WO2022063492A1 - Shutoff valve for a compressed gas container, and compressed gas container - Google Patents

Shutoff valve for a compressed gas container, and compressed gas container Download PDF

Info

Publication number
WO2022063492A1
WO2022063492A1 PCT/EP2021/072906 EP2021072906W WO2022063492A1 WO 2022063492 A1 WO2022063492 A1 WO 2022063492A1 EP 2021072906 W EP2021072906 W EP 2021072906W WO 2022063492 A1 WO2022063492 A1 WO 2022063492A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
closing element
shut
sealing
closing
Prior art date
Application number
PCT/EP2021/072906
Other languages
German (de)
French (fr)
Inventor
Olaf Ohlhafer
Bernd Stuke
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022063492A1 publication Critical patent/WO2022063492A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0382Constructional details of valves, regulators
    • F17C2205/0385Constructional details of valves, regulators in blocks or units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0763Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to a shut-off valve for a compressed gas tank with the features of the preamble of claim 1.
  • the invention also relates to a compressed gas tank with such a shut-off valve.
  • the compressed gas tank should be able to be used in particular for storing hydrogen, preferably in mobile applications, for example in fuel cell vehicles.
  • Fuel cell vehicles require hydrogen and oxygen to operate the fuel cells. While the oxygen can be taken from the ambient air, the hydrogen is usually carried on board the vehicle in pressurized gas tanks. The pressure in these containers is usually over 500 bar.
  • the removal of hydrogen from a compressed gas tank is usually done via an electrically controllable shut-off valve of the compressed gas tank. This opens against the pressure in the compressed gas tank. Since a comparatively large cross-section has to be opened for the necessary flow, a high initial opening force is required. In the case of an electromagnetically actuated shut-off valve that is switched directly, this means that large magnetic forces have to be applied. Alternatively, an indirectly switched shut-off valve can be used, which is switched, for example, via a pilot valve. By opening an initially small cross-section, a pressure equalization can be brought about, so that less force is required for the subsequent full opening of the shut-off valve.
  • indirectly switched valves have the disadvantage that there is usually a time delay due to the pressure equalization that has to be established first.
  • the time delay depends in particular on the volume downstream of the shut-off valve, which has to be filled in order to establish pressure equalization. Due to the time delay, the required maximum hydrogen flow is made available to the fuel cells with a delay.
  • the present invention is concerned with the task of minimizing the time delay when opening a pressure-balanced shut-off valve.
  • the shut-off valve with the features of claim 1 is proposed.
  • Advantageous developments of the invention can be found in the dependent claims.
  • a compressed gas tank with such a shut-off valve is specified.
  • the shut-off valve proposed for a compressed gas tank comprises an axially movable closing element for establishing and interrupting a connection between a valve inlet and a valve outlet.
  • the closing element is biased in the closing direction by the spring force of a closing spring.
  • the shut-off valve also includes an actuator for opening the closing element against the spring force of the closing spring.
  • the closing element delimits a first pressure chamber and a second pressure chamber and is traversed by an axial bore connecting the two pressure chambers, so that the same pressure is present on both sides of the closing element.
  • the closing element also has a first sealing surface cooperating with a first housing-side sealing seat and a second sealing surface cooperating with a second housing-side sealing seat for connecting the two pressure chambers to a further pressure chamber.
  • each pressure chamber is delimited by an end face of the closing element.
  • the two sealing seats are preferably each ring-shaped and have essentially the same seat diameter.
  • the opening and closing pressure forces acting on the closing element are thus essentially balanced out.
  • the two sealing seats are each made of an elastomer material.
  • the tightness of the sealing seats can be optimized.
  • production and/or assembly-related length tolerances and length changes caused by pressure and/or temperature changes can be compensated for via the elastomer material.
  • the sealing surfaces of the closing element interacting with the sealing seats each have an annular sealing contour in the form of a sealing bead or a sealing edge.
  • the annular sealing contour defines the effective seat diameter of the respective sealing seat.
  • the effective seat diameter of a sealing seat can thus be precisely specified.
  • the two sealing surfaces are preferably each arranged coaxially with respect to a longitudinal axis of the closing element. In the closed position of the closing element, the sealing surfaces are thus pressed evenly against the respectively associated sealing seat.
  • the force required for this is realized by a coaxially arranged closing spring. This can be designed, for example, as a helical compression spring arranged coaxially to the longitudinal axis of the closing element.
  • the valve inlet is connected to the two pressure chambers, which are connected via the axial bore that passes through the closing element.
  • the same pressure therefore prevails in the valve inlet and in the two pressure chambers.
  • the valve outlet is connected to the further pressure chamber.
  • a connection between the valve inlet and the valve outlet can thus be established by opening the two sealing seats.
  • the valve outlet is preferably designed as a housing bore that branches off from the further pressure chamber and runs essentially radially. The valve outlet can thus be arranged in a space-saving manner.
  • the shut-off valve In connection with a pressurized gas tank for a medium such as hydrogen, the shut-off valve must be able to flow through in both directions. On the one hand, hydrogen must be able to be removed from the pressurized gas container, and on the other hand, an empty pressurized gas container must be refillable with hydrogen. To fill or refuel again, the shut-off valve must be over-pressurized so that it opens. In order to facilitate the opening of the shut-off valve when refueling, the seat diameters of the two sealing seats can vary slightly, so that the forces acting on the closing element in the opening direction predominate and the shut-off valve can be pushed over more easily.
  • valve outlet can be connected to the second pressure chamber via a connecting channel and a check valve, with the check valve opening in the direction of the second pressure chamber.
