WO2022064958A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2022064958A1
WO2022064958A1 PCT/JP2021/031599 JP2021031599W WO2022064958A1 WO 2022064958 A1 WO2022064958 A1 WO 2022064958A1 JP 2021031599 W JP2021031599 W JP 2021031599W WO 2022064958 A1 WO2022064958 A1 WO 2022064958A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting plate
plate portion
bus bar
protruding
electrode bus
Prior art date
Application number
PCT/JP2021/031599
Other languages
French (fr)
Japanese (ja)
Inventor
政徳 小林
貴史 栗原
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022064958A1 publication Critical patent/WO2022064958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This disclosure relates to a power conversion device.
  • the power conversion device of Patent Document 1 includes a bus bar connecting a capacitor and a semiconductor device. An AC voltage is applied to the capacitor as the power converter operates. Charges are accumulated in the electrodes of the capacitor by the AC voltage, and Coulomb force is generated between the electrodes. Since the Coulomb force changes periodically in proportion to the frequency of the AC voltage, the capacitor vibrates.
  • the vibration of the capacitor is transmitted to the bus bar.
  • the bus bar vibrates greatly, and there is a possibility that the bus bar is transmitted to another member connected to the bus bar, for example, a semiconductor device.
  • This disclosure is based on this circumstance, and its purpose is to provide a power conversion device that can reduce the influence of vibration that the bus bar receives from the capacitor.
  • a first aspect of the present disclosure for achieving this object is a semiconductor device that converts power, a capacitor that smoothes the power supplied from the battery and supplies it to the semiconductor device, and a capacitor connection connected to the semiconductor.
  • a pair of bus bars having a section, a semiconductor connection section connected to the semiconductor device, and a connecting plate section connecting the capacitor connecting section and the semiconductor connecting section are provided, and the bus bar is provided with a connecting plate section. It is a power conversion device having a protruding portion protruding from the surface.
  • the connecting plate portion is formed with the protruding portion, the rigidity of the connecting plate portion is higher than that of the connecting plate portion without the protruding portion. Therefore, even when vibration is transmitted from the capacitor, the connecting plate portion has high rigidity due to the protruding portion, so that vibration of the connecting plate portion itself is suppressed. Therefore, the bus bar can reduce the influence of vibration from the capacitor.
  • FIG. 2 is a sectional view taken along line IV-IV of FIG. It is a figure which showed the structure of the bus bar of 1st Embodiment. It is a figure which showed the structure of the power conversion apparatus of 2nd Embodiment.
  • FIG. 6 is a cross-sectional view taken along the line VII-VII of FIG. It is a figure which showed the structure of the bus bar of another embodiment. It is a figure which showed the structure of the bus bar of another embodiment. It is a figure which showed the structure of the power conversion apparatus of another embodiment. It is a figure which showed the structure of the bus bar of another embodiment.
  • the power conversion system 1 includes a battery 11, a power conversion device 12, and a motor 13.
  • the battery 11 supplies electric power to the power conversion device 12 via the energized bus bar 24.
  • the power conversion device 12 converts the electric power and supplies the converted electric power to the motor 13 via the motor bus bar 23.
  • the motor 13 in the present disclosure is, for example, a motor used as a power source for a vehicle.
  • the power conversion device 12 includes an inverter case 26, a semiconductor device 20, a capacitor 21, a capacitor case 27, a bus bar 22, and a cooler 28.
  • the inverter case 26 houses a semiconductor device 20, a condenser 21, a condenser case 27, a bus bar 22, and a cooler 28 inside.
  • the bus bar 22 is a generic name for both the positive electrode bus bar 22a and the negative electrode bus bar 22b.
  • FIG. 3 is a drawing in which the capacitor case 27 and the inverter case 26 of FIG. 2 are not shown.
  • the semiconductor device 20 is composed of a plurality of switching elements 20a. As shown in FIG. 3, the plurality of switching elements 20a are arranged in a stacked manner.
  • the X direction indicates the directions on both sides of the direction in which the semiconductor connecting portion 22e extends from the connecting plate portion 22c.
  • the Y direction indicates the directions on both sides of the stacking direction of the plurality of switching elements 20a.
  • the Z direction indicates the directions on both sides of the connecting plate portion 22c in the thickness direction.
  • the switching element 20a has a P terminal 20b, an N terminal 20c, and an output terminal 20d.
  • the P terminal 20b, the N terminal 20c, and the output terminal 20d are formed so as to extend in the longitudinal direction in the Z direction.
  • the P terminal 20b is in contact with the semiconductor connection portion 22e of the positive electrode bus bar 22a on the surfaces facing each other in the Y direction.
  • the semiconductor connection portion 22e of the P terminal 20b and the positive electrode bus bar 22a is fixed in contact with each other by, for example, welding. Further, the direction in which the P terminal 20b, the N terminal 20c, and the output terminal extend is defined as one side in the Z direction.
  • the N terminal 20c is in contact with the semiconductor connection portion 22e of the negative electrode bus bar 22b on the surfaces facing each other in the Y direction.
  • the semiconductor connection portion 22e of the N terminal 20c and the negative electrode bus bar 22b is fixed in contact with each other by, for example, welding.
  • the output terminal 20d is connected to the motor bus bar 23.
  • the cooler 28 is arranged on the other side in the Z direction with respect to the connecting plate portion 22c.
  • the cooler 28 is arranged in contact with or close to the semiconductor device 20 on the surface.
  • the cooler 28 cools the surroundings by passing a cooling fluid such as LLC through a pipe or the like in the cooler 28. Therefore, the semiconductor device 20 is cooled at a portion close to the cooler 28.
  • the power conversion device 12 has a plurality of capacitors 21.
  • the capacitor 21 has a rectangular shape having a long side in the X direction and a short side in the Y direction when viewed in the Z direction.
  • the plurality of capacitors 21 are arranged so that their long sides face each other in the Y direction. That is, the plurality of capacitors 21 are arranged so as to be arranged in the Y direction.
  • FIG. 4 omits the illustration of the semiconductor device 20 and the insulating member 29.
  • the capacitor 21 is electrically connected to the capacitor connection portion 22d of the positive electrode bus bar 22a on the surface on one side in the Z direction.
  • the capacitor 21 is electrically connected to the capacitor connection portion 22d of the negative electrode bus bar 22b on the surface on the other side in the Z direction.
  • the capacitor 21 is housed inside the capacitor case 27.
  • the inside of the capacitor case 27 is filled with, for example, a resin encapsulant 30. Therefore, the periphery of the capacitor 21 is filled with the sealing material 30.
  • the power conversion device 12 has a positive electrode bus bar 22a and a negative electrode bus bar 22b, which are a pair of bus bars 22. As shown in FIG. 3 or 4, the positive electrode bus bar 22a and the negative electrode bus bar 22b have a connecting plate portion 22c, a capacitor connecting portion 22d, a semiconductor connecting portion 22e, and a protruding portion 25.
  • the positive electrode bus bar 22a and the negative electrode bus bar 22b are formed by, for example, a press or the like.
  • the connecting plate portion 22c has a thickness in the Z direction and has a plate shape forming an XY plane.
  • the connecting plate portion 22c of the positive electrode bus bar 22a and the connecting plate portion 22c of the negative electrode bus bar 22b are arranged so that the XY planes overlap each other in the Z direction. That is, the connecting plate portions 22c of the positive electrode bus bar 22a and the negative electrode bus bar 22b are arranged close to each other so that the XY planes face each other in the Z direction.
  • overlapping of planes means that at least a part of the planes face each other, and does not mean that all the planes face each other.
  • the insulating member 29 is arranged between the connecting plate portion 22c of the positive electrode bus bar 22a and the negative electrode bus bar 22b in the Z direction.
  • the insulating member 29 is arranged so as to be close to or in contact with the positive electrode bus bar 22a and the negative electrode bus bar 22b.
  • the insulating member 29 allows the positive electrode bus bar 22a and the negative electrode bus bar 22b to secure insulation from each other.
  • the capacitor connecting portion 22d extends from the connecting plate portion 22c toward one side in the X direction. That is, the capacitor connection portion 22d extends from the connecting plate portion 22c toward the capacitor 21 side.
  • the capacitor connection portion 22d is arranged inside the capacitor case 27, and the periphery thereof is filled with the sealing material 30. Therefore, the capacitor connection portion 22d is prevented from moving by the sealing material 30.
  • the connecting plate portion 22c is arranged outside the capacitor case 27.
  • the semiconductor connecting portion 22e is formed so as to extend in the longitudinal direction from the connecting plate portion 22c to the other side in the X direction. That is, the semiconductor connection portion 22e extends from the connecting plate portion 22c to the semiconductor device 20 side.
  • the power conversion device 12 has a plurality of semiconductor connection portions 22e, and the plurality of semiconductor connection portions 22e are arranged so as to be arranged in the Y direction.
  • the direction in which the plurality of semiconductor connection portions 22e are lined up is the same as the direction in which the plurality of capacitors 21 are lined up.
  • the positive electrode bus bar 22a has a protruding portion 25 formed on the connecting plate portion 22c.
  • the negative electrode bus bar 22b forms a protruding portion 25 on the connecting plate portion 22c.
  • the protruding portion 25 of the negative electrode bus bar 22b is formed at a position overlapping the protruding portion 25 of the positive electrode bus bar 22a when viewed from one side in the Z direction.
  • the protruding portion 25 has a step forming portion 25a, a flat plate portion 25b, and a boundary portion 25c.
  • the step forming portion 25a of the positive electrode bus bar 22a extends from the boundary portion 25c, which is the boundary portion between the connecting plate portion 22c and the step forming portion 25a, at an angle ⁇ with respect to the connecting plate portion 22c. That is, the step forming portion 25a of the positive electrode bus bar 22a is an inclined surface that is inclined with respect to the connecting plate portion 22c.
  • the angle ⁇ is, for example, an angle in the range of 10 degrees to 90 degrees.
  • the flat plate portion 25b of the positive electrode bus bar 22a is formed so as to extend in the X direction from the end portion on the opposite side of the boundary portion 25c of the step forming portion 25a.
  • the flat plate portion 25b forms an XY plane parallel to the connecting plate portion 22c. Further, the flat plate portion 25b is arranged at a position separated from the connecting plate portion 22c on one side in the Z direction by a distance d1 in the Z direction.
  • the step forming portion 25a is a portion connecting the connecting plate portion 22c and the flat plate portion 25b. That is, the step forming portion 25a is a part of the portion forming the step between the connecting plate portion 22c and the flat plate portion 25b.
  • the boundary portion 25c is formed in an annular shape when viewed in the Z direction.
  • the outer peripheral edge of the flat plate portion 25b is connected to the step forming portion 25a on the entire circumference.
  • the boundary portion 25c is formed in a rectangular shape having a long side 25g and a short side 25h.
  • the long side 25g is formed so as to extend in the Y direction which is the longitudinal direction of the boundary portion 25c, and the two long sides 25g are formed so as to face each other in the X direction which is the lateral direction of the boundary portion 25c. ..
  • the short side 25h connects two long sides 25g and has an arcuate shape.
  • the connecting plate portion 22c has a rectangular shape having a longitudinal direction in the Y direction and a lateral direction in the X direction when viewed in the Z direction. Therefore, the direction in which the long side 25g is formed is the Y direction, which coincides with the longitudinal direction of the connecting plate portion 22c.
  • the first region line 34 shown in FIG. 3 is a line connecting the semiconductor connection portion 22e located at one end of the plurality of semiconductor connection portions 22e in the Y direction and the capacitor connection portion 22d at the shortest distance.
  • the second region line 35 is a line connecting the semiconductor connection portion 22e located at the other end in the Y direction of the plurality of semiconductor connection portions 22e and the capacitor connection portion 22d at the shortest distance.
  • the facing region 33 shown by diagonal lines in FIG. 3 is a range sandwiched between the first region line 34 and the second region line 35, and is a range in which the semiconductor connecting portion 22e and the capacitor connecting portion 22d face each other in the X direction. be. That is, the facing region 33 indicates a range in which the semiconductor connecting portion 22e and the capacitor connecting portion 22d overlap in the X direction.
  • the positive electrode bus bar 22a does not form the protrusion 25 within the range of the facing region 33.
  • the positive electrode bus bar 22a forms a protruding portion 25 outside the range of the facing region 33 in the connecting plate portion 22c. That is, the protruding portion 25 is formed at a position on the connecting plate portion 22c on the other side in the Y direction with respect to the second region line 35. The protrusion 25 is formed at a position on the other side in the Y direction with respect to the semiconductor connection portion 22e located at the other end in the Y direction.
  • the capacitor 21 connected to the portion of the capacitor connecting portion 22d that overlaps the facing region 33 in the X direction does not face the protruding portion 25 in the X direction.
  • at least one of the capacitors 21 connected to the portion of the capacitor connecting portion 22d that does not overlap with the facing region 33 in the X direction faces the protruding portion 25 in the X direction.
  • the plurality of semiconductor connecting portions 22e do not face the protruding portions 25 in the X direction.
  • the protruding portion 25 is located on a diagonal line connecting the semiconductor connecting portion 22e and the portion of the capacitor connecting portion 22d that does not overlap with the facing region 33 in the X direction.
  • the negative electrode bus bar 22b like the positive electrode bus bar 22a, forms a protruding portion 25 outside the range in which the semiconductor connecting portion 22e and the capacitor connecting portion 22d face each other in the X direction.
  • the step forming portion 25a of the negative electrode bus bar 22b is inclined in the opposite direction in the Z direction to the step forming portion 25a of the positive electrode bus bar 22a with respect to the connecting plate portion 22c. That is, the protruding portion 25 of the negative electrode bus bar 22b protrudes in the direction opposite to the protruding direction of the protruding portion 25 of the positive electrode bus bar 22a in the Z direction.
  • the step forming portion 25a of the negative electrode bus bar 22b forms an angle ⁇ with respect to the connecting plate portion 22c and extends from the boundary portion 25c.
  • the flat plate portion 25b of the negative electrode bus bar 22b is also separated from the connecting plate portion 22c by a distance d1 in the Z direction, similarly to the positive electrode bus bar 22a.
