WO2022064726A1 - Cycloidal speed reducer and electrical device - Google Patents

Cycloidal speed reducer and electrical device Download PDF

Info

Publication number
WO2022064726A1
WO2022064726A1 PCT/JP2020/048418 JP2020048418W WO2022064726A1 WO 2022064726 A1 WO2022064726 A1 WO 2022064726A1 JP 2020048418 W JP2020048418 W JP 2020048418W WO 2022064726 A1 WO2022064726 A1 WO 2022064726A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
gear
motor
stator
rotating shaft
Prior art date
Application number
PCT/JP2020/048418
Other languages
French (fr)
Japanese (ja)
Inventor
友績 ▲ご▼
國智 顔
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080105395.5A priority Critical patent/CN116235388A/en
Publication of WO2022064726A1 publication Critical patent/WO2022064726A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present disclosure relates to cycloid speed reducers and electrical equipment.
  • This application claims priority based on Japanese Patent Application No. 2020-159871 filed in Japan on September 24, 2020, the contents of which are incorporated herein by reference.
  • a speed reducer having a high reduction ratio uses a multi-stage planetary gear device that is long in the axial direction, so that the device becomes large.
  • a speed reducer having a multi-stage planetary gear device is proposed. According to this device, a high reduction ratio can be obtained.
  • a cycloid reducer having a two-stage planetary gear device is proposed, and a significantly higher reduction ratio can be obtained by using the two-stage gear device. ..
  • Patent Document 5 a configuration is proposed in which the motor has a space in the center and the speed reducer is designed to be mounted in the space. In such a technique, the device as a whole is designed to be axially thin.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to realize a high reduction ratio (high output torque) and to make the thickness of the entire structure smaller.
  • the cycloid speed reducer includes a first rotation shaft and a second rotation shaft that rotate about the central axis, and a first rotor arranged radially outside the first rotation shaft.
  • a second rotor arranged radially outside the second rotation shaft, a stator arranged between the first rotor and the second rotor, and a stator housing covering the stator.
  • a first motor housing arranged on one side in the axial direction away from the stator of the first rotor, and a second motor housing arranged on the other side in the axial direction away from the stator of the second rotor.
  • a deceleration component having a first gear disposed axially on one side of the stator housing away from the motor, and a second gear that meshes with the first gear.
  • the motor comprises two bearings arranged radially outside the rotating shaft, the two bearings are axially aligned on the center side of the stator, and the deceleration component is the first gear.
  • the first gear and the second gear each include two gears arranged side by side in the axial direction.
  • the motor includes a fixing ring arranged radially outside the rotating shaft on the center side of the stator in the radial direction, and the two bearings are arranged between the rotating shaft and the fixing ring. Is preferable.
  • the deceleration component is a fixed portion arranged between a second rotation axis centered on a second axis extending parallel to the center axis at a position away from the center axis, and between the rotation axis and the second rotation axis. And, it is preferable to provide.
  • the motor comprises at least two connecting members for connecting the first rotor and the second rotor to the rotary shaft, the rotary shaft having a hole penetrating in the axial direction in the hole. Is preferably provided with the two connecting members facing each other. It was
  • the axis of rotation comprises an eccentric portion centered on a second axis extending parallel to the central axis at a position away from the central axis.
  • one bearing is located axially on the center side of the stator, and the other bearing is located on the other side of the second rotor axially away from the stator.
  • the motor includes at least one fixing pin for fixing the first rotor and the second rotor to the rotating shaft, and the rotating shaft has at least one concave portion radially outwardly. Is provided with the fixing pin. It was
  • one of the two bearings is located axially away from the stator of the first rotor and the other bearing is of the second rotor. It is located on the other side in the axial direction away from the stator.
  • the motor includes a second fixing pin for fixing the first rotor and the second rotor to the rotating shaft, and the second fixing pin is axially oriented with the first rotor. It extends from the outermost surface facing one side to the outermost surface facing the other side in the axial direction of the second rotor, and the rotating shaft extends along a direction intersecting the radial direction of the stator on the radial outer side.
  • a second recess is provided, and the second fixing pin is provided in the second recess.
  • the first gear is a ring gear and the second gear is a cycloid gear. It was
  • the motor is preferably an axial magnetic flux motor. It was
  • the cycloid deceleration device includes a motor and a deceleration component, the motor and the deceleration component are arranged in the axial direction, and the deceleration component is arranged on one side of the first motor housing away from the motor. It comprises a first gear that has been geared and a second gear that meshes with the first gear, the motor has two bearings located radially outward of the axis of rotation, and the two bearings are on the center side of the stator.
  • the first gear and the second gear of the deceleration component are aligned in the axial direction in the above, and each of the first gear and the second gear of the reduction gear includes two gears arranged adjacent to each other in the axial direction, so that a high reduction ratio is realized and the shaft is formed.
  • the thickness of the entire structure in the directional and radial directions can be made smaller.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB of FIG.
  • the cycloid deceleration device 10 is the first example of the cycloid deceleration device, and includes a motor 100 and a deceleration component 200.
  • the connecting member 260 constitutes the cycloid deceleration device 10 by integrating the motor 100 and the deceleration component 200 in the axial direction. It was
  • the motor 100 includes a rotary shaft 130 that rotates about the central axis C indicated by the alternate long and short dash line, and a first rotor 121 and a first rotor 121 that are arranged radially outside the rotary shaft 130, respectively.
  • the rotor 120 of 2 the stator 110 arranged between the first rotor 121 and the second rotor 120, the stator cover 111 covering the stator 110, and the axial direction away from the stator 110 of the first rotor 121. It includes a first motor housing 114 arranged on the side and a second motor housing 113 arranged on the other side of the second rotor 120 in the axial direction away from the stator 110.
  • the motor 100 includes two rotors and may be referred to herein as a double rotor motor. It was
  • the stator cover 111 is a ring-shaped member that covers the radial outside of the stator 110.
  • the stator cover 111 includes a hole into which the connecting member 260 is inserted.
  • the first motor housing 114 is located on the front side of the stator 110 and the second motor housing 113 is located on the rear side of the stator 110 with the stator 110 as a boundary.
  • the first motor housing 114 includes a hole into which the connecting member 260 is inserted. Since the first motor housing 114 is arranged between the motor 100 and the deceleration component 200, for example, oil leakage from the deceleration component 200 to the motor 100 can be prevented. It was
  • the first rotor 121 and the second rotor 122 shown in the present embodiment are, for example, disk-shaped disc rotors.
  • the first rotor 121 is located in front of the stator 110 and between the stator 110 and the first motor housing 114.
  • the second rotor 120 is located behind the stator 110 and between the stator 110 and the second motor housing 113. It was
  • the motor 100 and the deceleration component 200 are arranged in the axial direction, and the deceleration component 200 is provided on the front side of the motor 100.
  • the deceleration component 200 is on the front side of the first motor housing 114. Is located in. It was
  • the motor 100 includes two bearings 140 arranged radially outside the rotating shaft 130 and a fixing ring 112 arranged radially outside the rotating shaft 130 on the center side of the stator 110 in the radial direction. It was
  • the fixing ring 112 has an open central portion. That is, the fixing ring 112 penetrates in the axial direction.
  • the rotation shaft 130 is passed through the opening portion of the fixing ring 112 in a state where the fixing ring 112 is fitted in the central portion of the stator 110 shown in FIG. Then, as will be described later, the rotary shaft 130 is connected to the second rotary shaft 230 of the deceleration component 200. It was
  • the two bearings 140 are axially aligned on the center side of the stator 110. Further, the two bearings 140 are arranged between the rotating shaft 130 and the fixing ring 112. Thereby, the rotating shaft 130 is rotatably supported by two bearings 140 arranged inside the fixing ring 112. It was
  • the first rotor 121 shown in the present embodiment has a support portion 121a extending in the axial direction, a connection portion 121b connected to one side in the axial direction of the rotating shaft 130, and an axial direction between the support portion 121a and the connection portion 121b. It is provided with a through hole 121c that penetrates the through hole 121c.
  • the support portion 121a extends in the axial direction and supports the bearing 244 of the speed reduction component 200 described later.
  • the second rotor 120 includes a connecting portion 120a connected to the other side in the axial direction of the rotating shaft 130, and a recess 121b. It was
  • the rotating shaft 130 includes a hole 131 extending in the axial direction and a flat seat portion 132 on one side in the axial direction.
  • the hole 131 is, for example, a female screw hole having a female screw.
  • the flat seat portion 132 is a planar portion extending in the radial direction.
  • the hole 131 is provided with a pair of connecting members 141 facing each other for connecting the first rotor 121 and the second rotor 120 to the rotating shaft 130.
  • the connecting member 141 is, for example, a bolt.
  • the connecting member 141 is not limited to the bolt, and may be other than the bolt.
  • the rotating shaft 130 may have a hollow structure. As a result, the weight of the rotating shaft 130 can be reduced.
  • the first rotor 121 and the second rotor 120 can be attached to the rotary shaft 130 by the two connecting members 141, the washer 142, and the fixing pin 143.
  • the connecting portion 121b of the first rotor 121 is positioned at the flat seat portion 132 of the rotating shaft 130, and the fixing pin 143 is inserted into the through hole 121c.
  • the connecting member 141 is inserted into the hole 131 and screwed together until the screw head of the connecting member 141 abuts on the connecting portion 121b from one side in the axial direction to the other side in the axial direction.
  • the connecting portion 120a of the second rotor 120 is positioned at the end on the other side in the axial direction of the rotating shaft 130, and the washer 142 is positioned at the recess 120b.
  • the connecting member 141 is inserted into the hole 131 and screwed together until the screw head of the connecting member 141 abuts on the connecting portion 120a from the other side in the axial direction to the one side in the axial direction.
  • the first rotor 121 and the second rotor 120 can be stably fixed to the rotating shaft 130.
  • the rotary shaft 130 is connected to the motor 100 which is a drive source.
  • the rotating shaft 130 rotates at the first rotation speed about the central axis C by the power supplied from the motor 100.
  • the rotating shaft 130 serves as an input shaft. It was
  • the motor 100 shown in this embodiment is preferably an axial magnetic flux motor (Axial flux motor). Since the motor 100 has a structure short in the axial direction, the overall structure of the cycloid deceleration device 10 can be made smaller by integrating the motor 100 and the deceleration component 200. It was
  • the reduction gear 200 includes two first gears 210 and 220 and two first gears 210 and 220 arranged on one side in the axial direction away from the motor 100 of the first motor housing 114.
  • a bearing 242 arranged between the two, a second rotating shaft 230 centered on a second axis E extending in parallel with the central axis C at a position away from the central axis C, and a rotating shaft 130 and a second rotating shaft 230.
  • a fixed portion 243 arranged between and is provided. It was
  • the gear cover 250 is a ring-shaped member that covers at least a part of the speed reduction component 200 from the radial outside. In the illustrated example, the gear cover 250 covers the first gear 220 and the second gear 221 in the second stage. The gear cover 250 has a hole in the portion facing the stator cover 111 into which the connecting member 260 is inserted. It was
  • the two first gears 210 and 220 are arranged adjacent to each other in the axial direction.
  • the first gear 210 in the first stage has a hole that penetrates in the axial direction and into which the connecting member 260 is inserted.
  • the first gear 210 is fixed to the stator cover 111, the first motor housing 114, and the gear cover 250 by the connecting member 260.
  • the first gear 220 of the second stage is arranged between the first motor housing 114 and the gear cover 250.
  • the first gear 220 functions as an output shaft that outputs a decelerated driving force.
  • the first gear 220 is supported by the gear cover 250 by the bearing 242. It was
  • the two second gears 211 and 221 are arranged adjacent to each other in the axial direction.
  • the second gear 211 of the first stage is supported by the eccentric shaft 230 by the bearing 240.
  • the second gear 221 of the second stage is arranged between the second gear 221 of the first stage and the first gear 220 of the second stage.
  • the two second gears 211 and 221 are integrally configured with the second gear 221 by, for example, a connecting member 261.
  • the two integrated second gears 211 and 221 are rotatably supported by a bearing 240 attached to the eccentric shaft 230.
  • the connecting member 261 is, for example, a bolt.
  • the number of connecting members 261 is not particularly limited, and may be, for example, six or twelve. It was
  • the second rotation shaft 230 is a portion that rotates together with the rotation shaft 130 at the same rotation speed as the rotation shaft 130.
  • the rotary shaft 130 and the second rotary shaft 230 are separate members, but may be a single member.
  • the second rotation axis 230 is a cylindrical member centered on the second axis E extending in parallel with the central axis C at a position deviating from the central axis C. Therefore, the distance from the central axis C to the outer peripheral surface of the second rotating shaft 230 differs depending on the position in the circumferential direction.
