WO2022064890A1 - Transparent film manufacturing method and transparent film - Google Patents

Transparent film manufacturing method and transparent film Download PDF

Info

Publication number
WO2022064890A1
WO2022064890A1 PCT/JP2021/029634 JP2021029634W WO2022064890A1 WO 2022064890 A1 WO2022064890 A1 WO 2022064890A1 JP 2021029634 W JP2021029634 W JP 2021029634W WO 2022064890 A1 WO2022064890 A1 WO 2022064890A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat treatment
transparent film
less
nitrogen
Prior art date
Application number
PCT/JP2021/029634
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 谷村
彰人 佐部利
祥吾 片野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022551189A priority Critical patent/JPWO2022064890A1/ja
Publication of WO2022064890A1 publication Critical patent/WO2022064890A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a method for producing a transparent film and a transparent film.
  • Nitrogen-containing polymers containing nitrogen atoms in their molecules are widely used as functional resins, heat-resistant resins, ultraviolet-absorbing resins, and the like.
  • Specific examples of the nitrogen-containing polymer include polyamide or polyacrylonitrile containing a nitrogen atom in the polymer, or polyimide or polyaniline having a cyclic structure containing a nitrogen atom.
  • the film When molding the nitrogen-containing polymer into a film, the film may be colored, especially by a method involving melting. Therefore, when making an optical film that needs to be an optically transparent film, a polymer solution in which a nitrogen-containing polymer is dissolved in a solvent is used, and this polymer solution is used to form a film by a method such as solution film formation. There is a way to do it. In such a film forming method, it is effective to use methylene chloride as a solvent, which has a low boiling point and high safety.
  • Films made of nitrogen-containing polymers are strongly required to be dehalogenated when used in electronic components and the like. Therefore, it is necessary to heat-treat the film in order to reduce the methylene chloride in the film after the solution film formation is performed using the polymer solution composed of the nitrogen-containing polymer.
  • a film made of a nitrogen-containing polymer is prone to coloring, which is presumed to be an oxidation reaction of the nitrogen portion, by heating.
  • An object of the present invention is to provide a method for producing a transparent film capable of obtaining a transparent film in which coloring is suppressed with high productivity, and a transparent film in which coloring is suppressed.
  • the present invention is a method for producing a transparent film, which comprises a polymer solution preparation step of preparing a polymer solution containing a nitrogen-containing polymer, an antioxidant, and methylene chloride, and a solution film forming method using the polymer solution.
  • a film forming step of forming a film and a heat treatment step of bringing a heated gas having a temperature of 200 ° C. or higher into contact with each of both surfaces of the film are provided.
  • the heat treatment step is preferably performed by continuously transporting the film in an airtight heat treatment space formed by a drying device equipped with an air supply means and an exhaust means.
  • the heat treatment step it is preferable to treat the film in the range of 1 m 2 or more and 10 m 2 or less per 1 m 3 of the volume of the heat treatment space.
  • the heat treatment step preferably has a film transport speed within the range of 0.5 m or more and 20 m or less per minute.
  • the weight per volume of methylene chloride contained in the exhaust by the exhaust means is preferably 0.1% or less with respect to the entire exhaust.
  • the heated gas preferably has a temperature of 270 ° C. or lower.
  • the heat treatment step is preferably performed within 25 minutes.
  • the nitrogen-containing polymer is preferably polyimide.
  • the antioxidant is preferably a hindered phenolic antioxidant.
  • the hindered phenolic antioxidant preferably has a number average molecular weight of 1000 or more.
  • the film forming process and the heat treatment process are performed continuously.
  • the present invention is a transparent film manufactured by a film manufacturing method, and has a chromaticity b * of less than 2.
  • the present invention it is possible to provide a method for producing a transparent film capable of obtaining a transparent film in which coloring is suppressed due to high productivity, and a transparent film in which coloring is suppressed.
  • FIG. 5 (A) shows the processing device A
  • FIG. 5 (B) shows the processing device B
  • FIG. 5 (C) shows the processing device C
  • FIG. 5 (D) shows the processing device D.
  • FIG. 5 (D) shows the processing device D. It is explanatory drawing explaining the thickness of a film. It is a schematic diagram of another example of a film manufacturing facility.
  • the method for producing a transparent film of the present invention is to form a film by a polymer solution preparation step of preparing a polymer solution containing a nitrogen-containing polymer, an antioxidant, and methylene chloride, and a solution film forming method using the polymer solution.
  • the film forming step and the heat treatment step of bringing a heated gas having a temperature of 200 ° C. or higher into contact with each of both surfaces of the film are provided.
  • the film manufacturing equipment 20 shown in FIGS. 1 and 2 is an example of equipment for manufacturing the film 10. In this embodiment, this example is used.
  • the film 10 that has undergone the heat treatment step is a transparent film.
  • the film manufacturing equipment 20 includes a dope preparation device 22 and a film manufacturing device 23.
  • the film manufacturing apparatus 23 includes a casting unit 37, a tenta 38, a slitter 42, a winder 43, a transmitter 44 and a roller dryer 41 shown in FIG. 2, in order from the upstream side. And a winder 45.
  • the film 10 wound by the winder 43 is supplied to the roller dryer 41 by the feeder 44.
  • the arrow 1 in FIG. 1 means that the process continues to the arrow 1 in FIG.
  • the polymer solution preparation process is a step of preparing a polymer solution by dissolving the nitrogen-containing polymer 11 which is a resin in methylene chloride as a solvent.
  • the polymer solution contains the antioxidant 12 as an additive.
  • the nitrogen-containing polymer 11 is a resin capable of forming a transparent film.
  • the polymer solution is prepared as the dope 21 by the dope preparation device 22.
  • the nitrogen-containing polymer 11 contains a nitrogen atom in the molecule and is soluble in methylene chloride.
  • the nitrogen atom may be contained in the molecule of the polymer, and may have a nitrogen atom in the main chain or a nitrogen atom in the side chain. Further, it may have a cyclic structure containing a nitrogen atom.
  • polyamide (PA, Polyamide), polyacrylonitrile (PAN, Polyacrylonitrile), polyaniline (PANI, polyaniline), polyamideimide (PAI, PolyamideImide) and the like are preferably used.
  • polyacrylamide (PAM, Poly (acrylamide)) such as poly (2-propenamide), polymaleimide (Polymaleimide) and the like are preferably used.
  • polyimide (PI, Polyimidazole), polybenzimidazole (PBI, PolybenzImidazole) and the like are preferably used. Further, a copolymer or the like with these may be used.
  • the nitrogen-containing polymer 11 is preferably a so-called engineering plastic having a ring such as an aromatic ring and / or an imide ring in the main chain and having excellent mechanical strength or heat resistance.
  • polyimide when used for an optical film, polyimide is preferable because it has excellent transparency.
  • a polyimide having a ring such as an aromatic ring and / or an imide ring in the main chain is used.
  • Polyimide is a polymer having an imide bond, and is a polymer containing an imide ring having an imide bond in the repeating unit of the main chain of the polymer.
  • the polyimide is preferably formed from a diamine compound and an acid anhydride compound.
  • aromatic polyimide, alicyclic polyimide, or the like can be used, and these are compounds in which the chemical structure of the portion where the acid anhydride compound and the diamine compound are linked is aromatic or alicyclic. It can be appropriately selected by using it.
  • Aromatic compounds, alicyclic compounds, or their bonds can be replaced with fluorine, hydrocarbons, halogens, hydrophilic groups, or the like.
  • the acid anhydride compound and the diamine compound can be selected from the viewpoint of the methylene chloride solubility or the glass transition point of the resin, or the physical properties or transparency when the film 10 is formed.
  • alicyclic polyimide or fluorine-substituted polyimide is preferable from the viewpoint of methylene chloride solubility, film transparency, and the like.
  • the polyimide is imidized in the state of a resin.
  • a method for forming a polyimide film there is a method of forming a polyamic acid obtained by reacting an acid anhydrous compound and a diamine compound into a film and imidizing it by heat.
  • this method requires high heat treatment and has a large production process load.
  • the resin has a large amount of hydrophilic components and the resin has high metal adhesion, or that insolubilization and coloring are likely to occur after heat treatment, making it difficult to process films for optical applications.
  • the molecular weight of the polyimide is preferably in the range of 10,000 or more and 700,000 or less in terms of weight average molecular weight, and more preferably in the range of 50,000 or more and 500,000 or less. If the molecular weight is 10,000 or less, the strength of the film 10 may not be obtained, and the proportion of molecular ends that tend to be hydrophilic in polyimide increases, so that the metal adhesion of the resin may increase. If the molecular weight is 700,000 or more, it may be difficult to dissolve in methylene chloride.
  • polyimides can be used, but for example, it is synthesized from anhydrous pyromellitic anhydride (PMDA, Pyromellitic Dianhydride) and 4,4'-diaminodiphenyl ether (ODA, 4,4'-Oxydianiline).
  • PMDA Pyromellitic Dianhydride
  • ODA 4,4'-diaminodiphenyl ether
  • TFMB 2,2'-bis (trifluoromethyl)-[1,1'-biphenyl] -4,4'-hydride)
  • a polyimide made of 6FDA / TFMB can be preferably used depending on the physical characteristics of the film and the like.
  • Preferred examples of the commercially available product include Neoprim (registered trademark) manufactured by Mitsubishi Gas Chemical Company, Inc. or KPI-MX300F manufactured by Kawamura Sangyo Co., Ltd.
  • the polyimide a mixture of two or more kinds may be used.
  • a polymer that dissolves 10% or more in mass percent concentration with respect to methylene chloride is preferably used.
  • a resin that dissolves 15% or more is more preferably used, and a polymer that dissolves 20% or more is further preferably used. Dissolution of at least 10% of the polymer will give a smooth film 10 in solution casting.
  • the nitrogen-containing polymer 11 one type may be used, or two or more types may be used.
  • the same kind of polymer having a different molecular weight or the same kind of polymer having a different copolymer composition is appropriately selected from the viewpoint of the solubility or drying property of the solution, or the physical properties or transparency of the film. Can be used.
  • Methylene chloride is used as the solvent 15. Methylene chloride can be used alone as a solvent without using other solvent components in combination. Since methylene chloride is used as the solvent 15, the nitrogen-containing polymer 11 is dissolved in the solvent in a mass ratio sufficient to form the dope 21 even at room temperature. Further, since the nitrogen-containing polymer 11 has good solubility, a film having excellent transparency can be obtained.
  • any solvent containing chlorine in the molecule (hereinafter referred to as chlorine-based solvent) may be used.
  • the chlorine-based solvent that can be used include chloroform, 1,2-dichloroethane, and 1,1,2,2-tetrachloroethane, in addition to methylene chloride.
  • a monohydric alcohol having a carbon number in the range of 1 or more and 4 or less may be added.
  • a monohydric alcohol having a carbon number in the range of 1 or more and 4 or less
  • methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 2-butanol and the like can be used.
  • methanol is used.
  • the mixing ratio of the monohydric alcohol to the methylene chloride is preferably in the range of 0.5% or more and 10% or less in terms of the mass ratio with respect to the total solvent containing the methylene chloride and the monohydric alcohol. It is more preferably 1% or more and 5% or less, and further preferably 1% or more and 3% or less. Within this range, the transparency of the solution-formed film 10 is good.
  • the monohydric alcohol added as a solvent can be measured as the amount of residual solvent in the film.
  • the citric acid ester is represented by the following general formula (1).
  • R 1 , R 2 and R 3 are independently hydrogen (H) or a hydrocarbon group having 3 or more and 5 or less carbon atoms, and R 4 is hydrogen (H). ), A carbonyl group, or an acetyl group.
  • the citric acid ester preferably contains at least a component in which R 1 is hydrogen (H).
  • R 1 and R 4 are hydrogen (H)
  • R 2 and R 3 are isopropyl groups, isopropyl citrate
  • R 1 and R 4 are hydrogen (H).
  • R 2 and R 3 are n-butyl groups, butyl citrate
  • R 1 and R 4 are hydrogen (H)
  • R 2 and R 3 are sec-pentyl groups, sec-pentyl citrate and the like. Be done.
  • isopropyl citrate represented by the following formula (2) is preferable.
  • citric acid ester One type of citric acid ester may be used, or two or more types may be mixed and used. When two or more kinds are mixed, it is recommended to use a citric acid ester which is a mixture by hydrolysis of the citric acid ester, so that the film can be peeled off from the support and promote drying while maintaining the transparency of the film when mixed. Is preferable because it can be imparted. Further, as the citric acid ester, a commercially available one may be used. As a commercially available product, isopropyl citrate (mixture) (Isopropyl Citrate (mixture)) manufactured by Tokyo Kasei Co., Ltd. can be used.
  • the mass ratio of the citric acid ester is preferably in the range of 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin, and is also within this range in this example.
  • the mass ratio of the citric acid ester is 0.01 parts by mass or more, the film 10 has a smoother film surface with better peelability from the support than when it is less than 0.01 parts by mass. ..
  • the mass ratio of the citric acid ester is 10 parts by mass or less, the white turbidity is further suppressed and the haze (cloudiness) is good and the transparent film 10 is obtained as compared with the case where the mass ratio exceeds 10 parts by mass.
  • the mass ratio of the citric acid ester is more preferably in the range of 0.05 parts by mass or more and 5 parts by mass or less.
  • the mass ratio of the citric acid ester in the film 10 is substantially the same as the mass ratio of the citric acid ester in the polymer solution (dope 21 described later (see FIG. 1)).
  • the polymer solution contains the antioxidant 12 in addition to dissolving the nitrogen-containing polymer 11 in a solvent made of methylene chloride.
  • the antioxidant 12 is one of the additives for the polymer solution.
  • any agent can be used as long as it can prevent oxidation in the polymer solution or the film 10 after film formation. Since the film 10 is less colored after the heat treatment step, a hindered phenol-based antioxidant or a phosphoric acid-based antioxidant can be preferably used.
  • the antioxidant 12 one having a relatively large molecular weight is preferably used. This is because volatilization in the heat treatment process is suppressed, and there is less contamination in the process and stains on the film.
  • the preferable molecular weight is preferably 300 or more, more preferably 500 or more, and further preferably 1000 or more from the viewpoint of effects and the like.
  • the upper limit is preferably 2000 or less, more preferably 1500 or less, still more preferably 1200 or less, from the viewpoint of solubility in the polymer solution or transparency of the film after film formation.
  • the hindered phenolic antioxidant for example, the following compounds can be used. Each of these is commercially available, and the trade name, molecular weight, number of phenol groups having an antioxidant function in the molecule (hereinafter referred to as the number of phenol groups), and the like are also described.
  • Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (molecular weight; 1178, number of phenol groups 4, trade name: Irganox® 1010, manufactured by BASF Japan, Inc., Alternatively, trade name; Adecastab (registered trademark) AO-60, manufactured by ADEKA), 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (molecular weight) 643, number of phenol groups 2, trade name; Irganox (registered trademark) 1035, manufactured by BASF Japan, Inc., octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (molecular weight; 531, phenol) Group 1, trade name; Irganox (registered trademark) 1076, manufactured by BASF Japan, N, N'-hex
  • hindered phenol group and a hindered amine group for example, bis- (1,2,2,6,6-pentamethyl-4-piperidyl) ⁇ [3,5-bis (1,1-dimethylethyl) -4- Hydroxyphenyl] methyl ⁇ butylmalonate (molecular weight; 685, number of phenol groups 1, trade name; Tinuvin® 144, manufactured by BASF Japan Ltd.) can also be used.
  • Phosphate-based antioxidants include 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane (molecular weight; 733, trade name; adekastab). Registered trademark) PEP-8, manufactured by ADEKA Corporation) can be used.
  • antioxidants it has excellent solubility in methylene chloride, which is the solvent 15, and there is no crying of the additive from the solution in which the nitrogen-containing polymer 11 is dissolved in the solvent 15 to the film formed, and there is no coloring. Since the film 10 having excellent transparency can be obtained, a hindered phenol-based antioxidant can be preferably used.
  • the hindered phenolic antioxidant one having no hindered amine group is preferable, and since the number of phenol groups in the molecule is 2 or more, the coloration of the film is suppressed and a transparent film can be obtained. It can be preferably used.
  • additives other than the antioxidant 12 may be added.
  • the additive other than the antioxidant 12 include various additives such as a plasticizer, an ultraviolet absorber, fine particles, an antioxidant, and a matting agent.
  • a known peeling accelerator also referred to as a peeling reducing agent or the like
  • the peeling accelerator a so-called surfactant which is a compound having an ionic group and a hydrocarbon group is preferable, and specifically, a phosphate ester-based surfactant, a carboxylic acid or a carboxylate-based surfactant, and the like.
  • Sulfonic acid or sulfonate-based surfactants, ammonium salt-based surfactants and the like are preferable.
  • phosphoric acid ester-based surfactants are particularly preferable, and specifically, Plysurf (registered trademark) A208B, A208F, A208N, A219B and the like manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. can be used.
  • the polymer solution is prepared as a dope 21 by the film manufacturing equipment 20.
  • the dope preparation device 22 includes a mixing tank 26, a pump 27, a filter 28, a storage tank 31, and a pump 32, which are connected by a pipe 33 in this order from the upstream side.
  • the mixing tank 26 is for dissolving the nitrogen-containing polymer 11 and the antioxidant 12 in the solvent 15 by mixing the nitrogen-containing polymer 11, which is the raw material of the dope 21, the antioxidant 12, and the solvent 15. .
  • the solvent 15 is adjusted by mixing methylene chloride and methanol, which is a monohydric alcohol, in the mixing tank 26.
  • the nitrogen-containing polymer 11 and the antioxidant 12 are added to the mixing tank 26 containing the solvent 15.
  • the solvent 15 is a mixed solvent having a mass ratio of methylene chloride and methanol of 98: 2.
  • the nitrogen-containing polymer 11 supplied to the mixing tank 26 is a powder in this example, but the aspect of the nitrogen-containing polymer 11 is not limited to the powder, and may be, for example, flakes or pellets.
  • the mixing tank 26 is provided with a stirring mechanism (not shown) for stirring the guided mixture of the nitrogen-containing polymer 11, the antioxidant 12, and the solvent 15, thereby promoting dissolution.
  • the nitrogen-containing polymer 11 and the antioxidant 12 are dissolved in the solvent 15 by being mixed with the solvent 15 in the mixing tank 26 to form the dope 21. Since the antioxidant 12 has excellent solubility in the solvent 15 and also has excellent compatibility with the solution in which the nitrogen-containing polymer 11 is dissolved in the solvent 15, a film 10 having excellent transparency can be obtained.
  • the nitrogen-containing polymer 11 supplied to the mixing tank is heat-dried before being supplied to reduce the water content of the resin.
  • the nitrogen-containing polymer 11 may absorb moisture.
  • the water content may be in the range of 2% or more and 4% or less. If the solution is made while the water content of the nitrogen-containing polymer 11 is high, the solution may become cloudy or the transparency of the film 10 may deteriorate, and the resin concentration may fluctuate due to fluctuations in the water content of the resin. Drying or peeling property may vary.
  • the heating and drying of the nitrogen-containing polymer 11 is preferably in the range of 100 ° C. or higher and 180 ° C. or lower, and more preferably in the range of 120 ° C. or higher and 160 ° C. or lower.
  • the heating time is preferably in the range of 5 minutes or more and 240 minutes or less, and more preferably in the range of 20 minutes or more and 180 minutes or less.
  • the water content of the resin after heating and drying is preferably 1% or less, more preferably 0.7% or less.
  • the mixing tank 26 may be provided with a temperature control mechanism (not shown) for adjusting the internal temperature.
  • the mixing tank 26 of this example also has a temperature control mechanism, and keeps the temperature of the mixture at room temperature (generally within the range of 25 ° C. or higher and 30 or lower).
  • the temperature of the mixture is adjusted by the temperature control mechanism, so that dissolution is promoted and alteration and / or foaming is suppressed.
  • the temperature in the mixing tank 26 is more preferably in the range of 15 ° C. or higher and 39 ° C.
  • the mixture may be dissolved without temperature control, and in that case, the temperature control mechanism may not be provided.
  • the raw materials of the dope 21 to which the mixing tank 26 is mixed are not limited to the nitrogen-containing polymer 11, the antioxidant 12, and the solvent 15.
  • the dope 21 is sent from the mixing tank 26 to the filter 28 by the pump 27, and these foreign substances are removed by the filter 28.
  • a filter paper having a pore diameter of 20 ⁇ m 63LS manufactured by Toyo Filter Paper Co., Ltd.
  • the pore diameter and the material are not limited to this example, and the application of the film 10 or the nitrogen-containing polymer 11 and the antioxidant are prevented. It may be determined according to the type of the agent 12 and the solvent 15.
  • the pore diameter of the filter paper used as the filter 28 is preferably in the range of 5 ⁇ m or more and 100 ⁇ m or less, more preferably in the range of 10 ⁇ m or more and 50 ⁇ m or less, and further preferably in the range of 10 ⁇ m or more and 25 ⁇ m or less.
  • filters examples include metal filters, and the pore diameter of the metal filter is preferably in the range of 3 ⁇ m or more and 15 ⁇ m or less, more preferably in the range of 3 ⁇ m or more and 10 ⁇ m or less, and further preferably in the range of 3 ⁇ m or more and 5 ⁇ m or less.
  • a metal filter having such a pore size is used, a metal filter may be arranged downstream of the filter 28 and filtered in two stages. Such stepwise filtration is particularly effective in producing optical films.
  • a heater may be provided between the pump 27 and the filter 28, and the heater may promote the dissolution of the undissolved portion that was not dissolved in the mixing tank 26. Further, depending on the type of the nitrogen-containing polymer 11 used, it may be difficult to dissolve in the solvent 15, and a heater may be used in such a case as well.
  • the temperature of the dope 21 in the heater is more preferably in the range of 40 ° C. or higher and 120 ° C. or lower, further preferably in the range of 45 ° C. or higher and 90 ° C. or lower, and more preferably 60 ° C. It is particularly preferable that the temperature is in the range of 90 ° C. or lower.
  • the dope 21 that has been filtered by the filter 28 is guided to the storage tank 31 and stored in the storage tank 31 until it is subjected to casting.
  • the storage tank 31 is preferably provided with a stirring mechanism (not shown), and in this example as well, the storage tank 31 is provided with a stirring mechanism having the same configuration as the stirring mechanism of the mixing tank 26. This stirring mechanism more reliably maintains the uniformity of the dope 21 until it is subjected to casting.
  • the number of storage tanks 31 is one, but a plurality of storage tanks 31 may be used. In the case of a plurality of storage tanks 31, a plurality of storage tanks 31 may be connected in series or in parallel.
  • the mixing tank 26, the filter 28, and the storage tank 31 are each provided with a light-shielding member that shields light from the inside, and this is also provided in this example.
  • the tank main body for accommodating the mixture is formed of a material having a light-shielding function, and the upper portion of the tank main body is provided with a lid as a light-shielding member also having a light-shielding function. ing. With such a light-shielding member, deterioration of the nitrogen-containing polymer 11 due to light is suppressed.
  • the dope 21 to be cast may have a concentration of the nitrogen-containing polymer 11 of 15% or more and 30% or less at a mass percent concentration with respect to the entire dope 21. Preferably, it is set to 20% in this example. By setting it to 15% or more, it is easier to secure the viscosity of the dope (corresponding to the pressure loss (pressure loss)) from the casting die 36 as compared with the case of less than 15%.
  • the solvent 15 is methylene chloride as compared with the case where it is larger than 30%, the nitrogen-containing polymer 11 is more reliably dissolved in the solvent 15, and the dope 21 becomes more cloudy. It is definitely prevented.
  • the concentration of the nitrogen-containing polymer 11 in the dope 21 is more preferably in the range of 15% or more and 25% or less, and further preferably in the range of 15% or more and 23% or less in terms of mass percent concentration.
  • the concentration of the polyimide is more preferably in the range of 20% or more and 30% or less in terms of mass percent concentration.
  • the dope 21 can be cast even if the concentration of the nitrogen-containing polymer 11 is in the range of 8% or more and less than 15% by using, for example, a gisa (preferably G-type gisa).
  • the concentration of the nitrogen-containing polymer 11 in the dope 21 can be adjusted by adjusting the supply amounts of the solvent 15 and the nitrogen-containing polymer 11 supplied to the mixing tank 26.
  • the concentration of the nitrogen-containing polymer 11 of the dope 21 is a mass percent concentration with respect to the entire dope 21, and is a mass ratio of the nitrogen-containing polymer 11 to the mass sum of the nitrogen-containing polymer 11 and the solvent 15. That is, when the mass of the solvent 15 is M15 and the mass of the resin is M11, it is calculated by ⁇ M11 / (M15 + M11) ⁇ ⁇ 100.
  • the mass percent concentration of the antioxidant 12 with respect to the dope 21 is preferably in the range of 0.01% or more and 10% or less, and is also within this range in this example.
  • the mass percent concentration of the antioxidant 12 in the dope 21 is more preferably in the range of 0.05% or more and 5.0% or less.
  • the film forming step is a step of forming a film by a solution casting method.
  • the solution casting method consists of a casting step of forming a casting film by casting a polymer solution, Dope 21 on a metal support, and a peeling step of peeling the casting film from the support to form a film. It consists of a process.
  • the casting step and the peeling step are carried out by the casting unit 37 of the film manufacturing apparatus 23.
  • the film manufacturing apparatus 23 includes a casting unit 37, a tenta 38, a slitter 42, a winder 43, a roller dryer 41, and a winder 45 in this order from the upstream side. ..
  • the film 10 that has passed through the tenta 38 is once wound up.
  • the wound film 10 is sent to the roller dryer 41 for subsequent processing.
  • the casting unit 37 includes a belt 46 as a support formed in an annular shape, a pair of rollers 47 that run in the longitudinal direction while supporting the belt 46, a casting die 36, and a stripping roller 48. Be prepared. At least one of the pair of rollers 47 is rotated in the circumferential direction by a drive mechanism (not shown), and this rotation causes the belt 46 wound around the pair of rollers 47 to circulate in the longitudinal direction.
  • the flow die 36 is arranged above one of the pair of rollers 47 in this example, but may be arranged above the belt 46 between one and the other of the pair of rollers 47.
  • the flow-casting die 36 is a discharge unit that continuously discharges the supplied dope 21 from the discharge port 36a facing the belt 46. By continuously discharging the dope 21 to the running belt 46, the dope 21 is spread on the belt 46, and the casting film 51 is continuously formed on the belt 46 (casting step).
