WO2022064577A1 - 暗号システム、暗号化装置、復号装置及び鍵生成装置 - Google Patents

暗号システム、暗号化装置、復号装置及び鍵生成装置 Download PDF

Info

Publication number
WO2022064577A1
WO2022064577A1 PCT/JP2020/035870 JP2020035870W WO2022064577A1 WO 2022064577 A1 WO2022064577 A1 WO 2022064577A1 JP 2020035870 W JP2020035870 W JP 2020035870W WO 2022064577 A1 WO2022064577 A1 WO 2022064577A1
Authority
WO
WIPO (PCT)
Prior art keywords
abelian
richello
homologous
encryption
key
Prior art date
Application number
PCT/JP2020/035870
Other languages
English (en)
French (fr)
Inventor
克幸 高島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080105252.4A priority Critical patent/CN116194977A/zh
Priority to PCT/JP2020/035870 priority patent/WO2022064577A1/ja
Priority to JP2022544240A priority patent/JP7158635B2/ja
Priority to DE112020007408.0T priority patent/DE112020007408T5/de
Publication of WO2022064577A1 publication Critical patent/WO2022064577A1/ja
Priority to US18/163,485 priority patent/US20230179397A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/0618Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • H04L9/3066Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving algebraic varieties, e.g. elliptic or hyper-elliptic curves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0838Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
    • H04L9/0841Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these involving Diffie-Hellman or related key agreement protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords

Definitions

  • This disclosure relates to the same type of mapping code.
  • homologous mapping ciphers such as SIDH (Supersingular Isogeny Diffie-Hellman key exchange) and SIKE (Supersingular Isogeny Key Encapsulation).
  • SIDH Supersingular Isogeny Diffie-Hellman key exchange
  • SIKE Supersingular Isogeny Key Encapsulation
  • Non-Patent Document 1 describes a SIDH-type homologous isogeny encryption method, which is based on the difficulty of the basic homologous isogeny problem without auxiliary information.
  • the decryption method of the code described in Non-Patent Document 2 is used for the decryption algorithm. Therefore, it takes a lot of time to decrypt. It is an object of the present disclosure to make it possible to reduce the time required for decryption in the SETA encryption method.
  • the encryption system related to this disclosure is It is a cryptographic system that performs cryptographic processing using the abelian surface A 0 as the starting point and the abelian surface As as the public key, with the Richello homologous mapping sequence ⁇ s as the secret key. Encryption that transfers the abelian surface As, which is a public key, to calculate the abelian surface Am, and sets the abelian surface Am as a ciphertext, using the Richello homologous mapping sequence ⁇ m generated by encoding the plaintext m .
  • the secret key is the Richello homologous mapping sequence ⁇ s with the abelian surface A 0 as the starting point and the abelian surface As as the ending point, and the abelian surface As is the public key.
  • FIG. 1 The block diagram of the encryption system 1 which concerns on Embodiment 1.
  • FIG. The block diagram of the key generation apparatus 10 which concerns on Embodiment 1.
  • FIG. The block diagram of the encryption apparatus 20 which concerns on Embodiment 1.
  • FIG. The block diagram of the decoding apparatus 30 which concerns on Embodiment 1.
  • Explanatory drawing of the SETA encryption method An explanatory diagram of a species number 2 SETA encryption method according to the first embodiment.
  • the flowchart which shows the operation of the key generation apparatus 10 which concerns on Embodiment 1.
  • the flowchart which shows the operation of the encryption apparatus 20 which concerns on Embodiment 1.
  • FIG. 1 The flowchart which shows the operation of the decoding apparatus 30 which concerns on Embodiment 1.
  • the block diagram of the key generation apparatus 10 which concerns on modification 1.
  • FIG. The block diagram of the encryption apparatus 20 which concerns on modification 1.
  • FIG. The block diagram of the decoding apparatus 30 which concerns on modification 1.
  • the encryption system 1 includes a key generation device 10, an encryption device 20, and a decryption device 30.
  • the key generation device 10, the encryption device 20, and the decryption device 30 are connected to each other via a communication path 40 such as a LAN (Local Area Network) and the Internet.
  • a communication path 40 such as a LAN (Local Area Network) and the Internet.
  • the configuration of the key generation device 10 according to the first embodiment will be described with reference to FIG.
  • the key generator 10 is a computer.
  • the key generation device 10 includes hardware for a processor 11, a memory 12, a storage 13, and a communication interface 14.
  • the processor 11 is connected to other hardware via a signal line and controls these other hardware.
  • the key generation device 10 includes an acquisition unit 111, a mapping calculation unit 112, and a key setting unit 113 as functional components.
  • the functions of each functional component of the key generator 10 are realized by software.
  • the storage 13 stores a program that realizes the functions of each functional component of the key generation device 10. This program is read into the memory 12 by the processor 11 and executed by the processor 11. As a result, the functions of each functional component of the key generation device 10 are realized.
  • the configuration of the encryption device 20 according to the first embodiment will be described with reference to FIG.
  • the encryption device 20 is a computer.
  • the encryption device 20 includes hardware of a processor 21, a memory 22, a storage 23, and a communication interface 24.
  • the processor 21 is connected to other hardware via a signal line and controls these other hardware.
  • the encryption device 20 includes an acquisition unit 211 and an encryption unit 212 as functional components.
  • the functions of each functional component of the encryption device 20 are realized by software.
  • the storage 23 stores a program that realizes the functions of each functional component of the encryption device 20. This program is read into the memory 22 by the processor 21 and executed by the processor 21. As a result, the functions of each functional component of the encryption device 20 are realized.
  • the decoding device 30 is a computer.
  • the decoding device 30 includes hardware such as a processor 31, a memory 32, a storage 33, and a communication interface 34.
  • the processor 31 is connected to other hardware via a signal line and controls these other hardware.
  • the decoding device 30 includes an acquisition unit 311 and a decoding unit 312 as functional components.
  • the functions of each functional component of the decoding device 30 are realized by software.
  • the storage 33 stores a program that realizes the functions of each functional component of the decoding device 30. This program is read into the memory 32 by the processor 31 and executed by the processor 31. As a result, the functions of each functional component of the decoding device 30 are realized.
  • Processors 11, 21, and 31 are ICs (Integrated Circuits) that perform processing. Specific examples of the processors 11, 21, and 31 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • GPU Graphics Processing Unit
  • the memories 12, 22, and 32 are storage devices that temporarily store data. Specific examples of the memories 12, 22, and 32 are SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory).
  • Storages 13, 23, 33 are storage devices for storing data.
  • the storages 13, 23, and 33 are, as a specific example, an HDD (Hard Disk Drive).
  • the storages 13, 23, and 33 include SD (registered trademark, Secure Digital) memory card, CF (CompactFlash, registered trademark), NAND flash, flexible disk, optical disk, compact disk, Blu-ray (registered trademark) disk, and DVD (Digital). It may be a portable recording medium such as Versail Disc).
  • Communication interfaces 14, 24, 34 are interfaces for communicating with an external device. Specific examples of the communication interfaces 14, 24, and 34 are Ethernet (registered trademark), USB (Universal Serial Bus), and HDMI (registered trademark, High-Definition Multimedia Interface) ports.
  • processors 11 In FIG. 2, only one processor 11 was shown. However, the number of processors 11 may be plural, and the plurality of processors 11 may execute programs that realize each function in cooperation with each other. Similarly, the number of processors 21 and 31 may be plural.
  • the operation of the encryption system 1 according to the first embodiment will be described with reference to FIGS. 5 to 10.
  • the operation procedure of the encryption system 1 according to the first embodiment corresponds to the encryption method according to the first embodiment.
  • the program that realizes the operation of the encryption system 1 according to the first embodiment corresponds to the encryption program according to the first embodiment.
  • Non-Patent Document 1 an elliptic curve is used.
  • the cryptosystem 1 uses a genus 2 curve instead of an elliptic curve.
  • the genus 2 curve used by the cryptosystem 1 is the algebraic curve shown in Equation 11. Here, the order deg (f (X)) is 5 or 6.
  • Equation 12 it is assumed that the genus 2 curve is transferred by repeating the Richello homogeneous mapping ⁇ times from the genus 2 curve C 0 as the starting point to the genus 2 curve C ⁇ which is the ending point.
  • is an integer of 2 or more.
  • the cryptosystem 1 is a sequence of Richello homologous maps interpolating the genus 2 curves C 0 , C ⁇ given the genus 2 curves C 0 , C ⁇ , given the genus 2 curves C 0 , ⁇ 1 . ,. .. .. , ⁇ Finding (calculating) ⁇ -1 is used as a basic problem related to cryptographic security. Then, the cryptosystem 1 constitutes a genus 2SETA cipher based on the difficulty of this basic problem.
  • the various number 2 curves are represented by the number 13 using three polynomials G j (X) such that deg (G j (X)) ⁇ 2.
  • deg (G j (X)) is the degree of the polynomial G j (X).
  • the three new polynomials G to j (X) are defined as shown in Equation 14.
  • ⁇ j is the highest-order coefficient of [G j + 1 (X), G j + 2 (X)]. Therefore, G to j (X) are polynomials having the highest order coefficient of 1.
  • G'j + 1 (X) is a derivative of G j + 1 (X)
  • G'j + 2 (X) is a derivative of G j + 2 (X).
  • G j + 1 (X) is G 2 (X)
  • G in the case of j 2.
  • j + 2 (X) is G 1 (X).
  • a new genus 2 curve C ⁇ is defined as shown in Equation 15.
  • the correspondence (mapping) from the genus 2 curve C to the genus 2 curve C ... is called a Richello homologous mapping.
  • the genus 2 curve C is determined by the division of f (X) (G 0 (X), G 1 (X), G 2 (X)). This corresponds to dividing the zero of f (X) into three pairs (a 0 , a 1 ), (a 2 , a 3 ), (a 4 , a 5 ).
  • g will be described later.
  • the genus 2 curve sequence C 0 according to the first embodiment. .. .. , C ⁇ calculation process will be explained.
  • the genus 2 curve Ci is defined as shown in the equation 16.
  • step S12 as shown in Equation 17, three polynomials G to 1, j are calculated, and the Richello homologous map ⁇ 0 is calculated.
  • ⁇ 0, j is the highest-order coefficient of [G 0, j + 1 (X), G 0, j + 2 (X)].
  • the genus 2 curve Ci + 1 is calculated.
  • step S14 as shown in Equation 18, three polynomials G to i + 1, j are calculated, and the Richello homologous map ⁇ i is calculated.
  • ⁇ i and j are the highest-order coefficients of [G i, j + 1 (X), Gi , j + 2 (X)].
  • the SETA encryption method described in Non-Patent Document 1 will be described with reference to FIG.
  • elliptic curves E 0 , E s , and Em are used.
  • the elliptic curve E 0 is a public parameter.
  • the elliptic curve E 0 is a special curve with a simple endomorphic ring.
  • ⁇ Key generation process First, the same kind of mapping sequence ⁇ s , which is a secret key, is generated. Then, the elliptic curve E 0 is transferred by the homologous mapping sequence ⁇ s , the elliptic curve E s is calculated, and the elliptic curve E s is set as the public key.
  • ⁇ Encryption processing> First, the plaintext m is appropriately encoded and converted into the same kind of mapping sequence ⁇ m . Then, the elliptic curve E s , which is the public key, is transferred by the same kind of mapping sequence ⁇ m , and the elliptic curve E m is calculated. The elliptic curve Em is set in the ciphertext.
  • the homomorphic mapping sequence ⁇ s the endomorphism ring calculation of the elliptic curve E s can be performed through the endomorphism ring calculation of the elliptic curve E 0 . Therefore, the isogeny mapping problem with the elliptic curve Es as the starting point and the elliptic curve Em as the ending point can be solved in polynomial time, and the isogeny mapping sequence ⁇ m can be obtained.
  • the plaintext m is calculated from the same kind of mapping sequence ⁇ m by performing the decoding operation, which is the inverse operation of the encoding operation at the time of encryption.
  • a user who knows the secret key, the homomorphic map sequence ⁇ s can reduce the endomorphic ring calculation of the elliptic curve E s to the endomorphic ring calculation of the elliptic curve E 0 through the homomorphic map sequence ⁇ s . , The point of decryption.
  • the operation of the key generation device 10 according to the first embodiment will be described with reference to FIG.
  • the operation procedure of the key generation device 10 according to the first embodiment corresponds to the key generation method according to the first embodiment.
  • the program that realizes the operation of the key generation device 10 according to the first embodiment corresponds to the key generation program according to the first embodiment.
  • Step S111 Acquisition process
  • the acquisition unit 111 acquires the genus 2 curve C 0 , which is a public parameter.
  • the acquisition unit 111 writes the genus 2 curve C 0 to the memory 12.
  • Step S112 Map calculation process
  • the map calculation unit 112 has a genus 2 curve sequence C 0 ,. .. .. , C ⁇ and Richello homologous mapping sequence ⁇ 0 ,. .. .. , ⁇ ⁇ -1 and are written to the memory 12.
  • Step S113 Key setting process
  • the key setting unit 113 transmits the public key to the encryption device 20 and the decryption device 30 via the communication interface 14. Further, the key setting unit 113 secretly transmits the private key to the decryption device 30 via the communication interface 14. Confidential transmission means, for example, transmission after being encrypted using an existing encryption method.
  • the secret key is the Richello homologous mapping sequence ⁇ s .
  • This is essentially a genus 2 curve sequence C 0 ,. .. .. , C ⁇ Permutation method ⁇ 0 ,. How to rearrange each root in the process of step S13 of the calculation process. .. .. , ⁇ ⁇ -1 corresponds to the private key.
  • the operation of the encryption device 20 according to the first embodiment will be described with reference to FIG. 9.
  • the operation procedure of the encryption device 20 according to the first embodiment corresponds to the encryption method according to the first embodiment.
  • the program that realizes the operation of the encryption device 20 according to the first embodiment corresponds to the encryption program according to the first embodiment.
  • Step S211 Acquisition process
  • the acquisition unit 211 acquires the genus 2 curve Cs , which is the public key generated by the key generation device 10. Further, the acquisition unit 211 acquires the plaintext m. The plaintext m is input by the user of the encryption device 20. The acquisition unit 211 writes the genus 2 curve C s and the plaintext m into the memory 22.
  • Step S212 Encryption process
  • the encryption unit 212 encodes the plaintext m acquired in step S211 and converts the plaintext m into the Richello homologous mapping sequence ⁇ m .
  • the encryption unit 212 calculates the genus 2 curve C m by transferring the genus 2 curve C s , which is the public key acquired in step S211, by the Richello isogeny mapping sequence ⁇ m .
  • the encryption unit 212 sets the genus 2 curve Cm in the ciphertext.
  • the encryption unit 212 transmits the ciphertext to the decryption device 30 via the communication interface 24.
  • the operation of the decoding device 30 according to the first embodiment will be described with reference to FIG.
  • the operation procedure of the decoding device 30 according to the first embodiment corresponds to the decoding method according to the first embodiment.
  • the program that realizes the operation of the decoding device 30 according to the first embodiment corresponds to the decoding program according to the first embodiment.
  • Step S311 Acquisition process
  • the acquisition unit 311 acquires the public parameter and the public key and the private key generated by the key generation device 10. Further, the acquisition unit 311 acquires the ciphertext generated by the encryption device 20. The acquisition unit 311 writes the public parameter, the public key, the private key, and the ciphertext to the memory 32.
  • Step S312 Decoding process
  • the decryption unit 312 is a public key acquired in step S311 with a species number 2 based on the Richello homologous mapping sequence ⁇ s , which is the secret key acquired in step S311 and the species number 2 curve C 0 , which is a public parameter.
  • a Richello homologous map ⁇ m is calculated starting from the curve C s and ending at the genus 2 curve C m , which is the ciphertext acquired in step S311.
  • the decoding is the inverse operation of the encoding performed in step S212.
  • the decoding unit 312 outputs the plaintext m'via the communication interface 14.
  • the genus 2 curve is decomposed into the direct product of the elliptic curve E 0 among the portions of the abel curved surface that are not decomposed into the direct product of the elliptic curve E 0 . It is desirable that the genus 2 curve corresponds to the portion adjacent to the portion.
  • E 0 / F p : y 2 x 3 + c when the remainder obtained by dividing by 4 is 1, where c is a constant.
  • F p is a field modulo the prime number p.
  • each functional component is realized by software.
  • each functional component may be realized by hardware. The difference between the second modification and the first embodiment will be described.
  • the key generator 10 includes an electronic circuit 15 instead of the processor 11, the memory 12, and the storage 13.
  • the electronic circuit 15 is a dedicated circuit that realizes the functions of each functional component, the memory 12, and the storage 13.
  • the encryption device 20 includes an electronic circuit 25 instead of the processor 21, the memory 22, and the storage 23.
  • the electronic circuit 25 is a dedicated circuit that realizes the functions of each functional component, the memory 22, and the storage 23.
  • the decoding device 30 includes an electronic circuit 35 instead of the processor 31, the memory 32, and the storage 33.
  • the electronic circuit 35 is a dedicated circuit that realizes the functions of each functional component, the memory 32, and the storage 33.
  • the electronic circuits 15, 25, and 35 include a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), and an FPGA (Field-Programmable). Gate Array) is assumed. Each functional component may be realized by one electronic circuit 15, 25, 35, or each functional component may be distributed and realized by a plurality of electronic circuits 15, 25, 35.
  • Modification 3 As a modification 3, some functional components may be realized by hardware, and other functional components may be realized by software.
  • Processors 11,21,31, memories 12,22,32, storages 13,23,33, and electronic circuits 15,25,35 are called processing circuits. That is, the function of each functional component is realized by the processing circuit.
  • 1 encryption system 10 key generator, 11 processor, 12 memory, 13 storage, 14 communication interface, 15 electronic circuit, 111 acquisition unit, 112 mapping calculation unit, 113 key setting unit, 20 encryption device, 21 processor, 22 memory. , 23 storage, 24 communication interface, 25 electronic circuit, 211 acquisition unit, 212 encryption unit, 30 decryption device, 31 processor, 32 memory, 33 storage, 34 communication interface, 35 electronic circuit, 311 acquisition unit, 312 decryption unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computing Systems (AREA)
  • Mathematical Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Storage Device Security (AREA)

Abstract

暗号システム(1)は、アーベル曲面Aを始点としてアーベル曲面Aを終点とするリシェロー同種写像列φを秘密鍵とし、アーベル曲面Aを公開鍵とする暗号処理を行う。暗号化装置(20)は、平文mをエンコードして生成されたリシェロー同種写像列φによって、公開鍵である前記アーベル曲面Aを移してアーベル曲面Aを計算し、アーベル曲面Aを暗号文として設定する。復号装置(30)は、秘密鍵であるリシェロー同種写像列φに基づき、公開鍵であるアーベル曲面Aを始点として、暗号文であるアーベル曲面Aを終点とするリシェロー同種写像φを計算する。

Description

暗号システム、暗号化装置、復号装置及び鍵生成装置
 本開示は、同種写像暗号に関する。
 SIDH(Supersingular Isogeny Diffie-Hellman key exchange)及びSIKE(Supersingular Isogeny Key Encapsulation)といった同種写像暗号がある。
 SIDH及びSIKEといった同種写像暗号では、基本となる同種写像問題の困難性に安全性の根拠を置くことができず、楕円曲線の点によって与えられる補助情報まで攻撃者(解読者)に与える必要があるSIDH型の同種写像問題の困難性に安全性の根拠を置く必要があった。そのため、SIDH型の同種写像暗号で、補助情報なしの基本となる同種写像問題の困難性に安全性の根拠を置く方式を構成することが、待ち望まれていた。
 非特許文献1には、補助情報なしの基本となる同種写像問題の困難性に安全性の根拠を置くSIDH型の同種写像暗号であるSETA暗号化方式が記載されている。
C.D.S. Guilhem, P. Kutas, C. Petit, J. Silva, SETA: Supersingular Encryption from Torsion Attacks. C. Petit, Faster Algorithms for Isogeny Problems using Torsion Point Images.
 SETA暗号化方式では、非特許文献2に記載された暗号の解読法が復号アルゴリズムに用いられている。そのため、復号には大変多くの時間が必要になる。
 本開示は、SETA暗号化方式における復号にかかる時間を削減可能にすることを目的とする。
 本開示に係る暗号システムは、
 アーベル曲面Aを始点としてアーベル曲面Aを終点とするリシェロー同種写像列φを秘密鍵とし、前記アーベル曲面Aを公開鍵とする暗号処理を行う暗号システムであり、
 平文mをエンコードして生成されたリシェロー同種写像列φによって、公開鍵である前記アーベル曲面Aを移してアーベル曲面Aを計算し、前記アーベル曲面Aを暗号文として設定する暗号化装置と、
 秘密鍵である前記リシェロー同種写像列φに基づき、公開鍵である前記アーベル曲面Aを始点として、前記暗号文である前記アーベル曲面Aを終点とするリシェロー同種写像φを計算する復号装置と
を備える。
 本開示では、アーベル曲面Aを始点としてアーベル曲面Aを終点とするリシェロー同種写像列φを秘密鍵とし、アーベル曲面Aを公開鍵とする。これにより、SETA暗号化方式における素数pの長さを1/3にすることが可能になる。その結果、SETA暗号化方式における復号にかかる時間を削減可能である。
実施の形態1に係る暗号システム1の構成図。 実施の形態1に係る鍵生成装置10の構成図。 実施の形態1に係る暗号化装置20の構成図。 実施の形態1に係る復号装置30の構成図。 実施の形態1に係る種数2曲線列C,...,Cκの計算処理のフローチャート。 SETA暗号化方式の説明図。 実施の形態1に係る種数2SETA暗号方式の説明図。 実施の形態1に係る鍵生成装置10の動作を示すフローチャート。 実施の形態1に係る暗号化装置20の動作を示すフローチャート。 実施の形態1に係る復号装置30の動作を示すフローチャート。 変形例1に係る鍵生成装置10の構成図。 変形例1に係る暗号化装置20の構成図。 変形例1に係る復号装置30の構成図。
 実施の形態1.
 ***構成の説明***
 図1を参照して、実施の形態1に係る暗号システム1の構成を説明する。
 暗号システム1は、鍵生成装置10と、暗号化装置20と、復号装置30とを備える。鍵生成装置10と、暗号化装置20と、復号装置30とは、LAN(Local Area Network)及びインターネットといった通信路40を介して接続されている。
 図2を参照して、実施の形態1に係る鍵生成装置10の構成を説明する。
 鍵生成装置10は、コンピュータである。
 鍵生成装置10は、プロセッサ11と、メモリ12と、ストレージ13と、通信インタフェース14とのハードウェアを備える。プロセッサ11は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 鍵生成装置10は、機能構成要素として、取得部111と、写像計算部112と、鍵設定部113とを備える。鍵生成装置10の各機能構成要素の機能はソフトウェアにより実現される。
 ストレージ13には、鍵生成装置10の各機能構成要素の機能を実現するプログラムが格納されている。このプログラムは、プロセッサ11によりメモリ12に読み込まれ、プロセッサ11によって実行される。これにより、鍵生成装置10の各機能構成要素の機能が実現される。
 図3を参照して、実施の形態1に係る暗号化装置20の構成を説明する。
 暗号化装置20は、コンピュータである。
 暗号化装置20は、プロセッサ21と、メモリ22と、ストレージ23と、通信インタフェース24とのハードウェアを備える。プロセッサ21は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 暗号化装置20は、機能構成要素として、取得部211と、暗号化部212とを備える。暗号化装置20の各機能構成要素の機能はソフトウェアにより実現される。
 ストレージ23には、暗号化装置20の各機能構成要素の機能を実現するプログラムが格納されている。このプログラムは、プロセッサ21によりメモリ22に読み込まれ、プロセッサ21によって実行される。これにより、暗号化装置20の各機能構成要素の機能が実現される。
 図4を参照して、実施の形態1に係る復号装置30の構成を説明する。
 復号装置30は、コンピュータである。
 復号装置30は、プロセッサ31と、メモリ32と、ストレージ33と、通信インタフェース34とのハードウェアを備える。プロセッサ31は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 復号装置30は、機能構成要素として、取得部311と、復号部312とを備える。復号装置30の各機能構成要素の機能はソフトウェアにより実現される。
 ストレージ33には、復号装置30の各機能構成要素の機能を実現するプログラムが格納されている。このプログラムは、プロセッサ31によりメモリ32に読み込まれ、プロセッサ31によって実行される。これにより、復号装置30の各機能構成要素の機能が実現される。
 プロセッサ11,21,31は、プロセッシングを行うIC(Integrated Circuit)である。プロセッサ11,21,31は、具体例としては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
 メモリ12,22,32は、データを一時的に記憶する記憶装置である。メモリ12,22,32は、具体例としては、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)である。
 ストレージ13,23,33は、データを保管する記憶装置である。ストレージ13,23,33は、具体例としては、HDD(Hard Disk Drive)である。また、ストレージ13,23,33は、SD(登録商標,Secure Digital)メモリカード、CF(CompactFlash,登録商標)、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital Versatile Disk)といった可搬記録媒体であってもよい。
 通信インタフェース14,24,34は、外部の装置と通信するためのインタフェースである。通信インタフェース14,24,34は、具体例としては、Ethernet(登録商標)、USB(Universal Serial Bus)、HDMI(登録商標,High-Definition Multimedia Interface)のポートである。
 図2では、プロセッサ11は、1つだけ示されていた。しかし、プロセッサ11は、複数であってもよく、複数のプロセッサ11が、各機能を実現するプログラムを連携して実行してもよい。同様に、プロセッサ21,31は、複数であってもよい。
 ***動作の説明***
 図5から図10を参照して、実施の形態1に係る暗号システム1の動作を説明する。
 実施の形態1に係る暗号システム1の動作手順は、実施の形態1に係る暗号方法に相当する。また、実施の形態1に係る暗号システム1の動作を実現するプログラムは、実施の形態1に係る暗号プログラムに相当する。
 **概念の説明**
 実施の形態1に係る暗号システム1によって実現される暗号方式の基礎となる概念を説明する。
 非特許文献1では、楕円曲線が用いられる。暗号システム1は、楕円曲線に代えて種数2曲線を用いる。
 暗号システム1が用いる種数2曲線は、数11に示す代数曲線である。ここで、次数deg(f(X))は、5又は6である。
Figure JPOXMLDOC01-appb-M000001
 数12に示すように、ある種数2曲線Cを始点とし、終点である種数2曲線Cκまで、リシェロー同種写像をκ回繰り返して種数2曲線を移していくとする。ここで、κは、2以上の整数である。
Figure JPOXMLDOC01-appb-M000002
 暗号システム1は、種数2曲線C,Cκの2つの種数2曲線が与えられた場合に、種数2曲線C,Cκを補間するリシェロー同種写像の列ψ,ψ,...,ψκ-1を見つける(計算する)ことを暗号の安全性に関わる基本問題として用いる。そして、暗号システム1は、この基本問題の困難性に根拠をおいた種数2SETA暗号を構成する。
 各種数2曲線は、deg(G(X))≦2となる3つの多項式G(X)を用いて、数13に示すように表される。deg(G(X))は、多項式G(X)の次数である。
Figure JPOXMLDOC01-appb-M000003
 新しい3つの多項式G (X)を数14に示すように定義する。
Figure JPOXMLDOC01-appb-M000004
 ここで、τは、[Gj+1(X),Gj+2(X)]の最高次の係数である。したがって、G (X)は、最高次の係数が1の多項式である。また、G’j+1(X)は、Gj+1(X)の微分であり、G’j+2(X)は、Gj+2(X)の微分である。また、添え字は3つの多項式Gを順列として扱うことを想定して割り当てられており、j=0の場合におけるGj+1(X)はG(X)であり、j=1の場合におけるGj+1(X)はG(X)であり、j=2の場合におけるGj+1(X)はG(X)である。同様に、j=0の場合におけるGj+2(X)はG(X)であり、j=1の場合におけるGj+2(X)はG(X)であり、j=2の場合におけるGj+2(X)はG(X)である。
 新しい種数2曲線Cを数15に示すように定義する。
Figure JPOXMLDOC01-appb-M000005
 種数2曲線Cから種数2曲線Cへの対応(写像)をリシェロー同種写像と呼ぶ。種数2曲線Cからのリシェロー同種写像は、f(X)の分割(G(X),G(X),G(X))から決まる。これは、f(X)の零点を3つの対(a,a),(a,a),(a,a)に分割することに対応している。なお、gについては後述する。
 **種数2曲線列の計算方法の説明**
 暗号システム1は、種数2曲線Cからリシェロー同種写像を繰り返し、種数2曲線列C,...,Cκを計算する。しかし、3つの多項式G (X)を基にして、リシェロー同種写像を計算すると種数2曲線Cに戻ってしまう。そのため、暗号システム1は、一度リシェロー同種写像を計算した後に、各多項式G (X)の各根(零点)を組み替えて、新しい3つの多項式に変更してから、リシェロー同種写像を計算する。
 図5を参照して、実施の形態1に係る種数2曲線列C,...,Cκの計算処理を説明する。
 ここで、種数2曲線Cは、数16に示すように定義される。
Figure JPOXMLDOC01-appb-M000006
 ステップS11では、数14に従い、種数2曲線Cから新しい3つの多項式(Gi,j(X))j=0,1,2が生成される。これにより、種数2曲線Cが計算される。
 ステップS12では、数17に示すように、3つの多項式G 1,jが計算され、リシェロー同種写像φが計算される。τ0,jは、[G0,j+1(X),G0,j+2(X)]の最高次の係数である。
Figure JPOXMLDOC01-appb-M000007
 次に、i=1,...,κ-1まで各整数iについて昇順に、ステップS13及びステップS14の処理が実行される。
 ステップS13では、f(X)の零点(ai,mm=0,...,5の組み替えが行われる。そして、数14に従い、新しい3つの多項式(Gi,j(X))j=0,1,2が生成される。これにより、種数2曲線Ci+1が計算される。
 ステップS14では、数18に示すように、3つの多項式G i+1,jが計算され、リシェロー同種写像φが計算される。τi,jは、[Gi,j+1(X),Gi,j+2(X)]の最高次の係数である。
Figure JPOXMLDOC01-appb-M000008
 **SETA暗号化方式**
 図6を参照して、非特許文献1に記載されたSETA暗号化方式について説明する。
 SETA暗号化方式では、楕円曲線E,E,Eが用いられる。楕円曲線Eは、公開パラメータである。楕円曲線Eは、自己準同型環が簡単な特別な曲線である。
 <鍵生成処理>
 まず、秘密鍵である同種写像列φが生成される。そして、楕円曲線Eを同種写像列φで移して楕円曲線Eが計算され、楕円曲線Eが公開鍵に設定される。
 <暗号化処理>
 まず、平文mが適切にエンコードされ、同種写像列φに変換される。そして、公開鍵である楕円曲線Eが同種写像列φで移され、楕円曲線Eが計算される。楕円曲線Eが暗号文に設定される。
 <復号処理>
 秘密鍵である同種写像列φを使って、楕円曲線Eの自己準同型環計算を通して、楕円曲線Eの自己準同型環計算を行うことができる。そのため、楕円曲線Eを始点として、楕円曲線Eを終点とする同種写像問題を多項式時間で解くことができ、同種写像列φを得ることができる。暗号化時のエンコード演算の逆演算であるデコード演算を行って、同種写像列φから平文mが計算される。
 秘密鍵である同種写像列φを知っているユーザは、同種写像列φを通して、楕円曲線Eの自己準同型環計算を、楕円曲線Eの自己準同型環計算に帰着できるのが、復号のポイントである。
 **種数2SETA暗号方式**
 図7から図10を参照して、実施の形態1に係る暗号システム1によって実現される種数2SETA暗号方式を説明する。
 図7に示すように、種数2SETA暗号方式は、SETA暗号方式における楕円曲線E,E,Eをそれぞれ、種数2曲線C,C,Cに置き換え、同種写像列φ,φを、それぞれリシェロー同種写像列φ,φに置き換えることによって実現される。
 図8を参照して、実施の形態1に係る鍵生成装置10の動作を説明する。
 実施の形態1に係る鍵生成装置10の動作手順は、実施の形態1に係る鍵生成方法に相当する。また、実施の形態1に係る鍵生成装置10の動作を実現するプログラムは、実施の形態1に係る鍵生成プログラムに相当する。
 (ステップS111:取得処理)
 取得部111は、公開パラメータである種数2曲線Cを取得する。
 取得部111は、種数2曲線Cをメモリ12に書き込む。
 (ステップS112:写像計算処理)
 写像計算部112は、ステップS111で取得された種数2曲線Cのリシェロー同種写像φを計算して種数2曲線Cを計算する。また、写像計算部112は、2以上の整数κを用いて、i=1,...,κ-1の各整数iについて昇順に、種数2曲線Cの零点を組み替えて、リシェロー同種写像φを計算して種数2曲線Ci+1を計算する。
 具体的には、写像計算部112は、図5を参照して説明した種数2曲線列C,...,Cκの計算処理を実行して、種数2曲線列C,...,Cκとリシェロー同種写像列φ,...,φκ-1とを計算する。
 写像計算部112は、種数2曲線列C,...,Cκとリシェロー同種写像列φ,...,φκ-1とをメモリ12に書き込む。
 (ステップS113:鍵設定処理)
 鍵設定部113は、ステップS112で計算された種数2曲線Cκを種数2曲線Cとして公開鍵に設定する。また、鍵設定部113は、ステップS112で計算されたリシェロー同種写像列φ:={φ,...,φκ-1}を秘密鍵に設定する。つまり、種数2曲線Cを始点として種数2曲線Cを終点とするリシェロー同種写像列φが秘密鍵に設定される。
 鍵設定部113は、通信インタフェース14を介して、公開鍵を暗号化装置20及び復号装置30に送信する。また、鍵設定部113は、通信インタフェース14を介して、秘密鍵を秘密裡に復号装置30に送信する。秘密裡送信するとは、例えば、既存の暗号化方式を用いて暗号化した上で送信するといった意味である。
 秘密鍵は、リシェロー同種写像列φである。これは、実質的には、種数2曲線列C,...,Cκの計算処理のステップS13の処理において各根をどう組み替えるかという置換法σ,...,σκ-1が秘密鍵に対応することになる。
 図9を参照して、実施の形態1に係る暗号化装置20の動作を説明する。
 実施の形態1に係る暗号化装置20の動作手順は、実施の形態1に係る暗号化方法に相当する。また、実施の形態1に係る暗号化装置20の動作を実現するプログラムは、実施の形態1に係る暗号化プログラムに相当する。
 (ステップS211:取得処理)
 取得部211は、鍵生成装置10によって生成された公開鍵である種数2曲線Cを取得する。また、取得部211は、平文mを取得する。平文mは、暗号化装置20のユーザによって入力される。
 取得部211は、種数2曲線Cと平文mとをメモリ22に書き込む。
 (ステップS212:暗号化処理)
 暗号化部212は、ステップS211で取得された平文mをエンコードして、平文mをリシェロー同種写像列φに変換する。暗号化部212は、リシェロー同種写像列φによって、ステップS211で取得された公開鍵である種数2曲線Cを移して種数2曲線Cを計算する。そして、暗号化部212は、種数2曲線Cを暗号文に設定する。
 暗号化部212は、通信インタフェース24を介して、暗号文を復号装置30に送信する。
 図10を参照して、実施の形態1に係る復号装置30の動作を説明する。
 実施の形態1に係る復号装置30の動作手順は、実施の形態1に係る復号方法に相当する。また、実施の形態1に係る復号装置30の動作を実現するプログラムは、実施の形態1に係る復号プログラムに相当する。
 (ステップS311:取得処理)
 取得部311は、公開パラメータと、鍵生成装置10によって生成された公開鍵及び秘密鍵とを取得する。また、取得部311は、暗号化装置20によって生成された暗号文を取得する。
 取得部311は、公開パラメータと、公開鍵及び秘密鍵と、暗号文とをメモリ32に書き込む。
 (ステップS312:復号処理)
 復号部312は、ステップS311で取得された秘密鍵であるリシェロー同種写像列φと、公開パラメータである種数2曲線Cとに基づき、ステップS311で取得された公開鍵である種数2曲線Cを始点として、ステップS311で取得された暗号文である種数2曲線Cを終点とするリシェロー同種写像φを計算する。そして、復号部312は、リシェロー同種写像φをデコードして平文m’=mを計算する。ここで、デコードは、ステップS212で行われたエンコードの逆演算である。
 復号部312は、通信インタフェース14を介して、平文m’を出力する。
 ***実施の形態1の効果***
 以上のように、実施の形態1に係る暗号システム1は、SETA暗号方式における楕円曲線E,E,Eをそれぞれ、種数2曲線C,C,Cに置き換え、同種写像列φ,φを、それぞれリシェロー同種写像列φ,φに置き換えることによって、種数2SETA暗号方式を実現する。
 種数2SETA暗号方式では、SETA暗号方式で用いられる素数pの値を1/3にすることが可能である。その結果、復号にかかる時間を削減可能である。
 ***他の構成***
 <変形例1>
 実施の形態1では、種数2曲線C,C,Cを用いた場合について説明した。しかし、実施の形態1に係る暗号システム1が用いる種数2曲線C,C,Cをアーベル曲面A,A,Aと読み替えることも可能である。つまり、SETA暗号方式における楕円曲線E,E,Eをそれぞれ、アーベル曲面A,A,Aに置き換え、同種写像列φ,φを、それぞれリシェロー同種写像列φ,φに置き換えることによって、種数2SETA暗号方式と同等の効果を奏する暗号方式を実現可能である。
 実施の形態1のように、種数2曲線を用いる場合には、種数2曲線は、アーベル曲面における楕円曲線Eの直積に分解していない部分のうち、楕円曲線Eの直積に分解した部分に隣接した部分に対応する種数2曲線であることが望ましい。
 また、種数2曲線を用いない場合には、楕円曲線の直積に分解した部分を用いることが望ましい。
 また、アーベル曲面を分解する楕円曲線の直積で用いられる楕円曲線Eは、素数pを4で割った余りが3の場合のE/F:y=x+x、又は、素数pを4で割った余りが1の場合のE/F:y=x+c、ここでcは定数である。なお、Fは、素数pを法とする体である。
 <変形例2>
 実施の形態1では、各機能構成要素がソフトウェアで実現された。しかし、変形例2として、各機能構成要素はハードウェアで実現されてもよい。この変形例2について、実施の形態1と異なる点を説明する。
 図11を参照して、変形例2に係る鍵生成装置10の構成を説明する。
 各機能構成要素がハードウェアで実現される場合には、鍵生成装置10は、プロセッサ11とメモリ12とストレージ13とに代えて、電子回路15を備える。電子回路15は、各機能構成要素と、メモリ12と、ストレージ13との機能とを実現する専用の回路である。
 図12を参照して、変形例2に係る暗号化装置20の構成を説明する。
 各機能構成要素がハードウェアで実現される場合には、暗号化装置20は、プロセッサ21とメモリ22とストレージ23とに代えて、電子回路25を備える。電子回路25は、各機能構成要素と、メモリ22と、ストレージ23との機能とを実現する専用の回路である。
 図13を参照して、変形例2に係る復号装置30の構成を説明する。
 各機能構成要素がハードウェアで実現される場合には、復号装置30は、プロセッサ31とメモリ32とストレージ33とに代えて、電子回路35を備える。電子回路35は、各機能構成要素と、メモリ32と、ストレージ33との機能とを実現する専用の回路である。
 電子回路15,25,35としては、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)が想定される。
 各機能構成要素を1つの電子回路15,25,35で実現してもよいし、各機能構成要素を複数の電子回路15,25,35に分散させて実現してもよい。
 <変形例3>
 変形例3として、一部の各機能構成要素がハードウェアで実現され、他の各機能構成要素がソフトウェアで実現されてもよい。
 プロセッサ11,21,31とメモリ12,22,32とストレージ13,23,33と電子回路15,25,35とを処理回路という。つまり、各機能構成要素の機能は、処理回路により実現される。
 以上、本開示の実施の形態及び変形例について説明した。これらの実施の形態及び変形例のうち、いくつかを組み合わせて実施してもよい。また、いずれか1つ又はいくつかを部分的に実施してもよい。なお、本開示は、以上の実施の形態及び変形例に限定されるものではなく、必要に応じて種々の変更が可能である。
 1 暗号システム、10 鍵生成装置、11 プロセッサ、12 メモリ、13 ストレージ、14 通信インタフェース、15 電子回路、111 取得部、112 写像計算部、113 鍵設定部、20 暗号化装置、21 プロセッサ、22 メモリ、23 ストレージ、24 通信インタフェース、25 電子回路、211 取得部、212 暗号化部、30 復号装置、31 プロセッサ、32 メモリ、33 ストレージ、34 通信インタフェース、35 電子回路、311 取得部、312 復号部。

Claims (9)

  1.  アーベル曲面Aを始点としてアーベル曲面Aを終点とするリシェロー同種写像列φを秘密鍵とし、前記アーベル曲面Aを公開鍵とする暗号処理を行う暗号システムであり、
     平文mをエンコードして生成されたリシェロー同種写像列φによって、公開鍵である前記アーベル曲面Aを移してアーベル曲面Aを計算し、前記アーベル曲面Aを暗号文として設定する暗号化装置と、
     秘密鍵である前記リシェロー同種写像列φに基づき、公開鍵である前記アーベル曲面Aを始点として、前記暗号文である前記アーベル曲面Aを終点とするリシェロー同種写像φを計算する復号装置と
    を備える暗号システム。
  2.  前記暗号システムは、さらに、
     アーベル曲面Aのリシェロー同種写像φを計算してアーベル曲面Aを計算し、2以上の整数κを用いて、i=1,...,κ-1の各整数iについて昇順に、アーベル曲面Aの零点を組み替えて、リシェロー同種写像φを計算してアーベル曲面Ai+1を計算して、アーベル曲面Aκであるアーベル曲面Aを公開鍵として設定するとともに、i=0,...,κ-1の各整数iについてのリシェロー同種写像φの組であるリシェロー同種写像列φを秘密鍵として設定する鍵生成装置
    を備える請求項1に記載の暗号システム。
  3.  前記暗号システムは、前記アーベル曲面Aとして、前記アーベル曲面Aに対応する種数2曲線を用いる
    請求項1又は2に記載の暗号システム。
  4.  前記種数2曲線は、前記アーベル曲面Aにおける楕円曲線Eの直積に分解していない部分のうち、楕円曲線Eの直積に分解した部分に隣接した部分に対応する
    請求項3に記載の暗号システム。
  5.  前記暗号システムは、前記アーベル曲面Aとして、前記アーベル曲面Aにおける楕円曲線Eの直積に分解した部分を用いる
    請求項1又は2に記載の暗号システム。
  6.  前記楕円曲線Eは、素数pを4で割った余りが3の場合のE/F:y=x+x、又は、素数pを4で割った余りが1の場合のE/F:y=x+c、ここでcは定数である
    請求項4又は5に記載の暗号システム。
  7.  アーベル曲面Aを始点としてアーベル曲面Aを終点とするリシェロー同種写像列φを秘密鍵とし、前記アーベル曲面Aを公開鍵とする暗号処理を行う暗号システムにおける暗号化装置であり、
     平文mをエンコードして生成されたリシェロー同種写像列φによって、公開鍵である前記アーベル曲面Aを移してアーベル曲面Aを計算し、前記アーベル曲面Aを暗号文に設定する暗号化部
    を備える暗号化装置。
  8.  アーベル曲面Aを始点としてアーベル曲面Aを終点とするリシェロー同種写像列φを秘密鍵とし、前記アーベル曲面Aを公開鍵とする暗号処理を行う暗号システムにおける復号装置であり、
     平文mをエンコードして生成されたリシェロー同種写像列φによって、公開鍵である前記アーベル曲面Aを移して計算されたアーベル曲面Aである暗号文を取得する取得部と、
     秘密鍵である前記リシェロー同種写像列φに基づき、公開鍵である前記アーベル曲面Aを始点として、前記取得部によって取得された暗号文である前記アーベル曲面Aを終点とするリシェロー同種写像φを計算する復号部と
    を備える復号装置。
  9.  公開パラメータであるアーベル曲面Aを取得する取得部と、
     前記取得部によって取得されたアーベル曲面Aのリシェロー同種写像φを計算してアーベル曲面Aを計算するとともに、2以上の整数κを用いて、i=1,...,κ-1の各整数iについて昇順に、アーベル曲面Aの零点を組み替えて、リシェロー同種写像φを計算してアーベル曲面Ai+1を計算する写像計算部と、
     前記写像計算部によって計算されたアーベル曲面Aκを公開鍵として設定するとともに、i=0,...,κ-1の各整数iについてのリシェロー同種写像φの組であるリシェロー同種写像列を秘密鍵として設定する鍵設定部と
    を備える鍵生成装置。
PCT/JP2020/035870 2020-09-23 2020-09-23 暗号システム、暗号化装置、復号装置及び鍵生成装置 WO2022064577A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080105252.4A CN116194977A (zh) 2020-09-23 2020-09-23 密码系统、加密装置、解密装置和密钥生成装置
PCT/JP2020/035870 WO2022064577A1 (ja) 2020-09-23 2020-09-23 暗号システム、暗号化装置、復号装置及び鍵生成装置
JP2022544240A JP7158635B2 (ja) 2020-09-23 2020-09-23 暗号システム、暗号化装置、復号装置及び鍵生成装置
DE112020007408.0T DE112020007408T5 (de) 2020-09-23 2020-09-23 Kryptographisches system, verschlüsselungseinrichtung, entschlüsselungseinrichtung und schlüsselerzeugungseinrichtung
US18/163,485 US20230179397A1 (en) 2020-09-23 2023-02-02 Cryptographic system, encryption device, decryption device, and key generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035870 WO2022064577A1 (ja) 2020-09-23 2020-09-23 暗号システム、暗号化装置、復号装置及び鍵生成装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/163,485 Continuation US20230179397A1 (en) 2020-09-23 2023-02-02 Cryptographic system, encryption device, decryption device, and key generation device

Publications (1)

Publication Number Publication Date
WO2022064577A1 true WO2022064577A1 (ja) 2022-03-31

Family

ID=80845601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035870 WO2022064577A1 (ja) 2020-09-23 2020-09-23 暗号システム、暗号化装置、復号装置及び鍵生成装置

Country Status (5)

Country Link
US (1) US20230179397A1 (ja)
JP (1) JP7158635B2 (ja)
CN (1) CN116194977A (ja)
DE (1) DE112020007408T5 (ja)
WO (1) WO2022064577A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10116443B1 (en) * 2018-02-02 2018-10-30 ISARA Corporation Pairing verification in supersingular isogeny-based cryptographic protocols
US20200259648A1 (en) * 2019-02-11 2020-08-13 Pqsecure Technologies, Llc Cryptosystem and method using isogeny-based computations to reduce a memory footprint

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10116443B1 (en) * 2018-02-02 2018-10-30 ISARA Corporation Pairing verification in supersingular isogeny-based cryptographic protocols
US20200259648A1 (en) * 2019-02-11 2020-08-13 Pqsecure Technologies, Llc Cryptosystem and method using isogeny-based computations to reduce a memory footprint

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUTOMU YAMAZAKI; KATSUYUKI TAKASHIMA; TSUYOSHI TAKAGI: "The survey of computational complexity in isogeny-basedcryptography using arbitrary odd-degree isogenies", PROCEEDINGS OF THE 2019 SYMPOSIUM ON CRYPTOGRAPHY AND INFORMATION SECURITY (SCIS2019); JANUARY 22-25, 2019, 15 January 2019 (2019-01-15) - 25 January 2019 (2019-01-25), JP, pages 1 - 8, XP009536293 *

Also Published As

Publication number Publication date
CN116194977A (zh) 2023-05-30
US20230179397A1 (en) 2023-06-08
DE112020007408T5 (de) 2023-04-27
JPWO2022064577A1 (ja) 2022-03-31
JP7158635B2 (ja) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2010123112A1 (ja) 暗号化装置、復号装置、暗号化方法、復号方法、セキュリティ方法、プログラム及び記録媒体
JP6522263B2 (ja) 準同型演算装置、暗号システム及び準同型演算プログラム
JP6517436B2 (ja) 暗号化デバイス及び符号化デバイス
US9893880B2 (en) Method for secure symbol comparison
Sokouti et al. Medical image encryption: an application for improved padding based GGH encryption algorithm
US20140233731A1 (en) Device and Method for Generating Keys with Enhanced Security for Fully Homomorphic Encryption Algorithm
WO2019239776A1 (ja) 復号装置、暗号化装置及び暗号システム
WO2000001111A1 (en) Secure data encoder and decoder
WO2016162941A1 (ja) 暗号システム及び鍵生成装置
Bose et al. A novel medical image encryption using cyclic coding in Covid-19 pandemic situation
JPWO2008114829A1 (ja) 暗号装置、復号装置、暗号プログラム、復号プログラム、及び記録媒体
CN112740618A (zh) 签名装置、验证装置、签名系统、签名方法、签名程序、验证方法以及验证程序
WO2020188906A1 (ja) 署名装置、検証装置、署名方法、検証方法、署名プログラム及び検証プログラム
JP5633563B2 (ja) 楕円曲線上のパラメータ化による暗号法
WO2020070973A1 (ja) 復号装置、暗号システム、復号方法及び復号プログラム
WO2022064577A1 (ja) 暗号システム、暗号化装置、復号装置及び鍵生成装置
WO2019220900A1 (ja) 暗号化システム、暗号化装置、復号装置、暗号化方法、復号方法、及びプログラム
JP2020177223A (ja) 演算装置、演算システム、及び演算方法
JP6890589B2 (ja) 計算デバイス及び方法
JP6949276B2 (ja) 再暗号化装置、再暗号化方法、再暗号化プログラム及び暗号システム
WO2021130935A1 (ja) 電子透かし埋め込み装置、電子透かし抽出装置、電子透かし埋め込み方法、電子透かし抽出方法及びプログラム
Younes et al. Definition and implementation of an elliptic curve cryptosystem using a new message mapping scheme
WO2019142260A1 (ja) 秘匿分析装置、秘匿分析システム、秘匿分析方法及び秘匿分析プログラム
JP7520255B2 (ja) 秘匿情報処理システム、秘匿情報処理方法、及び秘匿情報処理プログラム
JP4485175B2 (ja) 鍵共有システム、共有鍵生成装置及び共有鍵復元装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544240

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20955171

Country of ref document: EP

Kind code of ref document: A1