  • the second rotating shaft 230 shown in the present embodiment can be said to be an axis eccentric by a predetermined amount in the axial direction. It was
  • the second rotating shaft 230 supports the first gear 220 via the bearing 241.
  • the second rotating shaft 230 may have a hollow structure penetrating in the axial direction. As a result, the weight of the second rotating shaft 230 can be reduced. Since the rotary shaft 130 of the motor 100 and the second rotary shaft 230 of the reduction component 200 are connected via the fixed portion 243, the driving force on the motor 100 side can be transmitted to the second rotary shaft 230. That is, when the rotating shaft 130 rotates about the central axis C, the position of the second rotating shaft 230 rotates about the central axis C.
  • the second rotary shaft 230 is integrated with the rotary shaft 130 and also functions as an input shaft for inputting the driving force from the motor 100 to the deceleration component 200.
  • the configuration of the second rotating shaft 230 is not limited to that shown in the present embodiment. It was
  • the first gears 210 and 220 are, for example, ring gears.
  • the second gear 220, 221 is, for example, a cycloid gear.
  • FIG. 5A shows the cycloid gear structure of the first stage.
  • the second gear 211 has a smooth curved plate, and has a plurality of arcuate external teeth 211a on the outer peripheral side thereof.
  • the first gear 210 has a plurality of arcuate internal teeth 210a in the radial direction in order to mesh with the plurality of external teeth 211a of the second gear 211.
  • FIG. 5B shows the cycloid gear structure of the second stage.
  • the second gear 221 also has a smooth curved plate, and has a plurality of arcuate external teeth 221a on the outer peripheral side thereof.
  • the first gear 220 has a plurality of arcuate internal teeth 220a in the radial direction in order to mesh with the plurality of external teeth 221a of the second gear 221. It was
  • the two second gears 211 and 221 are eccentric with respect to the axes O1 and O2 of the two first gears 210 and 220, respectively, by a predetermined amount, that is, eccentricities e1 and e2.
  • the eccentricity e1 of the first stage is centered on the axial center O1 passing through the center with respect to the outermost peripheral D1 of the first gear 210 and the center with respect to the outermost peripheral d1 of the second gear 211. It is the amount of difference from the axis O2 that passes through. Further, as shown in FIG.
  • the eccentricity e2 of the second stage is relative to the axial center O1 passing through the center with respect to the outermost circumference D2 of the first gear 220 and the outermost circumference d2 of the second gear 221. It is the amount of difference from the axis O2 passing through the center. However, the eccentricity e1 in the first stage and the eccentricity e2 in the second stage are the same amount, respectively. It was
  • the two first gears according to the present disclosure that is, the first gear 210 and the first gear 220 have different diameters.
  • the diameter of the first gear 210 is larger than the diameter of the first gear 220.
  • the diameters of the two second gears according to the present disclosure that is, the second gear 211 and the second gear 221 are different.
  • the diameter of the second gear 211 is larger than the diameter of the second gear 221.
  • the diameter size and tooth shape of the first gears 210 and 220 and the second gears 211 and 221 are not limited to the above configuration. It was
  • the number of teeth of the first gear 210 in the first stage is z1
  • the number of teeth of the second gear 211 is z2
  • the number of teeth of the first gear 220 in the second stage is z3
  • the number of teeth of the second gear 221 is.
  • the reduction ratio is determined by the number of gear teeth (z1, z2, z3, z4).
  • z1 is set to 15, z2 is set to 14, z3 is set to 14, and z4 is set to 13, and the reduction ratio in this case is 196.
  • the number of teeth of the first gears 210 and 220 and the second gears 211 and 221 is not limited to the above configuration, and can be appropriately changed according to the number of teeth corresponding to the desired reduction ratio. It was
  • the two second gears 211 and 221 are around the axis of the second rotating shaft 230 by the bearing 240 while maintaining the eccentricities e1 and e2 inside the two first gears 210 and 220 in the radial direction. Can be rotated. It was
  • the cycloid speed reducer 10 of the first embodiment includes a double rotor motor (motor 100) and a speed reduction component 200 arranged in the axial direction, and the speed reduction component 200 is the motor 100 of the first motor housing 114.
  • a first gear arranged on one side of the axis away from the shaft and a second gear that meshes with the first gear are provided, and the motor 100 has two bearings 140 arranged radially outside the rotating shaft 130.
  • the two bearings 140 are arranged axially on the center side of the stator 110, and the first gear and the second gear of the reduction gear 200 are each arranged adjacent to each other in the axial direction. Since it includes a gear, it is possible to realize compactness in the axial direction and the radial direction, and it is possible to obtain a cycloid reduction device having a small volume and a strong driving ability. It was
  • the second gear 211 of the first stage is supported by the eccentric shaft 230 by two bearings 240a. Similar to the first embodiment, the two second gears 211 and 221 are configured integrally with the second gear 221 by, for example, a connecting member 261. The two integrated second gears 211 and 221 are rotatably supported by two bearings 240a attached to the eccentric shaft 230. Since the reduction gear component 200A is also configured as a two-stage cycloid gear reducer, a higher reduction ratio can be obtained as compared with the one-stage cycloid gear reducer.
  • the cycloid deceleration device 10A has the same configuration as the cycloid deceleration device 10 except that the cycloid deceleration device 10A has a configuration of two bearings 240a. It was
  • the cycloid deceleration device 10B shown in FIG. 7 is a second embodiment of the cycloid deceleration device.
  • Motor 100A and reduction component 20 It has 0.
  • the connecting member 260 constitutes the cycloid deceleration device 10B by integrating the motor 100A and the deceleration component 200 in the axial direction.
  • a configuration different from that of the first embodiment will be described, and the configuration common to the cycloid speed reducer 10 is designated by a common reference numeral and detailed description thereof will be omitted.
  • the motor 100A has a rotary shaft 150 that rotates about the central axis C indicated by the alternate long and short dash line, and a first rotor 123 and a first rotor 123 that are arranged radially outside the rotary shaft 150, respectively.
  • the rotor 122, the stator 110, the stator cover 111, the first motor housing 114, and the second motor housing 113a are provided. It was
  • the first rotor 123 and the second rotor 122 are, for example, disk-shaped disc rotors.
  • the first rotor 123 is located in front of the stator 110 and between the stator 110 and the first motor housing 114. Further, the second rotor 122 is located behind the stator 110 and between the stator 110 and the second motor housing 113. It was
  • the motor 100A of the second embodiment has two bearings 140a arranged radially outside the rotating shaft 150 and a fixing ring 112a arranged radially outside the rotating shaft 150 on the center side of the stator 110 in the radial direction. And at least one fixing pin 144 for fixing the first rotor 123 and the second rotor 122 to the rotating shaft 150. It was
  • the rotating shaft 150 has an extending portion 151 extending in the axial direction, an eccentric portion 152 centered on a second axis E extending in parallel with the central axis C at a position away from the central axis C, and a radial direction of the extending portion 151. It is provided with at least one recess 153 provided on the outside. It was
  • the recess 153 is a bottomed groove having a predetermined depth.
  • a fixing pin 144 is provided in the recess 153.
  • two recesses 153 are provided on the peripheral wall of the extending portion 151.
  • the concave portion 153 on one side in the axial direction faces the end portion 123a on the inner side in the radial direction of the first rotor 123.
  • the recess 153 on the other side in the axial direction faces the end portion 122a on the inner side in the radial direction of the second rotor 122. It was
  • the eccentric portion 152 is a cylindrical member centered on a second axis E extending in parallel with the central axis C at a position deviating from the central axis C. Therefore, the distance from the central axis C to the outer peripheral surface of the eccentric portion 152 differs depending on the position in the circumferential direction.
  • the rotating shaft 150 and the eccentric portion 152 form a single member.
  • the rotary shaft 150 rotatably supports the second gear 211 of the first stage via the bearing 240.
  • the driving force on the motor 100A side can be transmitted to the deceleration component 200 through the rotating shaft 150.
  • the rotary shaft 150 rotatably supports the first gear 220 of the second stage via the bearing 241.
  • the rotating shaft 150 may have a hollow structure penetrating in the axial direction. As a result, the weight of the rotating shaft 150 can be reduced.
  • the rotation axis 150 rotates about the central axis C
  • the position of the eccentric portion 152 rotates about the central axis C.
  • the rotary shaft 150 functions as an input shaft for inputting the driving force from the motor 100A to the deceleration component 200.
  • the configuration of the rotating shaft 150 is not limited to that shown in the present embodiment. It was
  • one bearing 140a is axially located on the center side of the stator 110, and the other bearing 140a is axially on the other side away from the stator 110 of the second rotor 120.
  • one bearing 140a is arranged between the rotating shaft 150 and the fixing ring 112a.
  • the other bearing 140a is arranged between the rotating shaft 150 and the second motor housing 113a.
  • the bearings 140a and the fixing pins 144 are alternately arranged in the axial direction. Then, the first rotor 123 and the second rotor 122 can be attached to the rotating shaft 150 by the two fixing pins 144 provided in the two recesses 153.
  • the configuration of the motor 100A can be simplified and the number of parts can be reduced as the overall configuration of the cycloid speed reducer 10B. It was
  • the cycloid deceleration device 10C shown in FIG. 10 is a third embodiment of the cycloid deceleration device. It includes a motor 100B and a deceleration component 200.
  • the connecting member 260 constitutes the cycloid deceleration device 10C by integrating the motor 100B and the deceleration component 200 in the axial direction.
  • a configuration different from that of the first embodiment will be described, and the configurations common to the cycloid speed reducers 10 and 10B are designated by common reference numerals and detailed description thereof will be omitted. It was
  • the motor 100B has a rotary shaft 160 that rotates about the central axis C indicated by the alternate long and short dash line, and a first rotor 125 and a first rotor 125 that are arranged radially outside the rotary shaft 160, respectively.
  • the rotor 124, the stator 110, the stator cover 111, the first motor housing 114a, and the second motor housing 113a are provided. It was
  • the first rotor 125 and the second rotor 124 are, for example, disk-shaped disc rotors.
  • the first rotor 125 is located in front of the stator 110 and between the stator 110 and the first motor housing 114a.
  • the second rotor 124 is located behind the stator 110 and between the stator 110 and the second motor housing 113a. It was
  • the motor 100B of the second embodiment has two bearings 140b arranged radially outside the rotating shaft 160 and a fixing ring 112b arranged radially outside the rotating shaft 160 on the center side of the stator 110 in the radial direction. And a second fixing pin 145 for fixing the first rotor 125 and the second rotor 124 to the rotating shaft 160. It was
  • the rotating shaft 160 has an extending portion 161 extending in the axial direction, an eccentric portion 162 centered on a second axis E extending in parallel with the central axis C at a position away from the central axis C, and a radial direction of the extending portion 161.
  • a second recess 163 extending along a direction intersecting the radial direction of the stator 110 is provided.
  • the rotary shaft 160 functions as an input shaft for inputting the driving force from the motor 100B to the deceleration component 200.
  • the rotary shaft 160 is the same as the rotary shaft 150 of the second embodiment except that the second recess 163 is provided. It was
  • the second recess 163 is a bottomed groove having a predetermined depth and is a long groove extending in the axial direction.
  • a fixing pin 145 is provided in the second recess 163.
  • the second fixing pin 145 extends from the outermost surface 125b of the first rotor 125 facing axially one side to the outermost surface 124b of the second rotor 124 facing axially the other side. That is, the axial length of the second fixing pin shown in the third embodiment is equal to the distance between the outermost surface 125b of the first rotor 125 and the outermost surface 124b of the second rotor 124.
  • one second recess 163 is provided on the peripheral wall of the extending portion 161. The second recess 163 faces the radially inner end 125a of the first rotor 125 and the radially inner end 124a of the second rotor 124. It was
  • one bearing 140b is located on one side in the axial direction away from the stator 110 of the first rotor 125, and the other bearing 140b is the stator 110 of the second rotor 124. It is located on the other side in the axial direction away from.
  • one bearing 140b is arranged between the rotating shaft 160 and the first motor housing 114a.
  • the other bearing 140b is arranged between the rotating shaft 160 and the second motor housing 113a.
  • one fixing pin 145 is arranged between the two bearings 140a in the axial direction. Then, the first rotor 125 and the second rotor 124 can be attached to the rotating shaft 160 by one fixing pin 145 provided in one second recess 163.
  • the configuration of the motor 100B can be simplified and the number of parts can be reduced as the overall configuration of the cycloid speed reducer 10C. It was
  • the present invention is not limited to the description of the first embodiment to the third embodiment, and the motor and the deceleration component may have other structures. It was
  • the cycloid reducer of the present disclosure can be used in all technical fields utilizing a cycloid reducer.
  • it is a speed reducer for which miniaturization is required, and can be widely used for a cycloid speed reducer in which a motor and a cycloid speed reducer are integrally configured.