  • a reference numeral PC is attached to a position (hereinafter referred to as a casting position) where the casting film 51 begins to be formed when the dope 21 comes into contact with the belt 46.
  • the material of the belt 46 is not particularly limited, but metal is preferable, and SUS is used in this example.
  • the pair of rollers 47 includes a temperature controller (not shown) that adjusts the peripheral surface temperature.
  • the temperature of the cast film 51 is adjusted via the belt 46 by the roller 47 whose peripheral surface temperature is adjusted.
  • the peripheral surface temperature of the roller 47 is, for example, in the range of 10 ° C. or higher and 30 ° C. or lower. To be inside.
  • the peripheral surface temperature of the roller 47 is set within the range of ⁇ 15 ° C. or higher and 5 ° C. or lower. Due to such gelation, the cast film 51 is hardened to the extent that it can be transported.
  • a drum (not shown) may be used as the support instead of the belt 46.
  • a drive mechanism is provided on the drum, and the drum is rotated in the circumferential direction to form the cast film 51 on the peripheral surface.
  • the peripheral surface of the drum functions as the surface of the traveling support.
  • the material of the drum is not particularly limited, but metal is preferable, and SUS is preferable as the metal, and SUS plated with hard chrome is particularly preferable.
  • the drum shall be provided with a temperature controller (not shown) for adjusting the peripheral surface temperature, and the temperature of the casting film 51 may be adjusted by adjusting the peripheral surface temperature of the drum. It is good to do it.
  • the dry gelation method it is preferable to use the belt 46 as the support, and in the case of the cooling gelation method, it is preferable to use the drum as the support.
  • a decompression chamber (not shown) may be provided upstream of the belt 46 in the traveling direction, and is also provided in this example. This decompression chamber sucks the atmosphere of the upstream area of the discharged dope 21 and decompresses this area by this suction. Further, a blower (not shown) may be provided at a position facing the belt 46 to promote the drying of the cast film 51.
  • the cast film 51 is hardened on the belt 46 to the extent that it can be transported to the tenta 38, and then continuously peeled off from the belt 46 in a state containing a solvent. As a result, the film 10 is formed (peeling step).
  • the stripping roller 48 is for continuously stripping the casting film 51 from the belt 46.
  • the stripping roller 48 supports the film 10 formed by peeling from the belt 46, for example, from below, and keeps the stripping position PP in which the cast film 51 is peeled off from the belt 46 constant.
  • the stripping method may be either a method of pulling the film 10 to the downstream side, a method of rotating the stripping roller 48 in the circumferential direction, or the like.
  • the casting film 51 formed on the belt 46 also contains the citric acid ester.
  • the citric acid ester has a carboxyl residue. Therefore, from the above-mentioned presumed action on the interaction between the hydroxyl group on the surface of the belt 46 and the dope 21, the flow-through film 51 has a small peeling load from the belt 46, and as a result, the flow-through film 51 is smooth (smooth). ) Is continuously peeled off from the belt 46. Therefore, a film 10 having excellent smoothness on the film surface can be obtained. Since the film surface is smooth, a film 10 that can be used for an optical film having strict requirements for optical characteristics can be obtained.
  • the stripping from the belt 46 is performed, for example, while the solvent content of the cast film 51 is in the range of 10% by mass or more and 100% by mass or less.
  • the solvent content (unit;%) is a value based on the dry amount, and specifically, when the mass of the solvent 15 is M15 and the mass of the film 10 is M10, ⁇ M15. / (M10-M15) ⁇ ⁇ 100 is a percentage.
  • stripping is performed, for example, while the solvent content of the cast film 51 is in the range of 100% by mass or more and 300% by mass or less.
  • the casting unit 37 forms the film 10 from the dope 21.
  • the belt 46 circulates between the spreading position PC and the stripping position PP, so that casting of the dope 21 and stripping of the spreading film 51 are repeatedly performed.
  • the film 10 stripped off and formed is guided by the tenta 38.
  • a blower (not shown) for promoting the drying of the film 10 may be arranged in the transport path between the casting unit 37 and the tenter 38.
  • the tenta 38 includes a clip 52 that grips the side of the long film 10, a pair of rails (not shown) and a chain (not shown). Instead of the clip 52, a pin plate (not shown) in which a plurality of pins (not shown) are arranged upright on the upper surface of the table and hold the film 10 by piercing the side portions of the film 10 with individual pins. You may use it.
  • the rails are installed on the side of the transport path of the film 10, and the pair of rails are arranged apart from each other.
  • the chain is hung on a prime mover sprocket and a driven sprocket (not shown) and is movably attached along rails.
  • the clips 52 are attached to the chain at predetermined intervals, and the rotation of the driving sprocket causes the clips 52 to circulate and move along the rails.
  • the clip 52 starts holding the guided film 10 near the entrance of the tenter 38, moves toward the exit, and releases the holding near the exit.
  • the clip 52 released from holding moves to the vicinity of the entrance again and holds the newly guided film 10. In this way, the clip 52 is conveyed in the longitudinal direction while gripping each side portion of the film 10.
  • the tenta 38 is provided with a blower 53 above the transport path of the film 10.
  • An outlet (not shown) through which the dry gas flows out is formed on the lower surface of the blower 53, and the dry gas (for example, air) is blown out toward the passing film 10.
  • the temperature of the dry gas from the blower 53 is preferably in the range of 40 ° C. or higher and 200 ° C. or lower.
  • a blower having the same structure may be provided below the transport path of the film 10. Since the tenter 38 has the blower 53 as described above, the film 10 can be dried while passing through the tenta 38 (first drying step). However, the tenta 38 may not be provided.
  • the film 10 that has passed through the tenta 38 is sent to the slitter 42.
  • the slitter 42 is for cutting off each side end of the film 10. This excision brings the film 10 to, for example, the desired product width.
  • a slitter having the same configuration as the slitter 42 may be arranged at another position. For example, between the casting unit 37 and the tenta 38, and / or between the tenta 38 and the roller dryer 41.
  • the excised side end may be guided by a crusher (not shown), crushed into chips by the crusher, and used as a raw material for a new dope 21.
  • the winder 43 is for winding the film 10 into a roll.
  • the winder 43 includes a motor (not shown), and a winding core 54 is set in the winder 43. When the winding core 54 is rotated by the motor, the film 10 is wound around the winding core 54.
  • the heat treatment step is a step of bringing a heated gas having a temperature of 200 ° C. or higher into contact with each of both surfaces of the film.
  • the heat treatment step can be performed as a drying step using a drying device (second drying step).
  • the film 10 wound around the winding core 54 is sent to the heat treatment step, which is the next step, by the feeder 44.
  • a roller dryer 41 is used as the drying device.
  • the roller dryer 41 is heat-insulated and airtight.
  • the roller dryer 41 forms a heat treatment space S inside.
  • the roller dryer 41 includes a plurality of rollers 41a in the heat treatment space S inside, and the plurality of rollers 41a support the film 10 on the peripheral surface.
  • the film 10 is wound around the roller 41a and conveyed.
  • the heat treatment step is performed by transporting the film 10 with a roll tow roll.
  • the heat treatment space S1 formed by the processing apparatus A which is an example of the roller dryer 41, has a height H2.0 m, a depth D4.0 m, a width W1.0 m, and a volume 8. It is a rectangular parallelepiped of 0m3 .
  • the drying device A includes an air supply port 55 and an exhaust port 56.
  • the heated gas is supplied from the air supply port 55 through the air supply chamber 57, exhausted from the exhaust port 56, and discharged to the exhaust chamber 58.
  • the film 10 is sent out from the feeder 44, advanced in the depth D direction, and wound by the winder 45.
  • the width W direction of the processing apparatus A and the width direction of the film 10 are the same.
  • the air supply means includes the air supply port 55 and the air supply chamber 57.
  • the exhaust means includes an exhaust port 56 and an exhaust chamber 58.
  • the plurality of rollers 41a are provided so as to have a diameter of 0.1 m and the film 10 reciprocates 5 times in the height direction with a height difference of 1 m.
  • the path length L is about 1 m.
  • the processing apparatus A processes the film 10 with a processing length of 10 m.
  • the width of the film 10 is 0.7 m, and the treated area of the film 10 treated by the heat treatment space S1 is 7 m 2 .
  • the heated gas flows with each of both sides of the film 10 alongside the surface of the film 10 or against the surface of the film 10. Therefore, in the heat treatment space S1, the processing area of the film 10 per volume 1 m 3 of the heat treatment space is 0.9 m 2 .
  • the heat treatment space S1 brings the film 10 into contact with a heated gas having a specific temperature, but in order to bring the heated gas at a specific temperature into contact with the film 10, it is necessary to maintain the temperature in the heat treatment space S1.
  • the air volume capable of maintaining the temperature of the heat treatment space S1 is about 80 m 3 / min.
  • the air volume varies depending on the size of the roller dryer 41, that is, the volume of the heat treatment space S, the heating means, and the like.
  • a processing device B, a processing device C, or a processing device D can be used as another example of the roller dryer 41.
  • the reference numerals are given only to a part thereof.
  • the processing device A is also described as a reference for the processing device or the heat treatment space.
  • the processing device B, the processing device C, or the processing device D has the same configuration as the processing device A.
  • the diameter of the roller and the like are exaggerated and shown, and are different from the actual dimensions.
  • One air supply port 55 and one exhaust port 56 may be arranged for each roller dryer 41, or a plurality of them may be arranged. Regardless of the number of air supply ports 55 and exhaust ports 56 arranged, the supply and exhaust of the heated gas can be adjusted to perform at a set air volume.
  • the air volume means the volume of the heated gas supplied per minute.
  • the supply and exhaust of the heated gas can be adjusted to be performed at a set temperature. By supplying and exhausting the heated gas, it is possible to bring the heated gas at a temperature set on both sides of the film 10 into contact with each other.
  • a member for controlling the wind speed such as a net, a perforated plate, or a slit plate can be provided between the air supply port and the film of the heated gas and between the film and the exhaust port. This is because the heated gas can be uniformly brought into contact with the entire film in the processing device, and the entire inside of the processing device can be maintained at a desired temperature.
  • the area of the film 10 to be processed is adjusted per 1 m 3 of the volume of the heat treatment space according to the air volume and the area of the film 10 processed by the roller dryer 41.
  • the oxidation reaction of the film 10 may proceed and coloring may occur.
  • the film processing area per 1 m 3 of the volume of the heat treatment space is smaller than 1 m 2 , the volume of the heat treatment space is large, and it is necessary to increase the air volume in order to maintain the temperature of the heated gas in contact with the film 10.
  • a large air volume promotes the oxidation reaction of the film 10 due to the contact with the heated air, and there is a possibility that coloring is likely to occur.
  • the area of the film 10 means the area of one side of the film 10. Therefore, the area actually processed in the heat treatment space is doubled when the front and back surfaces of the film 10 are calculated separately. Therefore, when the film is processed at a ratio of 1 m 2 or more of the film per 1 m 3 of the volume of the heat treatment space, if the areas of the front and back of the film 10 are distinguished from each other, the film per 1 m 3 of the volume of the heat treatment space is used. The film will be processed at a ratio of 2 m 2 or more.
  • the heat treatment step it is preferable to treat the film at a ratio of 10 m 2 or less per 1 m 3 of the heat treatment space volume. It is more preferably 7 m 2 or less, and even more preferably 5 m 2 or less.
  • the film 10 is reciprocated in the heat treatment space to the extent that it can be conveyed by a roller, a space between the reciprocating films 10 is secured, and the heated air is uniformly brought into contact with the entire film in the heat treatment process to obtain methylene chloride or chlorine in the film. Since atoms are used in optical films and the like, the number of atoms can be reduced to the extent that there is no problem. Further, the coloring of the film 10 due to the air volume can be prevented from varying in the heat treatment space.
  • the gas used for the heating gas is air.
  • air heated by an electric heater is used.
  • the air may be humidity-controlled and dehumidified as the case may be.
  • noble gas such as nitrogen, helium or argon may be added and blown. Moreover, you may perform the process of blowing superheated steam and heating.
  • a long film is used in an airtight heat treatment space formed by a drying device equipped with an air supply means and an exhaust means.
  • a method of transporting 10 by roll-to-roll can be preferably used.
  • the air supply means and the exhaust means of the drying device keep the heat treatment space at a specific temperature by supplying and exhausting the heated gas, respectively.
  • the drying device forming the heat treatment space is insulated. In such a heat treatment space, by continuously transporting the film 10 using a roll while supplying and exhausting the heated gas, it is possible to bring the heated air of 200 ° C. or higher into contact with each of both sides of the film 10. ..
  • the temperature of the heated gas in contact with the film 10 is preferably 200 ° C. or higher, more preferably 205 ° C. or higher, still more preferably 210 ° C. or higher.
  • the temperature is 200 ° C. or higher, the effect of reducing the amount of methylene chloride contained in the film 10 is preferably exhibited as compared with the case where the temperature is lower than 200 ° C.
  • the temperature of the heated gas in contact with the film 10 is preferably 270 ° C. or lower, more preferably 260 ° C. or lower, still more preferably 250 ° C. or lower.
  • Continuing to supply the heated gas higher than 270 ° C. to the film 10 may cause a problem in the equipment and equipment, and the inside of the equipment may be contaminated by the volatilized material from the film.
  • the continuous transfer of the film is performed at a speed of 0.5 m / min or more. More preferably, it is 1.0 m / min or more, and even more preferably 2.0 m / min or more.
  • the transport speed is generally constant. From the viewpoint of production efficiency and from the viewpoint of preventing the heated air from coming into contact with the film more than necessary, 0.5 m / min or more is preferable.
  • the speeds of the film forming step and the heat treatment step can be set to be the same, and the continuous step can be performed.
  • the continuous transfer of the film is performed at a speed of 20 m / min or less. It is more preferably 10 m / min or less, and even more preferably 5 m / min or less. By performing at a speed of 20 m / min or less, it is possible to sufficiently bring the heated gas into contact with each of both sides of the film.
  • the weight of methylene chloride contained in the exhaust gas by the exhaust means is 1% or less with respect to the weight of a certain volume of the exhaust gas. It is more preferably 0.5% or less, still more preferably 0.1% or less. Since the weight of methylene chloride contained in the exhaust is 1% or less of the weight of a certain volume of the exhaust, there is no problem in using the amount of methylene chloride or chlorine atoms remaining in the film 10 for the optical film or the like. This is because the methylene chloride in the exhaust can be easily treated.
  • the weight of the film 10 that has undergone the heat treatment step is reduced to 0.1% or less of the weight of the entire film with respect to the methylene chloride remaining in the film 10.
  • the weight of methylene chloride contained in the film 10 is a value measured by a calibration curve method by gas chromatography measurement for a film in which a film piece of the film 10 is dissolved. This is because the weight of methylene chloride remaining on the film 10 is 0.1% or less, which makes it more suitable for members for electronic components than when it is larger than 0.1%.
  • the film 10 preferably has a chromaticity b * of less than 2.
  • the chromaticity b * is the value of the chromaticity b * using the L * a * b * color system measured with a spectrocolorimeter (SE7700, manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with JIS Z8370. Is.
  • the smaller the value of the chromaticity b * the less the yellow component in the film color.
  • the chromaticity b * is preferably less than 2, more preferably less than 1.5, and even more preferably less than 1.2. It is said that the coloring of the film 10 is also caused by the combination of the nitrogen-containing polymer of the film 10 with oxygen.
  • the film 10 is produced as a transparent film having a reduced residual methylene chloride and a chromaticity b * of less than 2 and less coloring by the film manufacturing method configured as described above.
  • the chromaticity b * is preferably evaluated using a value obtained by dividing the chromaticity b * by the thickness in consideration of the influence of the thickness of the film 10.
  • the chromaticity b * / thickness value is preferably 0.4 or less.
  • the thickness T10 of the film 10 is in the range of 5 ⁇ m or more and 100 ⁇ m or less, more preferably 30 ⁇ m or more and 80 ⁇ m or less in this example. Not limited to this range, it may be thicker than 100 ⁇ m or thinner than 5 ⁇ m.
  • the thickness T10 when used as an optical film is preferably in the range of 10 ⁇ m or more and 60 ⁇ m or less.
  • the thickness T10 is 10 ⁇ m or more and 50 ⁇ m or less, and the thickness T10 when used as a diaphragm for earphones or the like is 5 ⁇ m. It is preferably within the range of 15 ⁇ m or more.
  • the film is not limited to a single-layer structure, but may be a multi-layer structure.
  • the number of layers is not limited to three, and may be two or four or more.
  • the multi-layered film is obtained, for example, by co-flowing each dope forming each layer.
  • the film 10 that has passed through the tenta 38 is once wound up, but the film 10 that has passed through the tenta 38 may be continuously sent to the heat treatment step.
  • the film 10 is directly sent from the tenter 38 to the roller dryer 41.
  • the film 10 can be manufactured with high productivity.
  • the method for producing a transparent film and the transparent film configured as described above it is possible to obtain a transparent film in which coloring is suppressed with high productivity.
  • coloring that is presumed to be an oxidation reaction of the nitrogen portion is likely to occur.
  • a film is molded using a methylene chloride solution of a nitrogen-containing polymer, it is necessary to efficiently reduce the methylene chloride remaining on the film.
  • heat transfer drying roll contact
  • heating by electromagnetic radiation such as infrared rays promotes coloring of the film. It is presumed that in the film manufacturing method configured as described above, the solvent concentration on the film surface can be lowered by aeration heating on both sides of the film, and the solvent diffusion from both sides in the film can be promoted.
  • the ventilation of both sides of the film may promote the oxidation of the film. Therefore, in order to prevent oxidation of the film, it is preferable to specify the film treatment amount per volume of the heat treatment space and heat with a low air volume so as to reduce the air flow volume and perform heating efficiently. Heating with a low air volume also leads to maintenance of the drying temperature in the heat treatment space and improvement of thermal efficiency. Further, in order to maintain the drying efficiency, it is preferable to adjust the transport speed and the like so that the amount of methylene chloride in the exhaust does not increase.
  • the film molding to the heat treatment step can be performed by the continuous production method, the production efficiency is improved.
  • the film 10 having a chromaticity b * of less than 2 is brought into contact with both sides of the film 10 after adjusting the temperature with a heated gas. It can be manufactured by a simple heat treatment process such as. Further, since the heat treatment step can be performed while the film 10 is conveyed by adjusting the speed, the productivity can be improved.
  • the heat treatment step also serves as a drying step which is usually performed, and can be manufactured without adding an additional step to the conventional step. Therefore, the method for producing a transparent film is a production method capable of obtaining a transparent film in which coloring is suppressed with high productivity, and the produced film is a transparent film in which coloring is suppressed.
  • Example 1 to [Example 9]
  • the film 10 having a single-layer structure was manufactured by the film manufacturing equipment 20, and used as Examples 1 to 9.
  • Polyimide was used as the nitrogen-containing polymer 11.
  • the polyimide used was manufactured as follows. Under a nitrogen atmosphere, 1 g of isoquinoline was charged into a reaction vessel to which a vacuum pump equipped with a solvent trap and a filter was connected. Next, 375 g of ⁇ -butyrolactone and 104 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl (TFMB, 2,2'-Bis (trifluoromethyl) benzidine) were added to the reaction vessel. It was stirred and dissolved.
  • TFMB 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl
  • any of the compounds A, B, C, D or E described below was used as the antioxidant.
  • the amount of the antioxidant used is described in the "Amount” column of "Additives” in Table 2.
  • “None” was described in the “Additives” column of Table 2, and "-” was described in the “Amount” column.
  • Compound A Pentaerythrityl-tetrax [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (molecular weight; 1178, trade name: Irganox® 1010, manufactured by BASF Japan), Compound B: 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane (molecular weight; 733, trade name; Adecastab (registered trademark) PEP-8 , Made by ADEKA), Compound C: Bis- (1,2,2,6,6-pentamethyl-4-piperidyl) ⁇ [3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl ⁇ Butyl malonate (molecular weight; 685, trade name; Tinuvin (registered trademark) 144, manufactured by BASF Japan, Inc.), compound D: 3,9-bis [2-
  • the dope 21 containing polyimide used for the film manufacturing equipment 20 was prepared as follows. First, the polyimide was placed in a heating device and heated at 140 ° C. for 2 hours to dry the resin for dehydration. As a result, the water content before heating was 0.18% based on the entire polyimide, but it became 0.04%. Next, in the mixing tank 26, 128.3 kg of methylene chloride and 2.6 kg of methanol were mixed to prepare a solvent 15. The methanol ratio (mass ratio) in the solvent was 2%, and the volume was 100 L. The solvent 15 was stirred and 150 g of citric acid ester was added. Then, 29.9 kg of polyimide was added over 25 minutes. This was stirred to dissolve the polyimide. This was used as a dope 21 and used in the film manufacturing equipment 20. The mass ratio of each component excluding the solvent of the dope 21 containing polyimide was as follows. The mass ratio of the polyimide in the dope 21 was 18.6%.
  • Dope 21 containing polyimide Polyimide 100.0 parts by mass Isopropyl citrate 0.50 parts by mass
  • the details of the casting process, peeling process and drying process were as follows.
  • the dope 21 was passed through the filter 28, respectively. First, it was passed through a 30 ⁇ m filter and then through a 10 ⁇ m filter. The dope 21 was delivered from the casting die at 1450 cc / min.
  • the belt 46 was operated at 5 m / min. Therefore, the flow rate was 5 m / min.
  • the belt 46 was a metal band made of SUS. Drying was recommended on the metal band by the film manufacturing equipment 20. After peeling in the peeling step, the film 10 was wound through the tenta 38 and the slitter 42.
  • Winding was performed on a winding core made of FRP (Fiber-Reinforced Plastics) with a film width of 700 mm and a film length of 500 m.
  • the thickness of this film 10 is described in the column of "thickness" of "film formation” in Table 2.
  • the wound film 10 was set in the delivery machine 44, and the film 10 was continuously conveyed by the roller dryer 41 to perform a heat treatment step.
  • the types of the roller dryer 41 are described in the "heat treatment space” column of "heat treatment” in Table 2.
  • the processing device A, the processing device B, or the processing device C is as described above (see Table 1).
  • the amount of methylene chloride remaining on the film 10 was measured as follows with respect to the film 10 produced by changing the heat treatment time. As a sample for measurement, a film piece of film 10 was dissolved in chloroform so as to be about 0.9%, and the amount of methylene chloride in the sample for measurement was measured by a calibration curve method by gas chromatography measurement. The apparatus used was gas chromatography (manufactured by Shimadzu Corporation) GC-2014, and the separation column used was INTER CAP1 (length 30 m, inner diameter 0.32 mm) manufactured by GL Science.
  • the measurement conditions are as follows: the measurement sample is injected at an injection volume of 0.1 ⁇ L, the column temperature is 60 ° C, the oven temperature program starts measurement from 60 ° C, and the temperature rises to 120 ° C in 5 minutes and to 160 ° C in the next 5 minutes. It was a step to do.
  • the amount of methylene chloride in the measurement sample / the concentration of the film piece in the measurement sample was determined as a percentage. Therefore, the amount of methylene chloride obtained is the mass ratio of the amount of methylene chloride to the entire film 10.
  • the time for the residual methylene chloride to be 0.1% in the film 10 was determined and described in the column of "Time for the residual methylene chloride to be 0.1%" in Table 2.
  • the chromaticity b * was measured with respect to the produced film 10.
  • the chromaticity b * was measured using a spectrocolorimeter (SE7700, manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with JIS Z8370. As for the evaluation criteria, less than 2 is acceptable and 2 or more is unacceptable. Further, in order to consider the influence of the thickness of the film 10, the value obtained by dividing the chromaticity b * by the thickness of the film 10 measured above is divided into the “b * value / thickness” column of the “result” in Table 2. Described in.
  • Example 10 to [Example 25]
  • the film 10 having a single-layer structure was manufactured by the film manufacturing facility 20 or the film manufacturing facility 70, and used as Examples 10 to 25.
  • the one using the film manufacturing equipment 20 was described as "separate process” in the "film forming process” column of Table 3, and the one using the film manufacturing equipment 70 was described as “consistent”.
  • the same polyimide as in Example 1 was used as the nitrogen-containing polymer 11, and the same compound A as in Example 1 was used as the antioxidant.
  • the film 10 was manufactured in the same manner as in Example 1 except that the processing apparatus in the heat treatment step, the temperature of the heated gas, and the transport speed of the film 10, which is the processing speed of the heat treatment, were different.
  • the conditions of the heat treatment process are shown in Table 3.
  • Exhaust gas was obtained from the exhaust port 56 of the roller dryer 41, which is a treatment device in the heat treatment step, and the concentration of methylene chloride in the exhaust gas was measured.
  • concentration of methylene chloride is indicated by the weight of methylene chloride with respect to the total weight of the exhaust gas.
  • the effect of reducing the methylene chloride remaining on the film 10 and the coloring of the film 10 were evaluated by the above methods and criteria. The results of each evaluation are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Provided are: a transparent film manufacturing method the enables obtaining of a transparent film in which coloring is suppressed by having high productivity; and a transparent film in which coloring is suppressed. This method or the like for manufacturing a transparent film (10) comprises: a polymer solution preparation step for preparing a polymer solution containing a nitrogen-containing polymer (11), an antioxidant (12), and methylene chloride; a film formation step for forming a film by a solution film-forming method using said polymer solution; and a heating step for bringing a heated gas having a temperature not lower than 200°C into contact with both surfaces of the film.

