WO2022064915A1 - Electrostatic capacitance measurement device and electrostatic capacitance measurement program - Google Patents

Electrostatic capacitance measurement device and electrostatic capacitance measurement program Download PDF

Info

Publication number
WO2022064915A1
WO2022064915A1 PCT/JP2021/030536 JP2021030536W WO2022064915A1 WO 2022064915 A1 WO2022064915 A1 WO 2022064915A1 JP 2021030536 W JP2021030536 W JP 2021030536W WO 2022064915 A1 WO2022064915 A1 WO 2022064915A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
capacitance
symbol
symbol data
output
Prior art date
Application number
PCT/JP2021/030536
Other languages
French (fr)
Japanese (ja)
Inventor
不二雄 黒川
Original Assignee
イサハヤ電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イサハヤ電子株式会社 filed Critical イサハヤ電子株式会社
Priority to JP2022551203A priority Critical patent/JP7450984B2/en
Publication of WO2022064915A1 publication Critical patent/WO2022064915A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the present invention relates to a capacitance measuring device and a capacitance measuring program that measure the degree of abnormality of a capacitive electric component and predict an abnormality.
  • Patent Document 1 describes a technique for detecting an abnormality in an electric component having such a capacitance.
  • the electric vehicle power supply device described in Patent Document 1 includes a filter capacitor and a passive filter circuit
  • the return terminal of the passive filter circuit is connected between the current sensor and the return line of the train line.
  • the abnormality detector detects the frequency of the signal obtained by differentiating the current signal during the period when charging or discharging is performed between the train line and the filter capacitor and the capacitor of the passive filter circuit, and the frequency of the differentiated signal is the upper limit.
  • the threshold is not reached, a decrease in the capacitance of the capacitor is detected.
  • an object of the present invention is to provide a capacitance measuring device and a capacitance measuring program capable of measuring the capacitance of an electric component having a capacitance at an arbitrary timing.
  • the capacitance measuring device for an electric component of the present invention has an instruction means for instructing a transient change of an output to an electric component having a capacitive property, and the derivative when the derivative value obtained by differentiating the output a predetermined number of times is positive.
  • a differential processing means for generating symbol data to which one or more symbols indicating a positive side corresponding to a value are assigned and one or more symbols indicating a negative side corresponding to the differential value are assigned in the case of a negative value, and the symbol data. It is characterized by having a calculation means for calculating the fluctuation value corresponding to the capacitance value by calculating the fluctuation degree of the waveform with respect to the transient change from each symbol indicated by.
  • the instruction means for instructing the computer to transiently change the output to the electric component having capacitance, the differential value obtained by differentiating the output a predetermined number of times is positive.
  • the indicating means when the indicating means instructs the transient change of the output to the electric component having capacitance, the transient waveform appears by the electric component in the transiently changed output.
  • This output is differentiated by the differential processing means, and when the differential value is positive, one or more symbols indicating the positive side corresponding to the differential value are assigned, and when the differential value is negative, the negative side corresponding to the differential value is indicated 1.
  • the capacitance value can be estimated by the calculation means calculating the fluctuation degree of the waveform with respect to the transient change from each symbol indicated by the symbol data as the fluctuation value corresponding to the capacitance value. Therefore, according to the present invention, the indicating means can measure the capacitance value at an arbitrary timing by transiently changing the output to the electric component.
  • the capacitance value can be measured at an arbitrary timing, and deterioration or failure can be detected even during operation.
  • the instruction means may instruct the output to be reduced in the form of a single pulse as the transient change. If the output of a single pulse increases, there is concern about damage to the electrical components, but since the output is reduced, damage to the electrical components can be suppressed.
  • the calculation means indicates the degree of fluctuation of the waveform from the symbol data, either or both of the total number for each positive symbol and the total number for each negative symbol, within a predetermined time from the occurrence time of the transient change. It can be counted as a variable value.
  • the calculation means sequentially counts the number of consecutive symbols of the same symbol from the symbol data within a predetermined time from the occurrence time of the transient change, and squares the sum of the squares of each of these symbols. Can be calculated as a fluctuation value indicating the degree of fluctuation of the waveform.
  • the differential processing means generates symbol data as the symbol, to which 1 is assigned when the sign of the differential value is positive and 0 is assigned when the sign of the differential value is negative, and the arithmetic means is the transient change. Within a predetermined time from the time when It can be calculated as a value.
  • the calculation means may count the number of blocks from the symbol data to the change of the symbol within a predetermined time from the occurrence time of the transient change, and calculate the total number of blocks as a variable value. can.
  • the symbol data generated by the differential processing means may be provided with noise removing means for removing noise shorter than a predetermined length by performing shrinkage processing and expansion processing.
  • Symbol data is generated based on the differential value by differentiation, but the differentiation may react sensitively to the transient waveform and appears as noise in the symbol data.
  • accurate symbol data can be obtained by removing noise shorter than a predetermined length by performing shrinkage processing and expansion processing on the symbol data.
  • the present invention it is possible to detect deterioration or failure even during operation by instructing the instruction means to transiently change the output to the electric component at an arbitrary timing. Therefore, the present invention can detect secular variation and abnormality of an electric component having a capacitance at an arbitrary timing.
  • FIG. 1 It is a figure which shows the structure of the capacitance measuring apparatus which concerns on embodiment of this invention, and a converter. It is a flowchart for demonstrating the abnormality detection method by the capacitance measuring apparatus shown in FIG. It is a figure for demonstrating the operation of the differential processing means and the calculation means of the capacitance measuring apparatus shown in FIG. It is a diagram for explaining that the symbol data is contracted and expanded to remove noise, (A) is a diagram showing a state in which noise is removed, and (B) is restored to the original data because it is not noise. It is a figure which shows the state.
  • the capacitance measuring device 10 according to the embodiment of the present invention shown in FIG. 1 is a static output capacitor CO which is an example of an electric component having a capacitance (capacitance) of a converter 100 which is an example of a power conversion device. It measures the electric capacity and detects abnormalities in a state where the specified operable value is deviated, such as capacity loss, capacity reduction failure, and insulation failure.
  • the converter 100 will be described.
  • the converter 100 inputs a three-phase alternating current (Van, Vbn, Vcn) which is a power source P, and outputs a voltage V DC to the load R.
  • the converter 100 has a first arm 110, a second arm 120, and a third arm 130.
  • the first arm 110 to the third arm 130 correspond to the first upper arm 111, the second upper arm 121 and the third upper arm 131, and the first upper arm 111 to the third upper arm 131, respectively.
  • the arm 112, the second lower arm 122, and the third lower arm 132 are connected in series, respectively.
  • the first upper arm 111 to the third upper arm 131 and the first lower arm 112 to the third lower arm 132 are examples of switching elements in which a signal from an output indicating means of a target voltage described later is connected to a gate terminal. It is formed by an N-channel MOSFET. A coil L for noise reduction is connected in series between the connection point between the first upper arm 111 to the third upper arm 131, the first lower arm 112 to the third lower arm 132, and the power supply P. ..
  • the first arm 110 to the third arm 130 are instructed by the control means 140 so that the output voltage (voltage V DC ) becomes the target voltage.
  • the control means 140 controls switching between the first arm 110, the second arm 120, and the third arm 130 by PWM (Pulse Width Modulation).
  • the capacitance measuring device 10 is a computer on which a capacitance measuring program is operated.
  • the capacitance measuring device 10 includes an output indicating means 11, an AD conversion means 12, a differential processing means 13, a noise removing means 14, a calculation means 15, a determination means 16, a notification means 17, and a clustering means 18. And the prediction means 19.
  • the output instruction means 11 instructs the control means 140 to change the output to the electric component having capacitance into a single pulse shape as a transient change.
  • the AD conversion means 12 converts the input output voltage (voltage V DC ) from an analog signal to a digital signal.
  • the differential processing means 13 assigns one or more symbols indicating the positive side corresponding to the differential value when the differential value obtained by differentiating the output is positive, and one or more symbols indicating the negative side corresponding to the differential value when the output is negative. Generate symbol data to which the symbol of is assigned.
  • the noise removing means 14 removes noise shorter than a predetermined length by performing shrinkage processing and expansion processing on the symbol data generated by the differentiation processing means 13.
  • the calculation means 15 calculates the degree of fluctuation of the waveform with respect to the transient change from each symbol indicated by the symbol data, and calculates the fluctuation value corresponding to the capacitance value.
  • the capacitance value corresponding to the variable value is stored in a storage means (not shown).
  • the determination means 16 determines an abnormality when the fluctuation value or the capacitance value by the calculation means 15 is equal to or greater than or equal to the threshold value. When the determination means 16 determines the abnormality, the notification means 17 notifies the administrator of the abnormality.
  • the clustering means 18 clusters a data group in which the target voltage, the fluctuation value corresponding to the target voltage, and the threshold value are collected as transient characteristic data.
  • the predicting means 19 accumulates the capacitance value at predetermined intervals and predicts the time of occurrence of the abnormality from the capacitance value.
  • the AD conversion means 12 shown in FIG. 1 digitally converts an output voltage (voltage VDC ) and outputs measurement data (see step S10 shown in FIG. 2).
  • the output instruction means 11 instructs the control means 140 to indicate the target voltage so as to reduce the output voltage in the form of a single pulse (see step S20).
  • the differential processing means 13 relates to an output voltage (voltage V DC ) from a time t1 at which the output voltage drops to an arbitrary time t2, which is within a predetermined time from the generation time of the single pulse P.
  • the measurement data is differentiated to generate symbol data S [n] (see step S30).
  • the differential processing means 13 sets the differential value to three types of values of "0", “1", and “2" indicating the positive side for each predetermined value, or “1". It can be a value in the range of “3” or a value of "1” to "4" or more. Further, in the case of a negative value, the differential value may be set to two types of values, “-1" and “-2” indicating the negative side for each predetermined value, or a value in the range of "-1” to "-3”. , It can be a value of "-1" to "-4" or less. That is, the positive side and the negative side can be multivalued. Further, in the example shown in FIG.
  • the differential processing means 13 assigns "1" as a symbol depending on whether the sign of the differential value is positive or 0, and assigns "0" when the sign is negative.
  • Symbol data can be generated. In this embodiment, two types of symbols, "1" and "0", are used.
  • the noise removing means 14 removes noise by performing shrinkage processing and expansion processing on the symbol data (see step S40). For example, in the symbol data shown in FIG. 4A, one symbol “1” is sandwiched between the three symbols “0”. The noise removing means 14 replaces "1” with "0” by the shrinkage treatment. Then, by expanding the symbol data in which all are "0", all the symbol data remains "0” and becomes the symbol data of the original length.
  • the differential value obtained by differentiating the output voltage becomes very small at the maximum point and the minimum point, and noise due to fluctuations such that the sign of the differential value is frequently switched. Can be removed by the differential processing means 13.
  • the value may not be changed unless 1 or 0 continues with the same value several times. Further, it is possible to provide a dead zone in the vicinity of the differential value 0 (a predetermined range centered on the differential value 0) so as not to be symbolized (quantified). Further, a third value is assigned to the vicinity where the differential value becomes 0. In the above description, if the sign is positive and the differential value is 0, it is set to "1", and if the sign is negative, it is set to "0". +1 ”, if the absolute value of the differential value is less than the predetermined value, it is“ 0 ”, and if the sign is negative and the differential value is less than the predetermined value, it is“ -1 ”. By doing so, it is possible to remove noise that tends to occur in the vicinity of the maximum value and the minimum value of the differential value.
  • the calculation means 15 calculates the degree of fluctuation of the output voltage waveform with respect to a single pulse from each symbol indicated by the symbol data, and calculates the fluctuation value (see step S50). For example, the calculation means 15 indicates the degree of fluctuation of the waveform from the symbol data, either or both of the total number of the positive side symbols and the total number of the negative side symbols within a predetermined time from the generation time of the single pulse. It can be counted as a variable value.
  • the calculation means 15 calculates the total number 7 of "1” or the total number 5 of "0” to obtain a fluctuation value, and reads the capacitance value corresponding to this fluctuation value from the storage means to obtain the capacitance value. Can be estimated (see step S60).
  • the determination means 16 can determine that the deterioration occurs when the total number of "1" increases from the predetermined value (first threshold value), and determines that the deterioration occurs when the total number of "0" decreases from the predetermined value (first threshold value). can do. Moreover, it can be judged by both of these conditions. Further, the determination means 16 can determine that the capacitance value is abnormal when the capacitance value indicates an abnormal value (see step S70).
  • the calculation means 15 calculates the distance from the origin when the number of symbols is expressed as n-dimensional coordinates and uses it as a fluctuation value, and reads out the capacitance value corresponding to this fluctuation value from the storage means, thereby statically.
  • the capacitance value can be estimated (see step S60).
  • the determination means 16 can determine that the deterioration has occurred when the distance from the origin decreases from a predetermined value (second threshold value). Further, the determination means 16 can determine that the capacitance value is abnormal when the capacitance value indicates an abnormal value (see step S70).
  • the determination means 16 can determine that the value has deteriorated when the decimal value (variation value) increases from a predetermined value (third threshold value). Further, the determination means 16 can determine that the capacitance value is abnormal when the capacitance value indicates an abnormal value (see step S70). In addition to converting the symbol data to decimal numbers, it can be a numerical value of ternary numbers or higher.
  • the calculation means 15 can count the number of blocks until the symbol changes, and can calculate the total number of blocks as a variable value (see step S50).
  • the calculation means 15 calculates the total number of blocks to obtain a variable value, and can estimate the capacitance value by reading the capacitance value corresponding to the variable value from the storage means (see step S60). ..
  • the notification means 17 When the determination means 16 detects deterioration, the notification means 17 notifies the administrator (see step S80). This notification may be displayed on the screen or may be notified by sound. Further, the notification means 17 may notify via a network (not shown). Further, the notification means 17 can notify the capacitance value (see step S90).
  • the predicting means 19 can predict the transition of the capacitance value by accumulating the capacitance value (fluctuation value) at predetermined intervals in the storage means and obtaining an approximate expression, so that it is possible to predict an abnormality. (See step S100). Therefore, since the replacement time of the output capacitor CO due to deterioration can be predicted, it is possible to schedule replacement preparations.
  • This prediction can be estimated by AI (artificial intelligence) based on statistical data such as output voltage, output current, load, and ambient environment, in addition to obtaining an approximate expression.
  • the frequency is calculated by detecting the zero cross where the signal obtained by differentiating the current signal intersects the zero level, but the detection of the zero cross by the differentiation is pinpoint. It is difficult to accurately grasp the change because it observes various changes and there is a risk of erroneous detection of noise.
  • the capacitance measuring device 10 according to the present embodiment since the output voltage is symbolized according to the sign of the differentiated differential value, the transient waveform can be continuously observed. Therefore, it is possible to accurately grasp the capacitance change of the output capacitor CO .
  • signal processing is performed by replacing the output voltage with a code such as a number such as "1" and "0", a character, a symbol, etc., and digitizing or symbolizing (encoding) it with a positive or negative code of the differential value obtained by differentiating the output voltage.
  • the transient characteristics are not always constant, but are varied due to differences in parameters such as various load conditions and device variations. Since the data of these transient characteristics can collect the target voltage, the fluctuation value corresponding to the target voltage, and the threshold value as numerical values, the clustering means 18 shown in FIG. 1 can collect a group of data scattered for each capacitance based on these. By clustering, it is possible to identify changes due to capacitor failures, aging, etc. of the electrical components to be monitored even under varying conditions.
  • the identification of failure and secular variation by clustering by the clustering means 18 will be described in detail.
  • Clustering can be performed by various methods.
  • the clustering method for example, hierarchical clustering (Ward's method, group average method, shortest distance method, longest distance method, etc.), partition clustering (kmeans method, kmedians method, etc.) and the like can be used.
  • the clustering means 18 and the predicting means 19 predict failures and secular changes based on these clustering methods.
  • a temperature sensor that measures the temperature of the converter 100 that is the monitored device is provided, and when the output capacity (load power) is unknown, it changes over time (aging) from the measured temperature and the estimated capacitance value. It is also possible to predict the decrease in capacitance value due to (change).
  • the capacitance value corresponding to the temperature measured in year X is plotted. Further, in this graph, the capacitance value for each temperature measured in the next year, X + 1, is plotted. This measurement period can be arbitrarily changed, for example, every 3 months or 6 months.
  • the clustering means 18 clusters the estimated values for these measured values by, for example, a group average method or the like to obtain the median value. Also, instead of the median, the mean or median can be the center of the cluster.
  • the temperature is unknown.
  • the capacitance values corresponding to the output capacitance (load power) measured in the year X and the year X + 1 are plotted.
  • the clustering means 18 calculates the secular variation based on the clustering method.
  • the estimated values for these measured values are clustered by the group average method or the like to obtain the median value. Further, as described in the graph of FIG. 6A, the average value or the center value can be used instead of the median value.
  • the prediction means 19 can predict the capacitance value.
  • the prediction means 19 plots the median value, the average value, and the center value of the capacitance values calculated in this way for each year to obtain a function showing the approximate curve of FIG. 6C. From the function showing this approximate curve, it is predicted that it will fall below the specified value in years or months by looking ahead of the approximate curve, or by looking at the difference in value or slope from the standard curve. can. Therefore, since it is possible to predict future changes in the capacitance value, it is possible to predict deterioration of electrical components having capacitance.
  • the prediction means 19 is a function showing an approximate curve from the capacitance value for each time as shown in the graph shown in FIG. 6 (C). Can be calculated. It can be predicted by the clustering means 18 without using clustering. At this time, the approximate curve is obtained after excluding the variation element with a filter (extracting the basic element with a low-pass filter or a Kalman filter) based on the approximate curve. By doing so, the accuracy of the approximate curve can be improved.
  • the capacitance value was determined based on the distribution of two parameters, the temperature and the capacitance value, and in the graph shown in FIG. 6 (B), the output capacitance (load power).
  • parameters such as ambient temperature, circuit parameters, input voltage, input current, output voltage, and output current may be clustered as n-dimensional data.
  • the detection of deterioration in which the capacity of the output capacitor CO of the converter 100 shown in FIG. 1 gradually disappears with the passage of time causes a capacity loss has been described.
  • the capacity suddenly increases. It is possible to detect even a decrease in failure.
  • the output capacitor CO of the converter 100 has been described as an example, it is possible to detect an abnormality in a battery by applying the present invention to a charging circuit even for an electric component having a capacitance, for example, a battery. ..
  • the output voltage of the converter 100 is changed in the form of a single pulse to make a transient change, but if the voltage, current, electric power, etc. can be changed transiently, the transient change will occur.
  • the output indicating means 11 shown in FIG. 1 may indicate an internal response, a step response, or a change due to a sine wave. Further, the output indicating means 11 instructs the output indicating means 11 to decrease the voltage as a single pulse, but if there is no problem, the single pulse that increases the voltage is instructed so that the voltage is not damaged even if the voltage increases. May be good.
  • the number of differentiations is one, but symbol data may be generated based on the value when the output is differentiated a plurality of times.
  • the output since the converter 100 functions as a constant voltage source, the output is designed to measure the output voltage, but the output can also be used as electric power. Further, if the converter functions as a constant current source, the output can be an output current or electric power.
  • the capacitance value is determined by the output voltage and the output current.
  • the capacitance measuring device 10 according to the present embodiment for measuring can be realized without adding a new circuit for measuring the output voltage and the output current.
  • the present invention can measure the capacitance value of a capacitive electric component even during operation, it is suitable for an electric device using a capacitor, a battery, etc., and detects an abnormality in an output filter (output capacitor) of a power converter. Best for.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