Abstract

A high reduction ratio is achieved, and the thickness of an entire structure can be made smaller. A cycloidal speed reducer according to one aspect of the present disclosure comprises a motor and a reduction component, the motor and the reduction component being positioned in an axial direction, and the reduction component including a first gear positioned on one axial side of a first motor housing separated from the motor, and a second gear that meshes with the first gear. The motor includes two bearings positioned on the radially outer side of a rotating shaft, and the two bearings are aligned along the axial direction in the center of a stator. The first gear and the second gear of the reduction component each include two gears positioned adjacent to each other in the axial direction. Therefore, a high reduction ratio is achieved, and the thickness of the entire structure in the axial and radial directions can be made smaller.

Description

サイクロイド減速装置及び電気機器Cycloid reducer and electrical equipment
本開示は、サイクロイド減速装置及び電気機器に関する。本願は、2020年9月24日に日本に出願された特願2020-159871号に基づき優先権を主張し、その内容をここに援用する。 The present disclosure relates to cycloid speed reducers and electrical equipment. This application claims priority based on Japanese Patent Application No. 2020-159871 filed in Japan on September 24, 2020, the contents of which are incorporated herein by reference.
従来、モータと減速機とを組み合わせた技術がある。モータと減速機との一般的な組み合わせは、減速機をモータに直接的に接続する構造となっている。モータと減速機とを組み合わせたアクチュエータは、ロボットアプリケーションの主要コンポーネントである。大きなトルク出力を取得するためには、モータの高速低トルク出力を低速高トルク出力に変換するように、減速機が高い減速比を有する必要がある。  Conventionally, there is a technology that combines a motor and a speed reducer. A common combination of motor and reducer is such that the reducer is directly connected to the motor. Actuators, which combine motors and reducers, are a key component of robot applications. In order to obtain a large torque output, the reducer needs to have a high reduction ratio so as to convert the high speed low torque output of the motor into the low speed high torque output. It was
通常、高い減速比を有する減速機は、軸方向に長い多段遊星歯車装置を使用しているため、装置が大型化する。例えば、下記の特許文献1においては、多段遊星歯車装置を有する減速機が提案されている。この装置によれば、高い減速比を得ることができる。 また、例えば、下記の特許文献2-4においては、2段の遊星歯車装置を有するサイクロイド減速機が提案されており、2段歯車装置を使用することで大幅に高い減速比を得ることができる。 さらに、例えば、下記の特許文献5においては、モータが中心にスペースを有し、減速機が当該スペースに取り付けられるように設計されている構成が提案されている。かかる技術では、装置全体として軸方向に薄くなるように設計されている。 Usually, a speed reducer having a high reduction ratio uses a multi-stage planetary gear device that is long in the axial direction, so that the device becomes large. For example, in Patent Document 1 below, a speed reducer having a multi-stage planetary gear device is proposed. According to this device, a high reduction ratio can be obtained. Further, for example, in the following Patent Document 2-4, a cycloid reducer having a two-stage planetary gear device is proposed, and a significantly higher reduction ratio can be obtained by using the two-stage gear device. .. Further, for example, in Patent Document 5 below, a configuration is proposed in which the motor has a space in the center and the speed reducer is designed to be mounted in the space. In such a technique, the device as a whole is designed to be axially thin.
米国特許第8829750号U.S. Pat. No. 8829750 韓国公開特許20150012043号Korean Published Patent No. 20150012043 米国特許第3998112号U.S. Pat. No. 3,998112 韓国特許第100582446号Korean Patent No. 10024246 中国公開特許第101258664号China Published Patent No. 10128864
しかし、上記特許文献2-4の2段遊星歯車装置を有するサイクロイド減速機と、モータとを組み合わせた技術では、高い減速比を得ることができるものの、装置全体として軸方向に大型化するという問題がある。一方、上記特許文献5では、減速機をモータのスペースに内蔵させるために、モータの外径が大きくなる。  However, in the technique of combining the cycloid speed reducer having the two-stage planetary gear device of Patent Document 2-4 and the motor, a high reduction ratio can be obtained, but there is a problem that the device as a whole becomes large in the axial direction. There is. On the other hand, in Patent Document 5, the outer diameter of the motor is increased in order to incorporate the speed reducer in the space of the motor. It was
本発明は、上記の事情に鑑みてなされたものであり、高減速比(高出力トルク)を実現するとともに、構造全体の厚みをより小さくできるようにすることを目的としている。 The present invention has been made in view of the above circumstances, and an object of the present invention is to realize a high reduction ratio (high output torque) and to make the thickness of the entire structure smaller.
本開示の一態様に係るサイクロイド減速装置は、中心軸線を軸として回転する第1の回転軸及び第2の回転軸と、前記第1の回転軸の径方向外側に配置された第1のロータと、前記第2の回転軸の径方向外側に配置された第2のロータと、前記第1のロータと前記第2のロータとの間に配置されたステータと、前記ステータを覆うステータハウジングと、前記第1のロータの前記ステータから離れる軸方向一方側に配置された第1のモータハウジングと、前記第2のロータの前記ステータから離れる軸方向他方側に配置された第2のモータハウジングと、を有するモータと、前記ステータハウジングの前記モータから離れる軸方向一方側に配置された第1のギアと、前記第1のギアと噛み合う第2のギアとを有する減速部品とを備える。前記モータは、前記回転軸の径方向外側に配置された2つの軸受を備え、この2つの軸受は、前記ステータの中央側において軸方向に並んでおり、前記減速部品は、前記第1のギアの径方向内側に配置された少なくとも1つの軸受を備え、前記第1のギア及び前記第2のギアは、各々が、軸方向において並んで配置された2つのギアを含む。 前記モータは、径方向における前記ステータの中央側に前記回転軸の径方向外側に配置される固定リングを備え、前記2つの軸受は、前記回転軸と前記固定リングとの間に配置されることが好ましい。 前記減速部品は、中心軸線から離れた位置で前記中心軸線と平行に延びる第2軸線を中心とする第2回転軸と、前記回転軸と前記第2回転軸との間に配置される固定部と、を備えることが好ましい。 前記モータは、前記第1のロータと前記第2のロータとを前記回転軸に接続するための少なくとも2つの接続部材を備え、前記回転軸は、軸方向に貫通する孔を備え、前記孔には、前記2つの接続部材が対向して設けられることが好ましい。  The cycloid speed reducer according to one aspect of the present disclosure includes a first rotation shaft and a second rotation shaft that rotate about the central axis, and a first rotor arranged radially outside the first rotation shaft. A second rotor arranged radially outside the second rotation shaft, a stator arranged between the first rotor and the second rotor, and a stator housing covering the stator. A first motor housing arranged on one side in the axial direction away from the stator of the first rotor, and a second motor housing arranged on the other side in the axial direction away from the stator of the second rotor. , A deceleration component having a first gear disposed axially on one side of the stator housing away from the motor, and a second gear that meshes with the first gear. The motor comprises two bearings arranged radially outside the rotating shaft, the two bearings are axially aligned on the center side of the stator, and the deceleration component is the first gear. The first gear and the second gear each include two gears arranged side by side in the axial direction. The motor includes a fixing ring arranged radially outside the rotating shaft on the center side of the stator in the radial direction, and the two bearings are arranged between the rotating shaft and the fixing ring. Is preferable. The deceleration component is a fixed portion arranged between a second rotation axis centered on a second axis extending parallel to the center axis at a position away from the center axis, and between the rotation axis and the second rotation axis. And, it is preferable to provide. The motor comprises at least two connecting members for connecting the first rotor and the second rotor to the rotary shaft, the rotary shaft having a hole penetrating in the axial direction in the hole. Is preferably provided with the two connecting members facing each other. It was
本開示に係る別の実施形態によれば、前記回転軸は、中心軸線から離れた位置で前記中心軸線と平行に延びる第2軸線を中心とする偏心部を備える。 前記2つの軸受のうち、一方の軸受は軸方向に前記ステータの中央側に位置し、他方の軸受は前記第2のロータの前記ステータから離れる軸方向他方側に位置する。 前記モータは、前記第1のロータと前記第2のロータとを前記回転軸に固定するための少なくとも1つの固定ピンを備え、前記回転軸は、径方向外側に少なくとも1つの凹部を備え、凹部には、前記固定ピンが設けられる。  According to another embodiment of the present disclosure, the axis of rotation comprises an eccentric portion centered on a second axis extending parallel to the central axis at a position away from the central axis. Of the two bearings, one bearing is located axially on the center side of the stator, and the other bearing is located on the other side of the second rotor axially away from the stator. The motor includes at least one fixing pin for fixing the first rotor and the second rotor to the rotating shaft, and the rotating shaft has at least one concave portion radially outwardly. Is provided with the fixing pin. It was
本開示に係る別の実施形態によれば、前記2つの軸受のうち、一方の軸受は前記第1のロータの前記ステータから離れる軸方向一方に位置し、他方の軸受は前記第2のロータの前記ステータから離れる軸方向他方側に位置する。 前記モータは、前記第1のロータと前記第2のロータとを前記回転軸に固定するための第2固定ピンを備え、前記第2固定ピンは、軸方向において前記第1のロータの軸方向一方側に向く最外面から前記第2のロータの軸方向他方側に向く最外面に至るまで延びており、前記回転軸は、径方向外側において前記ステータの径方向と交差する方向に沿って延びる第2凹部を備え、前記第2凹部には、前記第2固定ピンが設けられる。  According to another embodiment of the present disclosure, one of the two bearings is located axially away from the stator of the first rotor and the other bearing is of the second rotor. It is located on the other side in the axial direction away from the stator. The motor includes a second fixing pin for fixing the first rotor and the second rotor to the rotating shaft, and the second fixing pin is axially oriented with the first rotor. It extends from the outermost surface facing one side to the outermost surface facing the other side in the axial direction of the second rotor, and the rotating shaft extends along a direction intersecting the radial direction of the stator on the radial outer side. A second recess is provided, and the second fixing pin is provided in the second recess. It was
前記第1のギアは、リングギアであり、前記第2のギアは、サイクロイドギアであることが好ましい。  It is preferable that the first gear is a ring gear and the second gear is a cycloid gear. It was
前記モータは、軸方向磁束モータであることが好ましい。  The motor is preferably an axial magnetic flux motor. It was
本開示の一態様に係るサイクロイド減速装置を備える電気機器を提供することができる。 It is possible to provide an electric device provided with a cycloid speed reducing device according to one aspect of the present disclosure.