Description

透明フィルムの製造方法及び透明フィルムManufacturing method of transparent film and transparent film
 本発明は、透明フィルムの製造方法及び透明フィルムに関する。 The present invention relates to a method for producing a transparent film and a transparent film.
 分子中に窒素原子を含む含窒素ポリマーは、機能性樹脂、耐熱性樹脂、又は紫外線吸収樹脂等として広く用いられている。含窒素ポリマーは、具体的には、ポリマー中に窒素原子を含有するポリアミドもしくはポリアクリロニトリル等、又は、窒素原子を含む環状構造を有するポリイミドもしくはポリアニリン等が挙げられる。 Nitrogen-containing polymers containing nitrogen atoms in their molecules are widely used as functional resins, heat-resistant resins, ultraviolet-absorbing resins, and the like. Specific examples of the nitrogen-containing polymer include polyamide or polyacrylonitrile containing a nitrogen atom in the polymer, or polyimide or polyaniline having a cyclic structure containing a nitrogen atom.
 これらの樹脂をフィルム状に成型して光学フィルムとしたものが知られている。例えば、分子内に芳香環を有する有機系添加剤を含有するポリイミドフィルムが知られている。このポリイミドフィルムは、ソリの発生が抑制され、フレキシブルディスプレイ等に用いられる(特許文献1)。 It is known that these resins are molded into a film to form an optical film. For example, a polyimide film containing an organic additive having an aromatic ring in the molecule is known. This polyimide film suppresses the generation of warpage and is used for flexible displays and the like (Patent Document 1).
国際公開第2016/190105号International Publication No. 2016/190105
 含窒素ポリマーをフィルム状に成型する際、特に溶融を伴う方法ではフィルムが着色する場合があった。このため、光学的に透明なフィルムであることが必要な光学フィルムとする際には、含窒素ポリマーを溶剤に溶解したポリマー溶液とし、このポリマー溶液を用いて溶液製膜等の方法により成膜する方法が行われている。このような製膜方法において、溶剤としては、低沸点であり安全性が高いメチレンクロライドを用いることが有効である。 When molding the nitrogen-containing polymer into a film, the film may be colored, especially by a method involving melting. Therefore, when making an optical film that needs to be an optically transparent film, a polymer solution in which a nitrogen-containing polymer is dissolved in a solvent is used, and this polymer solution is used to form a film by a method such as solution film formation. There is a way to do it. In such a film forming method, it is effective to use methylene chloride as a solvent, which has a low boiling point and high safety.
 含窒素ポリマーからなるフィルムは、電子部品等に用いられる場合には、脱ハロゲンを強く要求される。そのため、含窒素ポリマーからなるポリマー溶液を用いて溶液製膜を行った後、フィルム中のメチレンクロライドを低減するために、フィルムに対して熱処理を行う必要があった。しかしながら、特に含窒素ポリマーからなるフィルムは、加熱することにより、窒素部分の酸化反応と推定される着色が起き易かった。 Films made of nitrogen-containing polymers are strongly required to be dehalogenated when used in electronic components and the like. Therefore, it is necessary to heat-treat the film in order to reduce the methylene chloride in the film after the solution film formation is performed using the polymer solution composed of the nitrogen-containing polymer. However, in particular, a film made of a nitrogen-containing polymer is prone to coloring, which is presumed to be an oxidation reaction of the nitrogen portion, by heating.
 本発明は、高い生産性にて、着色が抑制された透明フィルムを得ることができる透明フィルムの製造方法及び着色が抑制された透明フィルムを提供することを目的とする。 An object of the present invention is to provide a method for producing a transparent film capable of obtaining a transparent film in which coloring is suppressed with high productivity, and a transparent film in which coloring is suppressed.
 本発明は、透明フィルムの製造方法であって、含窒素ポリマーと、酸化防止剤と、メチレンクロライドとを含有するポリマー溶液を作成するポリマー溶液作成工程と、ポリマー溶液を用いた溶液製膜法によりフィルムを形成するフィルム形成工程と、フィルムの両面のそれぞれに200℃以上の温度の加熱気体を接触させる熱処理工程とを備える。 The present invention is a method for producing a transparent film, which comprises a polymer solution preparation step of preparing a polymer solution containing a nitrogen-containing polymer, an antioxidant, and methylene chloride, and a solution film forming method using the polymer solution. A film forming step of forming a film and a heat treatment step of bringing a heated gas having a temperature of 200 ° C. or higher into contact with each of both surfaces of the film are provided.
 熱処理工程は、給気手段と排気手段とを備えた乾燥装置が形成する気密の熱処理空間において、フィルムを連続搬送することにより行われることが好ましい。 The heat treatment step is preferably performed by continuously transporting the film in an airtight heat treatment space formed by a drying device equipped with an air supply means and an exhaust means.
 熱処理工程は、熱処理空間の容積1mあたりフィルムを1m以上10m以下の範囲内により処理することが好ましい。 In the heat treatment step, it is preferable to treat the film in the range of 1 m 2 or more and 10 m 2 or less per 1 m 3 of the volume of the heat treatment space.
 熱処理工程は、フィルムの搬送速度が1分あたり0.5m以上20m以下の範囲内の速さであることが好ましい。 The heat treatment step preferably has a film transport speed within the range of 0.5 m or more and 20 m or less per minute.
 熱処理工程は、排気手段による排気に含まれるメチレンクロライドの体積あたりの重量が、排気全体に対し0.1%以下であることが好ましい。 In the heat treatment step, the weight per volume of methylene chloride contained in the exhaust by the exhaust means is preferably 0.1% or less with respect to the entire exhaust.
 加熱気体は、270℃以下の温度であることが好ましい。 The heated gas preferably has a temperature of 270 ° C. or lower.
 熱処理工程は、25分以内の時間で行うことが好ましい。 The heat treatment step is preferably performed within 25 minutes.
 含窒素ポリマーは、ポリイミドであることが好ましい。 The nitrogen-containing polymer is preferably polyimide.
 酸化防止剤は、ヒンダードフェノール系酸化防止剤であることが好ましい。 The antioxidant is preferably a hindered phenolic antioxidant.
 ヒンダードフェノール系酸化防止剤は、数平均分子量が1000以上であることが好ましい。 The hindered phenolic antioxidant preferably has a number average molecular weight of 1000 or more.
 フィルム形成工程と熱処理工程とは連続して行うことが好ましい。 It is preferable that the film forming process and the heat treatment process are performed continuously.
 また、本発明は、フィルムの製造方法により製造された透明フィルムであって、色度bが2未満である。 Further, the present invention is a transparent film manufactured by a film manufacturing method, and has a chromaticity b * of less than 2.
 本発明によれば、高い生産性により着色が抑制された透明フィルムを得ることができる透明フィルムの製造方法及び着色が抑制された透明フィルムを提供することができる。 According to the present invention, it is possible to provide a method for producing a transparent film capable of obtaining a transparent film in which coloring is suppressed due to high productivity, and a transparent film in which coloring is suppressed.
フィルム製造設備の一例の概略図である。It is a schematic diagram of an example of a film manufacturing equipment. ローラ乾燥機の一例の概略図である。It is a schematic diagram of an example of a roller dryer. ローラ乾燥機及び熱処理空間の形状の一例を説明する説明図である。It is explanatory drawing explaining an example of the shape of a roller dryer and a heat treatment space. 熱処理空間及びローラの配置の一例を説明する説明図である。It is explanatory drawing explaining an example of the heat treatment space and the arrangement of a roller. 熱処理空間及びローラの配置の別の例を説明する説明図である。図5(A)は処理装置Aを、図5(B)は処理装置Bを、図5(C)は処理装置Cを、また、図5(D)は処理装置Dを示す。It is explanatory drawing explaining another example of the heat treatment space and the arrangement of a roller. 5 (A) shows the processing device A, FIG. 5 (B) shows the processing device B, FIG. 5 (C) shows the processing device C, and FIG. 5 (D) shows the processing device D. フィルムの厚みを説明する説明図である。It is explanatory drawing explaining the thickness of a film. フィルム製造設備の別の例の概略図である。It is a schematic diagram of another example of a film manufacturing facility.
 本発明の透明フィルムの製造方法は、含窒素ポリマーと、酸化防止剤と、メチレンクロライドとを含有するポリマー溶液を作成するポリマー溶液作成工程と、ポリマー溶液を用いた溶液製膜法によりフィルムを形成するフィルム形成工程と、フィルムの両面のそれぞれに200℃以上の温度の加熱気体を接触させる熱処理工程とを備える。 The method for producing a transparent film of the present invention is to form a film by a polymer solution preparation step of preparing a polymer solution containing a nitrogen-containing polymer, an antioxidant, and methylene chloride, and a solution film forming method using the polymer solution. The film forming step and the heat treatment step of bringing a heated gas having a temperature of 200 ° C. or higher into contact with each of both surfaces of the film are provided.
 図1及び図2に示すフィルム製造設備20は、フィルム10を製造する設備の一例である。本実施形態では、この例を用いる。熱処理工程を経たフィルム10が、透明フィルムである。フィルム製造設備20は、ドープ調製装置22と、フィルム製造装置23とを備える。フィルム製造装置23は、上流側から順に、図1に示す、流延ユニット37と、テンタ38と、スリッタ42と、巻取機43と、図2に示す、送出機44と、ローラ乾燥機41と、巻取機45とを備える。巻取機43により巻き取られたフィルム10は、送出機44により、ローラ乾燥機41に供給される。図1の矢印1は、図2の矢印1に、工程が続くことを意味する。 The film manufacturing equipment 20 shown in FIGS. 1 and 2 is an example of equipment for manufacturing the film 10. In this embodiment, this example is used. The film 10 that has undergone the heat treatment step is a transparent film. The film manufacturing equipment 20 includes a dope preparation device 22 and a film manufacturing device 23. The film manufacturing apparatus 23 includes a casting unit 37, a tenta 38, a slitter 42, a winder 43, a transmitter 44 and a roller dryer 41 shown in FIG. 2, in order from the upstream side. And a winder 45. The film 10 wound by the winder 43 is supplied to the roller dryer 41 by the feeder 44. The arrow 1 in FIG. 1 means that the process continues to the arrow 1 in FIG.
 ポリマー溶液作成工程について説明する。ポリマー溶液作成工程は、樹脂である含窒素ポリマー11を、溶媒であるメチレンクロライドに溶解することにより、ポリマー溶液を作成する工程である。ポリマー溶液は、添加剤として酸化防止剤12を含有する。含窒素ポリマー11は、透明なフィルムを形成可能な樹脂である。ポリマー溶液は、ドープ21として、ドープ調製装置22により調製する。 The polymer solution preparation process will be explained. The polymer solution preparation step is a step of preparing a polymer solution by dissolving the nitrogen-containing polymer 11 which is a resin in methylene chloride as a solvent. The polymer solution contains the antioxidant 12 as an additive. The nitrogen-containing polymer 11 is a resin capable of forming a transparent film. The polymer solution is prepared as the dope 21 by the dope preparation device 22.
 含窒素ポリマー11は、分子中に窒素原子を含み、メチレンクロライドに溶解するものを用いる。窒素原子は、ポリマーの分子中に含まれていればよく、主鎖に窒素原子を有していても、側鎖に窒素原子を有していてもよい。また、窒素原子を含む環状構造を有していてもよい。 The nitrogen-containing polymer 11 contains a nitrogen atom in the molecule and is soluble in methylene chloride. The nitrogen atom may be contained in the molecule of the polymer, and may have a nitrogen atom in the main chain or a nitrogen atom in the side chain. Further, it may have a cyclic structure containing a nitrogen atom.
 主鎖に窒素原子を有するポリマーとしては、例えば、ポリアミド(PA、Polyamide)、ポリアクリロニトリル(PAN、Polyacrylonitrile)、ポリアニリン(PANI、polyaniline)、及びポリアミドイミド(PAI、PolyamideImide)等が好ましく用いられる。側鎖に窒素原子を有するポリマーとしては、ポリ(2-プロペンアミド)等のポリアクリルアミド(PAM、Poly(acrylamide))、及びポリマレイミド(Polymaleimide)等が好ましく用いられる。窒素原子を含む環状構造を有するポリマーとしては、ポリイミド(PI、Polyimide)、及びポリベンゾイミダゾール(PBI、PolybenzImidazole)等が好ましく用いられる。また、これらとの共重合物等を用いてもよい。 As the polymer having a nitrogen atom in the main chain, for example, polyamide (PA, Polyamide), polyacrylonitrile (PAN, Polyacrylonitrile), polyaniline (PANI, polyaniline), polyamideimide (PAI, PolyamideImide) and the like are preferably used. As the polymer having a nitrogen atom in the side chain, polyacrylamide (PAM, Poly (acrylamide)) such as poly (2-propenamide), polymaleimide (Polymaleimide) and the like are preferably used. As the polymer having a cyclic structure containing a nitrogen atom, polyimide (PI, Polyimidazole), polybenzimidazole (PBI, PolybenzImidazole) and the like are preferably used. Further, a copolymer or the like with these may be used.
 含窒素ポリマー11は、主鎖に芳香族環及び/又はイミド環等の環を有し、機械強度又は耐熱性等が優れる、いわゆるエンジニアリングプラスチックであることが好ましい。中でも、光学フィルムに用いる場合は、透明性に優れるため、ポリイミドが好ましい。本実施形態では、主鎖に芳香族環及び/又はイミド環等の環を有するポリイミドを用いる。 The nitrogen-containing polymer 11 is preferably a so-called engineering plastic having a ring such as an aromatic ring and / or an imide ring in the main chain and having excellent mechanical strength or heat resistance. Among them, when used for an optical film, polyimide is preferable because it has excellent transparency. In this embodiment, a polyimide having a ring such as an aromatic ring and / or an imide ring in the main chain is used.
 ポリイミドは、イミド結合を持つポリマーであり、ポリマーの主鎖の繰返し単位中にイミド結合を有するイミド環を含むポリマーである。ポリイミドは、ジアミン化合物と酸無水物化合物とから形成されることが好ましい。ポリイミドとしては、芳香族ポリイミド、又は脂環族ポリイミド等を用いることができ、これらは酸無水物化合物とジアミン化合物とが連結された部分の化学構造が、芳香族又は脂環族である化合物を用いることにより適宜選択できる。芳香族、脂環族、又はそれらの結合部等を、フッ素、炭化水素、ハロゲン、又は親水性基等で置換することもできる。酸無水物化合物及びジアミン化合物は、メチレンクロライド溶解性若しくは樹脂のガラス転移点、又はフィルム10とした際の物性若しくは透明性の観点から選択することができる。これらのうち脂環族ポリイミド又はフッ素置換ポリイミドは、メチレンクロライド溶解性又はフィルムの透明性等の点から好ましい。 Polyimide is a polymer having an imide bond, and is a polymer containing an imide ring having an imide bond in the repeating unit of the main chain of the polymer. The polyimide is preferably formed from a diamine compound and an acid anhydride compound. As the polyimide, aromatic polyimide, alicyclic polyimide, or the like can be used, and these are compounds in which the chemical structure of the portion where the acid anhydride compound and the diamine compound are linked is aromatic or alicyclic. It can be appropriately selected by using it. Aromatic compounds, alicyclic compounds, or their bonds can be replaced with fluorine, hydrocarbons, halogens, hydrophilic groups, or the like. The acid anhydride compound and the diamine compound can be selected from the viewpoint of the methylene chloride solubility or the glass transition point of the resin, or the physical properties or transparency when the film 10 is formed. Of these, alicyclic polyimide or fluorine-substituted polyimide is preferable from the viewpoint of methylene chloride solubility, film transparency, and the like.
 ポリイミドは、樹脂の状態でイミド化されていることが好ましい。ポリイミドのフィルム形成方法として、酸無水化合物とジアミン化合物とが反応したポリアミック酸をフィルム化して熱によりイミド化する方法があるが、この方法では、高熱処理が必要で生産工程負荷が大きい、ポリアミック酸の親水性成分が多く樹脂の金属付着性が高い、又は熱処理後に不溶化や着色が起きやすく光学用途のフィルム加工が困難である等のおそれがある。樹脂の状態でイミド化され、メチレンクロライドへの溶解性を有するポリイミドを用いることにより、溶液製膜が可能であり、透明で平滑なフィルムを得ることができるため好ましい。 It is preferable that the polyimide is imidized in the state of a resin. As a method for forming a polyimide film, there is a method of forming a polyamic acid obtained by reacting an acid anhydrous compound and a diamine compound into a film and imidizing it by heat. However, this method requires high heat treatment and has a large production process load. There is a risk that the resin has a large amount of hydrophilic components and the resin has high metal adhesion, or that insolubilization and coloring are likely to occur after heat treatment, making it difficult to process films for optical applications. It is preferable to use a polyimide that is imidized in the state of a resin and has solubility in methylene chloride because a solution film can be formed and a transparent and smooth film can be obtained.
 ポリイミドの分子量は、重量平均分子量で10000以上700000以下の範囲内が好ましく、50000以上500000以下の範囲内がより好ましい。分子量が10000以下であると、フィルム10の強度が得られないおそれがあり、またポリイミドにおいて親水性となりやすい分子末端の比率が高くなるため、樹脂の金属付着性が高まるおそれがある。分子量が700000以上であると、メチレンクロライドへの溶解が困難となるおそれがある。 The molecular weight of the polyimide is preferably in the range of 10,000 or more and 700,000 or less in terms of weight average molecular weight, and more preferably in the range of 50,000 or more and 500,000 or less. If the molecular weight is 10,000 or less, the strength of the film 10 may not be obtained, and the proportion of molecular ends that tend to be hydrophilic in polyimide increases, so that the metal adhesion of the resin may increase. If the molecular weight is 700,000 or more, it may be difficult to dissolve in methylene chloride.
 このようなポリイミドであればいずれも用いることができるが、例えば、無水ピロメリット酸無水物(PMDA、Pyromellitic Dianhydride)と4,4′-ジアミノジフェニルエーテル(ODA、4,4′-Oxydianiline)とから合成されるポリイミド、4,4′-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA、4,4′-(Hexafluoroisopropylidene)diphthalic Anhydride)と2,2′-ビス(トリフルオロメチル)-4,4′-ジアミノ-ジフェニル(TFMB、2,2′-bis(trifluoromethyl)-[1,1′-biphenyl]-4,4′-diamine)とから合成されるポリイミド、又は、1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,3’,4,4’-二無水物(H-BPDA)と4,4′-ジアミノジフェニルエーテル(ODA)とから合成されるポリイミド等が好ましい。 Any of such polyimides can be used, but for example, it is synthesized from anhydrous pyromellitic anhydride (PMDA, Pyromellitic Dianhydride) and 4,4'-diaminodiphenyl ether (ODA, 4,4'-Oxydianiline). Polyimide, 4,4'-(hexafluoroisopropylidene) diphthalic acid dianhydride (6FDA, 4,4'-(Hexafluoroisopropylide) diphthalic Anhydride) and 2,2'-bis (trifluoromethyl) -4,4 Polyimide synthesized from'-diamino-diphenyl (TFMB, 2,2'-bis (trifluoromethyl)-[1,1'-biphenyl] -4,4'-hydride), or 1,1'-bicyclohexane -3,3', 4,4'-Tetracarboxylic acid-3,3', 4,4'-Polyimide synthesized from dianhydride (H-BPDA) and 4,4'-diaminodiphenyl ether (ODA) Etc. are preferable.
 より具体的には、フィルムの物性の点等により、6FDA/TFMBからなるポリイミドを好ましく用いることができる。市販品としては、三菱瓦斯化学(株)製ネオプリム(登録商標)又は河村産業(株)製KPI-MX300F等が好ましくあげられる。なお、ポリイミドは、2種以上の混合物を用いても良い。 More specifically, a polyimide made of 6FDA / TFMB can be preferably used depending on the physical characteristics of the film and the like. Preferred examples of the commercially available product include Neoprim (registered trademark) manufactured by Mitsubishi Gas Chemical Company, Inc. or KPI-MX300F manufactured by Kawamura Sangyo Co., Ltd. As the polyimide, a mixture of two or more kinds may be used.
 含窒素ポリマー11は、メチレンクロライドに対して質量パーセント濃度で10%以上溶解するポリマーが好ましく用いられる。15%以上溶解する樹脂がより好ましく用いられ、20%以上溶解するポリマーがさらに好ましく用いられる。少なくともポリマーを10%溶解すると、溶液流延において平滑なフィルム10を得ることができる。 As the nitrogen-containing polymer 11, a polymer that dissolves 10% or more in mass percent concentration with respect to methylene chloride is preferably used. A resin that dissolves 15% or more is more preferably used, and a polymer that dissolves 20% or more is further preferably used. Dissolution of at least 10% of the polymer will give a smooth film 10 in solution casting.
 含窒素ポリマー11は、1種を用いてもよいし、2種以上を使用しても良い。2種以上を使用する場合は、例えば、分子量の異なる同種のポリマー、又は共重合組成の異なる同種のポリマーを、溶液の溶解性若しくは乾燥性、又はフィルムの物理特性若しくは透明性の観点から適宜選択して使用することができる。 As the nitrogen-containing polymer 11, one type may be used, or two or more types may be used. When two or more kinds are used, for example, the same kind of polymer having a different molecular weight or the same kind of polymer having a different copolymer composition is appropriately selected from the viewpoint of the solubility or drying property of the solution, or the physical properties or transparency of the film. Can be used.
 メチレンクロライドは、溶剤15として用いる。メチレンクロライドは、他の溶剤成分を併用することなく、単独で溶剤として使用することができる。溶剤15にメチレンクロライドを用いているから、含窒素ポリマー11は、室温下であっても、ドープ21とするのに十分な質量割合で溶剤に溶解する。また、含窒素ポリマー11の溶解性がよいから、透明性に優れたフィルムが得られる。 Methylene chloride is used as the solvent 15. Methylene chloride can be used alone as a solvent without using other solvent components in combination. Since methylene chloride is used as the solvent 15, the nitrogen-containing polymer 11 is dissolved in the solvent in a mass ratio sufficient to form the dope 21 even at room temperature. Further, since the nitrogen-containing polymer 11 has good solubility, a film having excellent transparency can be obtained.
 なお、メチレンクロライド以外の溶剤15としては、塩素を分子内に含む溶剤(以下、塩素系溶剤と称する)であれば用いてもよい。使用できる塩素系溶剤としては、メチレンクロライドの他に、例えば、クロロホルム、1,2-ジクロロエタン、又は1,1,2,2-テトラクロロエタンが挙げられる。 As the solvent 15 other than methylene chloride, any solvent containing chlorine in the molecule (hereinafter referred to as chlorine-based solvent) may be used. Examples of the chlorine-based solvent that can be used include chloroform, 1,2-dichloroethane, and 1,1,2,2-tetrachloroethane, in addition to methylene chloride.
 メチレンクロライドに、その他の成分を添加して溶剤15としてもよい。例えば、炭素数が1以上4以下の範囲内の1価アルコールを添加してもよい。このような1価アルコールとしては、メタノール、エタノール、1-プロパノール、イソプロパノール、1-ブタノール、又は、2-ブタノール等を用いることができる。好ましくは、メタノールを用いる。 Other components may be added to methylene chloride to prepare the solvent 15. For example, a monohydric alcohol having a carbon number in the range of 1 or more and 4 or less may be added. As such a monohydric alcohol, methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 2-butanol and the like can be used. Preferably, methanol is used.
 1価アルコールを添加することにより、特に、溶液流延法によりフィルム10を作成する場合において、ポリマー溶液からなるドープ21が流延ダイ36の金属リップに付着し固まった場合に、極端に取れにくく、フィルム10においてスジが発生する等の面状故障の原因になるとの固着の問題、又はドープ21を流延する金属の支持体(ベルト46)から、フィルム10を剥離させる工程にて、必要な荷重が非常に高くなるとの剥取りの問題が改善される。 By adding the monovalent alcohol, especially when the film 10 is prepared by the solution casting method, it is extremely difficult to remove the dope 21 made of the polymer solution when it adheres to the metal lip of the casting die 36 and hardens. It is necessary in the step of peeling the film 10 from the metal support (belt 46) on which the dope 21 is spread, or the problem of sticking that causes a surface failure such as streaks in the film 10. The problem of stripping at very high loads is ameliorated.
 メチレンクロライドへの1価アルコールの混合割合は、メチレンクロライドと1価アルコールとを含む全溶剤に対して、質量割合で、0.5%以上10%以下の範囲内であることが好ましい。より好ましくは、1%以上5%以下、さらに好ましくは、1%以上3%以下である。この範囲内であることにより、溶液製膜したフィルム10の透明性が良好である。本発明において、溶剤として添加した1価アルコールは、フィルム中の残留溶剤量として測定することができる。 The mixing ratio of the monohydric alcohol to the methylene chloride is preferably in the range of 0.5% or more and 10% or less in terms of the mass ratio with respect to the total solvent containing the methylene chloride and the monohydric alcohol. It is more preferably 1% or more and 5% or less, and further preferably 1% or more and 3% or less. Within this range, the transparency of the solution-formed film 10 is good. In the present invention, the monohydric alcohol added as a solvent can be measured as the amount of residual solvent in the film.
 1価アルコールを添加した場合は、メチレンクロライドに、その他の成分としてさらにクエン酸エステルを添加した溶剤とすることが好ましい。クエン酸エステルは、以下の一般式(1)で示される。式(1)において、R、R及びRは、それぞれ独立して、水素(H)又は炭素数が3以上5以下の範囲内の炭化水素基であり、Rは、水素(H)、カルボニル基、又はアセチル基である。クエン酸エステルは、Rが水素(H)である成分を少なくとも含むことが好ましい。 When a monohydric alcohol is added, it is preferable to use a solvent in which a citric acid ester is further added as another component to methylene chloride. The citric acid ester is represented by the following general formula (1). In the formula (1), R 1 , R 2 and R 3 are independently hydrogen (H) or a hydrocarbon group having 3 or more and 5 or less carbon atoms, and R 4 is hydrogen (H). ), A carbonyl group, or an acetyl group. The citric acid ester preferably contains at least a component in which R 1 is hydrogen (H).
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 クエン酸エステルの例としては、式(1)において、R及びRが水素(H)、R及びRがイソプロピル基である、クエン酸イソプロピル、R及びRが水素(H)、R及びRがn-ブチル基である、クエン酸ブチル、R及びRが水素(H)、R及びRがsec-ペンチル基である、クエン酸sec-ペンチル等が挙げられる。これらのなかでも、以下の式(2)に示すクエン酸イソプロピルが好ましい。 As an example of the citrate ester, in the formula (1), R 1 and R 4 are hydrogen (H), R 2 and R 3 are isopropyl groups, isopropyl citrate, R 1 and R 4 are hydrogen (H). , R 2 and R 3 are n-butyl groups, butyl citrate, R 1 and R 4 are hydrogen (H), R 2 and R 3 are sec-pentyl groups, sec-pentyl citrate and the like. Be done. Among these, isopropyl citrate represented by the following formula (2) is preferable.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 クエン酸エステルは、1種を用いてもよいし、2種以上を混合して用いても良い。2種以上を混合する場合は、クエン酸エステルの加水分解により混合物とされたクエン酸エステルを用いることが、混合した際のフィルムの透明性を保ちつつ支持体からの剥離性及び乾燥の促進性が付与できるため好ましい。また、クエン酸エステルは、市販されているものを使用してもよい。市販されているものとしては、東京化成社製の、くえん酸イソプロピル(混合物)(Isopropyl Citrate(mixture))等を使用することができる。 One type of citric acid ester may be used, or two or more types may be mixed and used. When two or more kinds are mixed, it is recommended to use a citric acid ester which is a mixture by hydrolysis of the citric acid ester, so that the film can be peeled off from the support and promote drying while maintaining the transparency of the film when mixed. Is preferable because it can be imparted. Further, as the citric acid ester, a commercially available one may be used. As a commercially available product, isopropyl citrate (mixture) (Isopropyl Citrate (mixture)) manufactured by Tokyo Kasei Co., Ltd. can be used.
 クエン酸エステルの質量割合は、樹脂100質量部に対して、0.01質量部以上10質量部以下の範囲内であることが好ましく、本例でもこの範囲内にしている。クエン酸エステルの質量割合が0.01質量部以上であることにより、0.01質量部未満である場合に比べて、支持体からの剥離性が良好でより平滑なフィルム面のフィルム10となる。クエン酸エステルの質量割合が10質量部以下であることにより、10質量部を超える場合に比べて、白濁がより抑えられ、ヘイズ(曇り度)が良好で透明なフィルム10となる。クエン酸エステルの質量割合は、0.05質量部以上5質量部以下の範囲内であることがより好ましい。フィルム10におけるクエン酸エステルの質量割合は、ポリマー溶液(後述のドープ21(図1参照))におけるクエン酸エステルの質量割合と概ね同じになる。 The mass ratio of the citric acid ester is preferably in the range of 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin, and is also within this range in this example. When the mass ratio of the citric acid ester is 0.01 parts by mass or more, the film 10 has a smoother film surface with better peelability from the support than when it is less than 0.01 parts by mass. .. When the mass ratio of the citric acid ester is 10 parts by mass or less, the white turbidity is further suppressed and the haze (cloudiness) is good and the transparent film 10 is obtained as compared with the case where the mass ratio exceeds 10 parts by mass. The mass ratio of the citric acid ester is more preferably in the range of 0.05 parts by mass or more and 5 parts by mass or less. The mass ratio of the citric acid ester in the film 10 is substantially the same as the mass ratio of the citric acid ester in the polymer solution (dope 21 described later (see FIG. 1)).
 上記のように、溶剤にクエン酸エステルを添加して使用することにより、添加剤によるヘーズの低下を抑えながら、アルコールを添加した場合であっても乾燥が促進され、フィルム10同士の貼り付き性が改善される。 As described above, by adding the citric acid ester to the solvent and using it, drying is promoted even when alcohol is added while suppressing the decrease in haze due to the additive, and the stickability between the films 10 is achieved. Is improved.
 ポリマー溶液は、メチレンクロライドからなる溶剤に、含窒素ポリマー11を溶解させる他に、酸化防止剤12を含む。酸化防止剤12は、ポリマー溶液の添加剤の1種である。酸化防止剤12としては、ポリマー溶液又は製膜後のフィルム10における酸化を防止できるものであればよく、各種のものを用いることができる。熱処理工程を経た後のフィルム10の着色が少ないため、ヒンダードフェノール系酸化防止剤、又は、リン酸系酸化防止剤を好ましく用いることができる。 The polymer solution contains the antioxidant 12 in addition to dissolving the nitrogen-containing polymer 11 in a solvent made of methylene chloride. The antioxidant 12 is one of the additives for the polymer solution. As the antioxidant 12, any agent can be used as long as it can prevent oxidation in the polymer solution or the film 10 after film formation. Since the film 10 is less colored after the heat treatment step, a hindered phenol-based antioxidant or a phosphoric acid-based antioxidant can be preferably used.
 酸化防止剤12としては、分子量が比較的大きいものが好ましく用いられる。熱処理工程での揮散が抑制され、工程の汚染やフィルムの汚れが少ないからである。好ましい分子量は、効果等の観点から、300以上が好ましく、より好ましくは500以上であり、さらに好ましくは1000以上である。一方、上限としては、ポリマー溶液への溶解性、または製膜後のフィルムの透明性の観点から、2000以下が好ましく、より好ましくは、1500以下であり、さらに好ましくは、1200以下である。酸化防止剤は、一定の分子量にすることにより、フィルム10を加熱した際に、酸化防止剤の揮散を押さえることができる。 As the antioxidant 12, one having a relatively large molecular weight is preferably used. This is because volatilization in the heat treatment process is suppressed, and there is less contamination in the process and stains on the film. The preferable molecular weight is preferably 300 or more, more preferably 500 or more, and further preferably 1000 or more from the viewpoint of effects and the like. On the other hand, the upper limit is preferably 2000 or less, more preferably 1500 or less, still more preferably 1200 or less, from the viewpoint of solubility in the polymer solution or transparency of the film after film formation. By setting the molecular weight of the antioxidant to a certain level, it is possible to suppress the volatilization of the antioxidant when the film 10 is heated.
 具体的には、ヒンダードフェノール系酸化防止剤としては、例えば、次の化合物を用いることができる。これらはそれぞれ市販されており、商品名、分子量、及び、分子中の酸化防止機能を有するフェノール基の数(以下、フェノール基数と記載)等をあわせて記載する。ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(分子量;1178、フェノール基数4、商品名;Irganox(登録商標)1010、BASFジャパン社製、又は、商品名;アデカスタブ(登録商標)AO-60、ADEKA社製)、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(分子量;643、フェノール基数2、商品名;Irganox(登録商標)1035、BASFジャパン社製)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(分子量;531、フェノール基数1、商品名;Irganox(登録商標)1076、BASFジャパン社製)、N,N′-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロパンアミド)](分子量;637、フェノール基数2、商品名;Irganox(登録商標)1098、BASFジャパン社製)、ベンゼンプロパン酸,3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-,C7-C9 側鎖アルキルエステル(分子量;390、フェノール基数1、商品名;Irganox(登録商標)1135、BASFジャパン社製)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(分子量;775、フェノール基数3、商品名;Irganox(登録商標)1330、BASFジャパン社製)、4,6-ビス[(オクチルチオ)メチル]-o-クレゾール(分子量;425、フェノール基数1、商品名;Irganox(登録商標)1520L、BASFジャパン社製)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート](分子量;587、フェノール基数2、商品名;Irganox(登録商標)245、BASFジャパン社製)、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](分子量;639、フェノール基数2、商品名;Irganox(登録商標)259、BASFジャパン社製)、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(分子量;784、フェノール基数3、商品名;Irganox(登録商標)3114、BASFジャパン社製、又は、商品名;アデカスタブ(登録商標)AO-20、ADEKA社製)、3,9-ビス[2-{3-(3-ターシャリーブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2、4-8,10-テトラオキサスピロ[5,5]ウンデカン(分子量;741、フェノール基数2、商品名;アデカスタブ(登録商標)AO-80、ADEKA社製)。 Specifically, as the hindered phenolic antioxidant, for example, the following compounds can be used. Each of these is commercially available, and the trade name, molecular weight, number of phenol groups having an antioxidant function in the molecule (hereinafter referred to as the number of phenol groups), and the like are also described. Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (molecular weight; 1178, number of phenol groups 4, trade name: Irganox® 1010, manufactured by BASF Japan, Inc., Alternatively, trade name; Adecastab (registered trademark) AO-60, manufactured by ADEKA), 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (molecular weight) 643, number of phenol groups 2, trade name; Irganox (registered trademark) 1035, manufactured by BASF Japan, Inc., octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (molecular weight; 531, phenol) Group 1, trade name; Irganox (registered trademark) 1076, manufactured by BASF Japan, N, N'-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropane) (Amid)] (molecular weight; 637, number of phenol groups 2, trade name; Irganox (registered trademark) 1098, manufactured by BASF Japan, Inc.), benzenepropanoic acid, 3,5-bis (1,1-dimethylethyl) -4-hydroxy- , C7-C9 side chain alkyl ester (molecular weight; 390, number of phenol groups 1, trade name; Irganox (registered trademark) 1135, manufactured by BASF Japan), 1,3,5-trimethyl-2,4,6-tris (3) , 5-di-t-butyl-4-hydroxybenzyl) benzene (molecular weight; 775, number of phenol groups 3, trade name: Irganox® 1330, manufactured by BASF Japan), 4,6-bis [(octylthio) methyl ] -O-cresol (molecular weight; 425, number of phenol groups 1, trade name; Irganox (registered trademark) 1520L, manufactured by BASF Japan), triethylene glycol-bis [3- (3-t-butyl-5-methyl-4) -Hydroxyphenyl) propionate] (molecular weight; 587, number of phenol groups 2, trade name: Irganox (registered trademark) 245, manufactured by BASF Japan, Inc.), 1,6-hexanediol-bis [3- (3,5-di-t) -Butyl-4-hydroxyphenyl) propionate] (molecular weight; 639, number of phenol groups 2, trade name: Irganox (registered trademark) 259, manufactured by BASF Japan), 1,3,5-tris (3,5-di-t) -Butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trion (Molecular weight: 784, number of phenol groups 3, trade name: Irganox (registered trademark) 3114, manufactured by BASF Japan, or trade name: ADEKA STAB (registered trademark) AO-20, manufactured by ADEKA), 3,9-bis [2 -{3- (3-Tercharly butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4-8,10-tetraoxaspiro [5,5] undecane ( Molecular weight; 741, number of phenol groups 2, trade name; ADEKA STAB (registered trademark) AO-80, manufactured by ADEKA Corporation.
 またヒンダードフェノール基とヒンダードアミン基を有する、例えば、ビス-(1,2,2,6,6-ペンタメチル-4-ピペリジル){[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル}ブチルマロネート(分子量;685、フェノール基数1、商品名;Tinuvin(登録商標)144、BASFジャパン社製)を用いることもできる。 It also has a hindered phenol group and a hindered amine group, for example, bis- (1,2,2,6,6-pentamethyl-4-piperidyl) {[3,5-bis (1,1-dimethylethyl) -4- Hydroxyphenyl] methyl} butylmalonate (molecular weight; 685, number of phenol groups 1, trade name; Tinuvin® 144, manufactured by BASF Japan Ltd.) can also be used.
 リン酸系酸化防止剤としては、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン(分子量;733、商品名;アデカスタブ(登録商標)PEP-8、ADEKA社製)を用いることができる。 Phosphate-based antioxidants include 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane (molecular weight; 733, trade name; adekastab). Registered trademark) PEP-8, manufactured by ADEKA Corporation) can be used.
 これらの酸化防止剤のうち、溶剤15であるメチレンクロライドに対する溶解性に優れ、また、含窒素ポリマー11が溶剤15に溶解した溶液から製膜したフィルムへの添加剤の泣き出しが無く着色のない透明性に優れたフィルム10が得られるため、ヒンダードフェノール系の酸化防止剤を好ましく用いることができる。ヒンダードフェノール系酸化防止剤としては、ヒンダードアミン基を有しないものが好ましく、また、分子中のフェノール基として2以上であることにより、フィルムの着色を抑制し透明なフィルムが得られるために、特に好ましく用いることができる。 Among these antioxidants, it has excellent solubility in methylene chloride, which is the solvent 15, and there is no crying of the additive from the solution in which the nitrogen-containing polymer 11 is dissolved in the solvent 15 to the film formed, and there is no coloring. Since the film 10 having excellent transparency can be obtained, a hindered phenol-based antioxidant can be preferably used. As the hindered phenolic antioxidant, one having no hindered amine group is preferable, and since the number of phenol groups in the molecule is 2 or more, the coloration of the film is suppressed and a transparent film can be obtained. It can be preferably used.
 場合により、酸化防止剤12以外の添加剤を添加してもよい。酸化防止剤12以外の添加剤としては、可塑剤、紫外線吸収剤、微粒子、劣化防止剤、又はマット剤等の各種添加剤が挙げられる。また、剥離性を向上する公知の剥離促進剤(剥離低減剤等とも呼ばれる)を添加剤として含んでいてもよい。剥離促進剤としては、イオン性基と炭化水素基を有する化合物であるいわゆる界面活性剤が好ましく、具体的にはリン酸エステル系の界面活性剤、カルボン酸またはカルボン酸塩系の界面活性剤、スルホン酸またはスルホン酸塩系の界面活性剤、アンモニウム塩系の界面活性剤等が好ましい。これらの内、リン酸エステル系の界面活性剤が特に好ましく、具体的には第一工業製薬(株)製のプライサーフ(登録商標)A208B、A208F、A208N、A219Bなどを用いることができる。 In some cases, additives other than the antioxidant 12 may be added. Examples of the additive other than the antioxidant 12 include various additives such as a plasticizer, an ultraviolet absorber, fine particles, an antioxidant, and a matting agent. Further, a known peeling accelerator (also referred to as a peeling reducing agent or the like) for improving the peelability may be contained as an additive. As the peeling accelerator, a so-called surfactant which is a compound having an ionic group and a hydrocarbon group is preferable, and specifically, a phosphate ester-based surfactant, a carboxylic acid or a carboxylate-based surfactant, and the like. Sulfonic acid or sulfonate-based surfactants, ammonium salt-based surfactants and the like are preferable. Of these, phosphoric acid ester-based surfactants are particularly preferable, and specifically, Plysurf (registered trademark) A208B, A208F, A208N, A219B and the like manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. can be used.
 ポリマー溶液は、ドープ21として、フィルム製造設備20により調製する。ドープ調製装置22は、ミキシングタンク26と、ポンプ27と、フィルタ28と、貯留タンク31と、ポンプ32とを備え、これらが上流側からこの順に配管33によって接続している。 The polymer solution is prepared as a dope 21 by the film manufacturing equipment 20. The dope preparation device 22 includes a mixing tank 26, a pump 27, a filter 28, a storage tank 31, and a pump 32, which are connected by a pipe 33 in this order from the upstream side.
 ミキシングタンク26は、ドープ21の原材料である含窒素ポリマー11と酸化防止剤12と溶剤15とを混合することにより、溶剤15に含窒素ポリマー11及び酸化防止剤12を溶解するためのものである。1価アルコール等を含有させる場合は、ミキシングタンク26内で、メチレンクロライドと1価アルコールであるメタノールとを混合することにより溶剤15を調整する。溶剤15が入っているミキシングタンク26に、含窒素ポリマー11及び酸化防止剤12を添加する。本実施形態では、溶剤15は、メチレンクロライドとメタノールとの質量比が98対2の混合溶剤を用いる。 The mixing tank 26 is for dissolving the nitrogen-containing polymer 11 and the antioxidant 12 in the solvent 15 by mixing the nitrogen-containing polymer 11, which is the raw material of the dope 21, the antioxidant 12, and the solvent 15. .. When a monohydric alcohol or the like is contained, the solvent 15 is adjusted by mixing methylene chloride and methanol, which is a monohydric alcohol, in the mixing tank 26. The nitrogen-containing polymer 11 and the antioxidant 12 are added to the mixing tank 26 containing the solvent 15. In the present embodiment, the solvent 15 is a mixed solvent having a mass ratio of methylene chloride and methanol of 98: 2.
 ミキシングタンク26に供給する含窒素ポリマー11は、本例では粉体であるが、含窒素ポリマー11の態様は粉体に限定されず、例えば、フレーク状、又はペレット状等でもよい。ミキシングタンク26には、案内されてきた含窒素ポリマー11と酸化防止剤12と溶剤15との混合物を攪拌する攪拌機構(図示無し)を備えており、これにより溶解を促進している。含窒素ポリマー11と酸化防止剤12とは、ミキシングタンク26において溶剤15と混合されることにより溶剤15に溶解し、ドープ21がつくられる。酸化防止剤12は、溶剤15に対する溶解性に優れ、また、含窒素ポリマー11が溶剤15に溶解した溶液との相溶性も優れるから、透明性に優れたフィルム10が得られる。 The nitrogen-containing polymer 11 supplied to the mixing tank 26 is a powder in this example, but the aspect of the nitrogen-containing polymer 11 is not limited to the powder, and may be, for example, flakes or pellets. The mixing tank 26 is provided with a stirring mechanism (not shown) for stirring the guided mixture of the nitrogen-containing polymer 11, the antioxidant 12, and the solvent 15, thereby promoting dissolution. The nitrogen-containing polymer 11 and the antioxidant 12 are dissolved in the solvent 15 by being mixed with the solvent 15 in the mixing tank 26 to form the dope 21. Since the antioxidant 12 has excellent solubility in the solvent 15 and also has excellent compatibility with the solution in which the nitrogen-containing polymer 11 is dissolved in the solvent 15, a film 10 having excellent transparency can be obtained.
 ミキシングタンクに供給する含窒素ポリマー11は、供給する前に加熱乾燥し樹脂の含水率を低減することも好ましい。含窒素ポリマー11は吸湿する場合があり、例えば、ポリイミドでは、含水率が2%以上4%以下の範囲内程度となる場合がある。含窒素ポリマー11の含水率が高いまま溶液とすると、溶液が白濁する、又はフィルム10の透明性が悪化する場合があり、また、樹脂の含水率の変動により、樹脂濃度の変動、流延時の乾燥、又は剥ぎ取り性が変動する場合がある。 It is also preferable that the nitrogen-containing polymer 11 supplied to the mixing tank is heat-dried before being supplied to reduce the water content of the resin. The nitrogen-containing polymer 11 may absorb moisture. For example, in polyimide, the water content may be in the range of 2% or more and 4% or less. If the solution is made while the water content of the nitrogen-containing polymer 11 is high, the solution may become cloudy or the transparency of the film 10 may deteriorate, and the resin concentration may fluctuate due to fluctuations in the water content of the resin. Drying or peeling property may vary.
 含窒素ポリマー11の加熱乾燥は、加熱温度として100℃以上180℃以下の範囲内が好ましく、120℃以上160℃以下の範囲内がより好ましい。加熱時間としては、5分以上240分以下の範囲内が好ましく、20分以上180分以下の範囲内がより好ましい。加熱乾燥後の樹脂の含水率は1%以下とすることが好ましく、0.7%以下とすることがより好ましい。 The heating and drying of the nitrogen-containing polymer 11 is preferably in the range of 100 ° C. or higher and 180 ° C. or lower, and more preferably in the range of 120 ° C. or higher and 160 ° C. or lower. The heating time is preferably in the range of 5 minutes or more and 240 minutes or less, and more preferably in the range of 20 minutes or more and 180 minutes or less. The water content of the resin after heating and drying is preferably 1% or less, more preferably 0.7% or less.
 ミキシングタンク26は、内部の温度を調節する温調機構(図示無し)を備えていてもよい。本例のミキシングタンク26も温調機構を備えており、室温(概ね25℃以上30以下の範囲内)に上記混合物の温度を保持している。用いる含窒素ポリマー11と酸化防止剤12と溶剤15との種類によっては、温調機構により上記混合物の温度が調節されるから、溶解が促進し、変質及び/又は発泡が抑えられる。溶剤15としてメチレンクロライドを用いる場合には、常圧下においては39℃以下にすることが好ましく、これにより発泡が抑えられる。また、この場合は、ミキシングタンク26での温度は、15℃以上39℃以下の範囲内がより好ましく、15℃以上37℃以下の範囲内がさらに好ましく、25℃以上35℃以下の範囲内が特に好ましい。ただし、用いる含窒素ポリマー11と酸化防止剤12と溶剤15との種類によっては、温度調節しなくても溶解する場合もあり、その場合には温調機構を設けなくてもよい。 The mixing tank 26 may be provided with a temperature control mechanism (not shown) for adjusting the internal temperature. The mixing tank 26 of this example also has a temperature control mechanism, and keeps the temperature of the mixture at room temperature (generally within the range of 25 ° C. or higher and 30 or lower). Depending on the type of the nitrogen-containing polymer 11, the antioxidant 12, and the solvent 15, the temperature of the mixture is adjusted by the temperature control mechanism, so that dissolution is promoted and alteration and / or foaming is suppressed. When methylene chloride is used as the solvent 15, the temperature is preferably 39 ° C. or lower under normal pressure, whereby foaming is suppressed. Further, in this case, the temperature in the mixing tank 26 is more preferably in the range of 15 ° C. or higher and 39 ° C. or lower, further preferably in the range of 15 ° C. or higher and 37 ° C. or lower, and in the range of 25 ° C. or higher and 35 ° C. or lower. Especially preferable. However, depending on the type of the nitrogen-containing polymer 11, the antioxidant 12, and the solvent 15, the mixture may be dissolved without temperature control, and in that case, the temperature control mechanism may not be provided.
 前述の酸化防止剤12以外の各種添加剤をフィルム10に含有させる場合には、ミキシングタンク26にこれらの添加剤を案内してもよい。このように、ミキシングタンク26が混合するドープ21の原材料は、含窒素ポリマー11と酸化防止剤12と溶剤15とに限定されない。 When various additives other than the above-mentioned antioxidant 12 are contained in the film 10, these additives may be guided to the mixing tank 26. As described above, the raw materials of the dope 21 to which the mixing tank 26 is mixed are not limited to the nitrogen-containing polymer 11, the antioxidant 12, and the solvent 15.
 原材料によっては不純物が混入している場合もあるし、又はミキシングタンク26の攪拌で溶解せずに不溶解物として残っている場合もある。そこで、本例では、ドープ21をポンプ27によりミキシングタンク26からフィルタ28に送り、このフィルタ28によってこれらの異物を除去している。フィルタ28としては、孔径が20μmのろ紙(東洋濾紙(株)製63LS)を用いているが、孔径と材質とはこの例に限定されず、フィルム10の用途、又は含窒素ポリマー11と酸化防止剤12と溶剤15との種類等に応じて決定すればよい。フィルタ28として用いるろ紙の孔径は、5μm以上100μm以下の範囲内が好ましく、10μm以上50μm以下の範囲内がより好ましく、10μm以上25μm以下の範囲内がさらに好ましい。 Depending on the raw material, impurities may be mixed in, or it may not be dissolved by stirring in the mixing tank 26 and may remain as an insoluble matter. Therefore, in this example, the dope 21 is sent from the mixing tank 26 to the filter 28 by the pump 27, and these foreign substances are removed by the filter 28. As the filter 28, a filter paper having a pore diameter of 20 μm (63LS manufactured by Toyo Filter Paper Co., Ltd.) is used, but the pore diameter and the material are not limited to this example, and the application of the film 10 or the nitrogen-containing polymer 11 and the antioxidant are prevented. It may be determined according to the type of the agent 12 and the solvent 15. The pore diameter of the filter paper used as the filter 28 is preferably in the range of 5 μm or more and 100 μm or less, more preferably in the range of 10 μm or more and 50 μm or less, and further preferably in the range of 10 μm or more and 25 μm or less.