An electrostatic capacitance measurement device and electrostatic capacitance measurement program are provided which enable measuring at an arbitrary timing the electrostatic capacitance of an electric component with capacitance. This electrostatic capacitance measurement device 10 of an electric component is provided with: an output instruction means 11 which changes to simple pulses the output to the electric component with capacitance; a differentiation processing means 13 which generates symbol data which, when the derivative value obtained by taking the derivative of the output once is positive, is assigned a symbol set to "1" and, when negative, is assigned a symbol set to "0"; and a calculation means 15 which, from the symbols indicated by the symbol data, calculates the total number of "1"s as the degree of fluctuation of the waveform with respect to transition change, and calculates the fluctuation value corresponding to the electrostatic capacitance value.

Description

静電容量測定装置および静電容量測定プログラムCapacitance measuring device and capacitance measuring program
 本発明は、容量性を有する電気部品の異常度合いを測定して異常を予測する静電容量測定装置および静電容量測定プログラムに関するものである。 The present invention relates to a capacitance measuring device and a capacitance measuring program that measure the degree of abnormality of a capacitive electric component and predict an abnormality.
 容量性を有する電気部品、例えば、電解コンデンサでは、経年変化により、絶縁紙に含浸された電解液が封止ゴムに浸透することで外部に漏れて蒸発して、いわゆる容量抜けと称される静電容量の減少が発生する。この電解液の蒸発速度は、周囲温度が10度上昇すると2倍になる。従って、温度が10度上昇するごとに寿命が半分ずつ減少する。また、電気部品は突然に壊れ、絶縁状態となることがある。
 このような容量性を有する電気部品について異常を検知する技術が、特許文献1に記載されている。
In electrical components with capacitance, for example, electrolytic capacitors, the electrolytic solution impregnated in the insulating paper permeates the sealing rubber due to aging and leaks to the outside to evaporate, so-called static capacity loss. A decrease in electric capacity occurs. The evaporation rate of this electrolytic solution doubles when the ambient temperature rises by 10 degrees. Therefore, every time the temperature rises by 10 degrees, the life is reduced by half. In addition, electrical components may suddenly break and become insulated.
Patent Document 1 describes a technique for detecting an abnormality in an electric component having such a capacitance.
 特許文献1に記載の電気車用電力供給装置は、フィルタコンデンサとパッシブフィルタ回路とを備えた場合、パッシブフィルタ回路の帰線側端子を、電流センサと電車線路の帰線との間に接続し、そして、異常検知部が、電車線路とフィルタコンデンサおよびパッシブフィルタ回路のコンデンサとの間で充電又は放電が行われる期間に、電流信号を微分した信号の周波数を検出し、微分信号の周波数が上限閾値に達しなかった場合にコンデンサの容量低下を検知するというものである。 When the electric vehicle power supply device described in Patent Document 1 includes a filter capacitor and a passive filter circuit, the return terminal of the passive filter circuit is connected between the current sensor and the return line of the train line. Then, the abnormality detector detects the frequency of the signal obtained by differentiating the current signal during the period when charging or discharging is performed between the train line and the filter capacitor and the capacitor of the passive filter circuit, and the frequency of the differentiated signal is the upper limit. When the threshold is not reached, a decrease in the capacitance of the capacitor is detected.
特開2010-252443号公報Japanese Unexamined Patent Publication No. 2010-252434
 しかし、特許文献1に記載の電気車用電力供給装置では、フィルタコンデンサと、パッシブフィルタ回路のコンデンサとに対して、充電又は放電が行われる期間に、異常の有無を検知しているため、異常検知がその期間だけに絞られてしまうだけでなく、いつ充電又は放電が行われるか予測することが難しいため、計測のタイミングや期間が特定できない。 However, in the power supply device for an electric vehicle described in Patent Document 1, the presence or absence of an abnormality is detected during the period when the filter capacitor and the capacitor of the passive filter circuit are charged or discharged, so that the abnormality is found. Not only is the detection limited to that period, but it is also difficult to predict when charging or discharging will occur, so the timing and period of measurement cannot be specified.
 そこで本発明は、任意のタイミングで容量性を有する電気部品の静電容量を測定することが可能な静電容量測定装置および静電容量測定プログラムを提供することを目的とする。 Therefore, an object of the present invention is to provide a capacitance measuring device and a capacitance measuring program capable of measuring the capacitance of an electric component having a capacitance at an arbitrary timing.
 本発明の電気部品の静電容量測定装置は、容量性を有する電気部品への出力の過渡変化を指示する指示手段と、前記出力を所定の回数微分した微分値が、正の場合に前記微分値に応じた正側を示す1以上のシンボルを割り当てると共に、負の場合に前記微分値に応じた負側を示す1以上のシンボルを割り当てたシンボルデータを生成する微分処理手段と、前記シンボルデータが示す各シンボルから過渡変化に対する波形の変動度合いを演算して、静電容量値に対応する変動値を算出する演算手段とを備えたことを特徴とするものである。 The capacitance measuring device for an electric component of the present invention has an instruction means for instructing a transient change of an output to an electric component having a capacitive property, and the derivative when the derivative value obtained by differentiating the output a predetermined number of times is positive. A differential processing means for generating symbol data to which one or more symbols indicating a positive side corresponding to a value are assigned and one or more symbols indicating a negative side corresponding to the differential value are assigned in the case of a negative value, and the symbol data. It is characterized by having a calculation means for calculating the fluctuation value corresponding to the capacitance value by calculating the fluctuation degree of the waveform with respect to the transient change from each symbol indicated by.
 また、本発明の電気部品の静電容量測定プログラムは、コンピュータを、容量性を有する電気部品への出力の過渡変化を指示する指示手段、前記出力を所定の回数微分した微分値が、正の場合に前記微分値に応じた正側を示す1以上のシンボルを割り当てると共に、負の場合に前記微分値に応じた負側を示す1以上のシンボルを割り当てたシンボルデータを生成する微分処理手段、前記シンボルデータが示す各シンボルから過渡変化に対する波形の変動度合いを演算して、静電容量値に対応する変動値を算出する演算手段として機能させることを特徴とするものである。 Further, in the capacitance measurement program of the electric component of the present invention, the instruction means for instructing the computer to transiently change the output to the electric component having capacitance, the differential value obtained by differentiating the output a predetermined number of times is positive. A differential processing means for generating symbol data in which one or more symbols indicating the positive side corresponding to the differential value are assigned in the case and one or more symbols indicating the negative side corresponding to the differential value are assigned in the negative case. It is characterized in that it functions as a calculation means for calculating the fluctuation value corresponding to the capacitance value by calculating the fluctuation degree of the waveform with respect to the transient change from each symbol indicated by the symbol data.
 本発明によれば、指示手段が容量性を有する電気部品への出力の過渡変化を指示すると、過渡変化した出力に電気部品により過渡波形が現れる。この出力を微分処理手段が微分して、微分値が、正の場合に微分値に応じた正側を示す1以上のシンボルを割り当てると共に、負の場合に微分値に応じた負側を示す1以上のシンボルを割り当てたシンボルデータを生成する。演算手段が、シンボルデータが示す各シンボルから過渡変化に対する波形の変動度合いを静電容量値に対応する変動値として算出することで、静電容量値を推定することができる。
 従って、本発明は、指示手段が、電気部品への出力を過渡変化させることを、任意のタイミングで静電容量値の測定を行うことができる。
According to the present invention, when the indicating means instructs the transient change of the output to the electric component having capacitance, the transient waveform appears by the electric component in the transiently changed output. This output is differentiated by the differential processing means, and when the differential value is positive, one or more symbols indicating the positive side corresponding to the differential value are assigned, and when the differential value is negative, the negative side corresponding to the differential value is indicated 1. Generate symbol data to which the above symbols are assigned. The capacitance value can be estimated by the calculation means calculating the fluctuation degree of the waveform with respect to the transient change from each symbol indicated by the symbol data as the fluctuation value corresponding to the capacitance value.
Therefore, according to the present invention, the indicating means can measure the capacitance value at an arbitrary timing by transiently changing the output to the electric component.
 前記変動値に基づいて異常を判定する判定手段を備えたものとすることができる。
 そうすることで、任意のタイミングで静電容量値の測定を行うことができ、稼働中でも劣化や故障を検知することが可能である。
It is possible to provide a determination means for determining an abnormality based on the fluctuation value.
By doing so, the capacitance value can be measured at an arbitrary timing, and deterioration or failure can be detected even during operation.
 前記指示手段は、前記過渡変化として、前記出力を単発パルス状に低下させるよう指示するものとすることができる。単発パルスが出力を高めると、電気部品へのダメージが心配されるが、出力を低下させるようにするため、電気部品へのダメージを抑止することができる。 The instruction means may instruct the output to be reduced in the form of a single pulse as the transient change. If the output of a single pulse increases, there is concern about damage to the electrical components, but since the output is reduced, damage to the electrical components can be suppressed.
 前記静電容量値を所定間隔ごとに蓄積して、前記静電容量値から異常発生時期を予測する予測手段を備えたものとすることができる。
 所定間隔ごとに蓄積された静電容量値から異常発生時期を予測するため、事前に電気部品の交換を準備することができる。
It is possible to provide a predicting means for predicting an abnormality occurrence time from the capacitance value by accumulating the capacitance value at predetermined intervals.
In order to predict the time when an abnormality occurs from the capacitance value accumulated at predetermined intervals, it is possible to prepare for replacement of electrical parts in advance.
 前記演算手段は、前記過渡変化の発生時間から所定時間内において、該シンボルデータから、正側のシンボルごとの総数または負側のシンボルごとの総数のいずれか一方または両方を、波形の変動度合い示す変動値として計数するものとすることができる。 The calculation means indicates the degree of fluctuation of the waveform from the symbol data, either or both of the total number for each positive symbol and the total number for each negative symbol, within a predetermined time from the occurrence time of the transient change. It can be counted as a variable value.
 また、前記演算手段は、前記過渡変化の発生時間から所定時間内において、該シンボルデータから、同じシンボルが連続したシンボル数を順次計数し、これらのシンボル数をそれぞれ2乗した総和を平方根した値を、波形の変動度合い示す変動値として演算するものとすることができる。 Further, the calculation means sequentially counts the number of consecutive symbols of the same symbol from the symbol data within a predetermined time from the occurrence time of the transient change, and squares the sum of the squares of each of these symbols. Can be calculated as a fluctuation value indicating the degree of fluctuation of the waveform.
 また、前記微分処理手段は、前記シンボルとして、前記微分値の符号が、正の場合に1を割り当てると共に、負の場合に0を割り当てたシンボルデータを生成し、前記演算手段は、前記過渡変化の発生時間から所定時間内において、該シンボルデータのLSB(least significant bit)からMSB(most significant bit)までの各ビットをMSBからLSBに入れ替えて、nを3以上としたn進数に変換した変動値として演算ものとすることができる。 Further, the differential processing means generates symbol data as the symbol, to which 1 is assigned when the sign of the differential value is positive and 0 is assigned when the sign of the differential value is negative, and the arithmetic means is the transient change. Within a predetermined time from the time when It can be calculated as a value.
