WO2022064152A1 - Moteur a vapeur perfectionne - Google Patents

Moteur a vapeur perfectionne Download PDF

Info

Publication number
WO2022064152A1
WO2022064152A1 PCT/FR2021/051640 FR2021051640W WO2022064152A1 WO 2022064152 A1 WO2022064152 A1 WO 2022064152A1 FR 2021051640 W FR2021051640 W FR 2021051640W WO 2022064152 A1 WO2022064152 A1 WO 2022064152A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
water
temperature
piston
pressure
Prior art date
Application number
PCT/FR2021/051640
Other languages
English (en)
Inventor
Richard BEN AMOUR
Jean-Pierre Castella
Original Assignee
Steameas P.A.D.G. Conseil Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steameas P.A.D.G. Conseil Sas filed Critical Steameas P.A.D.G. Conseil Sas
Publication of WO2022064152A1 publication Critical patent/WO2022064152A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/36Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/02Steam engine plants not otherwise provided for with steam-generation in engine-cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/04Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B31/00Component parts, details, or accessories not provided for in, or of interest apart from, other groups
    • F01B31/08Cooling of steam engines; Heating; Heat insulation

Definitions

  • the invention relates to the production of mechanical or electrical energy by a steam engine.
  • patent document WO 87/06649 describes a steam engine, in which the steam is initially recompressed at a temperature close to 200° C. after expansion in a cylinder/piston. Added to this is an injection through a valve of steam previously superheated above 550° C in an attached pre-chamber which produces a vaporization of fine droplets of water using a system of Electric heating.
  • Patent document FR 2 533 268 A1 is also known, which describes a device aimed at rationally and efficiently superheating the steam just before and while it releases its energy.
  • this solution enables motors designed in this way to supply much more energy than they absorb and to produce, by generator and interposed electric resistors, the heat necessary for their operation, c that is to say, to feed itself.
  • the present invention improves the existing situation by the innovative implementation of a new technology, totally different and much simpler than the known methods of producing motive steam.
  • an engine comprising at least two cylinders each housing a piston.
  • the two cylinders are placed spaced in the center of a thermally insulating casing, maintaining their temperature during the production of steam at a temperature well above the temperature of the saturation vapor pressure of water, and below the temperature of the saturation vapor pressure of water at the critical point, typically 220 to 270°C, or even adjustable between 220 and 285°C depending on maximum power requirements.
  • An electronically controlled injection system injects the mass of water in fine sprayed droplets at high pressure into the cylinder where they vaporize immediately; the injection pressure in the cylinder being at a pressure higher than that of the saturated water vapor pressure at the critical point.
  • each cylinder The heating of the vaporization chamber of each cylinder can be ensured by the conduction and the convection of the walls of the cylinder.
  • Each cylinder is brought to operating temperature, heated by heat transfer from the combustion of a gaseous hydrogen and oxygen mixture produced by the electrolysis of water using one or more electrolyzers, depending on the cylinder size and the capacity of the vaporization chamber, in particular using a circulation of heat transfer fluid.
  • the pressure instantly induced by the vaporization moves the piston at a substantially constant temperature throughout the expansion period of the dry saturated steam.
  • the expanded dry saturated steam escapes towards the condenser by its own residual pressure, maintained above atmospheric pressure.
  • the water leaving the condenser is directed to the radiator equipped with a fan motor regulating the temperature of the water returning to the tank.
  • the heating of the vaporization chamber can be ensured in real time by hydrogen/oxygen combustion in the space between the thermally insulated chamber and the cylinder, in particular with the circulation of the heat transfer fluid heated by this combustion.
  • the hydrogen/oxygen ingredient is obtained by electrolysis of water, using conventional so-called rustic electrolyzers, without separation of the gaseous production of hydrogen (H2) and oxygen (02).
  • the energy produced can be used to provide final mechanical work, and/or work converted by an alternator into electricity.
  • a tiny part of the energy produced feeds a small alternator for recharging a starter accumulator battery.
  • a steam engine is proposed, of the type comprising at least two pistons, the cylinders of which are housed in a thermally insulated chamber.
  • the thermally insulated chamber is maintained at a temperature well above the temperature of the saturated vapor pressure of equilibrium coexistence of the liquid/vapor phase of boiling water.
  • the engine includes controlled injectors to inject water into a cylinder, which immediately vaporizes, and moves the piston, while on the return movement of the piston the water vapor escapes to a reservoir.
  • the steam is created on injection, without an external steam generator.
  • the piston bodies are made of self-lubricating and thermally insulated materials, while the cylinder liners are self-lubricating.
  • the exhaust takes place through a solenoid valve, controlled as a function of the pressure in the cylinder to obtain, at the bottom dead center of the piston, a pressure greater than atmospheric pressure.
  • FIG. 1 illustrates a block diagram of the heart of the proposed steam engine
  • FIG. 5 includes a diagram detailing the operation of part of the proposed steam engine.
  • Figure 1 shows at 1 a thermally insulated chamber. It can be delimited by a rigid upper casing with its interior insulation on which is plated a reflective film.
  • the 6D piston is pushed back into the low position after injection of the steam.
  • a confinement space with a temperature sensor 42 is provided between the structure of the upper casing 1 with its insulation covered with a reflective film, and the two cylinder/piston assemblies 2 and 3, there is provided a confinement space with a temperature sensor 42, completely surrounding the two cylinders.
  • the reflective film may consist in particular of a sheet of aluminum, stainless steel, or nitrided titanium.
  • the temperature in the thermal confinement space is kept constant, in a manner managed by the program of the engine management computer, at the value indicated by the probe 42.
  • the regulation of the operation of the engine is carried out by the fact that the a “mapping” is called, which is determined according to the desired engine power and its use; it can be a management file which consists of tables of control unit instructions, providing:
  • the insulating containment enclosure 4 is maintained at a temperature of between 220 and 270°C, nominally 250°C.
  • the pistons 6G and 6D comprise on their lower face, rod side (connecting rod/crank), a thermal insulating spacer, such as 7. They slide in a cylinder delimited by a wall 5, which comprises a self-lubricating inner liner.
  • a piston crosshead can also be added to the rod end of each 6G, 6D piston, so as to reduce vapor loss in the vaporization chamber.
  • organs 9 for the autonomous heating aimed at maintaining the constant temperature of the wall 5 of the cylinder, for example using a heat transfer fluid.