本開示の一態様に係るサイクロイド減速装置は、モータと減速部品とを備え、モータと減速部品とが軸方向に配置され、減速部品は第1のモータハウジングのモータから離れる軸方一方側に配置された第1のギアと、第1のギアと噛み合う第2のギアとを備え、モータは、回転軸の径方向外側に配置された2つの軸受を備え、2つの軸受は、ステータの中央側において軸方向に並んでおり、減速部品の第1のギア及び第2のギアは、各々が、軸方向において隣接して配置された2つのギアを含むため、高減速比を実現するとともに、軸方向及び径方向における構造全体の厚みをより小さくすることができる。 The cycloid deceleration device according to one aspect of the present disclosure includes a motor and a deceleration component, the motor and the deceleration component are arranged in the axial direction, and the deceleration component is arranged on one side of the first motor housing away from the motor. It comprises a first gear that has been geared and a second gear that meshes with the first gear, the motor has two bearings located radially outward of the axis of rotation, and the two bearings are on the center side of the stator. The first gear and the second gear of the deceleration component are aligned in the axial direction in the above, and each of the first gear and the second gear of the reduction gear includes two gears arranged adjacent to each other in the axial direction, so that a high reduction ratio is realized and the shaft is formed. The thickness of the entire structure in the directional and radial directions can be made smaller.
サイクロイド減速装置の第1の実施形態の構成を示す斜視断面図である。It is a perspective sectional view which shows the structure of the 1st Embodiment of a cycloid reduction apparatus. 第1の実施形態の構成を示す断面図である。It is sectional drawing which shows the structure of 1st Embodiment. 第1の実施形態のモータと減速部品とを分離した状態を示す断面図である。It is sectional drawing which shows the state which separated the motor and the deceleration component of 1st Embodiment. 第1の実施形態のモータの一部拡大断面図である。It is a partially enlarged sectional view of the motor of 1st Embodiment. 図3のA-A線断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 図3のB-B線断面図である。FIG. 3 is a cross-sectional view taken along the line BB of FIG. 第1の実施形態の変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification of 1st Embodiment. 第2の実施形態の構成を示す断面図である。It is sectional drawing which shows the structure of 2nd Embodiment. 第2の実施形態のモータと減速部品とを分離した状態を示す断面図である。It is sectional drawing which shows the state which separated the motor and the deceleration component of 2nd Embodiment. 第2の実施形態のモータの一部拡大断面図である。It is a partially enlarged sectional view of the motor of the 2nd Embodiment. 第3の実施形態の構成を示す断面図である。It is sectional drawing which shows the structure of 3rd Embodiment. 第3の実施形態のモータと減速部品とを分離した状態を示す断面図である。It is sectional drawing which shows the state which separated the motor and the deceleration component of 3rd Embodiment. 第2の実施形態のモータ側の一部拡大断面図である。It is a partially enlarged sectional view on the motor side of the 2nd Embodiment.
図1-図12を参照して、本開示の例として、減速装置の実施形態について説明する。以下では、説明の便宜上、モータの第1の回転軸及び第2の回転軸の中心軸線を中心とする半径方向を「径方向」といい、当該中心軸線周りの方向を「周方向」といい、当該中心軸線の延出方向及びそれと平行な方向を「軸方向」というものとする。また、軸方向に、モータが減速部品を指向する方向を「前方」といい、「前方」と逆向きとなる方向を「後方」というものとする。  An embodiment of a speed reducer will be described as an example of the present disclosure with reference to FIGS. 1 to 12. In the following, for convenience of explanation, the radial direction centered on the central axis of the first rotation axis and the second rotation axis of the motor is referred to as "radial direction", and the direction around the central axis is referred to as "circumferential direction". , The extending direction of the central axis and the direction parallel to it are referred to as "axial direction". Further, the direction in which the motor points the deceleration component in the axial direction is referred to as "forward", and the direction opposite to "forward" is referred to as "rear". It was
[第1の実施形態] 図1に示すように、本開示に係るサイクロイド減速装置10は、サイクロイド減速装置の第1例であって、モータ100と、減速部品200とを備える。図示の例では、接続部材260によって、軸方向にモータ100と減速部品200とが一体となってサイクロイド減速装置10が構成される。  [First Embodiment] As shown in FIG. 1, the cycloid deceleration device 10 according to the present disclosure is the first example of the cycloid deceleration device, and includes a motor 100 and a deceleration component 200. In the illustrated example, the connecting member 260 constitutes the cycloid deceleration device 10 by integrating the motor 100 and the deceleration component 200 in the axial direction. It was
図2及び図3に示すように、モータ100は、一点鎖線で示す中心軸線Cを軸として回転する回転軸130と、回転軸130の径方向外側にそれぞれ配置された第1のロータ121及び第2のロータ120と、第1のロータ121と第2のロータ120との間に配置されたステータ110と、ステータ110を覆うステータカバー111と、第1のロータ121のステータ110から離れる軸方向一方側に配置された第1のモータハウジング114と、第2のロータ120の前記ステータ110から離れる軸方向他方側に配置された第2のモータハウジング113と、を備える。モータ100は、2つのロータを備えており、本明細書でダブルロータモータと呼ぶことがある。  As shown in FIGS. 2 and 3, the motor 100 includes a rotary shaft 130 that rotates about the central axis C indicated by the alternate long and short dash line, and a first rotor 121 and a first rotor 121 that are arranged radially outside the rotary shaft 130, respectively. The rotor 120 of 2, the stator 110 arranged between the first rotor 121 and the second rotor 120, the stator cover 111 covering the stator 110, and the axial direction away from the stator 110 of the first rotor 121. It includes a first motor housing 114 arranged on the side and a second motor housing 113 arranged on the other side of the second rotor 120 in the axial direction away from the stator 110. The motor 100 includes two rotors and may be referred to herein as a double rotor motor. It was
ステータカバー111は、ステータ110の径方向外側を覆うリング状の部材である。ステータカバー111は、接続部材260が挿入される孔を備える。ステータ110を境にして、ステータ110の前方側に第1のモータハウジング114が位置し、ステータ110の後方側に第2のモータハウジング113が位置している。第1のモータハウジング114は、接続部材260が挿入される孔を備える。第1のモータハウジング114は、モータ100と減速部品200との間に配置されるため、例えば減速部品200からモータ100へのオイル漏れを防ぐことができる。  The stator cover 111 is a ring-shaped member that covers the radial outside of the stator 110. The stator cover 111 includes a hole into which the connecting member 260 is inserted. The first motor housing 114 is located on the front side of the stator 110 and the second motor housing 113 is located on the rear side of the stator 110 with the stator 110 as a boundary. The first motor housing 114 includes a hole into which the connecting member 260 is inserted. Since the first motor housing 114 is arranged between the motor 100 and the deceleration component 200, for example, oil leakage from the deceleration component 200 to the motor 100 can be prevented. It was
本実施形態に示す第1のロータ121及び第2のロータ122は、例えば、円盤状のディスクロータである。第1のロータ121は、ステータ110の前方であって、ステータ110と第1のモータハウジング114との間に位置している。また、第2のロータ120は、ステータ110の後方であって、ステータ110と第2のモータハウジング113との間に位置している。  The first rotor 121 and the second rotor 122 shown in the present embodiment are, for example, disk-shaped disc rotors. The first rotor 121 is located in front of the stator 110 and between the stator 110 and the first motor housing 114. Further, the second rotor 120 is located behind the stator 110 and between the stator 110 and the second motor housing 113. It was
本実施形態において、モータ100と減速部品200とは、軸方向に配置され、減速部品200がモータ100の前方側に設けられており、例えば、減速部品200が第1のモータハウジング114の前方側に位置している。  In the present embodiment, the motor 100 and the deceleration component 200 are arranged in the axial direction, and the deceleration component 200 is provided on the front side of the motor 100. For example, the deceleration component 200 is on the front side of the first motor housing 114. Is located in. It was
モータ100は、回転軸130の径方向外側に配置された2つの軸受140と、径方向におけるステータ110の中央側に回転軸130の径方向外側に配置される固定リング112を備える。  The motor 100 includes two bearings 140 arranged radially outside the rotating shaft 130 and a fixing ring 112 arranged radially outside the rotating shaft 130 on the center side of the stator 110 in the radial direction. It was
図4に示すように、固定リング112は、中央部分が開口している。すなわち、固定リング112は、軸方向において貫通している。固定リング112は、図2に示したステータ110の中央部分にはめ込まれた状態で、固定リング112の開口部分に回転軸130が通される。そして、後述するように、回転軸130は減速部品200の第2回転軸230に接続される。  As shown in FIG. 4, the fixing ring 112 has an open central portion. That is, the fixing ring 112 penetrates in the axial direction. The rotation shaft 130 is passed through the opening portion of the fixing ring 112 in a state where the fixing ring 112 is fitted in the central portion of the stator 110 shown in FIG. Then, as will be described later, the rotary shaft 130 is connected to the second rotary shaft 230 of the deceleration component 200. It was
本実施形態では、2つの軸受140は、ステータ110の中央側において軸方向に並んでいる。また、2つの軸受140は回転軸130と固定リング112との間に配置されている。これにより、回転軸130は、固定リング112の内側に配置される2つの軸受140によって回転可能に支持される。  In this embodiment, the two bearings 140 are axially aligned on the center side of the stator 110. Further, the two bearings 140 are arranged between the rotating shaft 130 and the fixing ring 112. Thereby, the rotating shaft 130 is rotatably supported by two bearings 140 arranged inside the fixing ring 112. It was
本実施形態に示す第1のロータ121は、軸方向に延びる支持部121aと、回転軸130の軸方向一方側に接続する接続部121bと、支持部121aと接続部121bとの間に軸方向に貫通する貫通孔121cとを備える。支持部121aは、軸方向に延びており、後述する減速部品200の軸受244を支持する。第2のロータ120は、回転軸130の軸方向他方側に接続する接続部120aと、凹部121bとを備える。  The first rotor 121 shown in the present embodiment has a support portion 121a extending in the axial direction, a connection portion 121b connected to one side in the axial direction of the rotating shaft 130, and an axial direction between the support portion 121a and the connection portion 121b. It is provided with a through hole 121c that penetrates the through hole 121c. The support portion 121a extends in the axial direction and supports the bearing 244 of the speed reduction component 200 described later. The second rotor 120 includes a connecting portion 120a connected to the other side in the axial direction of the rotating shaft 130, and a recess 121b. It was