  • the cooler 28 is arranged on the other side in the Z direction from the positive electrode bus bar 22a and the negative electrode bus bar 22b. Further, the negative electrode bus bar 22b is arranged on the other side in the Z direction with respect to the positive electrode bus bar 22a, and the protruding portion 25 is formed so as to project to the other side in the Z direction.
  • the connecting plate portion 22c has an energized connecting portion 22f extending in the longitudinal direction on the other side in the X direction. That is, the energized connection portion 22f extends in the same direction as the direction in which the semiconductor connection portion 22e extends from the connecting plate portion 22c. Further, the energized connection portions 22f of the positive electrode bus bar 22a and the negative electrode bus bar 22b are arranged so as to line up in the Y direction.
  • the energized connection portion 22f is arranged at a position facing the semiconductor connection portion 22e in the Y direction. However, the energized connection portion 22f is formed on the other side in the Y direction with respect to the portion of the connecting plate portion 22c where the semiconductor connection portion 22e is formed.
  • the energized connection portion 22f has, for example, a fastening hole 22g, and is fastened to a conductive member with a screw or the like at the fastening hole 22g. Further, the conductive member is connected to the battery 11 arranged on the outside of the capacitor case 27. The current that reaches the energized connection portion 22f from the battery 11 is transmitted to the connecting plate portion 22c. Then, the current that reaches the connecting plate portion 22c is transmitted to the semiconductor connecting portion 22e.
  • the step forming portion 25a shown in FIG. 4 has a higher geometrical moment of inertia in the Z direction than the connecting plate portion 22c. Therefore, the connecting plate portion 22c has a higher geometrical moment of inertia in the Z direction in the entire connecting plate portion 22c as compared with the connecting plate portion that does not form the protruding portion 25. Therefore, the connecting plate portion 22c has high rigidity against vibration in the Z direction.
  • the connecting plate portion 22c Since the connecting plate portion 22c has higher rigidity due to the protruding portion 25 as compared with the configuration in which the protruding portion 25 is not formed, vibration of the connecting plate portion 22c itself is suppressed. Therefore, the bus bar 22 can reduce the influence of vibration from the capacitor 21. Further, the power conversion device 12 can suppress the vibration of the bus bar 22 by the protrusion 25 even when the number of the plurality of capacitors 21 is increased and the vibration received by the bus bar 22 from the plurality of capacitors 21 increases.
  • the positive electrode bus bar of the first comparative example has a welded portion in which the semiconductor connecting portion and the P terminal are connected by welding, and is not fixed by another member such as a fastening member. Further, the positive electrode bus bar of the first comparative example does not form a protruding portion in the connecting plate portion.
  • the capacitor connection portion is filled with a sealing material, so that vibration is suppressed.
  • the connecting plate portion of the positive electrode bus bar of the first comparative example is arranged outside the capacitor case and is not fixed by a sealing material, a fastening member, or the like, vibration is suppressed more than that of the capacitor connecting portion. Not. Therefore, when the vibration of the capacitor is transmitted to the connecting plate portion, the connecting plate portion vibrates more in the Z direction than the capacitor connecting portion.
  • the vibration of the connecting plate portion is transmitted to the semiconductor junction portion, and the semiconductor junction portion vibrates in the Z direction, so that stress is applied to the welded portion with the P terminal.
  • the portion in contact between the P terminal and the semiconductor connection portion may be separated from each other.
  • the positive electrode bus bar 22a of the present embodiment has a protruding portion 25 formed on the connecting plate portion 22c. Therefore, since the positive electrode bus bar 22a itself is suppressed from vibrating by the protruding portion 25, it is possible to suppress the application of stress to the contact portion between the semiconductor connecting portion 22e and the P terminal 20b due to the vibration of the connecting plate portion 22c. Therefore, the positive electrode bus bar 22a can connect the semiconductor connecting portion 22e and the P terminal 20b without using other members such as a fastening member. Therefore, the positive electrode bus bar 22a can be prevented from becoming large.
  • the positive electrode bus bar 22a of the present embodiment has a boundary portion 25c formed in an annular shape when viewed in the Z direction. That is, the protruding portion 25 does not reach the outer peripheral edge 22h of the connecting plate portion. Therefore, the connecting plate portion 22c is manufactured with good dimensional accuracy in the X direction because the outer peripheral edge 22h of the connecting plate portion is formed by a normal flat surface.
  • the connecting plate portion 22c of the present embodiment forms a protruding portion 25 by matching its longitudinal direction with the direction of its long side 25g.
  • the protruding portion 25 of the present embodiment can form a long side 25 g up to a length in the longitudinal direction of the connecting plate portion 22c.
  • the connecting plate portion 22c of the present embodiment can form the protruding portion 25 larger than the configuration in which the longitudinal directions of the connecting plate portion 22c and the protruding portion 25 do not match. Therefore, the connecting plate portion 22c of the present embodiment can suppress its own vibration by forming the protruding portion 25 to be large.
  • the connecting plate portions 22c of the positive electrode bus bar 22a and the negative electrode bus bar 22b are arranged close to each other in the Z direction. Further, the direction 31 of the current of the positive electrode bus bar and the direction 32 of the current of the negative electrode bus bar are opposite to each other. The direction of the magnetic flux generated around one current and the direction of the magnetic flux generated around the other current are opposite. Therefore, the magnetic flux generated around one current and the other current cancel each other out.
  • the positive electrode bus bar 22a and the negative electrode bus bar 22b can suppress an increase in inductance when a current flows.
  • the flat plate portions 25b of the positive electrode bus bar 22a and the negative electrode bus bar 22b have a larger separation distance in the Z direction than the connecting plate portions 22c. Therefore, the currents flowing through the flat plate portion 25b have a lower degree of canceling the magnetic flux than the currents flowing through the connecting plate portion 22c, so that the inductance increases.
  • the semiconductor device 20 has the smallest impedance between the plurality of capacitors 21 and the capacitor 21 having a short distance from the semiconductor device 20. That is, the current exchanged between the semiconductor device 20 and the capacitor 21 has the smallest impedance when passing through the facing region 33 shown in FIG. 3 because the distance between the semiconductor connection portion 22e and the capacitor connection portion 22d is the smallest.
  • the high frequency surge When a high frequency surge occurs in the switching element 20a due to a switching operation or the like, the high frequency surge passes through a path having a low impedance. Therefore, the high frequency surge is transmitted from the semiconductor device 20 to the capacitor 21 through the facing region 33.
  • the connecting plate portion 22c of the present embodiment forms a protruding portion 25 on the outside of the facing region 33.
  • the connecting plate portion 22c has a protruding portion 25 formed on the outside of the facing region 33 where a large amount of the high frequency surge flows, so that the protruding portion 25 is formed in the facing region 33 as compared with the case where the protruding portion 25 is formed. It is possible to suppress an increase in the length of the current path due to the length of the protrusion 25. Therefore, the connecting plate portion 22c can suppress the increase in the inductance by suppressing the increase in the current path due to the protruding portion 25.
  • the negative electrode bus bar 22b of the present embodiment has a protruding portion 25 protruding to the other side in the Z direction on the connecting plate portion 22c. That is, the negative electrode bus bar 22b has a protruding portion 25 that protrudes in the direction opposite to the direction in which the protruding portion 25 of the positive electrode bus bar 22a protrudes.
  • the positive electrode bus bar 22a and the negative electrode bus bar 22b of the present embodiment have a larger separation distance between the flat plate portions 25b in the Z direction than, for example, a configuration in which the negative electrode bus bar 22b does not have the protruding portion 25 formed. Therefore, the positive electrode bus bar 22a and the negative electrode bus bar 22b can suppress the heat generated by the current flowing through the flat plate portion 25b from being transferred to the flat plate portion 25b of the other bus bar 22.
  • the negative electrode bus bar 22b of the present embodiment forms a protruding portion 25 protruding to the other side in the Z direction.
  • the cooler 28 is arranged on the other side in the Z direction with respect to the negative electrode bus bar 22b. Therefore, the negative electrode bus bar 22b of the present embodiment can approach the cooler 28 at the protruding portion 25 in the Z direction from the configuration in which the protruding portion 25 is not formed on the negative electrode bus bar 22b. Therefore, the efficiency of cooling the negative electrode bus bar 22b of the present embodiment by the cooler 28 increases.
  • the power conversion system 1 in this embodiment has the same configuration as that in the first embodiment. Therefore, in this embodiment, the same reference numerals as those in the first embodiment are used. In this embodiment, the differences from the first embodiment will be mainly described.
  • one end 25d and the other end 25e of the boundary portion 25c are located on the outer peripheral edge 22h of the connecting plate portion 22c when viewed from one side in the Z direction. Further, one end 25d and the other end 25e are separated in the Y direction. As shown in FIGS. 6 and 7, the flat plate portion 25b is formed up to the position of the outer peripheral edge 22h of the connecting plate portion 22c.
  • the flat plate portion 25b of the first embodiment has step forming portions 25a extending on both sides in the X direction.
  • W1 indicates the width of the step forming portion 25a. Since the connecting plate portion 22c of the first embodiment is provided with the step forming portions 25a on both sides of the flat plate portion 25b in the X direction, the step forming portion 25a is twice as long as W1 in the length of the connecting plate portion 22c in the X direction. Will occupy the length of.
  • the step forming portion 25a extends on one side in the X direction, but the step forming portion 25a is not formed on the other side in the X direction.
  • W2 indicates the width of the step forming portion 25a.
  • the step forming portion 25a occupies the length of W2 in the length of the connecting plate portion 22c in the X direction.
  • the step forming portion 25a of the present embodiment can form W2 to a length longer than W1. Therefore, in the connecting plate portion 22c of the present embodiment, d2 corresponding to the height of the step forming portion 25a shown in FIG. 7 in the Z direction is set to the distance of the step forming portion 25a of the first embodiment shown in FIG. 5 in the Z direction. It can be formed longer than d1.
  • the protruding portion 25 of the negative electrode bus bar 22b of the present embodiment protrudes in the same direction as the protruding portion 25 of the positive electrode bus bar 22a in the Z direction. Therefore, in the positive electrode bus bar 22a and the negative electrode bus bar 22b, the step forming portions 25a and the flat plate portions 25b are formed at the same distance in the Z direction as the connecting plate portions 22c.
  • the step forming portions 25a and the flat plate portions 25b are arranged closer to each other as compared with the configuration in which the protruding portions 25 of the positive electrode bus bar and the negative electrode bus bar 22b have different protruding directions. Can be made to. Therefore, since the distance between the currents flowing through the protruding portions 25 of the positive electrode bus bar 22a and the negative electrode bus bar 22b of the present embodiment is short, it is possible to suppress an increase in the inductance of the current flowing through the protruding portions 25.
  • the protruding portion 25 has the step forming portion 25a and the flat plate portion 25b, it may be configured not to have the flat plate portion 25b as shown in FIG. In that case, the step forming portion 25a protrudes from the connecting plate portion 22c in the Z direction, and the shape of the XZ cross section is formed in, for example, an arc shape.
  • the step forming portion 25a is integrally connected to the connecting plate portion 22c at the boundary portions 25c which are the ends on both sides in the X direction.
  • bus bar 22 has the energized connection portion 22f
  • the bus bar 22 may be configured not to have the energized connection portion 22f.
  • boundary portion 25c is described as having a rectangular shape, it may have a shape having no long side such as a perfect circle or a square.
  • direction 31 of the current of the positive electrode bus bar and the direction 32 of the current of the negative electrode bus bar are opposite to each other, they may be in the same direction.
  • protruding portions 25 of the positive electrode bus bar 22a and the negative electrode bus bar 22b are arranged so as to overlap each other when viewed in the Z direction, but at least a part thereof may be overlapped or not all overlapped.
  • the protruding portion 25 is formed on the outside of the facing region 33, it may be formed on the inside of the facing region 33. Alternatively, a part of the protrusion 25 may be formed so as to be inside the range of the facing region 33.
  • angle ⁇ and the angle ⁇ are the same, the angle ⁇ and the angle ⁇ may be different.
  • the positive electrode bus bar 22a and the negative electrode bus bar 22b in FIG. 8 have a shape in which the flat plate portions 25b are connected to the step forming portions 25a on both sides in the X direction as in the first embodiment. Further, the protruding portions 25 of the positive electrode bus bar 22a and the negative electrode bus bar 22b may be projected in the same direction as shown in FIG.
  • the protrusion 25 may be formed only on the positive electrode bus bar 22a.
  • the negative electrode bus bar 22b does not form the protruding portion 25.
  • the negative electrode bus bar 22b may have a protruding portion 25, and the positive electrode bus bar 22a may not have a protruding portion 25.
  • the connecting plate portion 22c may have a configuration having a plurality of protruding portions 25. As shown in FIG. 10, it is desirable that the plurality of projecting portions 25 have long sides 25g facing each other in the X direction.
  • bus bars there are two bus bars in contact with the capacitor 21, a positive electrode bus bar 22a and a negative electrode bus bar 22b, but three or more bus bars are in contact with each other, and at least one bus bar is a connecting plate.
  • the protrusion 25 may be formed in the portion 22c.
  • the connecting plate portion 22c may be composed of a plurality of members instead of a single member.
  • the connecting plate portion 22c is composed of a first connecting plate portion having a capacitor connecting portion 22d and a second connecting plate portion having a semiconductor connecting portion 22e.
  • the first connecting plate portion and the second connecting plate portion are electrically connected to each other, and a protruding portion 25 is formed on at least one of the first connecting plate portion and the second connecting plate portion.
  • the configuration described as the configuration of the positive electrode bus bar 22a is applicable to the negative electrode bus bar 22b.
  • the configuration described as applicable to the negative electrode bus bar 22b is applicable to the positive electrode bus bar 22a.