 更に、前記演算手段は、前記過渡変化の発生時間から所定時間内において、該シンボルデータからシンボルが変化するまでのブロック数を計数し、ブロック数の総数を変動値として演算するものとすることができる。 Further, the calculation means may count the number of blocks from the symbol data to the change of the symbol within a predetermined time from the occurrence time of the transient change, and calculate the total number of blocks as a variable value. can.
 前記微分処理手段が生成したシンボルデータに、収縮処理および膨張処理を行うことにより、所定長さより短いノイズを除去するノイズ除去手段を備えたものとすることができる。微分による微分値に基づいてシンボルデータを生成するが、微分は過渡波形に過敏に反応することがあり、シンボルデータにノイズとなって現れる。しかし、シンボルデータに、収縮処理および膨張処理を行うことにより、所定長さより短いノイズを除去することにより、正確なシンボルデータを得ることができる。 The symbol data generated by the differential processing means may be provided with noise removing means for removing noise shorter than a predetermined length by performing shrinkage processing and expansion processing. Symbol data is generated based on the differential value by differentiation, but the differentiation may react sensitively to the transient waveform and appears as noise in the symbol data. However, accurate symbol data can be obtained by removing noise shorter than a predetermined length by performing shrinkage processing and expansion processing on the symbol data.
 前記微分処理手段は、微分値0を中心した所定範囲を不感帯として、シンボル化しないものとすることができる。
 微分値が0となるような極大点や極小点では、ノイズが発生しやすくなる。そのため、微分値0を中心した所定範囲を不感帯として、シンボル化しないようにすることにより、ノイズの発生を抑止することができる。
The differential processing means may not be symbolized by setting a predetermined range centered on the differential value 0 as a dead zone.
Noise is likely to occur at the maximum point or the minimum point where the differential value becomes 0. Therefore, it is possible to suppress the generation of noise by setting a predetermined range centered on the differential value 0 as a dead zone and not symbolizing it.
 本発明は、電気部品への出力を過渡変化させることを、指示手段が任意のタイミングで指示することにより、稼働中でも劣化や故障を検知することが可能である。よって、本発明は、任意のタイミングで容量性を有する電気部品の経年変化や異常の検知を可能とすることができる。 According to the present invention, it is possible to detect deterioration or failure even during operation by instructing the instruction means to transiently change the output to the electric component at an arbitrary timing. Therefore, the present invention can detect secular variation and abnormality of an electric component having a capacitance at an arbitrary timing.
本発明の実施の形態に係る静電容量測定装置とコンバータとの構成を示す図である。It is a figure which shows the structure of the capacitance measuring apparatus which concerns on embodiment of this invention, and a converter. 図1に示す静電容量測定装置による異常検知方法を説明するためのフローチャートである。It is a flowchart for demonstrating the abnormality detection method by the capacitance measuring apparatus shown in FIG. 図1に示す静電容量測定装置の微分処理手段および演算手段の動作を説明するための図である。It is a figure for demonstrating the operation of the differential processing means and the calculation means of the capacitance measuring apparatus shown in FIG. シンボルデータを収縮して膨張してノイズ除去することを説明するための図であり、(A)はノイズが除去された状態を示す図、(B)はノイズでないため元のデータに復元された状態を示す図である。It is a diagram for explaining that the symbol data is contracted and expanded to remove noise, (A) is a diagram showing a state in which noise is removed, and (B) is restored to the original data because it is not noise. It is a figure which shows the state. 演算手段がシンボルデータに基づいて変動値を算出することを説明するための図であり、(A)は、「1」および「0」の総数を計数することを説明するための図、(B)はLSBからMSBまでの各ビットを入れ替えて数値化することを説明するための図、(C)はブロック数を計数することを説明するための図である。It is a figure for demonstrating that a calculation means calculates a variation value based on a symbol data, and (A) is a figure for demonstrating that the total number of "1" and "0" is counted, (B). ) Is a diagram for explaining that each bit from the LSB to the MSB is exchanged and quantified, and (C) is a diagram for explaining that the number of blocks is counted. クラスタリング法により静電容量値を得ることを説明するためのグラフであり、(A)は温度に対応する静電容量値がプロットされたグラフ、(B)は出力容量(負荷電力)に対応する静電容量値がプロットされたグラフ、(C)は時間に対する静電容量値がプロットされ、近似曲線が描かれたグラフである。It is a graph for explaining that the capacitance value is obtained by the clustering method, (A) is a graph in which the capacitance value corresponding to temperature is plotted, and (B) corresponds to output capacity (load power). A graph in which the capacitance value is plotted, and (C) is a graph in which the capacitance value with respect to time is plotted and an approximate curve is drawn. シミュレーションの各条件を示す表である。It is a table which shows each condition of a simulation. シミュレーション結果を説明するためのグラフである。It is a graph for explaining the simulation result.
 本発明の実施の形態に係る静電容量測定装置を図面に基づいて説明する。
 図1に示す本発明の実施の形態に係る静電容量測定装置10は、電力変換装置の一例であるコンバータ100の、容量性(キャパシタンス)を有する電気部品の一例である出力コンデンサCOの静電容量を測定して、容量抜けや、容量減少する故障、絶縁故障のように、規定された動作可能な値が外れた状態の異常を検知するものである。
 ここで、まず、コンバータ100について説明する。コンバータ100は、電源Pである三相交流(Van,Vbn,Vcn)を入力して、負荷Rに、電圧VDCを出力するものである。
The capacitance measuring device according to the embodiment of the present invention will be described with reference to the drawings.
The capacitance measuring device 10 according to the embodiment of the present invention shown in FIG. 1 is a static output capacitor CO which is an example of an electric component having a capacitance (capacitance) of a converter 100 which is an example of a power conversion device. It measures the electric capacity and detects abnormalities in a state where the specified operable value is deviated, such as capacity loss, capacity reduction failure, and insulation failure.
Here, first, the converter 100 will be described. The converter 100 inputs a three-phase alternating current (Van, Vbn, Vcn) which is a power source P, and outputs a voltage V DC to the load R.
[コンバータ100の構成]
 コンバータ100は、第1アーム110と第2アーム120と第3アーム130とを有している。
 第1アーム110から第3アーム130は、第1上アーム111、第2上アーム121および第3上アーム131と、第1上アーム111から第3上アーム131のそれぞれに対応する、第1下アーム112、第2下アーム122および第3下アーム132とが、それぞれ直列に接続されたものである。
[Configuration of converter 100]
The converter 100 has a first arm 110, a second arm 120, and a third arm 130.
The first arm 110 to the third arm 130 correspond to the first upper arm 111, the second upper arm 121 and the third upper arm 131, and the first upper arm 111 to the third upper arm 131, respectively. The arm 112, the second lower arm 122, and the third lower arm 132 are connected in series, respectively.
 第1上アーム111から第3上アーム131と、第1下アーム112から第3下アーム132は、ゲート端子に、後述する目標電圧の出力指示手段からの信号が接続された、スイッチング素子の一例であるNチャンネル型のMOSFETにより形成されている。
 第1上アーム111から第3上アーム131と、第1下アーム112から第3下アーム132との接続点と、電源Pとの間には、ノイズ除去用のコイルLが直列接続されている。
The first upper arm 111 to the third upper arm 131 and the first lower arm 112 to the third lower arm 132 are examples of switching elements in which a signal from an output indicating means of a target voltage described later is connected to a gate terminal. It is formed by an N-channel MOSFET.
A coil L for noise reduction is connected in series between the connection point between the first upper arm 111 to the third upper arm 131, the first lower arm 112 to the third lower arm 132, and the power supply P. ..
 第1アーム110から第3アーム130は、出力電圧(電圧VDC)が目標電圧となるように、制御手段140により指示される。
 制御手段140は、第1アーム110と第2アーム120と第3アーム130とのスイッチングをPWM(Pulse Width Modulation)により制御する。
The first arm 110 to the third arm 130 are instructed by the control means 140 so that the output voltage (voltage V DC ) becomes the target voltage.
The control means 140 controls switching between the first arm 110, the second arm 120, and the third arm 130 by PWM (Pulse Width Modulation).
[静電容量測定装置10の構成]
 次に、静電容量測定装置10の構成について、図面に基づいて説明する。静電容量測定装置10は、静電容量測定プログラムが動作するコンピュータである。
 静電容量測定装置10は、出力指示手段11と、AD変換手段12と、微分処理手段13と、ノイズ除去手段14と、演算手段15と、判定手段16と、報知手段17と、クラスタリング手段18と、予測手段19とを備えている。
[Configuration of Capacitance Measuring Device 10]
Next, the configuration of the capacitance measuring device 10 will be described with reference to the drawings. The capacitance measuring device 10 is a computer on which a capacitance measuring program is operated.
The capacitance measuring device 10 includes an output indicating means 11, an AD conversion means 12, a differential processing means 13, a noise removing means 14, a calculation means 15, a determination means 16, a notification means 17, and a clustering means 18. And the prediction means 19.
 出力指示手段11(指示手段)は、容量性を有する電気部品への出力を、過渡変化として単発パルス状に変化させるよう、制御手段140に指示する。
 AD変換手段12は、入力した出力電圧(電圧VDC)をアナログ信号からデジタル信号に変換する。
 微分処理手段13は、出力を微分した微分値が、正の場合に微分値に応じた正側を示す1以上のシンボルを割り当てると共に、負の場合に微分値に応じた負側を示す1以上のシンボルを割り当てたシンボルデータを生成する。
The output instruction means 11 (instruction means) instructs the control means 140 to change the output to the electric component having capacitance into a single pulse shape as a transient change.
The AD conversion means 12 converts the input output voltage (voltage V DC ) from an analog signal to a digital signal.
The differential processing means 13 assigns one or more symbols indicating the positive side corresponding to the differential value when the differential value obtained by differentiating the output is positive, and one or more symbols indicating the negative side corresponding to the differential value when the output is negative. Generate symbol data to which the symbol of is assigned.
 ノイズ除去手段14は、微分処理手段13が生成したシンボルデータに、収縮処理および膨張処理を行うことにより、所定長さより短いノイズを除去する。
 演算手段15は、シンボルデータが示す各シンボルから過渡変化に対する波形の変動度合いを演算して、静電容量値に対応する変動値を算出する。変動値に対応させた静電容量値は、図示しない記憶手段に格納されている。
 判定手段16は、演算手段15による変動値または静電容量値が閾値以上または閾値以下となった場合に、異常を判定する。
 報知手段17は、判定手段16により異常が判定されたときに、管理者に異常を報知する。
 クラスタリング手段18は、目標電圧、目標電圧に対応した変動値、閾値を過渡特性のデータとして収集したデータ集団をクラスタリングする。
 予測手段19は、静電容量値を所定間隔ごとに蓄積して、静電容量値から異常発生時期を予測する。
The noise removing means 14 removes noise shorter than a predetermined length by performing shrinkage processing and expansion processing on the symbol data generated by the differentiation processing means 13.
The calculation means 15 calculates the degree of fluctuation of the waveform with respect to the transient change from each symbol indicated by the symbol data, and calculates the fluctuation value corresponding to the capacitance value. The capacitance value corresponding to the variable value is stored in a storage means (not shown).
The determination means 16 determines an abnormality when the fluctuation value or the capacitance value by the calculation means 15 is equal to or greater than or equal to the threshold value.
When the determination means 16 determines the abnormality, the notification means 17 notifies the administrator of the abnormality.
The clustering means 18 clusters a data group in which the target voltage, the fluctuation value corresponding to the target voltage, and the threshold value are collected as transient characteristic data.
The predicting means 19 accumulates the capacitance value at predetermined intervals and predicts the time of occurrence of the abnormality from the capacitance value.
[静電容量測定装置10の動作および使用状態]
 以上のように構成された本発明の実施の形態に係る電気部品の静電容量測定装置10の動作および使用状態を図面に基づいて説明する。
 本実施の形態では、図1に示す出力コンデンサCOの容量抜けを検知することを説明する。
 まず、図1に示すAD変換手段12は、出力電圧(電圧VDC)をデジタル変換して測定データを出力する(図2に示すステップS10参照)。