  • the non-return valve is closed when hydrogen is removed from the compressed gas tank, so that the additional connecting channel does not affect the operation of the shut-off valve.
  • hydrogen also flows through the return check valve into the second pressure chamber, so that the effective surface of the closing element lying within the seat diameter of the second sealing seat is also acted upon by hydrogen. In this case, the forces acting on the closing element in the opening direction clearly predominate, so that the shut-off valve can be overridden even more easily.
  • the actuator for opening the shut-off valve preferably includes an annular magnetic coil for acting on a magnet armature. This means that the shut-off valve is opened by means of magnetic force. Since the pressure-balanced design of the closing element requires only a small opening force, the magnetic coil can be correspondingly small.
  • the magnet armature, on which the magnetic coil acts can be connected to the closing element or can be formed by the closing element. This means that the closing element can also function as a magnet armature, so that a separate magnet armature is not required.
  • a compressed gas tank for storing hydrogen which includes a shut-off valve according to the invention.
  • the valve inlet of the shut-off valve is connected to a storage volume of the compressed gas tank, so that the same pressure prevails in the valve inlet as in the storage volume. Since the valve inlet is connected to two pressure chambers that are opposite one another on the closing element of the shut-off valve, accumulator pressure prevails in both pressure chambers. The same pressure is therefore applied to both sides of the closing element, so that the closing element is pressure-balanced. The opening of the closing element can thus be effected independently of the storage pressure in the compressed gas tank with a minimal time delay.
  • FIG. 1 shows a schematic longitudinal section through a shut-off valve according to the invention according to a first preferred embodiment in the closed position
  • Fig. 2 shows a schematic longitudinal section through the shut-off valve of FIG. 1 in the open position and 3 shows a schematic longitudinal section through a shut-off valve according to the invention according to a second preferred embodiment in the closed position.
  • the shut-off valve 1 shown in Figures 1 and 2 for a compressed gas tank 20 has a housing 18 in which a closing element 2 for making and breaking a connection between a valve inlet 3 and a valve outlet 4 is accommodated in a lifting manner.
  • the closing element 2 is prestressed in the closing direction by the spring force of a closing spring 5, which in the present case is designed as a helical compression spring and is axially supported on a first end face 2.1 of the closing element 2.
  • the closing spring 5 holds the closing element 2 in the closed position (see FIG. 1).
  • An actuator 6 is provided for opening the shut-off valve 1 , which in the present case comprises an annular magnetic coil 15 accommodated in the housing 18 .
  • the magnetic coil 15 When the magnetic coil 15 is energized, a magnetic field is formed, the magnetic force of which acts on a magnet armature 16 which is formed by the closing element 2 in the present case. Due to the magnetic force, which opposes the spring force of the closing spring 5 and which is also greater than the spring force of the closing spring 5, the closing element 2 moves in the direction of an inner pole body 17. Since the closing element 2 is largely pressure- and force-balanced, it must be opened of the check valve 1 essentially only the spring force of the closing spring 5 can be overcome.
  • the shut-off valve 1 is shown in the open position, ie when the actuator system 6 is energized.
  • a pressure chamber 7 , 9 connected to the valve inlet 3 is formed on both sides of the closing element 2 .
  • the two pressure chambers 7 , 9 are connected via an axial bore 8 passing through the closing element 2 .
  • the axial bore 8 extends from the first end face 2 . 1 to a second end face 2 .
  • a further pressure chamber 14 which is connected to the valve outlet 4 is arranged between the two pressure chambers 7 , 9 connected to the valve inlet 3 .
  • the additional pressure chamber 14 is separated from the two pressure chambers 7 , 9 connected to the valve inlet 3 when the closing element 2 is in the closed position (see FIG. 1 ).
  • the separation is effected via two sealing surfaces 11, 13 of the closing element 2, which are each arranged coaxially with respect to a longitudinal axis A of the closing element 2 and interact with sealing seats 10, 12 on the housing side.
  • the closing element 2 has a collar section 19 at each of its two ends.
  • the housing-side sealing seats 10, 11 are formed by rings made of elastomeric material.
  • the shut-off valve 1 shown in FIGS. 1 and 2 is connected to a compressed gas tank 20 so that the valve inlet 3 of the shut-off valve 1 is connected to a storage volume 21 of the compressed gas tank 20 .
  • the accumulator pressure of the accumulator volume 21 thus prevails in the valve inlet 3.
  • the shut-off valve 1 can nevertheless be opened independently of the accumulator pressure in the compressed gas tank 20, since the accumulator pressure is applied to the closing element 2 on both sides, so that there is pressure equilibrium.
  • the shut-off valve 1 shown in FIG. 3 differs from the one previously described only in that the valve outlet 4 can be connected to the second pressure chamber 9 below the closing element 2 via a connecting channel 22 and a check valve 23 .
  • the shut-off valve 1 can thus be pushed over more easily for filling or refueling the compressed gas reservoir 20 since the opening forces acting on the closing element 2 predominate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The invention relates to a shutoff valve (1) for a compressed gas container (20), comprising: - an axially movable closing element (2) for establishing and interrupting a connection between a valve inlet (3) and a valve outlet (4), the closing element (2) being preloaded in the closing direction by the spring force of a closing spring (5); and - an actuation system (6) for opening the closing element (2) counter to the spring force of the closing spring (5). According to the invention, the closing element (2) delimits, in the axial direction, a first pressure chamber (7) and a second pressure chamber (9), and an axial bore (8) connecting the two pressure chambers (7, 9) extends through the closing element so that the same pressure acts on both sides of the closing element (2). The closing element (2) has first sealing surface (11), which cooperates with a first housing sealing seat (10), and a second sealing surface (13), which cooperates with a second housing sealing seat (12), for connecting the two pressure chambers (7, 9) to an additional pressure chamber (14). The invention also relates to a compressed gas container (20) comprising a shutoff valve (1) according to the invention.