Abstract

This power conversion device comprises a semiconductor device (20), capacitors (21), a positive electrode bus bar (22a), and a negative electrode bus bar (22b). The positive electrode bus bar (22a) and the negative electrode bus bar (22b) have a coupling plate portion (22c), a capacitor connection portion (22d), and a semiconductor connection portion (22e). The capacitor connection portion (22d) extends from the coupling plate portion (22c) and makes contact with the capacitors (21). The semiconductor connection portion (22e) extends from the coupling plate portion (22c) and is connected to the semiconductor device (20). At least one of the positive electrode bus bar (22a) and the negative electrode bus bar (22b) forms a projection portion (25) on the coupling plate portion (22c). Since the rigidity of the coupling plate portion (22c) is increased by the projection portion (25), it is possible to reduce the effect of vibration transmitted from the capacitors (21) to the coupling plate portion (22c).

Description

電力変換装置Power converter 関連出願の相互参照Cross-reference of related applications
 この出願は、2020年9月28日に日本に出願された特許出願第2020-162513号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2020-162513 filed in Japan on September 28, 2020, and the contents of the basic application are incorporated by reference as a whole.
 本開示は、電力変換装置に関する。 This disclosure relates to a power conversion device.
 特許文献1の電力変換装置は、コンデンサと半導体装置とを接続しているバスバを備えている。コンデンサは、電力変換装置の動作に伴って、交流電圧が加えられる。コンデンサの電極は、交流電圧によって電荷が蓄積され、電極間にクーロン力が生じる。クーロン力は、交流電圧の振動数に比例して周期的に変化するため、コンデンサが振動する。 The power conversion device of Patent Document 1 includes a bus bar connecting a capacitor and a semiconductor device. An AC voltage is applied to the capacitor as the power converter operates. Charges are accumulated in the electrodes of the capacitor by the AC voltage, and Coulomb force is generated between the electrodes. Since the Coulomb force changes periodically in proportion to the frequency of the AC voltage, the capacitor vibrates.
特開2019-201152号公報Japanese Unexamined Patent Publication No. 2019-20152
 電力変換装置は、コンデンサが振動した際に、コンデンサの振動がバスバに伝達される。コンデンサから伝達される振動が大きい場合、バスバは大きく振動し、バスバと接続している他の部材例えば半導体装置に、大きな振動を伝達する虞がある。 In the power conversion device, when the capacitor vibrates, the vibration of the capacitor is transmitted to the bus bar. When the vibration transmitted from the capacitor is large, the bus bar vibrates greatly, and there is a possibility that the bus bar is transmitted to another member connected to the bus bar, for example, a semiconductor device.
 本開示は、この事情に基づいて成されたものであり、その目的とするところは、バスバがコンデンサから受ける振動の影響を低減できる電力変換装置を提供することである。 This disclosure is based on this circumstance, and its purpose is to provide a power conversion device that can reduce the influence of vibration that the bus bar receives from the capacitor.
 その目的を達成するための本開示の第1の態様は、電力を変換する半導体装置と、バッテリから供給される電力を平滑し、半導体装置に供給するコンデンサと、コンデンサと接続されているコンデンサ接続部と、半導体装置に接続されている半導体接続部と、コンデンサ接続部と半導体接続部とを連結している連結板部と、をそれぞれ有する一対のバスバと、を備え、バスバは、連結板部から突出している突出部を有している電力変換装置である。 A first aspect of the present disclosure for achieving this object is a semiconductor device that converts power, a capacitor that smoothes the power supplied from the battery and supplies it to the semiconductor device, and a capacitor connection connected to the semiconductor. A pair of bus bars having a section, a semiconductor connection section connected to the semiconductor device, and a connecting plate section connecting the capacitor connecting section and the semiconductor connecting section are provided, and the bus bar is provided with a connecting plate section. It is a power conversion device having a protruding portion protruding from the surface.
 連結板部は、突出部が形成されていることにより、突出部が形成されていない連結板部と比較して自身の剛性が高くなる。よって、連結板部は、コンデンサから振動が伝達される場合でも、突出部により剛性が高くなっているため、自身が振動することが抑制される。したがって、バスバは、コンデンサからの振動の影響を低減できる。 Since the connecting plate portion is formed with the protruding portion, the rigidity of the connecting plate portion is higher than that of the connecting plate portion without the protruding portion. Therefore, even when vibration is transmitted from the capacitor, the connecting plate portion has high rigidity due to the protruding portion, so that vibration of the connecting plate portion itself is suppressed. Therefore, the bus bar can reduce the influence of vibration from the capacitor.
第1実施形態の電力変換システムの回路図である。It is a circuit diagram of the power conversion system of 1st Embodiment. 第1実施形態の電力変換装置の構成を示した図である。It is a figure which showed the structure of the power conversion apparatus of 1st Embodiment. 第1実施形態の電力変換装置の構成を示した図である。It is a figure which showed the structure of the power conversion apparatus of 1st Embodiment. 図2のIV-IV断面図である。FIG. 2 is a sectional view taken along line IV-IV of FIG. 第1実施形態のバスバの構成を示した図である。It is a figure which showed the structure of the bus bar of 1st Embodiment. 第2実施形態の電力変換装置の構成を示した図である。It is a figure which showed the structure of the power conversion apparatus of 2nd Embodiment. 図6のVII-VII断面図である。FIG. 6 is a cross-sectional view taken along the line VII-VII of FIG. 他の実施形態のバスバの構成を示した図である。It is a figure which showed the structure of the bus bar of another embodiment. 他の実施形態のバスバの構成を示した図である。It is a figure which showed the structure of the bus bar of another embodiment. 他の実施形態の電力変換装置の構成を示した図である。It is a figure which showed the structure of the power conversion apparatus of another embodiment. 他の実施形態のバスバの構成を示した図である。It is a figure which showed the structure of the bus bar of another embodiment.
 以下、本開示の複数の実施形態を図面に基づいて説明する。なお、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形例の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態および変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. By assigning the same reference numerals to the corresponding components in each embodiment, duplicate description may be omitted. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other parts of the configuration. Further, not only the combination of the configurations specified in the description of each embodiment but also the configurations of a plurality of embodiments can be partially combined even if the combination is not specified. Further, an unspecified combination of the configurations described in the plurality of embodiments and modifications is also disclosed by the following description.
 (第1実施形態)
 図1に示すように、電力変換システム1は、バッテリ11、電力変換装置12およびモータ13を備えている。バッテリ11は、通電バスバ24を介して電力変換装置12に電力を供給する。電力変換装置12は電力を変換し、変換した電力を、モータ用バスバ23を介してモータ13に供給する。本開示におけるモータ13は、例えば車両の動力源として用いられるモータである。
(First Embodiment)
As shown in FIG. 1, the power conversion system 1 includes a battery 11, a power conversion device 12, and a motor 13. The battery 11 supplies electric power to the power conversion device 12 via the energized bus bar 24. The power conversion device 12 converts the electric power and supplies the converted electric power to the motor 13 via the motor bus bar 23. The motor 13 in the present disclosure is, for example, a motor used as a power source for a vehicle.
 図2または図3に示すように電力変換装置12は、インバータケース26、半導体装置20、コンデンサ21、コンデンサケース27、バスバ22および冷却器28を有している。インバータケース26は、内部に半導体装置20、コンデンサ21、コンデンサケース27、バスバ22および冷却器28を収容している。バスバ22は、正極バスバ22aおよび負極バスバ22bの双方を総称した名称である。 As shown in FIG. 2 or 3, the power conversion device 12 includes an inverter case 26, a semiconductor device 20, a capacitor 21, a capacitor case 27, a bus bar 22, and a cooler 28. The inverter case 26 houses a semiconductor device 20, a condenser 21, a condenser case 27, a bus bar 22, and a cooler 28 inside. The bus bar 22 is a generic name for both the positive electrode bus bar 22a and the negative electrode bus bar 22b.
 図3は、図2のコンデンサケース27およびインバータケース26の図示を省略した図面である。半導体装置20は、複数のスイッチング素子20aによって構成されている。図3に示すように、複数のスイッチング素子20aは、積層して配置されている。 FIG. 3 is a drawing in which the capacitor case 27 and the inverter case 26 of FIG. 2 are not shown. The semiconductor device 20 is composed of a plurality of switching elements 20a. As shown in FIG. 3, the plurality of switching elements 20a are arranged in a stacked manner.
 本実施形態では、図3の矢印で示すようにX方向は、半導体接続部22eが連結板部22cから延びている方向の両側の方向を示すものである。図3の矢印で示すようにY方向は、複数のスイッチング素子20aの積層方向の両側の方向を示すものである。また、図4の矢印で示すようにZ方向は、連結板部22cの厚さ方向の両側の方向を示すものである。 In the present embodiment, as shown by the arrow in FIG. 3, the X direction indicates the directions on both sides of the direction in which the semiconductor connecting portion 22e extends from the connecting plate portion 22c. As shown by the arrows in FIG. 3, the Y direction indicates the directions on both sides of the stacking direction of the plurality of switching elements 20a. Further, as shown by the arrows in FIG. 4, the Z direction indicates the directions on both sides of the connecting plate portion 22c in the thickness direction.
 図3に示すようにスイッチング素子20aは、P端子20b、N端子20cおよび出力端子20dを有している。P端子20b、N端子20cおよび出力端子20dは、Z方向に長手方向が延びるように形成されている。 As shown in FIG. 3, the switching element 20a has a P terminal 20b, an N terminal 20c, and an output terminal 20d. The P terminal 20b, the N terminal 20c, and the output terminal 20d are formed so as to extend in the longitudinal direction in the Z direction.
 P端子20bは、正極バスバ22aの半導体接続部22eと、Y方向に対向する表面同士で接触している。P端子20bと正極バスバ22aの半導体接続部22eは、接触した状態で例えば溶接によって固定されている。また、P端子20b、N端子20cおよび出力端子が延びている向きを、Z方向一方側とする。 The P terminal 20b is in contact with the semiconductor connection portion 22e of the positive electrode bus bar 22a on the surfaces facing each other in the Y direction. The semiconductor connection portion 22e of the P terminal 20b and the positive electrode bus bar 22a is fixed in contact with each other by, for example, welding. Further, the direction in which the P terminal 20b, the N terminal 20c, and the output terminal extend is defined as one side in the Z direction.
 N端子20cは、負極バスバ22bの半導体接続部22eと、Y方向に対向する表面同士で接触している。N端子20cと負極バスバ22bの半導体接続部22eは、接触した状態で例えば溶接によって固定されている。出力端子20dは、モータ用バスバ23に接続されている。 The N terminal 20c is in contact with the semiconductor connection portion 22e of the negative electrode bus bar 22b on the surfaces facing each other in the Y direction. The semiconductor connection portion 22e of the N terminal 20c and the negative electrode bus bar 22b is fixed in contact with each other by, for example, welding. The output terminal 20d is connected to the motor bus bar 23.
 図3または図4に示すように、冷却器28は、連結板部22cに対して、Z方向の他方側に配置されている。冷却器28は、半導体装置20と表面で接触もしくは近接して配置されている。冷却器28は、冷却用の流体例えばLLCなどを冷却器28内の管などに通流させることで周囲を冷却する。よって、半導体装置20は、冷却器28と近接している部分で冷却される。 As shown in FIG. 3 or 4, the cooler 28 is arranged on the other side in the Z direction with respect to the connecting plate portion 22c. The cooler 28 is arranged in contact with or close to the semiconductor device 20 on the surface. The cooler 28 cools the surroundings by passing a cooling fluid such as LLC through a pipe or the like in the cooler 28. Therefore, the semiconductor device 20 is cooled at a portion close to the cooler 28.
 図3に示すように電力変換装置12は、複数のコンデンサ21を有している。コンデンサ21は、Z方向に見て、X方向に長辺を形成し、Y方向に短辺を形成している矩形状である。複数のコンデンサ21は、長辺同士がY方向で対向するように配置されている。つまり、複数のコンデンサ21は、Y方向に並ぶように配置されている。 As shown in FIG. 3, the power conversion device 12 has a plurality of capacitors 21. The capacitor 21 has a rectangular shape having a long side in the X direction and a short side in the Y direction when viewed in the Z direction. The plurality of capacitors 21 are arranged so that their long sides face each other in the Y direction. That is, the plurality of capacitors 21 are arranged so as to be arranged in the Y direction.
 図4は、半導体装置20および絶縁部材29の図示を省略している。図4に示すように、コンデンサ21は、Z方向一方側の表面で正極バスバ22aのコンデンサ接続部22dと電気的に接続されている。コンデンサ21は、Z方向他方側の表面で負極バスバ22bのコンデンサ接続部22dと電気的に接続されている。また、コンデンサ21は、コンデンサケース27の内部に収容されている。コンデンサケース27の内部は、例えば樹脂の封止材30が充填されている。よって、コンデンサ21は、周囲を封止材30で充填されている。 FIG. 4 omits the illustration of the semiconductor device 20 and the insulating member 29. As shown in FIG. 4, the capacitor 21 is electrically connected to the capacitor connection portion 22d of the positive electrode bus bar 22a on the surface on one side in the Z direction. The capacitor 21 is electrically connected to the capacitor connection portion 22d of the negative electrode bus bar 22b on the surface on the other side in the Z direction. Further, the capacitor 21 is housed inside the capacitor case 27. The inside of the capacitor case 27 is filled with, for example, a resin encapsulant 30. Therefore, the periphery of the capacitor 21 is filled with the sealing material 30.