  • the liquid water injectors 10 spray fine water droplets into the vaporization chamber V(a) of the cylinder. Under the effect of the temperature by conduction which prevails in the vaporization chamber of the cylinder and which is clearly higher than the saturated water vapor pressure of the fine droplets of water sprayed, these are transformed instantaneously into dry saturated vapor. to the pressure of the constant temperature transmitted to the walls of the cylinder by the heating of the confined enclosure of the upper crankcase.
  • the vaporization chamber V(a) is the seat of the exhaust of the expanded dry saturated steam, controlled by solenoid valve F 11.
  • One of the bearings at one end of the crankshaft 12 comprises an engine speed sensor 14 (rotation speed control), while the bearing at its other end, for example, is equipped with a torque meter 13 (regulation of the engine torque of the ground vehicles).
  • FIG. 2 reproduces the elements of FIG. 1, adding thereto various auxiliary components of the heat engine proposed.
  • probes 15 of temperature inside the vaporization chamber V(a) of the cylinder are two in number per cylinder, diametrically opposed with respect to the cylinder.
  • the latter also comprises an internal pressure sensor 16.
  • a regulator 17 is mounted downstream of the exhaust solenoid valves 11.
  • a pump 22 actuating a cooling circuit of the condenser 20, which circuit comprises a radiator 23, and a fan motor 25 for cooling this radiator 23, with at 24 a sensor of the outlet temperature of the radiator 23.
  • the reference 26 designates the main water tank of the engine circuit. It is equipped with a water level sensor 27, and a water temperature sensor 28.
  • the condenser 20 recycles the water to this main water tank 26.
  • a pipe leads to a water pump 29 supplying the water injectors 10.
  • the reference 34 interposed on the pipe, indicates an engine management computer, in particular for water injection.
  • H is provided an electrolyte tank 30, provided with a temperature probe 31 of the electrolyte.
  • the tank 30 feeds an electrolyser 32, which produces a gaseous mixture with hydrogen H2 and oxygen 02, depending on the temperature demand in the insulating confinement enclosure 4.
  • the combustion and self-heating elements 9 operate by recombination of hydrogen and oxygen, a highly exothermic reaction that can release a temperature of the order of 2800° Celsius.
  • the water vapor produced can be discharged through valve 35.
  • the electrolyser 32 can be a simple common electrolyser on the market equivalent for example to those of the “Dry-Cell” type. It can be of the so-called “rustic” type, not requiring the molecular separation of the gaseous mixture (hydrogen and oxygen) that it produces.
  • Reference 33 relates to a starter accumulator battery.
  • the battery supplies the electrolyser, and all the safety, combustion and heating control and regulation devices 9, for the time necessary to bring the temperature of the mass of the cylinders and the vaporization chamber to the temperature constant mentioned above, before being able to proceed with the injection of the fine droplets of liquid water.
  • Reference 35 refers to safety relief valves for the confined space in which the combustion of the gaseous mixture H2 and 02 takes place.
  • a sensor 36 for the recovery of saturated or saturating steam leaks and the protection of the lower casing of the engine block. Its role is to leave the inside of the "dry lower sump" (connecting rod/crank, crankshaft, etc.) at atmospheric pressure by evacuating the steam leaks which will pass through an oil separator before being directed to the main chain, expansion valve , condenser and return to the water tank.
  • reference 37 refers to an oil pump assembly, for the lower crankshaft/conrod-crank lubrication dry sump with oil tank.
  • Reference 38 designates an oil pressure sensor at the oil pump outlet, as well as a temperature sensor.
  • Reference 40 relates to a starter accumulator battery recharge alternator 33, driven by the crankshaft.
  • Operation in steady state is as follows: -
  • the computer 34 controls the injection of the pulverized mass of fine water droplets into the cylinder of the piston 6G by its injector 10, at the same time as it opens the solenoid valve 11 of the piston 6D.
  • the 6G piston has descended to the same level as the initial position of the 6D piston.
  • FIG. 3 illustrates the laws of the pressures released by the alternating isothermal work of the two cylinders over one revolution (360°) of the crankshaft.
  • the abscissa axis represents the angle of rotation of the crankshaft, from 0° to 360°.
  • the ordinate axis represents the evolution of the pressure in the cylinder concerned during one rotation of the crankshaft, in bars.
  • the curve on the left concerns cylinder D (on the right in FIG. 1).
  • the curve on the right is aimed at the other cylinder, called “cylinder G”.
  • the conditions are adjustable: example with a working temperature of 265°C, pressure of 50 bars at top dead center, and opening of the exhaust from 10 bars.
  • the principle is that the working temperature is maintained largely and much above the temperature of the triple point of the saturated water vapor pressure curve, above 100° Celsius, and below the temperature reached. on the curve by saturated water vapor at the critical point, for the working pressure at top dead center.
  • the opening of the expanded dry saturated steam exhaust, managed by the System computer, is a function of the mass of water in the fine droplets injected into the vaporization chamber V(a) of the cylinder per crankshaft cycle, in depending on the desired power.
  • Figure 4 illustrates the diagram of the mechanical working phase of the engine over 320° for one revolution (360°) of the crankshaft, on the left for cylinder D and on the right for cylinder G.
  • the working phase covers 320° angular, because the expansion phase covers 160 ° of crankshaft rotation for each cylinder.
  • the injection systems and injectors available on the market are products designed and calculated for the optimized injection of the volume of a tiny mass of fuel into the cylinder in a stoichiometric ratio, out of proportion with the volume that represents the mass of fine water droplets to be injected here.
  • the burnt gas exhaust valves do not have the same kinematic constraint of releasing a large section of their exhaust orifice to which the opening of the exhaust solenoid valve recommended for optimum operation is subject. of the engine shown here.
  • the proposed engine does not rely on a combustion transforming the nature of the materials (fuel and oxidizer) into new components of the burnt gases rejected, partly combustion that is more incomplete, necessary for the production of the mechanical work generated. It is based on a simple change of state of the substance, in this case fine droplets of liquid water sprayed and vaporized instantaneously in a thermal chamber maintaining the steam, the cylinder and its driving piston at a constant temperature (closed thermodynamic system of isothermal expansion).
  • This motor is a monothermal energy actuator. It dispenses with a water boiler, i.e. a water boiling phase for its operation. Its operation is based on the instantaneous vaporization of a small mass of water continuously injected alternately into two cylinders operating simultaneously with isothermal expansion alternated per revolution of the crankshaft (work provided > at 320° of angular rotation for a complete revolution of the crankshaft 360° per cycle).
  • the titer of dry saturated steam obtained in the proposed engine is theoretically close to 1. It is therefore much higher than that of wet saturated steam obtained in a conventional steam engine, where the transfer of steam frequently entrains fine water droplets in its stream at the outlet of the boiler.
