ON of the first estimation formula is smaller than the coefficient α OFF of the second estimation formula. The temperature of the mouth portion 43 and the temperature of the ring groove 47 used for creating the first estimation formula and the second estimation formula may be values obtained by simulation or may be measured values.
 記憶部120は、第1の時定数、第2の時定数、第3の時定数、第4の時定数、第5の時定数、第6の時定数、第7の時定数および第8の時定数を記憶する。第1~第8の時定数は、ピストンリング48の温度の変化速度の度合いを示す。第1~第8の時定数は、ピストンリング温度推定部116における補正リング温度の算出に用いられる。 The storage unit 120 has a first time constant, a second time constant, a third time constant, a fourth time constant, a fifth time constant, a sixth time constant, a seventh time constant, and an eighth time constant. Memorize the time constant. The first to eighth time constants indicate the degree of change rate of the temperature of the piston ring 48. The first to eighth time constants are used to calculate the corrected ring temperature in the piston ring temperature estimation unit 116.
 第1~第4の時定数は、ピストン40に冷却用オイルが噴射されていない状態のときに選択される。 The first to fourth time constants are selected when the cooling oil is not injected into the piston 40.
 第1の時定数は、推定リング温度が低下し、燃料噴射が行われておらず、かつ、エンジン10が停止している場合に選択される。第2の時定数は、推定リング温度が低下し、燃料噴射が行われておらず、かつ、エンジン10が運転している場合に選択される。 The first time constant is selected when the estimated ring temperature has dropped, fuel injection has not been performed, and the engine 10 has stopped. The second time constant is selected when the estimated ring temperature has dropped, fuel injection has not been performed, and the engine 10 is running.
 推定リング温度が低下し、燃料噴射が行われておらず、かつ、エンジン10が運転している場合には、冷却オイルおよび冷却水がエンジン10内を循環するので、ピストンリング48の温度の低下速度は速くなる。 When the estimated ring temperature is lowered, fuel injection is not performed, and the engine 10 is operating, the cooling oil and the cooling water circulate in the engine 10, so that the temperature of the piston ring 48 is lowered. The speed will be faster.
 一方、推定リング温度が低下し、燃料噴射が行われておらず、かつ、エンジン10が停止している場合には、冷却オイルおよび冷却水の循環が停止する。このため、ピストンリング48の温度の低下速度は遅くなる。したがって、第1の時定数の値は、第2の時定数の値よりも大きい。 On the other hand, when the estimated ring temperature drops, fuel injection is not performed, and the engine 10 is stopped, the circulation of cooling oil and cooling water is stopped. Therefore, the rate of decrease in the temperature of the piston ring 48 becomes slow. Therefore, the value of the first time constant is larger than the value of the second time constant.
 第3の時定数は、推定リング温度が低下し、燃料噴射が行われている場合に選択される。燃料噴射が行われている場合には、エンジン10は燃料を燃焼させているので、燃料噴射量の変化に対してピストン40の温度の変化が大きく、ピストンリング48の温度の低下速度は燃料噴射が行われていない場合と同等あるいは速くなる。したがって、第3の時定数の値は、第1の時定数の値よりも小さく、第2の時定数と同等あるいは小さい。 The third time constant is selected when the estimated ring temperature has dropped and fuel injection is taking place. When fuel injection is performed, since the engine 10 burns fuel, the temperature of the piston 40 changes significantly with respect to the change in the fuel injection amount, and the rate of decrease in the temperature of the piston ring 48 is the fuel injection. Is equal to or faster than if was not done. Therefore, the value of the third time constant is smaller than the value of the first time constant, and is equal to or smaller than the value of the second time constant.
 第4の時定数は、推定リング温度が上昇している場合に選択される。第4の時定数の値は、第3の時定数の値よりも大きい。 The fourth time constant is selected when the estimated ring temperature is rising. The value of the fourth time constant is larger than the value of the third time constant.
 第5~第8の時定数は、ピストン40に冷却用オイルが噴射されている状態に選択される。 The fifth to eighth time constants are selected in a state where the cooling oil is injected into the piston 40.
 第5の時定数は、推定リング温度が低下し、燃料噴射が行われておらず、かつ、エンジン10が停止している場合に選択される。ピストン40に冷却用オイルが噴射されている場合には、ピストン40に冷却用オイルが噴射されてない場合に比べて、ピストンリング48の温度の低下速度は速くなる。したがって、第5の時定数の値は、第1の時定数の値よりも小さい。 The fifth time constant is selected when the estimated ring temperature has dropped, fuel injection has not been performed, and the engine 10 has stopped. When the cooling oil is injected into the piston 40, the temperature of the piston ring 48 drops faster than when the cooling oil is not injected into the piston 40. Therefore, the value of the fifth time constant is smaller than the value of the first time constant.
 第6の時定数は、推定リング温度が低下し、燃料噴射が行われておらず、かつ、エンジン10が運転している場合に選択される。ピストン40に冷却用オイルが噴射されている場合には、ピストン40に冷却用オイルが噴射されてない場合に比べて、ピストンリング48の温度の低下速度は速くなる。したがって、第6の時定数の値は、第2の時定数の値よりも小さい。 The sixth time constant is selected when the estimated ring temperature has dropped, fuel injection has not been performed, and the engine 10 is running. When the cooling oil is injected into the piston 40, the temperature of the piston ring 48 drops faster than when the cooling oil is not injected into the piston 40. Therefore, the value of the sixth time constant is smaller than the value of the second time constant.
 第7の時定数は、推定リング温度が低下し、燃料噴射が行われている場合に選択される。ピストン40に冷却用オイルが噴射されている場合には、ピストン40に冷却用オイルが噴射されてない場合に比べて、ピストンリング48の温度の低下速度は速くなる。したがって、第7の時定数の値は、第3の時定数の値よりも小さい。 The seventh time constant is selected when the estimated ring temperature has dropped and fuel injection is taking place. When the cooling oil is injected into the piston 40, the temperature of the piston ring 48 drops faster than when the cooling oil is not injected into the piston 40. Therefore, the value of the seventh time constant is smaller than the value of the third time constant.
 第8の時定数は、推定リング温度が上昇している場合に選択される。ピストン40に冷却用オイルが噴射されている場合には、ピストン40に冷却用オイルが噴射されてない場合に比べて、ピストンリング48の温度の上昇速度は速くなる。したがって、第8の時定数の値は、第4の時定数の値よりも小さい。 The eighth time constant is selected when the estimated ring temperature is rising. When the cooling oil is injected into the piston 40, the temperature rise rate of the piston ring 48 is faster than that in the case where the cooling oil is not injected into the piston 40. Therefore, the value of the eighth time constant is smaller than the value of the fourth time constant.
 以下、取得部111、口元温度推定部112、判定部113、リング溝温度推定部114、シリンダ温度推定部115、ピストンリング温度推定部116、隙間推定部117および隙間制御部130の詳細な構成について説明する。 Hereinafter, detailed configurations of the acquisition unit 111, the mouth temperature estimation unit 112, the determination unit 113, the ring groove temperature estimation unit 114, the cylinder temperature estimation unit 115, the piston ring temperature estimation unit 116, the gap estimation unit 117, and the gap control unit 130 will be described. explain.
(取得部111)
 取得部111は、エンジン状態情報として、エンジン10のクランクシャフト55の回転速度、エンジン10のピストン40、シリンダ20およびシリンダヘッド23に囲まれた燃焼室11への燃料噴射量、燃料噴射時期、燃料噴射圧力、ピストン40への冷却用オイルの噴射の有無、冷却用オイルの油圧、冷却用オイルの油温、吸気温度、吸気圧力、吸入空気量、吸入空気温度、シリンダ20の冷却水温度、排気ブレーキの動作信号、排気温度、EGR(Exhaust Gas Recirculation)ガス流量等を取得する。
(Acquisition unit 111)
The acquisition unit 111 provides engine state information such as the rotation speed of the crank shaft 55 of the engine 10, the fuel injection amount to the combustion chamber 11 surrounded by the piston 40 of the engine 10, the cylinder 20 and the cylinder head 23, the fuel injection timing, and the fuel. Injection pressure, presence / absence of injection of cooling oil to piston 40, oil pressure of cooling oil, oil temperature of cooling oil, intake air temperature, intake pressure, intake air amount, intake air temperature, cooling water temperature of cylinder 20, exhaust Acquires the operation signal of the brake, the exhaust temperature, the EGR (Exhaust Gas Recirculation) gas flow rate, and the like.