Description

Beschreibung description
Absperrventil für einen Druckgasbehälter, Druckgasbehälter Shut-off valve for a compressed gas tank, compressed gas tank
Die Erfindung betrifft ein Absperrventil für einen Druckgasbehälter mit dem Merkmalen des Oberbegriffs des Anspruchs 1. Darüber hinaus betrifft die Erfindung einen Druckgasbehälter mit einem derartigen Absperrventil. Der Druckgasbehälter soll insbesondere zur Bevorratung von Wasserstoff eingesetzt werden können, vorzugsweise in mobilen Anwendungen, beispielsweise in Brennstoffzellen- Fahrzeugen. The invention relates to a shut-off valve for a compressed gas tank with the features of the preamble of claim 1. The invention also relates to a compressed gas tank with such a shut-off valve. The compressed gas tank should be able to be used in particular for storing hydrogen, preferably in mobile applications, for example in fuel cell vehicles.
Stand der Technik State of the art
Brennstoffzellen- Fahrzeuge benötigen zum Betrieb der Brennstoffzellen Wasserstoff und Sauerstoff. Während der Sauerstoff der Umgebungsluft entnommen werden kann, wird der Wasserstoff in der Regel in Druckgasbehältern an Bord des Fahrzeugs mitgeführt. Der Druck in diesen Behältern liegt üblicherweise über 500 bar. Fuel cell vehicles require hydrogen and oxygen to operate the fuel cells. While the oxygen can be taken from the ambient air, the hydrogen is usually carried on board the vehicle in pressurized gas tanks. The pressure in these containers is usually over 500 bar.
Die Entnahme von Wasserstoff aus einem Druckgasbehälter erfolgt in der Regel über ein elektrisch ansteuerbares Absperrventil des Druckgasbehälters. Dieses öffnet gegen den Druck im Druckgasbehälter. Da für den notwendigen Durchfluss ein vergleichsweise großer Querschnitt geöffnet werden muss, wird eine hohe initiale Öffnungskraft benötigt. Im Fall eines elektromagnetisch betätigten Absperrventils, das direkt geschaltet wird, bedeutet dies, dass große Magnetkräfte aufgebracht werden müssen. Alternativ kann ein indirekt geschaltetes Absperrventil verwendet werden, das beispielsweise über ein Pilotventil geschaltet wird. Durch Öffnen eines zunächst kleinen Querschnitts kann ein Druckausgleich bewirkt werden, so dass für das anschließende vollständige Öffnen des Absperrventils weniger Kraft benötigt wird. Indirekt geschaltete Ventile weisen jedoch im Vergleich zu direkt geschalteten Ventilen den Nachteil auf, dass es aufgrund des zunächst herzustellenden Druckausgleichs in der Regel zu einem Zeitverzug kommt. Der Zeitverzug hängt dabei insbesondere vom Volumen stromabwärts des Absperrventils ab, das es zur Herstellung des Druckausgleichs zu befüllen gilt. Aufgrund des Zeitverzugs wird der erforderliche maximale Wasserstoffstrom den Brennstoffzellen verzögert zur Verfügung gestellt. The removal of hydrogen from a compressed gas tank is usually done via an electrically controllable shut-off valve of the compressed gas tank. This opens against the pressure in the compressed gas tank. Since a comparatively large cross-section has to be opened for the necessary flow, a high initial opening force is required. In the case of an electromagnetically actuated shut-off valve that is switched directly, this means that large magnetic forces have to be applied. Alternatively, an indirectly switched shut-off valve can be used, which is switched, for example, via a pilot valve. By opening an initially small cross-section, a pressure equalization can be brought about, so that less force is required for the subsequent full opening of the shut-off valve. However, in comparison to directly switched valves, indirectly switched valves have the disadvantage that there is usually a time delay due to the pressure equalization that has to be established first. The time delay depends in particular on the volume downstream of the shut-off valve, which has to be filled in order to establish pressure equalization. Due to the time delay, the required maximum hydrogen flow is made available to the fuel cells with a delay.
Die vorliegende Erfindung ist mit der Aufgabe befasst, den Zeitverzug beim Öffnen eines druckausgeglichenen Absperrventils zu minimieren. Zur Lösung der Aufgabe wird das Absperrventil mit den Merkmalen des Anspruchs 1 vorgeschlagen. Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen. Darüber hinaus wird ein Druckgasbehälter mit einem derartigen Absperrventil angegeben. The present invention is concerned with the task of minimizing the time delay when opening a pressure-balanced shut-off valve. To solve the problem, the shut-off valve with the features of claim 1 is proposed. Advantageous developments of the invention can be found in the dependent claims. In addition, a compressed gas tank with such a shut-off valve is specified.
Offenbarung der Erfindung Disclosure of Invention
Das für einen Druckgasbehälter vorgeschlagene Absperrventil umfasst ein axial bewegliches Schließelement zum Herstellen und Unterbrechen einer Verbindung zwischen einem Ventileinlass und einem Ventilauslass. Das Schließelement ist in Schließrichtung durch die Federkraft einer Schließfeder vorgespannt. Das Absperrventil umfasst ferner eine Aktorik zum Öffnen des Schließelements entgegen der Federkraft der Schließfeder. Erfindungsgemäß begrenzt das Schließelement einen ersten Druckraum und einen zweiten Druckraum und ist von einer die beiden Druckräume verbindenden Axialbohrung durchsetzt, so dass beidseits am Schließelement der gleiche Druck anliegt. Das Schließelement weist zudem eine mit einem ersten gehäuseseitigen Dichtsitz zusammenwirkende erste Dichtfläche sowie eine mit einem zweiten gehäuseseitigen Dichtsitz zusammenwirkende zweite Dichtfläche zur Verbindung der beiden Druckräume mit einem weiteren Druckraum auf. The shut-off valve proposed for a compressed gas tank comprises an axially movable closing element for establishing and interrupting a connection between a valve inlet and a valve outlet. The closing element is biased in the closing direction by the spring force of a closing spring. The shut-off valve also includes an actuator for opening the closing element against the spring force of the closing spring. According to the invention, the closing element delimits a first pressure chamber and a second pressure chamber and is traversed by an axial bore connecting the two pressure chambers, so that the same pressure is present on both sides of the closing element. The closing element also has a first sealing surface cooperating with a first housing-side sealing seat and a second sealing surface cooperating with a second housing-side sealing seat for connecting the two pressure chambers to a further pressure chamber.