 電力変換装置12は、一対のバスバ22である正極バスバ22aおよび負極バスバ22bを有している。図3または図4に示すように、正極バスバ22aおよび負極バスバ22bは、連結板部22c、コンデンサ接続部22d、半導体接続部22eおよび突出部25を有している。正極バスバ22aおよび負極バスバ22bは、例えばプレス等によって成形されている。連結板部22cは、Z方向に厚さを有し、XY平面を形成している板形状である。 The power conversion device 12 has a positive electrode bus bar 22a and a negative electrode bus bar 22b, which are a pair of bus bars 22. As shown in FIG. 3 or 4, the positive electrode bus bar 22a and the negative electrode bus bar 22b have a connecting plate portion 22c, a capacitor connecting portion 22d, a semiconductor connecting portion 22e, and a protruding portion 25. The positive electrode bus bar 22a and the negative electrode bus bar 22b are formed by, for example, a press or the like. The connecting plate portion 22c has a thickness in the Z direction and has a plate shape forming an XY plane.
 図3または図4に示すように、正極バスバ22aの連結板部22cと負極バスバ22bの連結板部22cは、Z方向に、XY平面同士が重なるように配置されている。つまり、正極バスバ22aと負極バスバ22bの連結板部22c同士は、XY平面同士がZ方向に対向するように近接して配置されている。本開示において、平面同士重なるとは、互いに平面の少なくとも一部が対向することを示しており、全ての平面同士が対向することのみを示しているわけではない。 As shown in FIG. 3 or 4, the connecting plate portion 22c of the positive electrode bus bar 22a and the connecting plate portion 22c of the negative electrode bus bar 22b are arranged so that the XY planes overlap each other in the Z direction. That is, the connecting plate portions 22c of the positive electrode bus bar 22a and the negative electrode bus bar 22b are arranged close to each other so that the XY planes face each other in the Z direction. In the present disclosure, overlapping of planes means that at least a part of the planes face each other, and does not mean that all the planes face each other.
 図5に示すように絶縁部材29は、Z方向における正極バスバ22aおよび負極バスバ22bの連結板部22c間に配置されている。絶縁部材29は、正極バスバ22aおよび負極バスバ22bと近接もしくは接触しているように配置されている。絶縁部材29により、正極バスバ22aおよび負極バスバ22bは、互いの絶縁を確保することができる。 As shown in FIG. 5, the insulating member 29 is arranged between the connecting plate portion 22c of the positive electrode bus bar 22a and the negative electrode bus bar 22b in the Z direction. The insulating member 29 is arranged so as to be close to or in contact with the positive electrode bus bar 22a and the negative electrode bus bar 22b. The insulating member 29 allows the positive electrode bus bar 22a and the negative electrode bus bar 22b to secure insulation from each other.
 図3に示すようにコンデンサ接続部22dは、連結板部22cからX方向の一方側に向かって延びている。つまりコンデンサ接続部22dは、連結板部22cからコンデンサ21側へと延びている。 As shown in FIG. 3, the capacitor connecting portion 22d extends from the connecting plate portion 22c toward one side in the X direction. That is, the capacitor connection portion 22d extends from the connecting plate portion 22c toward the capacitor 21 side.
 図4に示すようにコンデンサ接続部22dは、コンデンサケース27内部に配置され、周囲を封止材30で充填されている。よって、コンデンサ接続部22dは、封止材30により、自身が動くことを抑制されている。一方で、連結板部22cは、コンデンサケース27の外部に配置されている。 As shown in FIG. 4, the capacitor connection portion 22d is arranged inside the capacitor case 27, and the periphery thereof is filled with the sealing material 30. Therefore, the capacitor connection portion 22d is prevented from moving by the sealing material 30. On the other hand, the connecting plate portion 22c is arranged outside the capacitor case 27.
 図3に示すように半導体接続部22eは、連結板部22cからX方向の他方側に長手方向が延びるように形成されている。つまり、半導体接続部22eは、連結板部22cから半導体装置20側に延びている。電力変換装置12は、複数の半導体接続部22eを有しており、複数の半導体接続部22eがY方向に並ぶように配置されている。複数の半導体接続部22eが並ぶ方向は、複数のコンデンサ21が並ぶ方向と同一である。 As shown in FIG. 3, the semiconductor connecting portion 22e is formed so as to extend in the longitudinal direction from the connecting plate portion 22c to the other side in the X direction. That is, the semiconductor connection portion 22e extends from the connecting plate portion 22c to the semiconductor device 20 side. The power conversion device 12 has a plurality of semiconductor connection portions 22e, and the plurality of semiconductor connection portions 22e are arranged so as to be arranged in the Y direction. The direction in which the plurality of semiconductor connection portions 22e are lined up is the same as the direction in which the plurality of capacitors 21 are lined up.
 図3に示すように正極バスバ22aは、連結板部22cに突出部25を形成している。同様に負極バスバ22bは、連結板部22cに突出部25を形成している。図3の図面上では図示していないが、負極バスバ22bの突出部25は、Z方向一方側から見て正極バスバ22aの突出部25に重なる位置に形成されている。 As shown in FIG. 3, the positive electrode bus bar 22a has a protruding portion 25 formed on the connecting plate portion 22c. Similarly, the negative electrode bus bar 22b forms a protruding portion 25 on the connecting plate portion 22c. Although not shown in the drawing of FIG. 3, the protruding portion 25 of the negative electrode bus bar 22b is formed at a position overlapping the protruding portion 25 of the positive electrode bus bar 22a when viewed from one side in the Z direction.
 図5に示すように突出部25は、段差形成部25a、平板部25bおよび境界部25cを有している。正極バスバ22aの段差形成部25aは、連結板部22cと段差形成部25aとの境界部分である境界部25cから、連結板部22cに対して角度αを形成して延びている。つまり、正極バスバ22aの段差形成部25aは、連結板部22cに対して傾斜している傾斜面である。角度αは、例えば10度から90度の範囲内の角度である。 As shown in FIG. 5, the protruding portion 25 has a step forming portion 25a, a flat plate portion 25b, and a boundary portion 25c. The step forming portion 25a of the positive electrode bus bar 22a extends from the boundary portion 25c, which is the boundary portion between the connecting plate portion 22c and the step forming portion 25a, at an angle α with respect to the connecting plate portion 22c. That is, the step forming portion 25a of the positive electrode bus bar 22a is an inclined surface that is inclined with respect to the connecting plate portion 22c. The angle α is, for example, an angle in the range of 10 degrees to 90 degrees.
 正極バスバ22aの平板部25bは、段差形成部25aの境界部25cと逆側の端部からX方向に延出するように形成されている。平板部25bは、連結板部22cと平行なXY平面を形成している。また、平板部25bは、Z方向において距離d1だけ、連結板部22cに対してZ方向一方側に離間した位置に配置されている。 The flat plate portion 25b of the positive electrode bus bar 22a is formed so as to extend in the X direction from the end portion on the opposite side of the boundary portion 25c of the step forming portion 25a. The flat plate portion 25b forms an XY plane parallel to the connecting plate portion 22c. Further, the flat plate portion 25b is arranged at a position separated from the connecting plate portion 22c on one side in the Z direction by a distance d1 in the Z direction.
 図5に示すように、段差形成部25aは、連結板部22cと平板部25bを連結している部分である。つまり、段差形成部25aは、連結板部22cと平板部25bの間の段差を形成している部分の一部である。 As shown in FIG. 5, the step forming portion 25a is a portion connecting the connecting plate portion 22c and the flat plate portion 25b. That is, the step forming portion 25a is a part of the portion forming the step between the connecting plate portion 22c and the flat plate portion 25b.
 図2に示すように、境界部25cは、Z方向に見て、環状に形成されている。平板部25bの外周縁は、全周で段差形成部25aと接続されている。境界部25cは、長辺25gおよび短辺25hを有する矩形状に形成されている。長辺25gは、境界部25cの長手方向であるY方向に延びるように形成されており、2つの長辺25gが境界部25cの短手方向であるX方向で対向するように形成されている。 As shown in FIG. 2, the boundary portion 25c is formed in an annular shape when viewed in the Z direction. The outer peripheral edge of the flat plate portion 25b is connected to the step forming portion 25a on the entire circumference. The boundary portion 25c is formed in a rectangular shape having a long side 25g and a short side 25h. The long side 25g is formed so as to extend in the Y direction which is the longitudinal direction of the boundary portion 25c, and the two long sides 25g are formed so as to face each other in the X direction which is the lateral direction of the boundary portion 25c. ..
 短辺25hは、2つの長辺25gを接続しており、円弧状の形状である。連結板部22cは、Z方向に見て、Y方向に長手方向を有し、X方向に短手方向を有する矩形状である。よって、長辺25gが形成されている方向はY方向であり、連結板部22cの長手方向と一致している。 The short side 25h connects two long sides 25g and has an arcuate shape. The connecting plate portion 22c has a rectangular shape having a longitudinal direction in the Y direction and a lateral direction in the X direction when viewed in the Z direction. Therefore, the direction in which the long side 25g is formed is the Y direction, which coincides with the longitudinal direction of the connecting plate portion 22c.
 図5に示すように、正極バスバの電流の向き31と負極バスバの電流の向き32は、互いに逆向きである。図3に示している第1領域線34は、複数の半導体接続部22eのうちY方向の一方側の端に位置する半導体接続部22eとコンデンサ接続部22dとを最短距離で結んだ線である。第2領域線35は、複数の半導体接続部22eのうちY方向の他方側の端に位置する半導体接続部22eとコンデンサ接続部22dとを最短距離で結んだ線である。 As shown in FIG. 5, the direction 31 of the current of the positive electrode bus bar and the direction 32 of the current of the negative electrode bus bar are opposite to each other. The first region line 34 shown in FIG. 3 is a line connecting the semiconductor connection portion 22e located at one end of the plurality of semiconductor connection portions 22e in the Y direction and the capacitor connection portion 22d at the shortest distance. .. The second region line 35 is a line connecting the semiconductor connection portion 22e located at the other end in the Y direction of the plurality of semiconductor connection portions 22e and the capacitor connection portion 22d at the shortest distance.
 図3に斜線で示している対向領域33は、第1領域線34と第2領域線35によって挟まれる範囲であり、半導体接続部22eとコンデンサ接続部22dがX方向に対向している範囲である。つまり対向領域33は、半導体接続部22eとコンデンサ接続部22dがX方向に重なっている範囲を示している。正極バスバ22aは、対向領域33の範囲内に突出部25を形成していない。 The facing region 33 shown by diagonal lines in FIG. 3 is a range sandwiched between the first region line 34 and the second region line 35, and is a range in which the semiconductor connecting portion 22e and the capacitor connecting portion 22d face each other in the X direction. be. That is, the facing region 33 indicates a range in which the semiconductor connecting portion 22e and the capacitor connecting portion 22d overlap in the X direction. The positive electrode bus bar 22a does not form the protrusion 25 within the range of the facing region 33.
 正極バスバ22aは、連結板部22cにおける対向領域33の範囲外に突出部25を形成している。つまり、突出部25は、連結板部22cにおいて第2領域線35よりもY方向の他方側の位置に形成されている。突出部25は、Y方向の他方側の端に位置する半導体接続部22eよりもY方向の他方側の位置に形成されている。 The positive electrode bus bar 22a forms a protruding portion 25 outside the range of the facing region 33 in the connecting plate portion 22c. That is, the protruding portion 25 is formed at a position on the connecting plate portion 22c on the other side in the Y direction with respect to the second region line 35. The protrusion 25 is formed at a position on the other side in the Y direction with respect to the semiconductor connection portion 22e located at the other end in the Y direction.
 コンデンサ接続部22dの対向領域33とX方向で重なっている部分に接続されているコンデンサ21は、突出部25とX方向に対向していない。一方で、コンデンサ接続部22dの対向領域33とX方向で重なっていない部分に接続されているコンデンサ21のうち少なくとも一つのコンデンサ21は、突出部25とX方向に対向している。 The capacitor 21 connected to the portion of the capacitor connecting portion 22d that overlaps the facing region 33 in the X direction does not face the protruding portion 25 in the X direction. On the other hand, at least one of the capacitors 21 connected to the portion of the capacitor connecting portion 22d that does not overlap with the facing region 33 in the X direction faces the protruding portion 25 in the X direction.
 複数の半導体接続部22eは、突出部25とX方向に対向していない。また、突出部25は、半導体接続部22eと、コンデンサ接続部22dの対向領域33とX方向で重なっていない部分と、を結ぶ対角線上に位置している。また負極バスバ22bは、正極バスバ22aと同様に、半導体接続部22eとコンデンサ接続部22dがX方向に対向している範囲の外側に突出部25を形成している。 The plurality of semiconductor connecting portions 22e do not face the protruding portions 25 in the X direction. Further, the protruding portion 25 is located on a diagonal line connecting the semiconductor connecting portion 22e and the portion of the capacitor connecting portion 22d that does not overlap with the facing region 33 in the X direction. Further, the negative electrode bus bar 22b, like the positive electrode bus bar 22a, forms a protruding portion 25 outside the range in which the semiconductor connecting portion 22e and the capacitor connecting portion 22d face each other in the X direction.
 図5に示すように負極バスバ22bの段差形成部25aは、連結板部22cに対して、正極バスバ22aの段差形成部25aとZ方向において逆方向に傾斜している。つまり、負極バスバ22bの突出部25は、正極バスバ22aの突出部25の突出方向とZ方向逆側に突出している。 As shown in FIG. 5, the step forming portion 25a of the negative electrode bus bar 22b is inclined in the opposite direction in the Z direction to the step forming portion 25a of the positive electrode bus bar 22a with respect to the connecting plate portion 22c. That is, the protruding portion 25 of the negative electrode bus bar 22b protrudes in the direction opposite to the protruding direction of the protruding portion 25 of the positive electrode bus bar 22a in the Z direction.
 負極バスバ22bの段差形成部25aは、連結板部22cに対して角度βを形成して、境界部25cから延びている。本実施形態では、角度αと角度βは、同一であるため、負極バスバ22bの平板部25bも正極バスバ22aと同様に、連結板部22cからZ方向に距離d1だけ離間している。 The step forming portion 25a of the negative electrode bus bar 22b forms an angle β with respect to the connecting plate portion 22c and extends from the boundary portion 25c. In the present embodiment, since the angle α and the angle β are the same, the flat plate portion 25b of the negative electrode bus bar 22b is also separated from the connecting plate portion 22c by a distance d1 in the Z direction, similarly to the positive electrode bus bar 22a.
 図4に示すように、冷却器28は、正極バスバ22aおよび負極バスバ22bよりもZ方向の他方側に配置されている。また、負極バスバ22bは、正極バスバ22aに対しZ方向の他方側に配置されており、突出部25をZ方向の他方側に突出するように形成している。 As shown in FIG. 4, the cooler 28 is arranged on the other side in the Z direction from the positive electrode bus bar 22a and the negative electrode bus bar 22b. Further, the negative electrode bus bar 22b is arranged on the other side in the Z direction with respect to the positive electrode bus bar 22a, and the protruding portion 25 is formed so as to project to the other side in the Z direction.
 図3に示すように連結板部22cは、X方向他方側に長手方向が延びている通電接続部22fを有している。つまり、通電接続部22fは、連結板部22cから半導体接続部22eが延びている方向と同一方向に延びている。また、正極バスバ22aおよび負極バスバ22bの通電接続部22f同士は、Y方向に並ぶように配置されている。 As shown in FIG. 3, the connecting plate portion 22c has an energized connecting portion 22f extending in the longitudinal direction on the other side in the X direction. That is, the energized connection portion 22f extends in the same direction as the direction in which the semiconductor connection portion 22e extends from the connecting plate portion 22c. Further, the energized connection portions 22f of the positive electrode bus bar 22a and the negative electrode bus bar 22b are arranged so as to line up in the Y direction.
 通電接続部22fは、半導体接続部22eとY方向に対向する位置に配置されている。ただし、通電接続部22fは、連結板部22cの半導体接続部22eが形成されている部分よりもY方向の他方側に形成されている。 The energized connection portion 22f is arranged at a position facing the semiconductor connection portion 22e in the Y direction. However, the energized connection portion 22f is formed on the other side in the Y direction with respect to the portion of the connecting plate portion 22c where the semiconductor connection portion 22e is formed.
 通電接続部22fは、例えば締結孔22gを有しており、締結孔22gにて導電部材にねじ等で締結されている。また、導電部材は、コンデンサケース27の外側に配置されているバッテリ11に接続されている。バッテリ11から通電接続部22fに到達した電流は、連結板部22cに伝達される。そして、連結板部22cに到達した電流は、半導体接続部22eへと伝達される。 The energized connection portion 22f has, for example, a fastening hole 22g, and is fastened to a conductive member with a screw or the like at the fastening hole 22g. Further, the conductive member is connected to the battery 11 arranged on the outside of the capacitor case 27. The current that reaches the energized connection portion 22f from the battery 11 is transmitted to the connecting plate portion 22c. Then, the current that reaches the connecting plate portion 22c is transmitted to the semiconductor connecting portion 22e.
 図4に示す段差形成部25aは、連結板部22cと比較してZ方向の断面係数が高い。よって、連結板部22cは、突出部25を形成していない連結板部と比較して、連結板部22c全体におけるZ方向の断面係数が高くなる。したがって、連結板部22cは、Z方向の振動に対する剛性が高くなる。 The step forming portion 25a shown in FIG. 4 has a higher geometrical moment of inertia in the Z direction than the connecting plate portion 22c. Therefore, the connecting plate portion 22c has a higher geometrical moment of inertia in the Z direction in the entire connecting plate portion 22c as compared with the connecting plate portion that does not form the protruding portion 25. Therefore, the connecting plate portion 22c has high rigidity against vibration in the Z direction.
 連結板部22cは、突出部25を形成していない構成と比較して、突出部25により剛性が高くなっているため、自身が振動することが抑制される。よって、バスバ22は、コンデンサ21からの振動の影響を低減できる。また、電力変換装置12は、例えば複数のコンデンサ21の数を増やし、バスバ22が複数のコンデンサ21から受ける振動が増加した場合でも、突出部25によって、自身が振動することを抑制できる。 Since the connecting plate portion 22c has higher rigidity due to the protruding portion 25 as compared with the configuration in which the protruding portion 25 is not formed, vibration of the connecting plate portion 22c itself is suppressed. Therefore, the bus bar 22 can reduce the influence of vibration from the capacitor 21. Further, the power conversion device 12 can suppress the vibration of the bus bar 22 by the protrusion 25 even when the number of the plurality of capacitors 21 is increased and the vibration received by the bus bar 22 from the plurality of capacitors 21 increases.
 第1比較例の正極バスバは、半導体接続部とP端子が溶接によって接続されている溶接部を有しており、締結部材など他の部材によって固定されていない。また、第1比較例の正極バスバは、連結板部に突出部を形成していない。コンデンサから正極バスバに振動が伝達された場合、コンデンサ接続部は、封止材で周囲を充填されているため、振動することが抑制される。 The positive electrode bus bar of the first comparative example has a welded portion in which the semiconductor connecting portion and the P terminal are connected by welding, and is not fixed by another member such as a fastening member. Further, the positive electrode bus bar of the first comparative example does not form a protruding portion in the connecting plate portion. When vibration is transmitted from the capacitor to the positive electrode bus, the capacitor connection portion is filled with a sealing material, so that vibration is suppressed.
 しかし、第1比較例の正極バスバの連結板部は、コンデンサケースの外部に配置されており、封止材や締結部材等によって固定されていないため、コンデンサ接続部よりも振動することを抑制されていない。よって、コンデンサの振動が連結板部に伝達された場合、連結板部はコンデンサ接続部よりもZ方向に大きく振動する。 However, since the connecting plate portion of the positive electrode bus bar of the first comparative example is arranged outside the capacitor case and is not fixed by a sealing material, a fastening member, or the like, vibration is suppressed more than that of the capacitor connecting portion. Not. Therefore, when the vibration of the capacitor is transmitted to the connecting plate portion, the connecting plate portion vibrates more in the Z direction than the capacitor connecting portion.
 そして、連結板部の振動が半導体接続部に伝わり、半導体接続部はZ方向に振動するため、P端子との溶接部に応力が加わる。その結果、溶接部は、P端子と半導体接続部の接触している部分が離間する虞がある。 Then, the vibration of the connecting plate portion is transmitted to the semiconductor junction portion, and the semiconductor junction portion vibrates in the Z direction, so that stress is applied to the welded portion with the P terminal. As a result, in the welded portion, the portion in contact between the P terminal and the semiconductor connection portion may be separated from each other.
 一方で本実施形態の正極バスバ22aは、連結板部22cに突出部25を形成している。よって、正極バスバ22aは、突出部25によって自身が振動することが抑制されるため、連結板部22cの振動によって、半導体接続部22eとP端子20bの接触部分に応力が加わることを抑制できる。よって、正極バスバ22aは、半導体接続部22eとP端子20bとの接続を締結部材等の他の部材を用いずに行うことができる。したがって、正極バスバ22aは、大型化することを抑制できる。 On the other hand, the positive electrode bus bar 22a of the present embodiment has a protruding portion 25 formed on the connecting plate portion 22c. Therefore, since the positive electrode bus bar 22a itself is suppressed from vibrating by the protruding portion 25, it is possible to suppress the application of stress to the contact portion between the semiconductor connecting portion 22e and the P terminal 20b due to the vibration of the connecting plate portion 22c. Therefore, the positive electrode bus bar 22a can connect the semiconductor connecting portion 22e and the P terminal 20b without using other members such as a fastening member. Therefore, the positive electrode bus bar 22a can be prevented from becoming large.
 本実施形態の正極バスバ22aは、図2に示すように境界部25cがZ方向に見て環状に形成されている。つまり、突出部25は、連結板部の外周縁22hまで到達していない。よって、連結板部22cは、連結板部の外周縁22hが通常の平面によって形成されているため、X方向の寸法精度が良い精度で製造されている。 As shown in FIG. 2, the positive electrode bus bar 22a of the present embodiment has a boundary portion 25c formed in an annular shape when viewed in the Z direction. That is, the protruding portion 25 does not reach the outer peripheral edge 22h of the connecting plate portion. Therefore, the connecting plate portion 22c is manufactured with good dimensional accuracy in the X direction because the outer peripheral edge 22h of the connecting plate portion is formed by a normal flat surface.
 本実施形態の連結板部22cは、図3に示すように自身の長手方向と長辺25gの方向を一致させて突出部25を形成している。本実施形態の突出部25は、最大で連結板部22cの長手方向の長さまで、長辺25gを形成することができる。 As shown in FIG. 3, the connecting plate portion 22c of the present embodiment forms a protruding portion 25 by matching its longitudinal direction with the direction of its long side 25g. The protruding portion 25 of the present embodiment can form a long side 25 g up to a length in the longitudinal direction of the connecting plate portion 22c.
 よって、本実施形態の連結板部22cは、連結板部22cと突出部25の長手方向が一致していない構成と比較して、突出部25を大きく形成することができる。したがって、本実施形態の連結板部22cは、突出部25を大きく形成することで、自身の振動を抑制できる。 Therefore, the connecting plate portion 22c of the present embodiment can form the protruding portion 25 larger than the configuration in which the longitudinal directions of the connecting plate portion 22c and the protruding portion 25 do not match. Therefore, the connecting plate portion 22c of the present embodiment can suppress its own vibration by forming the protruding portion 25 to be large.
 図5に示すように、正極バスバ22aおよび負極バスバ22bの連結板部22c同士は、Z方向に近接して配置されている。さらに、正極バスバの電流の向き31と負極バスバの電流の向き32は、互いに逆向きである。一方の電流の周りに生じる磁束の向きと他方の電流の周りに生じる磁束の向きは、逆向きになる。よって、一方の電流と他方の電流の周りに生じる磁束は、互いに打ち消しあう。 As shown in FIG. 5, the connecting plate portions 22c of the positive electrode bus bar 22a and the negative electrode bus bar 22b are arranged close to each other in the Z direction. Further, the direction 31 of the current of the positive electrode bus bar and the direction 32 of the current of the negative electrode bus bar are opposite to each other. The direction of the magnetic flux generated around one current and the direction of the magnetic flux generated around the other current are opposite. Therefore, the magnetic flux generated around one current and the other current cancel each other out.
 したがって、正極バスバ22aおよび負極バスバ22bは、電流が流れる際のインダクタンスの増加を抑制することができる。一方で、正極バスバ22aおよび負極バスバ22bの平板部25b同士は、連結板部22c同士と比較してZ方向の離間距離が大きい。よって、平板部25bを流れる電流同士は、連結板部22cを流れる電流同士と比較して、磁束を打ち消す度合いが低下するため、インダクタンスが増加する。 Therefore, the positive electrode bus bar 22a and the negative electrode bus bar 22b can suppress an increase in inductance when a current flows. On the other hand, the flat plate portions 25b of the positive electrode bus bar 22a and the negative electrode bus bar 22b have a larger separation distance in the Z direction than the connecting plate portions 22c. Therefore, the currents flowing through the flat plate portion 25b have a lower degree of canceling the magnetic flux than the currents flowing through the connecting plate portion 22c, so that the inductance increases.
 半導体装置20は、複数のコンデンサ21のうち半導体装置20との距離が近いコンデンサ21との間でのインピーダンスが最も小さくなる。つまり、半導体装置20とコンデンサ21間でやり取りされる電流は、図3に示す対向領域33を通る場合に半導体接続部22eとコンデンサ接続部22d間の距離が最も小さくなるため、インピーダンスが小さくなる。 The semiconductor device 20 has the smallest impedance between the plurality of capacitors 21 and the capacitor 21 having a short distance from the semiconductor device 20. That is, the current exchanged between the semiconductor device 20 and the capacitor 21 has the smallest impedance when passing through the facing region 33 shown in FIG. 3 because the distance between the semiconductor connection portion 22e and the capacitor connection portion 22d is the smallest.
 スイッチング動作等によってスイッチング素子20aで高周波サージが生じた場合、高周波サージは、インピーダンスが低い経路を通る。よって、高周波サージは、半導体装置20から対向領域33を通過してコンデンサ21に伝達される。 When a high frequency surge occurs in the switching element 20a due to a switching operation or the like, the high frequency surge passes through a path having a low impedance. Therefore, the high frequency surge is transmitted from the semiconductor device 20 to the capacitor 21 through the facing region 33.
 本実施形態の連結板部22cは、図3に示すように対向領域33の外側に突出部25を形成している。連結板部22cは、高周波サージが流れる場合、高周波サージが多く流れる対向領域33の外側に突出部25が形成されているため、対向領域33内に突出部25を形成されている場合よりも、突出部25の長さ分による電流経路の長さの増加を抑制できる。したがって、連結板部22cは、突出部25による電流経路の増加を抑制することで、インダクタンスが増加することを抑制できる。 As shown in FIG. 3, the connecting plate portion 22c of the present embodiment forms a protruding portion 25 on the outside of the facing region 33. When the high frequency surge flows, the connecting plate portion 22c has a protruding portion 25 formed on the outside of the facing region 33 where a large amount of the high frequency surge flows, so that the protruding portion 25 is formed in the facing region 33 as compared with the case where the protruding portion 25 is formed. It is possible to suppress an increase in the length of the current path due to the length of the protrusion 25. Therefore, the connecting plate portion 22c can suppress the increase in the inductance by suppressing the increase in the current path due to the protruding portion 25.