  • the dry saturated steam from the proposed engine contains more enthalpy than the wet saturated steam from a boiler.
  • the new engine uses steam as energy by erasing the defects of the technique and the materials implemented by the steam engines during the last two centuries.
  • H offers the following advantages:
  • H is ecological, it uses the very high flame temperature provided by the oxyhydrogen gas combination of hydrogen and oxygen (H2; 02) generated by electrolysers.
  • the lower calorific value of hydrogen (NLV) is 10,800 KJ/Nm3.
  • PCS calorific value
  • the thermal energy thus available and released by the combustion of the gas mixture H2 and 02 is sufficient to reach around 2700 to 2800° Celsius at atmospheric pressure.
  • Ees electrolysers 32 whose flow rate of the oxyhydric mixture H2 and 02 is controlled by the computer which varies the intensity of the current are supplied by an electrolyte contained in a tank 30 which supplies the electrolysers by gravity, or according to the situation and the destiny of engine operation, using a fuel pump.
  • Each electrolyser 32 is supplied by an independent electrolyte reservoir 30.
  • Each of the tanks is equipped with a gauge 41 and a temperature sensor 31.
  • An additional heating circuit will be used in very cold conditions of use of the proposed engine.
  • the heating circuit is controlled by the computer 34 according to the temperature supplied by the probes 15.
  • the starting of the engine passes beforehand and automatically through the heating phase of the free volume between the enclosure 04, and the two cylinders 05 of the proposed engine.
  • the reference 35 corresponds to the return of the relief valve and the purge of the "free" volume, while the instantaneous vaporization chambers V(a) are preheated, before any start-up, to the operating temperature by thermal conduction of the cylinder walls.
  • the electrolysers 32 supply burners 9 equipped with a piezoelectric system for igniting the gaseous mixture, H2 and 02. A safety system is ensured by the temperature probe of the heated volume. In the event of an anomaly, the supply voltage to the electrolysers is stopped by computer 34.
  • the start authorization therefore the control of injection 10 of water into the instantaneous vaporization chambers 2 intervenes as soon as the temperature of the cylinders reaches the start temperature.
  • the starting and operating temperatures regulated by the computer 34 are determined according to the performance required of the proposed engine block.
  • the computer 34 determines the mass of water 10 to be injected per cycle and cylinder according to the load requested from the proposed engine.
  • the speed sensor 14, load control (0 to 100%) or other, the torque meter 13, the temperature probes 15 and the pressure sensors 16 allow the computer 34 to constantly control and adjust the physical data of the energy production of the motor to guarantee its efficient and safe operation.
  • the exhaust solenoid valves 11 are controlled so that the pressure at Bottom Dead Center does not exceed a pre-programmed pressure, knowing that the maximum work can reach 320° per revolution of the crankshaft for the 2 cylinders (figure 4).
  • the mass of water injected 10 according to the desired power corresponds to the volume occupied in the cylinder.
  • the vaporization being instantaneous, the relaxation is always optimal and provides an important mechanical work.
  • the bottom of the engine is thermally insulated by a spacer 8.
  • the crankcase has its own vapor recovery circuit, wear and the tightness of the engines being checked by a blow-by meter equipped with an oil separator 36.
  • crankshaft is lubricated by a dry sump, oil pump, oil pressure sensor, oil level and oil temperature gauge. An oil cooler can be added, if necessary.
  • the crankshaft 12 is equipped, at the end of the shaft, with the speed sensor 14, as well as a torque meter 13 for torque regulation on land vehicles.
  • the evacuation of the cylinder of the dry saturated steam is ensured by a solenoid valve 11 controlled by the management computer 34 so that the pressure at the bottom dead center of the piston remains greater than 1 bar.
  • the solenoid valve 11 opens, the pressure of the dry saturated steam, which is still at the initial vaporization temperature due to the isothermal expansion of the cycle, is directed to an expansion valve before reaching the condenser.
  • the temperature after the expansion valve is measured by a probe 19.
  • the hot water recovered at the outlet of the condenser 20 passes through the radiator 23 equipped with a fan motor 25.
  • the latter is controlled by the temperature sensor 24 placed at the outlet of the radiator, before returning to the main tank 26.
  • the control part by temperature probes and pressure sensors 15,16, 18,19, 21, 24, 27 makes it possible to ensure the proper functioning of the assembly and to ensure predictive maintenance.
  • An alternator 40 charges the accumulator battery 33 supplying the management computer for all the electrical and electronic components of the engine.
  • a clutch 39 allows the engine to run off-load to drive the alternator 40 and maintain the desired temperature of the main water and electrolyte tanks.
  • Figure 5 shows the operation of the heating of the heat transfer fluid by combustion of the gaseous mixture of hydrogen and oxygen.
  • the coil C is surrounded by refractory cement B, so as to increase the thermal inertia of the insulating casing A.
  • the coil C and its casing of refractory cement B are placed in an insulating casing A.
  • the heat transfer fluid On entering the coil C, the heat transfer fluid is heated by the combustion of the gaseous mixture of hydrogen and oxygen in the burner E.
  • the burner E is supplied in a gaseous mixture by the electrolyser F.
  • the heat transfer fluid On leaving the coil C, the heat transfer fluid is led to the zone surrounding each cylinder/piston.
  • the engine is fully electronically controlled via the management computer for the entire system.
  • the energy produced by the electrolyser 32 of the aqueous solution consumed does not enter into the energy produced by vaporization of the water transformed into mechanical energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Le moteur proposé comprenant au moins deux cylindres 5 logeant chacun un piston. Les deux cylindres sont placés espacés au centre d'un carter isolant thermiquement 4, maintenant leur température lors de la production de vapeur à une température largement supérieure à la température de la tension de vapeur saturante de l'eau, et inférieure à la température de la tension de vapeur saturante de l'eau au point critique, typiquement 220 à 270 °C, voire ajustable entre 220° et 285°C selon les besoins de puissance maximale. Une injection commandée électroniquement injecte à haute pression la masse d'eau en fines gouttelettes pulvérisées dans le cylindre où elles se vaporisent immédiatement; la pression d'injection dans le cylindre étant à une pression supérieure à celle de la tension de vapeur d'eau saturante au point critique. Le chauffage de la chambre de vaporisation du cylindre est assuré par la conduction et la convection des parois de chaque cylindre porté à la température de fonctionnement, par la combustion du mélange gazeux hydrogène et oxygène produit par l'électrolyse de l'eau d'un électrolyseur, ou plusieurs électrolyseurs en fonction de la taille du cylindre et la capacité de la chambre de vaporisation, en particulier à l'aide d'une circulation de fluide caloporteur chauffé grâce à cette combustion.

Description

Moteur à vapeur perfectionné
L’invention concerne la production de l’énergie mécanique ou électrique par un moteur à vapeur.
On a connu de nombreux types de moteurs à vapeur depuis la machine à vapeur bien connue.
D’autres types, moins connus, ont été proposés. Par exemple, le document brevet WO 87/06649, décrit un moteur à vapeur, dans lequel la vapeur est initialement recompressée à une température voisine de 200° C après détente dans un cylindre/piston. Il s’y ajoute une injection au travers d’une soupape de la vapeur préalablement surchauffée au-dessus de 550° C dans une pré-chambre annexée qui produit une vaporisation de fines gouttelettes d’eau à l’aide d’un système de chauffage électrique.
Ceci n’a pas donné satisfaction, à cause d’un rendement très faible. En outre, ce système ne permet pas un fonctionnement normal et continu sans incident mécanique.
On connaît aussi le document brevet FR 2 533 268 Al, qui décrit un dispositif visant à surchauffer rationnellement et efficacement la vapeur juste avant et pendant qu'elle dégage son énergie. Dans une certaine fourchette de pression et de température, cette solution permet aux moteurs ainsi conçus de fournir beaucoup plus d'énergie qu'ils n’en absorbent et de produire, par génératrice et résistances électriques interposées, la chaleur nécessaire à leur fonctionnement, c'est-à-dire de s'autoalimenter.
Toutefois, la proposition en question n’a pas véritablement donné satisfaction.
Plus généralement, quel que soit le développement des machines à vapeur actuelles ou proposées, leur schéma de fonctionnement est toujours le même, basé sur l’utilisation d’une chaudière de production de la vapeur d’eau, qui est transférée et admise par l’ouverture de soupape(s) ou tiroir(s) dans le cylindre, actionnant alternativement le piston (ou une turbine) ; en fin de course du piston, l’échappement de la vapeur résiduelle est commandée par les mêmes techniques, soupape(s) ou tiroir(s). Cela ne procure que des rendements très modestes.
La présente invention vient améliorer la situation existante par la mise en œuvre innovante d’une technologie nouvelle, totalement différente et beaucoup plus simple des procédés connus de production de la vapeur motrice.
Elle propose un moteur comprenant au moins deux cylindres logeant chacun un piston. Les deux cylindres sont placés espacés au centre d’un carter isolant thermiquement, maintenant leur température lors de la production de vapeur à une température largement supérieure à la température de la tension de vapeur saturante de l’eau, et inférieure à la température de la tension de vapeur saturante de l’eau au point critique, typiquement 220 à 270°C, voire ajustable entre 220 et 285 °C selon les besoins de puissance maximale. Une injection commandée électroniquement injecte à haute pression la masse d’eau en fines gouttelettes pulvérisées dans le cylindre où elles se vaporisent immédiatement ; la pression d’injection dans le cylindre étant à une pression supérieure à celle de la tension de vapeur d’eau saturante au point critique.
Le chauffage de la chambre de vaporisation de chaque cylindre peut être assuré par la conduction et la convection des parois du cylindre. Chaque cylindre est porté à la température de fonctionnement, chauffé par transfert de chaleur de la combustion d’un mélange gazeux hydrogène et oxygène produit par l’électrolyse de l’eau à l’aide d’un ou plusieurs électrolyseurs, en fonction de la taille du cylindre et la capacité de la chambre de vaporisation, en particulier à l’aide d’une circulation de fluide caloporteur.
La pression induite instantanément par la vaporisation déplace le piston à température sensiblement constante pendant toute la durée de détente de la vapeur saturée sèche.
Au mouvement de retour du piston, entraîné par la pression exercée sur l’autre piston, la vapeur saturée sèche détendue s’échappe vers le condenseur par sa propre pression résiduelle, maintenue supérieure à la pression atmosphérique. L’eau en sortie du condenseur est dirigée vers le radiateur équipé d’un moto- ventilateur régulant la température de l’eau de retour dans le réservoir.
Le chauffage de la chambre de vaporisation peut être assuré en temps réel par combustion hydrogène/oxygène dans l’espace entre la chambre isolée thermiquement et le cylindre, en particulier avec la circulation du fluide caloporteur chauffé par cette combustion. L’ingrédient hydrogène/oxygène est obtenu par électrolyse de l’eau, à l’aide d’électrolyseurs classiques dits rustiques, sans séparation de la production gazeuse d’hydrogène (H2) et d’oxygène (02).
L’énergie produite peut servir à fournir un travail mécanique final, et/ou un travail converti par un alternateur en électricité. De préférence, une partie infime de l’énergie produite alimente un petit alternateur de recharge d’une batterie d’accumulateur de démarrage.
On propose un moteur à vapeur, du type comprenant au moins deux pistons, dont les cylindres sont logés dans une chambre isolée thermiquement. La chambre isolée thermiquement est maintenue à une température largement supérieure à la température de la tension de la vapeur d’eau saturante d’équilibre de coexistence de la phase liquide/vapeur de l’eau en ébullition. Le moteur comprend des injecteurs commandés pour injecter dans un cylindre de l’eau, qui se vaporise immédiatement, et déplace le piston, tandis qu’au mouvement de retour du piston la vapeur d’eau s’échappe vers un réservoir.
Selon une caractéristique optionnelle, la vapeur est créée à l’injection, sans générateur de vapeur extérieur.
Selon une caractéristique optionnelle, les corps de pistons sont en matériaux autolubrifiants et isolés thermiquement, tandis que les chemises des cylindres sont autolubrifiantes. Selon une caractéristique optionnelle, pour chaque piston, l’échappement s’effectue à travers une électrovanne, commandée en fonction de la pression dans le cylindre pour obtenir au point mort bas du piston une pression supérieure à la pression atmosphérique.
D’autres caractéristiques et avantages de l’invention apparaîtront à l’examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :
- la figure 1 illustre un schéma de principe du cœur du moteur à vapeur proposé ;
- la figure 2 illustre un schéma d’ensemble du moteur à vapeur proposé ;
- la figure 3 comprend des diagrammes utiles à la compréhension de l’invention ;
- la figure 4 comprend d’autres diagrammes utiles à la compréhension de l’invention ;
- la figure 5 comprend un schéma détaillant le fonctionnement d’une partie du moteur à vapeur proposé.
La figure 1 montre en 1 une chambre isolée thermiquement. Elle peut être délimitée par un carter supérieur rigide avec son isolation intérieure sur laquelle est plaqué un film réfléchissant.
A l’intérieur de la chambre 1 sont prévus au moins deux ensembles cylindre/piston 2 et 3. On distingue plus bas en 3 le système bielle-manivelle des pistons. Il est entouré d’une cale thermique 8, sous laquelle est prévu un vilebrequin 12 monté sur des paliers 13, 14. Les pistons sont en opposition, et actionnent le vilebrequin en mode bielle-manivelle. Lorsque le piston de gauche 6G est en position haute, il délimite avec son cylindre un volume réduit V(a), que l’on appellera ici chambre de vaporisation instantanée, le piston 6G étant en position haute ; inversement, le piston de droite 6D délimite avec son cylindre un volume plus large V(b), que l’on appellera ici chambre d’expansion/détente de la vapeur saturée produite instantanément. De son côté, le piston 6D est repoussé en position basse après injection de la vapeur d’eau. Entre la structure du carter supérieur 1 avec son isolant recouvert d'un film réfléchissant, et les deux ensembles cylindre/piston 2 et 3, il est prévu un espace de confinement avec sonde de température 42, entourant complètement les deux cylindres. Le film réfléchissant peut être constitué notamment d’une feuille d’aluminium, d’acier inoxydable, ou de titane nitruré.
La température dans l’espace de confinement thermique est maintenue constante, de façon gérée par le programme du calculateur de gestion du moteur, à la valeur indiquée par la sonde 42. La régulation de la marche du moteur s’effectue par ce que l’on appelle une « cartographie », qui est déterminée en fonction en fonction de la puissance moteur désirée et de son utilisation ; ce peut être un fichier de gestion qui se compose de tables de consignes d’unités de contrôle, assurant :
La garantie d’une température de fonctionnement largement supérieure à la tension de vapeur d’eau saturante de la masse d’eau injectée en fines gouttelettes pulvérisées dans la chambre de vaporisation V(a) ;
- Toujours la limitation de la température à une température suffisamment inférieure à la température de la tension de vapeur de l’eau au point critique (374° C ; 220 Bars).
Dans un exemple, l’enceinte isolante de confinement 4 est maintenue à une température comprise entre 220 et 270 °C, nominalement 250 °C.
Les pistons 6G et 6D comprennent sur leur face inférieure, côté tige (bielle/manivelle), une cale thermique isolante, telle que 7. Ils coulissent dans un cylindre délimité par une paroi 5, qui comprend une chemise intérieure autolubrifiante. Une crosse de piston peut également être ajoutée à l’extrémité de la tige de chaque piston 6G, 6D, de manière à réduire les pertes de vapeur dans la chambre de vaporisation.
Autour des cylindres dans l’espace intérieur créé par l’enveloppe isolante 1 du carter supérieur sont disposés des organes 9 pour le chauffage autonome visant au maintien à température constante de la paroi 5 du cylindre, par exemple à l’aide d’un fluide caloporteur.
Les injecteurs 10 d’eau liquide pulvérisent de fines gouttelettes d’eau dans la chambre de vaporisation V(a) du cylindre. Sous l’effet de la température par conduction qui règne dans la chambre de vaporisation du cylindre et qui est nettement supérieure à la tension de vapeur d’eau saturante des fines gouttelettes d’eau pulvérisées, celles-ci se transforment instantanément en vapeur saturée sèche à la pression de la température constante transmise aux parois du cylindre par le chauffage de l’enceinte confinée du carter supérieur.
Enfin, plus tard, la chambre de vaporisation V(a) est le siège de l’échappement de la vapeur saturée sèche détendue, commandé par F électrovanne 11.
L’un des paliers à une extrémité du vilebrequin 12, comprend un capteur 14 de régime moteur (contrôle vitesse de rotation), tandis que le palier de son autre extrémité par exemple est équipé d’un torque mètre 13 (régulation du couple moteur des véhicules terrestres).
Il est maintenant fait référence à la figure 2, qui reprend les éléments de la figure 1, en y ajoutant différents organes auxiliaires du moteur thermique proposé.
Elle fait apparaître des sondes 15 de température intérieure de la chambre de vaporisation V(a) du cylindre. Ces sondes 15 sont au nombre de deux par cylindre, diamétralement opposées par rapport au cylindre.
Outre les sondes 15 équipant la chambre de vaporisation V(a) du cylindre, cette dernière comprend également un capteur de pression intérieure 16.
Enfin, un détendeur 17 est monté en aval des électrovannes d’échappement 11.
Sont encore prévus : - Un capteur de pression 18 en aval des électrovannes d'échappement 11 et en amont du détendeur 17 ;
- Un autre capteur de pression 19 en aval du détendeur 17 ;
- Puis un condenseur 20 ;
- Un capteur de température 21 en aval de ce condenseur 20 ;
- Une pompe 22 actionnant un circuit de refroidissement du condenseur 20, lequel circuit comprend un radiateur 23, et un moto- ventilateur 25 de refroidissement de ce radiateur 23, avec en 24 une sonde de la température de sortie du radiateur 23.
La référence 26 désigne le réservoir d'eau principal du circuit moteur. Il est muni d’une sonde de niveau d'eau 27, et d’une sonde de température d'eau 28. Le condenseur 20 recycle l’eau vers ce réservoir d'eau principal 26.
Du réservoir 26 part une conduite vers une pompe d'eau 29 d'alimentation des injecteurs d’eau 10. La référence 34, interposée sur la conduite, indique un calculateur de gestion du moteur, en particulier de l’injection d’eau.
H est prévu un réservoir d'électrolyte 30, muni d’une sonde de température 31 de l'électrolyte. Le réservoir 30 alimente un électrolyseur 32, lequel produit un mélange gazeux avec de l’hydrogène H2 et de l’oxygène 02, en fonction de la demande de température dans l'enceinte isolante de confinement 4.
Ainsi, dans ce mode de réalisation préférentiel, les organes 9 de combustion et de chauffage autonome opèrent par recombinaison d’hydrogène et d’oxygène, une réaction fortement exothermique pouvant dégager une température de l’ordre de 2800° Celsius. La vapeur d’eau produite peut être déchargée par la soupape 35. L’électrolyseur 32 peut être un simple électrolyseur courant du marché équivalent par exemple à ceux du type « Dry-Cell ». Il peut être du type dit « rustique », ne nécessitant pas la séparation moléculaire du mélange gazeux (hydrogène et oxygène) qu’il produit.
La référence 33 vise une batterie d'accumulateurs de démarrage.
Au démarrage, la batterie alimente l’électrolyseur, et tous les organes de sécurité, de contrôle et de régulation de la combustion et chauffage 9, pendant le temps nécessaire pour porter la température de la masse des cylindres et la chambre de vaporisation à la température constante citée plus haut, avant de pouvoir procéder à l’injection des fines gouttelettes d’eau liquide.
La référence 35 vise des soupapes de décharge de sécurité de l’espace confiné dans lequel s’effectue la combustion du mélange gazeux H2 et 02.
On a aussi un capteur 36 (« Blow-By meter ») pour la récupération de fuites de vapeur saturée ou saturante et la protection du carter inférieur du bloc moteur. Son rôle est de laisser l’intérieur du « carter inférieur sec » (bielle/manivelle, vilebrequin, etc.) à la pression atmosphérique en évacuant les fuites de vapeur qui passeront par un déshuileur avant d’être dirigées vers la chaîne principale, détendeur, condenseur et retour au réservoir d’eau.
Dans le même esprit, la référence 37 vise un ensemble de pompe à huile, pour le carter inférieur sec de graissage vilebrequin/Bielle-manivelle avec réservoir d'huile.
La référence 38 désigne un capteur de pression d'huile en sortie de la pompe à huile, ainsi qu’une sonde de température.
La référence 40 vise un alternateur de recharge de la batterie d’accumulateur de démarrage 33, entraîné par le vilebrequin.
Le fonctionnement en régime établi est le suivant : - Le calculateur 34 commande l’injection de la masse pulvérisée des fines gouttelettes d’eau dans le cylindre du piston 6G par son injecteur 10, en même temps qu’il ouvre l’ électrovanne 11 du piston 6D.
- L’eau injectée se vaporise immédiatement dans le volume 02, et repousse le piston 6G vers le bas, tandis que le piston 6D remonte, et évacue la vapeur d’eau contenue dans le volume 03 jusqu’à ce que ce piston 6D se trouve dans la position haute (trait tireté) au même niveau que la position initiale du piston 6G.
- De son côté, le piston 6G est descendu au même niveau que la position initiale du piston 6D.
- Le cycle suivant peut alors commencer, en intervertissant les rôles des pistons 6G et 6D.
La figure 3 illustre les lois des pressions dégagées par le travail isotherme alternatif des deux cylindres sur un tour (360°) de vilebrequin.
L’axe des abscisses représente l’angle de rotation du vilebrequin, de 0° à 360°. L’axe des ordonnées représente l’évolution de la pression dans le cylindre concerné au cours d’une rotation du vilebrequin, en bars.
La courbe de gauche concerne le cylindre D (de droite sur la figure 1). La courbe de droite vise l’autre cylindre, dit « cylindre G ».
Les conditions sont ajustables : exemple avec une température de travail 265° C, pression de 50 bars au point mort haut, et ouverture de l’échappement à partir de 10 bars.
Le principe est que la température de travail est maintenue largement et de beaucoup au- dessus de la température du point triple de la courbe de la tension de vapeur d’eau saturante, au-dessus de 100° Celsius, et inférieure à la température atteinte sur la courbe par la vapeur d’eau saturante au point critique, pour la pression de travail au point mort haut. L’ouverture de l’échappement de la vapeur saturée sèche détendue, gérée par le calculateur du Système, est fonction de la masse d’eau des fines gouttelettes injectées dans la chambre de vaporisation V(a) du cylindre par cycle du vilebrequin, en fonction de la puissance désirée.
La figure 4 illustre le diagramme de la phase de travail mécanique du moteur sur 320° pour un tour (360°) du vilebrequin, à gauche pour le cylindre D et à droite pour le cylindre G. La phase de travail couvre 320° angulaires, car la phase de détente couvre 160 0 de rotation du vilebrequin pour chaque cylindre.
A partir des figures 3 et 4, il apparaît que :
1°- les paramètres de gestion consignés dans la cartographie du calculateur sont beaucoup plus simples et d’une moins grande complexité en comparaison de ceux permettant d’optimiser en temps réel la gestion d’un moteur alternatif à combustion.
2°- les systèmes d’injection et injecteurs disponibles sur le marché, sont des produits conçus et calculés pour l’injection optimisée du volume d’une masse infime de carburant dans le cylindre dans un rapport stoechiométrique, sans commune mesure avec le volume que représente la masse des fines gouttelettes d’eau à injecter ici. De même les soupapes d’échappement des gaz brûlés n’ont pas la même contrainte cinématique de libération d’une large section de leur orifice d’échappement à laquelle est soumise l’ouverture de l’électrovanne d’échappement préconisée pour le fonctionnement optimal du moteur présenté ici.
De façon générale, le moteur proposé ne repose pas sur une combustion transformant la nature des matières (carburant et comburant) en nouveaux composants de gaz brûlés rejetés, pour partie combustion de plus incomplète, nécessaire à la production du travail mécanique généré. Il repose sur un simple changement d’état de la substance, en l’occurrence de fines gouttelettes d’eau liquide pulvérisée et vaporisée instantanément dans une enceinte thermique maintenant la vapeur, le cylindre et son piston moteur à une température constante (système thermodynamique fermé de détente isotherme).
Ce moteur est un actuateur d’énergie monotherme. Il se dispense d’une chaudière à eau, c’est-à-dire d’une phase d’ébullition de l’eau pour son fonctionnement. Son fonctionnement repose sur la vaporisation instantanée d’une petite masse d’eau injectée en continu alternativement dans deux cylindres au fonctionnement simultané avec détente isotherme alternée par tour de vilebrequin (travail fourni > à 320 ° de rotation angulaire pour un tour complet du vilebrequin de 360° par cycle).
La vapeur est dite saturée seulement lorsqu’elle se trouve à une température et à une pression où l'eau à l'état liquide et la vapeur à l'état gazeux peuvent coexister ensemble. On est en présence des phases liquides et gazeuses, il y a équilibre et la fraction massique de chaque phase n’évolue plus avec le temps. La pression de cet équilibre est appelée pression de vapeur saturante.
La petite quantité d’eau injectée sous forme de fines gouttelettes dans un cylindre est instantanément vaporisée par la haute température régnant dans la chambre de vaporisation V(a) (figure 1) qui se trouve à une pression légèrement supérieure à 1 bar. L’équilibre des deux phases liquide/vapeur est instantanément rompu, et l’eau est transformée immédiatement en vapeur saturée sèche à la pression recherchée correspondant à la température pré-programmée de surchauffe des cylindres maintenus à température constante par la combustion du mélange gazeux, Hydrogène et Oxygène.
On connaît la dynamique classique de production de vapeur (chaudière/ébullition/corps de surchauffe/transport/injection) transformant la chaleur à usage mécanique, depuis l’invention des premiers moteurs à vapeur. Cela se trouve totalement bouleversé par la simplicité innovante mise en œuvre par le moteur proposé (chauffage/injection/vaporisation).
Ici, le titre de la vapeur saturée sèche obtenue dans le moteur proposé est théoriquement voisin de 1. Il est donc bien supérieur à celui d’une vapeur saturée humide obtenue dans un moteur à vapeur classique, où le transfert de la vapeur entraîne fréquemment dans son courant de fines gouttelettes d’eau à la sortie de la chaudière. La vapeur saturée sèche du moteur proposé contient plus d’enthalpie que la vapeur saturée humide d’une chaudière.
Le nouveau moteur utilise la vapeur comme énergie en gommant les défauts de la technique et des matériaux mis en œuvre par les moteurs à vapeur au cours des deux derniers siècles. H offre les avantages suivants :
- Compacité
- Rendement
- Efficience
- Non polluant
- Silence
- Fiabilité et facilité de gestion (contrôle des flux, débits, sécurité, etc.
- Facilité d’entretien et de maintenance...
H est écologique, il utilise la température de flamme très élevée fournie par la combinaison gazeuse oxhydrique de l’hydrogène et de l’oxygène (H2 ; 02) générée par les électrolyseurs. Ee Pouvoir Calorifique Inférieur de l’hydrogène (PCI) est de 10 800 KJ/Nm3. On obtient le pouvoir calorifique supérieur (PCS), en y incluant l’énergie de la vapeur d’eau, on obtient 12770 KJ/N m3, ce qui est plus de deux fois supérieur au pouvoir calorifique des hydrocarbures les plus performants.
F’ énergie thermique ainsi disponible et libérée par la combustion du mélange gazeux H2 et 02 est suffisante pour atteindre de l’ordre de 2700 à 2800° Celsius à pression atmosphérique.
On décrira maintenant le système plus en détail.
Ees électrolyseurs 32 dont le débit du mélange oxhydrique H2 et 02 est contrôlé par le calculateur qui fait varier l’intensité du courant sont alimentés par un électrolyte contenu dans un réservoir 30 qui alimente les électrolyseurs par gravité, ou suivant la situation et la destinée de l’exploitation du moteur, à l’aide d’une pompe d’alimentation. Chaque électrolyseur 32 est alimenté par un réservoir d’électrolyte indépendant 30.
Chacun des réservoirs est équipé d’une jauge 41 et une sonde de température 31. Un circuit annexe de chauffage sera utilisé dans des conditions très froides d’utilisation du moteur proposé.
Le circuit de chauffage est commandé par le calculateur 34 en fonction de la température fournie par les sondes 15.
Le démarrage du moteur passe préalablement et automatiquement par la phase de chauffage du volume libre compris entre l’enceinte 04, et les deux cylindres 05 du moteur proposé. Sur la Figure 2, le repère 35 correspond au rappel de la soupape de décharge et à la purge du volume « libre », tandis que les chambres de vaporisation instantanée V(a) sont préchauffées, avant tout démarrage, à la température de fonctionnement par conduction thermique des parois du cylindre.
Les électrolyseurs 32 alimentent des brûleurs 9 équipés d’un système piézo-électrique pour l’allumage du mélange gazeux, H2 et 02. Un système de sécurité est assuré par la sonde de température du volume chauffé. En cas d’anomalie, la tension d’alimentation des électrolyseurs est stoppée par le calculateur 34.
L’autorisation de démarrage, donc la commande d’injection 10 d’eau dans les chambres de vaporisation instantanée 2 intervient dès que la température des cylindres atteint la température de démarrage.
Les températures de démarrage et fonctionnement régulées par le calculateur 34, sont déterminées en fonction des performances demandées au bloc moteur proposé.
Si la consommation du mélange gazeux, H2 et 02 est importante pour assurer la montée en température initiale, elle est en revanche considérablement réduite lorsqu’il s’agit seulement d’assurer le maintien de la température de fonctionnement. Le calculateur 34 détermine la masse d’eau 10 à injecter par cycle et cylindre en fonction de la charge demandée au moteur proposé.
Le capteur de régime 14, de contrôle de charge (0 à 100%) ou autre, le torque mètre 13, les sondes de température 15 et les capteurs de pression 16 permettent au calculateur 34 de contrôler et ajuster en permanence les données physiques de la production d’énergie du moteur pour garantir son fonctionnement efficient et sécurisé.
Les électrovannes d’échappement 11 sont commandées afin que la pression au Point Mort Bas n’excède pas une pression préprogrammée, sachant que le travail maximum peut atteindre 320° par tour de vilebrequin pour les 2 cylindres (figure 4).
La masse d’eau injectée 10 en fonction de la puissance désirée correspond au volume occupé dans le cylindre. La vaporisation étant instantanée, la détente est toujours optimale et procure un travail mécanique important.
Le bas du moteur est isolé thermiquement par une cale 8. L’ensemble pistons/cylindres ne pouvant pas être 100% étanche, notamment à cause de l’embiellage, le carter moteur possède son propre circuit de récupération de la vapeur, l’usure et l’étanchéité des moteurs étant contrôlées par un blow-by meter équipé d’un déshuileur 36.
L’embiellage est graissé par carter sec, pompe à huile, capteur de pression d’huile, jauge de niveau et température d’huile. On peut y ajouter un radiateur d’huile, si nécessaire.
Le vilebrequin 12 est équipé, en bout d’arbre, du capteur de régime 14, ainsi que d’un torque mètre 13 pour la régulation du couple sur véhicules terrestres.
L’évacuation du cylindre de la vapeur saturée sèche est assurée par une électro vanne 11 commandée par le calculateur 34 de gestion afin que la pression au point mort bas du piston reste supérieure à 1 bar. A l’ouverture de l’électrovanne 11, la pression de la vapeur saturée sèche se trouvant toujours être à la température initiale de vaporisation en raison de la détente isotherme du cycle, est dirigée sur un détendeur avant d’arriver au condenseur. La température après détendeur est mesurée par une sonde 19.
L’eau chaude récupérée en sortie du condenseur 20 traverse le radiateur 23 équipé d’un moto-ventilateur 25. Ce dernier est commandé par la sonde de température 24 placée en sortie du radiateur, avant de revenir dans le réservoir principal 26.
La partie contrôle par sondes de température et capteurs pression 15,16, 18,19, 21, 24, 27 permet de s’assurer du bon fonctionnement de l’ensemble et d’assurer une maintenance prédictive.
Un alternateur 40 assure la charge de la batterie d’accumulateur 33 alimentant le calculateur de gestion de l’ensemble des composants électriques et électroniques du moteur.
Enfin, un embrayage 39 permet que le moteur fonctionne à vide pour entrainer l’alternateur 40 et maintenir la température désirée des réservoirs, principal d’eau et d’électrolyte.
La figure 5 présente le fonctionnement du chauffage du fluide caloporteur par combustion du mélange gazeux d’hydrogène et d’oxygène.
Le fluide caloporteur provenant d’une zone où il entoure chaque cylindre / piston, par exemple l’enceinte isolante de confinement 4 de la figure 2, circule dans un serpentin C, sous l’action d’une pompe de circulation D dont le débit est variable.
Le serpentin C est entouré de ciment réfractaire B, de manière à augmenter l’inertie calorifique de l’enveloppe isolante A. Le serpentin C et son enveloppe de ciment réfractaire B sont placés dans une enveloppe isolante A.
A son entrée dans le serpentin C, le fluide caloporteur est chauffé par la combustion du mélange gazeux d’hydrogène et d’oxygène dans le brûleur E. Le brûleur E est alimenté en mélange gazeux par l’électrolyseur F. À sa sortie du serpentin C, le fluide caloporteur est mené à la zone entourant chaque cylindre / piston.
Selon d’autres aspects remarquables de l’invention :
- Le moteur est entièrement piloté électroniquement via le calculateur de gestion de l’ensemble du système.
- L’énergie produite par l’électrolyseur 32 de la solution aqueuse consommée (en comparaison à la combustion du carburant dans une machine exothermique) ne rentre pas dans l’énergie produite par vaporisation de l’eau transformée en énergie mécanique.