転軸130は、軸方向に延びる孔131と、軸方向一方側に平座部132とを備える。孔131は、例えば雌ネジを有する雌ネジ孔である。平座部132は、径方向に拡がる平面状の部位である。孔131には、第1のロータ121と第2のロータ120とを回転軸130に接続するための一対の接続部材141が対向して設けられる。接続部材141は、例えばボルトである。接続部材141はボルトに限定されず、ボルト以外でもよい。回転軸130は、空洞構造であってもよい。これにより、回転軸130の重さを軽くすることができる。 
The rotating shaft 130 includes a hole 131 extending in the axial direction and a flat seat portion 132 on one side in the axial direction. The hole 131 is, for example, a female screw hole having a female screw. The flat seat portion 132 is a planar portion extending in the radial direction. The hole 131 is provided with a pair of connecting members 141 facing each other for connecting the first rotor 121 and the second rotor 120 to the rotating shaft 130. The connecting member 141 is, for example, a bolt. The connecting member 141 is not limited to the bolt, and may be other than the bolt. The rotating shaft 130 may have a hollow structure. As a result, the weight of the rotating shaft 130 can be reduced.
第1の実施形態では、2つの接続部材141と、ワッシャ142と、固定ピン143とによって、第1のロータ121及び第2のロータ120を回転軸130に取り付けることができる。具体的には、第1のロータ121の接続部121bを回転軸130の平座部132に位置づけるとともに、固定ピン143を貫通孔121cに挿入する。続いて、軸方向一方側から軸方向他方側に向けて接続部材141のねじ頭が接続部121bに突き当たるまで接続部材141を孔131に挿入し、ねじ締結する。一方、第2のロータ120の接続部120aを回転軸130の軸方向他方側の端部に位置づけるとともに、ワッシャ142を凹部120bに位置づける。続いて、軸方向他方側から軸方向一方側に向けて接続部材141のねじ頭が接続部120aに突き当たるまで接続部材141を孔131に挿入し、ねじ締結する。これにより、第1のロータ121及び第2のロータ120を回転軸130に安定的に固定することができる。このようにして、回転軸130は駆動源であるモータ100に接続される。モータ100を駆動させると、モータ100から供給される動力によって、回転軸130は、中心軸線Cを中心として第1回転数で回転する。本実施形態では回転軸130が入力軸となる。  In the first embodiment, the first rotor 121 and the second rotor 120 can be attached to the rotary shaft 130 by the two connecting members 141, the washer 142, and the fixing pin 143. Specifically, the connecting portion 121b of the first rotor 121 is positioned at the flat seat portion 132 of the rotating shaft 130, and the fixing pin 143 is inserted into the through hole 121c. Subsequently, the connecting member 141 is inserted into the hole 131 and screwed together until the screw head of the connecting member 141 abuts on the connecting portion 121b from one side in the axial direction to the other side in the axial direction. On the other hand, the connecting portion 120a of the second rotor 120 is positioned at the end on the other side in the axial direction of the rotating shaft 130, and the washer 142 is positioned at the recess 120b. Subsequently, the connecting member 141 is inserted into the hole 131 and screwed together until the screw head of the connecting member 141 abuts on the connecting portion 120a from the other side in the axial direction to the one side in the axial direction. As a result, the first rotor 121 and the second rotor 120 can be stably fixed to the rotating shaft 130. In this way, the rotary shaft 130 is connected to the motor 100 which is a drive source. When the motor 100 is driven, the rotating shaft 130 rotates at the first rotation speed about the central axis C by the power supplied from the motor 100. In this embodiment, the rotating shaft 130 serves as an input shaft. It was
本実施形態に示すモータ100は、軸方向磁束モータ(Axial flux motor)であることが好ましい。モータ100は、軸方向に短い構造となっていることから、かかるモータ100と減速部品200とを一体することで、サイクロイド減速装置10の全体構造をより小さくすることができる。  The motor 100 shown in this embodiment is preferably an axial magnetic flux motor (Axial flux motor). Since the motor 100 has a structure short in the axial direction, the overall structure of the cycloid deceleration device 10 can be made smaller by integrating the motor 100 and the deceleration component 200. It was
次に、減速部品200の構成について詳述する。図1-図3に示すように、減速部品200は、第1のモータハウジング114のモータ100から離れる軸方向一方側に配置された2つの第1のギア210、220と、2つの第1のギア210、220と噛み合う2つの第2のギア220、221と、第1のギア210の径方向内側に配置された軸受240、241と、ギアカバー250と、ギアカバー250と第1のギア220との間に配置される軸受242と、中心軸線Cから離れた位置で中心軸線Cと平行に延びる第2軸線Eを中心とする第2回転軸230と、回転軸130と第2回転軸230との間に配置される固定部243と、を備える。  Next, the configuration of the deceleration component 200 will be described in detail. As shown in FIGS. 1 to 3, the reduction gear 200 includes two first gears 210 and 220 and two first gears 210 and 220 arranged on one side in the axial direction away from the motor 100 of the first motor housing 114. Two second gears 220 and 221 that mesh with the gears 210 and 220, bearings 240 and 241 arranged radially inside the first gear 210, a gear cover 250, a gear cover 250 and a first gear 220. A bearing 242 arranged between the two, a second rotating shaft 230 centered on a second axis E extending in parallel with the central axis C at a position away from the central axis C, and a rotating shaft 130 and a second rotating shaft 230. A fixed portion 243 arranged between and is provided. It was
ギアカバー250は、減速部品200の少なくとも一部を径方向外側から覆うリング状の部材である。図示の例では、ギアカバー250は、2段目の第1のギア220、第2のギア221を覆っている。ギアカバー250は、ステータカバー111と対向する部分に接続部材260が挿入される孔を備えている。  The gear cover 250 is a ring-shaped member that covers at least a part of the speed reduction component 200 from the radial outside. In the illustrated example, the gear cover 250 covers the first gear 220 and the second gear 221 in the second stage. The gear cover 250 has a hole in the portion facing the stator cover 111 into which the connecting member 260 is inserted. It was
2つの第1のギア210、220は、軸方向において隣接して配置されている。1段目の第1のギア210は、軸方向に貫通し接続部材260が挿入される孔を有する。第1のギア210は、接続部材260によって、ステータカバー111、第1のモータハウジング114、及びギアカバー250に固定される。2段目の第1のギア220は、第1のモータハウジング114とギアカバー250との間に配置される。第1のギア220は、減速された駆動力を出力する出力軸として機能する。第1のギア220は、軸受242によってギアカバー250に支持されている。  The two first gears 210 and 220 are arranged adjacent to each other in the axial direction. The first gear 210 in the first stage has a hole that penetrates in the axial direction and into which the connecting member 260 is inserted. The first gear 210 is fixed to the stator cover 111, the first motor housing 114, and the gear cover 250 by the connecting member 260. The first gear 220 of the second stage is arranged between the first motor housing 114 and the gear cover 250. The first gear 220 functions as an output shaft that outputs a decelerated driving force. The first gear 220 is supported by the gear cover 250 by the bearing 242. It was
2つの第2のギア211、221は、軸方向に隣接して配置されている。1段目の第2のギア211は、軸受240によって偏心軸230に支持されている。2段目の第2のギア221は、1段目の第2のギア221と2段目の第1のギア220との間に配置される。2つの第2のギア211、221は、例えば接続部材261によって第2のギア221と一体となって構成されている。この一体となった2つの第2のギア211、221は、偏心軸230に取り付けられた軸受240によって回転可能に支持される。本実施形態に示す減速部品200は、2段のサイクロイドギア減速機として構成されるため、1段のサイクロイドギア減速機と比較して高い減速比を得ることができる。なお、接続部材261は、例えばボルトである。また、接続部材261の本数は、特に限られず、例えば、6本でもよいし、12本でもよい。  The two second gears 211 and 221 are arranged adjacent to each other in the axial direction. The second gear 211 of the first stage is supported by the eccentric shaft 230 by the bearing 240. The second gear 221 of the second stage is arranged between the second gear 221 of the first stage and the first gear 220 of the second stage. The two second gears 211 and 221 are integrally configured with the second gear 221 by, for example, a connecting member 261. The two integrated second gears 211 and 221 are rotatably supported by a bearing 240 attached to the eccentric shaft 230. Since the reduction gear component 200 shown in the present embodiment is configured as a two-stage cycloid gear reducer, a higher reduction ratio can be obtained as compared with the one-stage cycloid gear reduction gear. The connecting member 261 is, for example, a bolt. The number of connecting members 261 is not particularly limited, and may be, for example, six or twelve. It was
第2回転軸230は、回転軸130と同一の回転数で、回転軸130とともに回転する部位である。本実施形態では、回転軸130と第2回転軸230とは、別部材であるが、単一の部材でもよい。図2に示すように、第2回転軸230は、中心軸線Cから外れた位置で中心軸線Cと平行に延びる第2軸線Eを中心とする円筒状の部材である。したがって、中心軸線Cから第2回転軸230の外周面までの距離は、周方向の位置によって異なる。このように、本実施形態に示す第2回転軸230は、軸方向において所定量だけ偏心した軸ともいえる。  The second rotation shaft 230 is a portion that rotates together with the rotation shaft 130 at the same rotation speed as the rotation shaft 130. In the present embodiment, the rotary shaft 130 and the second rotary shaft 230 are separate members, but may be a single member. As shown in FIG. 2, the second rotation axis 230 is a cylindrical member centered on the second axis E extending in parallel with the central axis C at a position deviating from the central axis C. Therefore, the distance from the central axis C to the outer peripheral surface of the second rotating shaft 230 differs depending on the position in the circumferential direction. As described above, the second rotating shaft 230 shown in the present embodiment can be said to be an axis eccentric by a predetermined amount in the axial direction. It was
第2回転軸230は、軸受241を介して第1のギア220を支持している。図示に示すように、第2回転軸230は、軸方向に貫通する空洞構造であってもよい。これにより、第2回転軸230の重さを軽くすることができる。モータ100の回転軸130と減速部品200の第2回転軸230とは、固定部243を介して接続されるため、モータ100側の駆動力を第2回転軸230に伝達することができる。すなわち、回転軸130が中心軸線Cを中心として回転すると、第2回転軸230の位置が、中心軸線Cを中心として回転する。このように、第2回転軸230は回転軸130と一体となって、モータ100からの駆動力を減速部品200に入力する入力軸としても機能する。なお、第2回転軸230の構成は、本実施形態に示すものに限定されない。  The second rotating shaft 230 supports the first gear 220 via the bearing 241. As shown in the figure, the second rotating shaft 230 may have a hollow structure penetrating in the axial direction. As a result, the weight of the second rotating shaft 230 can be reduced. Since the rotary shaft 130 of the motor 100 and the second rotary shaft 230 of the reduction component 200 are connected via the fixed portion 243, the driving force on the motor 100 side can be transmitted to the second rotary shaft 230. That is, when the rotating shaft 130 rotates about the central axis C, the position of the second rotating shaft 230 rotates about the central axis C. In this way, the second rotary shaft 230 is integrated with the rotary shaft 130 and also functions as an input shaft for inputting the driving force from the motor 100 to the deceleration component 200. The configuration of the second rotating shaft 230 is not limited to that shown in the present embodiment. It was
本実施形態では、第1のギア210、220は、例えばリングギアである。第2のギア220、221は、例えばサイクロイドギアである。ここで、図5Aは、1段目のサイクロイドギア構造を示す。第2のギア211は、滑らかな曲線板を有し、その外周側に複数の円弧状の外歯211aを有する。第1のギア210は、第2のギア211の複数の外歯211aと噛み合うために、径方向内側に複数の円弧状の内歯210aを有する。また、図5Bは、2段目のサイクロイドギア構造を示す。第2のギア221についても、滑らかな曲線板を有し、その外周側に複数の円弧状の外歯221aを有する。第1のギア220は、第2のギア221の複数の外歯221aと噛み合うために、径方向内側に複数の円弧状の内歯220aを有する。  In this embodiment, the first gears 210 and 220 are, for example, ring gears. The second gear 220, 221 is, for example, a cycloid gear. Here, FIG. 5A shows the cycloid gear structure of the first stage. The second gear 211 has a smooth curved plate, and has a plurality of arcuate external teeth 211a on the outer peripheral side thereof. The first gear 210 has a plurality of arcuate internal teeth 210a in the radial direction in order to mesh with the plurality of external teeth 211a of the second gear 211. Further, FIG. 5B shows the cycloid gear structure of the second stage. The second gear 221 also has a smooth curved plate, and has a plurality of arcuate external teeth 221a on the outer peripheral side thereof. The first gear 220 has a plurality of arcuate internal teeth 220a in the radial direction in order to mesh with the plurality of external teeth 221a of the second gear 221. It was