In Abhängigkeit von der axialen Lage des Schließelements ist entweder eine Verbindung der beiden Druckräume mit dem weiteren Druckraum hergestellt oder unterbrochen. Das heißt, dass beide Dichtsitze zeitgleich offen oder geschlossen sind. Über die das Schließelement durchsetzende Axialbohrung ist eine permanente Verbindung zwischen den beiden Druckräumen sichergestellt, so dass am Schließelement ein Druckgleichgewicht herrscht bzw. das Schließelement druckausgeglichen ist. Zum Öffnen des Absperrventils muss im Wesentlichen nur noch die Federkraft der Schließfeder überwunden werden, so dass die zum Öffnen vorgesehene Aktorik entsprechend klein ausgelegt werden kann. Depending on the axial position of the closing element, either a connection between the two pressure chambers and the further pressure chamber is established or interrupted. This means that both sealing seats are open or closed at the same time. A permanent connection between the two pressure chambers is ensured via the axial bore penetrating the closing element, so that there is a pressure balance on the closing element or the closing element is pressure-balanced. To open the shut-off valve, essentially only the spring force of the closing spring has to be overcome, so that the actuator system provided for opening can be designed to be correspondingly small.
Dadurch, dass am Schließelement ein Druckgleichgewicht herrscht, kann beim Öffnen des Absperrventils der Zeitverzug bis zum Darstellen eines maximalen Massenstroms minimiert werden. Due to the fact that there is pressure equilibrium at the closing element, the time delay until a maximum mass flow is achieved can be minimized when the shut-off valve is opened.
Zur Herstellung des Druckgleichgewichts liegen sich die beiden über die Axialbohrung verbundenen Druckräume am Schließelement gegenüber. Das heißt, dass jeder Druckraum von einer Stirnfläche des Schließelements begrenzt wird. To establish the pressure balance, the two pressure chambers connected via the axial bore are located opposite one another on the closing element. This means that each pressure chamber is delimited by an end face of the closing element.
Bevorzugt sind die beiden Dichtsitze jeweils ringförmig ausgebildet und weisen im Wesentlichen gleich große Sitzdurchmesser auf. Damit gleichen sich die öffnend und schließend auf das Schließelement wirkenden Druckkräfte im Wesentlichen aus. The two sealing seats are preferably each ring-shaped and have essentially the same seat diameter. The opening and closing pressure forces acting on the closing element are thus essentially balanced out.
Des Weiteren bevorzugt sind die beiden Dichtsitze jeweils aus einem Elastomermaterial gefertigt. Auf diese Weise kann die Dichtheit der Dichtsitze optimiert werden. Zugleich können fertigungs- und/oder montagebedingte Längentoleranzen sowie durch Druck- und/oder Temperaturänderungen hervorgerufene Längenänderungen über das Elastomermaterial ausgeglichen werden. Furthermore, the two sealing seats are each made of an elastomer material. In this way, the tightness of the sealing seats can be optimized. At the same time, production and/or assembly-related length tolerances and length changes caused by pressure and/or temperature changes can be compensated for via the elastomer material.
In Weiterbildung der Erfindung wird vorgeschlagen, dass die mit den Dichtsitzen zusammenwirkenden Dichtflächen des Schließelements jeweils eine ringförmige Dichtkontur in Form eines Dichtwulsts oder einer Dichtkante aufweisen. In diesem Fall definiert die ringförmige Dichtkontur den effektiven Sitzdurchmesser des jeweiligen Dichtsitzes. Der effektive Sitzdurchmesser eines Dichtsitzes kann somit genau vorgegeben werden. Die beiden Dichtflächen sind vorzugsweise jeweils koaxial in Bezug auf eine Längsachse des Schließelements angeordnet. Die Dichtflächen werden somit in Schließstellung des Schließelements gleichmäßig gegen den jeweils zugehörigen Dichtsitz gedrückt. Vorteilhafterweise wird die hierzu erforderliche Kraft durch eine koaxial angeordnete Schließfeder realisiert. Diese kann beispielsweise als eine koaxial zur Längsachse des Schließelements angeordnete Schraubendruckfeder ausgebildet sein. In a development of the invention, it is proposed that the sealing surfaces of the closing element interacting with the sealing seats each have an annular sealing contour in the form of a sealing bead or a sealing edge. In this case, the annular sealing contour defines the effective seat diameter of the respective sealing seat. The effective seat diameter of a sealing seat can thus be precisely specified. The two sealing surfaces are preferably each arranged coaxially with respect to a longitudinal axis of the closing element. In the closed position of the closing element, the sealing surfaces are thus pressed evenly against the respectively associated sealing seat. Advantageously, the force required for this is realized by a coaxially arranged closing spring. This can be designed, for example, as a helical compression spring arranged coaxially to the longitudinal axis of the closing element.
Gemäß einer bevorzugten Ausführungsform der Erfindung steht der Ventileinlass mit den beiden Druckräumen in Verbindung, die über die das Schließelement durchsetzende Axialbohrung verbunden sind. Im Ventileinlass und in den beiden Druckräumen herrscht somit der gleiche Druck. Der Ventilauslass ist in diesem Fall mit dem weiteren Druckraum verbunden. Durch Öffnen der beiden Dichtsitze kann somit eine Verbindung des Ventileinlasses mit dem Ventilauslass hergestellt werden. Der Ventilauslass ist vorzugsweise als eine vom weiteren Druckraum abzweigende, im Wesentlichen radial verlaufende Gehäusebohrung ausgebildet. Der Ventilauslass kann somit platzsparend angeordnet werden. According to a preferred embodiment of the invention, the valve inlet is connected to the two pressure chambers, which are connected via the axial bore that passes through the closing element. The same pressure therefore prevails in the valve inlet and in the two pressure chambers. In this case, the valve outlet is connected to the further pressure chamber. A connection between the valve inlet and the valve outlet can thus be established by opening the two sealing seats. The valve outlet is preferably designed as a housing bore that branches off from the further pressure chamber and runs essentially radially. The valve outlet can thus be arranged in a space-saving manner.