Claims

Revendications
1. Moteur à vapeur, du type comprenant au moins deux pistons (6G, 6D), dont les cylindres sont logés dans une chambre (4) isolée thermiquement, caractérisé en ce que la chambre (4) est maintenue à une température largement supérieure à la température de la tension de la vapeur d’eau saturante d’équilibre de coexistence de la phase liquide/vapeur de l’eau en ébullition, et en ce que le moteur comprend des injecteurs (10) commandés pour injecter dans un cylindre de l’eau, qui se vaporise immédiatement, et déplace le piston, tandis qu’au mouvement de retour du piston la vapeur d’eau s’échappe vers un réservoir (26).
2. Moteur selon la revendication 1, caractérisé en ce que la vapeur est créée à l’injection, sans générateur de vapeur extérieur.
3. Moteur selon l’une des revendications 1 et 2, caractérisé en ce que chaque cylindre comporte une chambre de vaporisation et en ce qu’un chauffage (9) de la chambre de vaporisation est réalisé par combustion hydrogène/oxygène en temps réel selon les besoins.
4. Moteur selon la revendication 3, caractérisé en ce que l’hydrogène et l’oxygène sont produits par électrolyse de l’eau, sans séparation des deux gaz.
5. Moteur selon l’une des revendications 1 à 4, caractérisé par le fait que l’eau du réservoir est recyclée en circuit fermé.
6. Moteur selon l’une des revendications 1 à 5, caractérisé par un alternateur monté sur l’arbre d’un vilebrequin actionné par les pistons, et assurant l’alimentation électrique d’ensemble, y compris pour un calculateur de commande du moteur.
7. Moteur selon l’une des revendications 1 à 6, caractérisé en ce que les corps de pistons (6G, 6D) sont en matériaux autolubrifiants et isolés thermiquement, tandis que les chemises des cylindres sont autolubrifiantes.
8. Moteur selon l’une des revendications 1 à 6, caractérisé en ce que, pour chaque piston, l’échappement s’effectue à travers une électrovanne (11), commandée en fonction de la pression dans le cylindre pour obtenir au point mort bas du piston une pression supérieure à la pression atmosphérique.
9. Moteur selon l’une des revendications 1 à 7, caractérisé en ce que la chambre (4) est munie d’une soupape de purge commandée par le calculateur du système.
10. Moteur selon l’une des revendications 1 à 9, caractérisé en ce que chaque piston
(6G, 6D) en position haute délimite avec son cylindre un volume réduit qui sert de chambre de vaporisation, dans laquelle le liquide injecté est instantanément vaporisé au- delà de la température de la tension de vapeur saturante.
PCT/FR2021/051640 2020-09-23 2021-09-23 Moteur a vapeur perfectionne WO2022064152A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2009622A FR3114349A1 (fr) 2020-09-23 2020-09-23 Moteur à vapeur perfectionné.
FRFR2009622 2020-09-23

Publications (1)

Publication Number Publication Date
WO2022064152A1 true WO2022064152A1 (fr) 2022-03-31

Family

ID=77710770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051640 WO2022064152A1 (fr) 2020-09-23 2021-09-23 Moteur a vapeur perfectionne

Country Status (2)

Country Link
FR (1) FR3114349A1 (fr)
WO (1) WO2022064152A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115676975A (zh) * 2022-11-29 2023-02-03 厚德食品股份有限公司 一种纯水机制水储水系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043879A2 (fr) * 1980-07-16 1982-01-20 Thermal Systems Limited. Machine motrice à combustion externe à piston alternatif et méthode pour faire fonctionner cette machine
FR2533268A1 (fr) 1982-09-17 1984-03-23 Couillaud Paul Perfectionnement aux moteurs a vapeur permanente et autres leur permettant de produire de l'energie sans consommer de combustible
WO1987006649A1 (fr) 1986-04-30 1987-11-05 Fiege Edith I Moteur a vapeur/explosion a production interne de vapeur
US20100175638A1 (en) * 2005-12-13 2010-07-15 Richard Alan Haase Water Combustion Technology - The Haase Cycle
WO2010105288A1 (fr) * 2009-03-15 2010-09-23 Ivec Pty Ltd Moteur thermique utilisant une source extérieure de chaleur
US20100288248A1 (en) * 2007-10-31 2010-11-18 Morrison Thomas A Hybrid engine
WO2015127910A1 (fr) * 2014-02-25 2015-09-03 Manfred Carlguth Moteur thermique présentant un rendement thermique élevé

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043879A2 (fr) * 1980-07-16 1982-01-20 Thermal Systems Limited. Machine motrice à combustion externe à piston alternatif et méthode pour faire fonctionner cette machine
FR2533268A1 (fr) 1982-09-17 1984-03-23 Couillaud Paul Perfectionnement aux moteurs a vapeur permanente et autres leur permettant de produire de l'energie sans consommer de combustible
WO1987006649A1 (fr) 1986-04-30 1987-11-05 Fiege Edith I Moteur a vapeur/explosion a production interne de vapeur
US20100175638A1 (en) * 2005-12-13 2010-07-15 Richard Alan Haase Water Combustion Technology - The Haase Cycle
US20100288248A1 (en) * 2007-10-31 2010-11-18 Morrison Thomas A Hybrid engine
WO2010105288A1 (fr) * 2009-03-15 2010-09-23 Ivec Pty Ltd Moteur thermique utilisant une source extérieure de chaleur
WO2015127910A1 (fr) * 2014-02-25 2015-09-03 Manfred Carlguth Moteur thermique présentant un rendement thermique élevé

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115676975A (zh) * 2022-11-29 2023-02-03 厚德食品股份有限公司 一种纯水机制水储水系统
CN115676975B (zh) * 2022-11-29 2024-03-22 厚德食品股份有限公司 一种纯水机制水储水系统

Also Published As

Publication number Publication date
FR3114349A1 (fr) 2022-03-25

Similar Documents

Publication Publication Date Title
FR2488650A1 (fr) Moteur thermique alternatif, procede de commande d'un tel moteur, et ensemble d'elements destine a former un tel moteur par transformation d'un moteur existant
EP2435676B1 (fr) Procede de fonctionnement d'un moteur a explosion et moteur a explosion selon ce procede
US3651641A (en) Engine system and thermogenerator therefor
FR2488651A1 (fr) Moteur thermique rotatif, son procede de commande, et ensemble d'elements destines a former un tel moteur par transformation d'un moteur existant
FR2905404A1 (fr) Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle.
WO2022064152A1 (fr) Moteur a vapeur perfectionne
FR2965582A1 (fr) Moteur autodetendeur plurimodal a air comprime a chambre active incluse
WO2018046807A1 (fr) Système mécanique de production d'énergie mécanique à partir d'azote liquide, et procédé correspondant
EP0143728B1 (fr) Moteur thermique à vapeur pour engin submersible autonome, sans communication avec la surface
EP3189224B1 (fr) Moteur à pressions d'évaporation différentielles
WO1993008390A1 (fr) Moteur a combustion interne de type a injection totale avec chauffage de l'air comprime par les gaz d'echappement
WO2014154869A1 (fr) Machine thermique cryogenique
FR2673979A1 (fr) Machine thermodynamique a cycle a quatre temps.
FR3136260A1 (fr) Générateur cryogénique d’hydrogène gazeux pressurisé - surpresseur cryogénique
WO1996019649A1 (fr) Moteur volumetrique a injection directe
CH97507A (fr) Procédé et dispositif de refroidissement d'un moteur à combustion interne.
FR3147597A1 (fr) Surpresseur-Evaporateur-Prémélangeur-Réchauffeur pour alimentation de moteurs à carburant cryogénique.
BE499235A (fr)
FR3077118A1 (fr) Chaudiere a hydrogene auto-alimentee et procedes associes
BE357436A (fr)
BE456394A (fr)
BE374826A (fr)
EP0526579A1 (fr) Generateur autonome d'energie thermique et module energetique sous-marin comprenant un tel generateur.
BE395932A (fr)
FR3041702A1 (fr) Dispositif moteur comportant une turbine, notamment pour automobiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21798413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21798413

Country of ref document: EP

Kind code of ref document: A1