 出力指示手段11は、出力電圧を単発パルス状に低下させるよう、制御手段140に目標電圧を指示する(ステップS20参照)。
[Operation and usage of the capacitance measuring device 10]
The operation and the usage state of the capacitance measuring device 10 of the electric component according to the embodiment of the present invention configured as described above will be described with reference to the drawings.
In this embodiment, it will be described that the capacity loss of the output capacitor CO shown in FIG. 1 is detected.
First, the AD conversion means 12 shown in FIG. 1 digitally converts an output voltage (voltage VDC ) and outputs measurement data (see step S10 shown in FIG. 2).
The output instruction means 11 instructs the control means 140 to indicate the target voltage so as to reduce the output voltage in the form of a single pulse (see step S20).
 微分処理手段13は、図3に示すように、単発パルスPの発生時間から所定時間内となる、出力電圧が立下がった時間t1から任意の時間t2までの出力電圧(電圧VDC)についての測定データを微分してシンボルデータS[n]を生成する(ステップS30参照)。 As shown in FIG. 3, the differential processing means 13 relates to an output voltage (voltage V DC ) from a time t1 at which the output voltage drops to an arbitrary time t2, which is within a predetermined time from the generation time of the single pulse P. The measurement data is differentiated to generate symbol data S [n] (see step S30).
 微分処理手段13は、出力を微分した微分値が正の場合に、微分値を所定値ごとに正側を示す「0」、「1」、「2」の3種類の値としたり、「1」~「3」の範囲の値としたり、「1」~「4」以上の値としたりすることができる。また、負の場合に、微分値を所定値ごとに負側を示す「-1」、「-2」の2種類の値としたり、「-1」~「-3」の範囲の値としたり、「-1」~「-4」以下の値としたりすることができる。つまり、正側と負側とを多値化することができる。
 また、微分処理手段13は、シンボルとして、図3に示す例では、微分値の符号が、正の場合と0の場合とで「1」を割り当てると共に、負の場合に「0」を割り当てたシンボルデータを生成することができる。本実施の形態では、シンボルは「1」と「0」との2種類を使用している。
When the differential value obtained by differentiating the output is positive, the differential processing means 13 sets the differential value to three types of values of "0", "1", and "2" indicating the positive side for each predetermined value, or "1". It can be a value in the range of "3" or a value of "1" to "4" or more. Further, in the case of a negative value, the differential value may be set to two types of values, "-1" and "-2" indicating the negative side for each predetermined value, or a value in the range of "-1" to "-3". , It can be a value of "-1" to "-4" or less. That is, the positive side and the negative side can be multivalued.
Further, in the example shown in FIG. 3, the differential processing means 13 assigns "1" as a symbol depending on whether the sign of the differential value is positive or 0, and assigns "0" when the sign is negative. Symbol data can be generated. In this embodiment, two types of symbols, "1" and "0", are used.
 次に、ノイズ除去手段14が、シンボルデータを収縮処理と膨張処理とを行うことでノイズを除去する(ステップS40参照)。例えば、図4(A)に示すシンボルデータでは、3つのシンボル「0」同士の間に、1つのシンボル「1」が挟まれている。ノイズ除去手段14が、収縮処理により「1」が「0」に置き換わる。そして、全てが「0」となったシンボルデータを膨張処理することで、全てが「0」のまま元の長さのシンボルデータとなる。 Next, the noise removing means 14 removes noise by performing shrinkage processing and expansion processing on the symbol data (see step S40). For example, in the symbol data shown in FIG. 4A, one symbol “1” is sandwiched between the three symbols “0”. The noise removing means 14 replaces "1" with "0" by the shrinkage treatment. Then, by expanding the symbol data in which all are "0", all the symbol data remains "0" and becomes the symbol data of the original length.
 また、図4(B)に示すシンボルデータでは、3つのシンボル「0」同士の間に、3つのシンボル「1」が挟まれている。この「1」はノイズでは無い。
 従って、ノイズ除去手段14が、3つ連続した「1」を収縮処理しても、1つの「1」が残り、そして、「1」が1つとなったシンボルデータを膨張処理することで、「1」が3つ連続した状態に復元されたシンボルデータとすることができる。
Further, in the symbol data shown in FIG. 4B, three symbols "1" are sandwiched between the three symbols "0". This "1" is not noise.
Therefore, even if the noise removing means 14 shrinks three consecutive "1" s, the symbol data in which one "1" remains and the "1" becomes one is expanded to "1". 1 ”can be used as symbol data restored to three consecutive states.
 ここで、ノイズ除去手段14によりノイズ除去をすること以外に、出力電圧を微分した微分値が、極大点および極小点にて非常に小さくなり、微分値の符号が頻繁に切り替わるような揺らぎによるノイズを、微分処理手段13が除去することができる。 Here, in addition to removing noise by the noise removing means 14, the differential value obtained by differentiating the output voltage becomes very small at the maximum point and the minimum point, and noise due to fluctuations such that the sign of the differential value is frequently switched. Can be removed by the differential processing means 13.
 例えば、1あるいは0が何度か同じ値で続かない限り値を変更しないようにすることができる。また、微分値0となる近辺(微分値0を中心した所定範囲)に不感帯を設け、シンボル化(数値化)しないようにすることができる。更に、微分値0となる近辺に第3の値を割り付ける。これは、上記説明では、符号が正と微分値が0であれば「1」、符号が負であれば「0」としているところ、例えば、符号が正で、微分値が所定以上あれば「+1」、微分値の絶対値が所定未満であれば「0」、符号が負で、微分値が所定以下あれば「-1」とすることを意味する。
 そうすることで、微分値の極大値と極小値との付近で発生しやすくなるノイズを除去することができる。
For example, the value may not be changed unless 1 or 0 continues with the same value several times. Further, it is possible to provide a dead zone in the vicinity of the differential value 0 (a predetermined range centered on the differential value 0) so as not to be symbolized (quantified). Further, a third value is assigned to the vicinity where the differential value becomes 0. In the above description, if the sign is positive and the differential value is 0, it is set to "1", and if the sign is negative, it is set to "0". +1 ”, if the absolute value of the differential value is less than the predetermined value, it is“ 0 ”, and if the sign is negative and the differential value is less than the predetermined value, it is“ -1 ”.
By doing so, it is possible to remove noise that tends to occur in the vicinity of the maximum value and the minimum value of the differential value.
 次に、演算手段15は、シンボルデータが示す各シンボルから単発パルスに対する出力電圧波形の変動度合いを演算して、変動値を算出する(ステップS50参照)。
 例えば、演算手段15は、単発パルスの発生時間から所定時間内において、シンボルデータから、正側のシンボルごとの総数または負側のシンボルごとの総数のいずれか一方または両方を、波形の変動度合い示す変動値として計数することができる。
Next, the calculation means 15 calculates the degree of fluctuation of the output voltage waveform with respect to a single pulse from each symbol indicated by the symbol data, and calculates the fluctuation value (see step S50).
For example, the calculation means 15 indicates the degree of fluctuation of the waveform from the symbol data, either or both of the total number of the positive side symbols and the total number of the negative side symbols within a predetermined time from the generation time of the single pulse. It can be counted as a variable value.
 初期状態であるときに、出力電圧が立下がった時間から任意の時間での出力電圧が、図5(A)に示すように「000111111000」であった場合では、「1」の総数は6であり、「0」の総数は3+3=6である。
 出力コンデンサCO(図1参照)の容量抜けを起こした容量変化状態では、図5(A)に示すように「001111001101」のようになる。この場合、「1」の総数は4+2+1=7であり、「0」の総数は2+2+1=5である。
 そして、演算手段15は、「1」の総数7または「0」の総数5を算出して変動値とし、この変動値に対応する静電容量値を記憶手段から読み出すことにより、静電容量値を推定することができる(ステップS60参照)。
In the initial state, when the output voltage at an arbitrary time from the time when the output voltage drops is "000111111000" as shown in FIG. 5A, the total number of "1" is 6. Yes, the total number of "0" is 3 + 3 = 6.
In the capacity change state where the capacity of the output capacitor CO (see FIG. 1) is lost, it becomes as shown in FIG. 5 (A) as "001111001101". In this case, the total number of "1" is 4 + 2 + 1 = 7, and the total number of "0" is 2 + 2 + 1 = 5.
Then, the calculation means 15 calculates the total number 7 of "1" or the total number 5 of "0" to obtain a fluctuation value, and reads the capacitance value corresponding to this fluctuation value from the storage means to obtain the capacitance value. Can be estimated (see step S60).
 判定手段16は、「1」の総数が所定値(第1閾値)より増加すると劣化したと判定することができ、「0」の総数が所定値(第1閾値)より減少すると劣化したと判定することができる。また、これらの条件の両方で判定することができる。また、判定手段16は、静電容量値が異常値を示すときに異常と判定することができる(ステップS70参照)。 The determination means 16 can determine that the deterioration occurs when the total number of "1" increases from the predetermined value (first threshold value), and determines that the deterioration occurs when the total number of "0" decreases from the predetermined value (first threshold value). can do. Moreover, it can be judged by both of these conditions. Further, the determination means 16 can determine that the capacitance value is abnormal when the capacitance value indicates an abnormal value (see step S70).
 また、演算手段15は、シンボルデータから、同じシンボルが連続したシンボル数を順次計数し、これらのシンボル数をそれぞれ2乗した総和を平方根した値を、波形の変動度合い示す変動値として演算することができる(ステップS50参照)。これは、シンボル数をn次元の座標として表したときの原点からの距離を示している。 Further, the calculation means 15 sequentially counts the number of consecutive symbols of the same symbol from the symbol data, and calculates the value obtained by square rooting the sum of the squares of the numbers of these symbols as the fluctuation value indicating the degree of fluctuation of the waveform. Can be done (see step S50). This indicates the distance from the origin when the number of symbols is expressed as n-dimensional coordinates.
 初期状態であるときに、出力電圧が立下がった時間から任意の時間での出力電圧が、「000111111000」であった場合では、√(32+62+32+0+0+0)=√54≒7.35となる。
 出力コンデンサCO(図1参照)の容量抜けを起こした容量変化状態では、「001111001101」のようになると、√(22+42+22+22+12+12)=√30≒5.48となる。
 そして、演算手段15は、シンボル数をn次元の座標として表したときの原点からの距離を算出して変動値とし、この変動値に対応する静電容量値を記憶手段から読み出すことにより、静電容量値を推定することができる(ステップS60参照)。
In the initial state, if the output voltage at an arbitrary time from the time when the output voltage drops is "0001111111000", √ (3 2 + 6 2 + 3 2 + 0 + 0 + 0) = √54 ≒ 7.35. It becomes.
In the capacity change state where the capacity of the output capacitor CO (see Fig. 1) is lost, when it becomes "001111001101", √ (2 2 +4 2 +2 2 +2 2 + 1 2 + 1 2 ) = √30 ≒ 5.48 It becomes.
Then, the calculation means 15 calculates the distance from the origin when the number of symbols is expressed as n-dimensional coordinates and uses it as a fluctuation value, and reads out the capacitance value corresponding to this fluctuation value from the storage means, thereby statically. The capacitance value can be estimated (see step S60).
 判定手段16は、原点からの距離が所定値(第2閾値)より減少すると劣化したと判定することができる。また、判定手段16は、静電容量値が異常値を示すときに異常と判定することができる(ステップS70参照)。 The determination means 16 can determine that the deterioration has occurred when the distance from the origin decreases from a predetermined value (second threshold value). Further, the determination means 16 can determine that the capacitance value is abnormal when the capacitance value indicates an abnormal value (see step S70).
 演算手段15は、シンボルデータのLSBからMSBまでの各ビットをMSBからLSBに入れ替えて、10進数または16進数に変換した変動値として演算することができる(ステップS50参照)。なお、変動値は、nを3以上としたn進数とすることも可能である。 The calculation means 15 can perform calculation as a variable value converted into a decimal number or a hexadecimal number by exchanging each bit of the symbol data from LSB to MSB from MSB to LSB (see step S50). The fluctuation value can be an n-ary number with n being 3 or more.
 初期状態であるときに、出力電圧が立下がった時間から任意の時間での出力電圧が、図5(B)に示すように「000111111000」であった場合では、LSBからMSBを入れ換えると、「000111111000」である。従って、このシンボルデータを10進数に変換すると504となる。
 出力コンデンサCO(図1参照)の容量抜けを起こした容量変化状態では、図5(B)に示すように「001111001101」のようになり、LSBからMSBを入れ換えると、「101100111100」となり、10進数に変換すると2876となる。
