WO2022065026A1 - Analysis device, analysis system, analysis method, calibration method, and program - Google Patents

Analysis device, analysis system, analysis method, calibration method, and program Download PDF

Info

Publication number
WO2022065026A1
WO2022065026A1 PCT/JP2021/032846 JP2021032846W WO2022065026A1 WO 2022065026 A1 WO2022065026 A1 WO 2022065026A1 JP 2021032846 W JP2021032846 W JP 2021032846W WO 2022065026 A1 WO2022065026 A1 WO 2022065026A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate matter
image data
sample gas
unit
acquisition unit
Prior art date
Application number
PCT/JP2021/032846
Other languages
French (fr)
Japanese (ja)
Inventor
絵里佳 松本
響子 葛西
岳 大塚
裕介 水野
翔太 山渡
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to CN202180064483.XA priority Critical patent/CN116324371A/en
Priority to JP2022551850A priority patent/JPWO2022065026A1/ja
Publication of WO2022065026A1 publication Critical patent/WO2022065026A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Definitions

  • the present invention implements an analyzer that analyzes particulate matter contained in sample gas, an analysis system that includes the analyzer, an analysis method for particulate matter, and a calibration method, analysis method or calibration method for the analyzer. Regarding the program to do.
  • an analyzer that analyzes particulate matter contained in sample gas such as the atmosphere is known.
  • the amount (mass concentration) of the particulate matter collected by the collection filter by spraying the sample gas onto the collection filter to collect the particulate matter contained in the sample gas on the collection filter.
  • an analyzer for measuring an element (and the content of the element) contained in the particulate matter is known (see, for example, Patent Document 1).
  • an analyzer that collects particulate matter collected at a predetermined location and installs the collected particulate matter at another location is used. It was analyzed using. That is, with the conventional analysis method, particulate matter could not be continuously analyzed at the place where exhaust gas or the like is discharged.
  • An object of the present invention is to accurately and continuously analyze particulate matter containing carbon as a main component.
  • the analysis device includes an inflow unit, a first image acquisition unit, a content information acquisition unit, and an analysis unit.
  • the inflow section allows sample gas containing particulate matter to flow in.
  • the first image acquisition unit acquires the first image data of the particulate matter flowing in the sample gas flowing through the inflow unit.
  • the content information acquisition unit acquires content information regarding the content of particulate matter contained in the sample gas.
  • the analysis unit analyzes the particulate matter based on the first image data and the content information.
  • the particulate matter is based on the first image data of the particulate matter flowing in the sample gas flowing into the inflow portion and the content information regarding the content of the particulate matter contained in the sample gas.
  • the first image data contains information on the appearance of the particulate matter flowing in the sample gas, and since the carbon-based particulate matter has a characteristic appearance, it is included with the first image data. Based on the quantity information, it is possible to accurately analyze the particulate matter whose main component is carbon.
  • the sample gas is made to flow into the inflow part, and the first image acquisition part acquires the image data (first image data) of the particulate matter contained in the sample gas flowing in the inflow part and analyzes it.
  • the unit analyzes the particulate matter based on the first image data. Since the above-mentioned analyzer can analyze particulate matter using image data in which the sample gas containing particulate matter is flowing, the sample gas is continuously flowed into the inflow portion to continuously form particulate matter. Can analyze substances.
  • the analysis unit may calculate information on the particle shape of the particulate matter based on the first image data. As a result, it is possible to accurately analyze the particulate matter containing carbon as a main component based on the particle shape of the particulate matter.
  • the analysis unit may calculate the first particle size information regarding the particle size of the particulate matter based on the first image data. This makes it possible to accurately analyze the carbon-based particulate matter based on the particle size of the particulate matter.
  • the analyzer may further include a scattered light information acquisition unit.
  • the scattered light information acquisition unit acquires scattered light information regarding the scattered light generated by the light incident on the sample gas flowing through the inflow unit being scattered by the particulate matter.
  • the analysis unit calculates the second particle size information regarding the particle size of the particulate matter contained in the sample gas based on the scattered light information. This makes it possible to accurately analyze the carbon-based particulate matter based on the particle size calculated from the information on the scattered light scattered by the particulate matter.
  • the inflow portion may have a first flow path and a second flow path.
  • a sample gas for acquiring the first image data by the first image acquisition unit flows in the first flow path.
  • a sample gas for acquiring content information flows through the second flow path by the content information acquisition unit.
  • the analysis unit may calculate the mass concentration of the particulate matter based on the content information. This makes it possible to accurately analyze the carbon-based particulate matter based on the mass concentration of the particulate matter and the appearance of the particulate matter.
  • the analyzer may further include a collection filter and a second image acquisition unit.
  • the collection filter collects particulate matter contained in the sample gas.
  • the second image acquisition unit acquires the second image data including the image of the particulate matter collected by the collection filter.
  • the analysis unit calculates information about the colored particulate matter based on the second image data. This makes it possible to more accurately analyze the carbon-based particulate matter based on the color of the particulate matter.
  • the analysis unit includes information on the brightness of the pixels of the image portion corresponding to the collection area where the particulate matter is collected in the second image data and the amount of the particulate matter collected by the collection filter.
  • Information on particulate matter may be calculated based on the calibration curve representing the relationship between.
  • the calibration curve may be calculated using the second image data obtained by collecting the particulate matter to be actually measured by the collection filter. As a result, information on particulate matter can be calculated more accurately.
  • the analysis unit standardizes the brightness of the pixels of the image portion corresponding to the collection area where the particulate matter is collected in the second image data with a predetermined parameter for the particulate matter, and obtains information about the particulate matter. It may be calculated. This makes it possible to calculate various information about particulate matter.
  • An analytical system includes a sampling probe, a diluter, and an analyzer.
  • the sampling probe samples a sample gas containing particulate matter.
  • the diluter dilutes the sample gas to produce a diluted sample gas.
  • the analyzer is an apparatus for analyzing particulate matter contained in the diluted sample gas, and has an inflow unit, a first image acquisition unit, a content information acquisition unit, and an analysis unit.
  • the inflow section allows the diluted sample gas to flow in.
  • the first image acquisition unit acquires the first image data of the particulate matter flowing in the diluted sample gas flowing through the inflow unit.
  • the content information acquisition unit acquires content information regarding the content of particulate matter contained in the diluted sample gas.
  • the analysis unit analyzes the particulate matter based on the first image data and the content information.
  • the sample gas sampled by the sampling probe is diluted by the diluter to generate the diluted sample gas.
  • the analyzer analyzes the particulate matter contained in the diluted sample gas.
  • the first image data of the particulate matter flowing in the diluted sample gas flowing into the inflow portion and the content information regarding the content of the particulate matter contained in the diluted sample gas And, based on the analysis of particulate matter.
  • the first image data contains information on the appearance of particulate matter flowing in the diluted sample gas, the carbon-based particulate matter is characteristic in appearance, and further, the diluted sample gas contains information.
  • the first image data Since only the particulate matter that can be discerned from the appearance of the particulate matter is contained from the first image data, even if the sample gas contains an excessive amount of the particulate matter, the first image data and the content information Based on the above, it is possible to accurately analyze particulate matter containing carbon as a main component.
  • the sample gas collected by the sampling probe is made to flow into the inflow section, and the first image acquisition section is the image data of the particulate matter contained in the sample gas flowing in the flow section (first image data). ) Is acquired, and the analysis unit analyzes the particulate matter based on the first image data.
  • the above analysis system can analyze particulate matter using image data in which the sample gas containing particulate matter is flowing, the sample gas is continuously sampled with a sampling probe and the sample gas is sampled. Can be continuously flowed into the inflow section to continuously analyze particulate matter.
  • the above analysis system may further include a blowback unit.
  • the blowback unit blows back the sampling probe.
  • the blowback by the blowback unit and the sampling of the sample gas may be executed at a predetermined time ratio. This makes it possible to sample an appropriate amount of particulate matter while reducing the amount of particulate matter deposited on the sampling probe.
  • the analysis method is an analysis method using an analyzer provided with an inflow portion capable of inflowing sample gas containing particulate matter.
  • the analysis method comprises the following steps. ⁇ Step to make sample gas flow into the inflow section. ⁇ The step of acquiring the first image data of the particulate matter flowing in the sample gas flowing through the inflow part. ⁇ Step to acquire content information regarding the content of particulate matter contained in the sample gas. ⁇ First step of analyzing particulate matter based on image data and content information.
  • the above analysis method is based on the first image data of the particulate matter flowing in the sample gas flowing into the inflow portion of the analyzer and the content information regarding the content of the particulate matter contained in the sample gas.
  • the first image data contains information on the appearance of the particulate matter flowing in the sample gas, and since the carbon-based particulate matter has a characteristic appearance, it is included with the first image data. Based on the quantity information, it is possible to accurately analyze the particulate matter whose main component is carbon.
  • image data (first image data) of the particulate matter contained in the sample gas flowing in the flow part is acquired, and the particulate matter is analyzed based on the first image data.
  • the sample gas is continuously flowed into the inflow portion to continuously flow the particles.
  • the program according to still another aspect of the present invention is a program for causing an analyzer provided with an inflow portion capable of inflowing sample gas to execute an analysis method for analyzing particulate matter contained in sample gas.
  • the above analytical method has the following steps: ⁇ Step to make sample gas flow into the inflow section. ⁇ The step of acquiring the first image data of the particulate matter flowing in the sample gas flowing through the inflow part. ⁇ Step to acquire content information regarding the content of particulate matter contained in the sample gas. ⁇ First step of analyzing particulate matter based on image data and content information.
  • the analyzer has a collection filter that collects particulate matter, a collection area in which the particulate matter of the collection filter is collected, and the particulate matter is not collected. It includes an image acquisition unit that acquires image data including a non-collection region, an analysis unit that analyzes particulate matter based on the image data, and a calibration unit that calibrates the image acquisition unit.
  • the calibration section An image based on the relationship between the amount of particulate matter collected in the collection area and the brightness of the pixels corresponding to the non-collection area and the amount of particulate matter collected when the image data was acquired. Calculate the theoretical brightness of the pixels corresponding to the non-collection area of the data, The image acquisition unit is calibrated based on the difference between the theoretical brightness and the actual brightness of the pixels corresponding to the non-collection region of the image data.
  • the theoretical value (theoretical brightness) of the brightness of the pixel corresponding to the non-collection region of the image data acquired by collecting the particulate matter with the collection filter is calculated, and the theoretical brightness and the image data are calculated.
  • the image acquisition unit is calibrated based on the difference from the actual luminance value (actual luminance) of the pixel corresponding to the non-collection region of. In this way, since the particulate matter collected by the collection filter is used for calibration, it is not necessary to separately arrange a calibration sample on the collection filter to acquire image data in order to calibrate the image acquisition unit, and the image is imaged.
  • the acquisition unit can be calibrated automatically.
  • the image acquisition unit may include a light source that irradiates the collected area and the non-collected area with light when acquiring image data.
  • the calibration unit adjusts the amount of light from the light source based on the difference between the theoretical brightness and the actual brightness. This makes it possible to acquire image data capable of accurately analyzing particulate matter.
  • a collection filter that collects particulate matter, a collection area where particulate matter is collected, and no particulate matter is collected.
  • It is a calibration method of an analyzer that includes an image acquisition unit that acquires image data including a non-collection area and analyzes particulate matter based on the image data.
  • the calibration method includes the following steps. ⁇ Based on the relationship between the amount of particulate matter collected in the collection area and the brightness of the pixels corresponding to the non-collection area, and the amount of particulate matter collected when image data was acquired. A step of calculating the theoretical brightness of a pixel corresponding to a non-collection area of image data. ⁇ A step of calibrating the image acquisition unit based on the difference between the theoretical brightness and the actual brightness of the pixels corresponding to the non-collection area of the image data.
  • the theoretical value (theoretical brightness) of the brightness of the pixel corresponding to the non-collection region of the image data acquired by collecting the particulate matter with the collection filter is calculated, and the theoretical brightness is used.
  • the image acquisition unit is calibrated based on the difference from the actual luminance value (actual luminance) of the pixel corresponding to the non-collection region of the image data. In this way, since the particulate matter collected by the collection filter is used for calibration, it is not necessary to separately arrange a calibration sample on the collection filter to acquire image data in order to calibrate the image acquisition unit, and the image is imaged.
  • the acquisition unit can be calibrated automatically and accurately.
  • the program according to still another aspect of the present invention is a collection filter for collecting particulate matter, a collection area where particulate matter is collected, and a non-collection where particulate matter is not collected. It is a program for causing the analyzer to execute a calibration method of an analyzer that analyzes particulate matter based on the image data, including an image acquisition unit that acquires image data including a collection area.
  • the above calibration method has the following steps. ⁇ Based on the relationship between the amount of particulate matter collected in the collection area and the brightness of the pixels corresponding to the non-collection area, and the amount of particulate matter collected when image data was acquired. A step of calculating the theoretical brightness of a pixel corresponding to a non-collection area of image data. ⁇ A step of calibrating the image acquisition unit based on the difference between the theoretical brightness and the actual brightness of the pixels corresponding to the non-collection area of the image data.
  • the above program calculates the theoretical value (theoretical brightness) of the brightness of the pixels corresponding to the non-collection region of the image data acquired by collecting the particulate matter with the collection filter, and calculates the theoretical brightness and the image data.
  • the analyzer is made to execute the process of calibrating the image acquisition unit based on the difference from the actual luminance value (actual luminance) of the pixel corresponding to the non-collection region. In this way, since the particulate matter collected by the collection filter is used for calibration, it is not necessary to separately arrange a calibration sample on the collection filter to acquire image data in order to calibrate the image acquisition unit, and the image is imaged.
  • the acquisition unit can be calibrated automatically and accurately.
  • the figure which shows an example of the time-dependent change of brightness The figure which shows an example of the time-dependent change of brightness standardized by the amount of particulate matter collected.
  • the analysis system 100 is a system for analyzing particulate matter FP generated in various combustion processes (for example, combustion process in thermal power generation, combustion process in steelmaking plant, combustion process of incinerator, combustion process of coal, etc.).
  • the particulate matter FP that can be measured is, for example, unburned content in ash produced in the combustion process of coal, fly ash produced in various combustion processes, and the like.
  • particulate matter FP generated in the combustion process and for example, dust (brake, tire, internal combustion engine, steam engine, exhaust gas purification device, dust from motor) generated from various transportation devices (automobiles, ships, etc.), etc.
  • dust can be the particulate matter FP to be measured by the analysis system 100.
  • dust generated by natural disasters such as volcanic eruptions (for example, volcanic ash), dust generated in mine development, and the like can also be measured as particulate matter FP.
  • FIG. 1 is a schematic diagram showing the configuration of an analysis system.
  • the analysis system 100 shown in FIG. 1 is a system that analyzes the particulate matter FP contained in the exhaust gas by using the exhaust gas generated in the combustion process as the measurement target gas (hereinafter referred to as sample gas SG).
  • the analysis system 100 mainly includes a sampling probe 1, a diluent 3, an analyzer 5, and a control unit 9.
  • the sampling probe 1 is fixed at a predetermined position on the side wall of the flue FL, and samples the sample gas SG from the flue FL through which the sample gas SG flows.
  • the sampling probe 1 has a gas suction amount by the first suction device P1 connected via the diluter 3 and the analyzer 5, and a gas suction amount by the second suction device P2 connected via the diluent 3.
  • the amount of diluted gas AR (described later) supplied to the diluter 3 and the sample gas SG at a flow rate determined by the sample gas SG are sampled from the flue FL.
  • the diluter 3 dilutes the sample gas SG by mixing the sample gas SG sampled by the sampling probe 1 and the diluting gas AR supplied from the supply device 7.
  • the gas produced by diluting the sample gas SG with the diluted gas AR is called a diluted sample gas DG.
  • the diluted gas AR is, for example, air.
  • the supply device 7 is, for example, a device that adjusts the flow rate and supplies the instrumenting air as a diluent gas AR.
  • the supply device 7 can be a device that adjusts the flow rate and supplies nitrogen or air supplied from a nitrogen cylinder or a (dry) air cylinder as a diluted gas AR.
  • air in the atmosphere sucked by a pump can be supplied as a diluted gas AR by removing dust with a dust filter and removing water with a drying treatment device to adjust the flow rate.
  • the analyzer 5 is an apparatus that analyzes the particulate matter FP contained in the diluted sample gas DG sampled from the diluter 3. As will be described later, the analyzer 5 includes an inflow section for inflowing the diluted sample gas DG, and the image data (first image data) obtained by photographing the particulate matter FP flowing in the diluted sample gas DG flowing through the inflow section. Based on this, the particulate matter FP is analyzed.
  • the control unit 9 has a CPU, a storage device (for example, RAM, ROM, hard disk, SSD, etc.), a display (for example, a liquid crystal display, etc.), and various interfaces (I / O port, communication interface, etc.). It is a computer system. Further, the control unit 9 may be hardware such as a SoC in which a computer system is integrated on one chip.
  • the control unit 9 controls each component of the analysis system 100 and performs various information processing related to the control.
  • a part or all of the control and information processing executed by the control unit 9 may be stored in the storage device of the control unit 9 and realized by a program that can be executed by the computer system constituting the control unit 9. Further, a part of the control and information processing by the control unit 9 may be realized by hardware.
  • control unit 9 may be a computer system in which the function of the calculation unit 55 of the analyzer 5 described later is incorporated, that is, the function of the control unit 9 and the function of the calculation unit 55 are the same in the computer system. It may be integrated, or the control unit 9 and the arithmetic unit 55 may be configured by individual computer systems.
  • FIG. 2 is a perspective view of the diluter.
  • FIG. 3 is a cross-sectional view of the diluter.
  • the diluter 3 has a mixing unit 31 and a diluting gas filling unit 33.
  • the mixing unit 31 is a hollow member having an internal space IS1 (FIG. 3). One end of the mixing unit 31 in the length direction is connected to the sampling probe 1 via the first gas line L1, and the other end is the first suction via the second gas line L2, the analyzer 5, and the third gas line L3. It is connected to the device P1. Further, the other end side of the mixing unit 31 (the side to which the second gas line L2 is connected) is connected to the second suction device P2 via the fourth gas line L4. A plurality of introduction ports 31a are provided on the side wall of the mixing portion 31, so that gas can flow into the internal space IS1 from the introduction port 31a.
  • the exhaust port of the second suction device P2 can be connected to the sampling probe 1 via the fifth gas line L5.
  • the fifth gas line L5 discharges the diluted sample gas DG discharged from the discharge port of the second suction device P2 from the sampling probe 1 to the flue FL. This makes it possible to prevent the particulate matter FP from being discharged to the outside such as in the atmosphere.
  • the first suction device P1 is, for example, a pump or the like.
  • the second suction device P2 is, for example, a pump, a blower, or the like.
  • the diluted gas filling portion 33 is in a “nested” state at the portion where a plurality of introduction ports 31a are formed in the length direction of the mixing portion 31, and the gap portion between the diluted gas filling portion 33 and the mixing portion 31 is gas tight. It is a hollow member that is stored in a state.
  • a diluted gas filling space IS2 is formed between the inner wall of the diluted gas filling unit 33 and the outer wall of the mixing unit 31.
  • the diluted gas filling space IS2 is connected to the supply device 7 via the fifth gas line L5.
  • the supply device 7 fills the diluted gas filling space IS2 with the diluted gas AR having a pressure higher than the pressure of the internal space IS1 of the mixing unit 31.
  • the sample gas SG flowing through the flue FL is inside via the sampling probe 1 and the first gas line L1 by the suction force of the first suction device P1 and the second suction device P2. Introduced in space IS1. Further, since the pressure of the diluted gas AR filled in the diluted gas filling space IS2 is higher than the pressure of the sample gas SG introduced into the internal space IS1, the diluted gas AR is introduced into the internal space IS1 through the introduction port 31a. ..
  • the sample gas SG is diluted with the diluted gas AR to generate the diluted sample gas DG.
  • the dilution ratio of the sample gas SG is determined by the amount of the sample gas SG introduced into the internal space IS1 and the amount of the diluted gas AR.
  • the diluted sample gas DG drawn into the second gas line L2 by suction by the first suction device P1 is introduced into the analyzer 5.
  • the remaining diluted sample gas DG is discharged to the outside by suction of the second suction device P2.
  • a particulate matter FP contained in the diluted sample gas DG is placed between the third gas line L3 and the first suction device P1 and / or between the fourth gas line L4 and the second suction device P2.
  • a filter for removing (not shown), a buffer tank for suppressing the pulsation of the diluted sample gas DG (not shown), a drain pot for removing water from the diluted sample gas DG, and the like may be provided.
  • a three-way switch is made between the second suction device P2 and the diluter 3 to enable gas flow or not.
  • a valve V (an example of a blowback portion) may be provided.
  • the control unit 9 controls the three-way valve V to make the second suction device P2 and the diluter 3 unable to flow gas, the control unit 9 enables gas flow between the second suction device P2 and the atmosphere.
  • the control unit 9 controls the three-way valve V to make gas flow impossible between the second suction device P2 and the diluent 3, so that the diluted gas AR cannot flow from the diluter 3.
  • Diluted gas AR is discharged from the sampling probe 1 to the flue FL after passing through the first gas line L1 to remove the particulate matter FP deposited and adhered to the sampling probe 1 and the first gas line L1 to the flue FL. It can be discharged (called blowback). At this time, the diluted gas AR flows into the analyzer 5 from the supply device 7.
  • control unit 9 can control the three-way valve V as described above to execute blowback for each analysis of the particulate matter FP.
  • the control unit 9 predetermineds blowback and sampling of the sample gas SG within a predetermined period (for example, 1 hour). Run at the specified time rate. For example, if it is predicted that the amount of particulate matter FP collected will be large (for example, if the previous amount of collected material was large), the period for performing blowback will be increased and the sample gas SG will be sampled. The period can be reduced. This makes it possible to prevent the particulate matter FP from being excessively collected by the collection filter 52 (FIG. 4) while reducing the amount of the particulate matter FP deposited in the sampling probe 1, the first gas line L1, and the like. ..
  • the period for performing blowback is reduced and the sample gas SG is sampled. You can increase the period.
  • the amount of particulate matter FP deposited in the sampling probe 1, the first gas line L1, etc. the amount of particulate matter sufficient to accurately perform the analysis on the collection filter 52 (FIG. 4, etc.). Can collect material FP.
  • blowback may be performed when the particulate matter FP deposited in the flow path of the sample gas SG exceeds a predetermined amount.
  • blowback execution control is realized by, for example, a program that can be executed by the computer system constituting the control unit 9. This allows blowback (and sampling of particulate matter FP) to be performed automatically.
  • the method for removing the particulate matter FP deposited in the flow path of the sample gas SG is not limited to the method by executing the above blowback.
  • particles deposited in the flow path by a method such as vibrating or giving an impact to a portion of the analysis system 100 in which the particulate matter FP is deposited for example, the connection portion between the sampling probe 1 and the first gas line L1). Particulate matter FP can be removed.
  • the analyzer 5 of the present embodiment mainly contains the first image data obtained by photographing the particulate matter FP flowing in the diluted sample gas DG and the particulate matter FP contained in the diluted sample gas DG. It is a device that analyzes particulate matter FP based on information on the content (called content information).
  • FIG. 4 is a diagram showing a specific configuration of the analyzer.
  • the analyzer 5 mainly includes an inflow unit 51a, a first image acquisition unit 53, a content information acquisition unit 54, and a calculation unit 55.
  • the inflow portion 51a is a hollow member, one end thereof is connected to the second gas line L2, and the other end is in an open state. The other end of the inflow portion 51a in the open state faces the suction portion 51b.
  • the suction portion 51b is a hollow member, one end of which faces the inflow portion 51a, and is in an open state.
  • the other end of the suction portion 51b is connected to the first suction device P1 via the third gas line L3.
  • a suction force is generated at one end of the suction unit 51b in the open state. Due to this suction force, the diluted sample gas DG generated in the diluter 3 passes through the second gas line L2 and flows into the inside of the inflow portion 51a.
  • the diluted sample gas DG that has flowed into the inside of the inflow section 51a due to the suction force generated by the suction section 51b is discharged from the open side of the inflow section 51a and is sucked into the suction section 51b.
  • the collection filter 52 is arranged between the inflow section 51a and the suction section 51b, the diluted sample gas DG discharged from the inflow section 51a is sucked by the suction section 51b. It passes through the collection filter 52 before.
  • the collection filter 52 collects the particulate matter FP contained in the diluted sample gas DG that passes through the collection filter 52.
  • the collection filter 52 is, for example, a white tape-like member having a reinforcing layer and a collecting layer formed by laminating on the reinforcing layer.
  • the reinforcing layer is formed of, for example, a non-woven fabric made of a polymer material (polyethylene or the like).
  • the collection layer has pores capable of collecting the particulate matter FP.
  • the collection layer is formed of, for example, a fluororesin-based material.
  • the collection filter 52 can be moved in the length direction (direction indicated by the thick arrow in FIG. 4) by sending out from the delivery reel 52a and winding up by the take-up reel 52b.
  • the first image acquisition unit 53 acquires image data (referred to as first image data) of the particulate matter FP flowing in the diluted sample gas DG that has flowed into the inflow unit 51a.
  • the first image acquisition unit 53 is, for example, a camera attached to an optical window 53a provided on the side wall of the inflow unit 51a.
  • the flow path changing member 61 that changes the flow path of the diluted sample gas DG as shown in FIG. 5 in the vicinity of the portion of the inside of the inflow portion 51a to which the first image acquisition portion 53 is attached. 63 is provided.
  • FIG. 5 is a diagram showing an example of a flow path of the diluted sample gas by the flow path changing member.
  • the flow path of the diluted sample gas DG introduced from the second gas line L2 is changed on the side closer to the suction portion 51b (downstream side).
  • the member 61 changes the direction opposite to the suction direction by the suction portion 51b.
  • the flow direction of the diluted sample gas DG is further changed to the suction direction by the flow path changing member 63 provided on the side closer to the second gas line L2 (upstream side).
  • the flow path changing members 61 and 63 are provided in the vicinity of the portion to which the first image acquisition portion 53 is attached, and the diluted sample gas DG tends to stay in the vicinity of the first image acquisition portion 53.
  • the first image acquisition unit 53 can photograph the same particulate matter FP flowing in the diluted sample gas DG for a longer period of time.
  • the content information acquisition unit 54 measures the data for calculating the mass concentration of the particulate matter FP collected by the collection filter 52. That is, in the present embodiment, the content information acquisition unit 54 measures the data for calculating the mass concentration of the particulate matter FP as the content information regarding the content of the particulate matter FP contained in the diluted sample gas DG. do.
  • the content information acquisition unit 54 has a ⁇ -ray source 54a and a ⁇ -ray detection unit 54b.
  • the ⁇ -ray source 54a is provided inside the inflow portion 51a, and irradiates ⁇ -rays toward the particulate matter FP collected by the collection filter 52.
  • the ⁇ -ray source 54a is, for example, a ⁇ -ray source having carbon-14 ( 14C ) as a radiation source.
  • the ⁇ -ray detection unit 54b is provided inside the suction unit 51b so as to face the ⁇ -ray source 54a, and calculates the mass concentration of the intensity of ⁇ -rays transmitted through the particulate matter FP collected by the collection filter 52. It is measured as content information to be used.
  • the ⁇ -ray detection unit 54b is, for example, a photomultiplier tube provided with a scintillator.
  • the arithmetic unit 55 includes a CPU, a storage device (for example, RAM, ROM, hard disk, SSD, etc.), a display (for example, a liquid crystal display, etc.), and various interfaces (I / O port, communication interface, etc.). It is a computer system. Further, the arithmetic unit 55 may be hardware such as SoC in which a computer system is integrated on one chip.
  • the calculation unit 55 performs various controls and information processing for analyzing the particulate matter FP contained in the diluted sample gas DG.
  • a part or all of the various controls and information processing executed by the arithmetic unit 55 may be stored in the storage device of the arithmetic unit 55 and realized by a program that can be executed by the computer system constituting the arithmetic unit 55. Further, a part of various control and information processing may be realized by hardware.
  • the calculation unit 55 has an analysis unit 55a as a functional block.
  • the analysis unit 55a contains the first image data of the particulate matter FP flowing in the diluted sample gas DG that has flowed into the inflow unit 51a acquired by the first image acquisition unit 53, and the ⁇ of the content information acquisition unit 54.
  • the particulate matter FP is analyzed based on the ⁇ -ray intensity measured by the line detection unit 54b.
  • the analysis unit 55a provides information on the shape of the particulate matter FP contained in the diluted sample gas DG (for example, the aspect ratio of the particulate matter FP) and the particulate matter, based on the first image data.
  • the first particle size information regarding the particle size (for example, the particle size distribution of the particulate matter FP) can be calculated. Further, the analysis unit 55a can calculate the mass concentration of the particulate matter FP based on the content information which is the ⁇ -ray intensity measured by the ⁇ -ray detection unit 54b.
  • the analyzer 5 of the present embodiment further includes a second image acquisition unit 56.
  • the second image acquisition unit 56 is provided at a predetermined position in the length direction of the collection filter 52 so that the light receiving surface faces the surface of the collection filter 52 on the side where the particulate matter FP is collected.
  • a CCD image sensor in which coupling elements (CCDs) are arranged in a two-dimensional array, and a CMOS image sensor in which light receiving elements are arranged in an array.
  • the second image acquisition unit 56 acquires image data (second image data) of the particulate matter FP collected by the collection filter 52 by suction of the suction unit 51b. Specifically, the portion of the collection filter 52 (referred to as the collection area) in which the particulate matter FP is collected by the suction of the suction unit 51b is moved in the length direction of the collection filter 52 to acquire a second image. After moving to just below the unit 56, the second image acquisition unit 56 determines that the collection area of the collection filter 52 and the area around which the particulate matter FP is not collected (referred to as a non-collection area). The second image data including the above is acquired.
  • the analyzer 5 is provided with a first light source 56a in order for the second image acquisition unit 56 to acquire appropriate second image data.
  • the first light source 56a is composed of, for example, a plurality of surface-mounted white LEDs, and uniformly illuminates the field of view of the second image acquisition unit 56 with white light. By irradiating the field of view of the second image acquisition unit 56 with uniform white light, it is possible to avoid acquiring the second image data affected by the distribution of the irradiation amount of the light.
  • the analysis unit 55a calculates information on the colored particulate matter FP based on the second image data acquired by the second image acquisition unit 56. For example, the analysis unit 55a is based on the difference between the brightness of the pixels included in the image portion corresponding to the collection region and the brightness of the pixels included in the image portion corresponding to the non-collection region in the second image data. Therefore, the content of the black particulate matter FP (for example, the particulate matter FP containing carbon as a main component) in the diluted sample gas DG can be calculated.
  • the black particulate matter FP for example, the particulate matter FP containing carbon as a main component
  • FIG. 6 will be used to explain the analytical operation of the particulate matter FP using the analysis system 100 having the above configuration.
  • FIG. 6 is a flowchart showing an analysis operation of particulate matter.
  • an operation example will be described when the period for executing blowback and the period for sampling the particulate matter FP are executed at a predetermined ratio when sampling the particulate matter FP.
  • step S1 the above blowback is executed.
  • the control unit 9 operates the second suction device P2, and in a state where the dilution gas AR is supplied from the supply device 7, controls the three-way valve V to control the second suction device P2 and the diluent 3. It is assumed that gas cannot flow, and gas can flow between the second suction device P2 and the atmosphere.
  • the diluted gas AR is discharged from the diluter 3 through the first gas line L1 and from the sampling probe 1 to the flue FL, and blowback of the sampling probe 1 and the first gas line L1 is executed.
  • step S2 determines in step S2 whether or not it is time to end the blowback after a predetermined period has elapsed from the start of the blowback.
  • the control unit 9 maintains a state in which the second suction device P2 and the diluter 3 cannot flow gas, and blowback is performed. Continue to run.
  • step S3 the sample gas SG is diluted with the diluted gas AR to generate a diluted sample gas DG.
  • the control unit 9 operates the first suction device P1 and the second suction device P2 to sample the sample gas SG flowing through the flue FL by the sampling probe 1, and the internal space IS1 of the mixing unit 31 of the diluent 3 is used.
  • the sample gas SG is charged into the diluted gas AR by filling the diluted gas AR into the diluted gas filling space IS2 from the supply device 7 and flowing the diluted gas AR from the diluted gas filling space IS2 into the internal space IS1. Dilute.
  • step S4 After diluting the sample gas SG to generate the diluted sample gas DG, in step S4, a part of the diluted sample gas DG in the internal space IS1 is sucked by the suction force of the first suction device P1 to the inflow portion 51a of the analyzer 5. Inflow to.
  • the diluted sample gas DG is introduced into the inflow portion 51a by suction of the suction portion 51b. Further, a collection filter 52 is provided between the inflow portion 51a and the suction portion 51b. Therefore, while the diluted sample gas DG flows into the inflow section 51a and then is sucked into the suction section 51b, the particulate matter FP contained in the diluted sample gas DG is collected by the collection filter 52.
  • the flow velocity of the diluted sample gas DG in the inflow portion 51a is controlled so that the shape of the particulate matter FP flowing in the inflow portion 51a can be discriminated by image processing or the like from the first image data.
  • the flow rate of the diluted sample gas DG in the inflow unit 51a can be controlled, for example, by controlling the suction flow rate of the diluted sample gas DG by the first suction device P1.
  • the first image acquisition section 53 acquires the first image data of the particulate matter FP flowing in the diluted sample gas DG flowing through the inflow section 51a. do.
  • the first image data acquired by the first image acquisition unit 53 is transmitted to the analysis unit 55a.
  • the first image acquisition unit 53 adjusts the shutter speed for acquiring the first image data according to the flow velocity of the diluted sample gas DG in the inflow unit 51a. As a result, the first image acquisition unit 53 can acquire the first image data in which the shape of the particulate matter FP can be clearly discriminated.
  • the content information acquisition unit 54 acquires the content information regarding the content of the particulate matter FP contained in the diluted sample gas DG in step S6.
  • the ⁇ -ray source 54a of the content information acquisition unit 54 emits ⁇ -rays toward the particulate matter FP collected by the collection filter 52, and ⁇ -rays after passing through the particulate matter FP.
  • the ⁇ -ray detection unit 54b measures the intensity of the above. The ⁇ -ray intensity measured by the ⁇ -ray detection unit 54b is transmitted to the analysis unit 55a.
  • a diluted sample gas DG is allowed to flow into the inflow section 51a for a predetermined period of time (for example, 1 hour) to collect the particulate matter FP in the collection filter 52, and then the collection filter 52 is used. By moving in the length direction, the collection region of the particulate matter FP is moved directly under the second image acquisition unit 56.
  • the predetermined period for inflowing the diluted sample gas DG is determined based on the ratio of the blowback period and the sampling period determined in advance according to predetermined conditions.
  • the second image acquisition unit 56 After moving the collection area directly under the second image acquisition unit 56, in step S7, the second image acquisition unit 56 captures the collection area and its surroundings with the light from the first light source 56a. The second image data including the collecting area and the non-collecting area is acquired. The second image data acquired by the second image acquisition unit 56 is transmitted to the analysis unit 55a.
  • the analysis unit 55a determines the particles contained in the diluted sample gas DG (sample gas SG) based on these information.
  • the state substance FP is analyzed.
  • the properties of the particulate matter FP contained in the exhaust gas generated in the combustion process were investigated. As a result, it was found that the non-spherical particulate matter FP is often unburned in ash. It was also found that there is a strong correlation between the average particle size of the particulate matter FP and the proportion of unburned content in the ash contained in the particulate matter FP. Specifically, it was found that the larger the average particle size of the particulate matter FP, the larger the proportion of unburned content in the ash contained in the particulate matter FP.
  • the particulate matter FP contained a large amount of unburned content in the ash, the particulate matter FP became blacker. Specifically, it was found that the blacker the particulate matter FP collected by the collection filter 52, the higher the proportion of unburned matter in the ash contained in the collected particulate matter FP. ..
  • the analysis unit 55a executes, for example, a process of grasping the shape of the image included in the image such as edge processing on the first image data to obtain the shape of the particulate matter FP included in the first image data. grasp. After grasping the shape of the particulate matter FP, the analysis unit 55a provides information on the particle shape such as the aspect ratio of the particulate matter FP (ratio of the major axis to the minor axis of the particulate matter FP) included in the first image data. , Calculate information on particle size such as the average particle size of particulate matter FP.
  • the analysis unit 55a When the aspect ratio of the analysis unit 55a deviates greatly from 1 (meaning a true sphere) and the first image data contains many images of the non-spherical particulate matter FP, the analysis unit 55a has an average particle size of the particulate matter FP. When is large, it can be determined that the particulate matter FP contains a large amount of unburned matter in the ash. Further, the analysis unit 55a uses a relational expression expressing the relationship between the average particle size of the particulate matter FP and the ratio of the unburned portion in the ash contained in the particulate matter FP, and the particulate matter contained in the first image data. From the average particle size of the particulate matter FP, the ratio of the unburned content in the ash contained in the particulate matter FP can be specifically calculated.
  • the analysis unit 55a calculates the mass concentration of the particulate matter FP based on the ⁇ -ray intensity measured by the ⁇ -ray detection unit 54b.
  • the analysis unit 55a can calculate the mass concentration of the unburned portion in the ash by using the ratio of the unburned portion in the ash contained in the particulate matter FP and the mass concentration of the particulate matter FP.
  • the analysis unit 55a can calculate information on the colored particulate matter FP collected by the collection filter 52 based on the second image data acquired in step S7 above. Specifically, the analysis unit 55a can calculate information about the particulate matter FP by using the brightness of the pixels included in the second image data.
  • FIG. 7 is a diagram showing an example of a luminance histogram.
  • peaks are seen in the luminance Br1 and the luminance Br2.
  • the first peak PE1 in the small luminance Br1 shifts to the smaller luminance side as the amount of the particulate matter FP collected by the collection filter 52 and / or the amount of carbon contained in the particulate matter FP increases. That is, the luminance Br1 at which the first peak PE1 appears becomes smaller as the amount of collected particulate matter FP and / or the amount of carbon contained in the particulate matter FP increases.
  • the second peak PE2 at the high luminance Br2 slightly shifts depending on the amount of the particulate matter FP collected, but the shift amount is not as large as the first peak PE1. That is, the luminance Br2 at which the second peak PE2 appears is hardly affected by the presence of the particulate matter FP.
  • the first peak PE1 in the luminance Br1 represents the luminance distribution of the image portion corresponding to the collection region where the particulate matter FP is collected
  • the second peak PE2 in the luminance Br2 is the particulate matter FP collected. It can be seen that it represents the luminance distribution of the image portion corresponding to the non-collected region. Therefore, the analysis unit 55a can calculate information on the collection amount of the particulate matter FP collected by the collection filter 52 based on the brightness of the pixels of the image portion having a small brightness in the second image data.
  • the analysis unit 55a has, for example, the brightness of the pixels of the image portion corresponding to the collection region in the second image data and the amount of carbon contained in the particulate matter FP collected by the collection filter 52. Based on the calibration curve showing the relationship with (information on the amount of particulate matter FP collected), the amount of carbon contained in the particulate matter FP collected by the collection filter 52 is captured by the particulate matter FP. It can be calculated as information on the amount of collection.
  • the above calibration curve shows the second image data acquired by collecting the particulate matter FP and the carbon contained in the particulate matter FP collected by the collection filter 52 when the second image data was acquired. It can be calculated from the relationship between the amount and.
  • the amount of carbon contained in the collected particulate matter FP is, for example, the amount of carbon dioxide generated when the collecting filter that has collected the particulate matter FP is burned at a predetermined temperature (for example, 2000 ° C.). Can be calculated from.
  • FIG. 8 is an example of graphing the relationship between the brightness of the pixels of the image portion having a small brightness in the second image data and the amount of carbon contained in the particulate matter FP collected by the collection filter. It is a figure which shows.
  • the second image data used when calculating the calibration curve is acquired by collecting the particulate matter FP, which is the actual measurement target, with the collection filter 52 at the installation location of the analysis system 100.
  • the present inventor collects the standard substance with a collection filter and acquires the second image data, or the second image acquired by collecting the particulate substance using an experimental device imitating the analysis system 100. Different calibration curves are calculated when using the data and when using the second image data obtained by collecting the particulate matter FP to be actually measured at the installation location of the analysis system 100. I found it.
  • the condition was different from the condition when the particulate matter was collected by the collection filter using the experimental device.
  • the sample gas SG that is, the gas generated in the combustion process
  • Collection using experimental equipment is carried out at room temperature.
  • the calibration curve used when analyzing the particulate matter FP based on the second image data is collected by the collection filter 52 at the installation site of the analysis system 100 for the particulate matter FP to be actually measured.
  • a more accurate calibration curve can be calculated and the particulate matter FP can be analyzed more accurately.
  • the information on the particulate matter FP can be calculated by using the data in which the luminance Br1 of the pixel of the image portion having a small brightness in the second image data is standardized by a predetermined parameter on the particulate matter FP.
  • a predetermined parameter on the particulate matter FP For example, as shown in FIG. 9, when the luminance Br1 changes with time, when the luminance Br1 is standardized by the amount of the particulate matter FP collected, the luminance Br1 is collected as shown in FIG. 10A.
  • the change over time (indicated by a solid line in FIG. 10A) of the value (brightness / collected amount) standardized in 1 is different from the change over time in brightness Br1 (indicated by a broken line in FIG. 10A).
  • FIG. 9 is a diagram showing an example of a change in brightness with time.
  • FIG. 10A is a diagram showing an example of a change in brightness over time, which is standardized by the amount of particulate matter collected.
  • the above-mentioned difference in the change with time suggests that the ratio of the unburned content in the ash contained in the particulate matter FP collected at each time changes with time. Since the unburned component in the ash has a black color, the brightness Br1 when the proportion of the unburned component in the ash contained in the particulate matter FP is large is the brightness Br1 when the proportion of the unburned component in the ash is small. In comparison, even if the collected amount of the particulate matter FP is the same, it becomes smaller.
  • FIG. 10B the change over time of the product value (luminance * (collection amount / collection time)) of the luminance Br1 and the collection amount of the particulate matter FP per unit time is shown in FIG. 10C.
  • the change over time of the value (luminance / (collection amount / collection time)) in which the brightness Br1 is standardized by the collection amount of the particulate matter FP per unit time for example, the combustion conditions in the combustion process.
  • FIG. 10B is a diagram showing an example of a change over time in the value of the product of the luminance and the amount of particulate matter collected per unit time.
  • FIG. 10C is a diagram showing an example of a change over time in which the luminance is standardized by the amount of particulate matter collected per unit time.
  • the analysis unit 55a replaces the luminance Br1 of the second image data with the luminance Br1 of the image portion corresponding to the collection region of the second image data and the image portion corresponding to the non-collection region of the second image data.
  • Information on the particulate matter FP collected by the collection filter 52 may be calculated based on the difference ⁇ BR (FIG. 7) from the brightness Br2 of the above. For example, in the analysis unit 55a, if the difference ⁇ BR between the luminance Br1 of the first peak PE1 and the luminance Br2 of the second peak PE2 is large, the ratio of the unburned portion in the ash is large, and if it is small, the proportion of the unburned portion in the ash is small. Can be determined.
  • the brightness histogram shown in FIG. 7 is generated by using the second image data as it is, but is not limited to this, and the second image data is used when analyzing the particulate matter using the second image data. May be reversed in black and white.
  • the first peak PE1 is the luminance distribution of the image portion corresponding to the non-collection region
  • the second peak PE2 is the luminance distribution of the image portion corresponding to the capture region. It becomes a distribution.
  • the first image data of the particulate matter FP flowing in the diluted sample gas DG flowing into the inflow portion 51a and the content of the particulate matter contained in the diluted sample gas DG are contained.
  • Particulate matter FP is analyzed based on the amount information.
  • the first image data contains information on the appearance of the particulate matter FP flowing in the sample gas SG, and the carbon-based particulate matter FP produced in the combustion process is characterized by its appearance. Based on the first image data and the content information, it is possible to accurately analyze the particulate matter FP whose main component is carbon. Further, by analyzing the particulate matter FP based on the second image data in addition to the first image data and the mass concentration of the particulate matter FP, the particulate matter FP can be analyzed more accurately.
  • the analyzer 5 can analyze the particulate matter FP using the image data in which the diluted sample gas DG containing the particulate matter FP is flowing, the diluted sample gas DG is continuously applied to the inflow portion 51a. Particulate matter FP can be continuously analyzed by inflowing.
  • the analysis unit 55a displays the analysis result of the particulate matter FP on the display.
  • the first image display unit D1 for displaying the first image data, the second image display unit D2 for displaying the second image data, and the particle size distribution of the particulate matter FP are displayed.
  • a display screen D having a particle size distribution display unit D3, a ratio display unit D4 for displaying the ratio of unburned content in ash, and a concentration display unit D5 for displaying the concentration of unburned content in ash can be displayed.
  • FIG. 11 is a diagram showing an example of an analysis result display screen.
  • the inflow unit 51a includes a first flow path FL1 in which the first image acquisition unit 53 is provided and a diluted sample gas DG for acquiring the first image data flows.
  • a ⁇ -radioactive source 54a may be provided and may have a second flow path FL2 through which a diluted sample gas DG for acquiring content information flows.
  • FIG. 12 is a diagram showing an example of a modification of the inflow portion.
  • the flow velocity of the diluted sample gas DG in the first flow path FL1 for acquiring the first image data and the flow velocity of the diluted sample gas DG for acquiring the content information can be independently adjusted.
  • the first image data and the content information can be acquired under the optimum conditions.
  • a ⁇ -ray source to prevent clogging of the particulate matter FP while slowing the flow velocity of the diluted sample gas DG in the first flow path FL1 in order to acquire the particulate matter FP as a clear image in the first image data. It is possible to prevent the flow velocity of the diluted sample gas DG in the second flow path FL2 provided with 54a from becoming excessively slow.
  • the analyzer 5 includes a first image acquisition unit 53 for acquiring the first image data of the particulate matter FP flowing in the inflow unit 51a, a content information acquisition unit 54 for acquiring content information ( ⁇ -ray intensity), and a content information acquisition unit 54. It may further have an apparatus for acquiring information used for analysis of particulate matter FP other than the above. For example, as shown in FIG. 13, the analyzer 5 acquires scattered light information regarding scattered light generated by scattering light incident on the diluted sample gas DG flowing through the inflow portion 51a by the particulate matter FP. It may further have an acquisition unit 57.
  • FIG. 13 is a diagram showing an example of a modification of the analyzer.
  • the scattered light information acquisition unit 57 has a second light source 57a that emits the laser light L toward the diluted sample gas DG inside the inflow unit 51a, and particles while the laser light L passes through the diluted sample gas DG. It has a scattered light detection unit 57b that detects scattered light generated by scattering by the state substance FP.
  • the analysis unit 55a has, for example, the number of particulate matter FPs contained in the diluted sample gas DG and the particle size distribution (second) based on the intensity of the scattered light (scattered light information) detected by the scattered light detection unit 57b. An example of particle size information) can be calculated.
  • the scattered light information (scattered light intensity) obtained by the scattered light information acquisition unit 57 can also be used to calculate the number of particulate matter FP contained in the diluted sample gas DG.
  • the number of particulate matter FP contained in the diluted sample gas DG corresponds to the content of the particulate matter FP. Therefore, in the analyzer 5 including the scattered light information acquisition unit 57, as shown in FIG. 14, the ⁇ -ray source 54a and the ⁇ -ray detection unit 54b are omitted, and the analysis unit 55a is obtained by the scattered light information acquisition unit 57.
  • the content of the particulate matter FP contained in the diluted sample gas DG may be calculated based on the scattered light information (scattered light intensity).
  • FIG. 14 is a diagram showing another example of a modification of the analyzer.
  • the analyzer for analyzing the particulate matter FP may be further provided with another analyzer. Specifically, as shown in FIG. 15, the analyzer 5'according to the second embodiment performs gas analysis in addition to the first image acquisition unit 53, the content information acquisition unit 54, and the second image acquisition unit 56. A portion 58 may be further provided.
  • FIG. 15 is a diagram showing the configuration of the analyzer according to the second embodiment. As will be described later, since the gas analysis unit 58 burns the particulate matter FP to generate gas, in the analyzer 5'according to the second embodiment, the particulate matter FP is collected by the collection filter 52. Instead, a member that collects the particulate matter FP (for example, a member similar to the collection filter 52) is placed on the sample support portion 52'made of a heat-resistant material such as copper.
  • the gas analysis unit 58 detects the gas generated by burning the particulate matter FP (for example, carbon dioxide (CO 2 ), hydrocarbon (for example, methane (CH 4 ))), and thereby contains carbon as a main component.
  • the particulate matter FP is analyzed.
  • the gas analysis unit 58 has a combustion unit 58a and a gas detection unit 58b.
  • the combustion unit 58a burns the collected particulate matter FP to generate gas.
  • the combustion unit 58a is, for example, a heating device such as a heater.
  • the gas generated by burning the particulate matter FP depends on the gas atmosphere around the combustion portion 58a.
  • oxygen air
  • carbon dioxide is generated by the combustion of the particulate matter FP.
  • methane is generated by the combustion of the particulate matter FP.
  • the gas detection unit 58b detects the gas generated by the combustion of the particulate matter FP by the combustion unit 58a.
  • the gas detection unit 58b is a device that detects gas by absorbing light (infrared light) by a measurement target gas such as a non-dispersive infrared absorption (NDIR) method.
  • NDIR non-dispersive infrared absorption
  • the gas detection unit 58b can be used as a hydrogen flame ionization detector (FID).
  • the analyzer 5' having the above configuration can analyze the carbon content of the particulate matter FP containing carbon as a component and what kind of carbon compound constitutes the particulate matter FP. For example, it is possible to analyze the carbon compounds constituting the particulate matter FP and the content ratio of each carbon compound by utilizing the fact that the combustion temperature differs depending on the type of carbon compound.
  • the particulate matter FP when the generation of gas is detected when the particulate matter FP is heated to about 580 ° C, the particulate matter FP contains organic carbon (OC). Can be judged.
  • the generation of gas when the particulate matter FP is heated to about 840 ° C, it can be determined that the particulate matter FP contains elemental carbon (EC). It is also possible to calculate the ratio of organic carbon and elemental carbon constituting the particulate matter FP from the amount of gas generated when heated to about 580 ° C and the amount of gas generated when heated to about 840 ° C. can.
  • the particulate matter FP is obtained using the second image data.
  • the device for analysis is provided with a first light source 56a that illuminates the viewing range of the second image acquisition unit 56.
  • the characteristics of the first light source 56a change with time.
  • the brightness of the second image data may be different.
  • the same amount of particulate matter is analyzed. Even if the second image data is acquired when the FPs are collected, if the brightness of the second image data is different, different analysis results are calculated due to the difference in brightness.
  • the device is calibrated at predetermined intervals.
  • a calibration sample is manually placed on the collection filter 52
  • a second image data is acquired using the calibration sample placed on the collection filter 52
  • the device is calibrated using the second image data.
  • the device calibration for the analysis of the particulate matter FP using the second image data is automatically performed without arranging the calibration sample on the collection filter 52.
  • the functional block configuration of the arithmetic unit 55 that executes the calibration method of the device is different from that of the first embodiment, and the other configurations and functions are related to the first embodiment. It is the same as the analyzer 5. Therefore, in the following, only the functional block configuration of the calculation unit 55 ′′ of the analyzer 5 ′′ will be described, and the description of other configurations other than the calculation unit 55 ′ will be omitted.
  • FIG. 16 is a diagram showing a functional block configuration of a calculation unit of the analyzer according to the third embodiment.
  • the calculation unit 55' has a storage unit 55b and a calibration unit 55c as functional blocks in addition to the analysis unit 55a according to the first embodiment.
  • the storage unit 55b is a part or all of the storage area formed in the storage device provided in the computer system constituting the calculation unit 55', controls the analysis device 5'', and is in the form of particles using the second image data.
  • Various parameters for analyzing the substance FP are stored.
  • the storage unit 55b stores the calibration curve SC and the non-collection region luminance data LD.
  • the calibration curve SC represents the relationship between the amount of the particulate matter FP collected in the collection area and the brightness of the pixel of the image portion corresponding to the collection area of the second image data.
  • the calibration curve SC is used to calculate the amount of the particulate matter FP collected using the second image data actually acquired.
  • the calibration curve SC changes the collection amount of the particulate matter FP, for example, by changing the second image data including the collection area and the non-collection area where the particulate matter FP is collected at a known collection amount.
  • a plurality of data are acquired, the brightness histogram described in the first embodiment is generated for each second image data, and an approximate expression expressing the relationship between the brightness of the first peak of each brightness histogram and the corresponding collection amount is fitted or the like. It can be obtained by calculating in advance.
  • the luminance histogram can be generated, for example, by scanning the pixels included in the second image data, counting the number of pixels having a specific luminance, and associating the luminance with the number of pixels having the luminance.
  • the calibration curve SC can be used as data (table) in which the brightness of the first peak of each luminance histogram and the corresponding collection amount are associated with each other.
  • the non-collection region brightness data LD represents the relationship between the collection amount of the particulate matter FP collected in the collection region and the brightness of the pixels of the image portion corresponding to the non-collection region of the second image data. .. As described in the first embodiment, the brightness of the image portion corresponding to the non-collection region of the second image data slightly changes depending on the collection amount of the particulate matter FP collected in the collection region.
  • the non-collection area luminance data LD is a theoretical value of the luminance of the pixel of the image portion corresponding to the non-collection area of the second image data acquired when the particulate matter FP is collected in the collection area ( It is used when calculating the theoretical brightness).
  • the non-collection region luminance data LD collects, for example, the second image data including the collection region and the non-collection region in which the particulate matter FP is collected at a known collection amount. Multiple acquisitions are made by changing the amount, a brightness histogram is generated for each second image data, and an approximate expression expressing the relationship between the brightness of the second peak of each brightness histogram and the corresponding collection amount is calculated in advance by fitting or the like. It can be obtained by keeping it.
  • non-collection area luminance data LD can be used as data (table) in which the luminance of the second peak of each luminance histogram is associated with the corresponding luminance amount.
  • the calibration unit 55c calibrates the analyzer 5 ′′. Specifically, the calibration unit 55c acquires the second image data including the collection region and the non-collection region of the particulate matter FP collected by the collection filter 52, and uses the second image data to obtain the second image data. 2 The image acquisition unit 56 and / or the first light source 56a are automatically adjusted.
  • FIG. 17 is a flowchart showing a calibration operation of the analyzer using the second image data.
  • the calibration operation described below is performed every time the particulate matter FP is collected and analyzed using the second image data. Specifically, after the completion of one analysis operation, the collection area for the next analysis is moved and the next analysis operation is started (that is, the particulate matter FP is used for the next analysis. While being collected), the following calibration operation is performed using the second image data used for the completed analysis. Since the analysis operation of the particulate matter FP using the second image data is the same as that described in the first embodiment, the description thereof is omitted here.
  • the calibration unit 55c After calculating the theoretical brightness, the calibration unit 55c in step S13, based on the second image data used for calculating the collection amount and the theoretical brightness, of the image portion corresponding to the non-collection region of the second image data.
  • the actual brightness of the pixel (called the actual brightness) is calculated.
  • the calibration unit 55c calculates the brightness of the second peak of the luminance histogram calculated in step S11 (referred to as luminance P2') as the actual luminance.
  • the calibration unit 55c sets the second image acquisition unit 56 and / or the first light source 56a based on the difference between the theoretical luminance and the actual luminance ( PT' -P 2 ') in step S14. Calibrate. For example, when the difference between the theoretical brightness and the actual brightness ( PT' -P 2 ') is a positive value, the amount of light of the first light source 56a when the second image data is acquired is lower than the initial value. Means. In this case, the calibration unit 55c increases the exposure time of the second image acquisition unit 56 when acquiring the second image data. Alternatively, the amount of light emitted from the first light source 56a is increased.
  • the calibration unit 55c shortens the exposure time of the second image acquisition unit 56 when acquiring the second image data. Alternatively, the amount of light emitted from the first light source 56a is reduced.
  • the adjustment range of the exposure time of the second image acquisition unit 56 and the amount of light of the first light source 56a can be determined based on the absolute value of the difference between the theoretical brightness and the actual brightness. For example, if the absolute value of the difference between the theoretical brightness and the actual brightness is large, the calibration unit 55c increases the adjustment range of the exposure time of the second image acquisition unit 56 and the light amount of the first light source 56a. On the other hand, if the absolute value of the difference between the theoretical brightness and the actual brightness is small, the calibration unit 55c reduces the adjustment range of the exposure time of the second image acquisition unit 56 and the light amount of the first light source 56a.
  • the pixels corresponding to the non-collection region of the second image data used for the analysis (that is, acquired by collecting the particulate matter FP by the collection filter 52).
  • the second image acquisition unit 56 and / or The first light source 56a is calibrated.
  • a calibration sample is separately added to the collection filter in order to calibrate the second image acquisition unit 56 and / or the first light source 56a. It is not necessary to arrange and acquire the second image data, and the second image acquisition unit 56 and / or the first light source 56a can be automatically calibrated.
  • the analyzer 5'' it takes a certain period of time (for example, 1 hour) to collect the particulate matter FP to the collection filter 52 for performing the analysis, so that the particulate matter for the next analysis is taken.
  • a certain period of time for example, 1 hour
  • the above calibration operation is executed at the same time as the collection of the particulate matter FP.
  • the analyzer 5'' can be operated efficiently.
  • the start timing of the calibration operation for example, when a user gives a command using the input device of the calculation unit 55', or when a decrease in the amount of light emitted from the first light source 56a is detected.
  • the above calibration operation may be performed separately from the analysis of the particulate matter FP. In this case, if necessary, the second image data used for calibration may be acquired.
  • the particulate matter FP collected in the same collection area used for analysis and calibration using the second image acquisition unit 56 and the first light source 56a calibrated by executing the calibration operation is the first. 2
  • the image data may be acquired again, and the analysis of the particulate matter FP may be performed again using the acquired second image data.
  • FIG. 18 is a diagram showing a configuration of application example 1 of the analysis system.
  • the application example shown in FIG. 18 is an example in which the analysis system 100 is applied to control the combustion of the boiler 200 of coal-fired power generation. Since the boiler 200 for coal-fired power generation uses coal as fuel, gas containing coal ash is discharged from the boiler 200. Therefore, in the analysis system 100 in Application Example 1, the exhaust gas from the boiler 200 is used as the sample gas SG, and the coal ash is used as the particulate matter FP to be analyzed.
  • the particulate matter FP contained in the gas discharged from the boiler 200 is collected by the electrostatic precipitator 220.
  • the analysis system 100 samples the gas flowing in the flue from the boiler 200 to the electrostatic precipitator 220 as the sample gas SG.
  • the analysis system 100 performs an analysis on the amount of carbon components of the particulate matter FP (coal ash) contained in the sample gas SG.
  • the analysis system 100 outputs a control signal based on the analysis result regarding the amount of carbon components to the control panel 240 that controls the combustion of the boiler 200.
  • the control panel 240 can control the combustion of the boiler 200 based on the control signal from the analysis system 100, for example, by adjusting the amount of coal charged into the boiler 200. For example, when an analysis result is obtained that the particulate matter FP contains a large amount of carbon components, the control panel 240 determines that there is a large amount of unburned coal in the boiler 200, and adjusts the amount of coal input. Controls such as (decreasing), adjusting the thermal power of the burner in the boiler 200 (increasing the thermal power), and adjusting the angle of the burner can be performed.
  • the analysis system 100 including the diluter 3 can dilute the gas containing the high concentration particulate matter FP, the gas discharged from the boiler 200 that generates a large amount of coal ash is sample gas SG as in Application Example 1. It can be effectively applied in the case of.
  • FIG. 19 is a diagram showing a configuration of application example 2 of the analysis system.
  • the application example shown in FIG. 19 is intended to protect the environment of the gas (particulate matter FP) discharged from the combustion plant 300 to the atmosphere through the chimney 320 in the analysis system 100.
  • the combustion plant 300 may emit a gas containing a large amount of particulate matter FP.
  • the particulate matter FP also drops to an area away from the combustion plant 300 (for example, an area near an urban area). There is.
  • the analysis system 100 in Application Example 2 samples the gas flowing in the flue from the combustion plant 300 to the chimney 320 as the sample gas SG.
  • the analysis system 100 executes an analysis on the components contained in the particulate matter FP contained in the sample gas SG. Further, a measuring device 400 provided in an area away from the combustion plant 300 and capable of communicating with the analysis system 100 executes an analysis on the components contained in the particulate matter FP that has fallen into the area.
  • the measuring device 400 may be the analyzers 5, 5 ′′, 5 ′′ described above, or other analyzers.
  • the analysis system 100 compares the analysis results regarding the components contained in the particulate matter FP obtained by the analysis system 100 with the analysis results regarding the components contained in the particulate matter FP obtained by the measuring device 400, and analyzes these. Determine if there is a correlation between the results.
  • the "correlation" here means, for example, whether or not the same element is contained in the same ratio.
  • the analysis system 100 When there is a correlation between the analysis result of the analysis system 100 and the analysis result of the measuring device 400, the analysis system 100 indicates that the particulate matter FP has flown to an area away from the combustion plant 300. to decide. In this case, the analysis system 100 gives a notification that it is necessary to suppress the generation of the particulate matter FP, or a warning that the particulate matter FP is excessively generated, to the control panel that controls the combustion plant 300. Output to 340.
  • the control panel 340 may control the amount of particulate matter FP generated from the combustion plant 300 by adjusting the combustion conditions in the combustion plant 300 based on the notification or warning from the analysis system 100. can.
  • the analysis system 100 including the diluter 3 can dilute the gas containing the high concentration particulate matter FP, it is discharged from the combustion plant 300 which may generate a large amount of the particulate matter FP as in Application Example 2. It can be effectively applied when the gas to be used is the sample gas SG.
  • the analyzers 5, 5 ′′ and 5 ′′ may further include an elemental analysis unit that analyzes the elements contained in the particulate matter FP.
  • the elemental analysis unit has, for example, an X-ray source that irradiates the particulate matter FP with X-rays, and a detector that measures fluorescent X-rays generated from the particulate matter FP by irradiating with X-rays. It is a device. By providing the elemental analysis unit, it is possible to determine whether or not the particulate matter FP contains an element other than carbon (for example, a metal element).
  • the second image acquisition unit 56 may be omitted.
  • the content of the particulate matter FP contained in the diluted sample gas DG and the ratio of the unburned portion in the ash contained in the particulate matter FP are, for example, the first image data acquired by the first image acquisition unit 53. And / Or, it can be calculated based on the information on the particle shape of the particulate matter FP and the information on the particle size (particle size distribution) calculated based on the scattered light information acquired by the scattered light information acquisition unit 57.
  • the first image acquisition unit 53, the content information acquisition unit 54, the scattered light information acquisition unit 57, and / or the gas analysis unit 58 may be omitted. good.
  • the calibration unit 55c recalculates the collected amount of the particulate matter FP after the analysis of the particulate matter FP using the second image data.
  • the present invention is not limited to this, and if the collected amount is calculated in the analysis of the particulate matter FP, the calibration unit 55c may calculate the theoretical luminance by using the collected amount calculated at the time of analysis.
  • FIG. 20 is a diagram showing another embodiment of the analysis system.
  • the analyzers 5, 5 ′′ and 5 ′′ may have a “color sample”.
  • the color sample is an arrangement of samples having a plurality of colors (for example, white, gray, and black) side by side.
  • the "gray” may include a plurality of different shades of gray.
  • the "sample” may be in a form in which the difference in color can be visually recognized, for example, a particulate matter FP collected at a different collection amount.
  • the "color sample” may be composed of one color.
  • the second image acquisition unit and / or the first light source 56a can be calibrated using the image obtained by photographing this color sample by the second image acquisition unit 56.
  • the color sample can be arranged, for example, at the end of the collection filter 52 in the width direction.
  • the color sample can be directly included in the field of view of the second image acquisition unit 56.
  • the color sample may be arranged outside the field of view of the second image acquisition unit 56. In this case, for example, the color sample can be reflected in a mirror, and the image of the color sample reflected in the mirror can be included in the field of view of the second image acquisition unit 56.
  • the present invention can be widely applied to an analysis system for analyzing particulate matter contained in sample gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The present invention achieves accurate analysis of a particulate substance containing carbon as a main component. An analysis device (5, 5') comprises an inflow unit (51a), a first image acquisition unit (53), a content information acquisition unit (54), and an analysis unit (55a). The inflow unit (51a) allows a diluted sample gas (DG) containing a particulate substance (FP) to flow therein. The first image acquisition unit (53) acquires first image data of the particulate substance (FP) fluidized in the diluted sample gas (DG) flowing inside the inflow unit (51a). The content information acquisition unit (54) acquires content information related to the content of the particulate substance (FP) in the diluted sample gas (DG). The analysis unit (55a) analyzes the particulate substance (FP) on the basis of the first image data and the content information.