 他のフィルタとしては、金属フィルタが挙げられ、金属フィルタの孔径は3μm以上15μm以下の範囲内が好ましく、3μm以上10μm以下の範囲内がより好ましく、3μm以上5μm以下の範囲内がさらに好ましい。このような孔径をもつ金属フィルタを使用する場合には、フィルタ28の下流に金属フィルタを配し、2段階でろ過してもよい。このような段階的ろ過は、光学フィルムを製造する場合に特に有効である。 Examples of other filters include metal filters, and the pore diameter of the metal filter is preferably in the range of 3 μm or more and 15 μm or less, more preferably in the range of 3 μm or more and 10 μm or less, and further preferably in the range of 3 μm or more and 5 μm or less. When a metal filter having such a pore size is used, a metal filter may be arranged downstream of the filter 28 and filtered in two stages. Such stepwise filtration is particularly effective in producing optical films.
 ポンプ27とフィルタ28との間に、加熱器(図示無し)を設け、この加熱器により、ミキシングタンク26で溶解しなかった未溶解分の溶解を促進してもよい。また、用いる含窒素ポリマー11の種類によっては、溶剤15に溶解しにくい場合があるから、このような場合にも加熱器を用いてよい。例えば、溶剤15としてメチレンクロライドを用いる場合において、加熱器でのドープ21の温度は、40℃以上120℃以下の範囲内がより好ましく、45℃以上90℃以下の範囲内がさらに好ましく、60℃以上90℃以下の範囲内が特に好ましい。 A heater (not shown) may be provided between the pump 27 and the filter 28, and the heater may promote the dissolution of the undissolved portion that was not dissolved in the mixing tank 26. Further, depending on the type of the nitrogen-containing polymer 11 used, it may be difficult to dissolve in the solvent 15, and a heater may be used in such a case as well. For example, when methylene chloride is used as the solvent 15, the temperature of the dope 21 in the heater is more preferably in the range of 40 ° C. or higher and 120 ° C. or lower, further preferably in the range of 45 ° C. or higher and 90 ° C. or lower, and more preferably 60 ° C. It is particularly preferable that the temperature is in the range of 90 ° C. or lower.
 フィルタ28でのろ過を経たドープ21は貯留タンク31へ案内され、流延に供されるまでの間、この貯留タンク31に貯留される。貯留タンク31は攪拌機構(図示無し)を備えることが好ましく、本例でも、ミキシングタンク26の攪拌機構と同様の構成の攪拌機構を備える。この攪拌機構により、ドープ21の均一性が、流延に供されるまでの間、より確実に保持される。この例では、貯留タンク31の個数を1つとしているが、複数にしてもよい。複数にする場合には、複数の貯留タンク31を直列接続にしてもよいし、並列接続にしてもよい。 The dope 21 that has been filtered by the filter 28 is guided to the storage tank 31 and stored in the storage tank 31 until it is subjected to casting. The storage tank 31 is preferably provided with a stirring mechanism (not shown), and in this example as well, the storage tank 31 is provided with a stirring mechanism having the same configuration as the stirring mechanism of the mixing tank 26. This stirring mechanism more reliably maintains the uniformity of the dope 21 until it is subjected to casting. In this example, the number of storage tanks 31 is one, but a plurality of storage tanks 31 may be used. In the case of a plurality of storage tanks 31, a plurality of storage tanks 31 may be connected in series or in parallel.
 ミキシングタンク26と、フィルタ28と、貯留タンク31とは、それぞれ、内部を遮光する遮光部材が設けられていることが好ましく、本例でも設けている。例えば、ミキシングタンク26には、上記混合物を収容するタンク本体部が遮光機能をもつ素材から形成され、かつ、タンク本体部の上部には、同様に遮光機能をもつ遮光部材としての蓋が設けられている。このような遮光部材により、含窒素ポリマー11の光による劣化が抑えられる。 It is preferable that the mixing tank 26, the filter 28, and the storage tank 31 are each provided with a light-shielding member that shields light from the inside, and this is also provided in this example. For example, in the mixing tank 26, the tank main body for accommodating the mixture is formed of a material having a light-shielding function, and the upper portion of the tank main body is provided with a lid as a light-shielding member also having a light-shielding function. ing. With such a light-shielding member, deterioration of the nitrogen-containing polymer 11 due to light is suppressed.
 配管33の下流端は、フィルム製造装置23の流延ダイ36に接続しており、貯留タンク31のドープ21は、ポンプ32により流延ダイ36へ送られる。単層構造のフィルム10を製造する場合において、流延に供するドープ21は、ドープ21全体に対して質量パーセント濃度で含窒素ポリマー11の濃度が15%以上30%以下の範囲内であることが好ましく、本例では20%にしている。15%以上とすることにより、15%未満の場合に比べて、流延ダイ36から出るドープの粘度(圧損(圧力損失)に対応する)が確保されやすい。また、30%以下とすることにより、30%よりも大きい場合に比べて、溶剤15がメチレンクロライドであるため、含窒素ポリマー11が溶剤15に、より確実に溶解し、ドープ21の白濁がより確実に防がれる。 The downstream end of the pipe 33 is connected to the casting die 36 of the film manufacturing apparatus 23, and the dope 21 of the storage tank 31 is sent to the casting die 36 by the pump 32. In the case of producing the film 10 having a single layer structure, the dope 21 to be cast may have a concentration of the nitrogen-containing polymer 11 of 15% or more and 30% or less at a mass percent concentration with respect to the entire dope 21. Preferably, it is set to 20% in this example. By setting it to 15% or more, it is easier to secure the viscosity of the dope (corresponding to the pressure loss (pressure loss)) from the casting die 36 as compared with the case of less than 15%. Further, by setting it to 30% or less, since the solvent 15 is methylene chloride as compared with the case where it is larger than 30%, the nitrogen-containing polymer 11 is more reliably dissolved in the solvent 15, and the dope 21 becomes more cloudy. It is definitely prevented.
 ドープ21における含窒素ポリマー11の濃度は、質量パーセント濃度で、15%以上25%以下の範囲内であることがより好ましく、15%以上23%以下の範囲内であることがさらに好ましい。含窒素ポリマー11がポリイミドの場合は、ポリイミドの濃度は、質量パーセント濃度で、20%以上30%以下の範囲内であることがより好ましい。なお、ドープ21は、含窒素ポリマー11の濃度が8%以上15%未満の範囲内であっても、例えばギーサ(好ましくはG型ギーサ)を用いることにより流延することができる。 The concentration of the nitrogen-containing polymer 11 in the dope 21 is more preferably in the range of 15% or more and 25% or less, and further preferably in the range of 15% or more and 23% or less in terms of mass percent concentration. When the nitrogen-containing polymer 11 is polyimide, the concentration of the polyimide is more preferably in the range of 20% or more and 30% or less in terms of mass percent concentration. The dope 21 can be cast even if the concentration of the nitrogen-containing polymer 11 is in the range of 8% or more and less than 15% by using, for example, a gisa (preferably G-type gisa).
 ドープ21における含窒素ポリマー11の濃度は、ミキシングタンク26に供給する溶剤15と含窒素ポリマー11との各供給量を調整することにより、調整することができる。なお、ドープ21の含窒素ポリマー11の濃度は、ドープ21全体に対する質量パーセント濃度であり、含窒素ポリマー11と溶剤15との質量和に対する含窒素ポリマー11の質量割合である。すなわち、溶剤15の質量をM15とし、樹脂の質量をM11とするときに、{M11/(M15+M11)}×100で算出する。 The concentration of the nitrogen-containing polymer 11 in the dope 21 can be adjusted by adjusting the supply amounts of the solvent 15 and the nitrogen-containing polymer 11 supplied to the mixing tank 26. The concentration of the nitrogen-containing polymer 11 of the dope 21 is a mass percent concentration with respect to the entire dope 21, and is a mass ratio of the nitrogen-containing polymer 11 to the mass sum of the nitrogen-containing polymer 11 and the solvent 15. That is, when the mass of the solvent 15 is M15 and the mass of the resin is M11, it is calculated by {M11 / (M15 + M11)} × 100.
 ドープ21に対する酸化防止剤12の質量パーセント濃度は、0.01%以上10%以下の範囲内であることが好ましく、本例でもこの範囲内にしている。ドープ21における酸化防止剤12の質量パーセント濃度は、0.05%以上5.0%以下の範囲内であることがより好ましい。 The mass percent concentration of the antioxidant 12 with respect to the dope 21 is preferably in the range of 0.01% or more and 10% or less, and is also within this range in this example. The mass percent concentration of the antioxidant 12 in the dope 21 is more preferably in the range of 0.05% or more and 5.0% or less.
 次に、フィルム形成工程について説明する。フィルム形成工程は、溶液流延法により、フィルムを形成する工程である。溶液流延法は、ポリマー溶液であるドープ21を金属製の支持体に流延することにより流延膜を形成する流延工程と、流延膜を支持体から剥がすことによりフィルムを形成する剥離工程とからなる。流延工程及び剥離工程は、フィルム製造装置23の流延ユニット37により実施される。 Next, the film forming process will be described. The film forming step is a step of forming a film by a solution casting method. The solution casting method consists of a casting step of forming a casting film by casting a polymer solution, Dope 21 on a metal support, and a peeling step of peeling the casting film from the support to form a film. It consists of a process. The casting step and the peeling step are carried out by the casting unit 37 of the film manufacturing apparatus 23.
 図1に示すように、フィルム製造装置23は、上流側から順に、流延ユニット37と、テンタ38と、スリッタ42と、巻取機43と、ローラ乾燥機41と、巻取機45を備える。本実施形態では、テンタ38を経たフィルム10を一旦巻き取る。巻き取ったフィルム10を、ローラ乾燥機41に送り、その後の処理を行う。 As shown in FIG. 1, the film manufacturing apparatus 23 includes a casting unit 37, a tenta 38, a slitter 42, a winder 43, a roller dryer 41, and a winder 45 in this order from the upstream side. .. In the present embodiment, the film 10 that has passed through the tenta 38 is once wound up. The wound film 10 is sent to the roller dryer 41 for subsequent processing.
 流延ユニット37は、環状に形成された支持体としてのベルト46と、ベルト46を支持した状態で長手方向へ走行させる1対のローラ47と、流延ダイ36と、剥取ローラ48とを備える。1対のローラ47の少なくとも一方は駆動機構(図示無し)により周方向に回転し、この回転により、1対のローラ47に巻き掛けられたベルト46は長手方向へ循環走行する。流延ダイ36は、この例では1対のローラ47の一方の上方に配しているが、1対のローラ47の一方と他方との間のベルト46の上方に配してもよい。 The casting unit 37 includes a belt 46 as a support formed in an annular shape, a pair of rollers 47 that run in the longitudinal direction while supporting the belt 46, a casting die 36, and a stripping roller 48. Be prepared. At least one of the pair of rollers 47 is rotated in the circumferential direction by a drive mechanism (not shown), and this rotation causes the belt 46 wound around the pair of rollers 47 to circulate in the longitudinal direction. The flow die 36 is arranged above one of the pair of rollers 47 in this example, but may be arranged above the belt 46 between one and the other of the pair of rollers 47.
 流延ダイ36は、供給されてきたドープ21を、ベルト46に対向する吐出口36aから連続的に吐出する吐出部である。走行中のベルト46にドープ21を連続的に吐出することにより、ドープ21はベルト46上で流延され、ベルト46上に流延膜51が連続的に形成される(流延工程)。図1においては、ドープ21がベルト46に接触することにより流延膜51が形成され始める位置(以下、流延位置と称する)に、符号PCを付す。ベルト46の素材は特に限定されないが、金属が好ましく、本例ではSUSとしている。 The flow-casting die 36 is a discharge unit that continuously discharges the supplied dope 21 from the discharge port 36a facing the belt 46. By continuously discharging the dope 21 to the running belt 46, the dope 21 is spread on the belt 46, and the casting film 51 is continuously formed on the belt 46 (casting step). In FIG. 1, a reference numeral PC is attached to a position (hereinafter referred to as a casting position) where the casting film 51 begins to be formed when the dope 21 comes into contact with the belt 46. The material of the belt 46 is not particularly limited, but metal is preferable, and SUS is used in this example.
 1対のローラ47は、周面温度を調節する温度コントローラ(図示せず)を備える。周面温度を調節したローラ47により、ベルト46を介して流延膜51は温度を調整される。流延膜51を加熱することにより乾燥を促進し、この乾燥により固める(ゲル化する)いわゆる乾燥ゲル化方式の場合には、ローラ47の周面温度は、例えば10℃以上30℃以下の範囲内にする。また、流延膜51を冷却することにより固めるいわゆる冷却ゲル化方式の場合には、ローラ47の周面温度を-15℃以上5℃以下の範囲内にする。こうしたゲル化により流延膜51は搬送可能な程度に固まる。 The pair of rollers 47 includes a temperature controller (not shown) that adjusts the peripheral surface temperature. The temperature of the cast film 51 is adjusted via the belt 46 by the roller 47 whose peripheral surface temperature is adjusted. In the case of the so-called dry gelling method in which drying is promoted by heating the casting film 51 and then hardened (gelled) by this drying, the peripheral surface temperature of the roller 47 is, for example, in the range of 10 ° C. or higher and 30 ° C. or lower. To be inside. Further, in the case of the so-called cooling gelling method in which the casting film 51 is hardened by cooling, the peripheral surface temperature of the roller 47 is set within the range of −15 ° C. or higher and 5 ° C. or lower. Due to such gelation, the cast film 51 is hardened to the extent that it can be transported.
 なお、支持体として、ベルト46の代わりに、ドラム(図示せず)を用いてもよい。この場合には、ドラムに駆動機構を設け、ドラムを周方向に回転させることにより、周面上に流延膜51を形成する。この場合には、ドラムの周面が、走行する支持体の表面として機能する。ドラムの素材は特に限定されないが、金属が好ましく、金属としてはSUS、特にハードクロムめっきされたSUSが好ましい。ドラムを支持体として用いる場合には、ドラムは、周面温度を調節する温度コントローラ(図示せず)を備えるものとし、ドラムの周面温度を調節することにより、流延膜51の温度を調整するとよい。乾燥ゲル化方式の場合には、支持体としてベルト46を用いることが好ましく、冷却ゲル化方式の場合には、支持体としてドラムを用いることが好ましい。 A drum (not shown) may be used as the support instead of the belt 46. In this case, a drive mechanism is provided on the drum, and the drum is rotated in the circumferential direction to form the cast film 51 on the peripheral surface. In this case, the peripheral surface of the drum functions as the surface of the traveling support. The material of the drum is not particularly limited, but metal is preferable, and SUS is preferable as the metal, and SUS plated with hard chrome is particularly preferable. When the drum is used as a support, the drum shall be provided with a temperature controller (not shown) for adjusting the peripheral surface temperature, and the temperature of the casting film 51 may be adjusted by adjusting the peripheral surface temperature of the drum. It is good to do it. In the case of the dry gelation method, it is preferable to use the belt 46 as the support, and in the case of the cooling gelation method, it is preferable to use the drum as the support.
 流延ダイ36からベルト46に至るドープ21、いわゆるビードに関して、ベルト46の走行方向における上流には、減圧チャンバ(図示無し)が設けられてもよく、本例でも設けてある。この減圧チャンバは、吐出したドープ21の上流側エリアの雰囲気を吸引し、この吸引によりこのエリアを減圧する。また、ベルト46に対向する位置に、流延膜51の乾燥を促進するための送風機(図示無し)を設けてもよい。 Regarding the dope 21 from the flow die 36 to the belt 46, the so-called bead, a decompression chamber (not shown) may be provided upstream of the belt 46 in the traveling direction, and is also provided in this example. This decompression chamber sucks the atmosphere of the upstream area of the discharged dope 21 and decompresses this area by this suction. Further, a blower (not shown) may be provided at a position facing the belt 46 to promote the drying of the cast film 51.
 流延膜51を、テンタ38への搬送が可能な程度にまでベルト46上で固くした後に、溶剤を含む状態でベルト46から連続的に剥がす。これによりフィルム10が形成される(剥離工程)。剥取ローラ48は、流延膜51をベルト46から連続的に剥ぎ取るためのものである。剥取ローラ48は、ベルト46から剥がすことにより形成されたフィルム10を例えば下方から支持し、流延膜51がベルト46から剥がれる剥取位置PPを一定に保持する。剥ぎ取る手法は、フィルム10を下流側へ引っ張る手法、あるいは、剥取ローラ48を周方向に回転させる手法等のいずれでもよい。 The cast film 51 is hardened on the belt 46 to the extent that it can be transported to the tenta 38, and then continuously peeled off from the belt 46 in a state containing a solvent. As a result, the film 10 is formed (peeling step). The stripping roller 48 is for continuously stripping the casting film 51 from the belt 46. The stripping roller 48 supports the film 10 formed by peeling from the belt 46, for example, from below, and keeps the stripping position PP in which the cast film 51 is peeled off from the belt 46 constant. The stripping method may be either a method of pulling the film 10 to the downstream side, a method of rotating the stripping roller 48 in the circumferential direction, or the like.
 ドープ21に1価アルコールとクエン酸エステルとが含まれる場合は、ベルト46に形成された流延膜51にもクエン酸エステルが含まれている。そして、クエン酸エステルはカルボキシル残基を有している。そのため、ベルト46の表面のヒドロキシル基とドープ21との相互作用に対する前述の推定作用から、流延膜51はベルト46からの剥離荷重が小さく抑えられ、その結果、流延膜51はなめらか(スムーズ)にベルト46から連続的に剥がれる。そのため、フィルム面の平滑性に優れたフィルム10が得られる。フィルム面が平滑であるから、光学特性に厳しい要請がある光学フィルムにも用いることができるフィルム10が得られる。 When the dope 21 contains a monohydric alcohol and a citric acid ester, the casting film 51 formed on the belt 46 also contains the citric acid ester. And the citric acid ester has a carboxyl residue. Therefore, from the above-mentioned presumed action on the interaction between the hydroxyl group on the surface of the belt 46 and the dope 21, the flow-through film 51 has a small peeling load from the belt 46, and as a result, the flow-through film 51 is smooth (smooth). ) Is continuously peeled off from the belt 46. Therefore, a film 10 having excellent smoothness on the film surface can be obtained. Since the film surface is smooth, a film 10 that can be used for an optical film having strict requirements for optical characteristics can be obtained.
 ベルト46からの剥ぎ取りは、乾燥ゲル化方式の場合には、例えば、流延膜51の溶剤含有率が10質量%以上100質量%以下の範囲にある間に行われる。なお、本明細書においては、溶剤含有率(単位;%)は乾量基準の値であり、具体的には、溶剤15の質量をM15、フィルム10の質量をM10とするときに、{M15/(M10-M15)}×100で求める百分率である。冷却ゲル化方式の場合の剥ぎ取りは、例えば、流延膜51の溶剤含有率が100質量%以上300質量%以下の範囲にある間に行われる。 In the case of the dry gelation method, the stripping from the belt 46 is performed, for example, while the solvent content of the cast film 51 is in the range of 10% by mass or more and 100% by mass or less. In the present specification, the solvent content (unit;%) is a value based on the dry amount, and specifically, when the mass of the solvent 15 is M15 and the mass of the film 10 is M10, {M15. / (M10-M15)} × 100 is a percentage. In the case of the cooling gelling method, stripping is performed, for example, while the solvent content of the cast film 51 is in the range of 100% by mass or more and 300% by mass or less.
 以上のように流延ユニット37は、ドープ21からフィルム10を形成する。ベルト46は流延位置PCと剥取位置PPとを循環して走行することで、ドープ21の流延と流延膜51の剥ぎ取りとが繰り返し行われる。 As described above, the casting unit 37 forms the film 10 from the dope 21. The belt 46 circulates between the spreading position PC and the stripping position PP, so that casting of the dope 21 and stripping of the spreading film 51 are repeatedly performed.
 剥ぎ取られて形成されたフィルム10は、テンタ38に案内される。流延ユニット37とテンタ38との間の搬送路には、フィルム10の乾燥をすすめるための送風機(図示無し)を配してもよい。テンタ38は、長尺のフィルム10の側部を把持するクリップ52と、1対のレール(図示無し)及びチェーン(図示無し)とを備える。クリップ52の代わりに、複数のピン(図示無し)が台の上面に起立した姿勢で配され、フィルム10の側部に個々のピンを突き刺すことによりフィルム10を保持するピンプレート(図示無し)を用いてもよい。 The film 10 stripped off and formed is guided by the tenta 38. A blower (not shown) for promoting the drying of the film 10 may be arranged in the transport path between the casting unit 37 and the tenter 38. The tenta 38 includes a clip 52 that grips the side of the long film 10, a pair of rails (not shown) and a chain (not shown). Instead of the clip 52, a pin plate (not shown) in which a plurality of pins (not shown) are arranged upright on the upper surface of the table and hold the film 10 by piercing the side portions of the film 10 with individual pins. You may use it.
 レールはフィルム10の搬送路の側部に設置され、1対のレールは離間して配される。チェーンは、原動スプロケット及び従動スプロケット(図示無し)に掛け渡され、レールに沿って移動自在に取り付けられている。クリップ52は、チェーンに所定の間隔で取り付けられており、原動スプロケットの回転により、クリップ52はレールに沿って循環移動する。クリップ52は、テンタ38の入口近傍で、案内されてきたフィルム10の保持を開始し、出口に向かって移動し、出口近傍で保持を解除する。保持を解除したクリップ52は再び入口近傍に移動し、新たに案内されてきたフィルム10を保持する。このように、クリップ52は、フィルム10の各側部を把持した状態で長手方向に搬送する。 The rails are installed on the side of the transport path of the film 10, and the pair of rails are arranged apart from each other. The chain is hung on a prime mover sprocket and a driven sprocket (not shown) and is movably attached along rails. The clips 52 are attached to the chain at predetermined intervals, and the rotation of the driving sprocket causes the clips 52 to circulate and move along the rails. The clip 52 starts holding the guided film 10 near the entrance of the tenter 38, moves toward the exit, and releases the holding near the exit. The clip 52 released from holding moves to the vicinity of the entrance again and holds the newly guided film 10. In this way, the clip 52 is conveyed in the longitudinal direction while gripping each side portion of the film 10.
 テンタ38には、フィルム10の搬送路の上方に送風機53が設けられている。送風機53の下面には、乾燥気体を流出する流出口(図示無し)が形成されており、通過するフィルム10に向けて乾燥気体(例えば空気)を吹き出す。送風機53からの乾燥気体の温度は、40℃以上200℃以下の範囲内が好ましい。なお、同様の構造を有する送風機を、フィルム10の搬送路の下方に設けてもよい。このようにテンタ38には送風機53があるから、テンタ38を通過する間もフィルム10は乾燥を進められる(第1の乾燥工程)。ただし、テンタ38を設けない場合もある。 The tenta 38 is provided with a blower 53 above the transport path of the film 10. An outlet (not shown) through which the dry gas flows out is formed on the lower surface of the blower 53, and the dry gas (for example, air) is blown out toward the passing film 10. The temperature of the dry gas from the blower 53 is preferably in the range of 40 ° C. or higher and 200 ° C. or lower. A blower having the same structure may be provided below the transport path of the film 10. Since the tenter 38 has the blower 53 as described above, the film 10 can be dried while passing through the tenta 38 (first drying step). However, the tenta 38 may not be provided.
 テンタ38を通過したフィルム10は、スリッタ42に送られる。スリッタ42は、フィルム10の各側端部を切除するためのものである。この切除により、フィルム10は、例えば目的とする製品幅にされる。なお、スリッタ42と同様の構成のスリッタを、他の位置に配してもよい。例えば、流延ユニット37とテンタ38との間、及び/又は、テンタ38とローラ乾燥機41との間等である。切除された側端部は、クラッシャ(図示無し)に案内され、クラッシャによりチップ状に細かくされ、新たなドープ21の原材料として用いてもよい。 The film 10 that has passed through the tenta 38 is sent to the slitter 42. The slitter 42 is for cutting off each side end of the film 10. This excision brings the film 10 to, for example, the desired product width. A slitter having the same configuration as the slitter 42 may be arranged at another position. For example, between the casting unit 37 and the tenta 38, and / or between the tenta 38 and the roller dryer 41. The excised side end may be guided by a crusher (not shown), crushed into chips by the crusher, and used as a raw material for a new dope 21.
 巻取機43は、フィルム10をロール状に巻き取るためのものである。巻取機43はモータ(図示無し)を備え、巻取機43には、巻き芯54がセットされる。巻き芯54がモータにより回転することにより、フィルム10が巻き芯54に巻き取られる。 The winder 43 is for winding the film 10 into a roll. The winder 43 includes a motor (not shown), and a winding core 54 is set in the winder 43. When the winding core 54 is rotated by the motor, the film 10 is wound around the winding core 54.
 次に、熱処理工程について説明する。熱処理工程は、フィルムの両面のそれぞれに200℃以上の温度の加熱気体を接触させる工程である。熱処理工程は、乾燥装置を用いた乾燥工程として行うことができる(第2の乾燥工程)。 Next, the heat treatment process will be described. The heat treatment step is a step of bringing a heated gas having a temperature of 200 ° C. or higher into contact with each of both surfaces of the film. The heat treatment step can be performed as a drying step using a drying device (second drying step).
 図2に示すように、巻き芯54に巻き取られたフィルム10は、送出機44により、次工程である熱処理工程に送られる。本実施形態では、乾燥装置としてローラ乾燥機41を用いる。ローラ乾燥機41は、断熱されており、かつ、気密とされている。ローラ乾燥機41は、内部に熱処理空間Sを形成する。ローラ乾燥機41は、内部の熱処理空間Sに複数のローラ41aを備え、複数のローラ41aはフィルム10を周面で支持する。フィルム10はローラ41aに巻き掛けられて搬送される。熱処理空間Sにおいて、フィルム10に対して、ロールトウロールで搬送することにより、熱処理工程を行う。 As shown in FIG. 2, the film 10 wound around the winding core 54 is sent to the heat treatment step, which is the next step, by the feeder 44. In this embodiment, a roller dryer 41 is used as the drying device. The roller dryer 41 is heat-insulated and airtight. The roller dryer 41 forms a heat treatment space S inside. The roller dryer 41 includes a plurality of rollers 41a in the heat treatment space S inside, and the plurality of rollers 41a support the film 10 on the peripheral surface. The film 10 is wound around the roller 41a and conveyed. In the heat treatment space S, the heat treatment step is performed by transporting the film 10 with a roll tow roll.
 図3に示すように、具体的には、ローラ乾燥機41の一例である処理装置Aが形成する熱処理空間S1は、高さH2.0m、奥行きD4.0m、幅W1.0m、容積8.0mの直方体である。乾燥装置Aは、給気口55と、排気口56とを備える。加熱気体は、給気チャンバ57を介して、給気口55から加熱気体が供給され、排気口56から排気され、排気チャンバ58に排出される。フィルム10は、送出機44から送り出され、奥行きD方向に進められ、巻取機45により巻き取られる。処理装置Aの幅W方向と、フィルム10の幅方向は、同一である。なお、給気手段は、給気口55と給気チャンバ57とを含む。また、排気手段は、排気口56と排気チャンバ58とを含む。 As shown in FIG. 3, specifically, the heat treatment space S1 formed by the processing apparatus A, which is an example of the roller dryer 41, has a height H2.0 m, a depth D4.0 m, a width W1.0 m, and a volume 8. It is a rectangular parallelepiped of 0m3 . The drying device A includes an air supply port 55 and an exhaust port 56. The heated gas is supplied from the air supply port 55 through the air supply chamber 57, exhausted from the exhaust port 56, and discharged to the exhaust chamber 58. The film 10 is sent out from the feeder 44, advanced in the depth D direction, and wound by the winder 45. The width W direction of the processing apparatus A and the width direction of the film 10 are the same. The air supply means includes the air supply port 55 and the air supply chamber 57. Further, the exhaust means includes an exhaust port 56 and an exhaust chamber 58.
 図4に示すように、熱処理空間S1内において、複数のローラ41aは直径が0.1mであり、フィルム10が1mの高低差で、高さ方向で5往復するように設ける。パス長Lは約1mである。処理装置Aは、フィルム10を、処理長10mで処理する。なお、フィルム10の幅は0.7mであり、熱処理空間S1が処理するフィルム10の処理面積は、7mである。加熱気体は、フィルム10の両面のそれぞれを、フィルム10の面と同伴して、又は、フィルム10の面と対抗して流れる。したがって、熱処理空間S1において、熱処理空間の容積1mあたりのフィルム10の処理面積は、0.9mである。 As shown in FIG. 4, in the heat treatment space S1, the plurality of rollers 41a are provided so as to have a diameter of 0.1 m and the film 10 reciprocates 5 times in the height direction with a height difference of 1 m. The path length L is about 1 m. The processing apparatus A processes the film 10 with a processing length of 10 m. The width of the film 10 is 0.7 m, and the treated area of the film 10 treated by the heat treatment space S1 is 7 m 2 . The heated gas flows with each of both sides of the film 10 alongside the surface of the film 10 or against the surface of the film 10. Therefore, in the heat treatment space S1, the processing area of the film 10 per volume 1 m 3 of the heat treatment space is 0.9 m 2 .
 また、熱処理空間S1は、フィルム10に特定の温度の加熱気体を接触させるが、特定の温度の加熱気体を接触させるためには、熱処理空間S1内の温度を維持する必要がある。本実施形態において、熱処理空間S1の温度を維持できる風量は、約80m/分である。風量は、ローラ乾燥機41の大きさ、つまり、熱処理空間Sの容積、又は、加熱手段等により異なる。 Further, the heat treatment space S1 brings the film 10 into contact with a heated gas having a specific temperature, but in order to bring the heated gas at a specific temperature into contact with the film 10, it is necessary to maintain the temperature in the heat treatment space S1. In the present embodiment, the air volume capable of maintaining the temperature of the heat treatment space S1 is about 80 m 3 / min. The air volume varies depending on the size of the roller dryer 41, that is, the volume of the heat treatment space S, the heating means, and the like.
 図5に示すように、ローラ乾燥機41の別の例として、処理装置B、処理装置C、又は処理装置Dを用いることができる。図5において、煩雑となるため、符号は一部のみに付す。また、処理装置又は熱処理空間の参考として、処理装置Aについても記載する。処理装置B、処理装置C、又は処理装置Dは、特に記載がないものは、処理装置Aと同様の構成からなる。また、図において、ローラの直径等は誇張等がされて示されており実際の寸法とは異なる。処理装置A、処理装置B、処理装置C、又は処理装置Dの大きさ、容積、処理長、処理面積、熱処理空間の容積1mあたりのフィルム10の処理面積、及び熱処理空間Sの温度を維持できる風量は、表1に記載する。 As shown in FIG. 5, as another example of the roller dryer 41, a processing device B, a processing device C, or a processing device D can be used. In FIG. 5, since it is complicated, the reference numerals are given only to a part thereof. Further, the processing device A is also described as a reference for the processing device or the heat treatment space. Unless otherwise specified, the processing device B, the processing device C, or the processing device D has the same configuration as the processing device A. Further, in the figure, the diameter of the roller and the like are exaggerated and shown, and are different from the actual dimensions. Maintain the size, volume, treatment length, treatment area, treatment area of the film 10 per 1 m 3 of heat treatment space volume, and the temperature of the heat treatment space S of the treatment device A, the treatment device B, the treatment device C, or the treatment device D. The amount of air that can be produced is shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 給気口55及び排気口56は、一つのローラ乾燥機41に対し、それぞれ1つ配置してもよいし、複数配置しても良い。給気口55及び排気口56の配置数にかかわらず、加熱気体の供給と排気とは、設定した風量で行うよう調整可能である。なお、ここで風量とは、1分あたりに供給する加熱気体の体積をいう。また、加熱気体の供給と排気は、設定した温度で行われるよう調整可能である。加熱気体の供給と排気とにより、フィルム10の両面のそれぞれに設定した温度の加熱気体を接触させることが可能である。また、加熱気体の給気口とフィルムの間、フィルムと排気口の間に、網や多孔板、スリット板など風速を制御する部材を設けることもできる。処理装置内のフィルム全体に均一に加熱気体を接触させることができ、処理装置内全体を所望の温度に維持できるからである。特に給気口とフィルムの間に風速を制御する部材を設けることが、フィルムに接触する加熱気体を装置内で全体として均一にできるため好ましい。 One air supply port 55 and one exhaust port 56 may be arranged for each roller dryer 41, or a plurality of them may be arranged. Regardless of the number of air supply ports 55 and exhaust ports 56 arranged, the supply and exhaust of the heated gas can be adjusted to perform at a set air volume. Here, the air volume means the volume of the heated gas supplied per minute. In addition, the supply and exhaust of the heated gas can be adjusted to be performed at a set temperature. By supplying and exhausting the heated gas, it is possible to bring the heated gas at a temperature set on both sides of the film 10 into contact with each other. Further, a member for controlling the wind speed such as a net, a perforated plate, or a slit plate can be provided between the air supply port and the film of the heated gas and between the film and the exhaust port. This is because the heated gas can be uniformly brought into contact with the entire film in the processing device, and the entire inside of the processing device can be maintained at a desired temperature. In particular, it is preferable to provide a member for controlling the wind speed between the air supply port and the film because the heated gas in contact with the film can be made uniform as a whole in the apparatus.
 風量と、ローラ乾燥機41が処理するフィルム10の面積とにより、熱処理空間の容積1mあたりに処理するフィルム10の面積を調整する。フィルム熱処理工程は、熱処理空間の容積1mあたりフィルム1m以上の割合で、フィルムを処理することが好ましい。より好ましくは、1.5m以上であり、さらに好ましくは、2.0m以上である。フィルム10に加熱空気を接触させることにより、フィルム中のメチレンクロライドが低減され、脱ハロゲンが進められる。しかしながら、一方で、フィルム10は含窒素ポリマーからなるため、加熱することにより窒素部分の酸化反応と推定される着色が起き易くなるおそれがある。加熱気体の給気及び排気により、フィルム10の両面に加熱空気が接触することによっても、フィルム10の酸化反応が進み、着色が起きる場合がある。熱処理空間の容積1mあたりのフィルム処理面積が1mより少ない場合は、熱処理空間の容積が大きく、フィルム10に接触させる加熱気体の温度を維持する等のため、風量を大きくする必要がある。大きい風量は、加熱空気の接触によるフィルム10の酸化反応を促進し、着色が起きやすくなる可能性がある。 The area of the film 10 to be processed is adjusted per 1 m 3 of the volume of the heat treatment space according to the air volume and the area of the film 10 processed by the roller dryer 41. In the film heat treatment step, it is preferable to treat the film at a ratio of 1 m 2 or more of the film per 1 m 3 of the volume of the heat treatment space. It is more preferably 1.5 m 2 or more, and further preferably 2.0 m 2 or more. By bringing the heated air into contact with the film 10, methylene chloride in the film is reduced and dehalogenation is promoted. However, on the other hand, since the film 10 is made of a nitrogen-containing polymer, there is a possibility that coloring, which is presumed to be an oxidation reaction of the nitrogen portion, is likely to occur by heating. When the heated air comes into contact with both sides of the film 10 due to the supply and exhaust of the heated gas, the oxidation reaction of the film 10 may proceed and coloring may occur. When the film processing area per 1 m 3 of the volume of the heat treatment space is smaller than 1 m 2 , the volume of the heat treatment space is large, and it is necessary to increase the air volume in order to maintain the temperature of the heated gas in contact with the film 10. A large air volume promotes the oxidation reaction of the film 10 due to the contact with the heated air, and there is a possibility that coloring is likely to occur.
 なお、ここでフィルム10の面積とは、フィルム10の片面の面積をいう。したがって、実際に熱処理空間において処理される面積は、フィルム10の表と裏とを区別して算出すると2倍となる。したがって、熱処理空間の容積1mあたりフィルム1m以上の割合でフィルムを処理するといった場合、フィルム10の表と裏との面積のそれぞれを区別した割合とすれば、熱処理空間の容積1mあたりフィルム2m以上の割合で、フィルムを処理することとなる。 Here, the area of the film 10 means the area of one side of the film 10. Therefore, the area actually processed in the heat treatment space is doubled when the front and back surfaces of the film 10 are calculated separately. Therefore, when the film is processed at a ratio of 1 m 2 or more of the film per 1 m 3 of the volume of the heat treatment space, if the areas of the front and back of the film 10 are distinguished from each other, the film per 1 m 3 of the volume of the heat treatment space is used. The film will be processed at a ratio of 2 m 2 or more.
 一方、熱処理工程は、熱処理空間の容積1mあたりフィルム10m以下の割合で、フィルムを処理することが好ましい。より好ましくは、7m以下であり、さらに好ましくは、5m以下である。熱処理空間内にフィルム10をローラ搬送できる程度に往復させ、往復するフィルム10間の空間を確保し、熱処理工程内のフィルム全体に加熱空気を均一に接触させることにより、フィルム中のメチレンクロライド又は塩素原子を光学フィルム等に使用するために問題がない程度に低減できる。また、風量によるフィルム10の着色が熱処理空間内でばらつきが生じないようにできる。 On the other hand, in the heat treatment step, it is preferable to treat the film at a ratio of 10 m 2 or less per 1 m 3 of the heat treatment space volume. It is more preferably 7 m 2 or less, and even more preferably 5 m 2 or less. The film 10 is reciprocated in the heat treatment space to the extent that it can be conveyed by a roller, a space between the reciprocating films 10 is secured, and the heated air is uniformly brought into contact with the entire film in the heat treatment process to obtain methylene chloride or chlorine in the film. Since atoms are used in optical films and the like, the number of atoms can be reduced to the extent that there is no problem. Further, the coloring of the film 10 due to the air volume can be prevented from varying in the heat treatment space.
 加熱気体に用いる気体は、空気である。本実施形態では、電熱機を用いて加熱した空気を用いている。空気は、場合により、調湿、脱湿を行っても良い。又、窒素や、ヘリウム、アルゴン等の貴ガスを加えて吹込んでもよい。また、過熱水蒸気を吹き込んで加熱する処理を行ってもよい。 The gas used for the heating gas is air. In this embodiment, air heated by an electric heater is used. The air may be humidity-controlled and dehumidified as the case may be. Further, noble gas such as nitrogen, helium or argon may be added and blown. Moreover, you may perform the process of blowing superheated steam and heating.
 形成されたフィルム10に対し、両面のそれぞれに200℃以上の加熱気体を接触させる方法としては、給気手段と排気手段とを備えた乾燥装置が形成する気密の熱処理空間において、長尺のフィルム10をロールトゥロールで搬送する方法を好ましく用いることができる。乾燥装置の給気手段及び排気手段は、加熱気体をそれぞれ給気及び排気することにより、熱処理空間を特定の温度に保つ。また、熱処理空間を形成する乾燥装置は、断熱されていることが好ましい。このような熱処理空間において、加熱気体を給気及び排気しながら、ロールを用いてフィルム10を連続して搬送することにより、フィルム10の両面それぞれに200℃以上の加熱空気を接触させることができる。 As a method of contacting the formed film 10 with a heated gas having a temperature of 200 ° C. or higher on both sides, a long film is used in an airtight heat treatment space formed by a drying device equipped with an air supply means and an exhaust means. A method of transporting 10 by roll-to-roll can be preferably used. The air supply means and the exhaust means of the drying device keep the heat treatment space at a specific temperature by supplying and exhausting the heated gas, respectively. Further, it is preferable that the drying device forming the heat treatment space is insulated. In such a heat treatment space, by continuously transporting the film 10 using a roll while supplying and exhausting the heated gas, it is possible to bring the heated air of 200 ° C. or higher into contact with each of both sides of the film 10. ..
 熱処理工程において、フィルム10に接触させる加熱気体の温度は、200℃以上であることが好ましく、より好ましくは205℃以上、さらに好ましくは210℃以上である。200℃以上であることにより、200℃未満である場合に比べて、フィルム10が含むメチレンクロライドの量を低減する効果が好ましく発揮される。一方、フィルム10に接触させる加熱気体の温度は、270℃以下であることが好ましく、より好ましくは260℃以下、さらに好ましくは250℃以下である。270℃より高い加熱気体をフィルム10に供給し続けることは、装置設備上問題となるおそれがあり、フィルムからの揮散物により装置内が汚染されるおそれがあるからである。 In the heat treatment step, the temperature of the heated gas in contact with the film 10 is preferably 200 ° C. or higher, more preferably 205 ° C. or higher, still more preferably 210 ° C. or higher. When the temperature is 200 ° C. or higher, the effect of reducing the amount of methylene chloride contained in the film 10 is preferably exhibited as compared with the case where the temperature is lower than 200 ° C. On the other hand, the temperature of the heated gas in contact with the film 10 is preferably 270 ° C. or lower, more preferably 260 ° C. or lower, still more preferably 250 ° C. or lower. Continuing to supply the heated gas higher than 270 ° C. to the film 10 may cause a problem in the equipment and equipment, and the inside of the equipment may be contaminated by the volatilized material from the film.
 また、熱処理工程は、フィルムの連続搬送が0.5m/分以上の速さで行われることが好ましい。より好ましくは、1.0m/分以上であり、さらに好ましくは、2.0m/分以上である。搬送速度は、概ね一定とする。生産効率の観点から、及び、必要以上にフィルムに加熱空気を接触させないことから、0.5m/分以上であることが好ましい。また、ポリマー溶液作成工程と、フィルム形成工程と、熱処理工程とを、連続して行う場合、フィルム形成工程と熱処理工程の速度を同じとし、連続工程とすることができるからである。一方、熱処理工程は、フィルムの連続搬送が20m/分以下の速さで行われることが好ましい。より好ましくは、10m/分以下であり、さらに好ましくは、5m/分以下である。20m/分以下の速さで行われることにより、フィルムの両面のそれぞれに加熱気体を十分に接触させることが可能である。 Further, in the heat treatment step, it is preferable that the continuous transfer of the film is performed at a speed of 0.5 m / min or more. More preferably, it is 1.0 m / min or more, and even more preferably 2.0 m / min or more. The transport speed is generally constant. From the viewpoint of production efficiency and from the viewpoint of preventing the heated air from coming into contact with the film more than necessary, 0.5 m / min or more is preferable. Further, when the polymer solution preparation step, the film forming step, and the heat treatment step are continuously performed, the speeds of the film forming step and the heat treatment step can be set to be the same, and the continuous step can be performed. On the other hand, in the heat treatment step, it is preferable that the continuous transfer of the film is performed at a speed of 20 m / min or less. It is more preferably 10 m / min or less, and even more preferably 5 m / min or less. By performing at a speed of 20 m / min or less, it is possible to sufficiently bring the heated gas into contact with each of both sides of the film.
 また、熱処理工程は、排気手段による排気に含まれるメチレンクロライドの重量が、排気の一定体積の重量に対し1%以下であることが好ましい。より好ましくは0.5%以下であり、さらに好ましくは0.1%以下である。排気に含まれるメチレンクロライドの重量が排気の一定体積の重量に対し1%以下であることにより、フィルム10に残留するメチレンクロライド又は塩素原子の量を、光学フィルム等に使用するために問題がない程度とすることができ、排気中のメチレンクロライドの処理を容易にできるからである。 Further, in the heat treatment step, it is preferable that the weight of methylene chloride contained in the exhaust gas by the exhaust means is 1% or less with respect to the weight of a certain volume of the exhaust gas. It is more preferably 0.5% or less, still more preferably 0.1% or less. Since the weight of methylene chloride contained in the exhaust is 1% or less of the weight of a certain volume of the exhaust, there is no problem in using the amount of methylene chloride or chlorine atoms remaining in the film 10 for the optical film or the like. This is because the methylene chloride in the exhaust can be easily treated.
 熱処理工程を経たフィルム10は、フィルム10に残留するメチレンクロライドについて、フィルム全体の重量に対し0.1%以下の重量に減少されている。なお、フィルム10が含むメチレンクロライドの重量は、フィルム10のフィルム片を溶解したものについて、ガスクロマトグラフィー測定により検量線法で測定した値である。フィルム10に残留するメチレンクロライドの重量が0.1%以下であることにより、0.1%より大きい場合に比べて、電子部品用途の部材に適して用いることができるからである。 The weight of the film 10 that has undergone the heat treatment step is reduced to 0.1% or less of the weight of the entire film with respect to the methylene chloride remaining in the film 10. The weight of methylene chloride contained in the film 10 is a value measured by a calibration curve method by gas chromatography measurement for a film in which a film piece of the film 10 is dissolved. This is because the weight of methylene chloride remaining on the film 10 is 0.1% or less, which makes it more suitable for members for electronic components than when it is larger than 0.1%.
 なお、フィルム10に対して熱処理工程を行う時間を長くする程、フィルム10に残留するメチレンクロライドは減少するが、熱処理工程を行う時間を長くすることにより、フィルム10の酸化が進むことによる着色のおそれが生じる。また、製造コストの増大にもつながる。したがって、フィルム10に残留するメチレンクロライドが、フィルム全体の重量に対し0.1%以下の重量になる時間は、25分以下であることが好ましい。 The longer the heat treatment step is performed on the film 10, the less methylene chloride remains on the film 10, but the longer the heat treatment step is, the more the film 10 is oxidized and colored. There is a risk. It also leads to an increase in manufacturing cost. Therefore, it is preferable that the time for the methylene chloride remaining on the film 10 to reach a weight of 0.1% or less with respect to the total weight of the film is 25 minutes or less.
 また、フィルム10は、色度bが2未満であることが好ましい。色度bは、JIS Z8370に準拠して、分光色彩計(SE7700、日本電色工業社製)を用いて測定した、L表色系を用いた色度bの値である。色度bの値が小さいほど、フィルムの色のうち黄色の成分が少ないことを示す。色度bは、2未満であることが好ましく、より好ましくは1.5未満、さらに好ましくは、1.2未満である。フィルム10の着色は、フィルム10の含窒素ポリマーが酸素と結びつくことによっても生じるとされている。フィルム10は、上記のように構成したフィルムの製造方法により、残留メチレンクロライドが低減され、かつ、色度bが2未満と着色が少ない透明フィルムとして製造される。 Further, the film 10 preferably has a chromaticity b * of less than 2. The chromaticity b * is the value of the chromaticity b * using the L * a * b * color system measured with a spectrocolorimeter (SE7700, manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with JIS Z8370. Is. The smaller the value of the chromaticity b * , the less the yellow component in the film color. The chromaticity b * is preferably less than 2, more preferably less than 1.5, and even more preferably less than 1.2. It is said that the coloring of the film 10 is also caused by the combination of the nitrogen-containing polymer of the film 10 with oxygen. The film 10 is produced as a transparent film having a reduced residual methylene chloride and a chromaticity b * of less than 2 and less coloring by the film manufacturing method configured as described above.
 なお、色度bについては、フィルム10の厚みによる影響を考慮し、色度bを厚みで除した値を用いて評価することが好ましい。フィルムの厚みの単位がμmであった場合、色度b/厚みの値が0.4以下であることが好ましい。 The chromaticity b * is preferably evaluated using a value obtained by dividing the chromaticity b * by the thickness in consideration of the influence of the thickness of the film 10. When the unit of film thickness is μm, the chromaticity b * / thickness value is preferably 0.4 or less.
 図6に示すように、フィルム10の厚みT10は、本例では5μm以上100μm以下の範囲内、より好ましくは、30μm以上80μm以下の範囲内である。この範囲に限定されず、100μmよりも厚い場合もあるし、5μmよりも薄い場合もある。光学フィルムとして用いる場合の厚みT10は10μm以上60μm以下の範囲内が好ましく、例えば、モバイルディスプレイのカバーフィルム用途では、厚みT10は10μm以上50μm以下、イヤホン等の振動板として用いる場合の厚みT10は5μm以上15μm以下の範囲内が好ましい。 As shown in FIG. 6, the thickness T10 of the film 10 is in the range of 5 μm or more and 100 μm or less, more preferably 30 μm or more and 80 μm or less in this example. Not limited to this range, it may be thicker than 100 μm or thinner than 5 μm. The thickness T10 when used as an optical film is preferably in the range of 10 μm or more and 60 μm or less. For example, in a mobile display cover film application, the thickness T10 is 10 μm or more and 50 μm or less, and the thickness T10 when used as a diaphragm for earphones or the like is 5 μm. It is preferably within the range of 15 μm or more.
 フィルムは単層構造に限定されず、複層構造でもよい。複層構造の場合の層の数は、3層に限定されず、2層又は4層以上でもよい。多層構造のフィルムは、例えば、各層を形成するそれぞれのドープを共流延すること等により得る。 The film is not limited to a single-layer structure, but may be a multi-layer structure. In the case of a multi-layer structure, the number of layers is not limited to three, and may be two or four or more. The multi-layered film is obtained, for example, by co-flowing each dope forming each layer.
 なお、上記実施形態では、テンタ38を通過したフィルム10は一旦巻き取られたが、テンタ38を通過したフィルム10を連続して熱処理工程に送ってもよい。図7に示すフィルム製造設備40では、テンタ38からローラ乾燥機41に直接フィルム10が送られる。この場合は、ポリマー溶液作成工程と、フィルム形成工程と、熱処理工程とを、連続して行うことができるため、高い生産性でフィルム10を製造できる。 In the above embodiment, the film 10 that has passed through the tenta 38 is once wound up, but the film 10 that has passed through the tenta 38 may be continuously sent to the heat treatment step. In the film manufacturing facility 40 shown in FIG. 7, the film 10 is directly sent from the tenter 38 to the roller dryer 41. In this case, since the polymer solution preparation step, the film forming step, and the heat treatment step can be continuously performed, the film 10 can be manufactured with high productivity.
 上記のように構成した透明フィルムの製造方法及び透明フィルムによれば、高い生産性にて、着色が抑制された透明フィルムを得ることができる。含窒素ポリマーの加熱においては、窒素部分の酸化反応と推定される着色が起きやすい。また、含窒素ポリマーのメチレンクロライド溶液を用いてフィルムを成型する場合、フィルムに残留するメチレンクロライドを効率よく低減する必要がある。フィルムを乾燥する方式として、伝熱乾燥(ロール接触)では乾燥効率が低下する。また、赤外線のような電磁放射による加熱では、フィルムの着色が促進される。上記のように構成したフィルムの製造方法では、フィルム両面の通気加熱によりフィルム表面の溶剤濃度を下げ、フィルム中の両面からの溶剤拡散を促進させることができると推定される。 According to the method for producing a transparent film and the transparent film configured as described above, it is possible to obtain a transparent film in which coloring is suppressed with high productivity. When the nitrogen-containing polymer is heated, coloring that is presumed to be an oxidation reaction of the nitrogen portion is likely to occur. Further, when a film is molded using a methylene chloride solution of a nitrogen-containing polymer, it is necessary to efficiently reduce the methylene chloride remaining on the film. As a method of drying the film, heat transfer drying (roll contact) lowers the drying efficiency. Further, heating by electromagnetic radiation such as infrared rays promotes coloring of the film. It is presumed that in the film manufacturing method configured as described above, the solvent concentration on the film surface can be lowered by aeration heating on both sides of the film, and the solvent diffusion from both sides in the film can be promoted.
 一方、フィルム両面の通気により、フィルムの酸化が促進される場合がある。したがって、フィルムの酸化防止のため、通気風量を低減し加熱を効率的に行うよう、熱処理空間の容積当りのフィルム処理量を規定し、低風量で加熱することが好ましい。低風量での加熱は、熱処理空間の乾燥温度維持、及び熱効率の向上にもつながる。さらに、乾燥効率維持のため、排気のメチレンクロライド量が多くならないよう、搬送速度等を調整することが好ましい。 On the other hand, the ventilation of both sides of the film may promote the oxidation of the film. Therefore, in order to prevent oxidation of the film, it is preferable to specify the film treatment amount per volume of the heat treatment space and heat with a low air volume so as to reduce the air flow volume and perform heating efficiently. Heating with a low air volume also leads to maintenance of the drying temperature in the heat treatment space and improvement of thermal efficiency. Further, in order to maintain the drying efficiency, it is preferable to adjust the transport speed and the like so that the amount of methylene chloride in the exhaust does not increase.
 また、ヒンダードフェノール系等の酸化防止剤を添加するので、フィルムの着色が防止される。さらに流延工程と熱処理工程とを一貫化した際には、熱処理工程に同伴されるメチレンクロライドの量が増加する傾向があるが、搬送速度、又は風量等を調整し、排気及びフィルムが含有するメチレンクロライド量が多くならないよう、搬送速度の調整等をすることができる。そして、フィルム成型から熱処理工程等まで、連続生産方法により行うことができるため、生産効率が向上する。 In addition, since an antioxidant such as hindered phenol is added, coloring of the film is prevented. Furthermore, when the casting process and the heat treatment process are integrated, the amount of methylene chloride that accompanies the heat treatment process tends to increase, but the transport speed, air volume, etc. are adjusted to be contained in the exhaust and film. The transport speed can be adjusted so that the amount of methylene chloride does not increase. Further, since the film molding to the heat treatment step can be performed by the continuous production method, the production efficiency is improved.
 また、フィルム10に残留するメチレンクロライドが低減されることに加え、フィルム10の色度b*が2未満であるフィルム10を、加熱気体を、温度を調整した上でフィルム10の両面それぞれに接触させるといった簡便な熱処理工程により製造することができる。また、熱処理工程は、速度を調整してフィルム10を搬送しながら行うことができるため、生産性を向上させることができる。熱処理工程は、通常行われる乾燥工程を兼ねており、従来の工程に追加の工程を加えることなく製造することができる。したがって、透明フィルムの製造方法は、高い生産性にて、着色が抑制された透明フィルムを得ることができる製造方法であり、製造されたフィルムは、着色が抑制された透明フィルムである。 Further, in addition to reducing the methylene chloride remaining on the film 10, the film 10 having a chromaticity b * of less than 2 is brought into contact with both sides of the film 10 after adjusting the temperature with a heated gas. It can be manufactured by a simple heat treatment process such as. Further, since the heat treatment step can be performed while the film 10 is conveyed by adjusting the speed, the productivity can be improved. The heat treatment step also serves as a drying step which is usually performed, and can be manufactured without adding an additional step to the conventional step. Therefore, the method for producing a transparent film is a production method capable of obtaining a transparent film in which coloring is suppressed with high productivity, and the produced film is a transparent film in which coloring is suppressed.
[実施例1]~[実施例9]
 フィルム製造設備20により単層構造のフィルム10を製造し、実施例1~実施例9とした。含窒素ポリマー11としてポリイミドを使用した。
[Example 1] to [Example 9]
The film 10 having a single-layer structure was manufactured by the film manufacturing equipment 20, and used as Examples 1 to 9. Polyimide was used as the nitrogen-containing polymer 11.
 ポリイミドは、次のように製造したものを使用した。窒素雰囲気下、溶媒トラップ及びフィルタを取り付けた真空ポンプが接続された反応容器に、1gのイソキノリンを投入した。次に、反応容器にγ-ブチロラクトン375g、及び2,2′-ビス(トリフルオロメチル)-4,4′-ジアミノジフェニル(TFMB、2,2′-Bis(trifluoromethyl)benzidine)104gを投入し、撹拌して溶解させた。さらに、4,4′-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA、4,4′-(Hexafluoroisopropylidene)diphthalic anhydride)145gを反応容器に加えた後、混合物を撹拌しつつオイルバスで昇温を開始した。80℃で6時間加熱撹拌した。その後、外温を190℃まで加熱して、イミド化に伴って発生する水をトルエンとともに共沸留去した。6時間加熱、還流及び撹拌を続けたところ、水の発生は認められなくなった。引き続きトルエンを留去しながら7時間加熱し、さらにトルエン留去後にメタノールを投入して再沈殿した。得られたポリイミドワニス中のポリイミドについて、GPC測定を行ったところ、重量平均分子量は360,000であった。また、ポリイミドのフッ素原子含有量は31.3質量%であった。Tgは335℃であった。 The polyimide used was manufactured as follows. Under a nitrogen atmosphere, 1 g of isoquinoline was charged into a reaction vessel to which a vacuum pump equipped with a solvent trap and a filter was connected. Next, 375 g of γ-butyrolactone and 104 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl (TFMB, 2,2'-Bis (trifluoromethyl) benzidine) were added to the reaction vessel. It was stirred and dissolved. Further, after adding 145 g of 4,4'-(hexafluoroisopropylidene) diphthalate dianhydride (6FDA, 4,4'-(Hexafluoroisopropylide) diphthalic anhydride) to the reaction vessel, the mixture is stirred and raised in an oil bath. The warming started. The mixture was heated and stirred at 80 ° C. for 6 hours. Then, the outside temperature was heated to 190 ° C., and the water generated by imidization was azeotropically distilled off together with toluene. After continuing heating, refluxing and stirring for 6 hours, no water was observed. Subsequently, the mixture was heated for 7 hours while distilling off toluene, and after distilling off toluene, methanol was added to reprecipitate. When the polyimide in the obtained polyimide varnish was measured by GPC, the weight average molecular weight was 360,000. The fluorine atom content of the polyimide was 31.3% by mass. Tg was 335 ° C.
 酸化防止剤は、以下に記載した化合物A、化合物B、化合物C、化合物D、又は化合物Eのいずれかを使用した。酸化防止剤の使用量は、表2の「添加剤」の「量」の欄に記載した。酸化防止剤を使用しない場合は、表2の「添加剤」の欄に「なし」と記載し、「量」の欄に「-」と記載した。 As the antioxidant, any of the compounds A, B, C, D or E described below was used. The amount of the antioxidant used is described in the "Amount" column of "Additives" in Table 2. When no antioxidant was used, "None" was described in the "Additives" column of Table 2, and "-" was described in the "Amount" column.
 化合物A:ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(分子量;1178、商品名;Irganox(登録商標)1010、BASFジャパン社製)、化合物B:3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン(分子量;733、商品名;アデカスタブ(登録商標)PEP-8、ADEKA社製)、化合物C:ビス-(1,2,2,6,6-ペンタメチル-4-ピペリジル){[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル}ブチルマロネート(分子量;685、商品名;Tinuvin(登録商標)144、BASFジャパン社製)、化合物D:3,9-ビス[2-{3-(3-ターシャリーブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2、4-8,10-テトラオキサスピロ[5,5]ウンデカン(分子量;741、商品名;アデカスタブ(登録商標)AO-80、ADEKA社製) Compound A: Pentaerythrityl-tetrax [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (molecular weight; 1178, trade name: Irganox® 1010, manufactured by BASF Japan), Compound B: 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane (molecular weight; 733, trade name; Adecastab (registered trademark) PEP-8 , Made by ADEKA), Compound C: Bis- (1,2,2,6,6-pentamethyl-4-piperidyl) {[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl } Butyl malonate (molecular weight; 685, trade name; Tinuvin (registered trademark) 144, manufactured by BASF Japan, Inc.), compound D: 3,9-bis [2- {3- (3-tertiary butyl-4-hydroxy-). 5-Methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4-8,10-tetraoxaspiro [5,5] undecane (molecular weight; 741, trade name; Adecastab® AO-80 , Made by ADEKA)
 フィルム製造設備20に供するポリイミドを含むドープ21は、次のように作成した。まず、ポリイミドを加熱装置に入れ、140℃で2時間加熱し、脱水のための樹脂乾燥を実施した。これにより、ポリイミド全体を基準として、加熱前の水分が0.18%であったものが、0.04%となった。次に、ミキシングタンク26内で、メチレンクロライド128.3kgとメタノール2.6kgとを混合し、溶剤15を作成した。溶剤中のメタノール比率(質量割合)は2%であり、容量は100Lであった。溶剤15を撹拌し、クエン酸エステル150gを添加した。その後、ポリイミド29.9kgを25分かけて投入した。これを撹拌し、ポリイミドを溶解させた。これをドープ21として、フィルム製造設備20に供した。ポリイミドを含むドープ21の溶剤を除く各成分の質量割合は以下のとおりであった。ドープ21中のポリイミドの質量割合は18.6%であった。 The dope 21 containing polyimide used for the film manufacturing equipment 20 was prepared as follows. First, the polyimide was placed in a heating device and heated at 140 ° C. for 2 hours to dry the resin for dehydration. As a result, the water content before heating was 0.18% based on the entire polyimide, but it became 0.04%. Next, in the mixing tank 26, 128.3 kg of methylene chloride and 2.6 kg of methanol were mixed to prepare a solvent 15. The methanol ratio (mass ratio) in the solvent was 2%, and the volume was 100 L. The solvent 15 was stirred and 150 g of citric acid ester was added. Then, 29.9 kg of polyimide was added over 25 minutes. This was stirred to dissolve the polyimide. This was used as a dope 21 and used in the film manufacturing equipment 20. The mass ratio of each component excluding the solvent of the dope 21 containing polyimide was as follows. The mass ratio of the polyimide in the dope 21 was 18.6%.
ポリイミドを含むドープ21
 ポリイミド         100.0質量部
 クエン酸イソプロピル      0.50質量部
Dope 21 containing polyimide
Polyimide 100.0 parts by mass Isopropyl citrate 0.50 parts by mass
 流延工程、剥離工程及び乾燥工程における詳細は次のとおりであった。流延ダイ36及び金属リップ(ダイリップ)は、SUS316L等からなるものを使用した。ドープ21を、それぞれフィルタ28に通した。まず、30μmのフィルタを通し、次に10μmのフィルタを通した。流延ダイから1450cc/分でドープ21を送液した。ベルト46は、5m/分で運転した。したがって、流延速度は5m/分であった。ベルト46は、SUS製の金属バンドであった。フィルム製造設備20により、金属バンド上で乾燥をすすめた。剥離工程において剥離した後、テンタ38とスリッタ42とを経て、フィルム10を巻き取った。巻取りは、FRP(Fiber-Reinforced Plastics)製の巻き芯に、フィルムの幅700mm、フィルムの長さ500mにて行った。このフィルム10の厚みを、表2の「製膜」の「厚み」の欄に記載した。 The details of the casting process, peeling process and drying process were as follows. As the casting die 36 and the metal lip (die lip), those made of SUS316L or the like were used. The dope 21 was passed through the filter 28, respectively. First, it was passed through a 30 μm filter and then through a 10 μm filter. The dope 21 was delivered from the casting die at 1450 cc / min. The belt 46 was operated at 5 m / min. Therefore, the flow rate was 5 m / min. The belt 46 was a metal band made of SUS. Drying was recommended on the metal band by the film manufacturing equipment 20. After peeling in the peeling step, the film 10 was wound through the tenta 38 and the slitter 42. Winding was performed on a winding core made of FRP (Fiber-Reinforced Plastics) with a film width of 700 mm and a film length of 500 m. The thickness of this film 10 is described in the column of "thickness" of "film formation" in Table 2.
 巻き取ったフィルム10を、送出機44にセットし、ローラ乾燥機41にてフィルム10を連続搬送することにより熱処理工程を行った。ローラ乾燥機41の種類は、表2の「熱処理」の「熱処理空間」の欄に記載した。処理装置A、処理装置B、又は、処理装置Cは、上述したとおりのものである(表1参照)。 The wound film 10 was set in the delivery machine 44, and the film 10 was continuously conveyed by the roller dryer 41 to perform a heat treatment step. The types of the roller dryer 41 are described in the "heat treatment space" column of "heat treatment" in Table 2. The processing device A, the processing device B, or the processing device C is as described above (see Table 1).
 表2の「熱処理」の「温度」の欄に、フィルム10の両面のそれぞれに接触させる加熱気体の温度を記載した。加熱気体は、空気を電熱器で加熱したものを用いた。温度は、給気口55の出口の位置で熱電対により測定した値を記載した。フィルム10の熱処理の時間は、約15分であり、熱処理の処理速度であるフィルム10の搬送速度は、約0.67m/分であった。熱処理を完了したフィルム10を巻き取って、製造を完了した。 In the "Temperature" column of "Heat treatment" in Table 2, the temperature of the heated gas in contact with each of both sides of the film 10 is described. As the heated gas, air heated with an electric heater was used. The temperature is a value measured by a thermocouple at the position of the outlet of the air supply port 55. The heat treatment time of the film 10 was about 15 minutes, and the transport speed of the film 10, which is the processing speed of the heat treatment, was about 0.67 m / min. The film 10 that had been heat-treated was wound up to complete the production.
 フィルム10の製造及び製造したフィルム10について、フィルム10に残留するメチレンクロライドの減少効果、及びフィルム10の着色を、下記の方法及び基準で評価した。各評価結果等は表2に示す。 Regarding the production of the film 10 and the produced film 10, the effect of reducing the methylene chloride remaining on the film 10 and the coloring of the film 10 were evaluated by the following methods and criteria. The results of each evaluation are shown in Table 2.
1.フィルム10に残留するメチレンクロライドの減少効果
 熱処理の時間を変えて製造したフィルム10に対して、フィルム10に残留するメチレンクロライドの量を、次のようにして測定した。測定用試料としてフィルム10のフィルム片をクロロホルムに約0.9%になるよう溶解し、測定用試料中のメチレンクロライド量をガスクロマトグラフィー測定により検量線法で測定した。装置はガスクロマトグラフィー((株)島津製作所製))GC-2014を用い、分離カラムはGLサイエンス製INTER CAP1(長さ30m、内径0.32mm)を用いた。測定条件は、測定用試料を注入量0.1μLで行い、カラム温度60℃、オーブン温度プログラムは60℃から測定をスタートし、5分で120℃まで、次の5分で160℃まで昇温するステップとした。測定用試料中のメチレンクロライド量/測定用試料中のフィルム片濃度を百分率で求めた。したがって、得られたメチレンクロライド量は、フィルム10全体に対するメチレンクロライド量の質量割合である。フィルム10に残留するメチレンクロライドが0.1%となる時間を求め、表2の「残留メチレンクロライドが0.1%となる時間」の欄に記載した。
1. 1. Effect of reducing methylene chloride remaining on the film 10 The amount of methylene chloride remaining on the film 10 was measured as follows with respect to the film 10 produced by changing the heat treatment time. As a sample for measurement, a film piece of film 10 was dissolved in chloroform so as to be about 0.9%, and the amount of methylene chloride in the sample for measurement was measured by a calibration curve method by gas chromatography measurement. The apparatus used was gas chromatography (manufactured by Shimadzu Corporation) GC-2014, and the separation column used was INTER CAP1 (length 30 m, inner diameter 0.32 mm) manufactured by GL Science. The measurement conditions are as follows: the measurement sample is injected at an injection volume of 0.1 μL, the column temperature is 60 ° C, the oven temperature program starts measurement from 60 ° C, and the temperature rises to 120 ° C in 5 minutes and to 160 ° C in the next 5 minutes. It was a step to do. The amount of methylene chloride in the measurement sample / the concentration of the film piece in the measurement sample was determined as a percentage. Therefore, the amount of methylene chloride obtained is the mass ratio of the amount of methylene chloride to the entire film 10. The time for the residual methylene chloride to be 0.1% in the film 10 was determined and described in the column of "Time for the residual methylene chloride to be 0.1%" in Table 2.
2.フィルム10の着色
 製造したフィルム10に対し、色度bを測定した。色度bは、JIS Z8370に準拠して、分光色彩計(SE7700、日本電色工業社製)を用いて測定した。評価基準は、2未満は合格、2以上は不合格である。また、フィルム10の厚みの影響を考慮するために、色度bを、上記にて測定したフィルム10の厚みで除した値を、表2の「結果」の「b値/厚み」欄に記載した。
2. 2. Coloring of Film 10 The chromaticity b * was measured with respect to the produced film 10. The chromaticity b * was measured using a spectrocolorimeter (SE7700, manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with JIS Z8370. As for the evaluation criteria, less than 2 is acceptable and 2 or more is unacceptable. Further, in order to consider the influence of the thickness of the film 10, the value obtained by dividing the chromaticity b * by the thickness of the film 10 measured above is divided into the “b * value / thickness” column of the “result” in Table 2. Described in.
[比較例1]~[比較例6]
 酸化防止剤を添加しないドープ21を用いて、フィルムを製造した。比較例1では、熱処理工程は、加熱した接触ロールによりフィルム10を処理することにより行った。接触ロールによる処理は、表面温度220℃の加熱ロールを用いてフィルムを25分間接触させて処理することにより行った。比較例2及び3では、熱処理工程は、遠赤外線を照射するヒーターにより行った。赤外線を照射する処理は、フィルムの膜面温度を該当温度になる様、出力・距離を調整し、220℃の際は14分、240℃の際は9分で行った。結果は、実施例と同様、フィルム10に残留するメチレンクロライドの減少効果、及びフィルム10の着色を、上記の方法及び基準で評価した。各評価結果等は表2に示す。
[Comparative Example 1] to [Comparative Example 6]
A film was produced using the dope 21 to which no antioxidant was added. In Comparative Example 1, the heat treatment step was performed by treating the film 10 with a heated contact roll. The treatment with the contact roll was carried out by contacting the films for 25 minutes using a heating roll having a surface temperature of 220 ° C. In Comparative Examples 2 and 3, the heat treatment step was performed by a heater irradiating far infrared rays. The process of irradiating infrared rays was performed in 14 minutes at 220 ° C. and 9 minutes at 240 ° C. by adjusting the output and distance so that the film surface temperature of the film became the corresponding temperature. As a result, the effect of reducing the methylene chloride remaining on the film 10 and the coloring of the film 10 were evaluated by the above methods and criteria as in the examples. The results of each evaluation are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
[実施例10]~[実施例25]
 フィルム製造設備20又はフィルム製造設備70により単層構造のフィルム10を製造し、実施例10~実施例25とした。フィルム製造設備20を用いたものは、表3の「製膜工程」欄に、「別工程」と記載し、フィルム製造設備70を用いたものは、「一貫」と記載した。含窒素ポリマー11として実施例1と同様のポリイミドを使用し、酸化防止剤として実施例1と同様の化合物Aを用いた。熱処理工程における処理装置、加熱気体の温度、及び熱処理の処理速度であるフィルム10の搬送速度を異ならせて、その他の条件等は、実施例1と同様にして、フィルム10を製造した。熱処理工程の条件等は表3に示す。なお、熱処理工程における処理装置であるローラ乾燥機41の排気口56から、排気を取得し、排気におけるメチレンクロライドの濃度を測定した。メチレンクロライドの濃度は、排気全体の重量に対するメチレンクロライドの重量により示した。また、フィルム10の製造及び製造したフィルム10について、フィルム10に残留するメチレンクロライドの減少効果、及びフィルム10の着色を、上記の方法及び基準で評価した。各評価結果等は表3に示す。
[Example 10] to [Example 25]
The film 10 having a single-layer structure was manufactured by the film manufacturing facility 20 or the film manufacturing facility 70, and used as Examples 10 to 25. The one using the film manufacturing equipment 20 was described as "separate process" in the "film forming process" column of Table 3, and the one using the film manufacturing equipment 70 was described as "consistent". The same polyimide as in Example 1 was used as the nitrogen-containing polymer 11, and the same compound A as in Example 1 was used as the antioxidant. The film 10 was manufactured in the same manner as in Example 1 except that the processing apparatus in the heat treatment step, the temperature of the heated gas, and the transport speed of the film 10, which is the processing speed of the heat treatment, were different. The conditions of the heat treatment process are shown in Table 3. Exhaust gas was obtained from the exhaust port 56 of the roller dryer 41, which is a treatment device in the heat treatment step, and the concentration of methylene chloride in the exhaust gas was measured. The concentration of methylene chloride is indicated by the weight of methylene chloride with respect to the total weight of the exhaust gas. Further, with respect to the production of the film 10 and the produced film 10, the effect of reducing the methylene chloride remaining on the film 10 and the coloring of the film 10 were evaluated by the above methods and criteria. The results of each evaluation are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 10  フィルム
 11  含窒素ポリマー
 12  酸化防止剤
 15  溶剤
 20,70  フィルム製造設備
 21  ドープ
 22  ドープ調製装置
 23  フィルム製造装置
 26  ミキシングタンク
 27,32  ポンプ
 28  フィルタ
 31  貯留タンク
 33  配管
 36  流延ダイ
 36a  吐出口
 37  流延ユニット
 38  テンタ
 41  ローラ乾燥機
 41a ローラ
 42  スリッタ
 43、45  巻取機
 44  送出機
 46  ベルト
 47  ローラ
 48  剥取ローラ
 51  流延膜
 52  クリップ
 53  送風機
 54  巻き芯
 55  給気口
 56  排気口
 57  給気チャンバ
 58  排気チャンバ
 D1 厚み方向
 PC 流延位置
 PP 剥取位置
 S1~S4 熱処理空間
 L パス長
 
10 Film 11 Nitrogen-containing polymer 12 Antioxidant 15 Solvent 20,70 Film manufacturing equipment 21 Dope 22 Dope preparation equipment 23 Film manufacturing equipment 26 Mixing tank 27, 32 Pump 28 Filter 31 Storage tank 33 Piping 36 Flowing die 36a Discharge port 37 Flowing unit 38 Tenta 41 Roller dryer 41a Roller 42 Slitter 43, 45 Winding machine 44 Distributor 46 Belt 47 Roller 48 Stripping roller 51 Flowing film 52 Clip 53 Blower 54 Winding core 55 Air supply port 56 Exhaust port 57 Supply Air chamber 58 Exhaust chamber D1 Thickness direction PC spreading position PP stripping position S1 to S4 Heat treatment space L Path length

Claims (12)

  1.  含窒素ポリマーと、酸化防止剤と、メチレンクロライドとを含有するポリマー溶液を作成するポリマー溶液作成工程と、
     前記ポリマー溶液を用いた溶液製膜法によりフィルムを形成するフィルム形成工程と、
     前記フィルムの両面のそれぞれに200℃以上の温度の加熱気体を接触させる熱処理工程とを備える透明フィルムの製造方法。
    A polymer solution preparation step for preparing a polymer solution containing a nitrogen-containing polymer, an antioxidant, and methylene chloride,
    A film forming step of forming a film by a solution film forming method using the polymer solution, and
    A method for producing a transparent film, comprising a heat treatment step of contacting both sides of the film with a heated gas having a temperature of 200 ° C. or higher.
  2.  前記熱処理工程は、給気手段と排気手段とを備えた乾燥装置が形成する気密の熱処理空間において、前記フィルムを連続搬送することにより行われる請求項1に記載の透明フィルムの製造方法。 The method for producing a transparent film according to claim 1, wherein the heat treatment step is performed by continuously transporting the film in an airtight heat treatment space formed by a drying device provided with an air supply means and an exhaust means.
  3.  前記熱処理工程は、前記熱処理空間の容積1mあたり前記フィルムを1m以上10m以下の範囲内により処理する請求項2に記載の透明フィルムの製造方法。 The method for producing a transparent film according to claim 2, wherein the heat treatment step treats the film within a range of 1 m 2 or more and 10 m 2 or less per 1 m 3 of the volume of the heat treatment space.
  4.  前記熱処理工程は、フィルムの搬送速度が1分あたり0.5m以上20m以下の範囲内の速さである請求項2又は3に記載の透明フィルムの製造方法。 The method for producing a transparent film according to claim 2 or 3, wherein the heat treatment step is a speed in which the transport speed of the film is within the range of 0.5 m or more and 20 m or less per minute.
  5.  前記熱処理工程は、前記排気手段による排気に含まれる前記メチレンクロライドの体積あたりの重量が、前記排気全体に対し1%以下である請求項2ないし4のいずれか1項に記載の透明フィルムの製造方法。 The transparent film according to any one of claims 2 to 4, wherein in the heat treatment step, the weight per volume of the methylene chloride contained in the exhaust by the exhaust means is 1% or less with respect to the entire exhaust. Method.
  6.  前記加熱気体は、270℃以下の温度である請求項1ないし5のいずれか1項に記載の透明フィルムの製造方法。 The method for producing a transparent film according to any one of claims 1 to 5, wherein the heated gas has a temperature of 270 ° C. or lower.
  7.  前記熱処理工程は、25分以内の時間で行う請求項1ないし6のいずれか1項に記載の透明フィルムの製造方法。 The method for producing a transparent film according to any one of claims 1 to 6, wherein the heat treatment step is performed within a time of 25 minutes or less.
  8.  前記含窒素ポリマーは、ポリイミドである請求項1ないし7のいずれか1項に記載の透明フィルムの製造方法。 The method for producing a transparent film according to any one of claims 1 to 7, wherein the nitrogen-containing polymer is polyimide.
  9.  前記酸化防止剤は、ヒンダードフェノール系酸化防止剤である請求項1ないし8のいずれか1項に記載の透明フィルムの製造方法。 The method for producing a transparent film according to any one of claims 1 to 8, wherein the antioxidant is a hindered phenolic antioxidant.
  10.  前記ヒンダードフェノール系酸化防止剤は、数平均分子量が1000以上である請求項9項に記載の透明フィルムの製造方法。 The method for producing a transparent film according to claim 9, wherein the hindered phenolic antioxidant has a number average molecular weight of 1000 or more.
  11.  前記フィルム形成工程と前記熱処理工程とは連続して行う請求項1ないし10のいずれか1項に記載の透明フィルムの製造方法。 The method for producing a transparent film according to any one of claims 1 to 10, wherein the film forming step and the heat treatment step are continuously performed.
  12.  請求項1ないし11のいずれか1項に記載のフィルムの製造方法により製造された透明フィルムであって、色度bが2未満である透明フィルム。
     
    A transparent film produced by the method for producing a film according to any one of claims 1 to 11, wherein the chromaticity b * is less than 2.
PCT/JP2021/029634 2020-09-28 2021-08-11 Transparent film manufacturing method and transparent film WO2022064890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022551189A JPWO2022064890A1 (en) 2020-09-28 2021-08-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-162682 2020-09-28
JP2020162682 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022064890A1 true WO2022064890A1 (en) 2022-03-31

Family

ID=80845062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029634 WO2022064890A1 (en) 2020-09-28 2021-08-11 Transparent film manufacturing method and transparent film

Country Status (2)

Country Link
JP (1) JPWO2022064890A1 (en)
WO (1) WO2022064890A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146637A1 (en) * 2007-05-24 2008-12-04 Mitsubishi Gas Chemical Company, Inc. Process and apparatus for production of colorless transparent resin film
JP2015071296A (en) * 2013-09-03 2015-04-16 昭和電工株式会社 Method of producing cast film
JP2019065103A (en) * 2017-09-29 2019-04-25 富士フイルム株式会社 Polyarylate film and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146637A1 (en) * 2007-05-24 2008-12-04 Mitsubishi Gas Chemical Company, Inc. Process and apparatus for production of colorless transparent resin film
JP2015071296A (en) * 2013-09-03 2015-04-16 昭和電工株式会社 Method of producing cast film
JP2019065103A (en) * 2017-09-29 2019-04-25 富士フイルム株式会社 Polyarylate film and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2022064890A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
EP0036330B1 (en) Process for continuously producing an aromatic polyimide film
JP7128310B2 (en) Method for producing polyamideimide film
JP5824237B2 (en) Method for producing polyimide film
KR102117151B1 (en) Polyimide precursor solution and polyimide film prepared by using same
KR20160059097A (en) Polyamic acid solution, polyimde film, and method for manufacturing the same
TW201533096A (en) Method for producing polyimide, and polyimide obtained using such production method
TW201930418A (en) Process for preparing a poly(amide-imide) film and a poly(amide-imide) film prepared by the same
CN107722269A (en) Polyamic acid resin, polyamidoimide film and preparation method thereof
US20090082543A1 (en) Method of preparing poly(amic acid) and method of preparing polyimide
Dudley et al. Influence of crosslinking technique on the physical and transport properties of ethynyl-terminated monomer/polyetherimide asymmetric membranes
TW201934613A (en) Polyamic acid composition with improved storage stability, method for preparing polyimide film by using the same, polyimide film prepared by the same and electronic device
WO2022064890A1 (en) Transparent film manufacturing method and transparent film
JP7317123B2 (en) Novel method for producing a polyamic acid composition containing a dicarbonyl compound, a polyamic acid composition, a method for producing a polyamide-imide film using the same, and a polyamide-imide film produced by the production method
TW202106764A (en) Polyimide resin and method for producing same, and polyimide film and method for producing same
Yanagishita et al. Preparation of polyimide composite membranes grafted by electron beam irradiation
EP3494165A1 (en) Method for the manufacture of a poly(imide) prepolymer powder and varnish, poly(imide) prepolymer powder and varnish prepared thereby, and poly(imide) prepared therefrom
TWI701277B (en) Ultra-thin black polyimide film and method for preparing the same
JPS6337136B2 (en)
Lu et al. Preparation and properties of permselective film coated with glutaraldehyde crosslinked polyvinyl alcohol/diethanolamine
JP2020505489A (en) Method for producing polyamide-imide film
JP2007063380A (en) Method for producing polyimide precursor powder for expansion molding use
CN115584022B (en) Polyimide film material containing cage-type silsesquioxane and preparation method thereof
US4529793A (en) Selective permeable membranes comprising a polyquinazolone-based polymer
JP7206358B2 (en) Method for producing polyamic acid, polyamic acid produced therefrom, polyimide resin, and polyimide film
JP2903704B2 (en) Manufacturing method of aromatic polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551189

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872022

Country of ref document: EP

Kind code of ref document: A1