 そして、演算手段15は、LSBからMSBまでを入れ換えた変動値に対応する静電容量値を記憶手段から読み出すことにより、静電容量値を推定することができる(ステップS60参照)。
In the initial state, when the output voltage at an arbitrary time from the time when the output voltage drops is "000111111000" as shown in FIG. 5 (B), when the MSB is replaced from the LSB, " 01111111000 ". Therefore, when this symbol data is converted into a decimal number, it becomes 504.
In the capacity change state where the capacity of the output capacitor CO (see FIG. 1) is lost, it becomes "001111001101" as shown in FIG. 5B, and when the MSB is replaced from the LSB, it becomes "101100111100". Converted to decimal, it becomes 2876.
Then, the calculation means 15 can estimate the capacitance value by reading the capacitance value corresponding to the variable value in which the LSB to the MSB are exchanged from the storage means (see step S60).
 判定手段16は、10進数の値(変動値)が所定値(第3閾値)より増加すると劣化したと判定することができる。また、判定手段16は、静電容量値が異常値を示すときに異常と判定することができる(ステップS70参照)。
 シンボルデータを10進数に変換する以外に、3進数以上の数値とすることができる。
The determination means 16 can determine that the value has deteriorated when the decimal value (variation value) increases from a predetermined value (third threshold value). Further, the determination means 16 can determine that the capacitance value is abnormal when the capacitance value indicates an abnormal value (see step S70).
In addition to converting the symbol data to decimal numbers, it can be a numerical value of ternary numbers or higher.
 演算手段15は、シンボルが変化するまでのブロック数を計数し、ブロック数の総数を変動値として演算することができる(ステップS50参照)。 The calculation means 15 can count the number of blocks until the symbol changes, and can calculate the total number of blocks as a variable value (see step S50).
 初期状態であるときに、出力電圧が立下がった時間から任意の時間での出力電圧が、図5(C)に示すように「000111111000」であった場合では、シンボルが変化するまでのブロックとして「000」と「111111」と「000」とに分割することができるため、「0」のブロックが2、「1」のブロックが1であることから総数は3である。
 出力コンデンサCO(図1参照)の容量抜けを起こした容量変化状態では、図5(C)に示すように「001111001101」のようになると、シンボルが変化するまでのブロックとして「00」と、「1111」と、「00」と、「11」と、「0」、「1」とに分割することができ、「0」のブロックが3、「1」のブロックが3であることから総数は6である。
 そして、演算手段15は、ブロック総数を算出して変動値とし、この変動値に対応する静電容量値を記憶手段から読み出すことにより、静電容量値を推定することができる(ステップS60参照)。
In the initial state, when the output voltage at an arbitrary time from the time when the output voltage drops is "000111111000" as shown in FIG. 5 (C), it is a block until the symbol changes. Since it can be divided into "000", "111111", and "000", the total number is 3 because the block of "0" is 2 and the block of "1" is 1.
In the capacity change state where the capacity of the output capacitor CO (see FIG. 1) is lost, when it becomes "001111001101" as shown in FIG. 5 (C), the block until the symbol changes is "00". It can be divided into "1111", "00", "11", "0", and "1", and the total number is 3 because the block of "0" is 3 and the block of "1" is 3. Is 6.
Then, the calculation means 15 calculates the total number of blocks to obtain a variable value, and can estimate the capacitance value by reading the capacitance value corresponding to the variable value from the storage means (see step S60). ..
 判定手段16は、ブロック数の値(変動値)が所定値(第4閾値)より増加すると劣化したと判定することができる。また、判定手段16は、静電容量値が異常値を示すときに異常と判定することができる(ステップS70参照)。 The determination means 16 can determine that the value has deteriorated when the value of the number of blocks (variation value) increases from a predetermined value (fourth threshold value). Further, the determination means 16 can determine that the capacitance value is abnormal when the capacitance value indicates an abnormal value (see step S70).
 判定手段16が劣化を検出すると、報知手段17は、管理者に報知する(ステップS80参照)。この報知は、画面に表示するものでもよいし、音により通知するものでもよい。また、報知手段17は、図示しないネットワークを介して通知するものでもよい。また、報知手段17は、静電容量値を報知することができる(ステップS90参照)。 When the determination means 16 detects deterioration, the notification means 17 notifies the administrator (see step S80). This notification may be displayed on the screen or may be notified by sound. Further, the notification means 17 may notify via a network (not shown). Further, the notification means 17 can notify the capacitance value (see step S90).
 予測手段19は、所定間隔ごとの静電容量値(変動値)を記憶手段に蓄積して、近似式を求めることで、静電容量値の推移が予測できるので、異常の予測が可能である(ステップS100参照)。従って、劣化による出力コンデンサCOの交換時期が予測できるため、交換準備を予定することができる。この予測は、近似式を求める以外に、出力電圧、出力電流、負荷、周囲環境などの統計的なデータに基づいてAI(artificial intelligence)により推定することもできる。 The predicting means 19 can predict the transition of the capacitance value by accumulating the capacitance value (fluctuation value) at predetermined intervals in the storage means and obtaining an approximate expression, so that it is possible to predict an abnormality. (See step S100). Therefore, since the replacement time of the output capacitor CO due to deterioration can be predicted, it is possible to schedule replacement preparations. This prediction can be estimated by AI (artificial intelligence) based on statistical data such as output voltage, output current, load, and ambient environment, in addition to obtaining an approximate expression.
 このようにして、図1に示す静電容量測定装置10は、出力指示手段11が、コンバータ100の出力コンデンサCOへの出力電圧を単発パルス状に変化させるよう、制御手段140に指示することにより、任意のタイミングで、出力コンデンサCOの変動値を算出して静電容量値を測定することができ、容量抜けや故障を検知することが可能である。 In this way, the capacitance measuring device 10 shown in FIG. 1 instructs the control means 140 that the output indicating means 11 changes the output voltage of the converter 100 to the output capacitor CO in a single pulse shape. Therefore, it is possible to calculate the fluctuation value of the output capacitor CO and measure the capacitance value at an arbitrary timing, and it is possible to detect capacity loss or failure.
 また、特許文献1に記載の電気車用電力供給装置では、電流信号を微分した信号がゼロレベルを交差したゼロクロスを検出することで周波数を算出しているが、微分によるゼロクロスの検出はピンポイントな変化を観察するものであり、ノイズを誤検知するおそれがあるため、正確な把握が難しい。
 しかし、本実施の形態に係る静電容量測定装置10では、出力電圧を微分した微分値の符号に応じてシンボル化しているため、過渡波形を連続的に観察することができる。従って、出力コンデンサCOの容量変化を正確に把握することができる。
Further, in the power supply device for an electric vehicle described in Patent Document 1, the frequency is calculated by detecting the zero cross where the signal obtained by differentiating the current signal intersects the zero level, but the detection of the zero cross by the differentiation is pinpoint. It is difficult to accurately grasp the change because it observes various changes and there is a risk of erroneous detection of noise.
However, in the capacitance measuring device 10 according to the present embodiment, since the output voltage is symbolized according to the sign of the differentiated differential value, the transient waveform can be continuously observed. Therefore, it is possible to accurately grasp the capacitance change of the output capacitor CO .
 また、出力電圧を微分した微分値の正負の符号により、「1」と「0」などの数や文字、記号等の符号に置き換え、数値化あるいは記号化(符号化)することで、信号処理で用いられる多くの手法を応用することが可能となり、容易に、電力変換器の出力フィルタの電解コンデンサなどの部品の変化を識別することができるので、不良、故障、劣化などの異常を判定することができる。 In addition, signal processing is performed by replacing the output voltage with a code such as a number such as "1" and "0", a character, a symbol, etc., and digitizing or symbolizing (encoding) it with a positive or negative code of the differential value obtained by differentiating the output voltage. Many methods used in the above can be applied, and changes in parts such as electrolytic capacitors of the output filter of the power converter can be easily identified, so that abnormalities such as defects, failures, and deterioration can be determined. be able to.
 なお、上記第1閾値から第4閾値による判定では、常に一定というよりは、いろいろな負荷条件やデバイスのばらつき等のパラメータの違いで、ばらついた過渡特性となる。
 これらの過渡特性のデータは、目標電圧や目標電圧に対応した変動値、閾値を数値として収集できるので、これらに基づいてキャパシタンス毎のばらついたデータの集団を、図1に示すクラスタリング手段18が、クラスタリングすることで、ばらついた条件下でも監視対象の電気部品のキャパシタの故障や経年変化等による変化を識別することができる。
In the determination based on the first threshold value to the fourth threshold value, the transient characteristics are not always constant, but are varied due to differences in parameters such as various load conditions and device variations.
Since the data of these transient characteristics can collect the target voltage, the fluctuation value corresponding to the target voltage, and the threshold value as numerical values, the clustering means 18 shown in FIG. 1 can collect a group of data scattered for each capacitance based on these. By clustering, it is possible to identify changes due to capacitor failures, aging, etc. of the electrical components to be monitored even under varying conditions.
 ここで、クラスタリング手段18によるクラスタリングにより、故障や経年変化を識別することについて詳細に説明する。
 演算手段15により静電容量値が推定されると、これをクラスタリングすることにより予測する。
 クラスタリングは、様々な手法により行うことができる。
 クラスタリングの手法は、例えば、階層クラスタリング(ウォード法、群平均法、最短距離法、最長距離法など)、分割クラスタリング(kmeans法,kmedians法など)などが使用できる。
 クラスタリング手段18および予測手段19は、これらのクラスタリング手法に基づいて故障や経年変化を予測する。
Here, the identification of failure and secular variation by clustering by the clustering means 18 will be described in detail.
When the capacitance value is estimated by the arithmetic means 15, it is predicted by clustering it.
Clustering can be performed by various methods.
As the clustering method, for example, hierarchical clustering (Ward's method, group average method, shortest distance method, longest distance method, etc.), partition clustering (kmeans method, kmedians method, etc.) and the like can be used.
The clustering means 18 and the predicting means 19 predict failures and secular changes based on these clustering methods.
 被監視装置となるコンバータ100の温度を測定する温度センサが設けられており、出力容量(負荷電力)は不明な場合に、測定温度と、推定された静電容量値とから、経年変化(経時変化)による静電容量値の低下を予測することも可能である。 A temperature sensor that measures the temperature of the converter 100 that is the monitored device is provided, and when the output capacity (load power) is unknown, it changes over time (aging) from the measured temperature and the estimated capacitance value. It is also possible to predict the decrease in capacitance value due to (change).
 例えば、図6(A)に示すグラフでは、X年に測定された温度に対応する静電容量値がプロットされている。また、このグラフでは、翌年となるX+1年に測定された温度ごとの静電容量値がプロットされている。この測定期間は、例えば、3ヶ月ごと、半年など、任意に変更することが可能である。
 クラスタリング手段18は、これらの測定値に対する推定値を、例えば、群平均法等によりクラスタリングして中央値を求める。また、中央値の代わりに平均値、または中央値をクラスタの中心とすることができる。
For example, in the graph shown in FIG. 6A, the capacitance value corresponding to the temperature measured in year X is plotted. Further, in this graph, the capacitance value for each temperature measured in the next year, X + 1, is plotted. This measurement period can be arbitrarily changed, for example, every 3 months or 6 months.
The clustering means 18 clusters the estimated values for these measured values by, for example, a group average method or the like to obtain the median value. Also, instead of the median, the mean or median can be the center of the cluster.
 次に、被監視装置となるコンバータ100の出力容量(負荷電力)を測定する場合について説明する。なお、この場合、温度は不明であるとする。
 図6(B)に示すグラフでは、X年およびX+1年に測定された出力容量(負荷電力)に対応する静電容量値がプロットされている。
 クラスタリング手段18は、クラスタリング手法に基づいて経年変化を演算する。これらの測定値に対する推定値を群平均法等によりクラスタリングして中央値を求める。また、図6(A)のグラフの際に説明したように、中央値の代わりに平均値または中心値とすることができる。