2つの第2のギア211、221は、それぞれ2つの第1のギア210、220の軸心O1、O2に対して所定量、つまり、偏心量e1、e2だけ偏心している。図5Aに示すように、1段目の偏心量e1は、第1のギア210の最外周D1に対して中心を通る軸心O1と、第2のギア211の最外周d1に対して中心を通る軸心O2との差分の量である。また、図5Bに示すように、2段目の偏心量e2は、第1のギア220の最外周D2に対して中心を通る軸心O1と、第2のギア221の最外周d2に対して中心を通る軸心O2との差分の量である。もっとも、1段目の偏心量e1及び2段目の偏心量e2は、それぞれ同じ量となっている。  The two second gears 211 and 221 are eccentric with respect to the axes O1 and O2 of the two first gears 210 and 220, respectively, by a predetermined amount, that is, eccentricities e1 and e2. As shown in FIG. 5A, the eccentricity e1 of the first stage is centered on the axial center O1 passing through the center with respect to the outermost peripheral D1 of the first gear 210 and the center with respect to the outermost peripheral d1 of the second gear 211. It is the amount of difference from the axis O2 that passes through. Further, as shown in FIG. 5B, the eccentricity e2 of the second stage is relative to the axial center O1 passing through the center with respect to the outermost circumference D2 of the first gear 220 and the outermost circumference d2 of the second gear 221. It is the amount of difference from the axis O2 passing through the center. However, the eccentricity e1 in the first stage and the eccentricity e2 in the second stage are the same amount, respectively. It was
本開示に係る2つの第1のギア、すなわち、第1のギア210と第1のギア220との直径は異なっている。例えば、第1のギア210の径が第1のギア220の直径よりも大きい。また、本開示に係る2つの第2のギア、すなわち、第2のギア211と第2のギア221との直径は異なっている。例えば、第2のギア211の径が第2のギア221の直径よりも大きい。なお、第1のギア210、220、第2のギア211、221の径の大きさや歯形状は、上記の構成に限定されない。  The two first gears according to the present disclosure, that is, the first gear 210 and the first gear 220 have different diameters. For example, the diameter of the first gear 210 is larger than the diameter of the first gear 220. Further, the diameters of the two second gears according to the present disclosure, that is, the second gear 211 and the second gear 221 are different. For example, the diameter of the second gear 211 is larger than the diameter of the second gear 221. The diameter size and tooth shape of the first gears 210 and 220 and the second gears 211 and 221 are not limited to the above configuration. It was
ここで、1段目の第1のギア210の歯数をz1、第2のギア211の歯数をz2、2段目の第1のギア220の歯数をz3、第2のギア221の歯数をz4としたとき、モータ100から入力されるギアの速度は、次の式から決定される。  Here, the number of teeth of the first gear 210 in the first stage is z1, the number of teeth of the second gear 211 is z2, the number of teeth of the first gear 220 in the second stage is z3, and the number of teeth of the second gear 221 is. When the number of teeth is z4, the speed of the gear input from the motor 100 is determined by the following equation. It was
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
例えば、下記の表1に示すように、減速比はギアの歯数(z1、z2、z3、z4)によって決定される。本実施形態では、例えば、z1は15、z2は14、z3は14、z4は13に設定されており、この場合の減速比は196である。なお、第1のギア210、220、第2のギア211、221の歯数は、上記した構成に限定されず、所望の減速比に対応する歯数に合わせて適宜変更可能である。  For example, as shown in Table 1 below, the reduction ratio is determined by the number of gear teeth (z1, z2, z3, z4). In the present embodiment, for example, z1 is set to 15, z2 is set to 14, z3 is set to 14, and z4 is set to 13, and the reduction ratio in this case is 196. The number of teeth of the first gears 210 and 220 and the second gears 211 and 221 is not limited to the above configuration, and can be appropriately changed according to the number of teeth corresponding to the desired reduction ratio. It was
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
減速部品200では、2つの第2のギア211、221が、2つの第1のギア210、220の径方向内側において偏心量e1、e2を保ちながら、軸受240によって第2回転軸230の軸周りを回転することができる。  In the reduction component 200, the two second gears 211 and 221 are around the axis of the second rotating shaft 230 by the bearing 240 while maintaining the eccentricities e1 and e2 inside the two first gears 210 and 220 in the radial direction. Can be rotated. It was
このように、第1の実施形態のサイクロイド減速装置10は、ダブルロータモータ(モータ100)と軸方向に配置される減速部品200とを備え、減速部品200は第1のモータハウジング114のモータ100から離れる軸方一方側に配置された第1のギアと、第1のギアと噛み合う第2のギアとを備え、モータ100は、回転軸130の径方向外側に配置された2つの軸受140を備え、2つの軸受140は、ステータ110の中央側において軸方向に並んでおり、減速部品200の第1のギア及び第2のギアは、各々が、軸方向において隣接して配置された2つのギアを含むため、軸方向及び径方向におけるコンパクト化を実現でき体積が小さくて駆動能力の強いサイクロイド減速装置を得ることができる。  As described above, the cycloid speed reducer 10 of the first embodiment includes a double rotor motor (motor 100) and a speed reduction component 200 arranged in the axial direction, and the speed reduction component 200 is the motor 100 of the first motor housing 114. A first gear arranged on one side of the axis away from the shaft and a second gear that meshes with the first gear are provided, and the motor 100 has two bearings 140 arranged radially outside the rotating shaft 130. The two bearings 140 are arranged axially on the center side of the stator 110, and the first gear and the second gear of the reduction gear 200 are each arranged adjacent to each other in the axial direction. Since it includes a gear, it is possible to realize compactness in the axial direction and the radial direction, and it is possible to obtain a cycloid reduction device having a small volume and a strong driving ability. It was
[第1の実施形態の変形例] 図6に示すサイクロイド減速装置10Aは、サイクロイド減速装置10の変形例である第1の実施形態と同様、接続部材260によって、モータ100と減速部品200Aとが一体となってサイクロイド減速装置10Aが構成される。このサイクロイド減速装置10Aでは、減速部品200Aの構造として、第1のギア210の径方向内側に2つの軸受240aが配置されている。  [Modification example of the first embodiment] In the cycloid deceleration device 10A shown in FIG. 6, the motor 100 and the deceleration component 200A are connected by the connecting member 260 as in the first embodiment which is a modification of the cycloid deceleration device 10. Together, the cycloid speed reducer 10A is configured. In this cycloid speed reducing device 10A, two bearings 240a are arranged inside the radial direction of the first gear 210 as the structure of the speed reducing component 200A. It was
1段目の第2のギア211は、2つの軸受240aによって偏心軸230に支持されている。第1の実施形態と同様に、2つの第2のギア211、221は、例えば接続部材261によって第2のギア221と一体となって構成されている。この一体となった2つの第2のギア211、221は、偏心軸230に取り付けられた2つの軸受240aによって回転可能に支持される。減速部品200Aにおいても、2段のサイクロイドギア減速機として構成されるため、1段のサイクロイドギア減速機と比較して高い減速比を得ることができる。なお、サイクロイド減速装置10Aは、2つの軸受240aの構成としている以外は、サイクロイド減速装置10と同様の構成である。  The second gear 211 of the first stage is supported by the eccentric shaft 230 by two bearings 240a. Similar to the first embodiment, the two second gears 211 and 221 are configured integrally with the second gear 221 by, for example, a connecting member 261. The two integrated second gears 211 and 221 are rotatably supported by two bearings 240a attached to the eccentric shaft 230. Since the reduction gear component 200A is also configured as a two-stage cycloid gear reducer, a higher reduction ratio can be obtained as compared with the one-stage cycloid gear reducer. The cycloid deceleration device 10A has the same configuration as the cycloid deceleration device 10 except that the cycloid deceleration device 10A has a configuration of two bearings 240a. It was
[第2の実施形態] 図7に示すサイクロイド減速装置10Bは、サイクロイド減速装置の第2の実施形態である。モータ100Aと、減速部品20
0とを備える。図示の例では、接続部材260によって、軸方向にモータ100Aと減速部品200とが一体となってサイクロイド減速装置10Bが構成される。以下では、第1の実施形態と異なる構成について説明するものとし、サイクロイド減速装置10と共通する構成については、共通の符号を付してその詳細な説明は省略する。 
[Second Embodiment] The cycloid deceleration device 10B shown in FIG. 7 is a second embodiment of the cycloid deceleration device. Motor 100A and reduction component 20
It has 0. In the illustrated example, the connecting member 260 constitutes the cycloid deceleration device 10B by integrating the motor 100A and the deceleration component 200 in the axial direction. Hereinafter, a configuration different from that of the first embodiment will be described, and the configuration common to the cycloid speed reducer 10 is designated by a common reference numeral and detailed description thereof will be omitted.
図7及び図8に示すように、モータ100Aは、一点鎖線で示す中心軸線Cを軸として回転する回転軸150と、回転軸150の径方向外側にそれぞれ配置された第1のロータ123及び第2のロータ122と、ステータ110と、ステータカバー111と、第1のモータハウジング114と、第2のモータハウジング113aと、を備える。  As shown in FIGS. 7 and 8, the motor 100A has a rotary shaft 150 that rotates about the central axis C indicated by the alternate long and short dash line, and a first rotor 123 and a first rotor 123 that are arranged radially outside the rotary shaft 150, respectively. The rotor 122, the stator 110, the stator cover 111, the first motor housing 114, and the second motor housing 113a are provided. It was
第1のロータ123及び第2のロータ122は、例えば、円盤状のディスクロータである。第1のロータ123は、ステータ110の前方であって、ステータ110と第1のモータハウジング114との間に位置している。また、第2のロータ122は、ステータ110の後方であって、ステータ110と第2のモータハウジング113との間に位置している。  The first rotor 123 and the second rotor 122 are, for example, disk-shaped disc rotors. The first rotor 123 is located in front of the stator 110 and between the stator 110 and the first motor housing 114. Further, the second rotor 122 is located behind the stator 110 and between the stator 110 and the second motor housing 113. It was
第2の実施形態のモータ100Aは、回転軸150の径方向外側に配置された2つの軸受140aと、径方向におけるステータ110の中央側に回転軸150の径方向外側に配置される固定リング112aと、第1のロータ123と第2のロータ122とを回転軸150に固定するための少なくとも1つの固定ピン144と、を備える。  The motor 100A of the second embodiment has two bearings 140a arranged radially outside the rotating shaft 150 and a fixing ring 112a arranged radially outside the rotating shaft 150 on the center side of the stator 110 in the radial direction. And at least one fixing pin 144 for fixing the first rotor 123 and the second rotor 122 to the rotating shaft 150. It was
回転軸150は、軸方向に延びる延在部151と、中心軸線Cから離れた位置で中心軸線Cと平行に延びる第2軸線Eを中心とする偏心部152と、延在部151の径方向外側に設けられた少なくとも1つの凹部153とを備える。  The rotating shaft 150 has an extending portion 151 extending in the axial direction, an eccentric portion 152 centered on a second axis E extending in parallel with the central axis C at a position away from the central axis C, and a radial direction of the extending portion 151. It is provided with at least one recess 153 provided on the outside. It was
図9に示すように、凹部153は、所定の深さを有する有底状の溝である。この凹部153には、固定ピン144が設けられる。第2の実施形態では、2つの凹部153が延在部151の周壁に設けられている。軸方向一方側の凹部153は、第1のロータ123の径方向内側の端部123aに対向している。また、軸方向他方側の凹部153は、第2のロータ122の径方向内側の端部122aに対向している。  As shown in FIG. 9, the recess 153 is a bottomed groove having a predetermined depth. A fixing pin 144 is provided in the recess 153. In the second embodiment, two recesses 153 are provided on the peripheral wall of the extending portion 151. The concave portion 153 on one side in the axial direction faces the end portion 123a on the inner side in the radial direction of the first rotor 123. Further, the recess 153 on the other side in the axial direction faces the end portion 122a on the inner side in the radial direction of the second rotor 122. It was