 本実施形態の負極バスバ22bは、図5に示すように連結板部22cにZ方向他方側に突出する突出部25を有している。つまり、負極バスバ22bは、正極バスバ22aの突出部25が突出する方向と反対方向に突出する突出部25を有している。 As shown in FIG. 5, the negative electrode bus bar 22b of the present embodiment has a protruding portion 25 protruding to the other side in the Z direction on the connecting plate portion 22c. That is, the negative electrode bus bar 22b has a protruding portion 25 that protrudes in the direction opposite to the direction in which the protruding portion 25 of the positive electrode bus bar 22a protrudes.
 よって、本実施形態の正極バスバ22aおよび負極バスバ22bは、例えば負極バスバ22bに突出部25を形成していない構成と比較して、平板部25b同士のZ方向における離間距離が大きい。したがって、正極バスバ22aおよび負極バスバ22bは、平板部25bを流れる電流によって生じる熱がもう一方のバスバ22の平板部25bに伝わることを抑制できる。 Therefore, the positive electrode bus bar 22a and the negative electrode bus bar 22b of the present embodiment have a larger separation distance between the flat plate portions 25b in the Z direction than, for example, a configuration in which the negative electrode bus bar 22b does not have the protruding portion 25 formed. Therefore, the positive electrode bus bar 22a and the negative electrode bus bar 22b can suppress the heat generated by the current flowing through the flat plate portion 25b from being transferred to the flat plate portion 25b of the other bus bar 22.
 図4に示すように、本実施形態の負極バスバ22bは、Z方向他方側に突出する突出部25を形成している。さらに、冷却器28は、負極バスバ22bに対して、Z方向他方側に配置されている。よって、本実施形態の負極バスバ22bは、負極バスバ22bに突出部25を形成していない構成より、Z方向において突出部25で冷却器28に近づくことができる。したがって、本実施形態の負極バスバ22bは、冷却器28によって冷却される効率が上昇する。 As shown in FIG. 4, the negative electrode bus bar 22b of the present embodiment forms a protruding portion 25 protruding to the other side in the Z direction. Further, the cooler 28 is arranged on the other side in the Z direction with respect to the negative electrode bus bar 22b. Therefore, the negative electrode bus bar 22b of the present embodiment can approach the cooler 28 at the protruding portion 25 in the Z direction from the configuration in which the protruding portion 25 is not formed on the negative electrode bus bar 22b. Therefore, the efficiency of cooling the negative electrode bus bar 22b of the present embodiment by the cooler 28 increases.
 (第2実施形態)
 本実施形態における電力変換システム1は、第1実施形態と同様の構成を有している。よって、本実施形態では、第1実施形態と同じ符号を用いる。なお、本実施形態では、主に第1実施形態と異なる点について説明する。
(Second Embodiment)
The power conversion system 1 in this embodiment has the same configuration as that in the first embodiment. Therefore, in this embodiment, the same reference numerals as those in the first embodiment are used. In this embodiment, the differences from the first embodiment will be mainly described.
 図6に示すように、境界部25cは、Z方向の一方側から見て境界部25cの一端25dおよび他端25eが、連結板部22cの外周縁22hに位置している。また、一端25dおよび他端25eは、Y方向に離間している。図6および図7に示すように、平板部25bは、連結板部22cの外周縁22hの位置まで形成されている。 As shown in FIG. 6, in the boundary portion 25c, one end 25d and the other end 25e of the boundary portion 25c are located on the outer peripheral edge 22h of the connecting plate portion 22c when viewed from one side in the Z direction. Further, one end 25d and the other end 25e are separated in the Y direction. As shown in FIGS. 6 and 7, the flat plate portion 25b is formed up to the position of the outer peripheral edge 22h of the connecting plate portion 22c.
 第1実施形態の平板部25bは、図5に示すようにX方向の両側に段差形成部25aが延出している。図5において、W1は、段差形成部25aの幅を示している。第1実施形態の連結板部22cは、平板部25bのX方向両側に段差形成部25aを設けているため、連結板部22cのX方向の長さのうち、段差形成部25aがW1の倍の長さを占めることになる。 As shown in FIG. 5, the flat plate portion 25b of the first embodiment has step forming portions 25a extending on both sides in the X direction. In FIG. 5, W1 indicates the width of the step forming portion 25a. Since the connecting plate portion 22c of the first embodiment is provided with the step forming portions 25a on both sides of the flat plate portion 25b in the X direction, the step forming portion 25a is twice as long as W1 in the length of the connecting plate portion 22c in the X direction. Will occupy the length of.
 一方で、本実施形態の平板部25bは、図7に示すようにX方向一方側に段差形成部25aが延出しているが、X方向他方側には段差形成部25aが形成されていない。図7において、W2は、段差形成部25aの幅を示している。本実施形態の連結板部22cは、連結板部22cのX方向の長さのうち、段差形成部25aがW2の長さを占めることになる。 On the other hand, in the flat plate portion 25b of the present embodiment, as shown in FIG. 7, the step forming portion 25a extends on one side in the X direction, but the step forming portion 25a is not formed on the other side in the X direction. In FIG. 7, W2 indicates the width of the step forming portion 25a. In the connecting plate portion 22c of the present embodiment, the step forming portion 25a occupies the length of W2 in the length of the connecting plate portion 22c in the X direction.
 よって、本実施形態の段差形成部25aは、W2をW1よりも長い長さに形成できる。したがって、本実施形態の連結板部22cは、図7に示す段差形成部25aのZ方向の高さに相当するd2を、図5に示す第1実施形態の段差形成部25aのZ方向の距離d1より長く形成することができる。 Therefore, the step forming portion 25a of the present embodiment can form W2 to a length longer than W1. Therefore, in the connecting plate portion 22c of the present embodiment, d2 corresponding to the height of the step forming portion 25a shown in FIG. 7 in the Z direction is set to the distance of the step forming portion 25a of the first embodiment shown in FIG. 5 in the Z direction. It can be formed longer than d1.
 本実施形態の負極バスバ22bの突出部25は、図7に示すように正極バスバ22aの突出部25とZ方向において同一方向に突出している。よって、正極バスバ22aおよび負極バスバ22bは、段差形成部25a同士および平板部25b同士が、連結板部22c同士と同程度のZ方向の離間距離に形成されている。 As shown in FIG. 7, the protruding portion 25 of the negative electrode bus bar 22b of the present embodiment protrudes in the same direction as the protruding portion 25 of the positive electrode bus bar 22a in the Z direction. Therefore, in the positive electrode bus bar 22a and the negative electrode bus bar 22b, the step forming portions 25a and the flat plate portions 25b are formed at the same distance in the Z direction as the connecting plate portions 22c.
 したがって、本実施形態の正極バスバ22aおよび負極バスバ22bは、例えば正極バスバおよび負極バスバ22bの突出部25の突出方向が異なる構成と比較して、段差形成部25aおよび平板部25b同士を近づけて配置させることができる。よって、本実施形態の正極バスバ22aおよび負極バスバ22bの突出部25を流れる電流同士の距離が近づくため、突出部25を流れる電流のインダクタンスが増加することを抑制できる。 Therefore, in the positive electrode bus bar 22a and the negative electrode bus bar 22b of the present embodiment, the step forming portions 25a and the flat plate portions 25b are arranged closer to each other as compared with the configuration in which the protruding portions 25 of the positive electrode bus bar and the negative electrode bus bar 22b have different protruding directions. Can be made to. Therefore, since the distance between the currents flowing through the protruding portions 25 of the positive electrode bus bar 22a and the negative electrode bus bar 22b of the present embodiment is short, it is possible to suppress an increase in the inductance of the current flowing through the protruding portions 25.
 (他の実施形態)
 以上、本開示の実施形態を説明したが、本開示は上記の実施形態に限定されるものではなく、次の実施形態も本開示の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(Other embodiments)
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and the following embodiments are also included in the technical scope of the present disclosure. It can be changed and implemented within a range that does not deviate.
 突出部25は、段差形成部25aおよび平板部25bを有すると記載したが、図11に示すように平板部25bを有していない構成であってもよい。その場合、段差形成部25aは、連結板部22cからZ方向に突出しており、XZ断面の形状が例えば円弧状に形成されている。そして、段差形成部25aは、X方向の両側の端部である境界部25cで連結板部22cと一体につながっている。 Although it is described that the protruding portion 25 has the step forming portion 25a and the flat plate portion 25b, it may be configured not to have the flat plate portion 25b as shown in FIG. In that case, the step forming portion 25a protrudes from the connecting plate portion 22c in the Z direction, and the shape of the XZ cross section is formed in, for example, an arc shape. The step forming portion 25a is integrally connected to the connecting plate portion 22c at the boundary portions 25c which are the ends on both sides in the X direction.
 バスバ22は、通電接続部22fを有すると記載したが、通電接続部22fを有さない構成であってもよい。 Although it is described that the bus bar 22 has the energized connection portion 22f, the bus bar 22 may be configured not to have the energized connection portion 22f.
 境界部25cは、矩形状であると記載したが、正円形や正方形など長辺を有さない形状であってもよい。 Although the boundary portion 25c is described as having a rectangular shape, it may have a shape having no long side such as a perfect circle or a square.
 正極バスバの電流の向き31および負極バスバの電流の向き32は、互いに逆向きであると記載したが、同一方向であってもよい。 Although it is described that the direction 31 of the current of the positive electrode bus bar and the direction 32 of the current of the negative electrode bus bar are opposite to each other, they may be in the same direction.
 正極バスバ22aおよび負極バスバ22bの突出部25同士は、Z方向に見て重なるように配置されていると記載したが、少なくとも一部が重なるもしくは、全て重なっていない構成であってもよい。 It is described that the protruding portions 25 of the positive electrode bus bar 22a and the negative electrode bus bar 22b are arranged so as to overlap each other when viewed in the Z direction, but at least a part thereof may be overlapped or not all overlapped.
 突出部25は、対向領域33の外側に形成されていると記載したが、対向領域33の内側に形成してもよい。もしくは、突出部25の一部が、対向領域33の範囲の内側に入るように形成してもよい。 Although it is described that the protruding portion 25 is formed on the outside of the facing region 33, it may be formed on the inside of the facing region 33. Alternatively, a part of the protrusion 25 may be formed so as to be inside the range of the facing region 33.
 角度αおよび角度βは、同一であると記載したが、角度αおよび角度βは異なっていてもよい。 Although it is described that the angle α and the angle β are the same, the angle α and the angle β may be different.
 図8の正極バスバ22aおよび負極バスバ22bは、第1実施形態と同様に平板部25bがX方向両側において段差形成部25aに接続されている形状である。さらに、正極バスバ22aおよび負極バスバ22bの突出部25の突出方向は、図8に示すように同一方向であってもよい。 The positive electrode bus bar 22a and the negative electrode bus bar 22b in FIG. 8 have a shape in which the flat plate portions 25b are connected to the step forming portions 25a on both sides in the X direction as in the first embodiment. Further, the protruding portions 25 of the positive electrode bus bar 22a and the negative electrode bus bar 22b may be projected in the same direction as shown in FIG.
 図9に示すように、正極バスバ22aのみに突出部25を形成している構成であってもよい。図9では、負極バスバ22bは、突出部25を形成していない。同様に、負極バスバ22bが突出部25を有し、正極バスバ22aが突出部25を有さない構成にしてもよい。 As shown in FIG. 9, the protrusion 25 may be formed only on the positive electrode bus bar 22a. In FIG. 9, the negative electrode bus bar 22b does not form the protruding portion 25. Similarly, the negative electrode bus bar 22b may have a protruding portion 25, and the positive electrode bus bar 22a may not have a protruding portion 25.
 図10に示すように、連結板部22cは、突出部25を複数有する構成であってもよい。図10に示すように、複数の突出部25は、X方向にて長辺25g同士が対向していることが望ましい。 As shown in FIG. 10, the connecting plate portion 22c may have a configuration having a plurality of protruding portions 25. As shown in FIG. 10, it is desirable that the plurality of projecting portions 25 have long sides 25g facing each other in the X direction.
 上記実施形態では、コンデンサ21に接触しているバスバが、正極バスバ22aおよび負極バスバ22bの2つであると記載したが、3つ以上のバスバが接触しており、少なくとも一つのバスバが連結板部22cに突出部25を形成している構成であってもよい。 In the above embodiment, it is described that there are two bus bars in contact with the capacitor 21, a positive electrode bus bar 22a and a negative electrode bus bar 22b, but three or more bus bars are in contact with each other, and at least one bus bar is a connecting plate. The protrusion 25 may be formed in the portion 22c.
 連結板部22cは、単一の部材ではなく複数の部材によって構成されていてもよい。例えば連結板部22cは、コンデンサ接続部22dを有する第1連結板部と、半導体接続部22eを有する第2連結板部によって構成されている。第1連結板部と第2連結板部は、電気的に接続されており、第1連結板部もしくは第2連結板部の少なくとも一方に突出部25を形成している。 The connecting plate portion 22c may be composed of a plurality of members instead of a single member. For example, the connecting plate portion 22c is composed of a first connecting plate portion having a capacitor connecting portion 22d and a second connecting plate portion having a semiconductor connecting portion 22e. The first connecting plate portion and the second connecting plate portion are electrically connected to each other, and a protruding portion 25 is formed on at least one of the first connecting plate portion and the second connecting plate portion.
 上記実施形態において、正極バスバ22aの構成として記載したものは、負極バスバ22bに適用可能である。同様に負極バスバ22bに適用可能であると記載した構成は、正極バスバ22aに適用可能である。 In the above embodiment, the configuration described as the configuration of the positive electrode bus bar 22a is applicable to the negative electrode bus bar 22b. Similarly, the configuration described as applicable to the negative electrode bus bar 22b is applicable to the positive electrode bus bar 22a.