In Verbindung mit einem Druckgasbehälter für ein Medium, wie beispielsweise Wasserstoff, muss das Absperrventil in beide Richtungen durchströmbar sein. Denn einerseits muss Wasserstoff aus dem Druckgasbehälter entnehmbar sein, andererseits muss ein leerer Druckgasbehälter erneut mit Wasserstoff befüllbar sein. Zum erneuten Befüllen bzw. Betanken muss das Absperrventil überdrückt werden, so dass dieses öffnet. Um im Betankungsfall das Öffnen des Absperrventils zu erleichtern, können die Sitzdurchmesser der beiden Dichtsitze geringfügig variieren, so dass die in Öffnungsrichtung auf das Schließelement wirkenden Kräfte überwiegen und das Absperrventil leichter überdrückt werden kann. In connection with a pressurized gas tank for a medium such as hydrogen, the shut-off valve must be able to flow through in both directions. On the one hand, hydrogen must be able to be removed from the pressurized gas container, and on the other hand, an empty pressurized gas container must be refillable with hydrogen. To fill or refuel again, the shut-off valve must be over-pressurized so that it opens. In order to facilitate the opening of the shut-off valve when refueling, the seat diameters of the two sealing seats can vary slightly, so that the forces acting on the closing element in the opening direction predominate and the shut-off valve can be pushed over more easily.
Alternativ oder ergänzend wird vorgeschlagen, dass der Ventilauslass über einen Verbindungskanal und ein Rückschlagventil mit dem zweiten Druckraum verbindbar ist, wobei das Rückschlagventil in Richtung des zweiten Druckraums öffnet. Bei der Entnahme von Wasserstoff aus dem Druckgasbehälter ist das Rückschlagventil geschlossen, so dass der zusätzliche Verbindungskanal die Wirkungsweise des Absperrventils nicht beeinflusst. Im Betankungsfall strömt Wasserstoff zusätzlich über das Rück- schlagventil in den zweiten Druckraum, so dass die innerhalb des Sitzdurchmessers des zweiten Dichtsitzes liegende Wirkfläche des Schließelements ebenfalls mit Wasserstoff beaufschlagt wird. In diesem Fall überwiegen die in Öffnungsrichtung auf das Schließelement wirkenden Kräfte deutlich, so dass das Absperrventil noch leichter überdrückt werden kann. Alternatively or additionally, it is proposed that the valve outlet can be connected to the second pressure chamber via a connecting channel and a check valve, with the check valve opening in the direction of the second pressure chamber. The non-return valve is closed when hydrogen is removed from the compressed gas tank, so that the additional connecting channel does not affect the operation of the shut-off valve. When refueling, hydrogen also flows through the return check valve into the second pressure chamber, so that the effective surface of the closing element lying within the seat diameter of the second sealing seat is also acted upon by hydrogen. In this case, the forces acting on the closing element in the opening direction clearly predominate, so that the shut-off valve can be overridden even more easily.
Die Aktorik zum Öffnen des Absperrventils umfasst vorzugsweise eine ringförmige Magnetspule zum Einwirken auf einen Magnetanker. Das heißt, dass das Absperrventil mittels Magnetkraft geöffnet wird. Da die druckausgeglichene Ausführung des Schließelements nur eine geringe Öffnungskraft erfordert, kann die Magnetspule entsprechend klein dimensioniert sein. Der Magnetanker, auf den die Magnetspule einwirkt, kann mit dem Schließelement verbunden sein oder durch das Schließelement ausgebildet werden. Das heißt, dass das Schließelement zugleich als Magnetanker fungieren kann, so dass ein separater Magnetanker entfällt. The actuator for opening the shut-off valve preferably includes an annular magnetic coil for acting on a magnet armature. This means that the shut-off valve is opened by means of magnetic force. Since the pressure-balanced design of the closing element requires only a small opening force, the magnetic coil can be correspondingly small. The magnet armature, on which the magnetic coil acts, can be connected to the closing element or can be formed by the closing element. This means that the closing element can also function as a magnet armature, so that a separate magnet armature is not required.
Darüber hinaus wird ein Druckgasbehälter zur Bevorratung von Wasserstoff vorgeschlagen, der ein erfindungsgemäßes Absperrventil umfasst. Der Ventileinlass des Absperrventils ist dabei mit einem Speichervolumen des Druckgasbehälters verbunden, so dass im Ventileinlass der gleiche Druck wie im Speichervolumen herrscht. Da der Ventileinlass mit zwei Druckräumen verbunden ist, die sich am Schließelement des Absperrventils gegenüberliegen, herrscht in beiden Druckräumen Speicherdruck. Beidseits am Schließelement liegt somit der gleiche Druck an, so dass das Schließelement druckausgeglichen ist. Das Öffnen des Schließelements kann somit unabhängig vom Speicherdruck im Druckgasbehälter mit minimalem Zeitverzug bewirkt werden. In addition, a compressed gas tank for storing hydrogen is proposed, which includes a shut-off valve according to the invention. The valve inlet of the shut-off valve is connected to a storage volume of the compressed gas tank, so that the same pressure prevails in the valve inlet as in the storage volume. Since the valve inlet is connected to two pressure chambers that are opposite one another on the closing element of the shut-off valve, accumulator pressure prevails in both pressure chambers. The same pressure is therefore applied to both sides of the closing element, so that the closing element is pressure-balanced. The opening of the closing element can thus be effected independently of the storage pressure in the compressed gas tank with a minimal time delay.
Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Diese zeigen: Preferred embodiments of the invention are explained in more detail below with reference to the accompanying drawings. These show:
Fig. 1 einen schematischen Längsschnitt durch ein erfindungsgemäßes Absperrventil gemäß einer ersten bevorzugten Ausführungsform in Schließstellung, 1 shows a schematic longitudinal section through a shut-off valve according to the invention according to a first preferred embodiment in the closed position,
Fig. 2 einen schematischen Längsschnitt durch das Absperrventil der Fig. 1 in Offenstellung und Fig. 3 einen schematischen Längsschnitt durch ein erfindungsgemäßes Absperrventil gemäß einer zweiten bevorzugten Ausführungsform in Schließstellung. Fig. 2 shows a schematic longitudinal section through the shut-off valve of FIG. 1 in the open position and 3 shows a schematic longitudinal section through a shut-off valve according to the invention according to a second preferred embodiment in the closed position.
Ausführliche Beschreibung der Zeichnungen Detailed description of the drawings