Next, a case of measuring the output capacity (load power) of the converter 100 as the monitored device will be described. In this case, the temperature is unknown.
In the graph shown in FIG. 6B, the capacitance values corresponding to the output capacitance (load power) measured in the year X and the year X + 1 are plotted.
The clustering means 18 calculates the secular variation based on the clustering method. The estimated values for these measured values are clustered by the group average method or the like to obtain the median value. Further, as described in the graph of FIG. 6A, the average value or the center value can be used instead of the median value.
 このようにして、図6(A)および同図(B)に示すグラフにおけるクラスタごとの静電容量値が算出されると、予測手段19が、静電容量値の予測を行うことができる。
 予測手段19は、このように算出された静電容量値の中央値、平均値、中心値を、年ごとにプロットして、図6(C)の近似曲線を示す関数を得る。
 この近似曲線を示す関数から、近似曲線の先を見ることで、あるいは標準の曲線との値の差とか傾きの差を見ることで、何年後とか数ヶ月後に規定の値を下回るとかが予測できる。従って、将来の静電容量値の変化を予測することができるので、容量性を有する電気部品の劣化を予測することができる。
In this way, when the capacitance value for each cluster in the graphs shown in FIGS. 6A and 6B is calculated, the prediction means 19 can predict the capacitance value.
The prediction means 19 plots the median value, the average value, and the center value of the capacitance values calculated in this way for each year to obtain a function showing the approximate curve of FIG. 6C.
From the function showing this approximate curve, it is predicted that it will fall below the specified value in years or months by looking ahead of the approximate curve, or by looking at the difference in value or slope from the standard curve. can. Therefore, since it is possible to predict future changes in the capacitance value, it is possible to predict deterioration of electrical components having capacitance.
 なお、演算手段15が時間ごとに静電容量値を演算していれば、予測手段19は、図6(C)に示すグラフのように、時間ごとの静電容量値から近似曲線を示す関数を演算することができる。クラスタリング手段18によりクラスタリングを用いることなく、予測することができる。
 このとき、近似曲線に基づいてばらつき要素をフィルタ(ローパスフィルタやカルマンフィルタで基本要素を取り出す)で除外した後に近似曲線を求める。そうすることで、近似曲線の精度を向上させることができる。
If the calculation means 15 calculates the capacitance value for each time, the prediction means 19 is a function showing an approximate curve from the capacitance value for each time as shown in the graph shown in FIG. 6 (C). Can be calculated. It can be predicted by the clustering means 18 without using clustering.
At this time, the approximate curve is obtained after excluding the variation element with a filter (extracting the basic element with a low-pass filter or a Kalman filter) based on the approximate curve. By doing so, the accuracy of the approximate curve can be improved.
 また、図6(B)に示すグラフの場合、同じ出力電力の時の値のみを抽出して、クラスタリングを行うようにすることもできる。そうすることで、負荷電力の大きさでステップ変化時の振動周期が変わる影響を除くことができる。 Further, in the case of the graph shown in FIG. 6B, it is also possible to extract only the values at the same output power and perform clustering. By doing so, it is possible to eliminate the influence that the vibration cycle at the time of step change changes depending on the magnitude of the load power.
 図6(A)に示すグラフでは温度と静電容量値、図6(B)に示すグラフでは出力容量(負荷電力)の2つのパラメータの分布に基づいて静電容量値を決定していたが、例えば、周囲温度、回路パラメータ、入力電圧、入力電流、出力電圧、出力電流等のパラメータをn次元のデータとして、クラスタリングしてもよい。 In the graph shown in FIG. 6 (A), the capacitance value was determined based on the distribution of two parameters, the temperature and the capacitance value, and in the graph shown in FIG. 6 (B), the output capacitance (load power). For example, parameters such as ambient temperature, circuit parameters, input voltage, input current, output voltage, and output current may be clustered as n-dimensional data.
[シミュレーション]
 図1に示すコンバータ100にてインディシャル応答のデータを取り、出力コンデンサCOを100%と80%でどのような違いが出るかをシミュレートした。
 検証方法は、コンバータ100の出力電圧目標値を400Vから300Vに100μs変化するインディシャル応答させたときの特性で検証する。また、図7に示す各条件によりシミュレーションを行った。
[simulation]
The data of the initial response was taken by the converter 100 shown in FIG. 1, and the difference between 100% and 80% of the output capacitor CO was simulated.
The verification method verifies the characteristics when the output voltage target value of the converter 100 is subjected to an internal response in which the output voltage target value changes from 400 V to 300 V by 100 μs. Further, the simulation was performed under each condition shown in FIG.
 シミュレーションは、サンプリング周波数を5KHzにして、出力コンデンサの定格容量を、3300μFから、5%から40%まで5%ずつ低減させたときの出力電圧について、単発パルスを発生させたt1=0.4秒からt2=0.47秒までのシンボルデータの中から微分値の符号が正および微分値が0となる「1」の数を計数した。また、微分値の符号が負となる「0」の数も計数した。 In the simulation, a single pulse was generated for the output voltage when the sampling frequency was set to 5 KHz and the rated capacity of the output capacitor was reduced by 5% from 3300 μF to 5% to 40%, t1 = 0.4 seconds. From the symbol data from t2 = 0.47 seconds, the number of "1" whose sign of the differential value is positive and whose differential value is 0 is counted. In addition, the number of "0" in which the sign of the differential value is negative is also counted.
 結果、図8のグラフに示すように、初期状態では「1」が220、「0」が130、5%減では「1」が220、「0」が130、10%減では「1」が223、「0」が127、15%減では「1」が228、「0」が122、20%減では「1」が231、「0」が119、25%減では「1」が234、「0」が116、30%減では「1」が236、「0」が114、35%減では「1」が241、「0」が109、40%減では「1」が242、「0」が108であった。 As a result, as shown in the graph of FIG. 8, in the initial state, "1" is 220, "0" is 130, "1" is 220 when 5% decrease, "0" is 130, and "1" is 10% decrease. 223, "0" is 127, "1" is 228 for a 15% decrease, "0" is 122, "1" is 231 for a 20% decrease, "0" is 119, and "1" is 234 for a 25% decrease. "0" is 116, "1" is 236 for a 30% decrease, "0" is 114, "1" is 241 for a 35% decrease, "0" is 109, and "1" is 242 for a 40% decrease, "0". Was 108.
 このことから判るように、キャパシタを低減させると「1」の総数は増加する。そして、演算手段15が予め「1」の総数と静電容量値を対応付けして図示しない記憶手段に格納することで、一定期間の微分値より求めた「1」の総数から出力コンデンサの値(静電容量値)を類推することができる。
 この結果を用いて、所定間隔ごとの静電容量値(変動値)を記憶手段に蓄積すると、静電容量値の変動傾向に基づいて推移を予測することで、電力変換器を動作させたままでキャパシタの経年変化などの異常を予測および検知が可能である。
As can be seen from this, when the number of capacitors is reduced, the total number of "1" increases. Then, the arithmetic means 15 associates the total number of "1" with the capacitance value in advance and stores it in a storage means (not shown), so that the value of the output capacitor is obtained from the total number of "1" obtained from the differential value for a certain period. (Capacitance value) can be inferred.
Using this result, when the capacitance value (fluctuation value) at predetermined intervals is stored in the storage means, the transition is predicted based on the fluctuation tendency of the capacitance value, so that the power converter remains in operation. It is possible to predict and detect abnormalities such as changes over time in capacitors.
 なお、本実施の形態では、図1に示すコンバータ100の出力コンデンサCOの容量が時間の経過と共に徐々に抜ける容量抜けを起こすような劣化の検知を説明したが、本発明は容量が急激に減少するような故障であっても検知することが可能である。
 また、コンバータ100の出力コンデンサCOを例に説明したが、容量性を有する電気部品、例えば、バッテリでも、本発明を充電回路に適用することで、バッテリの異常を検知することが可能である。
In the present embodiment, the detection of deterioration in which the capacity of the output capacitor CO of the converter 100 shown in FIG. 1 gradually disappears with the passage of time causes a capacity loss has been described. However, in the present invention, the capacity suddenly increases. It is possible to detect even a decrease in failure.
Further, although the output capacitor CO of the converter 100 has been described as an example, it is possible to detect an abnormality in a battery by applying the present invention to a charging circuit even for an electric component having a capacitance, for example, a battery. ..
 また、本実施の形態では、コンバータ100の出力電圧を単発パルス状に変化させて、過渡変化させているが、過渡的に電圧あるいは電流、電力などを振動的に変化させられれば、過渡変化は、図1に示す出力指示手段11がインディシャル応答、ステップ応答あるいは正弦波による変化を指示するようにしてもよい。
 また、出力指示手段11は、単発パルスとして、電圧を低下させるように指示しているが、電圧が上昇してもダメージを受けず、問題なければ、電圧を上げるような単発パルスを指示してもよい。
Further, in the present embodiment, the output voltage of the converter 100 is changed in the form of a single pulse to make a transient change, but if the voltage, current, electric power, etc. can be changed transiently, the transient change will occur. , The output indicating means 11 shown in FIG. 1 may indicate an internal response, a step response, or a change due to a sine wave.
Further, the output indicating means 11 instructs the output indicating means 11 to decrease the voltage as a single pulse, but if there is no problem, the single pulse that increases the voltage is instructed so that the voltage is not damaged even if the voltage increases. May be good.
 更に、本実施の形態では、微分回数が1回であったが、出力を複数回の微分したときの値に基づいてシンボルデータを生成してもよい。
 また、コンバータ100は定電圧源として機能するものであるため、出力は出力電圧を測定するようにしていたが、出力を電力とすることもできる。また、コンバータが定電流源として機能するものであれば、出力は出力電流や電力とすることができる。
Further, in the present embodiment, the number of differentiations is one, but symbol data may be generated based on the value when the output is differentiated a plurality of times.
Further, since the converter 100 functions as a constant voltage source, the output is designed to measure the output voltage, but the output can also be used as electric power. Further, if the converter functions as a constant current source, the output can be an output current or electric power.
 また、電力変換装置は、定電圧源および定電流源のいずれでも、PID制御する制御手段のために、出力電圧や出力電流を計測しているため、出力電圧や出力電流により静電容量値を測定する本実施の形態に係る静電容量測定装置10は、出力電圧や出力電流を測定する新たな回路を追加することなく、実現可能である。 Further, since the power conversion device measures the output voltage and the output current for the control means for controlling the PID in both the constant voltage source and the constant current source, the capacitance value is determined by the output voltage and the output current. The capacitance measuring device 10 according to the present embodiment for measuring can be realized without adding a new circuit for measuring the output voltage and the output current.
 本発明は、容量性を有する電気部品の静電容量値が稼働中でも測定できるので、コンデンサやバッテリなどを使用する電気機器に好適であり、電力変換装置の出力フィルタ(出力コンデンサ)の異常の検出に最適である。 Since the present invention can measure the capacitance value of a capacitive electric component even during operation, it is suitable for an electric device using a capacitor, a battery, etc., and detects an abnormality in an output filter (output capacitor) of a power converter. Best for.
 10 静電容量測定装置
 11 出力指示手段
 12 AD変換手段
 13 微分処理手段
 14 ノイズ除去手段
 15 演算手段
 16 判定手段
 17 報知手段
 18 クラスタリング手段
 19 予測手段
 100 コンバータ
 110 第1アーム
 111 第1上アーム
 112 第1下アーム
 120 第2アーム
 121 第2上アーム
 122 第2下アーム
 130 第3アーム
 131 第3上アーム
 132 第3下アーム
 140 制御手段
 CO 出力コンデンサ
 L コイル
 P 電源
 R 負荷
10 Capacitance measuring device 11 Output instruction means 12 AD conversion means 13 Differentiation processing means 14 Noise reduction means 15 Calculation means 16 Judgment means 17 Notification means 18 Clustering means 19 Prediction means 100 Converter 110 First arm 111 First upper arm 112 First 1 Lower arm 120 2nd arm 121 2nd upper arm 122 2nd lower arm 130 3rd arm 131 3rd upper arm 132 3rd lower arm 140 Control means CO Output capacitor L Coil P Power supply R Load