Description

分析装置、分析システム、分析方法、校正方法、及びプログラムAnalytical instruments, analytical systems, analytical methods, calibration methods, and programs
 本発明は、サンプルガスに含まれる粒子状物質を分析する分析装置、当該分析装置を含む分析システム、粒子状物質の分析方法、及び、当該分析装置の校正方法、当該分析方法又は校正方法を実行するためのプログラムに関する。 The present invention implements an analyzer that analyzes particulate matter contained in sample gas, an analysis system that includes the analyzer, an analysis method for particulate matter, and a calibration method, analysis method or calibration method for the analyzer. Regarding the program to do.
 従来、大気などのサンプルガスに含まれる粒子状物質を分析する分析装置が知られている。例えば、サンプルガスを捕集フィルタに吹き付けて、サンプルガスに含まれる粒子状物質を当該捕集フィルタに捕集させ、捕集フィルタに捕集された粒子状物質の捕集量(質量濃度)、及び/又は、当該粒子状物質に含まれる元素(及びその元素の含有量)を測定する分析装置が知られている(例えば、特許文献1を参照)。 Conventionally, an analyzer that analyzes particulate matter contained in sample gas such as the atmosphere is known. For example, the amount (mass concentration) of the particulate matter collected by the collection filter by spraying the sample gas onto the collection filter to collect the particulate matter contained in the sample gas on the collection filter. And / or, an analyzer for measuring an element (and the content of the element) contained in the particulate matter is known (see, for example, Patent Document 1).
特開2015-219197号公報Japanese Unexamined Patent Publication No. 2015-219197
 現在、上記の分析装置を、燃焼プロセスで発生する排出ガス等に含まれる粒子状物質を分析する目的に用いることが考えられている。燃焼プロセスで発生する排出ガスに含まれる粒子状物質の主成分は炭素であるため、従来の分析方法では粒子状物質を精度よく分析することが難しかった。 Currently, it is considered to use the above-mentioned analyzer for the purpose of analyzing particulate matter contained in exhaust gas or the like generated in a combustion process. Since the main component of the particulate matter contained in the exhaust gas generated in the combustion process is carbon, it has been difficult to accurately analyze the particulate matter by the conventional analysis method.
 また、従来、排出ガス等に含まれる粒子状物質を分析する際には、所定の場所に収集された粒子状物質を採取し、採取した粒子状物質を別の場所に設置された分析装置を用いて分析していた。すなわち、従来の分析方法では、粒子状物質を排出ガス等の排出場所にて連続的に分析できなかった。 In addition, conventionally, when analyzing particulate matter contained in exhaust gas, etc., an analyzer that collects particulate matter collected at a predetermined location and installs the collected particulate matter at another location is used. It was analyzed using. That is, with the conventional analysis method, particulate matter could not be continuously analyzed at the place where exhaust gas or the like is discharged.
 本発明の目的は、炭素が主成分の粒子状物質を精度よく連続的に分析することにある。 An object of the present invention is to accurately and continuously analyze particulate matter containing carbon as a main component.
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係る分析装置は、流入部と、第1画像取得部と、含有量情報取得部と、分析部と、を備える。
 流入部は、粒子状物質を含むサンプルガスを流入させる。
 第1画像取得部は、流入部を流れるサンプルガス中にて流動する粒子状物質の第1画像データを取得する。
 含有量情報取得部は、サンプルガスに含まれる粒子状物質の含有量に関する含有量情報を取得する。
 分析部は、第1画像データと含有量情報とに基づいて、粒子状物質を分析する。
Hereinafter, a plurality of aspects will be described as means for solving the problem. These aspects can be arbitrarily combined as needed.
The analysis device according to the seemingly relevant aspect of the present invention includes an inflow unit, a first image acquisition unit, a content information acquisition unit, and an analysis unit.
The inflow section allows sample gas containing particulate matter to flow in.
The first image acquisition unit acquires the first image data of the particulate matter flowing in the sample gas flowing through the inflow unit.
The content information acquisition unit acquires content information regarding the content of particulate matter contained in the sample gas.
The analysis unit analyzes the particulate matter based on the first image data and the content information.
 上記の分析装置では、流入部に流入したサンプルガス中にて流動する粒子状物質の第1画像データと、サンプルガスに含まれる粒子状物質の含有量に関する含有量情報と、に基づいて粒子状物質の分析を実行している。第1画像データにはサンプルガス中にて流動する粒子状物質の外観に関する情報が含まれており、また、炭素が主成分の粒子状物質は外観に特徴があるので、第1画像データと含有量情報とに基づいて炭素が主成分の粒子状物質の分析を精度よく行うことができる。 In the above analyzer, the particulate matter is based on the first image data of the particulate matter flowing in the sample gas flowing into the inflow portion and the content information regarding the content of the particulate matter contained in the sample gas. Performing material analysis. The first image data contains information on the appearance of the particulate matter flowing in the sample gas, and since the carbon-based particulate matter has a characteristic appearance, it is included with the first image data. Based on the quantity information, it is possible to accurately analyze the particulate matter whose main component is carbon.
 また、上記の分析装置では、サンプルガスを流入部に流入させ、第1画像取得部が流入部で流動するサンプルガスに含まれる粒子状物質の画像データ(第1画像データ)を取得し、分析部が第1画像データに基づいて粒子状物質を分析している。上記の分析装置は、粒子状物質を含むサンプルガスが流動している状態の画像データを用いて粒子状物質を分析できるので、流入部に連続的にサンプルガスを流入させて連続的に粒子状物質を分析できる。 Further, in the above-mentioned analyzer, the sample gas is made to flow into the inflow part, and the first image acquisition part acquires the image data (first image data) of the particulate matter contained in the sample gas flowing in the inflow part and analyzes it. The unit analyzes the particulate matter based on the first image data. Since the above-mentioned analyzer can analyze particulate matter using image data in which the sample gas containing particulate matter is flowing, the sample gas is continuously flowed into the inflow portion to continuously form particulate matter. Can analyze substances.
 分析部は、第1画像データに基づいて粒子状物質の粒子形状に関する情報を算出してもよい。これにより、粒子状物質の粒子形状に基づいて炭素が主成分の粒子状物質の分析を精度よく行うことができる。 The analysis unit may calculate information on the particle shape of the particulate matter based on the first image data. As a result, it is possible to accurately analyze the particulate matter containing carbon as a main component based on the particle shape of the particulate matter.
 分析部は、第1画像データに基づいて粒子状物質の粒径に関する第1粒径情報を算出してもよい。これにより、粒子状物質の粒径に基づいて炭素が主成分の粒子状物質の分析を精度よく行うことができる。 The analysis unit may calculate the first particle size information regarding the particle size of the particulate matter based on the first image data. This makes it possible to accurately analyze the carbon-based particulate matter based on the particle size of the particulate matter.
 分析装置は、散乱光情報取得部をさらに備えてもよい。散乱光情報取得部は、流入部を流れるサンプルガスに入射した光が粒子状物質により散乱することにより生じる散乱光に関する散乱光情報を取得する。この場合、分析部は、散乱光情報に基づいてサンプルガスに含まれる粒子状物質の粒径に関する第2粒径情報を算出する。これにより、粒子状物質により散乱した散乱光に関する情報から算出される粒径に基づいて炭素が主成分の粒子状物質の分析を精度よく行うことができる。 The analyzer may further include a scattered light information acquisition unit. The scattered light information acquisition unit acquires scattered light information regarding the scattered light generated by the light incident on the sample gas flowing through the inflow unit being scattered by the particulate matter. In this case, the analysis unit calculates the second particle size information regarding the particle size of the particulate matter contained in the sample gas based on the scattered light information. This makes it possible to accurately analyze the carbon-based particulate matter based on the particle size calculated from the information on the scattered light scattered by the particulate matter.
 流入部は、第1流路と、第2流路とを有してもよい。
 第1流路には、第1画像取得部により第1画像データを取得するためのサンプルガスが流れる。
 第2流路には、含有量情報取得部により含有量情報を取得するためのサンプルガスが流れる。
 これにより、第1画像データを取得するための第1流路におけるサンプルガスの流速と、含有量情報を取得するためのサンプルガスの流速と、を独立に調整できる。その結果、第1画像データと含有量情報を最適な条件で取得できる。
The inflow portion may have a first flow path and a second flow path.
A sample gas for acquiring the first image data by the first image acquisition unit flows in the first flow path.
A sample gas for acquiring content information flows through the second flow path by the content information acquisition unit.
Thereby, the flow velocity of the sample gas in the first flow path for acquiring the first image data and the flow velocity of the sample gas for acquiring the content information can be independently adjusted. As a result, the first image data and the content information can be acquired under the optimum conditions.
 分析部は、含有量情報に基づいて粒子状物質の質量濃度を算出してもよい。これにより、粒子状物質の質量濃度と粒子状物質の外観に基づいて、炭素が主成分の粒子状物質の分析を精度よく行うことができる。 The analysis unit may calculate the mass concentration of the particulate matter based on the content information. This makes it possible to accurately analyze the carbon-based particulate matter based on the mass concentration of the particulate matter and the appearance of the particulate matter.
 分析装置は、捕集フィルタと、第2画像取得部と、をさらに備えてもよい。捕集フィルタは、サンプルガスに含まれる粒子状物質を捕集する。第2画像取得部は、捕集フィルタに捕集された粒子状物質の画像を含む第2画像データを取得する。この場合、分析部は、第2画像データに基づいて有色の粒子状物質に関する情報を算出する。これにより、粒子状物質の色に基づいて、炭素が主成分の粒子状物質の分析をより精度よく行うことができる。 The analyzer may further include a collection filter and a second image acquisition unit. The collection filter collects particulate matter contained in the sample gas. The second image acquisition unit acquires the second image data including the image of the particulate matter collected by the collection filter. In this case, the analysis unit calculates information about the colored particulate matter based on the second image data. This makes it possible to more accurately analyze the carbon-based particulate matter based on the color of the particulate matter.
 分析部は、第2画像データのうち粒子状物質が捕集された捕集領域に対応する画像部分の画素の輝度と、捕集フィルタに捕集された粒子状物質の捕集量に関する情報と、の関係を表す検量線に基づいて、粒子状物質に関する情報を算出してもよい。この場合、検量線は、実際の測定対象となる粒子状物質を捕集フィルタに捕集して取得した第2画像データを用いて算出されてもよい。これにより、粒子状物質に関する情報をより精度よく算出できる。 The analysis unit includes information on the brightness of the pixels of the image portion corresponding to the collection area where the particulate matter is collected in the second image data and the amount of the particulate matter collected by the collection filter. Information on particulate matter may be calculated based on the calibration curve representing the relationship between. In this case, the calibration curve may be calculated using the second image data obtained by collecting the particulate matter to be actually measured by the collection filter. As a result, information on particulate matter can be calculated more accurately.
 分析部は、第2画像データのうち粒子状物質が捕集された捕集領域に対応する画像部分の画素の輝度を、粒子状物質に関する所定のパラメータで基準化して、粒子状物質に関する情報を算出してもよい。これにより、粒子状物質に関する多様な情報を算出できる。 The analysis unit standardizes the brightness of the pixels of the image portion corresponding to the collection area where the particulate matter is collected in the second image data with a predetermined parameter for the particulate matter, and obtains information about the particulate matter. It may be calculated. This makes it possible to calculate various information about particulate matter.
 本発明の他の見地に係る分析システムは、サンプリングプローブと、希釈器と、分析装置と、を備える。
 サンプリングプローブは、粒子状物質を含むサンプルガスをサンプリングする。
 希釈器は、サンプルガスを希釈して希釈サンプルガスを生成する。
 分析装置は、希釈サンプルガスに含まれる粒子状物質を分析する装置であって、流入部と、第1画像取得部と、含有量情報取得部と、分析部と、を有する。
 流入部は、希釈サンプルガスを流入させる。
 第1画像取得部は、流入部を流れる希釈サンプルガス中にて流動する粒子状物質の第1画像データを取得する。
 含有量情報取得部は、希釈サンプルガスに含まれる粒子状物質の含有量に関する含有量情報を取得する。
 分析部は、第1画像データと含有量情報とに基づいて粒子状物質を分析する。
An analytical system according to another aspect of the present invention includes a sampling probe, a diluter, and an analyzer.
The sampling probe samples a sample gas containing particulate matter.
The diluter dilutes the sample gas to produce a diluted sample gas.
The analyzer is an apparatus for analyzing particulate matter contained in the diluted sample gas, and has an inflow unit, a first image acquisition unit, a content information acquisition unit, and an analysis unit.
The inflow section allows the diluted sample gas to flow in.
The first image acquisition unit acquires the first image data of the particulate matter flowing in the diluted sample gas flowing through the inflow unit.
The content information acquisition unit acquires content information regarding the content of particulate matter contained in the diluted sample gas.
The analysis unit analyzes the particulate matter based on the first image data and the content information.
 上記の分析システムでは、サンプリングプローブによりサンプリングされたサンプルガスが、希釈器により希釈されて希釈サンプルガスが生成される。分析装置は、当該希釈サンプルガスに含まれる粒子状物質を分析する。 In the above analysis system, the sample gas sampled by the sampling probe is diluted by the diluter to generate the diluted sample gas. The analyzer analyzes the particulate matter contained in the diluted sample gas.
 また、分析システムに含まれる分析装置では、流入部に流入した希釈サンプルガス中にて流動する粒子状物質の第1画像データと、希釈サンプルガスに含まれる粒子状物質の含有量に関する含有量情報と、に基づいて粒子状物質の分析を実行している。第1画像データには希釈サンプルガス中にて流動する粒子状物質の外観に関する情報が含まれており、炭素が主成分の粒子状物質は外観に特徴があり、さらに、希釈サンプルガス中には第1画像データから粒子状物質の外観が判別可能な程度の粒子状物質しか含まれていないので、サンプルガスに過剰に粒子状物質が含まれていたとしても、第1画像データと含有量情報とに基づいて炭素が主成分の粒子状物質の分析を精度よく行うことができる。 Further, in the analyzer included in the analysis system, the first image data of the particulate matter flowing in the diluted sample gas flowing into the inflow portion and the content information regarding the content of the particulate matter contained in the diluted sample gas And, based on the analysis of particulate matter. The first image data contains information on the appearance of particulate matter flowing in the diluted sample gas, the carbon-based particulate matter is characteristic in appearance, and further, the diluted sample gas contains information. Since only the particulate matter that can be discerned from the appearance of the particulate matter is contained from the first image data, even if the sample gas contains an excessive amount of the particulate matter, the first image data and the content information Based on the above, it is possible to accurately analyze particulate matter containing carbon as a main component.
 また、上記の分析システムでは、サンプリングプローブにて採取したサンプルガスを流入部に流入させ、第1画像取得部が流動部で流動するサンプルガスに含まれる粒子状物質の画像データ(第1画像データ)を取得し、分析部が第1画像データに基づいて粒子状物質を分析している。 Further, in the above analysis system, the sample gas collected by the sampling probe is made to flow into the inflow section, and the first image acquisition section is the image data of the particulate matter contained in the sample gas flowing in the flow section (first image data). ) Is acquired, and the analysis unit analyzes the particulate matter based on the first image data.
 上記の分析システムは、粒子状物質を含むサンプルガスが流動している状態の画像データを用いて粒子状物質を分析できるので、サンプリングプローブにてサンプルガスを連続的に採取し、採取したサンプルガスを連続的に流入部に流入させて連続的に粒子状物質を分析できる。 Since the above analysis system can analyze particulate matter using image data in which the sample gas containing particulate matter is flowing, the sample gas is continuously sampled with a sampling probe and the sample gas is sampled. Can be continuously flowed into the inflow section to continuously analyze particulate matter.
 上記の分析システムは、ブローバック部をさらに備えてもよい。ブローバック部は、サンプリングプローブをブローバックする。この場合、サンプルガスをサンプリングする際に、ブローバック部によるブローバックと、サンプルガスのサンプリングとを予め決められた時間割合で実行してもよい。これにより、サンプリングプローブにおける粒子状物質の堆積量を減少させつつ、適切な量の粒子状物質をサンプリングできる。 The above analysis system may further include a blowback unit. The blowback unit blows back the sampling probe. In this case, when sampling the sample gas, the blowback by the blowback unit and the sampling of the sample gas may be executed at a predetermined time ratio. This makes it possible to sample an appropriate amount of particulate matter while reducing the amount of particulate matter deposited on the sampling probe.
 本発明のさらに他の見地に係る分析方法は、粒子状物質を含むサンプルガスを流入可能な流入部を備える分析装置による分析方法である。分析方法は、以下のステップを備える。
 ◎サンプルガスを流入部に流入させるステップ。
 ◎流入部を流れるサンプルガス中にて流動する粒子状物質の第1画像データを取得するステップ。
 ◎サンプルガスに含まれる粒子状物質の含有量に関する含有量情報を取得するステップ。
 ◎第1画像データと含有量情報とに基づいて粒子状物質を分析するステップ。
The analysis method according to still another aspect of the present invention is an analysis method using an analyzer provided with an inflow portion capable of inflowing sample gas containing particulate matter. The analysis method comprises the following steps.
◎ Step to make sample gas flow into the inflow section.
◎ The step of acquiring the first image data of the particulate matter flowing in the sample gas flowing through the inflow part.
◎ Step to acquire content information regarding the content of particulate matter contained in the sample gas.
◎ First step of analyzing particulate matter based on image data and content information.
 上記の分析方法では、分析装置の流入部に流入したサンプルガス中にて流動する粒子状物質の第1画像データと、サンプルガスに含まれる粒子状物質の含有量に関する含有量情報と、に基づいて粒子状物質の分析を実行している。第1画像データにはサンプルガス中にて流動する粒子状物質の外観に関する情報が含まれており、また、炭素が主成分の粒子状物質は外観に特徴があるので、第1画像データと含有量情報とに基づいて炭素が主成分の粒子状物質の分析を精度よく行うことができる。 The above analysis method is based on the first image data of the particulate matter flowing in the sample gas flowing into the inflow portion of the analyzer and the content information regarding the content of the particulate matter contained in the sample gas. We are conducting analysis of particulate matter. The first image data contains information on the appearance of the particulate matter flowing in the sample gas, and since the carbon-based particulate matter has a characteristic appearance, it is included with the first image data. Based on the quantity information, it is possible to accurately analyze the particulate matter whose main component is carbon.
 また、上記の分析方法では、流動部で流動するサンプルガスに含まれる粒子状物質の画像データ(第1画像データ)を取得し、第1画像データに基づいて粒子状物質を分析している。上記の分析方法においては、粒子状物質を含むサンプルガスが流動している状態の画像データを用いて粒子状物質を分析できるので、流入部に連続的にサンプルガスを流入させて連続的に粒子状物質を分析できる。 Further, in the above analysis method, image data (first image data) of the particulate matter contained in the sample gas flowing in the flow part is acquired, and the particulate matter is analyzed based on the first image data. In the above analysis method, since the particulate matter can be analyzed using the image data in which the sample gas containing the particulate matter is flowing, the sample gas is continuously flowed into the inflow portion to continuously flow the particles. Can analyze particulate matter.
 本発明のさらに他の見地に係るプログラムは、サンプルガスに含まれる粒子状物質を分析する分析方法を、サンプルガスを流入可能な流入部を備える分析装置に実行させるためのプログラムである。上記の分析方法は、以下のステップを有する。
 ◎サンプルガスを流入部に流入させるステップ。
 ◎流入部を流れるサンプルガス中にて流動する粒子状物質の第1画像データを取得するステップ。
 ◎サンプルガスに含まれる粒子状物質の含有量に関する含有量情報を取得するステップ。
 ◎第1画像データと含有量情報とに基づいて粒子状物質を分析するステップ。
The program according to still another aspect of the present invention is a program for causing an analyzer provided with an inflow portion capable of inflowing sample gas to execute an analysis method for analyzing particulate matter contained in sample gas. The above analytical method has the following steps:
◎ Step to make sample gas flow into the inflow section.
◎ The step of acquiring the first image data of the particulate matter flowing in the sample gas flowing through the inflow part.
◎ Step to acquire content information regarding the content of particulate matter contained in the sample gas.
◎ First step of analyzing particulate matter based on image data and content information.
 本発明のさらに他の見地に係る分析装置は、粒子状物質を捕集する捕集フィルタと、捕集フィルタの粒子状物質が捕集された捕集領域と粒子状物質が捕集されていない非捕集領域とを含む画像データを取得する画像取得部と、画像データに基づいて粒子状物質を分析する分析部と、画像取得部を校正する校正部と、を備える。
 校正部は、
 捕集領域に捕集された粒子状物質の捕集量と非捕集領域に対応する画素の輝度との関係と画像データを取得したときの粒子状物質の捕集量とに基づいて、画像データの非捕集領域に対応する画素の理論輝度を算出し、
 理論輝度と画像データの非捕集領域に対応する画素の実際輝度との差に基づいて、画像取得部を校正する。
The analyzer according to still another aspect of the present invention has a collection filter that collects particulate matter, a collection area in which the particulate matter of the collection filter is collected, and the particulate matter is not collected. It includes an image acquisition unit that acquires image data including a non-collection region, an analysis unit that analyzes particulate matter based on the image data, and a calibration unit that calibrates the image acquisition unit.
The calibration section
An image based on the relationship between the amount of particulate matter collected in the collection area and the brightness of the pixels corresponding to the non-collection area and the amount of particulate matter collected when the image data was acquired. Calculate the theoretical brightness of the pixels corresponding to the non-collection area of the data,
The image acquisition unit is calibrated based on the difference between the theoretical brightness and the actual brightness of the pixels corresponding to the non-collection region of the image data.
 上記の分析装置では、捕集フィルタに粒子状物質を捕集させて取得した画像データの非捕集領域に対応する画素の輝度の理論値(理論輝度)を算出し、理論輝度と当該画像データの非捕集領域に対応する画素の実際の輝度値(実際輝度)との差に基づいて、画像取得部を校正している。このように、捕集フィルタに捕集した粒子状物質を校正に用いるので、画像取得部を校正するために校正用試料を捕集フィルタに別途配置して画像データを取得する必要がなくなり、画像取得部の校正を自動的に行うことができる。 In the above-mentioned analyzer, the theoretical value (theoretical brightness) of the brightness of the pixel corresponding to the non-collection region of the image data acquired by collecting the particulate matter with the collection filter is calculated, and the theoretical brightness and the image data are calculated. The image acquisition unit is calibrated based on the difference from the actual luminance value (actual luminance) of the pixel corresponding to the non-collection region of. In this way, since the particulate matter collected by the collection filter is used for calibration, it is not necessary to separately arrange a calibration sample on the collection filter to acquire image data in order to calibrate the image acquisition unit, and the image is imaged. The acquisition unit can be calibrated automatically.
 画像取得部は、画像データを取得するときに、捕集領域と非捕集領域とに光を照射する光源を含んでもよい。この場合、校正部は、理論輝度と実際輝度との差に基づいて光源の光量を調整する。これにより、粒子状物質を正確に分析できる画像データを取得できる。 The image acquisition unit may include a light source that irradiates the collected area and the non-collected area with light when acquiring image data. In this case, the calibration unit adjusts the amount of light from the light source based on the difference between the theoretical brightness and the actual brightness. This makes it possible to acquire image data capable of accurately analyzing particulate matter.
 本発明のさらに他の見地に係る校正方法は、粒子状物質を捕集する捕集フィルタと、捕集フィルタの粒子状物質が捕集された捕集領域と粒子状物質が捕集されていない非捕集領域とを含む画像データを取得する画像取得部とを備え、当該画像データに基づいて粒子状物質を分析する分析装置の校正方法である。校正方法は、以下のステップを備える。
 ◎捕集領域に捕集された粒子状物質の捕集量と非捕集領域に対応する画素の輝度との関係と画像データを取得したときの粒子状物質の捕集量とに基づいて、画像データの非捕集領域に対応する画素の理論輝度を算出するステップ。
 ◎理論輝度と画像データの非捕集領域に対応する画素の実際輝度との差に基づいて、画像取得部を校正するステップ。
In the calibration method according to still another aspect of the present invention, there is a collection filter that collects particulate matter, a collection area where particulate matter is collected, and no particulate matter is collected. It is a calibration method of an analyzer that includes an image acquisition unit that acquires image data including a non-collection area and analyzes particulate matter based on the image data. The calibration method includes the following steps.
◎ Based on the relationship between the amount of particulate matter collected in the collection area and the brightness of the pixels corresponding to the non-collection area, and the amount of particulate matter collected when image data was acquired. A step of calculating the theoretical brightness of a pixel corresponding to a non-collection area of image data.
◎ A step of calibrating the image acquisition unit based on the difference between the theoretical brightness and the actual brightness of the pixels corresponding to the non-collection area of the image data.
 上記の分析装置の校正方法では、捕集フィルタに粒子状物質を捕集させて取得した画像データの非捕集領域に対応する画素の輝度の理論値(理論輝度)を算出し、理論輝度と当該画像データの非捕集領域に対応する画素の実際の輝度値(実際輝度)との差に基づいて、画像取得部を校正している。このように、捕集フィルタに捕集した粒子状物質を校正に用いるので、画像取得部を校正するために校正用試料を捕集フィルタに別途配置して画像データを取得する必要がなくなり、画像取得部の校正を自動的かつ正確に行うことができる。 In the calibration method of the above analyzer, the theoretical value (theoretical brightness) of the brightness of the pixel corresponding to the non-collection region of the image data acquired by collecting the particulate matter with the collection filter is calculated, and the theoretical brightness is used. The image acquisition unit is calibrated based on the difference from the actual luminance value (actual luminance) of the pixel corresponding to the non-collection region of the image data. In this way, since the particulate matter collected by the collection filter is used for calibration, it is not necessary to separately arrange a calibration sample on the collection filter to acquire image data in order to calibrate the image acquisition unit, and the image is imaged. The acquisition unit can be calibrated automatically and accurately.
 本発明のさらに他の見地に係るプログラムは、粒子状物質を捕集する捕集フィルタと、捕集フィルタの粒子状物質が捕集された捕集領域と粒子状物質が捕集されていない非捕集領域とを含む画像データを取得する画像取得部とを備え、当該画像データに基づいて粒子状物質を分析する分析装置の校正方法を当該分析装置に実行させるためのプログラムである。上記の校正方法は、以下のステップを有する。
 ◎捕集領域に捕集された粒子状物質の捕集量と非捕集領域に対応する画素の輝度との関係と画像データを取得したときの粒子状物質の捕集量とに基づいて、画像データの非捕集領域に対応する画素の理論輝度を算出するステップ。
 ◎理論輝度と画像データの非捕集領域に対応する画素の実際輝度との差に基づいて、画像取得部を校正するステップ。
The program according to still another aspect of the present invention is a collection filter for collecting particulate matter, a collection area where particulate matter is collected, and a non-collection where particulate matter is not collected. It is a program for causing the analyzer to execute a calibration method of an analyzer that analyzes particulate matter based on the image data, including an image acquisition unit that acquires image data including a collection area. The above calibration method has the following steps.
◎ Based on the relationship between the amount of particulate matter collected in the collection area and the brightness of the pixels corresponding to the non-collection area, and the amount of particulate matter collected when image data was acquired. A step of calculating the theoretical brightness of a pixel corresponding to a non-collection area of image data.
◎ A step of calibrating the image acquisition unit based on the difference between the theoretical brightness and the actual brightness of the pixels corresponding to the non-collection area of the image data.
 上記のプログラムは、捕集フィルタに粒子状物質を捕集させて取得した画像データの非捕集領域に対応する画素の輝度の理論値(理論輝度)を算出し、理論輝度と当該画像データの非捕集領域に対応する画素の実際の輝度値(実際輝度)との差に基づいて画像取得部を校正するとの処理を分析装置に実行させる。このように、捕集フィルタに捕集した粒子状物質を校正に用いるので、画像取得部を校正するために校正用試料を捕集フィルタに別途配置して画像データを取得する必要がなくなり、画像取得部の校正を自動的かつ正確に行うことができる。 The above program calculates the theoretical value (theoretical brightness) of the brightness of the pixels corresponding to the non-collection region of the image data acquired by collecting the particulate matter with the collection filter, and calculates the theoretical brightness and the image data. The analyzer is made to execute the process of calibrating the image acquisition unit based on the difference from the actual luminance value (actual luminance) of the pixel corresponding to the non-collection region. In this way, since the particulate matter collected by the collection filter is used for calibration, it is not necessary to separately arrange a calibration sample on the collection filter to acquire image data in order to calibrate the image acquisition unit, and the image is imaged. The acquisition unit can be calibrated automatically and accurately.
 炭素が主成分の粒子状物質を精度よく分析できる。 Accurate analysis of particulate matter whose main component is carbon.
分析システムの構成を示す概略図。The schematic which shows the structure of an analysis system. 希釈器の斜視図。Perspective view of the diluter. 希釈器の側面図。Side view of the diluter. 分析装置の具体的構成を示す図。The figure which shows the specific structure of an analyzer. 流路変更部材による希釈サンプルガスの流路の一例を示す図。The figure which shows an example of the flow path of the diluted sample gas by the flow path changing member. 粒子状物質の分析動作を示すフローチャート。The flowchart which shows the analysis operation of the particulate matter. 輝度ヒストグラムの一例を示す図。The figure which shows an example of a luminance histogram. 第2画像データのうち小さい輝度を有する画像部分の画素の輝度と捕集フィルタに捕集された粒子状物質に含まれる炭素量との関係をグラフで表した一例を示す図。The figure which shows an example showing the relationship between the brightness of the pixel of the image part which has a small brightness in the 2nd image data, and the amount of carbon contained in the particulate matter collected by a collection filter. 輝度の経時変化の一例を示す図。The figure which shows an example of the time-dependent change of brightness. 粒子状物質の捕集量で基準化した輝度の経時変化の一例を示す図。The figure which shows an example of the time-dependent change of brightness standardized by the amount of particulate matter collected. 輝度と粒子状物質の単位時間あたりの捕集量との積の値の経時変化の一例を示す図。The figure which shows an example of the time-dependent change of the value of the product of the luminance and the amount of collected particulate matter per unit time. 輝度を粒子状物質の単位時間あたりの捕集量で基準化した値の経時変化の一例を示す図。The figure which shows an example of the time-dependent change of the value which standardized the brightness by the amount of the collected particulate matter per unit time. 分析結果の表示画面の一例を示す図。The figure which shows an example of the display screen of the analysis result. 流入部の変形例の一例を示す図。The figure which shows an example of the modification of the inflow part. 分析装置の変形例の一例を示す図。The figure which shows an example of the modification of the analyzer. 分析装置の変形例の他の一例を示す図。The figure which shows another example of the modification of the analyzer. 第2実施形態に係る分析装置の構成を示す図。The figure which shows the structure of the analyzer which concerns on 2nd Embodiment. 第3実施形態に係る分析装置の演算部の機能ブロック構成を示す図。The figure which shows the functional block composition of the arithmetic part of the analysis apparatus which concerns on 3rd Embodiment. 第2画像データを用いた分析装置の校正動作を示すフローチャート。The flowchart which shows the calibration operation of the analyzer using the 2nd image data. 分析システムの適用例1の構成を示す図。The figure which shows the structure of application example 1 of an analysis system. 分析システムの適用例2の構成を示す図。The figure which shows the structure of application example 2 of an analysis system. 分析システムの他の実施形態を示す図。The figure which shows the other embodiment of the analysis system.
1.第1実施形態
(1)分析システム
 以下、本実施形態に係る分析システム100を説明する。分析システム100は、各種燃焼プロセス(例えば、火力発電における燃焼プロセス、製鉄プラントにおける燃焼プロセス、焼却炉の燃焼プロセス、石炭の燃焼プロセス等)で生じる粒子状物質FPを分析するためのシステムである。測定対象とできる粒子状物質FPは、例えば、石炭の燃焼プロセスで生じる灰中未燃分、各種燃焼プロセスで生じる飛灰などである。
1. 1. First Embodiment (1) Analysis System Hereinafter, the analysis system 100 according to the present embodiment will be described. The analysis system 100 is a system for analyzing particulate matter FP generated in various combustion processes (for example, combustion process in thermal power generation, combustion process in steelmaking plant, combustion process of incinerator, combustion process of coal, etc.). The particulate matter FP that can be measured is, for example, unburned content in ash produced in the combustion process of coal, fly ash produced in various combustion processes, and the like.
 また、燃焼プロセスで生じる粒子状物質FPに限られず、例えば、各種の輸送装置(自動車や船舶等)から生じるダスト(ブレーキ、タイヤ、内燃機関、蒸気機関、排ガス浄化装置やモータからのダスト)などを分析システム100の測定対象である粒子状物質FPとできる。さらに、火山の噴火といった自然災害により生じるダスト(例えば、火山灰)、鉱山開発において生じるダストなども測定対象である粒子状物質FPとできる。 Further, it is not limited to the particulate matter FP generated in the combustion process, and for example, dust (brake, tire, internal combustion engine, steam engine, exhaust gas purification device, dust from motor) generated from various transportation devices (automobiles, ships, etc.), etc. Can be the particulate matter FP to be measured by the analysis system 100. Furthermore, dust generated by natural disasters such as volcanic eruptions (for example, volcanic ash), dust generated in mine development, and the like can also be measured as particulate matter FP.
 以下、図1を用いて、第1実施形態に係る分析システム100の構成を説明する。図1は、分析システムの構成を示す概略図である。図1に示す分析システム100は、燃焼プロセスで生じた排出ガスを測定対象ガス(以下、サンプルガスSGと呼ぶ)とし、排出ガスに含まれる粒子状物質FPを分析するシステムである。分析システム100は、サンプリングプローブ1と、希釈器3と、分析装置5と、制御部9と、を主に備える。 Hereinafter, the configuration of the analysis system 100 according to the first embodiment will be described with reference to FIG. FIG. 1 is a schematic diagram showing the configuration of an analysis system. The analysis system 100 shown in FIG. 1 is a system that analyzes the particulate matter FP contained in the exhaust gas by using the exhaust gas generated in the combustion process as the measurement target gas (hereinafter referred to as sample gas SG). The analysis system 100 mainly includes a sampling probe 1, a diluent 3, an analyzer 5, and a control unit 9.
 サンプリングプローブ1は、煙道FLの側壁の所定位置に固定され、サンプルガスSGが流れる煙道FLからサンプルガスSGをサンプリングする。サンプリングプローブ1は、希釈器3及び分析装置5を介して接続された第1吸引装置P1によるガスの吸引量と、希釈器3を介して接続された第2吸引装置P2によるガスの吸引量と、希釈器3への希釈ガスAR(後述)の供給量と、により決定される流量のサンプルガスSGを煙道FLからサンプリングする。 The sampling probe 1 is fixed at a predetermined position on the side wall of the flue FL, and samples the sample gas SG from the flue FL through which the sample gas SG flows. The sampling probe 1 has a gas suction amount by the first suction device P1 connected via the diluter 3 and the analyzer 5, and a gas suction amount by the second suction device P2 connected via the diluent 3. , The amount of diluted gas AR (described later) supplied to the diluter 3 and the sample gas SG at a flow rate determined by the sample gas SG are sampled from the flue FL.
 希釈器3は、サンプリングプローブ1にてサンプリングしたサンプルガスSGと、供給装置7から供給された希釈ガスARと、を混合してサンプルガスSGを希釈する。希釈ガスARによりサンプルガスSGを希釈して生成されるガスを、希釈サンプルガスDGと呼ぶ。 希釈ガスARは、例えば空気である。この場合、供給装置7は、例えば、計装用エアーを希釈ガスARとして流量を調整して供給する装置である。その他、供給装置7は、窒素ボンベ又は(乾燥)空気ボンベから供給された窒素又は空気を希釈ガスARとして流量を調整して供給する装置とできる。 The diluter 3 dilutes the sample gas SG by mixing the sample gas SG sampled by the sampling probe 1 and the diluting gas AR supplied from the supply device 7. The gas produced by diluting the sample gas SG with the diluted gas AR is called a diluted sample gas DG. The diluted gas AR is, for example, air. In this case, the supply device 7 is, for example, a device that adjusts the flow rate and supplies the instrumenting air as a diluent gas AR. In addition, the supply device 7 can be a device that adjusts the flow rate and supplies nitrogen or air supplied from a nitrogen cylinder or a (dry) air cylinder as a diluted gas AR.
 その他、例えば、ポンプにて吸引した大気中の空気を、ダストフィルタにてダストを除去し乾燥処理装置により水分を除去して流量を調節して希釈ガスARとして供給することもできる。これにより、例えば、計装用エアー又はボンベ等を使用できない場合でも、希釈ガスARを供給できる。 In addition, for example, air in the atmosphere sucked by a pump can be supplied as a diluted gas AR by removing dust with a dust filter and removing water with a drying treatment device to adjust the flow rate. This makes it possible to supply the diluted gas AR even when, for example, instrumentation air or a cylinder cannot be used.
 分析装置5は、希釈器3からサンプリングした希釈サンプルガスDGに含まれる粒子状物質FPの分析を行う装置である。後述するように、分析装置5は、希釈サンプルガスDGを流入させる流入部を備え、流入部を流れる希釈サンプルガスDG中で流動する粒子状物質FPを撮影した画像データ(第1画像データ)に基づいて粒子状物質FPを分析する。 The analyzer 5 is an apparatus that analyzes the particulate matter FP contained in the diluted sample gas DG sampled from the diluter 3. As will be described later, the analyzer 5 includes an inflow section for inflowing the diluted sample gas DG, and the image data (first image data) obtained by photographing the particulate matter FP flowing in the diluted sample gas DG flowing through the inflow section. Based on this, the particulate matter FP is analyzed.
 制御部9は、CPUと、記憶装置(例えば、RAM、ROM、ハードディスク、SSDなど)と、ディスプレイ(例えば、液晶ディスプレイなど)と、各種インターフェース(I/Oポート、通信インターフェースなど)と、を有するコンピュータシステムである。また、制御部9は、コンピュータシステムを1つのチップに集積したSoCなどのハードウェアであってもよい。 The control unit 9 has a CPU, a storage device (for example, RAM, ROM, hard disk, SSD, etc.), a display (for example, a liquid crystal display, etc.), and various interfaces (I / O port, communication interface, etc.). It is a computer system. Further, the control unit 9 may be hardware such as a SoC in which a computer system is integrated on one chip.
 制御部9は、分析システム100の各構成要素の制御、及び、当該制御に関する各種情報処理を行う。制御部9が実行する制御及び情報処理の一部又は全部は、制御部9の記憶装置に記憶され、制御部9を構成するコンピュータシステムにて実行可能なプログラムにより実現されていてもよい。また、制御部9による制御及び情報処理の一部を、ハードウェアにより実現してもよい。 The control unit 9 controls each component of the analysis system 100 and performs various information processing related to the control. A part or all of the control and information processing executed by the control unit 9 may be stored in the storage device of the control unit 9 and realized by a program that can be executed by the computer system constituting the control unit 9. Further, a part of the control and information processing by the control unit 9 may be realized by hardware.
 また、制御部9は、後述する分析装置5の演算部55の機能が組み込まれたコンピュータシステムであってもよい、つまり、制御部9の機能と演算部55の機能とが同一のコンピュータシステムに統合されていてもよいし、制御部9と演算部55とが個別のコンピュータシステムにより構成されていてもよい。 Further, the control unit 9 may be a computer system in which the function of the calculation unit 55 of the analyzer 5 described later is incorporated, that is, the function of the control unit 9 and the function of the calculation unit 55 are the same in the computer system. It may be integrated, or the control unit 9 and the arithmetic unit 55 may be configured by individual computer systems.
(2)希釈器
 以下、図1~図3を用いて、希釈器3の具体的な構成を説明する。図2は、希釈器の斜視図である。図3は、希釈器の断面図である。希釈器3は、混合部31と、希釈ガス充填部33と、を有する。
(2) Diluter Hereinafter, a specific configuration of the diluter 3 will be described with reference to FIGS. 1 to 3. FIG. 2 is a perspective view of the diluter. FIG. 3 is a cross-sectional view of the diluter. The diluter 3 has a mixing unit 31 and a diluting gas filling unit 33.
 混合部31は、内部空間IS1(図3)を有する中空の部材である。混合部31の長さ方向の一端が第1ガスラインL1を介してサンプリングプローブ1に接続され、他端が第2ガスラインL2、分析装置5、及び第3ガスラインL3を介して第1吸引装置P1に接続される。さらに、混合部31の他端側(第2ガスラインL2が接続された側)は、第4ガスラインL4を介して第2吸引装置P2に接続される。混合部31の側壁には、複数の導入口31aが設けられており、導入口31aから内部空間IS1に気体が流入可能となっている。 The mixing unit 31 is a hollow member having an internal space IS1 (FIG. 3). One end of the mixing unit 31 in the length direction is connected to the sampling probe 1 via the first gas line L1, and the other end is the first suction via the second gas line L2, the analyzer 5, and the third gas line L3. It is connected to the device P1. Further, the other end side of the mixing unit 31 (the side to which the second gas line L2 is connected) is connected to the second suction device P2 via the fourth gas line L4. A plurality of introduction ports 31a are provided on the side wall of the mixing portion 31, so that gas can flow into the internal space IS1 from the introduction port 31a.
 また、第2吸引装置P2の排気口は、第5ガスラインL5を介して、サンプリングプローブ1と接続可能となっている。第5ガスラインL5は、第2吸引装置P2の排出口から排出された希釈サンプルガスDGを、サンプリングプローブ1から煙道FLに排出する。これにより、大気中などの外部に粒子状物質FPを排出することを防止できる。 Further, the exhaust port of the second suction device P2 can be connected to the sampling probe 1 via the fifth gas line L5. The fifth gas line L5 discharges the diluted sample gas DG discharged from the discharge port of the second suction device P2 from the sampling probe 1 to the flue FL. This makes it possible to prevent the particulate matter FP from being discharged to the outside such as in the atmosphere.
 第1吸引装置P1は、例えば、ポンプなどである。第2吸引装置P2は、例えば、ポンプ、ブロワーなどである。 The first suction device P1 is, for example, a pump or the like. The second suction device P2 is, for example, a pump, a blower, or the like.
 希釈ガス充填部33は、混合部31の長さ方向のうち複数の導入口31aが形成された箇所を、「入れ子」状態でかつ希釈ガス充填部33と混合部31との隙間部分をガスタイトな状態で収納する中空の部材である。混合部31が入れ子状態で希釈ガス充填部33に収納されることで、希釈ガス充填部33の内壁と混合部31の外壁との間には、希釈ガス充填空間IS2が形成される。希釈ガス充填空間IS2は、第5ガスラインL5を介して供給装置7に接続されている。供給装置7は、混合部31の内部空間IS1の圧力よりも高い圧力の希釈ガスARを、希釈ガス充填空間IS2に充填する。 The diluted gas filling portion 33 is in a “nested” state at the portion where a plurality of introduction ports 31a are formed in the length direction of the mixing portion 31, and the gap portion between the diluted gas filling portion 33 and the mixing portion 31 is gas tight. It is a hollow member that is stored in a state. By housing the mixing unit 31 in the diluted gas filling unit 33 in a nested state, a diluted gas filling space IS2 is formed between the inner wall of the diluted gas filling unit 33 and the outer wall of the mixing unit 31. The diluted gas filling space IS2 is connected to the supply device 7 via the fifth gas line L5. The supply device 7 fills the diluted gas filling space IS2 with the diluted gas AR having a pressure higher than the pressure of the internal space IS1 of the mixing unit 31.
 上記の構成を有する希釈器3においては、第1吸引装置P1及び第2吸引装置P2の吸引力により、煙道FLを流れるサンプルガスSGが、サンプリングプローブ1と第1ガスラインL1を介して内部空間IS1に導入される。また、希釈ガス充填空間IS2に充填される希釈ガスARの圧力が内部空間IS1に導入されるサンプルガスSGの圧力よりも高いことから、希釈ガスARが導入口31aを通じて内部空間IS1に導入される。 In the diluter 3 having the above configuration, the sample gas SG flowing through the flue FL is inside via the sampling probe 1 and the first gas line L1 by the suction force of the first suction device P1 and the second suction device P2. Introduced in space IS1. Further, since the pressure of the diluted gas AR filled in the diluted gas filling space IS2 is higher than the pressure of the sample gas SG introduced into the internal space IS1, the diluted gas AR is introduced into the internal space IS1 through the introduction port 31a. ..
 内部空間IS1にサンプルガスSGと希釈ガスARとが導入されることで、サンプルガスSGが希釈ガスARにより希釈されて希釈サンプルガスDGが生成される。サンプルガスSGの希釈率は、内部空間IS1に導入されるサンプルガスSGの量と希釈ガスARの量とにより決まる。 By introducing the sample gas SG and the diluted gas AR into the internal space IS1, the sample gas SG is diluted with the diluted gas AR to generate the diluted sample gas DG. The dilution ratio of the sample gas SG is determined by the amount of the sample gas SG introduced into the internal space IS1 and the amount of the diluted gas AR.
 内部空間IS1で生成された希釈サンプルガスDGのうち、第1吸引装置P1による吸引により第2ガスラインL2に引き込まれた希釈サンプルガスDGが分析装置5に導入される。残りの希釈サンプルガスDGは、第2吸引装置P2の吸引により外部に排出される。 Of the diluted sample gas DG generated in the internal space IS1, the diluted sample gas DG drawn into the second gas line L2 by suction by the first suction device P1 is introduced into the analyzer 5. The remaining diluted sample gas DG is discharged to the outside by suction of the second suction device P2.
 なお、第3ガスラインL3と第1吸引装置P1との間、及び/又は、第4ガスラインL4と第2吸引装置P2との間には、希釈サンプルガスDGに含まれる粒子状物質FPを除去するフィルタ(図示せず)、希釈サンプルガスDGの脈動を抑制するバッファタンク(図示せず)、希釈サンプルガスDGから水分を除去するドレインポットなどが設けられてもよい。 A particulate matter FP contained in the diluted sample gas DG is placed between the third gas line L3 and the first suction device P1 and / or between the fourth gas line L4 and the second suction device P2. A filter for removing (not shown), a buffer tank for suppressing the pulsation of the diluted sample gas DG (not shown), a drain pot for removing water from the diluted sample gas DG, and the like may be provided.
 また、第4ガスラインL4と第2吸引装置P2との間には、第2吸引装置P2と希釈器3との間をガス流通可能とするか、ガス流通不可能とするか、を切り替える三方バルブV(ブローバック部の一例)が設けられてもよい。制御部9がこの三方バルブVを制御して第2吸引装置P2と希釈器3とをガス流通不可能とした場合には、第2吸引装置P2と大気との間をガス流通可能とする。供給装置7から希釈ガスARを供給した状態で、制御部9が三方バルブVを制御して第2吸引装置P2と希釈器3との間をガス流通不可能とすることにより、希釈器3から第1ガスラインL1を通過しサンプリングプローブ1から煙道FLに希釈ガスARが排出されて、サンプリングプローブ1及び第1ガスラインL1に堆積し付着した粒子状物質FPを除去して煙道FLに排出できる(ブローバックと呼ぶ)。このとき、分析装置5には、供給装置7から希釈ガスARが流入する。 Further, between the fourth gas line L4 and the second suction device P2, a three-way switch is made between the second suction device P2 and the diluter 3 to enable gas flow or not. A valve V (an example of a blowback portion) may be provided. When the control unit 9 controls the three-way valve V to make the second suction device P2 and the diluter 3 unable to flow gas, the control unit 9 enables gas flow between the second suction device P2 and the atmosphere. With the diluted gas AR supplied from the supply device 7, the control unit 9 controls the three-way valve V to make gas flow impossible between the second suction device P2 and the diluent 3, so that the diluted gas AR cannot flow from the diluter 3. Diluted gas AR is discharged from the sampling probe 1 to the flue FL after passing through the first gas line L1 to remove the particulate matter FP deposited and adhered to the sampling probe 1 and the first gas line L1 to the flue FL. It can be discharged (called blowback). At this time, the diluted gas AR flows into the analyzer 5 from the supply device 7.
 例えば、制御部9は、粒子状物質FPの分析毎に、上記のように三方バルブVを制御してブローバックを実行することができる。このとき、制御部9は、粒子状物質FPの分析時にサンプルガスSGをサンプリングする際に、予め決められた期間(例えば、1時間)のうち、ブローバックとサンプルガスSGのサンプリングとを予め決められた時間割合で実行する。例えば、粒子状物質FPの捕集量が大きくなると予測される場合(例えば、前回の捕集量が大きかった場合)には、ブローバックを実行する期間を増加して、サンプルガスSGをサンプリングする期間を減少できる。これにより、サンプリングプローブ1、第1ガスラインL1等における粒子状物質FPの堆積量を減少させつつ、捕集フィルタ52(図4)に粒子状物質FPが過剰に捕集されることを防止できる。 For example, the control unit 9 can control the three-way valve V as described above to execute blowback for each analysis of the particulate matter FP. At this time, when the sample gas SG is sampled at the time of analysis of the particulate matter FP, the control unit 9 predetermineds blowback and sampling of the sample gas SG within a predetermined period (for example, 1 hour). Run at the specified time rate. For example, if it is predicted that the amount of particulate matter FP collected will be large (for example, if the previous amount of collected material was large), the period for performing blowback will be increased and the sample gas SG will be sampled. The period can be reduced. This makes it possible to prevent the particulate matter FP from being excessively collected by the collection filter 52 (FIG. 4) while reducing the amount of the particulate matter FP deposited in the sampling probe 1, the first gas line L1, and the like. ..
 一方、粒子状物質FPの捕集量が小さくなると予測される場合(例えば、前回の捕集量が小さかった場合)には、ブローバックを実行する期間を減少させて、サンプルガスSGをサンプリングする期間を増加できる。これにより、サンプリングプローブ1、第1ガスラインL1等における粒子状物質FPの堆積量を減少させつつ、捕集フィルタ52(図4など)に精度よく分析を実行するために十分な量の粒子状物質FPを捕集できる。 On the other hand, when it is predicted that the amount of the particulate matter FP collected will be small (for example, when the amount of the previous collection was small), the period for performing blowback is reduced and the sample gas SG is sampled. You can increase the period. As a result, while reducing the amount of particulate matter FP deposited in the sampling probe 1, the first gas line L1, etc., the amount of particulate matter sufficient to accurately perform the analysis on the collection filter 52 (FIG. 4, etc.). Can collect material FP.
 その他、ブローバックを実行するタイミングを適宜変更することもできる。例えば、サンプルガスSGの流路に堆積した粒子状物質FPが所定量を超えたときにブローバックを実行してもよい。 In addition, the timing to execute blowback can be changed as appropriate. For example, blowback may be performed when the particulate matter FP deposited in the flow path of the sample gas SG exceeds a predetermined amount.
 上記のブローバックの実行制御は、例えば、制御部9を構成するコンピュータシステムで実行可能なプログラムにより実現される。これにより、ブローバック(及び粒子状物質FPのサンプリング)を自動的に実行できる。 The above blowback execution control is realized by, for example, a program that can be executed by the computer system constituting the control unit 9. This allows blowback (and sampling of particulate matter FP) to be performed automatically.
 また、サンプルガスSGの流路に堆積した粒子状物質FPの除去方法は、上記のブローバックの実行による方法に限られない。例えば、分析システム100の粒子状物質FPが堆積した部分(例えば、サンプリングプローブ1と第1ガスラインL1との接続部分)を振動させる、衝撃を与えるなどの方法によっても、流路に堆積した粒子状物質FPを除去できる。 Further, the method for removing the particulate matter FP deposited in the flow path of the sample gas SG is not limited to the method by executing the above blowback. For example, particles deposited in the flow path by a method such as vibrating or giving an impact to a portion of the analysis system 100 in which the particulate matter FP is deposited (for example, the connection portion between the sampling probe 1 and the first gas line L1). Particulate matter FP can be removed.
(3)分析装置
 本実施形態の分析装置5は、主に、希釈サンプルガスDGにて流動する粒子状物質FPを撮影した第1画像データと、希釈サンプルガスDGに含まれる粒子状物質FPの含有量に関する情報(含有量情報とよぶ)と、に基づいて粒子状物質FPを分析する装置である。
(3) Analytical apparatus The analyzer 5 of the present embodiment mainly contains the first image data obtained by photographing the particulate matter FP flowing in the diluted sample gas DG and the particulate matter FP contained in the diluted sample gas DG. It is a device that analyzes particulate matter FP based on information on the content (called content information).
 以下、図4を用いて、分析装置5の具体的構成を説明する。図4は、分析装置の具体的構成を示す図である。分析装置5は、流入部51aと、第1画像取得部53と、含有量情報取得部54と、演算部55と、を主に備える。流入部51aは中空の部材であり、その一端は第2ガスラインL2に接続され、他端は開放状態となっている。開放状態となっている流入部51aの他端は、吸引部51bと対向している。 Hereinafter, a specific configuration of the analyzer 5 will be described with reference to FIG. FIG. 4 is a diagram showing a specific configuration of the analyzer. The analyzer 5 mainly includes an inflow unit 51a, a first image acquisition unit 53, a content information acquisition unit 54, and a calculation unit 55. The inflow portion 51a is a hollow member, one end thereof is connected to the second gas line L2, and the other end is in an open state. The other end of the inflow portion 51a in the open state faces the suction portion 51b.
 吸引部51bは中空の部材であり、その一端は流入部51aと対向しており、開放状態となっている。一方、吸引部51bの他端は、第3ガスラインL3を介して第1吸引装置P1に接続されている。吸引部51bを第1吸引装置P1により吸引すると、吸引部51bの開放状態となっている一端に吸引力が発生する。この吸引力により、希釈器3にて生成された希釈サンプルガスDGが、第2ガスラインL2を通過して流入部51aの内部に流入する。吸引部51bにて発生した吸引力により流入部51aの内部に流入した希釈サンプルガスDGは、流入部51aの開放状態となった側から排出され、吸引部51bに吸引される。 The suction portion 51b is a hollow member, one end of which faces the inflow portion 51a, and is in an open state. On the other hand, the other end of the suction portion 51b is connected to the first suction device P1 via the third gas line L3. When the suction unit 51b is sucked by the first suction device P1, a suction force is generated at one end of the suction unit 51b in the open state. Due to this suction force, the diluted sample gas DG generated in the diluter 3 passes through the second gas line L2 and flows into the inside of the inflow portion 51a. The diluted sample gas DG that has flowed into the inside of the inflow section 51a due to the suction force generated by the suction section 51b is discharged from the open side of the inflow section 51a and is sucked into the suction section 51b.
 図4に示すように、流入部51aと吸引部51bとの間には捕集フィルタ52が配置されているため、流入部51aから排出された希釈サンプルガスDGは、吸引部51bに吸引される前に捕集フィルタ52を通過する。捕集フィルタ52は、捕集フィルタ52を通過する希釈サンプルガスDGに含まれる粒子状物質FPを捕集する。 As shown in FIG. 4, since the collection filter 52 is arranged between the inflow section 51a and the suction section 51b, the diluted sample gas DG discharged from the inflow section 51a is sucked by the suction section 51b. It passes through the collection filter 52 before. The collection filter 52 collects the particulate matter FP contained in the diluted sample gas DG that passes through the collection filter 52.
 捕集フィルタ52は、例えば、補強層と、補強層上に積層して形成された捕集層とを有する、白色のテープ状部材である。補強層は、例えば、高分子材料(ポリエチレンなど)の不織布にて形成される。捕集層は、粒子状物質FPを捕集可能な孔を有する。捕集層は、例えば、フッ素樹脂系材料にて形成される。捕集フィルタ52は、送り出しリール52aから送り出し、巻き取りリール52bにより巻き取ることで、長さ方向(図4の太矢印にて示す方向)に移動できる。 The collection filter 52 is, for example, a white tape-like member having a reinforcing layer and a collecting layer formed by laminating on the reinforcing layer. The reinforcing layer is formed of, for example, a non-woven fabric made of a polymer material (polyethylene or the like). The collection layer has pores capable of collecting the particulate matter FP. The collection layer is formed of, for example, a fluororesin-based material. The collection filter 52 can be moved in the length direction (direction indicated by the thick arrow in FIG. 4) by sending out from the delivery reel 52a and winding up by the take-up reel 52b.
 第1画像取得部53は、流入部51aの内部に流入した希釈サンプルガスDG中にて流動する粒子状物質FPの画像データ(第1画像データと呼ぶ)を取得する。第1画像取得部53は、例えば、流入部51aの側壁に設けられた光学窓53aに取り付けられたカメラである。本実施形態では、流入部51aの内部のうち第1画像取得部53が取り付けられる部分の近傍に、例えば、図5に示すような希釈サンプルガスDGの流路を変更する流路変更部材61、63が設けられる。図5は、流路変更部材による希釈サンプルガスの流路の一例を示す図である。 The first image acquisition unit 53 acquires image data (referred to as first image data) of the particulate matter FP flowing in the diluted sample gas DG that has flowed into the inflow unit 51a. The first image acquisition unit 53 is, for example, a camera attached to an optical window 53a provided on the side wall of the inflow unit 51a. In the present embodiment, for example, the flow path changing member 61 that changes the flow path of the diluted sample gas DG as shown in FIG. 5 in the vicinity of the portion of the inside of the inflow portion 51a to which the first image acquisition portion 53 is attached. 63 is provided. FIG. 5 is a diagram showing an example of a flow path of the diluted sample gas by the flow path changing member.
 図5に示す流路変更部材61、63の例では、第2ガスラインL2から導入された希釈サンプルガスDGの流れる方向が、吸引部51bに近い側(下流側)に設けられた流路変更部材61により、吸引部51bによる吸引方向とは逆方向に変更される。その後、希釈サンプルガスDGの流れる方向は、さらに、第2ガスラインL2に近い側(上流側)に設けられた流路変更部材63により、吸引方向に変更される。 In the example of the flow path changing members 61 and 63 shown in FIG. 5, the flow path of the diluted sample gas DG introduced from the second gas line L2 is changed on the side closer to the suction portion 51b (downstream side). The member 61 changes the direction opposite to the suction direction by the suction portion 51b. After that, the flow direction of the diluted sample gas DG is further changed to the suction direction by the flow path changing member 63 provided on the side closer to the second gas line L2 (upstream side).
 流入部51aの内部のうち、第1画像取得部53が取り付けられる部分の近傍に流路変更部材61、63を設けて、第1画像取得部53の近傍で希釈サンプルガスDGの滞留が生じやすくすることで、第1画像取得部53は、希釈サンプルガスDG中にて流動する同じ粒子状物質FPをより長時間撮影できる。 In the inside of the inflow portion 51a, the flow path changing members 61 and 63 are provided in the vicinity of the portion to which the first image acquisition portion 53 is attached, and the diluted sample gas DG tends to stay in the vicinity of the first image acquisition portion 53. By doing so, the first image acquisition unit 53 can photograph the same particulate matter FP flowing in the diluted sample gas DG for a longer period of time.
 図4に戻り、含有量情報取得部54は、捕集フィルタ52に捕集された粒子状物質FPの質量濃度を算出するためのデータを測定する。すなわち、本実施形態において、含有量情報取得部54は、粒子状物質FPの質量濃度を算出するためのデータを、希釈サンプルガスDGに含まれる粒子状物質FPの含有量に関する含有量情報として測定する。具体的には、含有量情報取得部54は、β線源54aと、β線検出部54bとを有する。β線源54aは、流入部51aの内部に設けられ、捕集フィルタ52に捕集された粒子状物質FPに向けてβ線を照射する。β線源54aは、例えば、炭素14(14C)を線源とするβ線源である。 Returning to FIG. 4, the content information acquisition unit 54 measures the data for calculating the mass concentration of the particulate matter FP collected by the collection filter 52. That is, in the present embodiment, the content information acquisition unit 54 measures the data for calculating the mass concentration of the particulate matter FP as the content information regarding the content of the particulate matter FP contained in the diluted sample gas DG. do. Specifically, the content information acquisition unit 54 has a β-ray source 54a and a β-ray detection unit 54b. The β-ray source 54a is provided inside the inflow portion 51a, and irradiates β-rays toward the particulate matter FP collected by the collection filter 52. The β-ray source 54a is, for example, a β-ray source having carbon-14 ( 14C ) as a radiation source.
 β線検出部54bは、吸引部51bの内部においてβ線源54aと対向するよう設けられ、捕集フィルタ52に捕集された粒子状物質FPを透過したβ線の強度を、質量濃度を算出するための含有量情報として測定する。β線検出部54bは、例えば、シンチレータを備えた光電子増倍管である。 The β-ray detection unit 54b is provided inside the suction unit 51b so as to face the β-ray source 54a, and calculates the mass concentration of the intensity of β-rays transmitted through the particulate matter FP collected by the collection filter 52. It is measured as content information to be used. The β-ray detection unit 54b is, for example, a photomultiplier tube provided with a scintillator.
 演算部55は、CPUと、記憶装置(例えば、RAM、ROM、ハードディスク、SSDなど)と、ディスプレイ(例えば、液晶ディスプレイなど)と、各種インターフェース(I/Oポート、通信インターフェースなど)と、を有するコンピュータシステムである。また、演算部55は、コンピュータシステムを1つのチップに集積したSoCなどのハードウェアであってもよい。 The arithmetic unit 55 includes a CPU, a storage device (for example, RAM, ROM, hard disk, SSD, etc.), a display (for example, a liquid crystal display, etc.), and various interfaces (I / O port, communication interface, etc.). It is a computer system. Further, the arithmetic unit 55 may be hardware such as SoC in which a computer system is integrated on one chip.
 演算部55は、希釈サンプルガスDGに含まれる粒子状物質FPを分析するための各種制御及び情報処理を行う。演算部55が実行する各種制御及び情報処理の一部又は全部は、演算部55の記憶装置に記憶され、演算部55を構成するコンピュータシステムにて実行可能なプログラムにより実現されていてもよい。また、各種制御及び情報処理の一部を、ハードウェアにより実現してもよい。 The calculation unit 55 performs various controls and information processing for analyzing the particulate matter FP contained in the diluted sample gas DG. A part or all of the various controls and information processing executed by the arithmetic unit 55 may be stored in the storage device of the arithmetic unit 55 and realized by a program that can be executed by the computer system constituting the arithmetic unit 55. Further, a part of various control and information processing may be realized by hardware.
 演算部55は、機能ブロックとして分析部55aを有する。分析部55aは、第1画像取得部53により取得した流入部51aの内部に流入した希釈サンプルガスDG中にて流動する粒子状物質FPの第1画像データと、含有量情報取得部54のβ線検出部54bにて測定されたβ線強度と、に基づいて粒子状物質FPを分析する。具体的には、分析部55aは、第1画像データに基づいて、希釈サンプルガスDGに含まれる粒子状物質FPの形状に関する情報(例えば、粒子状物質FPのアスペクト比など)、粒子状物質の粒径に関する第1粒径情報(例えば、粒子状物質FPの粒径分布)などを算出できる。また、分析部55aは、β線検出部54bにて測定されたβ線強度である含有量情報に基づいて、粒子状物質FPの質量濃度を算出できる。 The calculation unit 55 has an analysis unit 55a as a functional block. The analysis unit 55a contains the first image data of the particulate matter FP flowing in the diluted sample gas DG that has flowed into the inflow unit 51a acquired by the first image acquisition unit 53, and the β of the content information acquisition unit 54. The particulate matter FP is analyzed based on the β-ray intensity measured by the line detection unit 54b. Specifically, the analysis unit 55a provides information on the shape of the particulate matter FP contained in the diluted sample gas DG (for example, the aspect ratio of the particulate matter FP) and the particulate matter, based on the first image data. The first particle size information regarding the particle size (for example, the particle size distribution of the particulate matter FP) can be calculated. Further, the analysis unit 55a can calculate the mass concentration of the particulate matter FP based on the content information which is the β-ray intensity measured by the β-ray detection unit 54b.
 本実施形態の分析装置5は、第2画像取得部56をさらに備える。第2画像取得部56は、受光面が捕集フィルタ52の粒子状物質FPが捕集される側の表面と対向するよう捕集フィルタ52の長さ方向の所定の位置に設けられた、電荷結合素子(CCD)が二次元アレイ状に配置されたCCDイメージセンサ、受光素子がアレイ状に配置されたCMOSイメージセンサである。 The analyzer 5 of the present embodiment further includes a second image acquisition unit 56. The second image acquisition unit 56 is provided at a predetermined position in the length direction of the collection filter 52 so that the light receiving surface faces the surface of the collection filter 52 on the side where the particulate matter FP is collected. A CCD image sensor in which coupling elements (CCDs) are arranged in a two-dimensional array, and a CMOS image sensor in which light receiving elements are arranged in an array.
 第2画像取得部56は、吸引部51bの吸引により捕集フィルタ52に捕集された粒子状物質FPの画像データ(第2画像データ)を取得する。具体的には、吸引部51bの吸引により粒子状物質FPが捕集された捕集フィルタ52の部分(捕集領域と呼ぶ)を、捕集フィルタ52の長さ方向の移動により第2画像取得部56の直下まで移動後に、第2画像取得部56が、捕集フィルタ52の捕集領域と、その周囲の粒子状物質FPが捕集されていない領域(非捕集領域と呼ぶ)と、を含む第2画像データを取得する。 The second image acquisition unit 56 acquires image data (second image data) of the particulate matter FP collected by the collection filter 52 by suction of the suction unit 51b. Specifically, the portion of the collection filter 52 (referred to as the collection area) in which the particulate matter FP is collected by the suction of the suction unit 51b is moved in the length direction of the collection filter 52 to acquire a second image. After moving to just below the unit 56, the second image acquisition unit 56 determines that the collection area of the collection filter 52 and the area around which the particulate matter FP is not collected (referred to as a non-collection area). The second image data including the above is acquired.
 第2画像取得部56にて適切な第2画像データを取得するため、分析装置5には、第1光源56aが設けられる。第1光源56aは、例えば、表面実装された複数の白色LEDにより構成され、第2画像取得部56の視野を白色光にて均一に照射する。第2画像取得部56の視野に均一な白色光を照射することにより、光の照射量の分布の影響を受けた第2画像データが取得されることを回避できる。 The analyzer 5 is provided with a first light source 56a in order for the second image acquisition unit 56 to acquire appropriate second image data. The first light source 56a is composed of, for example, a plurality of surface-mounted white LEDs, and uniformly illuminates the field of view of the second image acquisition unit 56 with white light. By irradiating the field of view of the second image acquisition unit 56 with uniform white light, it is possible to avoid acquiring the second image data affected by the distribution of the irradiation amount of the light.
 分析部55aは、第2画像取得部56にて取得した第2画像データに基づいて、有色の粒子状物質FPに関する情報を算出する。例えば、分析部55aは、第2画像データのうち捕集領域に対応する画像部分に含まれる画素の輝度と、非捕集領域に対応する画像部分に含まれる画素の輝度と、の差に基づいて、希釈サンプルガスDG中における黒色の粒子状物質FP(例えば、炭素を主成分とする粒子状物質FP)の含有量を算出できる。 The analysis unit 55a calculates information on the colored particulate matter FP based on the second image data acquired by the second image acquisition unit 56. For example, the analysis unit 55a is based on the difference between the brightness of the pixels included in the image portion corresponding to the collection region and the brightness of the pixels included in the image portion corresponding to the non-collection region in the second image data. Therefore, the content of the black particulate matter FP (for example, the particulate matter FP containing carbon as a main component) in the diluted sample gas DG can be calculated.
(4)粒子状物質の分析動作
 図6を用いて、上記の構成を有する分析システム100を用いた粒子状物質FPの分析動作を説明する。図6は、粒子状物質の分析動作を示すフローチャートである。以下では、粒子状物質FPをサンプリングする際に、ブローバックを実行する期間と粒子状物質FPをサンプリングする期間とを予め決められた割合で実行する場合における動作例を説明する。
(4) Analytical operation of particulate matter FIG. 6 will be used to explain the analytical operation of the particulate matter FP using the analysis system 100 having the above configuration. FIG. 6 is a flowchart showing an analysis operation of particulate matter. Hereinafter, an operation example will be described when the period for executing blowback and the period for sampling the particulate matter FP are executed at a predetermined ratio when sampling the particulate matter FP.
 まず、ステップS1において、上記のブローバックが実行される。具体的には、制御部9が、第2吸引装置P2を動作させ、供給装置7から希釈ガスARを供給した状態で、三方バルブVを制御して第2吸引装置P2と希釈器3とをガス流通不可能とし、第2吸引装置P2と大気との間をガス流通可能とする。これにより、希釈器3から第1ガスラインL1を通過しサンプリングプローブ1から煙道FLに希釈ガスARが排出されて、サンプリングプローブ1及び第1ガスラインL1のブローバックが実行される。 First, in step S1, the above blowback is executed. Specifically, the control unit 9 operates the second suction device P2, and in a state where the dilution gas AR is supplied from the supply device 7, controls the three-way valve V to control the second suction device P2 and the diluent 3. It is assumed that gas cannot flow, and gas can flow between the second suction device P2 and the atmosphere. As a result, the diluted gas AR is discharged from the diluter 3 through the first gas line L1 and from the sampling probe 1 to the flue FL, and blowback of the sampling probe 1 and the first gas line L1 is executed.
 ブローバックを実行中、制御部9は、ステップS2において、ブローバックが開始されてから所定の期間が経過してブローバックを終了するタイミングとなったか否かを判定する。ブローバックの終了タイミングではないと判定した場合(ステップS2で「No」)、制御部9は、第2吸引装置P2と希釈器3とをガス流通不可能とした状態を維持して、ブローバックの実行を継続する。 While the blowback is being executed, the control unit 9 determines in step S2 whether or not it is time to end the blowback after a predetermined period has elapsed from the start of the blowback. When it is determined that it is not the end timing of blowback (“No” in step S2), the control unit 9 maintains a state in which the second suction device P2 and the diluter 3 cannot flow gas, and blowback is performed. Continue to run.
 一方、ブローバックの終了タイミングであると判定した場合(ステップS2で「Yes」)、分析装置5を用いてサンプルガスSGに含まれる粒子状物質FPを分析するために、粒子状物質FPのサンプリングが開始される。まず、ステップS3において、サンプルガスSGを希釈ガスARにて希釈して希釈サンプルガスDGを生成する。具体的には、制御部9が、第1吸引装置P1と第2吸引装置P2を動作させて、煙道FLを流れるサンプルガスSGをサンプリングプローブ1により希釈器3の混合部31の内部空間IS1に流入させるとともに、希釈ガスARを供給装置7から希釈ガス充填空間IS2に充填させ、希釈ガス充填空間IS2から内部空間IS1に希釈ガスARを流入させることで、サンプルガスSGを希釈ガスARにて希釈させる。 On the other hand, when it is determined that it is the end timing of blowback (“Yes” in step S2), sampling of the particulate matter FP is performed in order to analyze the particulate matter FP contained in the sample gas SG using the analyzer 5. Is started. First, in step S3, the sample gas SG is diluted with the diluted gas AR to generate a diluted sample gas DG. Specifically, the control unit 9 operates the first suction device P1 and the second suction device P2 to sample the sample gas SG flowing through the flue FL by the sampling probe 1, and the internal space IS1 of the mixing unit 31 of the diluent 3 is used. The sample gas SG is charged into the diluted gas AR by filling the diluted gas AR into the diluted gas filling space IS2 from the supply device 7 and flowing the diluted gas AR from the diluted gas filling space IS2 into the internal space IS1. Dilute.
 サンプルガスSGを希釈して希釈サンプルガスDGを生成後、ステップS4において、第1吸引装置P1の吸引力により、内部空間IS1中の希釈サンプルガスDGの一部を、分析装置5の流入部51aに流入させる。 After diluting the sample gas SG to generate the diluted sample gas DG, in step S4, a part of the diluted sample gas DG in the internal space IS1 is sucked by the suction force of the first suction device P1 to the inflow portion 51a of the analyzer 5. Inflow to.
 上記のように、希釈サンプルガスDGは、吸引部51bの吸引により流入部51aに導入される。また、流入部51aと吸引部51bとの間には捕集フィルタ52が設けられている。そのため、希釈サンプルガスDGが流入部51aに流入後に吸引部51bに吸引される間に、当該希釈サンプルガスDGに含まれる粒子状物質FPが捕集フィルタ52に捕集される。 As described above, the diluted sample gas DG is introduced into the inflow portion 51a by suction of the suction portion 51b. Further, a collection filter 52 is provided between the inflow portion 51a and the suction portion 51b. Therefore, while the diluted sample gas DG flows into the inflow section 51a and then is sucked into the suction section 51b, the particulate matter FP contained in the diluted sample gas DG is collected by the collection filter 52.
 流入部51a内で流動する粒子状物質FPの形状が第1画像データにて画像処理などにより判別可能となるよう、流入部51aにおける希釈サンプルガスDGの流速は制御されている。流入部51aにおける希釈サンプルガスDGの流速は、例えば、第1吸引装置P1による希釈サンプルガスDGの吸引流量を制御することで制御できる。 The flow velocity of the diluted sample gas DG in the inflow portion 51a is controlled so that the shape of the particulate matter FP flowing in the inflow portion 51a can be discriminated by image processing or the like from the first image data. The flow rate of the diluted sample gas DG in the inflow unit 51a can be controlled, for example, by controlling the suction flow rate of the diluted sample gas DG by the first suction device P1.
 流入部51aに希釈サンプルガスDGを流入中に、ステップS5において、第1画像取得部53が、流入部51aを流れる希釈サンプルガスDG中にて流動する粒子状物質FPの第1画像データを取得する。 第1画像取得部53にて取得した第1画像データは、分析部55aに送信される。第1画像取得部53は、流入部51aにおける希釈サンプルガスDGの流速に従って第1画像データを取得するためのシャッタースピードを調節する。これにより、第1画像取得部53は、粒子状物質FPの形状が明瞭に判別できる第1画像データを取得できる。 While the diluted sample gas DG is flowing into the inflow section 51a, in step S5, the first image acquisition section 53 acquires the first image data of the particulate matter FP flowing in the diluted sample gas DG flowing through the inflow section 51a. do. The first image data acquired by the first image acquisition unit 53 is transmitted to the analysis unit 55a. The first image acquisition unit 53 adjusts the shutter speed for acquiring the first image data according to the flow velocity of the diluted sample gas DG in the inflow unit 51a. As a result, the first image acquisition unit 53 can acquire the first image data in which the shape of the particulate matter FP can be clearly discriminated.
 また、流入部51aに希釈サンプルガスDGを流入中に、ステップS6において、含有量情報取得部54が、希釈サンプルガスDGに含まれる粒子状物質FPの含有量に関する含有量情報を取得する。具体的には、含有量情報取得部54のβ線源54aが、捕集フィルタ52に捕集された粒子状物質FPに向けてβ線を出射し、粒子状物質FPを通過後のβ線の強度をβ線検出部54bが測定する。β線検出部54bにより測定されたβ線強度は、分析部55aに送信される。 Further, while the diluted sample gas DG is flowing into the inflow unit 51a, the content information acquisition unit 54 acquires the content information regarding the content of the particulate matter FP contained in the diluted sample gas DG in step S6. Specifically, the β-ray source 54a of the content information acquisition unit 54 emits β-rays toward the particulate matter FP collected by the collection filter 52, and β-rays after passing through the particulate matter FP. The β-ray detection unit 54b measures the intensity of the above. The β-ray intensity measured by the β-ray detection unit 54b is transmitted to the analysis unit 55a.
 流入部51aに希釈サンプルガスDGを、所定の時間(例えば、1時間)のうち予め決められた期間だけ流入させて捕集フィルタ52に粒子状物質FPを捕集後、捕集フィルタ52をその長さ方向に移動させて、当該粒子状物質FPの捕集領域を、第2画像取得部56の直下に移動させる。なお、希釈サンプルガスDGを流入させる予め決められた期間は、所定の条件に従って予め決められたブローバックの期間とサンプリングの期間との割合に基づいて決定される。 A diluted sample gas DG is allowed to flow into the inflow section 51a for a predetermined period of time (for example, 1 hour) to collect the particulate matter FP in the collection filter 52, and then the collection filter 52 is used. By moving in the length direction, the collection region of the particulate matter FP is moved directly under the second image acquisition unit 56. The predetermined period for inflowing the diluted sample gas DG is determined based on the ratio of the blowback period and the sampling period determined in advance according to predetermined conditions.
 捕集領域を第2画像取得部56の直下に移動後、ステップS7において、捕集領域とその周囲を第1光源56aからの光にて照射した状態で、第2画像取得部56が、捕集領域と非捕集領域とを含む第2画像データを取得する。第2画像取得部56にて取得された第2画像データは、分析部55aに送信される。 After moving the collection area directly under the second image acquisition unit 56, in step S7, the second image acquisition unit 56 captures the collection area and its surroundings with the light from the first light source 56a. The second image data including the collecting area and the non-collecting area is acquired. The second image data acquired by the second image acquisition unit 56 is transmitted to the analysis unit 55a.
 第1画像データ、含有量情報(β線強度)、第2画像データを取得後、ステップS8において、分析部55aが、これらの情報に基づいて希釈サンプルガスDG(サンプルガスSG)に含まれる粒子状物質FPを分析する。 After acquiring the first image data, the content information (β ray intensity), and the second image data, in step S8, the analysis unit 55a determines the particles contained in the diluted sample gas DG (sample gas SG) based on these information. The state substance FP is analyzed.
 上記の情報に基づいて粒子状物質FPを分析するにあたり、燃焼プロセスで生じる排出ガスに含まれる粒子状物質FPの性質を調査した。その結果、球形でない粒子状物質FPは、灰中未燃分である場合が多いことが判明した。また、粒子状物質FPの平均粒径と当該粒子状物質FPに含まれる灰中未燃分の割合との間には強い相関があることが判明した。具体的には、粒子状物質FPの平均粒径が大きいほど、当該粒子状物質FPに含まれる灰中未燃分の割合が大きくなることが判明した。 In analyzing the particulate matter FP based on the above information, the properties of the particulate matter FP contained in the exhaust gas generated in the combustion process were investigated. As a result, it was found that the non-spherical particulate matter FP is often unburned in ash. It was also found that there is a strong correlation between the average particle size of the particulate matter FP and the proportion of unburned content in the ash contained in the particulate matter FP. Specifically, it was found that the larger the average particle size of the particulate matter FP, the larger the proportion of unburned content in the ash contained in the particulate matter FP.
 さらに、粒子状物質FPに灰中未燃分が多く含まれていると、その粒子状物質FPはより黒色となることも判明した。具体的には、捕集フィルタ52に捕集された粒子状物質FPが黒色であればあるほど、捕集された粒子状物質FPに含まれる灰中未燃分の割合が多いことが判明した。 Furthermore, it was also found that when the particulate matter FP contained a large amount of unburned content in the ash, the particulate matter FP became blacker. Specifically, it was found that the blacker the particulate matter FP collected by the collection filter 52, the higher the proportion of unburned matter in the ash contained in the collected particulate matter FP. ..
 従って、分析部55aは、例えば、第1画像データに対してエッジ処理などの画像に含まれる像の形状を把握する処理を実行して、第1画像データに含まれる粒子状物質FPの形状を把握する。粒子状物質FPの形状を把握後、分析部55aは、第1画像データに含まれる粒子状物質FPのアスペクト比(粒子状物質FPの長軸と短軸との比率)などの粒子形状に関する情報、粒子状物質FPの平均粒径などの粒径に関する情報を算出する。 Therefore, the analysis unit 55a executes, for example, a process of grasping the shape of the image included in the image such as edge processing on the first image data to obtain the shape of the particulate matter FP included in the first image data. grasp. After grasping the shape of the particulate matter FP, the analysis unit 55a provides information on the particle shape such as the aspect ratio of the particulate matter FP (ratio of the major axis to the minor axis of the particulate matter FP) included in the first image data. , Calculate information on particle size such as the average particle size of particulate matter FP.
 分析部55aは、アスペクト比が1(真球を意味する)から大きくずれており球形でない粒子状物質FPの像が第1画像データに多く含まれている場合、粒子状物質FPの平均粒径が大きい場合に、粒子状物質FPに灰中未燃分が多く含まれていると判定できる。また、分析部55aは、粒子状物質FPの平均粒径と粒子状物質FPに含まれる灰中未燃分の割合との関係を表す関係式を用いて、第1画像データに含まれる粒子状物質FPの平均粒径から、粒子状物質FPに含まれる灰中未燃分の割合を具体的に算出できる。 When the aspect ratio of the analysis unit 55a deviates greatly from 1 (meaning a true sphere) and the first image data contains many images of the non-spherical particulate matter FP, the analysis unit 55a has an average particle size of the particulate matter FP. When is large, it can be determined that the particulate matter FP contains a large amount of unburned matter in the ash. Further, the analysis unit 55a uses a relational expression expressing the relationship between the average particle size of the particulate matter FP and the ratio of the unburned portion in the ash contained in the particulate matter FP, and the particulate matter contained in the first image data. From the average particle size of the particulate matter FP, the ratio of the unburned content in the ash contained in the particulate matter FP can be specifically calculated.
 また、分析部55aは、β線検出部54bにて測定されたβ線強度に基づいて、粒子状物質FPの質量濃度を算出する。分析部55aは、上記の粒子状物質FPに含まれる灰中未燃分の割合と粒子状物質FPの質量濃度とを用いて、灰中未燃分の質量濃度を算出できる。 Further, the analysis unit 55a calculates the mass concentration of the particulate matter FP based on the β-ray intensity measured by the β-ray detection unit 54b. The analysis unit 55a can calculate the mass concentration of the unburned portion in the ash by using the ratio of the unburned portion in the ash contained in the particulate matter FP and the mass concentration of the particulate matter FP.
 さらに、分析部55aは、上記のステップS7にて取得した第2画像データに基づいて、捕集フィルタ52に捕集された有色の粒子状物質FPに関する情報を算出できる。具体的には、分析部55aは、第2画像データに含まれる画素の輝度を用いて粒子状物質FPに関する情報を算出できる。 Further, the analysis unit 55a can calculate information on the colored particulate matter FP collected by the collection filter 52 based on the second image data acquired in step S7 above. Specifically, the analysis unit 55a can calculate information about the particulate matter FP by using the brightness of the pixels included in the second image data.
 ここで、第2画像データの画素の性質を説明するため、第2画像データの各画素が有しうる輝度と、第2画像データに含まれる特定の輝度を有する画素の数と、を関連付けた図7に示すような「輝度ヒストグラム」と呼ばれるデータを考える。図7は、輝度ヒストグラムの一例を示す図である。 Here, in order to explain the properties of the pixels of the second image data, the brightness that each pixel of the second image data can have is associated with the number of pixels having a specific brightness included in the second image data. Consider data called a "brightness histogram" as shown in FIG. FIG. 7 is a diagram showing an example of a luminance histogram.
 図7に示す輝度ヒストグラムにおいては、輝度Br1と輝度Br2にピークが見られる。小さい輝度Br1における第1ピークPE1は、捕集フィルタ52における粒子状物質FPの捕集量及び/又は当該粒子状物質FPに含まれる炭素量が多くなるほど小さい輝度側にシフトする。つまり、第1ピークPE1が現れる輝度Br1は、粒子状物質FPの捕集量及び/又は当該粒子状物質FPに含まれる炭素量が多くなるほど小さくなる。 In the luminance histogram shown in FIG. 7, peaks are seen in the luminance Br1 and the luminance Br2. The first peak PE1 in the small luminance Br1 shifts to the smaller luminance side as the amount of the particulate matter FP collected by the collection filter 52 and / or the amount of carbon contained in the particulate matter FP increases. That is, the luminance Br1 at which the first peak PE1 appears becomes smaller as the amount of collected particulate matter FP and / or the amount of carbon contained in the particulate matter FP increases.
 その一方、大きい輝度Br2における第2ピークPE2は、粒子状物質FPの捕集量等によって若干シフトするものの、そのシフト量は第1ピークPE1ほど大きくはない。つまり、第2ピークPE2が現れる輝度Br2は、粒子状物質FPの存在によりほとんど影響を受けない。 On the other hand, the second peak PE2 at the high luminance Br2 slightly shifts depending on the amount of the particulate matter FP collected, but the shift amount is not as large as the first peak PE1. That is, the luminance Br2 at which the second peak PE2 appears is hardly affected by the presence of the particulate matter FP.
 上記から、輝度Br1における第1ピークPE1は粒子状物質FPが捕集された捕集領域に対応する画像部分の輝度分布を表し、輝度Br2における第2ピークPE2は粒子状物質FPが捕集されていない非捕集領域に対応する画像部分の輝度分布を表すことが分かる。従って、分析部55aは、第2画像データのうち小さい輝度を有する画像部分の画素の輝度に基づいて、捕集フィルタ52に捕集された粒子状物質FPの捕集量に関する情報を算出できる。 From the above, the first peak PE1 in the luminance Br1 represents the luminance distribution of the image portion corresponding to the collection region where the particulate matter FP is collected, and the second peak PE2 in the luminance Br2 is the particulate matter FP collected. It can be seen that it represents the luminance distribution of the image portion corresponding to the non-collected region. Therefore, the analysis unit 55a can calculate information on the collection amount of the particulate matter FP collected by the collection filter 52 based on the brightness of the pixels of the image portion having a small brightness in the second image data.
 具体的には、分析部55aは、例えば、第2画像データのうち捕集領域に対応する画像部分の画素の輝度と、捕集フィルタ52に捕集された粒子状物質FPに含まれる炭素量(粒子状物質FPの捕集量に関する情報)と、の関係を表す検量線に基づいて、捕集フィルタ52に捕集された粒子状物質FPに含まれる炭素量を、粒子状物質FPの捕集量に関する情報として算出できる。 Specifically, the analysis unit 55a has, for example, the brightness of the pixels of the image portion corresponding to the collection region in the second image data and the amount of carbon contained in the particulate matter FP collected by the collection filter 52. Based on the calibration curve showing the relationship with (information on the amount of particulate matter FP collected), the amount of carbon contained in the particulate matter FP collected by the collection filter 52 is captured by the particulate matter FP. It can be calculated as information on the amount of collection.
 上記の検量線は、粒子状物質FPを捕集させて取得した第2画像データと、この第2画像データを取得した際の捕集フィルタ52に捕集された粒子状物質FPに含まれる炭素量と、の関係から算出できる。捕集された粒子状物質FPに含まれる炭素量は、例えば、粒子状物質FPを捕集した捕集フィルタを所定の温度(例えば、2000°C)にて燃焼した際に発生した二酸化炭素量から算出できる。 The above calibration curve shows the second image data acquired by collecting the particulate matter FP and the carbon contained in the particulate matter FP collected by the collection filter 52 when the second image data was acquired. It can be calculated from the relationship between the amount and. The amount of carbon contained in the collected particulate matter FP is, for example, the amount of carbon dioxide generated when the collecting filter that has collected the particulate matter FP is burned at a predetermined temperature (for example, 2000 ° C.). Can be calculated from.
 図8に示すように、第2画像データのうち捕集領域に対応する画像部分の画素の輝度Br1と、捕集フィルタ52に捕集された粒子状物質FPに含まれる炭素量と、の関係はほぼ直線的となることが分かる。従って、図8に示すデータから、例えば、Y=aX+b(X:輝度、Y:炭素量)との式を検量線として算出できる。図8は、第2画像データのうち小さい輝度を有する画像部分の画素の輝度と、捕集フィルタに捕集された粒子状物質FPに含まれる炭素量と、の関係をグラフで表した一例を示す図である。 As shown in FIG. 8, the relationship between the luminance Br1 of the pixel of the image portion corresponding to the collection region in the second image data and the amount of carbon contained in the particulate matter FP collected by the collection filter 52. It can be seen that is almost linear. Therefore, from the data shown in FIG. 8, for example, the formula of Y = aX + b (X: luminance, Y: carbon amount) can be calculated as a calibration curve. FIG. 8 is an example of graphing the relationship between the brightness of the pixels of the image portion having a small brightness in the second image data and the amount of carbon contained in the particulate matter FP collected by the collection filter. It is a figure which shows.
 なお、検量線を算出する際に用いる第2画像データは、実際の測定対象となる粒子状物質FPを分析システム100の設置場所で捕集フィルタ52に捕集して取得する。本発明者は、標準物質を捕集フィルタに捕集して取得した第2画像データ、又は、分析システム100を模した実験用装置を用いて粒子状物質を捕集して取得した第2画像データを用いた場合と、実際の測定対象となる粒子状物質FPを分析システム100の設置場所で捕集して取得した第2画像データを用いた場合とでは、異なる検量線が算出されることを見いだした。 The second image data used when calculating the calibration curve is acquired by collecting the particulate matter FP, which is the actual measurement target, with the collection filter 52 at the installation location of the analysis system 100. The present inventor collects the standard substance with a collection filter and acquires the second image data, or the second image acquired by collecting the particulate substance using an experimental device imitating the analysis system 100. Different calibration curves are calculated when using the data and when using the second image data obtained by collecting the particulate matter FP to be actually measured at the installation location of the analysis system 100. I found it.
 これは、実際の測定対象となる粒子状物質FPを分析システム100の設置場所で捕集フィルタ52に捕集するときの捕集条件が、標準物質を捕集フィルタに捕集する場合の条件、又は、実験用装置を用いて粒子状物質を捕集フィルタに捕集する場合の条件とは異なることに起因すると考えられた。例えば、燃焼プロセスで発生したガスに含まれる粒子状物質FPを測定対象とする場合には、サンプルガスSG(すなわち、燃焼プロセスで発生したガス)が高温であるのに対し、標準物質の捕集、実験用装置を用いた捕集は室温で行われる。 This is the condition when the particulate matter FP to be actually measured is collected by the collection filter 52 at the installation site of the analysis system 100, and the condition when the standard substance is collected by the collection filter. Alternatively, it was considered that the condition was different from the condition when the particulate matter was collected by the collection filter using the experimental device. For example, when the particulate matter FP contained in the gas generated in the combustion process is measured, the sample gas SG (that is, the gas generated in the combustion process) has a high temperature, whereas the standard substance is collected. , Collection using experimental equipment is carried out at room temperature.
 このように、第2画像データに基づいて粒子状物質FPを分析する際に用いる検量線を、実際の測定対象となる粒子状物質FPを分析システム100の設置場所で捕集フィルタ52に捕集して取得した第2画像データを用いて算出することで、より正確な検量線を算出して、より精度よく粒子状物質FPを分析できる。 In this way, the calibration curve used when analyzing the particulate matter FP based on the second image data is collected by the collection filter 52 at the installation site of the analysis system 100 for the particulate matter FP to be actually measured. By calculating using the second image data obtained in the above, a more accurate calibration curve can be calculated and the particulate matter FP can be analyzed more accurately.
 また、第2画像データのうち小さい輝度を有する画像部分の画素の輝度Br1を、粒子状物質FPに関する所定のパラメータで基準化したデータを用いて、粒子状物質FPに関する情報を算出できる。例えば、図9に示すように、輝度Br1が経時的に変化する場合において、当該輝度Br1を粒子状物質FPの捕集量で基準化すると、図10Aに示すように、輝度Br1を捕集量で基準化した値(輝度/捕集量)の経時変化(図10Aでは実線で表す)は、輝度Br1の経時変化(図10Aでは破線で表す)とは異なる。図9は、輝度の経時変化の一例を示す図である。図10Aは、粒子状物質の捕集量で基準化した輝度の経時変化の一例を示す図である。 Further, the information on the particulate matter FP can be calculated by using the data in which the luminance Br1 of the pixel of the image portion having a small brightness in the second image data is standardized by a predetermined parameter on the particulate matter FP. For example, as shown in FIG. 9, when the luminance Br1 changes with time, when the luminance Br1 is standardized by the amount of the particulate matter FP collected, the luminance Br1 is collected as shown in FIG. 10A. The change over time (indicated by a solid line in FIG. 10A) of the value (brightness / collected amount) standardized in 1 is different from the change over time in brightness Br1 (indicated by a broken line in FIG. 10A). FIG. 9 is a diagram showing an example of a change in brightness with time. FIG. 10A is a diagram showing an example of a change in brightness over time, which is standardized by the amount of particulate matter collected.
 上記の経時変化の違いは、各時間に捕集された粒子状物質FPに含まれる灰中未燃分の割合が時間により変化していることを示唆していると考えられる。灰中未燃分は黒色を有しているので、粒子状物質FPに含まれる灰中未燃分の割合が多い場合の輝度Br1は、灰中未燃分の割合が少ない場合の輝度Br1と比較して、粒子状物質FPの捕集量が同じであっても小さくなる。このように、輝度Br1を捕集量で基準化することにより、捕集フィルタ52に捕集された粒子状物質FPに含まれる灰中未燃分の割合に関する情報を取得できる。捕集フィルタ52に捕集された粒子状物質FPに含まれる灰中未燃分の割合に関する情報を取得することにより、例えば、燃焼プロセスにおける燃焼条件についての情報などの粒子状物質に関する多様な情報を得ることができる。 It is considered that the above-mentioned difference in the change with time suggests that the ratio of the unburned content in the ash contained in the particulate matter FP collected at each time changes with time. Since the unburned component in the ash has a black color, the brightness Br1 when the proportion of the unburned component in the ash contained in the particulate matter FP is large is the brightness Br1 when the proportion of the unburned component in the ash is small. In comparison, even if the collected amount of the particulate matter FP is the same, it becomes smaller. By standardizing the luminance Br1 by the amount of collection in this way, it is possible to obtain information on the ratio of the unburned content in the ash contained in the particulate matter FP collected by the collection filter 52. By acquiring information on the proportion of unburned matter in the ash contained in the particulate matter FP collected by the collection filter 52, various information on the particulate matter such as information on combustion conditions in the combustion process is obtained. Can be obtained.
 その他、図10Bに示すような、輝度Br1と粒子状物質FPの単位時間あたりの捕集量との積の値(輝度*(捕集量/捕集時間))の経時変化、図10Cに示すような、輝度Br1を粒子状物質FPの単位時間あたりの捕集量で基準化した値(輝度/(捕集量/捕集時間))の経時変化からも、例えば、燃焼プロセスにおける燃焼条件についての情報などの多様な情報を得ることができる。図10Bは、輝度と粒子状物質の単位時間あたりの捕集量との積の値の経時変化の一例を示す図である。図10Cは、輝度を粒子状物質の単位時間あたりの捕集量で基準化した値の経時変化の一例を示す図である。 In addition, as shown in FIG. 10B, the change over time of the product value (luminance * (collection amount / collection time)) of the luminance Br1 and the collection amount of the particulate matter FP per unit time is shown in FIG. 10C. From the change over time of the value (luminance / (collection amount / collection time)) in which the brightness Br1 is standardized by the collection amount of the particulate matter FP per unit time, for example, the combustion conditions in the combustion process. Various information such as information can be obtained. FIG. 10B is a diagram showing an example of a change over time in the value of the product of the luminance and the amount of particulate matter collected per unit time. FIG. 10C is a diagram showing an example of a change over time in which the luminance is standardized by the amount of particulate matter collected per unit time.
 また、分析部55aは、第2画像データの輝度Br1に代えて、第2画像データの捕集領域に対応する画像部分の輝度Br1と、第2画像データの非捕集領域に対応する画像部分の輝度Br2と、の差ΔBR(図7)に基づいて、捕集フィルタ52に捕集された粒子状物質FPに関する情報を算出してもよい。例えば、分析部55aは、第1ピークPE1の輝度Br1と第2ピークPE2の輝度Br2との差ΔBRが大きければ灰中未燃分の割合が多く、小さければ灰中未燃分の割合が少ないと判定できる。 Further, the analysis unit 55a replaces the luminance Br1 of the second image data with the luminance Br1 of the image portion corresponding to the collection region of the second image data and the image portion corresponding to the non-collection region of the second image data. Information on the particulate matter FP collected by the collection filter 52 may be calculated based on the difference ΔBR (FIG. 7) from the brightness Br2 of the above. For example, in the analysis unit 55a, if the difference ΔBR between the luminance Br1 of the first peak PE1 and the luminance Br2 of the second peak PE2 is large, the ratio of the unburned portion in the ash is large, and if it is small, the proportion of the unburned portion in the ash is small. Can be determined.
 なお、図7に示す輝度ヒストグラムは、第2画像データをそのまま用いて生成されているが、これに限られず、第2画像データを用いて粒子状物質の分析を行う際に、第2画像データを白黒反転させてもよい。第2画像データを白黒反転させて輝度スペクトルを生成する場合、第1ピークPE1は非捕集領域に対応する画像部分の輝度分布となり、第2ピークPE2は捕集領域に対応する画像部分の輝度分布となる。 The brightness histogram shown in FIG. 7 is generated by using the second image data as it is, but is not limited to this, and the second image data is used when analyzing the particulate matter using the second image data. May be reversed in black and white. When the second image data is inverted in black and white to generate a luminance spectrum, the first peak PE1 is the luminance distribution of the image portion corresponding to the non-collection region, and the second peak PE2 is the luminance distribution of the image portion corresponding to the capture region. It becomes a distribution.
 このように、分析装置5では、流入部51aに流入した希釈サンプルガスDG中にて流動する粒子状物質FPの第1画像データと、希釈サンプルガスDGに含まれる粒子状物質の含有量に関する含有量情報と、に基づいて粒子状物質FPを分析している。第1画像データにはサンプルガスSG中にて流動する粒子状物質FPの外観に関する情報が含まれており、また、燃焼プロセスで生じる炭素が主成分の粒子状物質FPは外観に特徴があるので、第1画像データと含有量情報とに基づいて、炭素が主成分の粒子状物質FPの分析を精度よく行うことができる。また、第1画像データと、粒子状物質FPの質量濃度に加えて、第2画像データに基づいて粒子状物質FPを分析することにより、より精度よく粒子状物質FPを分析できる。 As described above, in the analyzer 5, the first image data of the particulate matter FP flowing in the diluted sample gas DG flowing into the inflow portion 51a and the content of the particulate matter contained in the diluted sample gas DG are contained. Particulate matter FP is analyzed based on the amount information. The first image data contains information on the appearance of the particulate matter FP flowing in the sample gas SG, and the carbon-based particulate matter FP produced in the combustion process is characterized by its appearance. Based on the first image data and the content information, it is possible to accurately analyze the particulate matter FP whose main component is carbon. Further, by analyzing the particulate matter FP based on the second image data in addition to the first image data and the mass concentration of the particulate matter FP, the particulate matter FP can be analyzed more accurately.
 また、分析装置5では、希釈サンプルガスDGを流入部51aに流入させ、第1画像取得部53が流入部51aで流動する希釈サンプルガスDGに含まれる粒子状物質FPの画像データ(第1画像データ)を取得し、分析部55aが第1画像データに基づいて粒子状物質を分析している。 Further, in the analyzer 5, the image data of the particulate matter FP contained in the diluted sample gas DG in which the diluted sample gas DG flows into the inflow section 51a and the first image acquisition section 53 flows in the inflow section 51a (first image). Data) is acquired, and the analysis unit 55a analyzes the particulate matter based on the first image data.
 上記の分析装置5は、粒子状物質FPを含む希釈サンプルガスDGが流動している状態の画像データを用いて粒子状物質FPを分析できるので、流入部51aに連続的に希釈サンプルガスDGを流入させて連続的に粒子状物質FPを分析できる。 Since the above-mentioned analyzer 5 can analyze the particulate matter FP using the image data in which the diluted sample gas DG containing the particulate matter FP is flowing, the diluted sample gas DG is continuously applied to the inflow portion 51a. Particulate matter FP can be continuously analyzed by inflowing.
 上記のようにして粒子状物質FPの分析結果を算出後、分析部55aは、粒子状物質FPの分析結果をディスプレイに表示する。例えば、図11に示すような、第1画像データを表示する第1画像表示部D1と、第2画像データを表示する第2画像表示部D2と、粒子状物質FPの粒径分布を表示する粒径分布表示部D3と、灰中未燃分の割合を表示する割合表示部D4と、灰中未燃分の濃度を表示する濃度表示部D5と、を有する表示画面Dを表示できる。図11は、分析結果の表示画面の一例を示す図である。 After calculating the analysis result of the particulate matter FP as described above, the analysis unit 55a displays the analysis result of the particulate matter FP on the display. For example, as shown in FIG. 11, the first image display unit D1 for displaying the first image data, the second image display unit D2 for displaying the second image data, and the particle size distribution of the particulate matter FP are displayed. A display screen D having a particle size distribution display unit D3, a ratio display unit D4 for displaying the ratio of unburned content in ash, and a concentration display unit D5 for displaying the concentration of unburned content in ash can be displayed. FIG. 11 is a diagram showing an example of an analysis result display screen.
(5)分析装置の変形例1
 上記の分析装置5の流入部51aにおいて、希釈サンプルガスDGの流路は1つしか設けられていなかった。しかし、これに限られず、図12に示すように、流入部51aは、第1画像取得部53が設けられ第1画像データを取得するための希釈サンプルガスDGが流れる第1流路FL1と、β線源54aが設けられ含有量情報を取得するための希釈サンプルガスDGが流れる第2流路FL2と、を有してもよい。図12は、流入部の変形例の一例を示す図である。
(5) Modification example of the analyzer 1
In the inflow section 51a of the analyzer 5, only one flow path for the diluted sample gas DG was provided. However, the present invention is not limited to this, and as shown in FIG. 12, the inflow unit 51a includes a first flow path FL1 in which the first image acquisition unit 53 is provided and a diluted sample gas DG for acquiring the first image data flows. A β-radioactive source 54a may be provided and may have a second flow path FL2 through which a diluted sample gas DG for acquiring content information flows. FIG. 12 is a diagram showing an example of a modification of the inflow portion.
 これにより、第1画像データを取得するための第1流路FL1における希釈サンプルガスDGの流速と、含有量情報を取得するための希釈サンプルガスDGの流速と、を独立に調整できる。その結果、第1画像データと含有量情報を最適な条件で取得できる。例えば、第1画像データにおいて粒子状物質FPを明確な像として取得するために第1流路FL1における希釈サンプルガスDGの流速を遅くしつつ、粒子状物質FPの目詰まりを防ぐためにβ線源54aが設けられた第2流路FL2における希釈サンプルガスDGの流速を過剰に遅くならないようにできる。 Thereby, the flow velocity of the diluted sample gas DG in the first flow path FL1 for acquiring the first image data and the flow velocity of the diluted sample gas DG for acquiring the content information can be independently adjusted. As a result, the first image data and the content information can be acquired under the optimum conditions. For example, a β-ray source to prevent clogging of the particulate matter FP while slowing the flow velocity of the diluted sample gas DG in the first flow path FL1 in order to acquire the particulate matter FP as a clear image in the first image data. It is possible to prevent the flow velocity of the diluted sample gas DG in the second flow path FL2 provided with 54a from becoming excessively slow.
(6)分析装置の変形例2
 分析装置5は、流入部51aで流動している粒子状物質FPの第1画像データを取得する第1画像取得部53、含有量情報(β線強度)を取得する含有量情報取得部54、以外の粒子状物質FPの分析に用いる情報を取得する装置をさらに有していてもよい。例えば、図13に示すように、分析装置5は、流入部51aを流れる希釈サンプルガスDGに入射した光が粒子状物質FPにより散乱することにより生じる散乱光に関する散乱光情報を取得する散乱光情報取得部57をさらに有してもよい。図13は、分析装置の変形例の一例を示す図である。
(6) Modification example 2 of the analyzer
The analyzer 5 includes a first image acquisition unit 53 for acquiring the first image data of the particulate matter FP flowing in the inflow unit 51a, a content information acquisition unit 54 for acquiring content information (β-ray intensity), and a content information acquisition unit 54. It may further have an apparatus for acquiring information used for analysis of particulate matter FP other than the above. For example, as shown in FIG. 13, the analyzer 5 acquires scattered light information regarding scattered light generated by scattering light incident on the diluted sample gas DG flowing through the inflow portion 51a by the particulate matter FP. It may further have an acquisition unit 57. FIG. 13 is a diagram showing an example of a modification of the analyzer.
 具体的には、散乱光情報取得部57は、レーザ光Lを流入部51a内部の希釈サンプルガスDGに向けて出射する第2光源57aと、レーザ光Lが希釈サンプルガスDGを通過中に粒子状物質FPにより散乱することで発生する散乱光を検出する散乱光検出部57bと、を有する。分析部55aは、例えば、散乱光検出部57bにて検出された散乱光の強度(散乱光情報)に基づいて、希釈サンプルガスDGに含まれる粒子状物質FPの数、粒径分布(第2粒径情報の一例)を算出できる。 Specifically, the scattered light information acquisition unit 57 has a second light source 57a that emits the laser light L toward the diluted sample gas DG inside the inflow unit 51a, and particles while the laser light L passes through the diluted sample gas DG. It has a scattered light detection unit 57b that detects scattered light generated by scattering by the state substance FP. The analysis unit 55a has, for example, the number of particulate matter FPs contained in the diluted sample gas DG and the particle size distribution (second) based on the intensity of the scattered light (scattered light information) detected by the scattered light detection unit 57b. An example of particle size information) can be calculated.
(7)分析装置の変形例3
 上記の散乱光情報取得部57により得られる散乱光情報(散乱光強度)は、希釈サンプルガスDGに含まれる粒子状物質FPの数の算出に用いることもできる。希釈サンプルガスDGに含まれる粒子状物質FPの数は、粒子状物質FPの含有量に対応するものである。従って、散乱光情報取得部57を備える分析装置5においては、図14に示すように、β線源54a及びβ線検出部54bを省略し、分析部55aが、散乱光情報取得部57により得られる散乱光情報(散乱光強度)に基づいて、希釈サンプルガスDGに含まれる粒子状物質FPの含有量を算出してもよい。図14は、分析装置の変形例の他の一例を示す図である。
(7) Modification example of the analyzer 3
The scattered light information (scattered light intensity) obtained by the scattered light information acquisition unit 57 can also be used to calculate the number of particulate matter FP contained in the diluted sample gas DG. The number of particulate matter FP contained in the diluted sample gas DG corresponds to the content of the particulate matter FP. Therefore, in the analyzer 5 including the scattered light information acquisition unit 57, as shown in FIG. 14, the β-ray source 54a and the β-ray detection unit 54b are omitted, and the analysis unit 55a is obtained by the scattered light information acquisition unit 57. The content of the particulate matter FP contained in the diluted sample gas DG may be calculated based on the scattered light information (scattered light intensity). FIG. 14 is a diagram showing another example of a modification of the analyzer.
2.第2実施形態
 粒子状物質FPを分析する分析装置には、さらに他の分析装置が設けられてもよい。具体的には、第2実施形態に係る分析装置5’は、図15に示すように、第1画像取得部53、含有量情報取得部54、第2画像取得部56に加えて、ガス分析部58をさらに備えてもよい。図15は、第2実施形態に係る分析装置の構成を示す図である。後述するように、ガス分析部58は粒子状物質FPを燃焼してガスを発生させるため、第2実施形態に係る分析装置5’においては、捕集フィルタ52に粒子状物質FPを捕集する代わりに、銅などの耐熱性の材料で構成されたサンプル支持部52’上に、粒子状物質FPを捕集した部材(例えば、捕集フィルタ52に類似の部材)を配置する。
2. 2. 2nd Embodiment The analyzer for analyzing the particulate matter FP may be further provided with another analyzer. Specifically, as shown in FIG. 15, the analyzer 5'according to the second embodiment performs gas analysis in addition to the first image acquisition unit 53, the content information acquisition unit 54, and the second image acquisition unit 56. A portion 58 may be further provided. FIG. 15 is a diagram showing the configuration of the analyzer according to the second embodiment. As will be described later, since the gas analysis unit 58 burns the particulate matter FP to generate gas, in the analyzer 5'according to the second embodiment, the particulate matter FP is collected by the collection filter 52. Instead, a member that collects the particulate matter FP (for example, a member similar to the collection filter 52) is placed on the sample support portion 52'made of a heat-resistant material such as copper.
 ガス分析部58は、粒子状物質FPを燃焼することで発生するガス(例えば、二酸化炭素(CO)、炭化水素(例えば、メタン(CH)))を検出することで、炭素を主成分とする粒子状物質FPを分析する。具体的には、ガス分析部58は、燃焼部58aと、ガス検出部58bと、を有する。 The gas analysis unit 58 detects the gas generated by burning the particulate matter FP (for example, carbon dioxide (CO 2 ), hydrocarbon (for example, methane (CH 4 ))), and thereby contains carbon as a main component. The particulate matter FP is analyzed. Specifically, the gas analysis unit 58 has a combustion unit 58a and a gas detection unit 58b.
 燃焼部58aは、捕集された粒子状物質FPを燃焼してガスを発生させる。燃焼部58aは、例えば、ヒーターなどの加熱装置である。粒子状物質FPを燃焼して発生するガスは、燃焼部58a周囲のガス雰囲気に依存する。燃焼部58a周囲のガス雰囲気を酸素(空気)とした場合には、粒子状物質FPの燃焼により二酸化炭素が発生する。一方、燃焼部58a周囲のガス雰囲気を水素とした場合には、粒子状物質FPの燃焼によりメタンが発生する。 The combustion unit 58a burns the collected particulate matter FP to generate gas. The combustion unit 58a is, for example, a heating device such as a heater. The gas generated by burning the particulate matter FP depends on the gas atmosphere around the combustion portion 58a. When the gas atmosphere around the combustion portion 58a is oxygen (air), carbon dioxide is generated by the combustion of the particulate matter FP. On the other hand, when the gas atmosphere around the combustion portion 58a is hydrogen, methane is generated by the combustion of the particulate matter FP.
 ガス検出部58bは、燃焼部58aによる粒子状物質FPの燃焼により発生するガスを検出する。ガス検出部58bは、例えば、非分散型赤外線吸収(NDIR)法などの測定対象ガスによる光(赤外光)の吸収によりガスを検出する装置である。その他、粒子状物質FPの燃焼により炭化水素が発生する場合、ガス検出部58bを、水素炎イオン化型検出器(FID)とすることもできる。 The gas detection unit 58b detects the gas generated by the combustion of the particulate matter FP by the combustion unit 58a. The gas detection unit 58b is a device that detects gas by absorbing light (infrared light) by a measurement target gas such as a non-dispersive infrared absorption (NDIR) method. In addition, when hydrocarbons are generated by combustion of particulate matter FP, the gas detection unit 58b can be used as a hydrogen flame ionization detector (FID).
 上記の構成を有する分析装置5’では、炭素を成分として含む粒子状物質FPの炭素含有量、どの種類の炭素化合物により粒子状物質FPが構成されているかを分析できる。例えば、炭素化合物の種類によって燃焼温度が異なることを利用して、粒子状物質FPを構成する炭素化合物、各炭素化合物の含有割合を分析できる。 The analyzer 5'having the above configuration can analyze the carbon content of the particulate matter FP containing carbon as a component and what kind of carbon compound constitutes the particulate matter FP. For example, it is possible to analyze the carbon compounds constituting the particulate matter FP and the content ratio of each carbon compound by utilizing the fact that the combustion temperature differs depending on the type of carbon compound.
 具体的には、例えば、粒子状物質FPを約580°Cに加熱したときにガスの発生が検知された場合には、当該粒子状物質FPは有機炭素(Organic Carbon、OC)を含んでいると判断できる。一方、粒子状物質FPを約840°Cに加熱したときにガスの発生が検知された場合には、当該粒子状物質FPは元素状炭素(Elemental Carbon、EC)を含んでいると判断できる。また、約580°Cに加熱したときのガス発生量と、約840°Cに加熱したときのガス発生量から、粒子状物質FPを構成する有機炭素と元素状炭素の割合を算出することもできる。 Specifically, for example, when the generation of gas is detected when the particulate matter FP is heated to about 580 ° C, the particulate matter FP contains organic carbon (OC). Can be judged. On the other hand, when the generation of gas is detected when the particulate matter FP is heated to about 840 ° C, it can be determined that the particulate matter FP contains elemental carbon (EC). It is also possible to calculate the ratio of organic carbon and elemental carbon constituting the particulate matter FP from the amount of gas generated when heated to about 580 ° C and the amount of gas generated when heated to about 840 ° C. can.
3.第3実施形態
(1)概要
 第1実施形態に係る分析装置5のように、捕集フィルタ52のうち粒子状物質FPが捕集された捕集領域と、その周囲の粒子状物質FPが捕集されていない非捕集領域と、を含む画像データ(第2画像データ)に基づいて、有色の粒子状物質FPを分析する装置及び方法が知られている。例えば、第2画像データの捕集領域に対応する画像部分の輝度と、非捕集領域に対応する画像部分の輝度と、の差に基づいて、捕集された粒子状物質FPに含まれる灰中未燃分の割合を算出できる。
3. 3. Third Embodiment (1) Outline As in the analyzer 5 according to the first embodiment, the collection region in which the particulate matter FP is collected in the collection filter 52 and the particulate matter FP around it are captured. Devices and methods for analyzing colored particulate matter FP based on image data (second image data) including uncollected non-collected regions are known. For example, the ash contained in the collected particulate matter FP based on the difference between the brightness of the image portion corresponding to the collection region of the second image data and the brightness of the image portion corresponding to the non-collection region. The ratio of unburned particles can be calculated.
 第1実施形態において説明したように、第2画像取得部56(CCDイメージセンサ、CMOSイメージセンサ)により適切な第2画像データを取得するために、第2画像データを用いて粒子状物質FPを分析する装置には、第2画像取得部56の視野範囲を照射する第1光源56aが設けられている。 As described in the first embodiment, in order to acquire appropriate second image data by the second image acquisition unit 56 (CCD image sensor, CMOS image sensor), the particulate matter FP is obtained using the second image data. The device for analysis is provided with a first light source 56a that illuminates the viewing range of the second image acquisition unit 56.
 第1光源56aの特性は、経時的に変化することが知られている。特性が経時的に変化することによって第1光源56aから出射される光量が経時的に変化すると、捕集領域に同量の粒子状物質FPが捕集されていたとしても、異なるタイミングで取得された第2画像データの輝度が異なることがある。第2画像データの捕集領域に対応する画像部分の輝度と、非捕集領域に対応する画像部分の輝度と、の差に基づいて粒子状物質FPを分析する場合、同量の粒子状物質FPが捕集されたときに第2画像データが取得されたとしても、第2画像データの輝度が異なっていると、輝度の違いにより異なる分析結果が算出される。 It is known that the characteristics of the first light source 56a change with time. When the amount of light emitted from the first light source 56a changes with time due to the change in characteristics over time, even if the same amount of particulate matter FP is collected in the collection area, it is acquired at different timings. The brightness of the second image data may be different. When analyzing the particulate matter FP based on the difference between the brightness of the image portion corresponding to the collection region of the second image data and the brightness of the image portion corresponding to the non-collection region, the same amount of particulate matter is analyzed. Even if the second image data is acquired when the FPs are collected, if the brightness of the second image data is different, different analysis results are calculated due to the difference in brightness.
 このため、第2画像データを用いて粒子状物質FPを分析する装置においては、所定の期間毎に装置の校正を行う。従来は、捕集フィルタ52上に校正用試料を手動にて配置し、捕集フィルタ52に配置した校正用試料を用いて第2画像データを取得し、当該第2画像データを用いて装置校正が実行されていた。捕集フィルタ52に校正用試料を手動で配置する必要があるために、従来の方法による装置校正には時間がかかっていた。また、校正用試料の選定と管理が必要であった。 Therefore, in the device that analyzes the particulate matter FP using the second image data, the device is calibrated at predetermined intervals. Conventionally, a calibration sample is manually placed on the collection filter 52, a second image data is acquired using the calibration sample placed on the collection filter 52, and the device is calibrated using the second image data. Was being executed. Since it is necessary to manually place the calibration sample on the collection filter 52, it takes time to calibrate the apparatus by the conventional method. In addition, it was necessary to select and manage calibration samples.
 そこで、第3実施形態に係る分析装置5’’では、第2画像データを用いた粒子状物質FPの分析のための装置校正を、校正用試料を捕集フィルタ52上に配置することなく自動的に実行する。以下、第3実施形態に係る分析装置5’’の具体的な構成及び装置の校正方法を説明する。第3実施形態に係る分析装置5’’では、装置の校正方法を実行する演算部55の機能ブロック構成が第1実施形態とは異なるのみで、他の構成及び機能は第1実施形態に係る分析装置5と同じである。従って、以下では、分析装置5’’の演算部55’の機能ブロック構成のみを説明し、演算部55’以外の他の構成についての説明は省略する。 Therefore, in the analyzer 5'' according to the third embodiment, the device calibration for the analysis of the particulate matter FP using the second image data is automatically performed without arranging the calibration sample on the collection filter 52. To execute. Hereinafter, a specific configuration of the analyzer 5 ″ according to the third embodiment and a calibration method of the apparatus will be described. In the analyzer 5'' according to the third embodiment, the functional block configuration of the arithmetic unit 55 that executes the calibration method of the device is different from that of the first embodiment, and the other configurations and functions are related to the first embodiment. It is the same as the analyzer 5. Therefore, in the following, only the functional block configuration of the calculation unit 55 ″ of the analyzer 5 ″ will be described, and the description of other configurations other than the calculation unit 55 ′ will be omitted.
(2)演算部の機能ブロック構成
 図16を用いて、第3実施形態に係る分析装置5’’の演算部55’の機能ブロック構成を説明する。図16は、第3実施形態に係る分析装置の演算部の機能ブロック構成を示す図である。演算部55’は、第1実施形態に係る分析部55aに加えて、さらに、記憶部55bと、校正部55cと、を機能ブロックとして有する。記憶部55bは、演算部55’を構成するコンピュータシステムに備わる記憶装置に形成された記憶領域の一部又は全部であり、分析装置5’’を制御し、第2画像データを用いて粒子状物質FPを分析するための各種パラメータ等を保存する。
(2) Functional block configuration of the arithmetic unit With reference to FIG. 16, the functional block configuration of the arithmetic unit 55'of the analyzer 5 ″ according to the third embodiment will be described. FIG. 16 is a diagram showing a functional block configuration of a calculation unit of the analyzer according to the third embodiment. The calculation unit 55'has a storage unit 55b and a calibration unit 55c as functional blocks in addition to the analysis unit 55a according to the first embodiment. The storage unit 55b is a part or all of the storage area formed in the storage device provided in the computer system constituting the calculation unit 55', controls the analysis device 5'', and is in the form of particles using the second image data. Various parameters for analyzing the substance FP are stored.
 記憶部55bは、検量線SCと、非捕集領域輝度データLDと、を記憶する。検量線SCは、捕集領域に捕集された粒子状物質FPの捕集量と、第2画像データの捕集領域に対応する画像部分の画素の輝度との関係を表す。検量線SCは、実際に取得した第2画像データを用いて粒子状物質FPの捕集量を算出するために用いられる。 The storage unit 55b stores the calibration curve SC and the non-collection region luminance data LD. The calibration curve SC represents the relationship between the amount of the particulate matter FP collected in the collection area and the brightness of the pixel of the image portion corresponding to the collection area of the second image data. The calibration curve SC is used to calculate the amount of the particulate matter FP collected using the second image data actually acquired.
 検量線SCは、例えば、既知の捕集量にて粒子状物質FPが捕集された捕集領域と非捕集領域とを含む第2画像データを粒子状物質FPの捕集量を変化させて複数取得し、各第2画像データについて第1実施形態で説明した輝度ヒストグラムを生成し、各輝度ヒストグラムの第1ピークの輝度と対応する捕集量との関係を表す近似式をフィッティングなどにより予め算出しておくことで得られる。 The calibration curve SC changes the collection amount of the particulate matter FP, for example, by changing the second image data including the collection area and the non-collection area where the particulate matter FP is collected at a known collection amount. A plurality of data are acquired, the brightness histogram described in the first embodiment is generated for each second image data, and an approximate expression expressing the relationship between the brightness of the first peak of each brightness histogram and the corresponding collection amount is fitted or the like. It can be obtained by calculating in advance.
 なお、輝度ヒストグラムは、例えば、第2画像データに含まれる画素を走査して特定の輝度を有する画素の数を計数し、輝度と、当該輝度を有する画素の数とを関連付けることで生成できる。 The luminance histogram can be generated, for example, by scanning the pixels included in the second image data, counting the number of pixels having a specific luminance, and associating the luminance with the number of pixels having the luminance.
 捕集領域に捕集された粒子状物質FPの捕集量をM、輝度ヒストグラムの第1ピークの輝度をPとすると、検量線SCは、例えば、M=aP +bP+cとの近似式として得られる。なお、a、b、cは定数であり、輝度ヒストグラムの第1ピークPE1の輝度Br1と対応する捕集量との関係を表す近似式をフィッティングにより算出する際に得られる。 Assuming that the amount of particulate matter FP collected in the collection area is M and the brightness of the first peak of the luminance histogram is P 1 , the calibration curve SC is, for example, M = aP 1 2 + bP 1 + c. Obtained as an approximate expression. It should be noted that a, b, and c are constants and are obtained when an approximate expression representing the relationship between the luminance Br1 of the first peak PE1 of the luminance histogram and the corresponding collection amount is calculated by fitting.
 その他、検量線SCを、各輝度ヒストグラムの第1ピークの輝度と対応する捕集量とを関連付けたデータ(テーブル)とすることもできる。 In addition, the calibration curve SC can be used as data (table) in which the brightness of the first peak of each luminance histogram and the corresponding collection amount are associated with each other.
 非捕集領域輝度データLDは、捕集領域に捕集された粒子状物質FPの捕集量と、第2画像データの非捕集領域に対応する画像部分の画素の輝度との関係を表す。第1実施形態において説明したように、第2画像データの非捕集領域に対応する画像部分の輝度は、捕集領域に捕集された粒子状物質FPの捕集量によって若干変化する。非捕集領域輝度データLDは、粒子状物質FPが捕集領域に捕集されているときに取得された第2画像データの非捕集領域に対応する画像部分の画素の輝度の理論値(理論輝度と呼ぶ)を算出する際に用いられる。 The non-collection region brightness data LD represents the relationship between the collection amount of the particulate matter FP collected in the collection region and the brightness of the pixels of the image portion corresponding to the non-collection region of the second image data. .. As described in the first embodiment, the brightness of the image portion corresponding to the non-collection region of the second image data slightly changes depending on the collection amount of the particulate matter FP collected in the collection region. The non-collection area luminance data LD is a theoretical value of the luminance of the pixel of the image portion corresponding to the non-collection area of the second image data acquired when the particulate matter FP is collected in the collection area ( It is used when calculating the theoretical brightness).
 非捕集領域輝度データLDは、例えば、既知の捕集量にて粒子状物質FPが捕集された捕集領域と非捕集領域とを含む第2画像データを粒子状物質FPの捕集量を変化させて複数取得し、各第2画像データについて輝度ヒストグラムを生成し、各輝度ヒストグラムの第2ピークの輝度と対応する捕集量との関係を表す近似式をフィッティングなどにより予め算出しておくことで得られる。 The non-collection region luminance data LD collects, for example, the second image data including the collection region and the non-collection region in which the particulate matter FP is collected at a known collection amount. Multiple acquisitions are made by changing the amount, a brightness histogram is generated for each second image data, and an approximate expression expressing the relationship between the brightness of the second peak of each brightness histogram and the corresponding collection amount is calculated in advance by fitting or the like. It can be obtained by keeping it.
 捕集領域に捕集された粒子状物質FPの捕集量をM、輝度ヒストグラムの第2ピークの輝度をPとすると、非捕集領域輝度データLDは、例えば、P=dM+eとの近似式として得られる。なお、d、eは定数であり、輝度ヒストグラムの第2ピークの輝度と対応する捕集量との関係を表す近似式をフィッティングにより算出する際に得られる。 Assuming that the collection amount of the particulate matter FP collected in the collection region is M and the brightness of the second peak of the luminance histogram is P 2 , the non-collection region luminance data LD is, for example, P 2 = dM + e. Obtained as an approximate expression. Note that d and e are constants and are obtained when an approximate expression representing the relationship between the brightness of the second peak of the luminance histogram and the corresponding collection amount is calculated by fitting.
 その他、非捕集領域輝度データLDを、各輝度ヒストグラムの第2ピークの輝度と対応する捕集量とを関連付けたデータ(テーブル)とすることもできる。 In addition, the non-collection area luminance data LD can be used as data (table) in which the luminance of the second peak of each luminance histogram is associated with the corresponding luminance amount.
 校正部55cは、分析装置5’’の校正を実行する。具体的には、校正部55cは、捕集フィルタ52に捕集した粒子状物質FPの捕集領域と非捕集領域を含む第2画像データを取得し、当該第2画像データを用いて第2画像取得部56及び/又は第1光源56aを自動的に調整する。 The calibration unit 55c calibrates the analyzer 5 ″. Specifically, the calibration unit 55c acquires the second image data including the collection region and the non-collection region of the particulate matter FP collected by the collection filter 52, and uses the second image data to obtain the second image data. 2 The image acquisition unit 56 and / or the first light source 56a are automatically adjusted.
(3)第2画像データを用いた分析装置の校正動作
 以下、図17を用いて、第2画像データを用いた分析装置5’’の校正動作を説明する。図17は、第2画像データを用いた分析装置の校正動作を示すフローチャートである。以下に説明する校正動作は、粒子状物質FPを捕集して第2画像データを用いて分析を実行するごとに実行される。具体的には、1つの分析動作が完了後に次の分析のための捕集領域が移動されて次の分析動作が開始されるまでの間(すなわち、次の分析のために粒子状物質FPが捕集されている間)に、完了した分析に用いられた第2画像データを用いて以下の校正動作が実行される。なお、第2画像データを用いた粒子状物質FPの分析動作は、第1実施形態にて説明したのと同様であるので、ここでは説明を省略する。
(3) Calibration operation of the analyzer using the second image data Hereinafter, the calibration operation of the analyzer 5'' using the second image data will be described with reference to FIG. FIG. 17 is a flowchart showing a calibration operation of the analyzer using the second image data. The calibration operation described below is performed every time the particulate matter FP is collected and analyzed using the second image data. Specifically, after the completion of one analysis operation, the collection area for the next analysis is moved and the next analysis operation is started (that is, the particulate matter FP is used for the next analysis. While being collected), the following calibration operation is performed using the second image data used for the completed analysis. Since the analysis operation of the particulate matter FP using the second image data is the same as that described in the first embodiment, the description thereof is omitted here.
 第2画像データを用いて粒子状物質FPの分析動作を実行後、校正部55cは、ステップS11において、分析に用いた第2画像データに基づいて、捕集フィルタ52に捕集された粒子状物質FPの捕集量を算出する。具体的には、校正部55cは、まず、第2画像データから輝度ヒストグラムを算出し、この輝度ヒストグラムの第1ピークの輝度(輝度P’とする)を算出する。その後、校正部55cは、輝度ヒストグラムの第1ピークの輝度P’と、記憶部55bに記憶された検量線SCと、を用いて、捕集量(Mとする)を、例えばM=aP+bP’+cと算出する。 After executing the analysis operation of the particulate matter FP using the second image data, the calibration unit 55c collects the particulate matter collected by the collection filter 52 based on the second image data used for the analysis in step S11. Calculate the amount of material FP collected. Specifically, the calibration unit 55c first calculates a luminance histogram from the second image data, and calculates the luminance (referred to as luminance P 1 ') of the first peak of the luminance histogram. After that, the calibration unit 55c uses the brightness P 1'of the first peak of the luminance histogram and the calibration curve SC stored in the storage unit 55b to set the collected amount (referred to as M 1 ) to, for example, M 1 . = AP 1 ' 2 + bP 1 '+ c.
 捕集量を算出後、校正部55cは、ステップS12において、ステップS11にて算出した捕集量に基づいて、第2画像データの非捕集領域に対応する画像部分の画素の輝度の理論値(理論輝度)を算出する。具体的には、校正部55cは、ステップS11にて算出した捕集量(M)と、記憶部55bに記憶された非捕集領域輝度データLDと、を用いて、理論輝度(P’とする)を、例えばP’=dM+eと算出する。 After calculating the collection amount, the calibration unit 55c in step S12, based on the collection amount calculated in step S11, the theoretical value of the brightness of the pixel of the image portion corresponding to the non-collection region of the second image data. Calculate (theoretical brightness). Specifically, the calibration unit 55c uses the collection amount (M 1 ) calculated in step S11 and the non-collection area luminance data LD stored in the storage unit 55b to obtain the theoretical luminance ( PT ). ') Is calculated as, for example, PT '= dM 1 + e.
 理論輝度を算出後、校正部55cは、ステップS13において、捕集量及び理論輝度の算出に用いた第2画像データに基づいて、当該第2画像データの非捕集領域に対応する画像部分の画素の実際の輝度(実際輝度と呼ぶ)を算出する。具体的には、校正部55cは、ステップS11にて算出した輝度ヒストグラムの第2ピークの輝度(輝度P’とする)を、実際輝度として算出する。 After calculating the theoretical brightness, the calibration unit 55c in step S13, based on the second image data used for calculating the collection amount and the theoretical brightness, of the image portion corresponding to the non-collection region of the second image data. The actual brightness of the pixel (called the actual brightness) is calculated. Specifically, the calibration unit 55c calculates the brightness of the second peak of the luminance histogram calculated in step S11 (referred to as luminance P2') as the actual luminance.
 実際輝度を算出後、校正部55cは、ステップS14において、理論輝度と実際輝度との差(P’-P’)に基づいて、第2画像取得部56及び/又は第1光源56aを校正する。例えば、理論輝度と実際輝度との差(P’-P’)が正値である場合、第2画像データを取得したときの第1光源56aの光量が当初よりも低下していることを意味している。この場合、校正部55cは、第2画像データを取得するときの第2画像取得部56の露光時間をより長くする。または、第1光源56aから出射される光量を大きくする。 After calculating the actual luminance, the calibration unit 55c sets the second image acquisition unit 56 and / or the first light source 56a based on the difference between the theoretical luminance and the actual luminance ( PT' -P 2 ') in step S14. Calibrate. For example, when the difference between the theoretical brightness and the actual brightness ( PT' -P 2 ') is a positive value, the amount of light of the first light source 56a when the second image data is acquired is lower than the initial value. Means. In this case, the calibration unit 55c increases the exposure time of the second image acquisition unit 56 when acquiring the second image data. Alternatively, the amount of light emitted from the first light source 56a is increased.
 一方、理論輝度と実際輝度との差が負値である場合、校正部55cは、第2画像データを取得するときの第2画像取得部56の露光時間をより短くする。または、第1光源56aから出射される光量を小さくする。 On the other hand, when the difference between the theoretical brightness and the actual brightness is a negative value, the calibration unit 55c shortens the exposure time of the second image acquisition unit 56 when acquiring the second image data. Alternatively, the amount of light emitted from the first light source 56a is reduced.
 第2画像取得部56の露光時間及び第1光源56aの光量の調整幅は、理論輝度と実際輝度との差の絶対値に基づいて決定できる。例えば、理論輝度と実際輝度との差の絶対値が大きければ、校正部55cは、第2画像取得部56の露光時間及び第1光源56aの光量の調整幅を大きくする。一方、理論輝度と実際輝度との差の絶対値が小さければ、校正部55cは、第2画像取得部56の露光時間及び第1光源56aの光量の調整幅を小さくする。 The adjustment range of the exposure time of the second image acquisition unit 56 and the amount of light of the first light source 56a can be determined based on the absolute value of the difference between the theoretical brightness and the actual brightness. For example, if the absolute value of the difference between the theoretical brightness and the actual brightness is large, the calibration unit 55c increases the adjustment range of the exposure time of the second image acquisition unit 56 and the light amount of the first light source 56a. On the other hand, if the absolute value of the difference between the theoretical brightness and the actual brightness is small, the calibration unit 55c reduces the adjustment range of the exposure time of the second image acquisition unit 56 and the light amount of the first light source 56a.
 第3実施形態に係る分析装置5’’では、分析に用いた(つまり、捕集フィルタ52に粒子状物質FPを捕集させて取得した)第2画像データの非捕集領域に対応する画素の輝度の理論値(理論輝度)と、当該第2画像データの非捕集領域に対応する画素の実際の輝度値(実際輝度)との差に基づいて、第2画像取得部56及び/又は第1光源56aを校正している。 In the analyzer 5'' according to the third embodiment, the pixels corresponding to the non-collection region of the second image data used for the analysis (that is, acquired by collecting the particulate matter FP by the collection filter 52). Based on the difference between the theoretical luminance value (theoretical luminance) of the second image data and the actual luminance value (actual luminance) of the pixels corresponding to the non-collection region of the second image data, the second image acquisition unit 56 and / or The first light source 56a is calibrated.
 上記のように、捕集フィルタ52に捕集した粒子状物質FPを校正に用いるので、第2画像取得部56及び/又は第1光源56aを校正するために校正用試料を捕集フィルタに別途配置して第2画像データを取得する必要がなくなり、第2画像取得部56及び/又は第1光源56aの校正を自動的に行うことができる。 As described above, since the particulate matter FP collected by the collection filter 52 is used for calibration, a calibration sample is separately added to the collection filter in order to calibrate the second image acquisition unit 56 and / or the first light source 56a. It is not necessary to arrange and acquire the second image data, and the second image acquisition unit 56 and / or the first light source 56a can be automatically calibrated.
 分析装置5’’では、分析を実行するための粒子状物質FPの捕集フィルタ52への捕集には一定の時間(例えば、1時間)がかかるので、次の分析のための粒子状物質FPの捕集を実行しつつ、完了した分析に用いられた第2画像データを用いて上記の校正動作を実行することにより、粒子状物質FPの捕集と同時に上記の校正動作を実行して効率よく分析装置5’’を運用できる。 In the analyzer 5'', it takes a certain period of time (for example, 1 hour) to collect the particulate matter FP to the collection filter 52 for performing the analysis, so that the particulate matter for the next analysis is taken. By performing the above calibration operation using the second image data used for the completed analysis while executing the collection of the FP, the above calibration operation is executed at the same time as the collection of the particulate matter FP. The analyzer 5'' can be operated efficiently.
 なお、校正動作の開始タイミングの変形例として、例えば、ユーザが演算部55’の入力装置を用いて指令したとき、又は、第1光源56aから出射される光の光量の低下を検出したときに、粒子状物質FPの分析とは個別に上記の校正動作が実行されてもよい。この場合には、必要であれば、校正に用いる第2画像データが取得されてもよい。 As a modification of the start timing of the calibration operation, for example, when a user gives a command using the input device of the calculation unit 55', or when a decrease in the amount of light emitted from the first light source 56a is detected. , The above calibration operation may be performed separately from the analysis of the particulate matter FP. In this case, if necessary, the second image data used for calibration may be acquired.
 また、校正動作を実行することにより校正された第2画像取得部56及び第1光源56aを用いて、分析及び校正に用いられた同じ捕集領域に捕集された粒子状物質FPについての第2画像データを再度取得し、再度取得した第2画像データを用いて粒子状物質FPの分析を再度実行してもよい。 In addition, the particulate matter FP collected in the same collection area used for analysis and calibration using the second image acquisition unit 56 and the first light source 56a calibrated by executing the calibration operation is the first. 2 The image data may be acquired again, and the analysis of the particulate matter FP may be performed again using the acquired second image data.
4.第4実施形態
(1)分析システムの適用例1
 上記にて説明した分析システム100は、各種の燃焼プロセスにて発生する排出ガスに含まれる粒子状物質FPの分析に適用できる。以下、図18を用いて、分析システム100の適用例を説明する。図18は、分析システムの適用例1の構成を示す図である。図18に示す適用例は、分析システム100を、石炭火力発電のボイラー200の燃焼の制御に適用した例である。石炭火力発電のボイラー200は石炭を燃料とするので、ボイラー200からは、石炭灰を含んだガスが排出される。従って、適用例1での分析システム100は、ボイラー200からの排出ガスをサンプルガスSGとし、石炭灰を分析対象の粒子状物質FPとする。
4. Fourth Embodiment (1) Application example 1 of analysis system
The analysis system 100 described above can be applied to the analysis of the particulate matter FP contained in the exhaust gas generated in various combustion processes. Hereinafter, an application example of the analysis system 100 will be described with reference to FIG. FIG. 18 is a diagram showing a configuration of application example 1 of the analysis system. The application example shown in FIG. 18 is an example in which the analysis system 100 is applied to control the combustion of the boiler 200 of coal-fired power generation. Since the boiler 200 for coal-fired power generation uses coal as fuel, gas containing coal ash is discharged from the boiler 200. Therefore, in the analysis system 100 in Application Example 1, the exhaust gas from the boiler 200 is used as the sample gas SG, and the coal ash is used as the particulate matter FP to be analyzed.
 図18に示すように、ボイラー200から排出されるガスに含まれる粒子状物質FPは、電気集塵機220にて収集される。分析システム100は、ボイラー200から電気集塵機220までの煙道中を流れるガスをサンプルガスSGとしてサンプリングする。 As shown in FIG. 18, the particulate matter FP contained in the gas discharged from the boiler 200 is collected by the electrostatic precipitator 220. The analysis system 100 samples the gas flowing in the flue from the boiler 200 to the electrostatic precipitator 220 as the sample gas SG.
 適用例1では、分析システム100は、サンプルガスSGに含まれる粒子状物質FP(石炭灰)の炭素成分の量に関する分析を実行する。分析システム100は、炭素成分の量に関する分析結果に基づいた制御信号を、ボイラー200の燃焼を制御する制御盤240に出力する。制御盤240は、分析システム100からの制御信号に基づいて、例えば、ボイラー200に投入する石炭量を調節するなどして、ボイラー200の燃焼の制御を行うことができる。例えば、粒子状物質FPに含まれる炭素成分が多いとの分析結果が得られた場合には、制御盤240は、ボイラー200における石炭の燃え残りが多いと判断し、石炭の投入量を調整する(減少させる)、ボイラー200内のバーナーの火力を調整する(火力を強くする)、バーナーの角度を調整するなどの制御を行うことができる。 In Application Example 1, the analysis system 100 performs an analysis on the amount of carbon components of the particulate matter FP (coal ash) contained in the sample gas SG. The analysis system 100 outputs a control signal based on the analysis result regarding the amount of carbon components to the control panel 240 that controls the combustion of the boiler 200. The control panel 240 can control the combustion of the boiler 200 based on the control signal from the analysis system 100, for example, by adjusting the amount of coal charged into the boiler 200. For example, when an analysis result is obtained that the particulate matter FP contains a large amount of carbon components, the control panel 240 determines that there is a large amount of unburned coal in the boiler 200, and adjusts the amount of coal input. Controls such as (decreasing), adjusting the thermal power of the burner in the boiler 200 (increasing the thermal power), and adjusting the angle of the burner can be performed.
 希釈器3を備える分析システム100は、高濃度の粒子状物質FPを含むガスを希釈できるので、適用例1のように、大量の石炭灰を発生するボイラー200から排出されるガスをサンプルガスSGとする場合に有効に適用できる。 Since the analysis system 100 including the diluter 3 can dilute the gas containing the high concentration particulate matter FP, the gas discharged from the boiler 200 that generates a large amount of coal ash is sample gas SG as in Application Example 1. It can be effectively applied in the case of.
(2)分析システムの適用例2
 以下、図19を用いて、分析システム100の他の適用例を説明する。図19は、分析システムの適用例2の構成を示す図である。図19に示す適用例は、分析システム100を、燃焼プラント300から煙突320を介して大気に排出されるガス(粒子状物質FP)に関する環境保全を図ることを目的としている。燃焼プラント300は、粒子状物質FPを多量に含むガスを排出することがある。このような粒子状物質FPを多量に含むガスを煙突320から大気に排出すると、当該粒子状物質FPが、燃焼プラント300から離れた地域(例えば、市街地に近い地域)にも降下してくることがある。
(2) Application example 2 of the analysis system
Hereinafter, another application example of the analysis system 100 will be described with reference to FIG. FIG. 19 is a diagram showing a configuration of application example 2 of the analysis system. The application example shown in FIG. 19 is intended to protect the environment of the gas (particulate matter FP) discharged from the combustion plant 300 to the atmosphere through the chimney 320 in the analysis system 100. The combustion plant 300 may emit a gas containing a large amount of particulate matter FP. When a gas containing a large amount of such particulate matter FP is discharged from the chimney 320 to the atmosphere, the particulate matter FP also drops to an area away from the combustion plant 300 (for example, an area near an urban area). There is.
 従って、適用例2での分析システム100は、燃焼プラント300からの排出ガスをサンプルガスSGとし、そのサンプルガスに含まれる粒子状物質FPを測定対象とする。図19に示すように、適用例2での分析システム100は、燃焼プラント300から煙突320までの煙道中を流れるガスをサンプルガスSGとしてサンプリングする。 Therefore, in the analysis system 100 in Application Example 2, the exhaust gas from the combustion plant 300 is used as the sample gas SG, and the particulate matter FP contained in the sample gas is used as the measurement target. As shown in FIG. 19, the analysis system 100 in Application Example 2 samples the gas flowing in the flue from the combustion plant 300 to the chimney 320 as the sample gas SG.
 適用例2では、分析システム100は、サンプルガスSGに含まれる粒子状物質FPに含まれる成分に関する分析を実行する。また、燃焼プラント300から離れた地域に設けられ、分析システム100と通信可能な計測装置400が、当該地域に降下してきた粒子状物質FPに含まれる成分に関する分析を実行する。なお、計測装置400は、上記にて説明した分析装置5、5’ 、5’’であってもよいし、その他の分析装置であってもよい。 In Application Example 2, the analysis system 100 executes an analysis on the components contained in the particulate matter FP contained in the sample gas SG. Further, a measuring device 400 provided in an area away from the combustion plant 300 and capable of communicating with the analysis system 100 executes an analysis on the components contained in the particulate matter FP that has fallen into the area. The measuring device 400 may be the analyzers 5, 5 ″, 5 ″ described above, or other analyzers.
 分析システム100は、分析システム100で得られた粒子状物質FPに含まれる成分に関する分析結果と、計測装置400で得られた粒子状物質FPに含まれる成分に関する分析結果とを比較し、これら分析結果の間に相関があるか否かを判断する。ここでの「相関」とは、例えば、同一の元素が同一の割合で含まれているか否かをいう。 The analysis system 100 compares the analysis results regarding the components contained in the particulate matter FP obtained by the analysis system 100 with the analysis results regarding the components contained in the particulate matter FP obtained by the measuring device 400, and analyzes these. Determine if there is a correlation between the results. The "correlation" here means, for example, whether or not the same element is contained in the same ratio.
 分析システム100での分析結果と計測装置400での分析結果との間に相関がある場合には、分析システム100は、粒子状物質FPが燃焼プラント300から離れた地域にまで飛来していると判断する。この場合、分析システム100は、粒子状物質FPの発生を抑制する必要がある旨の通知、又は、粒子状物質FPが過剰に発生している旨の警告を、燃焼プラント300を制御する制御盤340に出力する。制御盤340は、分析システム100からの通知又は警告に基づいて、燃焼プラント300における燃焼条件などを調整することにより、燃焼プラント300からの粒子状物質FPの発生量を抑制する制御を行うことができる。 When there is a correlation between the analysis result of the analysis system 100 and the analysis result of the measuring device 400, the analysis system 100 indicates that the particulate matter FP has flown to an area away from the combustion plant 300. to decide. In this case, the analysis system 100 gives a notification that it is necessary to suppress the generation of the particulate matter FP, or a warning that the particulate matter FP is excessively generated, to the control panel that controls the combustion plant 300. Output to 340. The control panel 340 may control the amount of particulate matter FP generated from the combustion plant 300 by adjusting the combustion conditions in the combustion plant 300 based on the notification or warning from the analysis system 100. can.
 希釈器3を備える分析システム100は、高濃度の粒子状物質FPを含むガスを希釈できるので、適用例2のように、粒子状物質FPを大量に発生する可能性がある燃焼プラント300から排出されるガスをサンプルガスSGとする場合に有効に適用できる。 Since the analysis system 100 including the diluter 3 can dilute the gas containing the high concentration particulate matter FP, it is discharged from the combustion plant 300 which may generate a large amount of the particulate matter FP as in Application Example 2. It can be effectively applied when the gas to be used is the sample gas SG.
5.他の実施形態
 以上、本発明の複数の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
 (A)図6を用いて説明した粒子状物質FPの分析動作における各ステップの処理内容、処理順は発明の要旨を逸脱しない範囲で変更できる。また、図17を用いて説明した校正動作における各ステップの処理内容、処理順も発明の要旨を逸脱しない範囲で変更できる。例えば、第3実施形態においてはステップS13にて実行されていた実際輝度の算出を、ステップS11の輝度ヒストグラムを算出したステップの後に実行してもよい。
5. Other Embodiments Although the plurality of embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the invention. In particular, the plurality of embodiments and modifications described herein can be arbitrarily combined as needed.
(A) The processing content and processing order of each step in the analytical operation of the particulate matter FP described with reference to FIG. 6 can be changed without departing from the gist of the invention. Further, the processing content and processing order of each step in the calibration operation described with reference to FIG. 17 can be changed without departing from the gist of the invention. For example, in the third embodiment, the calculation of the actual luminance that was executed in step S13 may be executed after the step of calculating the luminance histogram in step S11.
 (B)分析装置5、5’、5’’は、粒子状物質FPに含まれる元素を分析する元素分析部をさらに備えてもよい。元素分析部は、例えば、粒子状物質FPをX線にて照射するX線源と、X線にて照射することで粒子状物質FPから発生する蛍光X線を測定する検出器と、を有する装置である。元素分析部を設けることにより、粒子状物質FPに炭素以外の元素(例えば、金属元素)が含まれているか否かを判断できる。 (B) The analyzers 5, 5 ″ and 5 ″ may further include an elemental analysis unit that analyzes the elements contained in the particulate matter FP. The elemental analysis unit has, for example, an X-ray source that irradiates the particulate matter FP with X-rays, and a detector that measures fluorescent X-rays generated from the particulate matter FP by irradiating with X-rays. It is a device. By providing the elemental analysis unit, it is possible to determine whether or not the particulate matter FP contains an element other than carbon (for example, a metal element).
 (C)第1実施形態及び第2実施形態に係る分析装置5、5’において、第2画像取得部56は省略されてもよい。この場合、希釈サンプルガスDGに含まれる粒子状物質FPの含有量、粒子状物質FPに含まれる灰中未燃分の割合は、例えば、第1画像取得部53にて取得した第1画像データ、及び/又は、散乱光情報取得部57にて取得した散乱光情報に基づいて算出した粒子状物質FPの粒子形状に関する情報、粒径に関する情報(粒径分布)に基づいて算出できる。 (C) In the analyzers 5 and 5'according to the first embodiment and the second embodiment, the second image acquisition unit 56 may be omitted. In this case, the content of the particulate matter FP contained in the diluted sample gas DG and the ratio of the unburned portion in the ash contained in the particulate matter FP are, for example, the first image data acquired by the first image acquisition unit 53. And / Or, it can be calculated based on the information on the particle shape of the particulate matter FP and the information on the particle size (particle size distribution) calculated based on the scattered light information acquired by the scattered light information acquisition unit 57.
 (D)第3実施形態に係る分析装置5’’において、第1画像取得部53、含有量情報取得部54、散乱光情報取得部57、及び/又は、ガス分析部58は省略してもよい。 (D) In the analyzer 5'' according to the third embodiment, the first image acquisition unit 53, the content information acquisition unit 54, the scattered light information acquisition unit 57, and / or the gas analysis unit 58 may be omitted. good.
 (E)第3実施形態に係る分析装置5’’において、第2画像取得部56及び/又は第1光源56aを校正する代わりに、又は、第2画像取得部56及び/又は第1光源56aの校正と併せて、分析中に取得した第2画像データに対して画像処理(例えば、輝度調整、コントラスト調整など)を実行して、分析装置5’’を校正してもよい。 (E) In the analyzer 5'' according to the third embodiment, instead of calibrating the second image acquisition unit 56 and / or the first light source 56a, or instead of calibrating the second image acquisition unit 56 and / or the first light source 56a. In addition to the calibration of the above, image processing (for example, brightness adjustment, contrast adjustment, etc.) may be performed on the second image data acquired during the analysis to calibrate the analyzer 5''.
 (F)上記の第3実施形態においては、第2画像データを用いた粒子状物質FPの分析後に校正部55cが改めて粒子状物質FPの捕集量を算出していた。しかし、これに限られず、粒子状物質FPの分析において捕集量が算出されていれば、校正部55cは、分析時に算出された捕集量を用いて、理論輝度を算出してもよい。 (F) In the above third embodiment, the calibration unit 55c recalculates the collected amount of the particulate matter FP after the analysis of the particulate matter FP using the second image data. However, the present invention is not limited to this, and if the collected amount is calculated in the analysis of the particulate matter FP, the calibration unit 55c may calculate the theoretical luminance by using the collected amount calculated at the time of analysis.
 (G)上記の実施形態においては、図1に示す分析システム100においてサンプリングプローブ1をブローバックする場合、分析装置5、5’、5’’には供給装置7からの希釈ガスARが流入する構成となっていた。これに限られず、ブローバックの実行時において分析装置5、5’ 、5’’に大気が流入する構成となっていてもよい。具体的には、図20に示すように、第2ガスラインL2に三方バルブV2を設け、ブローバック時には大気と分析装置5、5’ 、5’’とをガス流通可能とし、粒子状物質FPの分析時(捕集時)には希釈器3と分析装置5、5’ 、5’’とをガス流通可能としてもよい。図20は、分析システムの他の実施形態を示す図である。 (G) In the above embodiment, when the sampling probe 1 is blown back in the analysis system 100 shown in FIG. 1, the diluted gas AR from the supply device 7 flows into the analyzers 5, 5', and 5''. It was composed. The present invention is not limited to this, and the atmosphere may flow into the analyzers 5, 5 ″, and 5 ″ during the execution of blowback. Specifically, as shown in FIG. 20, a three-way valve V2 is provided in the second gas line L2 to enable gas flow between the atmosphere and the analyzers 5, 5', 5'' at the time of blowback, and the particulate matter FP. At the time of analysis (at the time of collection), the diluter 3 and the analyzers 5, 5', 5'may be capable of gas flow. FIG. 20 is a diagram showing another embodiment of the analysis system.
 (H)分析装置5、5’ 、5’’は、「色サンプル」を有してもよい。色サンプルは、複数の色(例えば、白色、グレー、黒色)を有するサンプルを並べて配置したものである。なお、「グレー」には、複数の異なる濃度のグレーが含まれてもよい。また、「サンプル」は、例えば、粒子状物質FPを異なる捕集量にて捕集したものなど、視覚的に色の違いを認識できる形態のものであればよい。さらに、「色サンプル」は1つの色で構成されたものであってもよい。 (H) The analyzers 5, 5 ″ and 5 ″ may have a “color sample”. The color sample is an arrangement of samples having a plurality of colors (for example, white, gray, and black) side by side. The "gray" may include a plurality of different shades of gray. Further, the "sample" may be in a form in which the difference in color can be visually recognized, for example, a particulate matter FP collected at a different collection amount. Further, the "color sample" may be composed of one color.
 この色サンプルを第2画像取得部56により撮影して得られた画像を用いて、第2画像取得部及び/又は第1光源56aを校正できる。 The second image acquisition unit and / or the first light source 56a can be calibrated using the image obtained by photographing this color sample by the second image acquisition unit 56.
 分析装置5、5’ 、5’’において、上記の色サンプルは、例えば、色サンプルを捕集フィルタ52の幅方向の端部に配置できる。これにより、第2画像取得部56の視野内に色サンプルを直接含めることができる。その他、色サンプルを第2画像取得部56の視野外に配置してもよい。この場合、例えば、色サンプルを鏡に映し、鏡に映った色サンプルの像を第2画像取得部56の視野内に含めることができる。 In the analyzers 5, 5 ″ and 5 ″, the color sample can be arranged, for example, at the end of the collection filter 52 in the width direction. As a result, the color sample can be directly included in the field of view of the second image acquisition unit 56. In addition, the color sample may be arranged outside the field of view of the second image acquisition unit 56. In this case, for example, the color sample can be reflected in a mirror, and the image of the color sample reflected in the mirror can be included in the field of view of the second image acquisition unit 56.
 本発明は、サンプルガスに含まれる粒子状物質を分析する分析システムに広く適用できる。 The present invention can be widely applied to an analysis system for analyzing particulate matter contained in sample gas.
100 分析システム
FL   煙道
1     サンプリングプローブ
3     希釈器
31   混合部
31a 導入口
IS1 内部空間
33   希釈ガス充填部
IS2 希釈ガス充填空間
5、5’、5’’     分析装置
51a 流入部
FL1 第1流路
FL2 第2流路
51b 吸引部
52   捕集フィルタ
52’ サンプル支持部
52a 送り出しリール
52b 巻き取りリール
53   第1画像取得部
53a 光学窓
54   含有量情報取得部
54a β線源
54b β線検出部
55、55’  演算部
55a 分析部
55b 記憶部
SC   検量線
LD   非捕集領域輝度データ
55c 校正部
D     表示画面
D1   第1画像表示部
D2   第2画像表示部
D3   粒径分布表示部
D4   割合表示部
D5   濃度表示部
56   第2画像取得部
56a 第1光源
57   散乱光情報取得部
57a 第2光源
57b 散乱光検出部
L     レーザ光
58   ガス分析部
58a 燃焼部
58b ガス検出部
61、63    流路変更部材
7     供給装置
200 ボイラー
220 電気集塵機
240 制御盤
300 燃焼プラント
320 煙突
340 制御盤
400 計測装置
L1   第1ガスライン
L2   第2ガスライン
L3   第3ガスライン
L4   第4ガスライン
L5   第5ガスライン
P1   第1吸引装置
P2   第2吸引装置
V     三方バルブ
V2   三方バルブ
SG   サンプルガス
AR   希釈ガス
DG   希釈サンプルガス
FP   粒子状物質
Br1、Br2輝度
PE1 第1ピーク
PE2 第2ピーク
ΔBR 輝度Br1と輝度Br2との差
100 Analytical system FL Smoke path 1 Sampling probe 3 Diluter 31 Mixing part 31a Inlet IS1 Internal space 33 Diluting gas filling part IS2 Diluting gas filling space 5, 5'5'' Analytical device 51a Inflow part FL1 First flow path FL2 2nd flow path 51b Suction part 52 Collection filter 52'Sample support part 52a Sending reel 52b Winding reel 53 1st image acquisition part 53a Optical window 54 Content information acquisition part 54a β-ray source 54b β-ray detection part 55, 55 'Calculation unit 55a Analysis unit 55b Storage unit SC calibration line LD Non-collection area Brightness data 55c Calibration unit D Display screen D1 First image display unit D2 Second image display unit D3 Particle size distribution display unit D4 Ratio display unit D5 Concentration display Section 56 Second image acquisition section 56a First light source 57 Scattered light information acquisition section 57a Second light source 57b Scattered light detection section L Laser light 58 Gas analysis section 58a Combustion section 58b Gas detection section 61, 63 Flow path changing member 7 Supply device 200 Boiler 220 Electrostatic collector 240 Control panel 300 Combustion plant 320 Chimney 340 Control panel 400 Measuring device L1 1st gas line L2 2nd gas line L3 3rd gas line L4 4th gas line L5 5th gas line P1 1st suction device P2 2nd suction device V 3-way valve V2 3-way valve SG Sample gas AR Diluting gas DG Diluted sample gas FP Particle substance Br1, Br2 Brightness PE1 1st peak PE2 2nd peak ΔBR Difference between brightness Br1 and brightness Br2

Claims (17)

  1.  粒子状物質を含むサンプルガスを流入させる流入部と、
     前記流入部を流れる前記サンプルガス中にて流動する前記粒子状物質の第1画像データを取得する第1画像取得部と、
     前記サンプルガスに含まれる前記粒子状物質の含有量に関する含有量情報を取得する含有量情報取得部と、
     前記第1画像データと前記含有量情報とに基づいて前記粒子状物質を分析する分析部と、
     を備える分析装置。
    An inflow part that allows sample gas containing particulate matter to flow in,
    A first image acquisition unit that acquires first image data of the particulate matter flowing in the sample gas flowing through the inflow unit, and a first image acquisition unit.
    A content information acquisition unit that acquires content information regarding the content of the particulate matter contained in the sample gas, and a content information acquisition unit.
    An analysis unit that analyzes the particulate matter based on the first image data and the content information,
    An analyzer equipped with.
  2.  前記分析部は、前記第1画像データに基づいて前記粒子状物質の粒子形状に関する情報を算出する、請求項1に記載の分析装置。 The analysis device according to claim 1, wherein the analysis unit calculates information regarding the particle shape of the particulate matter based on the first image data.
  3.  前記分析部は、前記第1画像データに基づいて前記粒子状物質の粒径に関する第1粒径情報を算出する、請求項1又は2に記載の分析装置。 The analyzer according to claim 1 or 2, wherein the analysis unit calculates first particle size information regarding the particle size of the particulate matter based on the first image data.
  4.  前記流入部を流れる前記サンプルガスに入射した光が前記粒子状物質により散乱することにより生じる散乱光に関する散乱光情報を取得する散乱光情報取得部をさらに備え、
     前記分析部は、前記散乱光情報に基づいて前記サンプルガスに含まれる前記粒子状物質の粒径に関する第2粒径情報を算出する、請求項1~3のいずれかに記載の分析装置。
    Further provided is a scattered light information acquisition unit that acquires scattered light information regarding scattered light generated by scattering light incident on the sample gas flowing through the inflow unit by the particulate matter.
    The analyzer according to any one of claims 1 to 3, wherein the analysis unit calculates second particle size information regarding the particle size of the particulate matter contained in the sample gas based on the scattered light information.
  5.  前記流入部は、
     前記第1画像取得部により前記第1画像データを取得するための前記サンプルガスが流れる第1流路と、
     前記含有量情報取得部により前記含有量情報を取得するための前記サンプルガスが流れる第2流路と、
     を有する、請求項1~4のいずれかに記載の分析装置。
    The inflow part
    A first flow path through which the sample gas for acquiring the first image data by the first image acquisition unit flows, and
    A second flow path through which the sample gas for acquiring the content information by the content information acquisition unit flows, and
    The analyzer according to any one of claims 1 to 4.
  6.  前記分析部は、前記含有量情報に基づいて前記粒子状物質の質量濃度を算出する、請求項1~5のいずれかに記載の分析装置。 The analyzer according to any one of claims 1 to 5, wherein the analysis unit calculates the mass concentration of the particulate matter based on the content information.
  7.  前記サンプルガスに含まれる前記粒子状物質を捕集する捕集フィルタと、
     前記捕集フィルタに捕集された前記粒子状物質の画像を含む第2画像データを取得する第2画像取得部と、
     をさらに備え、
     前記分析部は、前記第2画像データに基づいて有色の前記粒子状物質に関する情報を算出する、請求項1~6のいずれかに記載の分析装置。
    A collection filter that collects the particulate matter contained in the sample gas,
    A second image acquisition unit that acquires second image data including an image of the particulate matter collected by the collection filter, and a second image acquisition unit.
    Further prepare
    The analyzer according to any one of claims 1 to 6, wherein the analysis unit calculates information about the colored particulate matter based on the second image data.
  8.  前記分析部は、前記第2画像データのうち前記粒子状物質が捕集された捕集領域に対応する画像部分の画素の輝度と、前記捕集フィルタに捕集された前記粒子状物質の捕集量に関する情報と、の関係を表す検量線に基づいて前記粒子状物質に関する情報を算出し、
     前記検量線は、実際の測定対象となる粒子状物質を前記捕集フィルタに捕集して取得した前記第2画像データを用いて算出される、請求項7に記載の分析装置。
    The analysis unit captures the brightness of the pixels of the image portion corresponding to the collection area where the particulate matter is collected in the second image data and the particle substance collected by the collection filter. Information on the particulate matter was calculated based on the calibration curve representing the relationship between the information on the amount collected and the information on the particulate matter.
    The analyzer according to claim 7, wherein the calibration curve is calculated by using the second image data obtained by collecting particulate matter to be actually measured by the collection filter.
  9.  前記分析部は、前記第2画像データのうち前記粒子状物質が捕集された捕集領域に対応する画像部分の画素の輝度を、前記粒子状物質に関する所定のパラメータで基準化して、前記粒子状物質に関する情報を算出する、請求項7又は8に記載の分析装置。 The analysis unit standardizes the brightness of the pixels of the image portion corresponding to the collection region where the particulate matter is collected in the second image data with a predetermined parameter related to the particulate matter, and the particles. The analyzer according to claim 7 or 8, which calculates information about the state substance.
  10.  粒子状物質を含むサンプルガスをサンプリングするサンプリングプローブと、
     前記サンプルガスを希釈して希釈サンプルガスを生成する希釈器と、
     前記希釈サンプルガスに含まれる前記粒子状物質を分析する分析装置と、を備え、
     前記分析装置は、
     前記希釈サンプルガスを流入させる流入部と、
     前記流入部を流れる前記希釈サンプルガス中にて流動する前記粒子状物質の第1画像データを取得する第1画像取得部と、
     前記希釈サンプルガスに含まれる前記粒子状物質の含有量に関する含有量情報を取得する含有量情報取得部と、
     前記第1画像データと前記含有量情報とに基づいて前記粒子状物質を分析する分析部と、
     を有する、
     分析システム。
    A sampling probe that samples sample gas containing particulate matter,
    A diluter that dilutes the sample gas to generate a diluted sample gas, and
    An analyzer for analyzing the particulate matter contained in the diluted sample gas is provided.
    The analyzer is
    The inflow part into which the diluted sample gas flows, and
    A first image acquisition unit that acquires first image data of the particulate matter flowing in the diluted sample gas flowing through the inflow unit, and a first image acquisition unit.
    A content information acquisition unit that acquires content information regarding the content of the particulate matter contained in the diluted sample gas, and a content information acquisition unit.
    An analysis unit that analyzes the particulate matter based on the first image data and the content information,
    Have,
    Analytical system.
  11.  前記サンプリングプローブをブローバックするブローバック部をさらに備え、
     前記サンプルガスをサンプリングする際に、前記ブローバック部によるブローバックと、前記サンプルガスのサンプリングとを予め決められた時間割合で実行する、請求項10に記載の分析システム。
    Further provided with a blowback unit for blowing back the sampling probe.
    The analysis system according to claim 10, wherein when sampling the sample gas, blowback by the blowback unit and sampling of the sample gas are performed at a predetermined time ratio.
  12.  粒子状物質を含むサンプルガスを流入可能な流入部を備える分析装置による分析方法であって、
     前記サンプルガスを前記流入部に流入させるステップと、
     前記流入部を流れる前記サンプルガス中にて流動する前記粒子状物質の第1画像データを取得するステップと、
     前記サンプルガスに含まれる前記粒子状物質の含有量に関する含有量情報を取得するステップと、
     前記第1画像データと前記含有量情報とに基づいて前記粒子状物質を分析するステップと、
     を備える分析方法。
    It is an analysis method using an analyzer equipped with an inflow section capable of inflowing sample gas containing particulate matter.
    The step of inflowing the sample gas into the inflow portion,
    The step of acquiring the first image data of the particulate matter flowing in the sample gas flowing through the inflow portion, and
    A step of acquiring content information regarding the content of the particulate matter contained in the sample gas, and
    A step of analyzing the particulate matter based on the first image data and the content information,
    Analytical method.
  13.  サンプルガスに含まれる粒子状物質を分析する分析方法を、前記サンプルガスを流入可能な流入部を備える分析装置に実行させるためのプログラムであって、
     前記分析方法は、
     前記サンプルガスを前記流入部に流入させるステップと、
     前記流入部を流れる前記サンプルガス中にて流動する前記粒子状物質の第1画像データを取得するステップと、
     前記サンプルガスに含まれる前記粒子状物質の含有量に関する含有量情報を取得するステップと、
     前記第1画像データと前記含有量情報とに基づいて前記粒子状物質を分析するステップと、
     を有するプログラム。
    It is a program for causing an analyzer provided with an inflow portion capable of inflowing the sample gas to execute an analysis method for analyzing particulate matter contained in the sample gas.
    The analysis method is
    The step of inflowing the sample gas into the inflow portion,
    The step of acquiring the first image data of the particulate matter flowing in the sample gas flowing through the inflow portion, and
    A step of acquiring content information regarding the content of the particulate matter contained in the sample gas, and
    A step of analyzing the particulate matter based on the first image data and the content information,
    Program with.
  14.  粒子状物質を捕集する捕集フィルタと、
     前記捕集フィルタの前記粒子状物質が捕集された捕集領域と前記粒子状物質が捕集されていない非捕集領域とを含む画像データを取得する画像取得部と、
     前記画像データに基づいて前記粒子状物質を分析する分析部と、
     前記画像取得部を校正する校正部と、を備え、
     前記校正部は、
     前記捕集領域に捕集された前記粒子状物質の捕集量と前記非捕集領域に対応する画素の輝度との関係と前記画像データを取得したときの前記粒子状物質の捕集量とに基づいて、前記画像データの前記非捕集領域に対応する画素の理論輝度を算出し、
     前記理論輝度と前記画像データの前記非捕集領域に対応する画素の実際輝度との差に基づいて、前記画像取得部を校正する、
     分析装置。
    A collection filter that collects particulate matter,
    An image acquisition unit that acquires image data including a collection region in which the particulate matter is collected and a non-collection region in which the particulate matter is not collected, and an image acquisition unit of the collection filter.
    An analysis unit that analyzes the particulate matter based on the image data,
    A calibration unit for calibrating the image acquisition unit is provided.
    The calibration unit is
    The relationship between the amount of the particulate matter collected in the collection area and the brightness of the pixels corresponding to the non-collection area, and the amount of the particulate matter collected when the image data is acquired. Based on, the theoretical brightness of the pixel corresponding to the non-collection region of the image data is calculated.
    The image acquisition unit is calibrated based on the difference between the theoretical brightness and the actual brightness of the pixels corresponding to the non-collection region of the image data.
    Analysis equipment.
  15.  前記画像取得部は、前記画像データを取得するときに、前記捕集領域と前記非捕集領域とに光を照射する光源を含み、
     前記校正部は、前記理論輝度と前記実際輝度との差に基づいて前記光源の光量を調整する、請求項14に記載の分析装置。
    The image acquisition unit includes a light source that irradiates the collected area and the non-collected area with light when acquiring the image data.
    The analyzer according to claim 14, wherein the calibration unit adjusts the amount of light of the light source based on the difference between the theoretical brightness and the actual brightness.
  16.  粒子状物質を捕集する捕集フィルタと、前記捕集フィルタの前記粒子状物質が捕集された捕集領域と前記粒子状物質が捕集されていない非捕集領域とを含む画像データを取得する画像取得部とを備え、前記画像データに基づいて前記粒子状物質を分析する分析装置の校正方法であって、
     前記捕集領域に捕集された前記粒子状物質の捕集量と前記非捕集領域に対応する画素の輝度との関係と前記画像データを取得したときの前記粒子状物質の捕集量とに基づいて、前記非捕集領域に対応する画素の理論輝度を算出するステップと、
     前記理論輝度と前記画像データの前記非捕集領域に対応する画素の実際輝度との差に基づいて、前記画像取得部を校正するステップと、
     を備える校正方法。
    Image data including a collection filter that collects particulate matter, a collection region in which the particulate matter is collected, and a non-collection region in which the particulate matter is not collected. It is a calibration method of an analyzer that is provided with an image acquisition unit to be acquired and analyzes the particulate matter based on the image data.
    The relationship between the amount of the particulate matter collected in the collection area and the brightness of the pixels corresponding to the non-collection area, and the amount of the particulate matter collected when the image data is acquired. Based on the step of calculating the theoretical brightness of the pixel corresponding to the non-collection region,
    A step of calibrating the image acquisition unit based on the difference between the theoretical brightness and the actual brightness of the pixels corresponding to the non-collection region of the image data.
    Calibration method.
  17.  粒子状物質を捕集する捕集フィルタと、前記捕集フィルタの前記粒子状物質が捕集された捕集領域と前記粒子状物質が捕集されていない非捕集領域とを含む画像データを取得する画像取得部とを備え、前記画像データに基づいて前記粒子状物質を分析する分析装置の校正方法を当該分析装置に実行させるためのプログラムであって、
     前記校正方法は、
     前記捕集領域に捕集された前記粒子状物質の捕集量と前記非捕集領域に対応する画素の輝度との関係と前記画像データを取得したときの前記粒子状物質の捕集量とに基づいて、前記画像データの前記非捕集領域に対応する画素の理論輝度を算出するステップと、
     前記理論輝度と前記画像データの前記非捕集領域に対応する画素の実際輝度との差に基づいて、前記画像取得部を校正するステップと、
     を有するプログラム。
     