Das in den Figuren 1 und 2 dargestellte Absperrventil 1 für einen Druckgasbehälter 20 weist ein Gehäuse 18 auf, in dem ein Schließelement 2 zum Herstellen und Unterbrechen einer Verbindung zwischen einem Ventileinlass 3 und einem Ventilauslass 4 hubbeweglich aufgenommen ist. Das Schließelement 2 ist in Schließrichtung durch die Federkraft einer Schließfeder 5 vorgespannt, die vorliegend als Schraubendruckfeder ausgeführt und an einer ersten Stirnfläche 2.1 des Schließelements 2 axial abgestützt ist. Die Schließfeder 5 hält das Schließelement 2 in Schließstellung (siehe Fig. 1). The shut-off valve 1 shown in Figures 1 and 2 for a compressed gas tank 20 has a housing 18 in which a closing element 2 for making and breaking a connection between a valve inlet 3 and a valve outlet 4 is accommodated in a lifting manner. The closing element 2 is prestressed in the closing direction by the spring force of a closing spring 5, which in the present case is designed as a helical compression spring and is axially supported on a first end face 2.1 of the closing element 2. The closing spring 5 holds the closing element 2 in the closed position (see FIG. 1).
Zum Öffnen des Absperrventils 1 ist eine Aktorik 6 vorgesehen, die vorliegend eine im Gehäuse 18 aufgenommene ringförmige Magnetspule 15 umfasst. Bei einer Bestro- mung der Magnetspule 15 bildet sich ein Magnetfeld aus, dessen Magnetkraft auf einen Magnetanker 16 einwirkt, der vorliegend durch das Schließelement 2 ausgebildet wird. Aufgrund der Magnetkraft, die der Federkraft der Schließfeder 5 entgegengesetzt ist und die zudem größer als die Federkraft der Schließfeder 5 ist, bewegt sich das Schließelement 2 in Richtung eines Innenpolkörpers 17. Da das Schließelement 2 weitestgehend druck- bzw. kraftausgeglichen ist, muss zum Öffnen des Absperrventils 1 im Wesentlichen nur die Federkraft der Schließfeder 5 überwunden werden. In der Fig. 2 ist das Absperrventil 1 in der Offenstellung, das heißt bei bestromter Aktorik 6, dargestellt. An actuator 6 is provided for opening the shut-off valve 1 , which in the present case comprises an annular magnetic coil 15 accommodated in the housing 18 . When the magnetic coil 15 is energized, a magnetic field is formed, the magnetic force of which acts on a magnet armature 16 which is formed by the closing element 2 in the present case. Due to the magnetic force, which opposes the spring force of the closing spring 5 and which is also greater than the spring force of the closing spring 5, the closing element 2 moves in the direction of an inner pole body 17. Since the closing element 2 is largely pressure- and force-balanced, it must be opened of the check valve 1 essentially only the spring force of the closing spring 5 can be overcome. In FIG. 2, the shut-off valve 1 is shown in the open position, ie when the actuator system 6 is energized.
Um den Druckausgleich am Schließelement 2 herzustellen, ist jeweils beidseits des Schließelements 2 ein mit dem Ventileinlass 3 in Verbindung stehender Druckraum 7, 9 ausgebildet. Die beiden Druckräume 7, 9 sind über eine das Schließelement 2 durchsetzende Axialbohrung 8 verbunden. Die Axialbohrung 8 erstreckt sich von der ersten Stirnfläche 2.1 bis zu einer zweiten Stirnfläche 2.2 des Schließelements 2. In beiden Druckräumen 7, 9 herrscht somit der gleiche Druck, und zwar der Druck, der auch im Ventileinlass 3 herrscht. Zwischen den beiden mit dem Ventileinlass 3 verbundenen Druckräumen 7, 9 ist ein weiterer Druckraum 14 angeordnet, der mit dem Ventilauslass 4 in Verbindung steht. Der weitere Druckraum 14 ist in der Schließstellung des Schließelements 2 (siehe Fig. 1) von den beiden mit dem Ventileinlass 3 verbundenen Druckräumen 7, 9 getrennt. Die Trennung wird über zwei Dichtflächen 11, 13 des Schließelements 2 bewirkt, die jeweils koaxial in Bezug auf eine Längsachse A des Schließelements 2 angeordnet sind und mit gehäuseseitigen Dichtsitzen 10, 12 Zusammenwirken. Zur Ausbildung der Dichtflächen 11, 13 weist das Schließelement 2 an seinen beiden Enden jeweils einen Bundabschnitt 19 auf. Die gehäuseseitigen Dichtsitze 10, 11 werden durch Ringe aus Elastomermaterial ausgebildet. In order to equalize the pressure on the closing element 2 , a pressure chamber 7 , 9 connected to the valve inlet 3 is formed on both sides of the closing element 2 . The two pressure chambers 7 , 9 are connected via an axial bore 8 passing through the closing element 2 . The axial bore 8 extends from the first end face 2 . 1 to a second end face 2 . A further pressure chamber 14 which is connected to the valve outlet 4 is arranged between the two pressure chambers 7 , 9 connected to the valve inlet 3 . The additional pressure chamber 14 is separated from the two pressure chambers 7 , 9 connected to the valve inlet 3 when the closing element 2 is in the closed position (see FIG. 1 ). The separation is effected via two sealing surfaces 11, 13 of the closing element 2, which are each arranged coaxially with respect to a longitudinal axis A of the closing element 2 and interact with sealing seats 10, 12 on the housing side. To form the sealing surfaces 11, 13, the closing element 2 has a collar section 19 at each of its two ends. The housing-side sealing seats 10, 11 are formed by rings made of elastomeric material.
Das in den Figuren 1 und 2 dargestellte Absperrventil 1 ist mit einem Druckgasbehälter 20 verbunden, so dass der Ventileinlass 3 des Absperrventils 1 in Verbindung mit einem Speichervolumen 21 des Druckgasbehälters 20 steht. Im Ventileinlass 3 herrscht somit der Speicherdruck des Speichervolumens 21. Das Öffnen des Absperrventils 1 kann dennoch unabhängig vom Speicherdruck im Druckgasbehälter 20 bewirkt werden, da der Speicherdruck beidseits am Schließelement 2 anliegt, so dass ein Druckgleichgewicht herrscht. The shut-off valve 1 shown in FIGS. 1 and 2 is connected to a compressed gas tank 20 so that the valve inlet 3 of the shut-off valve 1 is connected to a storage volume 21 of the compressed gas tank 20 . The accumulator pressure of the accumulator volume 21 thus prevails in the valve inlet 3. The shut-off valve 1 can nevertheless be opened independently of the accumulator pressure in the compressed gas tank 20, since the accumulator pressure is applied to the closing element 2 on both sides, so that there is pressure equilibrium.
Das in der Fig. 3 dargestellte Absperrventil 1 unterscheidet sich von dem zuvor beschriebenen lediglich dadurch, dass der Ventilauslass 4 über einen Verbindungskanal 22 und ein Rückschlagventil 23 mit dem zweiten Druckraum 9 unterhalb des Schließelements 2 verbindbar ist. Das Absperrventil 1 kann somit zum Befüllen bzw. Betanken des Druckgasspeichers 20 leichter überdrückt werden, da die auf das Schließelement 2 wirkenden Öffnungskräfte überwiegen. The shut-off valve 1 shown in FIG. 3 differs from the one previously described only in that the valve outlet 4 can be connected to the second pressure chamber 9 below the closing element 2 via a connecting channel 22 and a check valve 23 . The shut-off valve 1 can thus be pushed over more easily for filling or refueling the compressed gas reservoir 20 since the opening forces acting on the closing element 2 predominate.