Claims (11)

  1.  容量性を有する電気部品への出力の過渡変化を指示する指示手段と、
     前記出力を所定の回数微分した微分値が、正の場合に前記微分値に応じた正側を示す1以上のシンボルを割り当てると共に、負の場合に前記微分値に応じた負側を示す1以上のシンボルを割り当てたシンボルデータを生成する微分処理手段と、
     前記シンボルデータが示す各シンボルから過渡変化に対する波形の変動度合いを演算して、静電容量値に対応する変動値を算出する演算手段とを備えた静電容量測定装置。
    An instruction means for instructing a transient change in output to a capacitive electric component,
    When the differential value obtained by differentiating the output a predetermined number of times is positive, one or more symbols indicating the positive side corresponding to the differential value are assigned, and when the differential value is negative, one or more indicating the negative side corresponding to the differential value is assigned. Differentiation processing means to generate symbol data to which the symbol of
    A capacitance measuring device provided with a calculation means for calculating a fluctuation degree of a waveform with respect to a transient change from each symbol indicated by the symbol data and calculating a fluctuation value corresponding to the capacitance value.
  2.  前記変動値に基づいて異常を判定する判定手段を備えた請求項1記載の静電容量測定装置。 The capacitance measuring device according to claim 1, further comprising a determining means for determining an abnormality based on the fluctuation value.
  3.  前記指示手段は、前記過渡変化として、前記出力を単発パルス状に低下させるよう指示する請求項1または2記載の静電容量測定装置。 The capacitance measuring device according to claim 1 or 2, wherein the instruction means is instructed to reduce the output in a single pulse shape as the transient change.
  4.  前記静電容量値を所定間隔ごとに蓄積して、前記静電容量値から異常発生時期を予測する予測手段を備えた請求項1から3のいずれかの項に記載の静電容量測定装置。 The capacitance measuring device according to any one of claims 1 to 3, further comprising a predicting means for predicting an abnormality occurrence time from the capacitance value by accumulating the capacitance value at predetermined intervals.
  5.  前記演算手段は、前記過渡変化の発生時間から所定時間内において、該シンボルデータから、正側のシンボルごとの総数または負側のシンボルごとの総数のいずれか一方または両方を、波形の変動度合い示す変動値として計数する請求項1から3のいずれかの項に記載の静電容量測定装置。 The calculation means indicates the degree of fluctuation of the waveform from the symbol data, either or both of the total number of the positive side symbols and the total number of the negative side symbols within a predetermined time from the occurrence time of the transient change. The capacitance measuring device according to any one of claims 1 to 3, which is counted as a variable value.
  6.  前記演算手段は、前記過渡変化の発生時間から所定時間内において、該シンボルデータから、同じシンボルが連続したシンボル数を順次計数し、これらのシンボル数をそれぞれ2乗した総和を平方根した値を、波形の変動度合い示す変動値として演算する請求項1から3のいずれかの項に記載の静電容量測定装置。 The calculation means sequentially counts the number of consecutive symbols of the same symbol from the symbol data within a predetermined time from the occurrence time of the transient change, and squares the sum of the squares of these symbols. The capacitance measuring device according to any one of claims 1 to 3, which is calculated as a fluctuation value indicating a degree of fluctuation of a waveform.
  7.  前記微分処理手段は、前記シンボルとして、前記微分値の符号が、正の場合に1を割り当てると共に、負の場合に0を割り当てたシンボルデータを生成し、
     前記演算手段は、前記過渡変化の発生時間から所定時間内において、該シンボルデータのLSBからMSBまでの各ビットをMSBからLSBに入れ替えて、nを3以上としたn進数に変換した変動値として演算する請求項1から3のいずれかの項に記載の静電容量測定装置。
    The differential processing means generates symbol data as the symbol to which 1 is assigned when the sign of the differential value is positive and 0 is assigned when the sign of the differential value is negative.
    The arithmetic means replaces each bit of the symbol data from LSB to MSB from MSB to LSB within a predetermined time from the occurrence time of the transient change, and converts n into an n-ary number having 3 or more as a variable value. The capacitance measuring device according to any one of claims 1 to 3 for calculation.
  8.  前記演算手段は、前記過渡変化の発生時間から所定時間内において、該シンボルデータからシンボルが変化するまでのブロック数を計数し、ブロック数の総数を変動値として演算する請求項1から3のいずれかの項に記載の静電容量測定装置。 Any of claims 1 to 3 in which the calculation means counts the number of blocks from the symbol data to the change of the symbol within a predetermined time from the occurrence time of the transient change, and calculates the total number of blocks as a variable value. Capacitance measuring device according to the above section.
  9.  前記微分処理手段が生成したシンボルデータに、収縮処理および膨張処理を行うことにより、所定長さより短いノイズを除去するノイズ除去手段を備えた請求項1から7のいずれかの項に記載の静電容量測定装置。 The capacitance according to any one of claims 1 to 7, further comprising a noise removing means for removing noise shorter than a predetermined length by performing shrinkage processing and expansion processing on the symbol data generated by the differential processing means. Capacitance measuring device.
  10.  前記微分処理手段は、微分値0を中心した所定範囲を不感帯として、シンボル化しない請求項1から8のいずれかの項に記載の静電容量測定装置。 The capacitance measuring device according to any one of claims 1 to 8, wherein the differential processing means does not symbolize a predetermined range centered on a differential value of 0 as a dead zone.
  11.  コンピュータを、
     容量性を有する電気部品への出力の過渡変化を指示する指示手段、
     前記出力を所定の回数微分した微分値が、正の場合に前記微分値に応じた正側を示す1以上のシンボルを割り当てると共に、負の場合に前記微分値に応じた負側を示す1以上のシンボルを割り当てたシンボルデータを生成する微分処理手段、
     前記シンボルデータが示す各シンボルから過渡変化に対する波形の変動度合いを演算して、静電容量値に対応する変動値を算出する演算手段として機能させる静電容量測定プログラム。
    Computer,
    Instructional means for instructing transient changes in output to capacitive electrical components,
    When the differential value obtained by differentiating the output a predetermined number of times is positive, one or more symbols indicating the positive side corresponding to the differential value are assigned, and when the differential value is negative, one or more indicating the negative side corresponding to the differential value is assigned. Differentiation processing means to generate symbol data to which the symbol of
    A capacitance measurement program that calculates the degree of fluctuation of the waveform with respect to transient changes from each symbol indicated by the symbol data and functions as a calculation means for calculating the fluctuation value corresponding to the capacitance value.
PCT/JP2021/030536 2020-09-24 2021-08-20 Electrostatic capacitance measurement device and electrostatic capacitance measurement program WO2022064915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022551203A JP7450984B2 (en) 2020-09-24 2021-08-20 Capacitance measurement device and capacitance measurement program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020159803 2020-09-24
JP2020-159803 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022064915A1 true WO2022064915A1 (en) 2022-03-31