Claims (9)

  1.  電力を変換する半導体装置(20)と、
     バッテリ(11)から供給される電力を平滑し、前記半導体装置に供給するコンデンサ(21)と、
     前記コンデンサと接続されているコンデンサ接続部(22d)と、前記半導体装置に接続されている半導体接続部(22e)と、前記コンデンサ接続部と前記半導体接続部とを連結している連結板部(22c)と、をそれぞれ有する一対のバスバと、を備え、
     前記バスバは、前記連結板部から突出している突出部(25)を有している電力変換装置。
    A semiconductor device (20) that converts electric power,
    A capacitor (21) that smoothes the power supplied from the battery (11) and supplies it to the semiconductor device,
    A capacitor connection portion (22d) connected to the capacitor, a semiconductor connection portion (22e) connected to the semiconductor device, and a connecting plate portion connecting the capacitor connection portion and the semiconductor connection portion (a connecting plate portion). 22c) and a pair of bus bars, each with.
    The bus bar is a power conversion device having a protruding portion (25) protruding from the connecting plate portion.
  2.  前記突出部は、
     前記連結板部と前記連結板部の厚さ方向にずれた位置に設けられて、前記連結板部と平行な面を形成している平板部(25b)と、
     前記連結板部と前記平板部とを連結し、段差を形成している段差形成部(25a)と、を有している請求項1に記載の電力変換装置。
    The protrusion is
    A flat plate portion (25b) provided at a position deviated from the connecting plate portion in the thickness direction of the connecting plate portion and forming a surface parallel to the connecting plate portion.
    The power conversion device according to claim 1, further comprising a step forming portion (25a) that connects the connecting plate portion and the flat plate portion to form a step.
  3.  前記連結板部と前記段差形成部との境界である境界部(25c)は、前記厚さ方向に見た場合、環状に形成されている請求項2に記載の電力変換装置。 The power conversion device according to claim 2, wherein the boundary portion (25c), which is the boundary between the connecting plate portion and the step forming portion, is formed in an annular shape when viewed in the thickness direction.
  4.  前記連結板部と前記段差形成部との境界である境界部(25c)は、前記厚さ方向に見た場合、前記連結板部の外周縁(22h)に、一端(25d)と他端(25e)が離間して形成されている請求項2に記載の電力変換装置。 The boundary portion (25c), which is the boundary between the connecting plate portion and the step forming portion, has one end (25d) and the other end (25d) on the outer peripheral edge (22h) of the connecting plate portion when viewed in the thickness direction. The power conversion device according to claim 2, wherein 25e) are formed apart from each other.
  5.  前記連結板部は、前記厚さ方向に見た場合、長手方向を有する矩形状であり、
     前記境界部は、前記厚さ方向に見た場合、長手方向を有する矩形状に形成されており、
     前記境界部の長手方向は、前記連結板部の長手方向と同一方向である請求項3または請求項4に記載の電力変換装置。
    The connecting plate portion has a rectangular shape having a longitudinal direction when viewed in the thickness direction.
    The boundary portion is formed in a rectangular shape having a longitudinal direction when viewed in the thickness direction.
    The power conversion device according to claim 3 or 4, wherein the longitudinal direction of the boundary portion is the same as the longitudinal direction of the connecting plate portion.
  6.  複数の前記コンデンサを有し、
     前記一対のバスバは、前記連結板部の厚さ方向に、前記連結板部同士が重なるように近接して配置され、前記連結板部を流れる電流の向きが互いに逆向きであり、
     前記突出部は、前記半導体接続部と前記コンデンサ接続部とが対向する対向領域(33)の外側に設けられている請求項1から請求項5のいずれか1項に記載の電力変換装置。
    It has multiple of the above capacitors and
    The pair of bus bars are arranged close to each other so that the connecting plate portions overlap each other in the thickness direction of the connecting plate portion, and the directions of the currents flowing through the connecting plate portions are opposite to each other.
    The power conversion device according to any one of claims 1 to 5, wherein the protruding portion is provided outside the facing region (33) where the semiconductor connection portion and the capacitor connection portion face each other.
  7.  前記一対のバスバは、前記突出部を有し、前記連結板部の厚さ方向に、前記連結板部同士および前記突出部同士が重なるように配置され、前記連結板部を流れる電流の向きが互いに逆向きであり、
     一方の前記バスバの前記突出部の突出する方向は、他方の前記バスバの前記突出部が突出する方向と同一方向である請求項1から請求項6のいずれか1項に記載の電力変換装置。
    The pair of bus bars have the protrusions, are arranged so that the connecting plates and the protrusions overlap each other in the thickness direction of the connecting plates, and the direction of the current flowing through the connecting plates is different. Opposite to each other,
    The power conversion device according to any one of claims 1 to 6, wherein the protruding direction of the protruding portion of one of the bus bars is the same as the protruding direction of the protruding portion of the other bus bar.
  8.  前記一対のバスバは、前記突出部を有し、前記連結板部の厚さ方向に、前記連結板部同士および前記突出部同士が重なるように配置され、
     一方の前記バスバの前記突出部の突出する方向は、他方の前記バスバの前記突出部が突出する方向と反対方向である請求項1から請求項6のいずれか1項に記載の電力変換装置。
    The pair of bus bars have the protrusions, and are arranged so that the connecting plates and the protrusions overlap each other in the thickness direction of the connecting plates.
    The power conversion device according to any one of claims 1 to 6, wherein the protruding direction of the protruding portion of one of the bus bars is opposite to the protruding direction of the protruding portion of the other bus bar.
  9.  前記半導体装置を冷却するための冷却器(28)を備え、
     前記一対のバスバは、前記突出部を有し、前記連結板部の厚さ方向に、前記連結板部同士および前記突出部同士が重なるように配置され、
     前記冷却器は、前記連結板部に対し前記厚さ方向の一方側に配置されており、
     前記一対のバスバのうち、前記厚さ方向の前記一方側に位置するバスバは、前記厚さ方向の前記一方側に突出する前記突出部を有している請求項1から請求項8のいずれか1項に記載の電力変換装置。
    A cooler (28) for cooling the semiconductor device is provided.
    The pair of bus bars have the protrusions, and are arranged so that the connecting plates and the protrusions overlap each other in the thickness direction of the connecting plates.
    The cooler is arranged on one side in the thickness direction with respect to the connecting plate portion.
    Any of claims 1 to 8, wherein the bus bar located on the one side in the thickness direction of the pair of bus bars has the protruding portion protruding to the one side in the thickness direction. The power conversion device according to item 1.
PCT/JP2021/031599 2020-09-28 2021-08-27 Power conversion device WO2022064958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020162513A JP7294289B2 (en) 2020-09-28 2020-09-28 power converter
JP2020-162513 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022064958A1 true WO2022064958A1 (en) 2022-03-31