Claims

- 8 - Ansprüche - 8 - Claims
1. Absperrventil (1) für einen Druckgasbehälter (20), umfassend ein axial bewegliches Schließelement (2) zum Herstellen und Unterbrechen einer Verbindung zwischen einem Ventileinlass (3) und einem Ventilauslass (4), wobei das Schließelement (2) in Schließrichtung durch die Federkraft einer Schließfeder (5) vorgespannt ist, ferner umfassend eine Aktorik (6) zum Öffnen des Schließelements (2) entgegen der Federkraft der Schließfeder (5), dadurch gekennzeichnet, dass das Schließelement (2) in axialer Richtung einen ersten Druckraum (7) und einen zweiten Druckraum (9) begrenzt und von einer die beiden Druckräume (7, 9) verbindenden Axialbohrung (8) durchsetzt ist, so dass beidseits am Schließelement (2) der gleiche Druck anliegt, und wobei das Schließelement (2) eine mit einem ersten gehäuseseitigen Dichtsitz (10) zusammenwirkende erste Dichtfläche (11) und eine mit einem zweiten gehäuseseitigen Dichtsitz (12) zusammenwirkende zweite Dichtfläche (13) zur Verbindung der beiden Druckräume (7, 9) mit einem weiteren Druckraum (14) aufweist. 1. Shut-off valve (1) for a compressed gas container (20), comprising an axially movable closing element (2) for establishing and interrupting a connection between a valve inlet (3) and a valve outlet (4), the closing element (2) in the closing direction through the spring force of a closing spring (5), further comprising an actuator (6) for opening the closing element (2) against the spring force of the closing spring (5), characterized in that the closing element (2) has a first pressure chamber (7) in the axial direction and a second pressure chamber (9) and is penetrated by an axial bore (8) connecting the two pressure chambers (7, 9), so that the same pressure is applied to the closing element (2) on both sides, and wherein the closing element (2) has a first sealing seat (10) on the housing side and a second sealing surface (13) interacting with a second sealing seat (12) on the housing side to connect the two pressure chambers (7 , 9) with a further pressure chamber (14).
2. Absperrventil (1) nach Anspruch 1 dadurch gekennzeichnet, dass die beiden Dichtsitze (10, 12) jeweils ringförmig ausgebildet sind und im Wesentlichen gleich große Sitzdurchmesser aufweisen. 2. Shut-off valve (1) according to claim 1, characterized in that the two sealing seats (10, 12) are each annular and have substantially the same seat diameter.
3. Absperrventil (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die beiden Dichtsitze (10, 12) jeweils aus einem Elastomermaterial gefertigt sind. - 9 - 3. Shut-off valve (1) according to claim 1 or 2, characterized in that the two sealing seats (10, 12) are each made of an elastomeric material. - 9 -
4. Absperrventil (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Dichtflächen (11, 13) jeweils eine ringförmige Dichtkontur in Form eines Dichtwulsts oder einer Dichtkante aufweisen. 4. Shut-off valve (1) according to one of the preceding claims, characterized in that the two sealing surfaces (11, 13) each have an annular sealing contour in the form of a sealing bead or a sealing edge.
5. Absperrventil (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Dichtflächen (11, 13) jeweils koaxial in Bezug auf eine Längsachse (A) des Schließelements (2) angeordnet sind. 5. Shut-off valve (1) according to any one of the preceding claims, characterized in that the two sealing surfaces (11, 13) are each arranged coaxially with respect to a longitudinal axis (A) of the closing element (2).
6. Absperrventil (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ventileinlass (3) mit den beiden Druckräumen (7, 9) in Verbindung steht und der Ventilauslass (4) mit dem weiteren Druckraum (14) verbunden ist. 6. Shut-off valve (1) according to one of the preceding claims, characterized in that the valve inlet (3) is connected to the two pressure chambers (7, 9) and the valve outlet (4) is connected to the further pressure chamber (14).
7. Absperrventil (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ventilauslass (4) über einen Verbindungskanal (22) und ein Rückschlagventil (23) mit dem zweiten Druckraum (9) verbindbar ist, wobei das Rückschlagventil (23) in Richtung des zweiten Druckraums (9) öffnet. 7. Shut-off valve (1) according to one of the preceding claims, characterized in that the valve outlet (4) can be connected to the second pressure chamber (9) via a connecting channel (22) and a check valve (23), the check valve (23) being in Direction of the second pressure chamber (9) opens.
8. Absperrventil (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Aktorik (6) eine ringförmige Magnetspule (15) zum Einwirken auf einen Magnetanker (16) umfasst, der vorzugsweise mit dem Schließelement (2) verbunden ist oder durch das Schließelement (2) ausgebildet wird. 8. Shut-off valve (1) according to one of the preceding claims, characterized in that the actuator (6) comprises an annular magnetic coil (15) for acting on a magnet armature (16) which is preferably connected to the closing element (2) or through the Closing element (2) is formed.
9. Druckgasbehälter (20) zur Bevorratung von Wasserstoff, umfassend ein Absperrventil (1) nach einem der Ansprüche, wobei der Ventileinlass (3) des Absperrventils (1) mit einem Speichervolumen (21) des Druckgasbehälters (20) verbunden ist, so dass im Ventileinlass (3) der gleiche Druck wie im Speichervolumen (21) herrscht. 9. Compressed gas tank (20) for storing hydrogen, comprising a shut-off valve (1) according to one of the claims, wherein the valve inlet (3) of the shut-off valve (1) is connected to a storage volume (21) of the compressed gas tank (20), so that in Valve inlet (3) has the same pressure as in the storage volume (21).
PCT/EP2021/072906 2020-09-25 2021-08-18 Shutoff valve for a compressed gas container, and compressed gas container WO2022063492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020212066.8 2020-09-25
DE102020212066.8A DE102020212066A1 (en) 2020-09-25 2020-09-25 Shut-off valve for a compressed gas tank, compressed gas tank