(口元温度推定部112)
 口元温度推定部112は、取得部111で取得されたクランクシャフト55の回転速度および燃料噴射量と、記憶部120に記憶された口元温度推定マップと、に基づいて、ピストン40の口元部43の温度を推定する。口元温度推定部112は、口元温度推定マップ等に基づき推定した温度を、取得部111で取得された燃料噴射時期等の情報を用いて補正して、当該補正した値を推定口元部温度として推定する。
(Mouth temperature estimation unit 112)
The mouth temperature estimation unit 112 of the mouth portion 43 of the piston 40 is based on the rotation speed and fuel injection amount of the crankshaft 55 acquired by the acquisition unit 111 and the mouth temperature estimation map stored in the storage unit 120. Estimate the temperature. The mouth temperature estimation unit 112 corrects the temperature estimated based on the mouth temperature estimation map or the like using the information such as the fuel injection timing acquired by the acquisition unit 111, and estimates the corrected value as the estimated mouth temperature. do.
(判定部113)
 判定部113は、取得部111で取得されたエンジン状態情報に基づいて、ピストン40に向けて冷却用オイルが噴射されているか否かを判定する。
(Determining unit 113)
The determination unit 113 determines whether or not the cooling oil is injected toward the piston 40 based on the engine state information acquired by the acquisition unit 111.
(リング溝温度推定部114)
 リング溝温度推定部114は、判定部113で冷却用オイルが噴射されていると判定された場合、記憶部120に記憶された第1の推定式(式(1))に、口元温度推定部112で推定された推定口元部温度を代入することによって、推定リング溝温度を求める。リング溝温度推定部114は、判定部113で冷却用オイルが噴射されていないと判定された場合、記憶部120に記憶された第2の推定式(式(2))に、口元温度推定部112で推定された推定口元部温度を代入することによって、推定リング溝温度を求める。
(Ring groove temperature estimation unit 114)
When the determination unit 113 determines that the cooling oil has been injected, the ring groove temperature estimation unit 114 uses the mouth temperature estimation unit to the first estimation formula (formula (1)) stored in the storage unit 120. The estimated ring groove temperature is obtained by substituting the estimated mouth temperature estimated in 112. When the determination unit 113 determines that the cooling oil has not been injected, the ring groove temperature estimation unit 114 uses the mouth temperature estimation unit to the second estimation formula (formula (2)) stored in the storage unit 120. The estimated ring groove temperature is obtained by substituting the estimated mouth temperature estimated in 112.
(シリンダ温度推定部115)
 シリンダ温度推定部115は、取得部111で取得されたシリンダ20の冷却水の温度に基づいて、推定シリンダ温度を推定する。なお、シリンダ温度推定部115は、シリンダ20やライナ22の温度を測定するセンサの測定結果に基づいて、推定シリンダ温度を推定しても良い。また、シリンダ温度推定部115は、推定シリンダ温度を推定リング溝温度を用いて補正してもよいし、燃料噴射量などのピストン40の供給熱量を代表する値を用いて補正してもよい。
(Cylinder temperature estimation unit 115)
The cylinder temperature estimation unit 115 estimates the estimated cylinder temperature based on the temperature of the cooling water of the cylinder 20 acquired by the acquisition unit 111. The cylinder temperature estimation unit 115 may estimate the estimated cylinder temperature based on the measurement result of the sensor that measures the temperature of the cylinder 20 or the liner 22. Further, the cylinder temperature estimation unit 115 may correct the estimated cylinder temperature by using the estimated ring groove temperature, or may correct the estimated cylinder temperature by using a value representing the heat supply amount of the piston 40 such as the fuel injection amount.
(ピストンリング温度推定部116)
 ピストンリング温度推定部116は、推定リング溝温度に基づくリング溝47からピストンリング48への放熱量と、推定シリンダ温度に基づくピストンリング48からシリンダ20への放熱量と、に基づいて、推定リング温度を算出する。
(Piston ring temperature estimation unit 116)
The piston ring temperature estimation unit 116 estimates the ring based on the amount of heat radiated from the ring groove 47 to the piston ring 48 based on the estimated ring groove temperature and the amount of heat radiated from the piston ring 48 to the cylinder 20 based on the estimated cylinder temperature. Calculate the temperature.
 リング溝47からピストンリング48への放熱量QINは、以下の(3)に基づいて求めることができる。ピストンリング48からシリンダ20への放熱量QOUTは、以下の(4)に基づいて求めることができる。
  QIN=(TPIST-TRING)/RPIST-RING ・・・ (3)
  QOUT=(TRING-TCYLI)/RRING-CYLI ・・・ (4)
   TPIST:推定リング溝温度
   TRING:推定リング温度
   RPIST-RING:ピストン40とピストンリング48との間の熱抵抗
   TCYLI:推定シリンダ温度
   RRING-CYLI:ピストンリング48とシリンダ20の間の熱抵抗
The heat dissipation amount Q IN from the ring groove 47 to the piston ring 48 can be obtained based on the following (3). The heat dissipation amount Q OUT from the piston ring 48 to the cylinder 20 can be obtained based on the following (4).
Q IN = (T PIST -T RING ) / R PIST-RING ... (3)
Q OUT = (T RING -T CYLI ) / R RING-CYLI ... (4)
T PIST : Estimated ring groove temperature T RING : Estimated ring temperature R PIST-RING : Thermal resistance between piston 40 and piston ring 48 T CYLI : Estimated cylinder temperature R RING-CYLI : Between piston ring 48 and cylinder 20 Thermal resistance
 定常状態、つまりリング溝47からピストンリング48への放熱量QINと、ピストンリング48からシリンダ20への放熱量QOUTとが等しい状態では、推定リング温度TRINGは、以下の式(5)を満たす。
  TRING=(RRING-CYLI×TPIST+RPIST-RING×TCYLI)/(RPIST-RING+RRING-CYLI
                               ・・・ (5)
In a steady state, that is, in a state where the heat radiation amount Q IN from the ring groove 47 to the piston ring 48 and the heat radiation amount Q OUT from the piston ring 48 to the cylinder 20 are equal, the estimated ring temperature T RING is expressed by the following equation (5). Meet.
T RING = (R RING-CYLI x T PIST + R PIST-RING x T CYLI ) / (R PIST-RING + R RING-CYLI )
... (5)
 ピストンリング温度推定部116は、リング溝温度推定部114の処理で得られ推定リング溝温度TRINGと、シリンダ温度推定部115で推定された推定シリンダ温度TCYLIと、を式(5)に代入することによって、推定リング温度TRINGを算出する。なお、推定リング温度TRINGの算出式は、式(5)に限定されない。また、推定リング温度TRINGの算出に用いる情報は、口元温度推定マップのようなマップ形式であってもよい。 The piston ring temperature estimation unit 116 substitutes the estimated ring groove temperature T RING obtained by the processing of the ring groove temperature estimation unit 114 and the estimated cylinder temperature T CYLI estimated by the cylinder temperature estimation unit 115 into the equation (5). By doing so, the estimated ring temperature T RING is calculated. The formula for calculating the estimated ring temperature T RING is not limited to the formula (5). Further, the information used for calculating the estimated ring temperature T RING may be in a map format such as a mouth temperature estimation map.
 推定リング温度と、実際のピストンリング48の温度とは、エンジン10の状態によって異なる場合がある。特に、エンジン10の状態が過渡的に変化する状況では、推定リング温度と実際のピストンリング48の温度との違いが顕著である。そして、エンジン10の状態によって、推定リング温度の変化の速さの度合いを示す時定数が変化する。 The estimated ring temperature and the actual temperature of the piston ring 48 may differ depending on the state of the engine 10. In particular, in a situation where the state of the engine 10 changes transiently, the difference between the estimated ring temperature and the actual temperature of the piston ring 48 is remarkable. Then, depending on the state of the engine 10, the time constant indicating the degree of change in the estimated ring temperature changes.
 そこで、ピストンリング温度推定部116は、エンジン10の状態に対応する時定数を用いて、推定リング温度をさらに補正して、補正リング温度を算出する。 Therefore, the piston ring temperature estimation unit 116 further corrects the estimated ring temperature by using the time constant corresponding to the state of the engine 10, and calculates the corrected ring temperature.
 ピストンリング温度推定部116は、記憶部120に記憶されている複数の時定数の中から、推定リング温度の変化状況、エンジン10の運転状態、および、ピストン40への冷却用オイルの噴射状態に基づいて、所定の時定数を選択する。ピストンリング温度推定部116は、選択した所定の時定数に基づいて、推定リング温度を補正する。 The piston ring temperature estimation unit 116 determines the change status of the estimated ring temperature, the operating state of the engine 10, and the injection state of cooling oil to the piston 40 from among the plurality of time constants stored in the storage unit 120. Based on, select a given time constant. The piston ring temperature estimation unit 116 corrects the estimated ring temperature based on a predetermined time constant selected.