Family

ID=80846451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031599 WO2022064958A1 (en) 2020-09-28 2021-08-27 Power conversion device

Country Status (2)

Country Link
JP (1) JP7294289B2 (en)
WO (1) WO2022064958A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034331A1 (en) * 2012-08-31 2014-03-06 日立オートモティブシステムズ株式会社 Power conversion apparatus
JP2015116056A (en) * 2013-12-12 2015-06-22 三菱自動車工業株式会社 Bus bar
JP2018042424A (en) * 2016-09-09 2018-03-15 トヨタ自動車株式会社 Power conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034331A1 (en) * 2012-08-31 2014-03-06 日立オートモティブシステムズ株式会社 Power conversion apparatus
JP2015116056A (en) * 2013-12-12 2015-06-22 三菱自動車工業株式会社 Bus bar
JP2018042424A (en) * 2016-09-09 2018-03-15 トヨタ自動車株式会社 Power conversion device

Also Published As

Publication number Publication date
JP7294289B2 (en) 2023-06-20
JP2022055111A (en) 2022-04-07

Similar Documents

Publication Publication Date Title
WO2019123818A1 (en) Power converter
JP5263334B2 (en) Busbar module
JP5760985B2 (en) Power converter
WO2014141558A1 (en) Power converter
JP5821949B2 (en) SEMICONDUCTOR DEVICE, INVERTER DEVICE HAVING THE SAME, AND VEHICLE ROTARY ELECTRIC DEVICE HAVING THE SAME
EP1777803B1 (en) Frequency converter
JP7152296B2 (en) Power converter and high voltage noise filter
JP7226481B2 (en) power converter
WO2015053142A1 (en) Driver substrate and power conversion device
WO2019208406A1 (en) Power conversion device
JP2017011056A (en) Capacitance module
CN112042102A (en) Power conversion device
JP2013090529A (en) Power conversion apparatus
WO2022064958A1 (en) Power conversion device
WO2018190184A1 (en) Electric power conversion device
JP5092654B2 (en) Power converter
JP7065595B2 (en) Film capacitor module
WO2019031546A1 (en) Electric power conversion device
WO2016103918A1 (en) Capacitor module and power conversion system
JP2019004633A (en) Electric power conversion system
WO2019193903A1 (en) Power conversion device and capacitor module
JP2005143244A (en) Power conversion device
JP5691139B2 (en) Electric motor
WO2023112224A1 (en) Semiconductor device and insulating member
JP7421259B2 (en) power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872090

Country of ref document: EP

Kind code of ref document: A1