Publications (1)

Publication Number Publication Date
WO2022063492A1 true WO2022063492A1 (en) 2022-03-31

Family

ID=77640670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/072906 WO2022063492A1 (en) 2020-09-25 2021-08-18 Shutoff valve for a compressed gas container, and compressed gas container

Country Status (2)

Country Link
DE (1) DE102020212066A1 (en)
WO (1) WO2022063492A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130255808A1 (en) * 2010-10-19 2013-10-03 Kawasaki Jukogyo Kabushiki Kaisha Fuel gas supplying and filling system
US20140124063A1 (en) * 2012-11-05 2014-05-08 Magna Steyr Fahrzeugtechnik Ag & Co Kg Stop valve for pressure storage vessel
DE102018215380A1 (en) * 2018-09-11 2020-03-12 Robert Bosch Gmbh Valve device for a gaseous medium and tank device for storing a gaseous medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130255808A1 (en) * 2010-10-19 2013-10-03 Kawasaki Jukogyo Kabushiki Kaisha Fuel gas supplying and filling system
US20140124063A1 (en) * 2012-11-05 2014-05-08 Magna Steyr Fahrzeugtechnik Ag & Co Kg Stop valve for pressure storage vessel
DE102018215380A1 (en) * 2018-09-11 2020-03-12 Robert Bosch Gmbh Valve device for a gaseous medium and tank device for storing a gaseous medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUCHS F ET AL: "Directly operated valve for space cryostats", CRYOGENICS, ELSEVIER, KIDLINGTON, GB, vol. 27, no. 1, 1 January 1987 (1987-01-01), pages 15 - 19, XP001312131, ISSN: 0011-2275 *

Also Published As

Publication number Publication date
DE102020212066A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
DE102005031422C5 (en) Backflow
DE102018215380A1 (en) Valve device for a gaseous medium and tank device for storing a gaseous medium
EP3478957B1 (en) Valve for injecting gaseous fuel
WO2009043733A1 (en) Piston pump for delivering a fluid, and associated brake system
WO2018001542A1 (en) Tank valve
DE102018207287A1 (en) Valve arrangement for gas pressure regulation, fuel system with valve arrangement for gas pressure regulation
WO2022063492A1 (en) Shutoff valve for a compressed gas container, and compressed gas container
DE102020212068A1 (en) Shut-off valve for a compressed gas tank, compressed gas tank
EP4217629A1 (en) Tank device for storing a gaseous medium, comprising a valve device
DE102022208071A1 (en) Shut-off valve for a fuel gas tank, fuel gas tank with shut-off valve and fuel gas tank system
WO2024099663A1 (en) Valve assembly for a fuel gas tank, fuel gas tank comprising a valve assembly
DE102022201837A1 (en) Shut-off valve for fuel gas tank systems and fuel gas tank system with shut-off valve
DE102020212948A1 (en) Solenoid valve for a compressed gas tank, compressed gas tank with solenoid valve
DE102018202807A1 (en) Valve arrangement for gas pressure regulation, fuel system with valve arrangement for gas pressure regulation
WO2023143845A1 (en) Shut-off valve, and hydrogen tank system comprising a shut-off valve
WO2022258327A1 (en) Fuel cell system, gas tank device and shut-off valve for a gas tank device
DE102022207249A1 (en) Fuel gas tank system
DE102021205990A1 (en) Shut-off valve for hydrogen tank systems, compressed gas tanks and hydrogen tank systems
DE102022208072A1 (en) Valve assembly for a fuel gas tank, fuel gas tank with valve assembly and fuel gas tank system
WO2022253495A1 (en) Shut-off valve for hydrogen tank systems, hydrogen tank system and the use of a shut-off valve in a hydrogen tank system
WO2024099662A1 (en) Valve assembly for a fuel gas tank, fuel gas tank comprising a valve assembly
WO2016134930A1 (en) Partial pressure balanced pressure control valve for a high pressure accumulator
WO2023066609A1 (en) Fuel cell system, gas tank device, and blocking device for a gas tank device
WO2023051986A1 (en) Valve unit for controlling a flow rate of a gaseous fuel stream and fluid system comprising such a valve unit
DE102014225323A1 (en) Shift or pressure control valve for a fuel injection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21765876

Country of ref document: EP

Kind code of ref document: A1