 ピストンリング温度推定部116は、新たに推定した推定リング温度と、1周期前に推定した推定リング温度との差分値を所定の時定数で除算した値を、1周期前の推定リング温度に加算することにより、推定リング温度を補正する。これにより、推定リング温度を、実際のピストンリング48の温度の変化の速さに対応するものに補正することができる。 The piston ring temperature estimation unit 116 adds the value obtained by dividing the difference value between the newly estimated estimated ring temperature and the estimated ring temperature estimated one cycle before by a predetermined time constant to the estimated ring temperature one cycle before. By doing so, the estimated ring temperature is corrected. Thereby, the estimated ring temperature can be corrected to correspond to the speed of change in the temperature of the actual piston ring 48.
 推定リング温度の変化の速度が速い場合には、ピストンリング温度推定部116は、相対的に小さい時定数を選択する。これにより、補正リング温度は、新たに推定された推定リング温度の影響が大きくなる。 When the rate of change of the estimated ring temperature is fast, the piston ring temperature estimation unit 116 selects a relatively small time constant. As a result, the corrected ring temperature is greatly affected by the newly estimated estimated ring temperature.
 また、推定リング温度の変化の速度が遅い場合には、ピストンリング温度推定部116は、相対的に大きい時定数を選択する。これにより、補正リング温度は、過去に推定された推定リング温度の影響が大きくなる。 Further, when the rate of change of the estimated ring temperature is slow, the piston ring temperature estimation unit 116 selects a relatively large time constant. As a result, the corrected ring temperature is greatly affected by the estimated ring temperature estimated in the past.
 ピストンリング温度推定部116は、例えば以下の式(6)を用いて補正リング温度TPSCを算出する。なお、補正リング温度の算出式は式(6)に限定されない。
  TPSC=TPSO+γ×(TPS-TPSO)/τ ・・・ (6)
   TPSO:1周期前に推定された推定リング温度
   TPS:新たに推定された推定リング温度
   γ:所定値
   τ:時定数
The piston ring temperature estimation unit 116 calculates the corrected ring temperature T PSC using, for example, the following equation (6). The formula for calculating the correction ring temperature is not limited to the formula (6).
T PSC = T PSO + γ × ( TPS-T PSO ) / τ ・ ・ ・ (6)
T PSO : Estimated ring temperature estimated one cycle before T PS : Estimated ring temperature newly estimated γ: Predetermined value τ: Time constant
(隙間推定部117)
 隙間推定部117は、推定シリンダ温度と、補正リング温度に基づいて、熱間時におけるピストンリング48の合口隙間Cの大きさCSIZE(図2参照)を推定する。隙間推定部117は、例えば以下の式(7)を用いて合口隙間Cの変化量dC(図2参照)を算出する。なお、合口隙間Cの変化量dCの算出式は式(7)に限定されない。
  dC=π×D×(KRING×αRING×dTRING-KCYLI×αCYLI×dTCYLI)・・・ (7)
   π:円周率
   D:標準温度におけるシリンダ20(ライナ22)の内径(呼び径)
   KRING,KCYLI:所定値
   αRING:ピストンリング48の線膨張係数
   dTRING:標準温度からの補正リング温度の上昇量(TPSC-標準温度)
   αCYLI:シリンダ20の線膨張係数
   dTCYLI:標準温度からの推定シリンダ温度の上昇量(TCYLI-標準温度)
(Gap estimation unit 117)
The gap estimation unit 117 estimates the size C SIZE (see FIG. 2) of the joint gap C of the piston ring 48 when it is hot, based on the estimated cylinder temperature and the correction ring temperature. The gap estimation unit 117 calculates the amount of change dC (see FIG. 2) of the abutment gap C using, for example, the following equation (7). The formula for calculating the amount of change dC in the gap C is not limited to the formula (7).
dC = π × D × (K RING × α RING × dT RING -K CYLI × α CYLI × dT CYLI ) ・ ・ ・ (7)
π: Pi D: Inner diameter (nominal diameter) of the cylinder 20 (liner 22) at standard temperature
K RING , K CYLI : Predetermined value α RING : Linear expansion coefficient of piston ring 48 dT RING : Correction of ring temperature increase from standard temperature ( TPSC -standard temperature)
α CYLI : Linear expansion coefficient of cylinder 20 dT CYLI : Estimated increase in cylinder temperature from standard temperature (T CYLI -standard temperature)
 隙間推定部117は、以下の式(8)に基づいて、合口隙間Cの大きさCSIZEを推定する。なお、合口隙間Cの大きさCSIZEの算出式は式(8)に限定されない。
  CSIZE=CSTD-dC・・・ (8)
   CSTD:標準温度における合口隙間Cの大きさ
The gap estimation unit 117 estimates the size C SIZE of the abutment gap C based on the following equation (8). The formula for calculating the size C SIZE of the joint gap C is not limited to the formula (8).
C SIZE = C STD -dC ... (8)
C STD : The size of the abutment gap C at standard temperature
(隙間制御部130)
 隙間制御部130は、合口隙間推定装置110で求められた合口隙間Cの大きさCSIZEに基づいて、合口隙間Cの大きさCSIZEを制御するために、以下の合口隙間制御A,B,C,Dのうちいずれか1つの処理を行う。なお、合口隙間制御A,B,C,Dのうち少なくとも2つの処理を行っても良い。
(Gap control unit 130)
The gap control unit 130 controls the following joint gap controls A, B, in order to control the size C SIZE of the joint gap C based on the size C SIZE of the joint gap C obtained by the joint gap estimation device 110. Performs any one of C and D. It should be noted that at least two of the joint gap control A, B, C, and D may be performed.
 合口隙間制御A:冷却オイルが噴射されていない場合、供給バルブ62を制御して、単位時間当たりの噴射量が基準量の冷却オイルを噴射する
 合口隙間制御B:基準量の冷却オイルが噴射されている場合、可変オイルポンプ64を制御して、冷却オイルの単位時間当たりの噴射量を増やす
 合口隙間制御C:シリンダ20への冷却水の単位時間当たりの供給量を減らす
 合口隙間制御D:ピストン40への供給熱量を減らす
Abutment gap control A: When the cooling oil is not injected, the supply valve 62 is controlled to inject the cooling oil having a reference amount of injection amount per unit time. Abutment gap control B: The reference amount of cooling oil is injected. If so, the variable oil pump 64 is controlled to increase the injection amount of cooling oil per unit time. Abutment clearance control C: Reduce the supply amount of cooling water to the cylinder 20 per unit time. Abutment clearance control D: Piston. Reduce the amount of heat supplied to 40
 合口隙間制御Aが行われると、新たに噴射された基準量の冷却用オイルによる冷却によって、ピストン40の温度が下がる。ピストン40の温度低下に伴いピストンリング48の温度も低下する。その結果、ピストンリング48が収縮し、合口隙間Cが大きくなる。 When the joint gap control A is performed, the temperature of the piston 40 is lowered by cooling with the newly injected reference amount of cooling oil. As the temperature of the piston 40 decreases, the temperature of the piston ring 48 also decreases. As a result, the piston ring 48 contracts, and the abutment gap C becomes large.
 合口隙間制御Bが行われると、冷却用オイルの噴射量が基準量よりも多くなり、冷却用オイルによる冷却能力が向上するため、ピストン40の温度が下がる。ピストン40の温度低下に伴い、ピストンリング48が収縮し、合口隙間Cが大きくなる。 When the joint gap control B is performed, the injection amount of the cooling oil becomes larger than the reference amount, the cooling capacity of the cooling oil is improved, and the temperature of the piston 40 is lowered. As the temperature of the piston 40 decreases, the piston ring 48 contracts and the abutment gap C becomes larger.
 合口隙間制御Cが行われると、シリンダ20の温度が上がるため、ピストンリング48からシリンダ20への放熱量QOUTが増え、ピストンリング48の温度が下がる。その結果、ピストンリング48が収縮し、合口隙間Cが大きくなる。
 例えば、シリンダ20の温度(推定シリンダ温度TCYLI)が下がると、式(5)によりピストンリング48の(温度推定リング温度TRING)が下がる。一方、式(7)に基づき得られる合口隙間Cの変化量dCは、シリンダ20の温度が下がると大きくなる。しかし、ピストン40とピストンリング48との間の熱抵抗、および、ピストンリング48とシリンダ20の間の熱抵抗が同じ(RPIST-RING=RRING-CYLI)であり、ピストンリング48の線膨張係数とシリンダ20の線膨張係数とが同じ(αRING=αCYLI=α)であると仮定すると、式(5)および式(7)から、以下の式(9)が得られる。
  dC=π×D×(α/2)×(KRING×dTPIST-KCYLI×dTCYLI)・・・ (9)
 上記式(9)から、シリンダ20の温度を上げることにより、リング溝47の温度(推定リング溝温度TPIST)およびピストンリング48の温度が下がり、合口隙間Cが大きくなる。
When the joint gap control C is performed, the temperature of the cylinder 20 rises, so that the heat radiation amount Q OUT from the piston ring 48 to the cylinder 20 increases, and the temperature of the piston ring 48 decreases. As a result, the piston ring 48 contracts, and the abutment gap C becomes large.
For example, when the temperature of the cylinder 20 (estimated cylinder temperature T CYLI ) decreases, the (temperature estimated ring temperature T RING ) of the piston ring 48 decreases according to the equation (5). On the other hand, the amount of change dC of the joint gap C obtained based on the equation (7) increases as the temperature of the cylinder 20 decreases. However, the thermal resistance between the piston 40 and the piston ring 48 and the thermal resistance between the piston ring 48 and the cylinder 20 are the same (R PIST-RING = R RING-CYLI ), and the linear expansion of the piston ring 48 Assuming that the coefficient and the linear expansion coefficient of the cylinder 20 are the same (α RING = α CYLI = α), the following equation (9) is obtained from the equations (5) and (7).
dC = π × D × (α / 2) × (K RING × dT PIST -K CYLI × dT CYLI ) ・ ・ ・ (9)
From the above equation (9), by raising the temperature of the cylinder 20, the temperature of the ring groove 47 (estimated ring groove temperature T PIST ) and the temperature of the piston ring 48 decrease, and the abutment gap C becomes large.
 合口隙間制御Dが行われると、ピストンリング48の温度が下がりピストンリング48が収縮し、合口隙間Cが大きくなる。その結果、ピストンリング48の合口部分の接触や摩耗が抑制される。なお、ピストン40への供給熱量を減らす制御としては、燃焼室11への燃料噴射量を減らす制御、燃焼室11への燃料噴射タイミグを遅らせる(ピストン40の位置が最も高くなる位置よりクランクシャフト55の回転が進むタイミングで燃料を噴射する)制御、および、EGRガス流量を増やす制御のうち、少なくとも1つの制御が例示できる。 When the abutment gap control D is performed, the temperature of the piston ring 48 drops, the piston ring 48 contracts, and the abutment gap C becomes large. As a result, contact and wear of the abutment portion of the piston ring 48 are suppressed. As the control for reducing the amount of heat supplied to the piston 40, the control for reducing the fuel injection amount to the combustion chamber 11 and the fuel injection timing for the combustion chamber 11 are delayed (the crank shaft 55 is higher than the position where the position of the piston 40 is the highest). Of the control (injecting fuel at the timing when the rotation of the piston advances) and the control for increasing the EGR gas flow rate, at least one control can be exemplified.
〔合口隙間制御装置の動作〕
 次に、合口隙間制御装置100の動作について説明する。図5、図6および図7は、合口隙間制御装置の動作の一例を示すフローチャートである。
[Operation of the joint gap control device]
Next, the operation of the joint gap control device 100 will be described. 5, 6 and 7 are flowcharts showing an example of the operation of the joint gap control device.
 まず、図5に示すように、合口隙間制御装置100の取得部111は、エンジン状態情報を取得する(ステップS1)。 First, as shown in FIG. 5, the acquisition unit 111 of the joint gap control device 100 acquires engine state information (step S1).
 次に、合口隙間制御装置100の口元温度推定部112は、取得部111で取得されたエンジン状態情報に含まれるクランクシャフト55の回転速度および燃料噴射量と、記憶部120に記憶された口元温度推定マップと、等に基づいて、推定口元部温度を推定する(ステップS2)。 Next, the mouth temperature estimation unit 112 of the abutment gap control device 100 includes the rotation speed and fuel injection amount of the crankshaft 55 included in the engine state information acquired by the acquisition unit 111, and the mouth temperature stored in the storage unit 120. The estimated mouth temperature is estimated based on the estimation map and the like (step S2).
 次に、合口隙間制御装置100の判定部113は、取得部111で取得されたエンジン状態情報に含まれる冷却用オイルの噴射の有無に関する情報に基づいて、冷却用オイルが噴射されているか否かを判定する(ステップS3)。 Next, the determination unit 113 of the joint gap control device 100 determines whether or not the cooling oil is injected based on the information regarding the presence or absence of the injection of the cooling oil included in the engine state information acquired by the acquisition unit 111. Is determined (step S3).
 判定部113で冷却用オイルが噴射されていると判定された場合(ステップS3:YES)、合口隙間制御装置100のリング溝温度推定部114は、記憶部120に記憶された第1の推定式(式(1))と、推定口元部温度と、に基づいて、推定リング溝温度を推定する(ステップS4)。 When it is determined by the determination unit 113 that the cooling oil has been injected (step S3: YES), the ring groove temperature estimation unit 114 of the abutment gap control device 100 has the first estimation formula stored in the storage unit 120. The estimated ring groove temperature is estimated based on (Equation (1)) and the estimated mouth temperature (step S4).
 一方、判定部113で冷却用オイルが噴射されていないと判定された場合(ステップS3:NO)、リング溝温度推定部114は、記憶部120に記憶された第2の推定式(式(2))と、推定口元部温度と、に基づいて、推定リング溝温度を推定する(ステップS5)。 On the other hand, when the determination unit 113 determines that the cooling oil has not been injected (step S3: NO), the ring groove temperature estimation unit 114 has a second estimation formula (formula (2)) stored in the storage unit 120. )) And the estimated mouth temperature, and the estimated ring groove temperature is estimated (step S5).
 ステップS4またはステップS5の処理の後、合口隙間制御装置100のシリンダ温度推定部115は、取得部111で取得されたエンジン状態情報に含まれるシリンダ20の冷却水の温度に基づいて、推定シリンダ温度を推定する(ステップS6)。 After the process of step S4 or step S5, the cylinder temperature estimation unit 115 of the joint gap control device 100 determines the estimated cylinder temperature based on the temperature of the cooling water of the cylinder 20 included in the engine state information acquired by the acquisition unit 111. Is estimated (step S6).
 次に、ピストンリング温度推定部116は、算出式(式(5))と、推定リング溝温度と、推定シリンダ温度と、に基づいて、推定リング温度を推定する(ステップS7)。 Next, the piston ring temperature estimation unit 116 estimates the estimated ring temperature based on the calculation formula (formula (5)), the estimated ring groove temperature, and the estimated cylinder temperature (step S7).
 次に、ピストンリング温度推定部116は、取得部111で取得されたエンジン状態情報に含まれるエンジン10の運転状態および冷却用オイルの噴射状態と、推定リング温度の変化状況と、に基づいて、時定数を選択する(ステップS8)。 Next, the piston ring temperature estimation unit 116 is based on the operating state of the engine 10 and the injection state of the cooling oil included in the engine state information acquired by the acquisition unit 111, and the change state of the estimated ring temperature. Select the time constant (step S8).
 次に、ピストンリング温度推定部116は、算出式(式(6))と、ステップS8で選択した時定数と、推定リング温度と、に基づいて、補正リング温度を算出する(ステップS9)。なお、1周期目の合口隙間制御処理を行う場合、式(6)の1周期前に推定された推定リング温度TPSOが存在しない。この場合、オイル温度または冷却水温度あるいは、別途計算して求めた推定口元部温度や、予め設定された値を推定リング温度TPSOとして用いても良い。 Next, the piston ring temperature estimation unit 116 calculates the correction ring temperature based on the calculation formula (formula (6)), the time constant selected in step S8, and the estimated ring temperature (step S9). When performing the joint gap control process in the first cycle, the estimated ring temperature T PSO estimated one cycle before the equation (6) does not exist. In this case, the oil temperature, the cooling water temperature, the estimated mouth temperature separately calculated, or a preset value may be used as the estimated ring temperature T PSO .
 次に、合口隙間制御装置100の隙間推定部117は、算出式(式(7),(8))と、推定シリンダ温度と、補正リング温度と、に基づいて、合口隙間Cの大きさCSIZEを推定する(ステップS10)。 Next, the gap estimation unit 117 of the joint gap control device 100 is based on the calculation formulas (formulas (7) and (8)), the estimated cylinder temperature, and the correction ring temperature, and the size C of the joint gap C. Estimate the SIZE (step S10).
 次に、合口隙間制御装置100の隙間制御部130は、図6に示すように、合口隙間Cの大きさCSIZEが下限値未満か否かを判定する(ステップS11)。 Next, as shown in FIG. 6, the gap control unit 130 of the joint gap control device 100 determines whether or not the size C SIZE of the joint gap C is less than the lower limit value (step S11).
 隙間制御部130は、合口隙間Cの大きさCSIZEが下限値以上であると判定した場合(ステップS11:NO)、冷却用オイルの噴射を停止する(ステップS12)。このように、合口隙間Cの大きさCSIZEが下限値以上の場合に冷却用オイルの噴射を停止することによって、冷却用オイルの使用量の増加を抑制することができる。なお、ステップS12の処理を行う時点で冷却用オイルの噴射が停止されている場合、隙間制御部130は、特に処理を行わない。 When the gap control unit 130 determines that the size C SIZE of the joint gap C is equal to or greater than the lower limit value (step S11: NO), the gap control unit 130 stops the injection of the cooling oil (step S12). As described above, by stopping the injection of the cooling oil when the size C SIZE of the abutment gap C is equal to or larger than the lower limit value, it is possible to suppress an increase in the amount of the cooling oil used. If the injection of the cooling oil is stopped at the time of performing the processing in step S12, the gap control unit 130 does not particularly perform the processing.
 次に、隙間制御部130は、合口隙間制御を終了させるか否かを判定する(ステップS13)。 Next, the gap control unit 130 determines whether or not to end the joint gap control (step S13).
 隙間制御部130は、例えば、エンジン10の運転が終了した場合等、合口隙間制御を終了させると判定した場合(ステップS13:YES)、処理を終了させる。一方、隙間制御部130で合口隙間制御を終了させないと判定した場合(ステップS13:NO)、合口隙間制御装置100は、ステップS1の処理を行う。 The gap control unit 130 ends the process when it is determined to end the joint gap control (step S13: YES), for example, when the operation of the engine 10 is completed. On the other hand, when the gap control unit 130 determines that the joint gap control is not terminated (step S13: NO), the joint gap control device 100 performs the process of step S1.
 隙間制御部130は、合口隙間Cの大きさCSIZEが下限値未満であると判定した場合(ステップS11:YES)、基準量の冷却オイルの噴射(合口隙間制御A)によって、合口隙間Cの大きさCSIZEが下限値以上になるか否かを判定する(ステップS14)。例えば、隙間制御部130は、合口隙間Cの大きさCSIZEが下限値未満であり第1の閾値以上の場合、基準量の冷却オイルの噴射によって、合口隙間Cの大きさCSIZEが下限値以上になると判定し、第1の閾値未満の場合、基準量の冷却オイルの噴射によって、合口隙間Cの大きさCSIZEが下限値以上にならないと判定する。また、隙間制御部130は、すでに基準量の冷却オイルを噴射している場合、基準量の冷却オイルの噴射によって、合口隙間Cの大きさCSIZEが下限値以上にならないと判定する。 When the gap control unit 130 determines that the size C SIZE of the joint gap C is less than the lower limit value (step S11: YES), the gap control unit 130 sprays a reference amount of cooling oil (joint gap control A) to reduce the size C of the joint gap C. It is determined whether or not the size C SIZE is equal to or greater than the lower limit (step S14). For example, when the size C SIZE of the abutment gap C is less than the lower limit value and is equal to or larger than the first threshold value, the gap control unit 130 sets the size C SIZE of the abutment gap C to the lower limit value by injecting a reference amount of cooling oil. If it is less than the first threshold value, it is determined that the size C SIZE of the abutment gap C does not exceed the lower limit value due to the injection of the reference amount of cooling oil. Further, when the reference amount of cooling oil has already been injected, the gap control unit 130 determines that the size C SIZE of the abutment gap C does not exceed the lower limit value due to the injection of the reference amount of cooling oil.
 隙間制御部130は、基準量の冷却オイルの噴射によって、合口隙間Cの大きさCSIZEが下限値以上になると判定した場合(ステップS14:YES)、供給バルブ62を制御して、基準量の冷却オイルの噴射を開始する(合口隙間制御Aを行う)(ステップS15)。その後、隙間制御部130は、ステップS13の処理を行う。 When the gap control unit 130 determines that the size C SIZE of the abutment gap C becomes equal to or greater than the lower limit value by injecting a reference amount of cooling oil (step S14: YES), the gap control unit 130 controls the supply valve 62 to control the reference amount. The injection of the cooling oil is started (the joint gap control A is performed) (step S15). After that, the gap control unit 130 performs the process of step S13.
 隙間制御部130は、基準量の冷却オイルの噴射によって、合口隙間Cの大きさCSIZEが下限値以上にならないと判定した場合(ステップS14:NO)、冷却オイルの噴射量増加(合口隙間制御B)によって、合口隙間Cの大きさCSIZEが下限値以上になるか否かを判定する(ステップS16)。例えば、隙間制御部130は、合口隙間Cの大きさCSIZEが第1の閾値未満であり第2の閾値以上の場合、冷却オイルの噴射量増加によって、合口隙間Cの大きさCSIZEが下限値以上になると判定し、第2の閾値未満の場合、冷却オイルの噴射量増加によって、合口隙間Cの大きさCSIZEが下限値以上にならないと判定する。 When the gap control unit 130 determines that the size C SIZE of the joint gap C does not exceed the lower limit value due to the injection of the reference amount of cooling oil (step S14: NO), the injection amount of the cooling oil is increased (the gap control). By B), it is determined whether or not the size C SIZE of the abutment gap C becomes equal to or greater than the lower limit value (step S16). For example, in the gap control unit 130, when the size C SIZE of the abutment gap C is less than the first threshold value and equal to or more than the second threshold value, the size C SIZE of the abutment gap C is the lower limit due to the increase in the injection amount of the cooling oil. It is determined that the value is equal to or greater than the value, and if it is less than the second threshold value, it is determined that the size C SIZE of the abutment gap C does not exceed the lower limit value due to the increase in the injection amount of the cooling oil.
 隙間制御部130は、冷却オイルの噴射量増加によって、合口隙間Cの大きさCSIZEが下限値以上になると判定した場合(ステップS16:YES)、可変オイルポンプ64を制御して冷却オイルの噴射量を所定量増加させる(合口隙間制御Bを行う)(ステップS17)。その後、隙間制御部130は、ステップS13の処理を行う。 When the gap control unit 130 determines that the size C SIZE of the joint gap C becomes equal to or higher than the lower limit value due to the increase in the injection amount of the cooling oil (step S16: YES), the gap control unit 130 controls the variable oil pump 64 to inject the cooling oil. The amount is increased by a predetermined amount (the joint gap control B is performed) (step S17). After that, the gap control unit 130 performs the process of step S13.
 隙間制御部130は、冷却オイルの噴射量増加によって、合口隙間Cの大きさCSIZEが下限値以上にならないと判定した場合(ステップS16:NO)、図7に示すように、シリンダ20への冷却水の供給量減少(合口隙間制御C)によって、合口隙間Cの大きさCSIZEが下限値以上になるか否かを判定する(ステップS18)。例えば、隙間制御部130は、合口隙間Cの大きさCSIZEが第2の閾値未満であり第3の閾値以上の場合、冷却水の供給量減少によって、合口隙間Cの大きさCSIZEが下限値以上になると判定し、第3の閾値未満の場合、冷却水の供給量減少によって、合口隙間Cの大きさCSIZEが下限値以上にならないと判定する。 When the gap control unit 130 determines that the size C SIZE of the joint gap C does not exceed the lower limit value due to the increase in the injection amount of the cooling oil (step S16: NO), as shown in FIG. 7, to the cylinder 20. It is determined whether or not the size C SIZE of the joint gap C becomes equal to or greater than the lower limit value by reducing the supply amount of the cooling water (joint gap control C) (step S18). For example, in the gap control unit 130, when the size C SIZE of the abutment gap C is less than the second threshold value and equal to or more than the third threshold value, the size C SIZE of the abutment gap C is the lower limit due to the decrease in the supply amount of the cooling water. It is determined that the value is equal to or greater than the value, and if it is less than the third threshold value, it is determined that the size C SIZE of the abutment gap C does not exceed the lower limit value due to the decrease in the supply amount of the cooling water.
 隙間制御部130は、冷却水の供給量減少によって、合口隙間Cの大きさCSIZEが下限値以上になると判定した場合(ステップS18:YES)、シリンダ20への冷却水の供給量を所定量減少させる(合口隙間制御Cを行う)(ステップS19)。その後、隙間制御部130は、ステップS13の処理を行う。 When the gap control unit 130 determines that the size C SIZE of the abutment gap C becomes equal to or greater than the lower limit due to the decrease in the supply amount of the cooling water (step S18: YES), the gap control unit 130 sets the supply amount of the cooling water to the cylinder 20 to a predetermined amount. Decrease (perform abutment gap control C) (step S19). After that, the gap control unit 130 performs the process of step S13.
 隙間制御部130は、冷却水の供給量減少によって、合口隙間Cの大きさCSIZEが下限値以上にならないと判定した場合(ステップS18:NO)、ピストンリング48の合口部分の接触または摩耗が発生するおそれがあるか否かを判定する(ステップS20)。例えば、隙間制御部130は、合口隙間Cの大きさCSIZEが第3の閾値未満であり第4の閾値以上の場合、合口部分の接触または摩耗が発生するおそれがないと判定し、第4の閾値未満の場合、合口部分の接触または摩耗が発生するおそれがあると判定する。 When the gap control unit 130 determines that the size C SIZE of the joint gap C does not exceed the lower limit due to the decrease in the supply amount of cooling water (step S18: NO), the contact or wear of the joint portion of the piston ring 48 is caused. It is determined whether or not there is a possibility of occurrence (step S20). For example, the gap control unit 130 determines that if the size C SIZE of the abutment gap C is less than the third threshold value and is greater than or equal to the fourth threshold value, there is no possibility of contact or wear of the abutment portion, and the fourth If it is less than the threshold value of, it is determined that there is a possibility that contact or wear of the abutment portion may occur.
 隙間制御部130は、合口部分の接触または摩耗が発生するおそれがあると判定した場合(ステップS20:YES)、ピストン40への供給熱量を減らす制御を行う(ステップS21)。その後、隙間制御部130は、ステップS13の処理を行う。 When the gap control unit 130 determines that contact or wear of the abutment portion may occur (step S20: YES), the gap control unit 130 controls to reduce the amount of heat supplied to the piston 40 (step S21). After that, the gap control unit 130 performs the process of step S13.
 隙間制御部130は、合口部分の接触または摩耗が発生するおそれがないと判定した場合(ステップS20:NO)、ステップS13の処理を行う。 When the gap control unit 130 determines that there is no possibility of contact or wear of the abutment portion (step S20: NO), the gap control unit 130 performs the process of step S13.
〔実施の形態の作用効果〕
 合口隙間制御装置100の合口隙間推定装置110は、ピストン40のキャビティ42の口元部43の推定口元部温度を推定し、当該推定口元部温度と、温度推定用情報と、に基づいて、推定リング溝温度を推定する。合口隙間推定装置110は、推定リング溝温度に基づいて、ピストンリング48の推定リング温度を推定し、推定リング温度に基づいて、合口隙間Cの大きさCSIZEを推定する。このため、実際のピストンリング48の温度に近い推定リング溝温度に基づき得られる推定リング温度に基づいて、合口隙間Cの大きさCSIZEを適切に推定することができる。また、合口隙間制御装置100は、適切に推定された合口隙間Cの大きさCSIZEに基づいて、合口隙間Cの大きさCSIZEを適切に制御することができる。その結果、シリンダ20やピストンリング48の摩耗を抑制したり、シリンダ20やピストンリング48の摺動面の焼き付きを抑制することができ、エンジン10の耐久性を向上させることができる。
[Action and effect of the embodiment]
The joint gap estimation device 110 of the joint gap control device 100 estimates the estimated mouth portion temperature of the mouth portion 43 of the cavity 42 of the piston 40, and estimates the ring based on the estimated mouth portion temperature and the temperature estimation information. Estimate the groove temperature. The joint gap estimation device 110 estimates the estimated ring temperature of the piston ring 48 based on the estimated ring groove temperature, and estimates the size C SIZE of the joint gap C based on the estimated ring temperature. Therefore, the size C SIZE of the abutment gap C can be appropriately estimated based on the estimated ring temperature obtained based on the estimated ring groove temperature close to the actual temperature of the piston ring 48. Further, the abutment gap control device 100 can appropriately control the size C SIZE of the abutment gap C based on the appropriately estimated size C SIZE of the abutment gap C. As a result, wear of the cylinder 20 and the piston ring 48 can be suppressed, seizure of the sliding surface of the cylinder 20 and the piston ring 48 can be suppressed, and the durability of the engine 10 can be improved.
 合口隙間推定装置110は、冷却用オイルが噴射されているか否かに応じて、異なる推定式を用いて、推定リング溝温度を推定する。このため、冷却用オイルによってピストン40が冷却されているか否かに応じて、推定リング溝温度をより適切に推定することができる。その結果、合口隙間Cの大きさCSIZEを精度良く推定することができる。 The joint gap estimation device 110 estimates the estimated ring groove temperature using different estimation formulas depending on whether or not the cooling oil is injected. Therefore, the estimated ring groove temperature can be estimated more appropriately depending on whether or not the piston 40 is cooled by the cooling oil. As a result, the size C SIZE of the abutment gap C can be estimated accurately.
 合口隙間推定装置110は、推定リング温度をピストンリング48の温度の変化速度の度合いを示す時定数に基づいて補正した、補正リング温度を算出する。このため、推定時点でのピストンリング48の温度を、より適切に推定することができる。その結果、合口隙間Cの大きさCSIZEを精度良く推定することができる。 The joint gap estimation device 110 calculates the corrected ring temperature obtained by correcting the estimated ring temperature based on a time constant indicating the degree of change in the temperature of the piston ring 48. Therefore, the temperature of the piston ring 48 at the time of estimation can be estimated more appropriately. As a result, the size C SIZE of the abutment gap C can be estimated accurately.
 合口隙間推定装置110は、ピストンリング48の温度の変化状況、クランクシャフト55の回転速度、燃料噴射量および冷却用オイルの噴射状態に基づいて、複数の時定数の中から選択された所定の時定数を用いて、補正リング温度を算出する。このため、実際のピストンリング48の温度を精度良く推定することができる。その結果、合口隙間Cの大きさCSIZEをさらに精度良く推定することができる。 The joint gap estimation device 110 is selected from a plurality of time constants at a predetermined time based on the change state of the temperature of the piston ring 48, the rotation speed of the crankshaft 55, the fuel injection amount, and the injection state of the cooling oil. The correction ring temperature is calculated using the constant. Therefore, the actual temperature of the piston ring 48 can be estimated accurately. As a result, the size C SIZE of the abutment gap C can be estimated more accurately.
 合口隙間推定装置110は、補正リング温度と、推定シリンダ温度と、に基づいて、合口隙間Cの大きさCSIZEを推定する。このように、ピストンリング48の膨張に加えてシリンダ20の膨張も反映させることによって、合口隙間Cの大きさCSIZEをさらに精度良く推定することができる。 The joint gap estimation device 110 estimates the size C SIZE of the joint gap C based on the correction ring temperature and the estimated cylinder temperature. In this way, by reflecting the expansion of the cylinder 20 in addition to the expansion of the piston ring 48, the size C SIZE of the abutment gap C can be estimated more accurately.
[実施の形態の変形例]
 本開示は、これまでに説明した実施の形態に示されたものに限られないことは言うまでも無く、その趣旨を逸脱しない範囲内で、種々の変形を加えることができる。
[Modified example of the embodiment]
Needless to say, the present disclosure is not limited to those shown in the embodiments described above, and various modifications can be made without departing from the spirit of the present disclosure.
 リング溝温度推定部114は、冷却用オイルが噴射されているか否かに関係なく、同じ推定式を用いて、推定リング溝温度を推定しても良い。この場合、例えば、図4に示す、冷却用オイルが噴射されているときのデータ、および、冷却用オイルが噴射されていないときのデータの一次近似式を推定式として求め、この推定式に推定口元部温度を代入すれば良い。 The ring groove temperature estimation unit 114 may estimate the estimated ring groove temperature using the same estimation formula regardless of whether or not the cooling oil is injected. In this case, for example, the first-order approximation formula of the data when the cooling oil is injected and the data when the cooling oil is not injected, which is shown in FIG. 4, is obtained as an estimation formula and estimated by this estimation formula. Substitute the mouth temperature.
 シリンダ温度推定部115を設けずに、隙間推定部117で、推定リング温度に基づいて、合口隙間Cの大きさCSIZEを推定するようにしてもよい。 Instead of providing the cylinder temperature estimation unit 115, the gap estimation unit 117 may estimate the size C SIZE of the abutment gap C based on the estimated ring temperature.
 他部温度推定部の一例として、口元温度推定部112を例示したが、他部の一例であるピストン上部41の頂面や外周面の特定の部位等であって、リング溝47よりも温度が高い部位の温度を推定する他部温度推定部を適用し、他部温度推定部で推定された温度に基づいて、リング溝温度推定部114がスカート部49の温度を推定しても良い。このような他部温度推定部を用いる構成は、ピストンにキャビティが存在しないガソリンエンジンに有用である。 As an example of the other part temperature estimation part, the mouth temperature estimation part 112 is illustrated, but it is a specific part of the top surface or the outer peripheral surface of the piston upper portion 41 which is an example of the other part, and the temperature is higher than that of the ring groove 47. The other part temperature estimation unit that estimates the temperature of the high portion may be applied, and the ring groove temperature estimation unit 114 may estimate the temperature of the skirt portion 49 based on the temperature estimated by the other part temperature estimation unit. Such a configuration using another temperature estimation unit is useful for a gasoline engine in which a cavity does not exist in the piston.
 隙間制御部130は、合口隙間制御Bにおいて、可変オイルポンプ64を制御せずに、供給バルブ62を制御して、冷却オイルの単位時間当たりの噴射量を増やしても良い。 The gap control unit 130 may control the supply valve 62 without controlling the variable oil pump 64 in the joint gap control B to increase the injection amount of the cooling oil per unit time.
 第1~第8の時定数を使い分ける構成としたが、これに限定されない。例えば、ピストンリング48の温度の変化状況、エンジン運転状態および冷却用オイルの噴射状態に基づいて、時定数をさらに細分化しても良い。時定数の細分化にあたり、その他のパラメータを考慮しても良い。 The first to eighth time constants were used properly, but it is not limited to this. For example, the time constant may be further subdivided based on the temperature change state of the piston ring 48, the engine operating state, and the injection state of the cooling oil. Other parameters may be taken into consideration when subdividing the time constant.
 ピストンリング温度推定部116に推定リング温度を補正する機能を設けずに、隙間推定部117で、推定リング温度と、推定シリンダ温度と、に基づいて、合口隙間Cの大きさCSIZEを推定するようにしてもよい。 The gap estimation unit 117 estimates the size C SIZE of the abutment gap C based on the estimated ring temperature and the estimated cylinder temperature without providing the piston ring temperature estimation unit 116 with a function to correct the estimated ring temperature. You may do so.
 2020年9月24日出願の特願2020-160069の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 All disclosures of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2020-160069 filed on September 24, 2020 are incorporated herein by reference.
 本開示の構成は、合口隙間推定装置、合口隙間制御装置、合口隙間推定方法および合口隙間制御方法に適用することができる。 The configuration of the present disclosure can be applied to a joint gap estimation device, a joint gap control device, a joint gap estimation method, and a joint gap control method.
 10 エンジン
 11 燃焼室
 20 シリンダ
 21 冷却通路
 22 ライナ
 23 シリンダヘッド
 24 インジェクタ
 25 吸気ポート
 26 排気ポート
 27 吸気用バルブ
 28 排気用バルブ
 40 ピストン
 41 ピストン上部
 42 キャビティ
 43 口元部
 44 クーリングチャンネル
 45 導入孔
 46 排出孔
 47 リング溝
 48 ピストンリング
 48A 第1の合口面
 48B 第2の合口面
 49 スカート部
 50 ピンボス部
 51 ピン嵌入孔
 52 ピストンピン
 53 コンロッド
 54 クランクピン
 55 クランクシャフト
 61 オイルジェット
 62 供給バルブ
 63 ノズル
 64 可変オイルポンプ
 65 油路
 100 合口隙間制御装置
 110 合口隙間推定装置
 111 取得部
 112 口元温度推定部
 113 判定部
 114 リング溝温度推定部
 115 シリンダ温度推定部
 116 ピストンリング温度推定部
 117 隙間推定部
 120 記憶部
 130 隙間制御部
 C 合口隙間
 P クリアランス
10 Engine 11 Combustion chamber 20 Cylinder 21 Cooling passage 22 Liner 23 Cylinder head 24 Injector 25 Intake port 26 Exhaust port 27 Intake valve 28 Exhaust valve 40 Piston 41 Piston upper part 42 Cavity 43 Mouth 44 Cooling channel 45 Intro hole 46 47 Ring groove 48 Piston ring 48A 1st abutment surface 48B 2nd abutment surface 49 Skirt part 50 Pin boss part 51 Pin fitting hole 52 Piston pin 53 Conrod 54 Cylinder pin 55 Cylinder shaft 61 Oil jet 62 Supply valve 63 Nozzle 64 Variable oil Pump 65 Oil passage 100 Joint gap control device 110 Joint gap estimation device 111 Acquisition unit 112 Mouth temperature estimation unit 113 Judgment unit 114 Ring groove temperature estimation unit 115 Cylinder temperature estimation unit 116 Piston ring temperature estimation unit 117 Gap estimation unit 120 Storage unit 130 Gap control unit C Abutment gap P Clearance

Claims (11)

  1.  内燃機関を構成するピストンにおけるリング溝以外の他部の温度を推定する他部温度推定部と、
     前記他部温度推定部で推定された前記他部の温度に基づいて、前記リング溝の温度を推定するリング溝温度推定部と、
     前記リング溝温度推定部で推定された前記リング溝の温度に基づいて、前記リング溝に装着されるピストンリングの温度を推定するピストンリング温度推定部と、
     前記ピストンリング温度推定部で推定された前記ピストンリングの温度に基づいて、前記ピストンリングの合口の隙間の大きさを推定する隙間推定部と、を備える、合口隙間推定装置。
    The other part temperature estimation part that estimates the temperature of other parts other than the ring groove in the piston that constitutes the internal combustion engine, and the other part temperature estimation part.
    A ring groove temperature estimation unit that estimates the temperature of the ring groove based on the temperature of the other unit estimated by the other unit temperature estimation unit, and a ring groove temperature estimation unit.
    A piston ring temperature estimation unit that estimates the temperature of the piston ring mounted on the ring groove based on the temperature of the ring groove estimated by the ring groove temperature estimation unit, and a piston ring temperature estimation unit.
    A joint gap estimation device including a gap estimation unit that estimates the size of the gap at the joint of the piston ring based on the temperature of the piston ring estimated by the piston ring temperature estimation unit.
  2.  前記リング溝温度推定部は、前記他部の温度および前記リング溝の温度の関係を示す温度推定用情報と、前記他部温度推定部で推定された前記他部の温度と、に基づいて、前記リング溝の温度を推定する、請求項1に記載の合口隙間推定装置。 The ring groove temperature estimation unit is based on temperature estimation information indicating the relationship between the temperature of the other unit and the temperature of the ring groove, and the temperature of the other unit estimated by the temperature estimation unit of the other unit. The joint gap estimation device according to claim 1, which estimates the temperature of the ring groove.
  3.  オイルジェットが前記ピストンに向けてオイルを噴射しているか否かを判定する判定部をさらに備え、
     前記温度推定用情報は、
     前記オイルジェットがオイルを噴射している場合における前記リング溝の温度の推定に用いる第1の推定情報と、
     オイルを噴射していない場合における前記リング溝の温度の推定に用いる第2の推定情報と、を備え、
     前記リング溝温度推定部は、
     前記判定部で前記オイルジェットがオイルを噴射していると判定された場合、前記第1の推定情報と、前記他部温度推定部で推定された前記他部の温度と、に基づいて、前記リング溝の温度を推定し、
     前記判定部で前記オイルジェットがオイルを噴射していないと判定された場合、前記第2の推定情報と、前記他部温度推定部で推定された前記他部の温度と、に基づいて、前記リング溝の温度を推定する、請求項2に記載の合口隙間推定装置。
    Further provided with a determination unit for determining whether or not the oil jet is injecting oil toward the piston.
    The temperature estimation information is
    The first estimation information used for estimating the temperature of the ring groove when the oil jet is injecting oil, and
    A second estimation information used for estimating the temperature of the ring groove when no oil is injected is provided.
    The ring groove temperature estimation unit is
    When it is determined by the determination unit that the oil jet is injecting oil, the said first estimation information and the temperature of the other part estimated by the other part temperature estimation unit are used. Estimate the temperature of the ring groove and
    When the determination unit determines that the oil jet is not injecting oil, the second estimation information and the temperature of the other unit estimated by the temperature estimation unit of the other unit are used as the basis for the determination. The joint gap estimation device according to claim 2, which estimates the temperature of the ring groove.
  4.  前記ピストンを往復移動可能に収納するシリンダの温度を推定するシリンダ温度推定部をさらに備え、
     前記ピストンリング温度推定部は、前記リング溝温度推定部の処理で得られた前記リング溝の温度と、前記シリンダ温度推定部で推定された前記シリンダの温度と、に基づいて、前記ピストンリングの温度を推定する、請求項1に記載の合口隙間推定装置。
    Further provided with a cylinder temperature estimation unit that estimates the temperature of the cylinder that houses the piston so that it can be reciprocated.
    The piston ring temperature estimation unit of the piston ring is based on the temperature of the ring groove obtained by the processing of the ring groove temperature estimation unit and the temperature of the cylinder estimated by the cylinder temperature estimation unit. The joint gap estimation device according to claim 1, which estimates the temperature.
  5.  前記ピストンリング温度推定部は、前記推定したピストンリングの温度を、前記ピストンリングの温度の変化速度の度合いを示す時定数に基づいて補正する、請求項1に記載の合口隙間推定装置。 The joint gap estimation device according to claim 1, wherein the piston ring temperature estimation unit corrects the estimated piston ring temperature based on a time constant indicating the degree of change in the temperature of the piston ring.
  6.  前記他部は、前記ピストンのキャビティの口元部である、請求項1に記載の合口隙間推定装置。 The other portion is the mouth portion of the cavity of the piston, which is the joint gap estimation device according to claim 1.
  7.  請求項1に記載の合口隙間推定装置と、
     前記合口隙間推定装置で推定された前記ピストンリングの合口の隙間の大きさに基づいて、前記合口の隙間の大きさを制御する隙間制御部と、を備える、合口隙間制御装置。
    The joint gap estimation device according to claim 1 and
    A joint gap control device including a gap control unit that controls the size of the gap in the joint based on the size of the gap in the joint of the piston ring estimated by the joint gap estimation device.
  8.  前記隙間制御部は、前記合口の隙間の大きさを制御するために、オイルジェットから前記ピストンに向けて噴射されるオイルの噴射状態、前記内燃機関の潤滑部位に供給されるオイルの供給量、前記ピストンを往復移動可能に収納するシリンダの冷却水の流量および前記ピストンへの供給熱量のうち、少なくともいずれか1つを制御する、請求項7に記載の合口隙間制御装置。 The gap control unit has an injection state of oil injected from the oil jet toward the piston, a supply amount of oil supplied to the lubricated portion of the internal combustion engine, in order to control the size of the gap at the abutment. The joint gap control device according to claim 7, which controls at least one of the flow rate of the cooling water of the cylinder that houses the piston so as to be reciprocally movable and the amount of heat supplied to the piston.
  9.  内燃機関を構成するピストンにおけるリング溝以外の他部の温度を推定するステップと、
     前記推定された前記他部の温度に基づいて、前記ピストンにおけるリング溝の温度を推定するステップと、
     前記推定された前記リング溝の温度に基づいて、前記リング溝に装着されるピストンリングの温度を推定するステップと、
     前記推定された前記ピストンリングの温度に基づいて、前記ピストンリングの合口の隙間の大きさを推定するステップと、を実行する、合口隙間推定方法。
    The step of estimating the temperature of the parts other than the ring groove in the piston that constitutes the internal combustion engine, and
    A step of estimating the temperature of the ring groove in the piston based on the estimated temperature of the other part, and
    A step of estimating the temperature of the piston ring mounted on the ring groove based on the estimated temperature of the ring groove, and
    A method for estimating a gap between joints, which comprises a step of estimating the size of a gap at the joint of the piston ring based on the estimated temperature of the piston ring.
  10.  前記他部は、前記ピストンのキャビティの口元部である、請求項9に記載の合口隙間推定方法。 The other part is the mouth part of the cavity of the piston, which is the method for estimating the gap between the joints according to claim 9.
  11.  請求項9または10に記載の合口隙間推定方法を実行するステップと、
     前記合口隙間推定方法の実行により推定された前記ピストンリングの合口の隙間の大きさに基づいて、前記合口の隙間の大きさを制御するステップと、を実行する、合口隙間制御方法。
    A step of executing the joint gap estimation method according to claim 9 or 10.
    A method for controlling a gap between abutments, which is a step of controlling the size of the gap between the abutments based on the size of the gap at the abutment of the piston ring estimated by executing the method for estimating the gap between the abutments.
PCT/JP2021/033666 2020-09-24 2021-09-14 Abutment gap estimation device, abutment gap control device, abutment gap estimation method, and abutment gap control method WO2022065126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-160069 2020-09-24
JP2020160069A JP2022053303A (en) 2020-09-24 2020-09-24 Abutment gap estimation device, abutment gap control device, abutment gap estimation method, and abutment gap control method

Publications (1)

Publication Number Publication Date
WO2022065126A1 true WO2022065126A1 (en) 2022-03-31

Family

ID=80845410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033666 WO2022065126A1 (en) 2020-09-24 2021-09-14 Abutment gap estimation device, abutment gap control device, abutment gap estimation method, and abutment gap control method

Country Status (2)

Country Link
JP (1) JP2022053303A (en)
WO (1) WO2022065126A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613421Y2 (en) * 1988-05-23 1994-04-06 トヨタ自動車株式会社 Internal combustion engine piston ring
JP2007198999A (en) * 2006-01-30 2007-08-09 Diesel United:Kk Monitor device for piston and monitor method thereof
JP2010285944A (en) * 2009-06-12 2010-12-24 Toyota Motor Corp Control device of internal combustion engine
JP2019127840A (en) * 2018-01-22 2019-08-01 トヨタ自動車株式会社 Control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613421Y2 (en) * 1988-05-23 1994-04-06 トヨタ自動車株式会社 Internal combustion engine piston ring
JP2007198999A (en) * 2006-01-30 2007-08-09 Diesel United:Kk Monitor device for piston and monitor method thereof
JP2010285944A (en) * 2009-06-12 2010-12-24 Toyota Motor Corp Control device of internal combustion engine
JP2019127840A (en) * 2018-01-22 2019-08-01 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2022053303A (en) 2022-04-05

Similar Documents

Publication Publication Date Title
CN108687331B (en) Cylinder liner for internal combustion engine and method of forming
US20110276249A1 (en) Method to operate an electrically driven opcj valve of an internal combustion engine
JP2018131941A (en) Control device for internal combustion engine
EP2767688B1 (en) Two-cycle engine and method for lubricating two-cycle engine
JP6386489B2 (en) Method for adapting adaptability coefficient used for estimating fuel temperature of engine fuel system, fuel temperature estimating device and pump control device
WO2022065126A1 (en) Abutment gap estimation device, abutment gap control device, abutment gap estimation method, and abutment gap control method
JP5523082B2 (en) Early warm-up control method for internal combustion engine
WO2022065105A1 (en) Clearance estimating device, slide control device, clearance estimating method, and slide control method
WO2022065095A1 (en) Piston temperature estimation device, piston temperature control device, piston temperature estimation method, and piston temperature control method
JP4296798B2 (en) Control device for internal combustion engine
CN105952520A (en) Method and device for controlling piston cooling system
JP6248408B2 (en) Fuel injection control device for internal combustion engine
JP6780530B2 (en) Piston cooling device
JP7268662B2 (en) Piston temperature estimation device and piston temperature estimation method
JP4300874B2 (en) Internal combustion engine
US20170306878A1 (en) Engine with direct injection and port fuel injection adjustment based upon engine oil parameters
JP5206595B2 (en) Control device for internal combustion engine
JP2020507038A (en) Copper-nickel-tin alloy piston compression ring
JP2019027417A (en) Control device of internal combustion engine
WO2022065122A1 (en) Piston temperature estimation device and piston temperature estimation method
JP2009216039A (en) Control device of internal combustion engine
JP2017141779A (en) Piston cooling device for internal combustion engine, and internal combustion engine with the same
Shayler et al. Friction teardown data from motored engine tests on light duty automotive diesel engines at low temperatures and speeds
JP2015059467A (en) Oil jet device for internal combustion engine
JP6617746B2 (en) Cooling device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872256

Country of ref document: EP

Kind code of ref document: A1