偏心部152は、中心軸線Cから外れた位置で中心軸線Cと平行に延びる第2軸線Eを中心とする円筒状の部材である。したがって、中心軸線Cから偏心部152の外周面までの距離は、周方向の位置によって異なる。第2の実施形態では、回転軸150と偏心部152とが単一の部材となっている。回転軸150は、軸受240を介して1段目の第2のギア211を回転可能に支持している。これにより、モータ100A側の駆動力を、回転軸150を通じて減速部品200に伝達することができる。また、回転軸150は、軸受241を介して2段目の第1のギア220を回転可能に支持している。図示に示すように、回転軸150は、軸方向に貫通する空洞構造であってもよい。これにより、回転軸150の重さを軽くすることができる。回転軸150が中心軸線Cを中心として回転すると、偏心部152の位置が、中心軸線Cを中心として回転する。このように、回転軸150はモータ100Aからの駆動力を減速部品200に入力する入力軸として機能する。なお、回転軸150の構成は、本実施形態に示すものに限定されない。  The eccentric portion 152 is a cylindrical member centered on a second axis E extending in parallel with the central axis C at a position deviating from the central axis C. Therefore, the distance from the central axis C to the outer peripheral surface of the eccentric portion 152 differs depending on the position in the circumferential direction. In the second embodiment, the rotating shaft 150 and the eccentric portion 152 form a single member. The rotary shaft 150 rotatably supports the second gear 211 of the first stage via the bearing 240. As a result, the driving force on the motor 100A side can be transmitted to the deceleration component 200 through the rotating shaft 150. Further, the rotary shaft 150 rotatably supports the first gear 220 of the second stage via the bearing 241. As shown in the figure, the rotating shaft 150 may have a hollow structure penetrating in the axial direction. As a result, the weight of the rotating shaft 150 can be reduced. When the rotation axis 150 rotates about the central axis C, the position of the eccentric portion 152 rotates about the central axis C. In this way, the rotary shaft 150 functions as an input shaft for inputting the driving force from the motor 100A to the deceleration component 200. The configuration of the rotating shaft 150 is not limited to that shown in the present embodiment. It was
第2の実施形態では、2つの軸受140aのうち、一方の軸受140aは軸方向にステータ110の中央側に位置し、他方の軸受140aは第2のロータ120のステータ110から離れる軸方向他方側に位置する。図9に示すように、一方の軸受140aは、回転軸150と固定リング112aとの間に配置されている。また、他方の軸受140aは、回転軸150と第2のモータハウジング113aとの間に配置されている。これにより、回転軸150は、第1の実施形態と同様に、2つの軸受140aによって回転可能に支持される。  In the second embodiment, of the two bearings 140a, one bearing 140a is axially located on the center side of the stator 110, and the other bearing 140a is axially on the other side away from the stator 110 of the second rotor 120. Located in. As shown in FIG. 9, one bearing 140a is arranged between the rotating shaft 150 and the fixing ring 112a. Further, the other bearing 140a is arranged between the rotating shaft 150 and the second motor housing 113a. Thereby, the rotary shaft 150 is rotatably supported by the two bearings 140a as in the first embodiment. It was
ここで、第2に実施形態では、軸方向において軸受140aと固定ピン144とが交互に配置されている。そして、2つの凹部153に設けられた2つの固定ピン144によって、第1のロータ123及び第2のロータ122を回転軸150に取り付けることができる。このように、第2の実施形態によれば、モータ100Aの構成を簡易にして、サイクロイド減速装置10Bの全体構成として部品手数を減らすことができる。  Here, secondly, in the second embodiment, the bearings 140a and the fixing pins 144 are alternately arranged in the axial direction. Then, the first rotor 123 and the second rotor 122 can be attached to the rotating shaft 150 by the two fixing pins 144 provided in the two recesses 153. As described above, according to the second embodiment, the configuration of the motor 100A can be simplified and the number of parts can be reduced as the overall configuration of the cycloid speed reducer 10B. It was
[第3の実施形態] 図10に示すサイクロイド減速装置10Cは、サイクロイド減速装置の第3の実施形態である。モータ100Bと、減速部品200とを備える。図示の例では、接続部材260によって、軸方向にモータ100Bと減速部品200とが一体となってサイクロイド減速装置10Cが構成される。以下では、第1の実施形態と異なる構成について説明するものとし、サイクロイド減速装置10、10Bと共通する構成については、共通の符号を付してその詳細な説明は省略する。  [Third Embodiment] The cycloid deceleration device 10C shown in FIG. 10 is a third embodiment of the cycloid deceleration device. It includes a motor 100B and a deceleration component 200. In the illustrated example, the connecting member 260 constitutes the cycloid deceleration device 10C by integrating the motor 100B and the deceleration component 200 in the axial direction. Hereinafter, a configuration different from that of the first embodiment will be described, and the configurations common to the cycloid speed reducers 10 and 10B are designated by common reference numerals and detailed description thereof will be omitted. It was
図10及び図11に示すように、モータ100Bは、一点鎖線で示す中心軸線Cを軸として回転する回転軸160と、回転軸160の径方向外側にそれぞれ配置された第1のロータ125及び第2のロータ124と、ステータ110と、ステータカバー111と、第1のモータハウジング114aと、第2のモータハウジング113aと、を備える。  As shown in FIGS. 10 and 11, the motor 100B has a rotary shaft 160 that rotates about the central axis C indicated by the alternate long and short dash line, and a first rotor 125 and a first rotor 125 that are arranged radially outside the rotary shaft 160, respectively. The rotor 124, the stator 110, the stator cover 111, the first motor housing 114a, and the second motor housing 113a are provided. It was
第1のロータ125及び第2のロータ124は、例えば、円盤状のディスクロータである。第1のロータ125は、ステータ110の前方であって、ステータ110と第1のモータハウジング114aとの間に位置している。また、第2のロータ124は、ステータ110の後方であって、ステータ110と第2のモータハウジング113aとの間に位置している。  The first rotor 125 and the second rotor 124 are, for example, disk-shaped disc rotors. The first rotor 125 is located in front of the stator 110 and between the stator 110 and the first motor housing 114a. Further, the second rotor 124 is located behind the stator 110 and between the stator 110 and the second motor housing 113a. It was
第2の実施形態のモータ100Bは、回転軸160の径方向外側に配置された2つの軸受140bと、径方向におけるステータ110の中央側に回転軸160の径方向外側に配置される固定リング112bと、第1のロータ125と第2のロータ124とを回転軸160に固定するための第2固定ピン145と、を備える。  The motor 100B of the second embodiment has two bearings 140b arranged radially outside the rotating shaft 160 and a fixing ring 112b arranged radially outside the rotating shaft 160 on the center side of the stator 110 in the radial direction. And a second fixing pin 145 for fixing the first rotor 125 and the second rotor 124 to the rotating shaft 160. It was
回転軸160は、軸方向に延びる延在部161と、中心軸線Cから離れた位置で中心軸線Cと平行に延びる第2軸線Eを中心とする偏心部162と、延在部161の径方向外側においてステータ110の径方向と交差する方向に沿って延びる第2凹部163とを備える。回転軸160は、モータ100Bからの駆動力を減速部品200に入力する入力軸として機能する。なお、回転軸160は、第2凹部163を備えた点以外は、第2の実施形態の回転軸150と同様である。  The rotating shaft 160 has an extending portion 161 extending in the axial direction, an eccentric portion 162 centered on a second axis E extending in parallel with the central axis C at a position away from the central axis C, and a radial direction of the extending portion 161. On the outside, a second recess 163 extending along a direction intersecting the radial direction of the stator 110 is provided. The rotary shaft 160 functions as an input shaft for inputting the driving force from the motor 100B to the deceleration component 200. The rotary shaft 160 is the same as the rotary shaft 150 of the second embodiment except that the second recess 163 is provided. It was
図12に示すように、第2凹部163は、所定の深さを有する有底状であり、軸方向に延びる長溝である。この第2凹部163には、固定ピン145が設けられる。第2固定ピン145は、軸方向において第1のロータ125の軸方向一方側に向く最外面125bから第2のロータ124の軸方向他方側に向く最外面124bに至るまで延びている。つまり、第3の実施形態に示す第2固定ピンの軸方向における長さは、第1のロータ125の最外面125bと第2のロータ124の最外面124bとの間の距離と等しい。第3の実施形態では、1つの第2凹部163が延在部161の周壁に設けられている。第2凹部163は、第1のロータ125の径方向内側の端部125a、及び第2のロータ124の径方向内側の端部124aに対向している。  As shown in FIG. 12, the second recess 163 is a bottomed groove having a predetermined depth and is a long groove extending in the axial direction. A fixing pin 145 is provided in the second recess 163. The second fixing pin 145 extends from the outermost surface 125b of the first rotor 125 facing axially one side to the outermost surface 124b of the second rotor 124 facing axially the other side. That is, the axial length of the second fixing pin shown in the third embodiment is equal to the distance between the outermost surface 125b of the first rotor 125 and the outermost surface 124b of the second rotor 124. In the third embodiment, one second recess 163 is provided on the peripheral wall of the extending portion 161. The second recess 163 faces the radially inner end 125a of the first rotor 125 and the radially inner end 124a of the second rotor 124. It was
第3の実施形態では、2つの軸受140bのうち、一方の軸受140bは第1のロータ125のステータ110から離れる軸方向一方側に位置し、他方の軸受140bは第2のロータ124のステータ110から離れる軸方向他方側に位置する。図12に示すように、一方の軸受140bは、回転軸160と第1のモータハウジング114aとの間に配置されている。また、他方の軸受140bは、回転軸160と第2のモータハウジング113aとの間に配置されている。これにより、回転軸160は、第1の実施形態と同様に、2つの軸受140bによって回転可能に支持される。  In the third embodiment, of the two bearings 140b, one bearing 140b is located on one side in the axial direction away from the stator 110 of the first rotor 125, and the other bearing 140b is the stator 110 of the second rotor 124. It is located on the other side in the axial direction away from. As shown in FIG. 12, one bearing 140b is arranged between the rotating shaft 160 and the first motor housing 114a. Further, the other bearing 140b is arranged between the rotating shaft 160 and the second motor housing 113a. Thereby, the rotary shaft 160 is rotatably supported by the two bearings 140b as in the first embodiment. It was
ここで、第3に実施形態では、軸方向において2つの軸受140aの間に1つの固定ピン145が配置されている。そして、1つの第2凹部163に設けられた1つの固定ピン145によって、第1のロータ125及び第2のロータ124を回転軸160に取り付けることができる。このように、第3の実施形態によれば、モータ100Bの構成をより簡易にして、サイクロイド減速装置10Cの全体構成として部品点数を減らすことができる。  Here, in the third embodiment, one fixing pin 145 is arranged between the two bearings 140a in the axial direction. Then, the first rotor 125 and the second rotor 124 can be attached to the rotating shaft 160 by one fixing pin 145 provided in one second recess 163. As described above, according to the third embodiment, the configuration of the motor 100B can be simplified and the number of parts can be reduced as the overall configuration of the cycloid speed reducer 10C. It was
また、本発明は、第1の実施形態乃至及び第3の実施形態の記載に限られるものではなく、モータ、減速部品が他の構造を備えてもよい。  Further, the present invention is not limited to the description of the first embodiment to the third embodiment, and the motor and the deceleration component may have other structures. It was
以上のとおり、具体的な実施形態を組み合わせて本発明を説明したが、当業者は、これらの記述がいずれも例示するものであり、本発明の保護範囲を限定するものではないことを理解すべきである。当業者は、本発明の技術思想及び原理に基づいて本発明に対して各種の変形及び補正を行うことができ、これらの変形及び補正が本発明の範囲内に含まれる。 As described above, the present invention has been described by combining specific embodiments, but those skilled in the art understand that these descriptions are merely examples and do not limit the scope of protection of the present invention. Should be. Those skilled in the art can make various modifications and amendments to the present invention based on the technical ideas and principles of the present invention, and these modifications and amendments are included within the scope of the present invention.
本開示のサイクロイド減速装置は、サイクロイド減速機を利用するあらゆる技術分野において利用可能である。特に、小型化が求められる減速装置であって、モータとサイクロイド減速機とが一体として構成されるサイクロイド減速装置に広く利用可能である。 The cycloid reducer of the present disclosure can be used in all technical fields utilizing a cycloid reducer. In particular, it is a speed reducer for which miniaturization is required, and can be widely used for a cycloid speed reducer in which a motor and a cycloid speed reducer are integrally configured.
10:サイクロイド減速装置、 100:モータ、 200:減速部品、 110:ステータ、 111:ステータハウジング、 112:固定リング、 113:第2のモータハウジング、 114:第1のモータハウジング、 120:第2のロータ、 121:第1のロータ、 130:回転軸、 131:孔、 140:軸受、  141:接続部材、 142:ワッシャ、 143:固定ピン、 144:固定ピン、 145:第2固定ピン、 150:回転軸、 151:延在部、 152:偏心部、 153:凹部、 160:回転軸、 161:延在部、 162:偏心部、 163:第2凹部、 210:第1のギア、 211:第2のギア、 220:第1のギア、 221:第2のギア、 230:第2回転軸、 240:軸受、 250:ギアカバー、 260:接続部材、 261:接続部材
 