Family

ID=80845141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030536 WO2022064915A1 (en) 2020-09-24 2021-08-20 Electrostatic capacitance measurement device and electrostatic capacitance measurement program

Country Status (2)

Country Link
JP (1) JP7450984B2 (en)
WO (1) WO2022064915A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140034A (en) * 1989-10-26 1991-06-14 Japan Radio Co Ltd Clock phase error detection circuit
JPH08271556A (en) * 1995-03-29 1996-10-18 A & T:Kk Capacitive sensor
JP2011053154A (en) * 2009-09-03 2011-03-17 Sii Nanotechnology Inc Method of measuring dielectric constant and scanning nonlinear dielectric microscope
JP2012181143A (en) * 2011-03-02 2012-09-20 Japan Aviation Electronics Industry Ltd Capacity detection device and resistance detection device
US20130113756A1 (en) * 2010-07-09 2013-05-09 Chemtronics Co., Ltd. Method and device for sensing capacitance change and recording medium in which program for executing method is recorded thereon, and method and device for sensing touch using method and recording medium in which program for executing method is recorded thereon
US20200018948A1 (en) * 2018-07-13 2020-01-16 Infineon Technologies Ag Detection of amplitude, regulation of amplitude and detection of direction of an oscillation of an oscillatory body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955079A (en) 1989-09-29 1990-09-04 Raytheon Company Waveguide excited enhancement and inherent rejection of interference in a subharmonic mixer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140034A (en) * 1989-10-26 1991-06-14 Japan Radio Co Ltd Clock phase error detection circuit
JPH08271556A (en) * 1995-03-29 1996-10-18 A & T:Kk Capacitive sensor
JP2011053154A (en) * 2009-09-03 2011-03-17 Sii Nanotechnology Inc Method of measuring dielectric constant and scanning nonlinear dielectric microscope
US20130113756A1 (en) * 2010-07-09 2013-05-09 Chemtronics Co., Ltd. Method and device for sensing capacitance change and recording medium in which program for executing method is recorded thereon, and method and device for sensing touch using method and recording medium in which program for executing method is recorded thereon
JP2012181143A (en) * 2011-03-02 2012-09-20 Japan Aviation Electronics Industry Ltd Capacity detection device and resistance detection device
US20200018948A1 (en) * 2018-07-13 2020-01-16 Infineon Technologies Ag Detection of amplitude, regulation of amplitude and detection of direction of an oscillation of an oscillatory body

Also Published As

Publication number Publication date
JP7450984B2 (en) 2024-03-18
JPWO2022064915A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
US11984743B2 (en) Battery pack and charging method for a battery pack
JP6777069B2 (en) Information processing equipment, information processing methods, and programs
CN107315138B (en) Fault prediction and health processing method and test system of power MOSFET
US10502790B2 (en) Battery internal resistance measuring device having a differential value calculating unit to treat two adjacent first voltage sampling values with first slope value calculation
US7912669B2 (en) Prognosis of faults in electronic circuits
KR101651883B1 (en) Method for monitoring state of capacitor in modular converter
JP6887361B2 (en) Monitoring target selection device, monitoring target selection method, and program
CN102714101A (en) Method and apparatus for determination of wear to a contact element
CN114729969A (en) Battery state estimating device
US11408944B2 (en) Estimation of the remaining useful life of capacitors
US9075088B2 (en) Power quality monitoring apparatus and method thereof
WO2022064915A1 (en) Electrostatic capacitance measurement device and electrostatic capacitance measurement program
JP2014163921A (en) Charging/discharging test system and control device
US11181569B2 (en) Arc detection method and apparatus using statistical value of electric current
JP2007240300A (en) Insulation detection method and device
CN110188961B (en) Method, system and computer readable storage medium for predicting health of power distribution system
Roy et al. Software reliability allocation of digital relay for transmission line protection using a combined system hierarchy and fault tree approach
KR101549543B1 (en) A power state diagnosis method using kalman estimation process and measuring the relative probability by the metric defined by functional mapping
CN111413564A (en) Supercapacitor failure early warning method, system and equipment
CN114460360B (en) Detection method, system and device based on ammeter measurement current time integral
CN116298719A (en) Equipment insulation aging identification method and device, electronic equipment and storage medium
JP6428396B2 (en) Inspection method and inspection apparatus for photovoltaic power generation system
CN110133539B (en) UPS health degree prediction method, system and computer readable storage medium
US20160349309A1 (en) Device for monitoring partial discharges in an electrical network
JP2018004523A (en) Capacitor state determination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872047

Country of ref document: EP

Kind code of ref document: A1