    Image data including a collection filter that collects particulate matter, a collection region in which the particulate matter is collected, and a non-collection region in which the particulate matter is not collected. It is a program for causing the analyzer to execute a calibration method of the analyzer for analyzing the particulate matter based on the image data, which is provided with an image acquisition unit to be acquired.
    The calibration method is
    The relationship between the amount of the particulate matter collected in the collection area and the brightness of the pixels corresponding to the non-collection area, and the amount of the particulate matter collected when the image data is acquired. Based on the step of calculating the theoretical brightness of the pixel corresponding to the non-collection region of the image data,
    A step of calibrating the image acquisition unit based on the difference between the theoretical brightness and the actual brightness of the pixels corresponding to the non-collection region of the image data.
    Program with.
PCT/JP2021/032846 2020-09-25 2021-09-07 Analysis device, analysis system, analysis method, calibration method, and program WO2022065026A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180064483.XA CN116324371A (en) 2020-09-25 2021-09-07 Analysis device, analysis system, analysis method, correction method, and program
JP2022551850A JPWO2022065026A1 (en) 2020-09-25 2021-09-07

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020160835 2020-09-25
JP2020-160835 2020-09-25
JP2020210480 2020-12-18
JP2020-210480 2020-12-18
JP2021050704 2021-03-24
JP2021-050704 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022065026A1 true WO2022065026A1 (en) 2022-03-31

Family

ID=80845171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032846 WO2022065026A1 (en) 2020-09-25 2021-09-07 Analysis device, analysis system, analysis method, calibration method, and program

Country Status (3)

Country Link
JP (1) JPWO2022065026A1 (en)
CN (1) CN116324371A (en)
WO (1) WO2022065026A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192630A (en) * 1986-02-20 1987-08-24 Babcock Hitachi Kk Measuring instrument for particle concentration
JP2005207956A (en) * 2004-01-23 2005-08-04 Horiba Ltd Suspended particulate matter measuring device
US20110026023A1 (en) * 2009-07-31 2011-02-03 GENERAL IMPIANTI S.r.I.. Method and apparatus for determining size and composition of a particulate matter in a fume flow
CN202216891U (en) * 2011-09-19 2012-05-09 南京信息工程大学 Atmospheric black carbon aerosol particle diameter detection device
JP2015219198A (en) * 2014-05-20 2015-12-07 株式会社堀場製作所 Analyzer and calibration method
JP2015219197A (en) * 2014-05-20 2015-12-07 株式会社堀場製作所 Analyzer and calibration method
JP2017106873A (en) * 2015-12-11 2017-06-15 株式会社堀場製作所 Analyzer, analysis method, and program
JP2017161348A (en) * 2016-03-09 2017-09-14 富士電機株式会社 Particle analysis device and particle analysis method
CN207147936U (en) * 2017-08-17 2018-03-27 青岛众瑞智能仪器有限公司 A kind of portable β rays exhaust gas particle thing weighing instrument
JP2019020411A (en) * 2017-07-14 2019-02-07 株式会社堀場製作所 Analyzer, system, method for analysis, and program

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192630A (en) * 1986-02-20 1987-08-24 Babcock Hitachi Kk Measuring instrument for particle concentration
JP2005207956A (en) * 2004-01-23 2005-08-04 Horiba Ltd Suspended particulate matter measuring device
US20110026023A1 (en) * 2009-07-31 2011-02-03 GENERAL IMPIANTI S.r.I.. Method and apparatus for determining size and composition of a particulate matter in a fume flow
CN202216891U (en) * 2011-09-19 2012-05-09 南京信息工程大学 Atmospheric black carbon aerosol particle diameter detection device
JP2015219198A (en) * 2014-05-20 2015-12-07 株式会社堀場製作所 Analyzer and calibration method
JP2015219197A (en) * 2014-05-20 2015-12-07 株式会社堀場製作所 Analyzer and calibration method
JP2017106873A (en) * 2015-12-11 2017-06-15 株式会社堀場製作所 Analyzer, analysis method, and program
JP2017161348A (en) * 2016-03-09 2017-09-14 富士電機株式会社 Particle analysis device and particle analysis method
JP2019020411A (en) * 2017-07-14 2019-02-07 株式会社堀場製作所 Analyzer, system, method for analysis, and program
CN207147936U (en) * 2017-08-17 2018-03-27 青岛众瑞智能仪器有限公司 A kind of portable β rays exhaust gas particle thing weighing instrument

Also Published As

Publication number Publication date
CN116324371A (en) 2023-06-23
JPWO2022065026A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
JP7246871B2 (en) Analysis device, system, analysis method, and program
US8047055B2 (en) Size segregated aerosol mass concentration measurement with inlet conditioners and multiple detectors
EP2430465B1 (en) Particulate detection and calibration of sensors
CN102156088B (en) Particle analyzing apparatus and particle imaging method
JP7198078B2 (en) ANALYSIS DEVICE, ANALYSIS METHOD, AND PROGRAM
US7696501B2 (en) Apparatus for monitoring engine exhaust
US8193500B2 (en) Discrimination filtering device, discrimination method of object, and designing method of filters for discrimination filtering device
CN102053056B (en) Analyzer and particle imaging method
CN110146422A (en) A kind of dust concentration detection device based on multi-angle acquisition image
WO2022065026A1 (en) Analysis device, analysis system, analysis method, calibration method, and program
CN209961656U (en) Dust concentration detection device based on multi-angle collected image
CN115298531A (en) Diluter, analysis system and analysis method
JP2002357532A (en) Floating particle-like substance measuring apparatus
US7222517B2 (en) Method for determining the characteristic properties of soot particles
JP5533586B2 (en) Exhaust gas analysis method and exhaust gas emission control method
Du et al. Digital photographic method to quantify black carbon in ambient aerosols
JPH1194692A (en) Diffusion testing device
JPH0431054B2 (en)
JP2004198121A (en) Mass concentration measuring method and device of soot aggregate in combustion exhaust gas
RU142875U1 (en) CLOSED TYPE PHOTOMETER
KR102259368B1 (en) Fine dust optical property determination method and fine dust analysis device
KR102147627B1 (en) Fine dust analysis apparatus
US20240280458A1 (en) Device and method for analyzing a gaseous sample, and raman spectrometer
CN113176228A (en) SO based on Internet of things2Concentration passive remote sensing monitor and monitoring method
Taylor Development and Evaluation of a Real-Time Mid-Infrared Photoacoustic Spectrometer for Measuring Silica and Other Mineral Dust Mass Concentrations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551850

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317025303

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872157

Country of ref document: EP

Kind code of ref document: A1