10: Cycloid reduction gear, 100: motor, 200: reduction gear, 110: stator, 111: stator housing, 112: fixing ring, 113: second motor housing, 114: first motor housing, 120: second Rotor, 121: 1st rotor, 130: rotating shaft, 131: hole, 140: bearing, 141: connecting member, 142: washer, 143: fixing pin, 144: fixing pin, 145: second fixing pin, 150: Rotating shaft, 151: Extended part, 152: Eccentric part, 153: Recessed part, 160: Rotating shaft, 161: Extended part, 162: Eccentric part, 163: Second concave part, 210: First gear, 211: First 2nd gear, 220: 1st gear, 221: 2nd gear, 230: 2nd rotating shaft, 240: bearing, 250: gear cover, 260: connecting member, 261: connecting member

Claims (12)


  1.  中心軸線を軸として回転する第1の回転軸及び第2の回転軸と、

     前記第1の回転軸の径方向外側に配置された第1のロータと、

     前記第2の回転軸の径方向外側に配置された第2のロータと、

     前記第1のロータと前記第2のロータとの間に配置されたステータと、

     前記ステータを覆うステータハウジングと、

     前記第1のロータの前記ステータから離れる軸方向一方側に配置された第1のモータハウジングと、

     前記第2のロータの前記ステータから離れる軸方向他方側に配置された第2のモータハウジングと、

     を有するモータと、

     前記ステータハウジングから離れる軸方向一方側に配置された第1のギアと、前記第1のギアと噛み合う第2のギアと、

     を有する減速部品と、

     を備えるサイクロイド減速装置であって、

     前記モータは、

     前記回転軸の径方向外側に配置された2つの軸受を備え、

     前記2つの軸受は、前記ステータの中央側において軸方向に並んでおり、

     前記減速部品は、前記第1のギアの径方向内側に配置された少なくとも1つの軸受を備え、

     前記第1のギア及び前記第2のギアは、各々が、軸方向において並んで配置された2つのギアを含む、

     ことを特徴とするサイクロイド減速装置。

    A first rotation axis and a second rotation axis that rotate around the central axis, and

    A first rotor arranged radially outside the first rotation axis, and

    A second rotor arranged radially outside the second rotation axis, and

    A stator arranged between the first rotor and the second rotor,

    A stator housing that covers the stator and

    A first motor housing arranged on one side of the first rotor in the axial direction away from the stator, and a first motor housing.

    A second motor housing located on the other side of the second rotor in the axial direction away from the stator, and a second motor housing.

    With a motor and

    A first gear arranged on one side in the axial direction away from the stator housing, and a second gear that meshes with the first gear.

    With deceleration parts,

    It is a cycloid deceleration device equipped with

    The motor is

    It has two bearings arranged radially outside the axis of rotation.

    The two bearings are aligned axially on the center side of the stator.

    The reduction component comprises at least one bearing located radially inside the first gear.

    The first gear and the second gear each include two gears arranged side by side in the axial direction.

    A cycloid deceleration device characterized by that.

  2.  前記モータは、径方向における前記ステータの中央側に前記回転軸の径方向外側に配置される固定リングを備え、

     前記2つの軸受は、前記回転軸130と前記固定リングとの間に配置される、

     請求項1に記載のサイクロイド減速装置。

    The motor comprises a fixing ring located radially outward of the rotating shaft on the center side of the stator in the radial direction.

    The two bearings are arranged between the rotating shaft 130 and the fixing ring.

    The cycloid speed reducer according to claim 1.

  3.  前記減速部品は、中心軸線から離れた位置で前記中心軸線と平行に延びる第2軸線を中心とする第2回転軸と、

     前記回転軸と前記第2回転軸との間に配置される固定部と、を備える、

     請求項1または2に記載のサイクロイド減速装置。

    The deceleration component includes a second rotation axis centered on a second axis extending parallel to the center axis at a position away from the center axis.

    A fixing portion arranged between the rotating shaft and the second rotating shaft is provided.

    The cycloid speed reducer according to claim 1 or 2.

  4.  前記モータは、前記第1のロータと前記第2のロータとを前記回転軸に接続するための少なくとも2つの接続部材を備え、

     前記回転軸は、軸方向に貫通する孔を備え、前記孔には、前記2つの接続部材が対向して設けられる、

     請求項1乃至3のいずれか一項に記載のサイクロイド減速装置。

    The motor comprises at least two connecting members for connecting the first rotor and the second rotor to the rotating shaft.

    The rotating shaft is provided with a hole penetrating in the axial direction, and the two connecting members are provided in the hole so as to face each other.

    The cycloid speed reducer according to any one of claims 1 to 3.

  5.  前記回転軸は、中心軸線から離れた位置で前記中心軸線と平行に延びる第2軸線を中心とする偏心部を備える、

     請求項1に記載のサイクロイド減速装置。

    The axis of rotation includes an eccentric portion centered on a second axis extending parallel to the central axis at a position away from the central axis.

    The cycloid speed reducer according to claim 1.

  6.  前記2つの軸受のうち、一方の軸受は軸方向に前記ステータの中央側に位置し、他方の軸受は前記第2のロータの前記ステータから離れる軸方向他方側に位置する、

     請求項5に記載のサイクロイド減速装置。

    Of the two bearings, one is axially located on the center side of the stator and the other bearing is axially located on the other side of the second rotor away from the stator.

    The cycloid speed reducer according to claim 5.

  7.  前記モータは、前記第1のロータと前記第2のロータとを前記回転軸に固定するための少なくとも1つの固定ピンを備え、

     前記回転軸は、径方向外側に少なくとも1つの凹部を備え、

     前記凹部には、前記固定ピンが設けられる、

     請求項6に記載のサイクロイド減速装置。

    The motor comprises at least one fixing pin for fixing the first rotor and the second rotor to the rotating shaft.

    The axis of rotation is provided with at least one concave portion on the outer side in the radial direction.

    The fixing pin is provided in the recess.

    The cycloid speed reducer according to claim 6.

  8.  前記2つの軸受のうち、一方の軸受は前記第1のロータの前記ステータから離れる軸方向一方に位置し、他方の軸受は前記第2のロータの前記ステータから離れる軸方向他方側に位置する、

     請求項5に記載のサイクロイド減速装置。

    Of the two bearings, one bearing is located axially on one side of the first rotor away from the stator, and the other bearing is located axially on the other side of the second rotor away from the stator.

    The cycloid speed reducer according to claim 5.

  9.  前記モータは、前記第1のロータと前記第2のロータとを前記回転軸に固定するための第2固定ピンを備え、

     前記第2固定ピンは、軸方向において前記第1のロータの軸方向一方側に向く最外面から前記第2のロータの軸方向他方側に向く最外面に至るまで延びており、

     前記回転軸は、径方向外側において前記ステータの径方向と交差する方向に沿って延びる第2凹部を備え、

     前記第2凹部には、前記第2固定ピンが設けられる、

     請求項8に記載のサイクロイド減速装置。

    The motor includes a second fixing pin for fixing the first rotor and the second rotor to the rotating shaft.

    The second fixing pin extends from the outermost surface of the first rotor facing axially one side to the outermost surface of the second rotor facing axially the other side in the axial direction.

    The axis of rotation comprises a second recess extending radially outward along a direction intersecting the radial direction of the stator.

    The second fixing pin is provided in the second recess.

    The cycloid speed reducer according to claim 8.

  10.  前記第1のギアは、リングギアであり、

     前記第2のギアは、サイクロイドギアである、

     請求項1乃至9のいずれか一項に記載のサイクロイド減速装置。

    The first gear is a ring gear, which is a ring gear.

    The second gear is a cycloid gear,

    The cycloid speed reducer according to any one of claims 1 to 9.

  11.  前記モータは、軸方向磁束モータである請求項1乃至10のいずれか一項に記載のサイクロイド減速装置。

    The cycloid speed reducer according to any one of claims 1 to 10, wherein the motor is an axial magnetic flux motor.

  12.  請求項1乃至12のいずれか一項に記載のサイクロイド減速装置を備える電気機器。

    An electric device including the cycloid speed reducer according to any one of claims 1 to 12.
PCT/JP2020/048418 2020-09-24 2020-12-24 Cycloidal speed reducer and electrical device WO2022064726A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080105395.5A CN116235388A (en) 2020-09-24 2020-12-24 Cycloidal reduction gear and electrical equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-159871 2020-09-24
JP2020159871 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022064726A1 true WO2022064726A1 (en) 2022-03-31

Family

ID=80845176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048418 WO2022064726A1 (en) 2020-09-24 2020-12-24 Cycloidal speed reducer and electrical device

Country Status (2)

Country Link
CN (1) CN116235388A (en)
WO (1) WO2022064726A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095203A (en) * 2000-09-13 2002-03-29 Nidec Power Motor Corp Axial direction gap type canned motor for vacuum pump
JP2004144104A (en) * 2002-08-30 2004-05-20 Aisin Seiki Co Ltd Gear reducer
JP2013155649A (en) * 2012-01-30 2013-08-15 Hitachi Industrial Equipment Systems Co Ltd Impeller system having axial gap rotor
JP2020072642A (en) * 2018-10-29 2020-05-07 日本電産株式会社 Motor and speed reducer
JP2020072641A (en) * 2018-10-31 2020-05-07 日本電産株式会社 Reduction gear and electrical facility
JP2020137211A (en) * 2019-02-15 2020-08-31 日本電産シンポ株式会社 Motor with brake, driving device with the brake, and wheel driving device with the brake

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095203A (en) * 2000-09-13 2002-03-29 Nidec Power Motor Corp Axial direction gap type canned motor for vacuum pump
JP2004144104A (en) * 2002-08-30 2004-05-20 Aisin Seiki Co Ltd Gear reducer
JP2013155649A (en) * 2012-01-30 2013-08-15 Hitachi Industrial Equipment Systems Co Ltd Impeller system having axial gap rotor
JP2020072642A (en) * 2018-10-29 2020-05-07 日本電産株式会社 Motor and speed reducer
JP2020072641A (en) * 2018-10-31 2020-05-07 日本電産株式会社 Reduction gear and electrical facility
JP2020137211A (en) * 2019-02-15 2020-08-31 日本電産シンポ株式会社 Motor with brake, driving device with the brake, and wheel driving device with the brake

Also Published As

Publication number Publication date
CN116235388A (en) 2023-06-06

Similar Documents

Publication Publication Date Title
JP5445216B2 (en) Planetary gear mechanism
EP2381130B1 (en) Speed change gear
JP4267950B2 (en) Internal gear swing type intermeshing planetary gear unit
JP5477044B2 (en) Planetary gear mechanism
JPWO2008026571A1 (en) Reduction gear
JP2001221298A (en) Eccentric rotary reduction gear
CN111120583A (en) Speed reduction device and electromechanical device
CN110858743B (en) Speed reduction device and electromechanical device
JP2000065162A (en) Reduction gear
WO2022064726A1 (en) Cycloidal speed reducer and electrical device
JPH11287300A (en) Acceleration reduction gear of inscribed meshing planetary gear structure
US6220107B1 (en) Eccentric orbiting type speed changing device
US20070204712A1 (en) Series of power transmission devices and series of geared motors
JP4598460B2 (en) Planetary gear transmission
JP2020029914A (en) Hypocycloid speed reducer
JP3919350B2 (en) Internal gear swing type intermeshing planetary gear unit
CN210218568U (en) Speed reducer
WO2022064725A1 (en) Deceleration device and electrical equipment
JP2008101726A (en) Reduction gear device
WO2023238401A1 (en) Planetary gear reducer
US11703109B2 (en) Planetary gear actuator
JP7074628B2 (en) Planetary speed reducer and electric actuator
CN212985943U (en) Transmission mechanism
JP2002061720A (en) External gear, rocking internal meshing planetary gear device and series of rocking internal meshing planetary gear device
JP2013221570A (en) Speed change gear drive and actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP