WO2022063012A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2022063012A1
WO2022063012A1 PCT/CN2021/118681 CN2021118681W WO2022063012A1 WO 2022063012 A1 WO2022063012 A1 WO 2022063012A1 CN 2021118681 W CN2021118681 W CN 2021118681W WO 2022063012 A1 WO2022063012 A1 WO 2022063012A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
information
configuration information
terminal device
indication information
Prior art date
Application number
PCT/CN2021/118681
Other languages
English (en)
French (fr)
Inventor
陈磊
许斌
李晨琬
张荻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022063012A1 publication Critical patent/WO2022063012A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and a communication device.
  • the communication system includes one or more terminal devices, which are connected to the core network through the access network, so as to realize the communication among the plurality of communication devices.
  • the reliability of service transmission is high, so if the network device fails, the service transmission cannot be guaranteed, and the failure recovery time directly affects whether the service is interrupted.
  • the reliability requirements are also relatively high.
  • network devices are usually provided with one or more backup network devices.
  • an operating network device eg, access network device, and/or core network device
  • a switch between the operating network device and the backup network device is triggered, thereby enabling the backup network device to provide services for the terminal device.
  • the wireless link between the operating network device and the terminal device will fail.
  • the terminal device when the terminal device detects a radio link failure with the access network device, it will initiate a radio resource control (radio resource control, RRC) re-establishment process. The re-establishment process may fail, resulting in reduced service reliability.
  • RRC radio resource control
  • Embodiments of the present application provide a communication method and a communication device, so as to improve the reliability of the communication system.
  • a communication method In a first aspect, a communication method, a corresponding communication device, and a communication system are provided.
  • the communication method is used in a communication system including a terminal device, a first network device and a second network device.
  • the terminal device receives first indication information from the second network device, where the first indication information is used to indicate that the first network device is faulty, or used to instruct a switch from the first network device to the The second network device, or used to instruct the network device serving the terminal device to switch; the terminal device sends the response information of the first indication information to the second network device.
  • one network device determines whether another network device is faulty and notifies the terminal device, enabling the terminal device to communicate with the second network device as soon as possible, which can reduce service transmission interruption time and improve service continuity and reliability.
  • the terminal device receives the first indication information according to the first configuration information.
  • the first configuration information is used to configure resources such as time domain, frequency domain, or code domain required for receiving the first indication information.
  • the first configuration information includes, for example, bandwidth part (bandwidth part, BWP) information, search space information, time domain resource information, and/or, wireless network temporary identity (radio network temporary identity, RNTI) and the like.
  • the terminal device receives part or all of the information in the first configuration information from the network side.
  • the network device (the first network device, and/or the second network device) sends the first configuration information to the terminal device, so that the terminal device can learn the resources required for receiving the first indication information, and improve the reception effectiveness.
  • the first configuration information includes part or all of the resources required for receiving the first indication information (eg, BWP information, time domain resource information, search space information, and/or RNTI information, etc.).
  • the terminal device obtains part or all of the information in the first configuration information by default. For example, the terminal device obtains some or all of the resources required for receiving the first indication information (eg, BWP information, search space information, time domain resource information, and/ or RNTI, etc.), so that the network device does not need to send the first configuration information, so as to save air interface resources.
  • the terminal device obtains some or all of the resources required for receiving the first indication information (eg, BWP information, search space information, time domain resource information, and/ or RNTI, etc.), so that the network device does not need to send the first configuration information, so as to save air interface resources.
  • the terminal device obtains part of the information in the first configuration information by default, and the other part of the information is obtained by receiving the first configuration information from the network device.
  • the information of the BWP is used to indicate a first BWP, and the first BWP is one or more downlink BWPs predetermined for transmitting the first indication information.
  • the terminal device receives the first indication information on the first BWP.
  • the first BWP may be: an activated downlink BWP for the terminal device, or an initial downlink BWP, or a downlink BWP corresponding to control resource set 0 (CORESET#0).
  • Informing the terminal device of the BWP information used to transmit the first indication information by default (for example, protocol regulation, or pre-configuration) or network device indication (explicitly or implicitly), the terminal device can detect the indication information more efficiently and improve the performance of the terminal device. The reception efficiency of the indication information by the terminal device.
  • the terminal device needs to adjust the radio frequency of the receiving antenna of the terminal device from the frequency of the activated downlink BWP to the frequency of the first BWP to receive the first indication information .
  • the terminal device uses an appropriate radio frequency to receive the first indication information, which improves the success rate of the terminal device in receiving the first indication information.
  • the RNTI is used to scramble the first indication information.
  • the RNTI may be a common RNTI (eg, C-RNTI).
  • C-RNTI common RNTI
  • the second network device can use the public RNTI to scramble the first indication information, and the terminal device uses the public RNTI to descramble the first indication information, so the network does not need to configure the RNTI through signaling, which can save Signaling overhead.
  • the RNTI is obtained from the first configuration information received by the terminal device from the network side. The terminal device descrambles the first indication information by using the RNTI obtained in the first configuration information.
  • the RNTI may be denoted as X-RNTI.
  • the X-RNTI may be an RNTI already defined in a communication standard, or may be a newly defined RNTI in a communication standard.
  • That the terminal device sends the response information of the first indication information to the second network device can be understood as: the terminal device sends a response message to respond to the first indication information; or, the terminal device sends a response message to the first indication information;
  • the response information is sent, but a certain process initiated by the terminal device after receiving the first indication information is used as a response to the first indication information.
  • the response message may be a response message specified in an existing standard, or may be a newly defined message.
  • the process of performing random access by the terminal device to the second network device is regarded as a response of the terminal device to the first indication information.
  • a certain message sent by the terminal device to the second network device in the process of performing random access to the second network device is regarded as the response information, and the response information is, for example, the preamble. Msg3), or MsgB during random access, etc.
  • the terminal device does not send the response information to the second network device, but after receiving the first indication information, through other methods (for example, cell reselection, RRC connection establishment , or processes such as RRC re-establishment) to switch to the second network device.
  • the first indication information further includes third configuration information, where the third configuration information is used for the terminal device to communicate with the second network device, and the third configuration information includes random access resources information and/or information of the second BWP; or, the method further includes: receiving, by the terminal device, second configuration information from the first network device, the second configuration information being used by the terminal device to communicate with The second network device communicates, and the second configuration information includes one or more of the following: random access resource information, second BWP information, measurement configuration information, radio bearer configuration information, and MAC layer configuration information, Or, physical layer configuration information.
  • the second BWP is a downlink BWP applied by the terminal device in the random access process.
  • the second network device can send the second configuration information to the terminal device in advance, so that if the terminal device needs to switch to the second network device later, it does not need to wait for the second network device to deliver the configuration information, but uses the second configuration information obtained in advance. Communication with the second network device helps to improve the communication efficiency of the terminal device and reduce the time of service interruption.
  • the second network device does not need to send the second configuration information in advance, but when it is determined that the terminal device needs to be switched, sends the third configuration information through the first indication information to improve the validity of the third configuration information, and uses the first indication information to send the third configuration information. Sending the third configuration information together can also reduce the time for the terminal device to wait for the configuration information, and improve the communication efficiency of the terminal device.
  • the method further includes: receiving, by the terminal device, fourth configuration information from the first network device.
  • the fourth configuration information includes two or more sets of configurations, that is, includes two or more than two sub-configuration information, and each set of configurations corresponds to one network device. Therefore, the fourth configuration information can be used to configure downlink reference signals corresponding to different network devices.
  • the fourth configuration information includes first sub-configuration information and second sub-configuration information, the first sub-configuration information is used to configure the downlink reference signal of the first network device, and the second sub-configuration information is used to configure the downlink reference signal of the first network device.
  • the terminal device receives the downlink reference signal from the second network device according to the fourth configuration information.
  • the sub-configuration information of the fourth configuration information may include information for indicating which network device the sub-configuration information corresponds to.
  • the information used to indicate which network device the sub-configuration information corresponds to may be explicit or implicit.
  • the second sub-configuration information includes first information, and the first information indicates that the second sub-configuration information corresponds to the second network device, or indicates that the network device corresponding to the second sub-configuration information and the first sub-configuration information The corresponding network devices are different.
  • the terminal device can, according to the second information included in the second sub-configuration information, be able to It is clear that the second sub-configuration information and the first sub-configuration information correspond to different network devices.
  • the terminal device can receive corresponding downlink reference signals according to different sub-configuration information, so that the terminal device can not only measure the downlink reference signal from the first network device, but also complete the measurement of the downlink reference signal from the second network device. The measurement of the downlink reference signal, so as to realize the downlink beam training between the terminal device and the second network device.
  • the second network device sends the first indication information on a transmit beam corresponding to at least one receive beam of the downlink reference signal of the second network device.
  • the at least one receiving beam is all or part of the receiving beams that receive the downlink reference signal of the second network device.
  • the terminal device receives the downlink reference signal of the second network device through the at least one receiving beam, and receives the first indication information through the at least one receiving beam, which can improve the success rate of receiving the first indication information.
  • the method further includes: receiving, by the terminal device, first state information from the first network device, where the first state information includes a number of a downlink reference signal, and the downlink The downlink reference signal indicated by the reference signal number is one or more downlink reference signals configured by the second sub-configuration information.
  • the first state information may include numbers of downlink reference signals corresponding to the second network device, for example, the terminal device is located in a direction corresponding to the numbers of these downlink reference signals. If the second network device sends the first indication information on the transmit beams corresponding to the downlink reference signals indicated by the numbers of the downlink reference signals, the terminal device receives the first indication information on the receive beams corresponding to the numbers of the downlink reference signals. an instruction message.
  • the terminal device can receive more accurately, thereby improving the receiving success rate of the terminal device, and the second network device does not need to send the indication information in other directions, thereby saving the power consumption of the second network device.
  • the terminal device receives the first indication information on the receiving beam corresponding to the downlink reference signal based on the number of the downlink reference signal indicated by the network device, which can improve the success rate of receiving the first indication information and reception quality.
  • the method further includes: receiving, by the terminal device, second indication information from the first network device, where the second indication information includes the information of the first transmit beam and the second indication information. Sending beam information, the first sending beam is used to send information to the first network device, and the second sending beam is used to send information to the second network device.
  • the terminal device sends an uplink reference signal, and both the first network device and the second network device can measure the received uplink reference signal. Then, the second network device can obtain measurement results, and according to the measurement results, it can be determined on which receiving beams the second network device receives the information from the terminal device with better reception quality.
  • the first network device may also configure a second transmission beam for the terminal device, the second transmission beam corresponds to the second network device, and the second transmission beam is, for example, based on the measurement of the second network device. Results confirmed.
  • the second network device can receive more accurately, thereby improving the success rate of receiving the second network device, and the terminal device does not need to be in other directions. Then send the instruction information to save the power consumption of the terminal device.
  • the terminal device based on the second indication information from the first network device, sends the first indication information to the second network device through the second transmission beam
  • the response information can improve the success rate and quality of receiving the response information by the second network device.
  • a communication method, a corresponding communication device and a communication system are provided.
  • the second network device sends first indication information to the terminal device, where the first indication information is used to indicate that the first network device is faulty, or used to instruct switching from the first network device to the second network device, or use instructing the network device serving the terminal device to perform handover; the second network device receives response information of the first indication information from the terminal device.
  • the first indication information and possible implementation manners and technical effects of the response information, reference may be made to the description related to the first aspect.
  • the second network device determines that the first network device is faulty; or, if the The second network device receives measurement information from the terminal device, and the second network device determines that the first network device is faulty according to the measurement information; or, if the second network device receives the measurement information from the terminal device Hybrid automatic repeat request acknowledgement (HARQ-ACK) information, the HARQ-ACK information is used to indicate that data transmission with the first network device fails, and the second network device according to the HARQ-ACK information - ACK information determines that the first network device is faulty.
  • HARQ-ACK Hybrid automatic repeat request acknowledgement
  • the above three ways can be applied independently, that is, the second network device only needs to use one of the ways to determine whether the first network device is faulty; or, any two or three of the above three ways can also be applied in combination , that is, the second network device can combine a variety of ways to determine whether the first network device is faulty.
  • the second network device determines that the first network device is faulty, so that the accuracy of the determination result can be improved.
  • Which one or more of the above manners are used by the second network device to determine whether the first network device is faulty can be determined by the second network device itself, or can also be specified by a protocol.
  • the second network device may also use other methods to determine whether the first network device is faulty, and the embodiments of the present application do not limit the manner in which the second network device determines that the first network device is faulty.
  • the second network device sends the first indication information to the terminal device according to the first configuration information.
  • the first configuration information includes one or more of the following: BWP information, search space information, or RNTI.
  • the second network device sends second sub-configuration information to the first network device, where the second sub-configuration information is used to configure a downlink reference signal of the second network device; the second network device The device receives a first measurement result from the terminal device, where the first measurement result is a measurement result obtained by measuring the downlink reference signal of the second network device; the second network device is based on the first measurement As a result, second state information is determined, where the second state information includes the serial number of the downlink reference signal; the second network device sends the second state information to the first network device.
  • the second network device sends the first indication information to the terminal device through a sending beam corresponding to the serial number of the downlink reference signal.
  • the method further includes: receiving, by the second network device, configuration information for configuring an uplink reference signal from the first network device, and receiving, according to the configuration information, an the uplink reference signal of the terminal equipment.
  • the second network device measures the uplink reference signal, obtains a measurement result, and sends the measurement result to the first network device.
  • the measurement result can be used by the terminal device to determine a transmit beam for transmitting information to the second network device.
  • the second network device receives the response information from the terminal device through a second receiving beam.
  • a communication method, a corresponding communication device, and a communication system receives the first configuration information from the second network device; the first network device sends the first configuration information to the terminal device, where the first configuration information is used by the terminal device to receive information from the first network device.
  • the first indication information of the network device where the first indication information is used to indicate that the first network device is faulty, or used to instruct the terminal device to switch from the first network device to the second network device, Or it is used to instruct the network device serving the terminal device to switch.
  • the first configuration information includes one or more of the following: BWP information; search space information; or, RNTI.
  • BWP information includes one or more of the following: BWP information; search space information; or, RNTI.
  • the method further includes: the first network device sending, to the terminal device, configuration information of working parameters used to support communication between the terminal device and the first network device (referred to as: configuration information of the first network device).
  • configuration information of the first network device includes one or more of the following: measurement configuration information, radio bearer configuration information, MAC layer configuration information, or physical layer configuration information.
  • the second network device In order to support the terminal device to switch to the second network device to work, the second network device also needs to configure corresponding working parameters for the terminal device. In order to reduce the complexity of configuration, an iterative configuration method can be adopted. For example, the second network device configures corresponding parameters for the terminal device according to the parameters of the terminal device under the first network device.
  • the first network device may also send the configuration information of the first network device to the second network device, thereby enabling The second network device configures corresponding working parameters for the terminal device.
  • the first network device receives second sub-configuration information from the second network device, where the second sub-configuration information is used to configure a downlink reference signal of the second network device; the first The network device sends fourth configuration information to the terminal device, where the fourth configuration information includes first sub-configuration information and the second sub-configuration information, and the first sub-configuration information is used to configure the first network device the downlink reference signal of the second network device, and the second sub-configuration information is used to configure the downlink reference signal of the second network device.
  • the fourth configuration information may further include one or more other sub-configuration information, and each of the sub-configuration information corresponds to a network device.
  • the first network device receives second state information from the second network device, where the second state information includes the number of the downlink reference signal; the first network device sends the first network device to the terminal device. Status information, where the first status information includes the serial number of the downlink reference signal.
  • the first network device sends fifth configuration information to the terminal device, where the fifth configuration information is used to configure an uplink reference signal.
  • the method further includes: receiving, by the first network device, a measurement result from the second network device, where the measurement result is that the second network device measures an uplink reference signal obtained measurement results.
  • the first network device determines a second transmit beam according to the measurement result from the second network device.
  • the first network device sends second indication information to the terminal device, where the second indication information includes information of the first transmit beam and information of the second transmit beam, and the first transmit beam is used for the
  • the terminal device sends information to the first network device.
  • the second sending beam is used by the terminal device to send information to the second network device.
  • a communication device may be the terminal device described in any one of the first to third aspects above, or an electronic device configured in the terminal device, or a larger device including the terminal device.
  • the terminal device includes corresponding means or modules for performing the above method.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiving unit (sometimes also referred to as a transceiving module).
  • the processing unit is configured to receive the first indication information from the second network device through the transceiver unit, and send response information of the first indication information to the second network device through the transceiver module.
  • the communication apparatus includes: a processor, coupled to the memory, for executing instructions in the memory, so as to implement the method executed by the terminal device in any one of the first to third aspects.
  • the communication device further includes other components, such as an antenna, an input and output module, an interface, and the like. These components may be hardware, software, or a combination of software and hardware.
  • a communication device may be the first network device and/or the second network device described in any one of the first to third aspects.
  • the communication device has the function of the first network device, the function of the second network device, or the functions of the first network device and the second network device.
  • the communication apparatus may be used as the first network device of the first terminal device, and may also be used as the second network device of the second terminal device.
  • the first network device and/or the second network device for example, a base station, or a baseband device in a base station.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication apparatus includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • the processing unit is configured to send the first indication information to the terminal device through the transceiver unit, and receive response information of the first indication information from the terminal device through the transceiver module.
  • the communication apparatus includes a processing unit, configured to couple with the storage unit, and execute a program or instruction in the storage unit, so as to enable the communication apparatus to perform the function of the above-mentioned first network device, and/or the functionality of the second network device.
  • a computer-readable storage medium is provided, and the computer-readable storage medium is used to store a computer program or instruction, which, when executed, enables the terminal device, or the first network device, or the first network device in the above aspects. The method performed by the two network devices is implemented.
  • a computer program product comprising instructions which, when run on a computer, cause the methods of the above aspects to be implemented.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the application.
  • FIG. 2A is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2B is a schematic diagram of another application scenario of an embodiment of the present application.
  • FIG. 2C is a schematic diagram of another application scenario of an embodiment of the present application.
  • FIG. 3 is a flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5A and FIG. 5B are schematic diagrams of the positional relationship in the frequency domain between the first BWP and the activated BWP of the terminal device in the embodiment of the application;
  • FIG. 6 is another flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is still another flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • the technologies provided in the embodiments of the present application can be applied to the communication system 10 shown in FIG. 1 .
  • the communication system 10 includes one or more communication apparatuses 30 (for example, terminal devices) connected to a or multiple core network devices to implement communication between multiple communication devices.
  • the communication system may, for example, support 2G, 3G, 4G, or 5G (sometimes also referred to as new radio, NR) access technology communication systems, wireless fidelity (WiFi) systems, 3rd Generation Partnership Project ( 3rd generation partnership project, 3GPP) related cellular systems, communication systems that support the fusion of multiple wireless technologies, or future-oriented evolution systems.
  • 2G, 3G, 4G, or 5G sometimes also referred to as new radio, NR
  • WiFi wireless fidelity
  • 3rd Generation Partnership Project 3rd generation partnership project, 3GPP
  • 3GPP 3rd generation partnership project
  • a terminal device is a device with wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device (such as a communication device) built into the above-mentioned device. module, modem, or system-on-a-chip, etc.).
  • the terminal device is used to connect people, things, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), vehicle-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (M2M/MTC), Internet of things (internet of things, IoT), virtual reality (virtual reality, VR) , Augmented reality (AR), industrial control (industrial control), unmanned driving (self driving), telemedicine (remote medical), smart grid (smart grid), smart furniture, smart office, smart wear, smart transportation , terminal equipment for smart city, drone, robot and other scenarios.
  • cellular communication device-to-device communication
  • vehicle-to-everything vehicle to everything, V2X
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things
  • virtual reality virtual reality
  • AR Augmented reality
  • the terminal equipment may sometimes be referred to as user equipment (UE), terminal, access station, UE station, remote station, wireless communication equipment, or user equipment, etc.
  • UE user equipment
  • the terminal equipment is referred to as The UE is taken as an example for description.
  • the network equipment in this application includes access network equipment and/or core network equipment.
  • the access network device is a device with a wireless transceiver function, and is used to communicate with the terminal device.
  • the access network equipment includes but is not limited to the base station (BTS, Node B, eNodeB/eNB, or gNodeB/gNB), the transmission reception point (TRP) in the above-mentioned communication system, the base station of the subsequent evolution of 3GPP, and the WiFi system. access nodes, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small base station, a relay station, and the like.
  • Multiple base stations may support the aforementioned networks of the same access technology, or may support the aforementioned networks of different access technologies.
  • a base station may contain one or more co-sited or non-co-sited transmission reception points.
  • the network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • a network device in the V2X technology may be a road side unit (RSU).
  • RSU road side unit
  • the multiple network devices in the communication system may be base stations of the same type, or may be base stations of different types.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • a terminal device can communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement functions such as mobility management, data processing, session management, policy and charging.
  • the names of devices implementing core network functions in systems with different access technologies may be different, which are not limited in this application.
  • the core network equipment includes: an access and mobility management function (AMF), a session management function (SMF), or a user plane function (UPF) Wait.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the communication device for implementing the function of the network device may be a network device, or may be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the device for realizing the function of the network device being a network device as an example.
  • bandwidth part (BWP) is introduced to allocate part of the spectrum for UEs on a broadband to adapt to the bandwidth that UEs can support. Therefore, in a communication system, the bandwidth of the UE is dynamically variable, and sometimes the technology can also be referred to by bandwidth adaptation. By configuring a variety of BWPs with different bandwidths for the UE, flexible scheduling of the UE and energy saving of the UE can be realized.
  • beamforming technology can be used. For example, both downlink and uplink use beam transmission.
  • SSB-based random access channel (RACH) process in the 5G system.
  • RACH random access channel
  • This process is a beam training process in the access process.
  • the downlink transmit beam of the base station and the uplink receive beam of the UE can be made alignment, and the uplink transmit beam of the UE can be aligned with the downlink receive beam of the base station.
  • CSI-RS channel state information-reference signal
  • This process can occur after the access is successful, and this process can enable the downlink transmission of the base station
  • the beam is aligned with the UE's uplink receive beam.
  • SRS sounding reference signal
  • the number of nouns means “singular nouns or plural nouns", ie "one or more". "At least one” means one or more, and “plurality” means two or more. "And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/" generally indicates that the associated objects are an "or” relationship. For example, A/B, means: A or B.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority, or importance of multiple objects.
  • the configuration information of the first downlink RS and the configuration information of the second downlink RS may be the same configuration information or different configuration information, and this name does not represent the information of the two configuration information. volume, content, priority or importance.
  • FIG. 2A shows a communication network architecture in the communication system 10 provided by the present application, and the embodiments shown in FIG. 4 , FIG. 6 or FIG. 7 provided later can all be applicable to this architecture.
  • the first network device is the source network device (or referred to as the working network device, or the serving network device) of the terminal device (the UE will be used as an example for description in the following), and the second network device is the target network device of the UE (or referred to as, Standby network equipment), that is, the network equipment that provides services for the UE after handover.
  • failure can be understood as a failure of network equipment, and/or can no longer provide services for one or more UEs due to other reasons, which is referred to as a failure for short.
  • the "handover” mentioned in this application refers to the handover of the network equipment that provides services for the UE, and is not limited to "cell handover". For the convenience of description, the description is given by taking the network device as the base station as an example. The “handover” may refer to a handover due to a change in the base station serving the UE. For example, when the source base station of the UE fails, the backup base station provides services for the UE.
  • the target base station after the handover provides services for the UE.
  • the cell accessed by the UE before the handover and after the handover can be changed or unchanged.
  • the backup network device is a relative concept, for example, with respect to one UE, base station 2 is the backup network device of base station 1, and with respect to another UE, base station 1 is the backup network device of base station 2.
  • the first network device and the second network device may be two different devices, for example, the first network device and the second network device are two different base stations.
  • the first network device and the second network device may also be two sets of functional modules in the same device.
  • the functional modules may be hardware modules, software modules, or hardware modules and software modules.
  • the first network device and the second network device are located in the same base station and are two different functional modules in the base station.
  • the first network device and the second network device are not transparent to the UE. When the UE interacts with the corresponding network device, it can know which network device it is interacting with. In another implementation manner, the first network device and the second network device are transparent to the UE.
  • the UE is able to communicate with the network device, but does not know which of the two network devices it is interacting with. In other words, for the UE, it may be considered that there is only one network device.
  • FIG. 3, FIG. 4, FIG. 6 and FIG. 7, the first network device and the second network device are located in a dashed box, indicating that the first network device and the second network device It may not be transparent or it may be transparent.
  • the first network device, the second network device, and the terminal device may be the first network device in the network architecture shown in FIG. 2A, respectively, and the second network device and the UE are described in this application.
  • the steps represented by dotted lines are optional steps, and will not be described in detail in the following.
  • FIG. 2B shows another communication network architecture in the communication system 10 provided by the present application.
  • the communication system includes a core network (new core, CN) and a radio access network (radio access network, RAN).
  • the network equipment (eg, base station) in the RAN includes a baseband device and a radio frequency device.
  • the baseband device may be implemented by one or more nodes, and the radio frequency device may be implemented independently from the baseband device, or may be integrated into the baseband device, or partially remote and partially integrated in the baseband device.
  • the network equipment in the RAN may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • CU centralized unit
  • DU distributed unit
  • CU and DU can be divided according to the functions of the protocol layer of the wireless network.
  • the functions of the PDCP layer and above are set in the CU, and the functions of the protocol layers below PDCP, such as the RLC layer and the MAC layer, are set in the DU.
  • this protocol layer division is only an example, and may also be divided in other protocol layers.
  • the radio frequency device may be remote, not placed in the DU, or integrated in the DU, or partially remote and partially integrated in the DU, which is not limited in this application.
  • FIG. 2C shows another communication network architecture in the communication system 10 provided by the present application.
  • the control plane (CP) and user plane (UP) of the CU can also be separated and divided into different entities for implementation, namely the control plane CU entity (CU-CP entity) and the user plane CU entity. (CU-UP entity).
  • the signaling generated by the CU can be sent to the UE through the DU, or the signaling generated by the UE can be sent to the CU through the DU.
  • the DU may directly encapsulate the signaling at the protocol layer and transparently transmit it to the UE or CU without parsing the signaling.
  • the CU is divided into a network device on the RAN side, and in addition, the CU can also be divided into a network device on the CN side, which is not limited in this application.
  • FIG. 3 shows a communication method provided by an embodiment of the present application.
  • the second network device sends first indication information to the UE, and correspondingly, the UE receives the first indication information from the second network device.
  • the second network device when it is determined that the first network device is faulty, the second network device sends first indication information to the UE, where the first indication information indicates that the first network device is faulty, or instructs switching from the first network device to the second network device , or to indicate that the network device serving the UE has changed, or to instruct the second network device to take effect (the so-called take effect can be understood as the UE needs to switch to the second network device to work), or to indicate that the first network device fails (the so-called failure can be understood Because the UE cannot continue to work under the first network device).
  • the first indication information may be carried in a radio resource control (radio resource control, RRC) message, a media access control (media access control, MAC) control element (control element, CE) or downlink control information (downlink control information, DCI) ) and other messages to the UE.
  • RRC radio resource control
  • MAC media access control
  • CE control element
  • DCI downlink control information
  • S302 The UE sends response information corresponding to the first indication information to the second network device, and correspondingly, the second network device receives the response information from the UE.
  • a certain message sent by the UE to the second network device during random access to the second network device is regarded as the response information, that is, when the UE accesses the second network device, it is regarded as the UE's access to the first network device.
  • the indication information has responded, for example, the response information is a random preamble sequence (preamble), or the response information may be a scheduling transmission message, such as the third message (Msg3) in the random access process, or the The response message may also be a message B (MsgB) in the random access procedure, and so on.
  • the UE may not send response information to the second network device, for example, the UE may perform operations such as packet data convergence protocol (packet data convergence protocol, PDCP) reconstruction after receiving the first indication information, without sending the second network device.
  • PDCP packet data convergence protocol
  • the device sends response information, so S302 is an optional step.
  • the first network device is a network device currently serving the UE. That is to say, in this embodiment of the present application, other network devices (eg, the second network device) notify the UE that the UE cannot continue to work under the first network device.
  • the second network device determines whether the first network device is faulty, or in other words, the second network device enables the second network device to provide services for the UE, which is highly achievable, so that the UE can switch as quickly as possible and reduce services.
  • the transmission delay improves the reliability of the communication system.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the first network device sends configuration information to the UE and the second network device respectively (S401, S402).
  • the configuration information includes working parameters for supporting the UE to communicate with the first network device (for convenience of description, it is referred to as configuration information of the first network device for short).
  • the configuration information of the first network device includes one or more of the following: measurement configuration information, radio bearer (radio bearer) configuration information, MAC layer configuration information, or physical layer configuration information.
  • the measurement configuration information may be used to configure the measurement behavior of the UE under the first network device.
  • the physical layer configuration information may be used to configure one or more bandwidth part BWPs for the UE.
  • the UE receives configuration information of the first network device.
  • the first network device may send the configuration information to the UE when the random access between the UE and the first network device is successful.
  • the first network device may also be used when the UE works under the first network device ( A period of time after the random access is successful), the configuration information is sent to the UE.
  • the second network device receives configuration information of the first network device.
  • the second network device may also provide services for the UE. That is to say, the second network device may be a switched network device.
  • the second network device may configure working parameters for the UE.
  • the second network device adopts an iterative configuration method.
  • the second network device may configure corresponding parameters for the UE according to the parameters of the UE under the first network device, thereby reducing the complexity of configuration.
  • the second network device sends configuration information (for convenience of description, simply referred to as configuration information of the second network device) for supporting the UE to communicate with the second network device to the first network device and/or the UE, or the second network
  • the device sends the configuration information of the second network device to the UE through the first network device.
  • the configuration information of the second network device may include one or more of the following: random access resource information, BWP information, measurement configuration information, radio bearer configuration information, MAC layer configuration information, physical layer configuration information, search Information about the search space, or the radio network temporary identity (RNTI).
  • the BWP information is used to indicate one or more BWPs.
  • the BWP information is the identifier of one or more BWPs, or other information used to identify one or more BWPs, or used to configure one or more BWPs.
  • Information of multiple BWPs eg, bandwidth of BWPs, etc.).
  • the configuration information of the second network device includes: first configuration information and second configuration information.
  • the first configuration information is used to configure one or more of time domain resources, frequency domain resources or code domain resources, so as to enable the UE to receive indication information from the second network device.
  • the indication information may be, for example, the first indication information in S301. According to the indication information, the UE may learn that the first network device is faulty, or the network device serving the UE is switched, or the UE needs to be switched from the first network device to the second network device.
  • the first configuration information may include one or more of the following: BWP information, search space information, and/or RNTI.
  • the second configuration information is used to configure the working parameters of the UE corresponding to the second network device, and may include, for example, one or more of the following: information about random access resources, information about BWPs related to random access, and measurement configuration information , radio bearer configuration information, MAC layer configuration information, physical layer configuration information.
  • the BWP information in the first configuration information is used to instruct the second network device to send one or more BWPs (for convenience of description, referred to as first BWPs) of the indication information to the UE.
  • the information of the search space in the first configuration information is used to indicate the search space, for example, an identifier of the search space, or other information used to indicate the search space, for the UE to receive the indication information in the search space.
  • the search space may be a public search space, for example, the second network device sends the indication information by means of beam scanning.
  • the search space indicated by the identifier of the search space is a dedicated search space for the UE.
  • the RNTI in the first configuration information may be a public RNTI, such as a cell-radio network temporary identifier (cell-radio network temporary identifier, C-RNTI).
  • the first BWP is a downlink BWP, which may be all or part of the BWPs configured for the UE, that is, the first BWP may include one or more BWPs configured for the UE.
  • the UE works under the first network device, and the first network device configures one or more BWPs for the UE, and the information of the BWPs may indicate some or all of the one or more BWPs.
  • the second network device may send the indication information on the BWP, and the UE will also detect and receive the indication information on the BWP; or, if the BWP The information indicates multiple BWPs, then when sending the indication information to the UE, the second network device may send the indication information on all or part of the multiple BWPs, and the UE may detect all or part of the BWPs in the multiple BWPs to receiving the indication information. Therefore, even if the UE fails to detect or fail to receive on one of the BWPs, it may detect and receive successfully on the other BWPs, thereby improving the success rate of the UE receiving the indication information.
  • the first BWP may be predetermined for transmitting the indication information (eg, the first indication information in S301 , one or more downlink BWPs.
  • the first BWP may be specified by a protocol, or may be preset in other ways.
  • the first BWP is the initial downlink BWP of the UE
  • the initial downlink BWP refers to the BWP for receiving system information, paging and performing random access from a cell when the UE is in the RRC disconnected state.
  • the bandwidth of the initial downlink BWP of the UE is the bandwidth of the control resource set 0 (CORESET#0) indicated by the MIB.
  • the bandwidth of the initial downlink BWP of the UE is still the bandwidth of CORESET#0 indicated by the MIB, so it can also be considered that the first BWP is the downlink BWP corresponding to control resource set 0 (CORESET#0).
  • the initial downlink BWP or CORESET#0 of the UE is a cell-level parameter, so that the UE and the second network device can be aligned.
  • both the second network device and the UE can determine which BWP is the first BWP, so that the second network device can send indication information to the UE on the initial downlink BWP of the UE,
  • the UE can also detect and receive the indication information on the initial downlink BWP of the UE, which improves the success rate of the UE in receiving the indication information.
  • the second network device only needs to send the indication information on the initial downlink BWP of the UE, and does not need to send the indication information on multiple BWPs, which reduces the power consumption of the second network device; the UE also only needs to The detection of indication information on the downlink BWP eliminates the need to detect indication information on multiple BWPs, and also reduces the power consumption of the UE. Moreover, this method can also reduce the signaling overhead caused by sending the indication information.
  • the first BWP is an active (active) downlink BWP of the UE.
  • the base station When a service arrives at the UE, the base station will schedule the UE from the initial BWP to a BWP whose bandwidth matches the service, and the BWP is called the activated BWP of the UE.
  • the UE can receive paging and other services on the activated BWP.
  • System information other system information, OSI).
  • the OSI includes other system information than SIB1.
  • a UE can be configured with multiple active BWPs, but at a certain moment, the UE can only use one active BWP.
  • the information equivalent to the BWP included in the configuration information of the second network device indicates the activated downlink BWP of the UE, but if the first network device configures multiple downlink BWPs for the UE, the activation of the UE The downside BWP of . Then, the configuration information of the second network device is equivalent to not indicating a certain fixed downlink BWP. Therefore, the second network device needs to infer which BWP the UE's activated downlink BWP is, so that when sending the indication information to the UE, it can be It is sent on the BWP, and the UE will detect on the activated downlink BWP of the UE when detecting the indication information. In this way, the UE can complete the detection and reception of the indication information without switching the radio frequency, which reduces the power consumption and delay caused by switching the radio frequency for the UE.
  • the first BWP is neither the initial downlink BWP of the UE nor the activated downlink BWP of the UE, but is one of the multiple BWPs configured for the UE. Since the first BWP can be specified through a protocol, both the second network device and the UE can determine which BWP the first BWP is. Therefore, the second network device can send the indication information to the UE on the first BWP, and the UE can also detect and receive the indication information on the first BWP, which improves the success rate of the UE in receiving the indication information.
  • the second network device only needs to send the indication information on the first BWP, and does not need to send the indication information on multiple BWPs, which reduces the power consumption of the second network device; the UE also only needs to detect on the first BWP.
  • the indication information does not need to be detected on multiple BWPs, and the power consumption of the UE is also reduced.
  • this method can also reduce the signaling overhead caused by sending the indication information.
  • the second network device may not need to send some or all of these parameters to the UE in advance.
  • the BWP information, the search space information, or the RNTI in the first configuration information are all optional information. That is to say, the first configuration information may not include one or more of these pieces of information, and the UE learns one or more of these pieces of information by default (for example, according to a predetermined rule, or an agreed manner, or an agreement). item.
  • the configuration information of the second network device sent by the second network device to the UE may not include the first configuration information.
  • the second network device does not send the information of the first BWP to the UE.
  • the second network device will send indication information on all downlink BWPs configured for the UE, then no matter which downlink BWP is activated by the UE when the second network device sends the indication information , the UE can detect the indication information from the second network device.
  • the second network device By default (or, the protocol stipulates) the second network device will send the indication information on the activated downlink BWP of the UE, then the UE can detect the indication information from the second network device on the activated downlink BWP, so as to receive For the indication information, in this case, the second network device may not need to send the information of the first BWP to the UE.
  • the second network device By default (or, the protocol stipulates) the second network device will send indication information to the UE on the initial downlink BWP of the UE, then the UE can detect the indication information from the second network device on the initial downlink BWP of the UE , so as to receive the indication information.
  • the second network device will send the indication information to the UE on the first BWP, then the UE can detect the indication information from the second network device on the first BWP, so as to receive the indication information, the first BWP may be one of the BWPs configured for the UE.
  • the second network device may also send the first configuration information to the UE to configure the information of the search space and/or the information of the RNTI and the like.
  • the second network device may not send the RNTI information to the UE.
  • the second network device uses the cell-radio network temporary identifier (C-RNTI) to scramble the indication information, then the second network device can use the C-RNTI to scramble the indication information.
  • the first indication information is scrambled, and the UE may also use the C-RNTI to descramble the first indication information.
  • the second network device will use the public RNTI to scramble the indication information, then the second network device may use the public RNTI to scramble the first indication information, and the UE may also use the public RNTI to scramble the first indication information. Indicates that the information is descrambled.
  • the BWP information related to random access in the second configuration information (referred to as the information of the second BWP for short) is used to indicate the downlink BWP applied by the UE in the random access process with the second network device.
  • the information of the second BWP is, for example, the identification of one or more BWPs, or other information used to identify one or more BWPs, or information used to configure one or more BWPs (for example, including the bandwidth of the BWP, etc. ).
  • the information about the random access resource in the second configuration information is used to indicate the resource for the UE to perform random access with the second network device, such as time-frequency resources used for random access, or the number of the preamble (preamble) Wait.
  • the UE blindly detects the physical downlink control channel (PDCCH) from the second network device on the BWP indicated by the information of the second BWP.
  • PDCCH physical downlink control channel
  • the information of the search space in the second configuration information is, for example, an identifier of the search space, or other information used to indicate the search space.
  • the search space indicated by the identification of the search space may be a common search space.
  • the second network device sends the indication information by means of beam scanning.
  • the search space indicated by the identifier of the search space is a dedicated search space for the UE.
  • the RNTI in the second configuration information may be a public RNTI, or may also be an RNTI of other types, such as an RNTI specially configured for the UE.
  • the network device does not need to send too much indication information, which helps to save signaling overhead.
  • the second network device may use the common RNTI to scramble the indication information, and the UE may also use the common RNTI to descramble the information from the second network device.
  • the second network device sends some or all of the working parameters of the UE under the second network device (configuration information of the second network device) to the UE in advance, so that the UE subsequently switches to the second network device if necessary. , then these parameters can be applied, and there is no need to request or wait for the second network device to send, which can improve the handover efficiency of the UE.
  • the first configuration information and the second configuration information may be sent through one message, or may also be sent through different messages.
  • the first network device may send the configuration information of the second network device to the UE through an RRC message, or MAC CE, or DCI, etc.
  • the parameters included in the configuration information of the second network device may be sent together through the same message, or may be sent separately through different messages.
  • one or more of the following information is carried by the RRC message/MAC CE/DCI: random access resource information, second BWP information, measurement configuration information, radio bearer configuration information, MAC layer configuration information, physical layer configuration information.
  • One or more of the following information is carried through another RRC message/MAC CE/DCI, BWP information, search space information, or RNTI information.
  • the first network device is faulty.
  • the second network device determines that the first network device is faulty.
  • the second network device determines whether the first network device is faulty by means of heartbeat detection. For example, the first network device periodically sends a heartbeat packet to the second network device, and the second network device receives the heartbeat packet from the first network device, and determines that the first network device operates normally, and if the second network device does not operate within the first period of time Receive a heartbeat packet from the first network device, and determine that the first network device is faulty.
  • the second network device periodically sends a heartbeat packet to the first network device, the first network device receives the heartbeat packet from the second network device, and sends heartbeat feedback to the second network device, and the second network device receives the heartbeat packet from the first network device.
  • the heartbeat feedback of the device determines that the first network device is operating normally, and if the second network device normally sends a heartbeat packet to the first network device, if it does not receive the heartbeat feedback from the first network device within the first period of time, it will It may be determined that the first network device is faulty.
  • the first duration may be a duration determined through negotiation between the first network device and the second network device, or a duration set by the second network device, or may also be a duration specified through a protocol.
  • the second network device determines whether the first network device is faulty through measurement information from the UE.
  • the first network device sends a downlink reference signal (reference signal, RS), such as CSI-RS.
  • RS downlink reference signal
  • the UE After the UE receives the downlink RS from the first network device, it can perform measurement to obtain a measurement result (or measurement information), and the UE sends the measurement information to the first network device.
  • the second network device may also perform detection on the time-frequency domain position of the measurement information, and then the second network device may also detect and receive the measurement information from the UE. Then, the second network device can determine whether the first network device operates normally or has a fault according to the measurement information of the UE.
  • the second network device determines whether the first network device is faulty through hybrid automatic repeat request acknowledgement (HARQ-ACK) information from the UE. For example, the first network device sends downlink data, and after receiving the downlink data from the first network device, the UE sends HARQ-ACK information to the first network device. Wherein, if the UE succeeds in receiving downlink data, the HARQ-ACK information may be positive acknowledgement (ACK) information, and if the UE fails to receive downlink data, the HARQ-ACK information may be negative acknowledgement (NACK) information.
  • the second network device may also perform detection on the time-frequency domain position of the HARQ-ACK information, and the second network device may also receive the HARQ-ACK information from the UE.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • the second network device may receive the HARQ-ACK information according to the The HARQ-ACK information of the UE determines whether the first network device is functioning normally or has failed. For example, if the HARQ-ACK information received by the second network device is used to indicate that the data transmission between the UE and the first network device is successful, the second network device determines that the first network device is normal, or the HARQ-ACK received by the second network device If the information indicates that the data transmission between the UE and the first network device fails, the second network device determines that the first network device is faulty.
  • the second network device may receive one or more HARQ-ACK information, and the one or more HARQ-ACK information may come from one UE or multiple UEs.
  • the second network device determines that the first The network device is faulty, and N is the total number of HARQ-ACK messages received by the first network device.
  • the first network device when the first network device can no longer provide services for the UE due to some reasons, it can actively notify the second network device. When the second network device learns that the first network device can no longer provide services for the UE, it can confirm the first network device. A network device failure.
  • the above multiple ways for the second network device to determine the failure of the first network device can be applied independently, that is, the second network device can use one of the ways to determine whether the first network device is faulty; or, any of the above three ways Two or more of them can also be applied in combination, that is, the second network device can combine multiple ways to determine whether the first network device is faulty, which can improve the accuracy of the determination result.
  • Which one or more of the above manners are used by the second network device to determine whether the first network device is faulty can be determined by the second network device itself, or can also be specified by a protocol.
  • the second network device may also use other methods to determine whether the first network device is faulty, and the embodiment of the present application does not limit the manner in which the second network device determines that the first network device is faulty.
  • the second network device sends the first indication information to the UE. For example, when it is determined that the first network device is faulty, the second network device sends the first indication information to the UE, so that the UE knows that the first network device cannot continue to provide services for the UE.
  • the first indication information indicates that the first network device is faulty, or indicates switching from the first network device to the second network device, or indicates that the network device serving the UE is switched. Wherein, the first indication information indicates that the first network device is faulty, which may be understood as that the first network is faulty and/or the first network device fails.
  • the first indication information indicates switching from the first network device to the second network device, which can be understood as that the second network device takes effect, and/or the UE needs to switch to the second network device.
  • other network devices eg, the second network device
  • notify the UE that the UE cannot continue to work under the serving network device ie, the first network device.
  • the second network device determines whether the first network device is faulty, thereby enabling the UE to switch as soon as possible and reducing the service transmission delay.
  • S406 and S301 introduced in the embodiment shown in FIG. 3 may be the same step.
  • the first indication information may be carried in a message such as an RRC message, a MAC CE, or a DCI and sent to the UE.
  • the second network device may send the first indication information on the selected resource, and send configuration information to inform the UE.
  • the UE may determine on which resources the first indication information is received according to the configuration information.
  • the UE receives the configuration information of the second network device, and the UE learns the resources for receiving the first indication information.
  • the UE receives the first indication information from the second network device according to the configuration information of the second network device.
  • the UE receives the information of the BWP from the network device. If the information of the BWP indicates all or part of the BWPs configured for the UE, the UE detects and detects on one or more BWPs indicated by the information of the BWP. The first indication information is received. Alternatively, if the information of the BWP indicates the initial downlink BWP of the UE, the UE detects and receives the first indication information on the initial downlink BWP of the UE. Alternatively, if the information of the BWP indicates the activated downlink BWP of the UE, the UE detects and receives the first indication information on the activated downlink BWP of the UE. Alternatively, if the information of the BWP indicates the first BWP, and the first BWP is one or more of the BWPs configured for the UE, the UE detects and receives the first indication information on the first BWP.
  • the UE receives the information of the search space (for example, the public search space and/or the dedicated search space) from the network device, the UE detects and receives the first indication in the search space indicated by the information of the search space information.
  • the search space for example, the public search space and/or the dedicated search space
  • the UE receives the information of the RNTI from the network device, and uses the information of the RNTI to descramble the received first indication information.
  • the UE receives the common RNTI, and uses the common RNTI to descramble the first indication information sent by broadcasting.
  • the UE may receive the first information from the second network device according to a predetermined rule.
  • the second network device sends the first indication information through one of the following resources: (1) the first BWP, the first BWP is a predetermined BWP; (2) all the configured BWPs for the UE (3) the downlink BWP activated by the UE; (4) the initial downlink BWP of the UE.
  • the UE detects and receives the first indication information on the corresponding resource.
  • the second network device uses the C-RNTI to scramble the first indication information, and the UE uses the C-RNTI to descramble the first indication information.
  • the second network device scrambles the indication information by using the common RNTI, and the UE uses the public RNTI to descramble the first indication information.
  • the first BWP is, for example, one of the BWPs configured for the UE. Then, if the first BWP is different from the currently activated downlink BWP of the UE, the UE needs to adjust the radio frequency of the UE, for example, the UE adjusts the radio frequency of the receiving antenna of the UE from the frequency of the currently activated downlink BWP to the first frequency of the BWP, thereby completing the reception of the first indication information.
  • the second network device may optionally not schedule data for the UE during the period when the UE adjusts the radio frequency of the receiving antenna to the frequency of the first BWP, so as to reduce the packet loss rate.
  • the first network device may optionally not be used for the UE during the period when the UE adjusts the radio frequency of the receiving antenna to the frequency of the first BWP.
  • the UE schedules data to reduce the packet loss rate.
  • the first BWP is different from the activated downlink BWP of the UE. It can be understood that the radio frequency reception range of the UE cannot cover the bandwidth of the first BWP and the bandwidth of the activated downlink BWP of the UE at the same time. The bandwidth of the activated downlink BWP cannot fall within the radio frequency receiving range of the UE at the same time.
  • the first BWP is different from the UE's activated downlink BWP, and it can be considered that the first BWP does not have an intersection with the UE's activated downlink BWP, or the first BWP and the UE's activated downlink BWP have an intersection.
  • the first BWP also includes the bandwidth not included in the UE's activated downlink BWP, and/or the UE's activated downlink BWP also includes the bandwidth not included in the first BWP.
  • the UE does not need to adjust the radio frequency of the UE, and the UE can receive the first indication information on the currently activated downlink BWP.
  • the radio frequency receiving range of the UE can cover both the bandwidth of the first BWP and the bandwidth of the UE's activated downlink BWP, in other words, the bandwidth of the first BWP and the bandwidth of the UE's activated downlink BWP can both fall within the radio frequency receiving range of the UE , it is considered that the first BWP and the UE's activated downlink BWP are the same.
  • the bandwidth of the first BWP is included in the bandwidth of the activated downlink BWP of the UE, it is considered that the first BWP and the activated downlink BWP of the UE are the same.
  • the bandwidth of the first BWP (the shaded part in FIG. 5A ) is within the bandwidth of the UE's activated downlink BWP, and it can be considered that the first BWP and the UE's activated downlink BWP are the same.
  • the bandwidth of the first BWP (the slashed part in FIG. 5B ) and the bandwidth of the UE's activated downlink BWP have no intersection, and it can be considered that the first BWP and the UE's activated downlink BWP are different.
  • the UE's adjustment method of the radio frequency of the receiving antenna is also similar to the above process, and will not be repeated here.
  • S403 may not be performed, or in S403, the network device may not need to send second configuration information (for example, random access resource information, second BWP information, measurement configuration information, one or more of radio bearer configuration information, MAC layer configuration information, or physical layer configuration information), but the first indication information includes second configuration information to support the communication between the UE and the second network device. communication, which can reduce the transmission overhead, especially when the UE does not switch for a long time. That is to say, the second network device sends the second configuration information to the UE when the UE needs to perform handover, and the configuration information is more in line with the current network situation. If the UE receives the configuration information in S403, the first indication information may optionally not include the configuration information. In this case, when the UE receives the first indication information, the configuration information of the second network device received in S403 is validated, or in other words, the configuration information of the second network device is applied to communicate with the second network device.
  • second configuration information for example, random access resource information, second BWP information,
  • the second configuration information includes one or more of the following: random access resource information, second BWP information, measurement configuration information, radio bearer configuration information, MAC layer configuration information, or physical layer configuration information.
  • the second configuration information may be sent separately.
  • the information related to random access is sent through DCI, and after the UE completes the random access under the second network device, the network device sends other parameters.
  • the first indication information and the second configuration information are carried in one message.
  • the first network device sends the first indication information to the UE through a message such as an RRC message, a MAC CE, or a DCI, then the message may include the second configuration information in addition to the first indication information.
  • the first indication information occupies one or more bits (bit), taking the first indication information occupying 1 bit as an example, if the value of the bit is "1", it can indicate that the first network device is faulty, or indicate that the first indication information is faulty.
  • a network device switches to the second network device, or is used to instruct the network device serving the UE to switch.
  • the first indication information may be used to implicitly indicate that the first network device cannot serve the UE. For example, if the second network device sends the first indication information, it indicates that the first network device is faulty, or that it is necessary to switch from the first network device to the second network device, or is used to indicate that the network device serving the UE has occurred. switch.
  • the second network device does not send the first indication information, it implies that the first network device is normal, or that the handover from the first network device to the second network device is not performed, or that the network device serving the UE has not been handed over.
  • the number and value of the bits occupied by the first indication information are not limited.
  • the first indication information includes and the second configuration information
  • the configuration information can be used to not only configure the working parameters of the UE corresponding to the second network device, but also implicitly indicate the first
  • the network device fails, or implicitly instructs handover from the first network device to the second network device, or implicitly instructs the network device serving the UE to be handed over. This way can save signaling overhead.
  • the second network device sends the first indication information to the UE (S406).
  • the first network device is faulty (S404, 405), but the second network device Actively initiate.
  • the second network device can actively initiate the first indication information, and is not limited to the scenario in which the first network device is in a fault state.
  • this application implements The method provided by the example can realize flexible switching between the first network device and the second network device.
  • the UE sends response information corresponding to the first indication information to the second network device, and correspondingly, the second network device receives the response information from the UE.
  • the UE may explicitly send the response information to the second network device; or, if the first network device and the second network device are not transparent to the UE is transparent, the UE only knows that the response information is sent to the network device, but does not know that there may be multiple network devices. In this case, the UE considers that the response information is sent to the network device.
  • S407 and S302 introduced in the embodiment shown in FIG. 3 may be the same step.
  • a certain message sent by the UE to the second network device during random access to the second network device may be regarded as the response information, that is, when the UE accesses the second network device, it is regarded as the UE's access to the second network device.
  • An indication message has responded for example, the response message is a preamble, or the response message can be a scheduled transmission message, such as Msg3 in the random access process, or the response message can also be a random access process. MsgB in , etc.
  • the second network device determines whether another network device (the first network device) is faulty than for the UE to determine whether the network device is faulty.
  • the UE determines that the network device is faulty or needs to be switched through the indication of the network side, and can determine the time consumed by the failure of the first network device, thereby reducing the interruption time of service transmission, improving the continuity of the service, and also improving the reliability of the service. sex.
  • FIG. 6 shows a communication method provided by an embodiment of the present invention. Compared with the embodiment shown in FIG. 4 , the embodiment shown in FIG. 6 adds a process of downlink beam training, which can improve the sending success rate when the second network device sends the indication information to the UE.
  • the embodiment shown in FIG. 6 is used alone or in combination with the embodiment shown in FIG. 4 .
  • the second network device sends configuration information of the second downlink RS to the first network device, and correspondingly, the first network device receives the configuration information of the second downlink RS from the second network device.
  • the configuration information of the second downlink RS is shown as the configuration information of the downlink RS2.
  • the configuration information of the second downlink RS may be used to configure the downlink RS of the second network device, for example, the configuration information of the second downlink RS is used to configure the transmission resources of the downlink RS of the second network device.
  • the downlink RS of the second network device is, for example, CSI-RS, or SSB, or other signals. Among them, SSB can also be regarded as a special RS.
  • the configuration information of the second downlink RS may also be referred to as the second sub-configuration information for short.
  • the configuration information of the second downlink RS includes one or more of the following: time domain information, bitmap (bitmap), or frequency domain information.
  • the downlink RS is an SSB, and a cell can correspond to a fixed number of SSBs. For example, it is specified that a total of 8 SSBs can be sent at low frequencies, and a total of 64 SSBs can be sent at high frequencies.
  • the second network device may not send all the SSBs, and may only send a part of the SSBs.
  • the configuration information of the second downlink RS may include a bitmap, and the number of bits included in the bitmap is the same as the total number of SSBs that can be sent by the second network device. Which SSBs will be sent. For example, in the case of high frequency, the bitmap may include 64 bits.
  • the UE can determine which downlink RSs will be sent by the second network device according to the bitmap.
  • the configuration information of the second downlink RS includes two groups of bits.
  • the 64 SSBs can be divided into 8 groups, and each group includes 8 SSBs, then the first A group of 8 bits is used to indicate which group of SSBs the network device in the 8 groups will send, and the second group of 8 bits is used to indicate which SSB in this group is sent, for example, the first group of 8 bits corresponds to the third one.
  • the bit value of the group is "1", which means that the network device sends the SSB in the third group, and the bit corresponding to the second SSB in the second group of 8 bits is "1", which means that the network device sends the second SSB in the third group.
  • SSBs The number of groups and the number of RSs in each group are only examples.
  • the time domain information indicates the time domain position of the downlink RS of the second network device
  • the frequency domain information indicates the frequency domain position of the downlink RS of the second network device.
  • the time domain information may include one or more of the following: period, offset, or field indication information.
  • the period may be the transmission period of the downlink RS of the second network device;
  • the offset may indicate the time domain offset of the downlink RS of the second network device in one transmission period, for example, the The transmission period of the downlink RS is 20ms, and the offset is 2ms, which means that the downlink RS of the second network device will start to be sent at the 2nd ms in a transmission period;
  • the half-frame indication is used to indicate the downlink RS of the second network device Located in the first or second half of a radio frame.
  • the first network device sends the configuration information of the first downlink RS and the configuration information of the second downlink RS to the UE, and correspondingly, the UE receives the configuration information of the first downlink RS and the configuration information of the second downlink RS.
  • the configuration information of the first downlink RS may be used to configure the downlink RS of the first network device, for example, the configuration information of the first downlink RS configures the transmission resources of the downlink RS of the first network device.
  • the configuration information of the first downlink RS is represented as the configuration information of the downlink RS1.
  • the downlink RS of the first network device is, for example, CSI-RS, or may also be SSB, or may also be other signals.
  • the configuration information of the first downlink RS may also be referred to as the first sub-configuration information for short.
  • the embodiment shown in FIG. 6 may be combined with the embodiment shown in FIG. 4 .
  • S602 and S401 in the embodiment shown in FIG. 4 may be the same step, and the first network device may send the configuration information of the first downlink RS, the configuration information of the second downlink RS, and the configuration information of the first downlink RS to the UE through a message.
  • Configuration information of a network device; or, S602 and S403 in the embodiment shown in FIG. 4 may be the same step, the first network device may send the configuration information of the first downlink RS to the UE through a message, and the second downlink configuration information of the RS, and configuration information of the second network device.
  • the first network device sends the configuration information of the first downlink RS and the configuration information of the second downlink RS to the UE without sending them together with other information.
  • the configuration information of the first downlink RS and the configuration information of the second downlink RS may also be referred to as fourth configuration information for short.
  • the first network device sends the configuration information of the first downlink RS and the configuration information of the second downlink RS to the UE through a system message or an RRC message.
  • the system message is, for example, SIB1
  • the RRC message is, for example, an RRC reconfiguration message.
  • the first network device defines the configuration information of the first downlink RS through a non-extended field in the SIB1 or RRC reconfiguration message; and defines the configuration information of the second downlink RS through a newly added extension field in the SIB1 or RRC reconfiguration message.
  • the first network device may send two sets of configurations, which are respectively used to configure downlink RSs corresponding to different network devices.
  • the first network device may add first information to the configuration information of the second downlink RS, where the first information indicates that the configuration information of the second downlink RS corresponds to the second network device, or indicates that the configuration information of the second downlink RS corresponds to the second network device.
  • the network device corresponding to the configuration information is different from the network device corresponding to the configuration information of the first downlink RS. Therefore, after the UE receives the configuration information of the first downlink RS and the configuration information of the second downlink RS, it can be clear that this is the configuration of two sets of downlink RSs.
  • the first network device may also use existing information to indicate the network device corresponding to the configuration information of the second downlink RS without adding additional information to the configuration information of the second downlink RS.
  • the configuration information of the second downlink RS includes the second information
  • the second information is preset time domain information, for example, specified by a protocol, then the UE, according to the second information included in the configuration information of the second downlink RS,
  • the configuration information of the second downlink RS and the configuration information of the first downlink RS correspond to different network devices
  • the second information can be the period, offset, and half frame indication included in the configuration information of the second downlink RS. , frequency domain information or bitmap, etc.
  • the configuration information of the first downlink RS and the configuration information of the second downlink RS may be carried by different information elements (information element, IE), and the UE can distinguish the configuration information of the second downlink RS from the configuration information of the second downlink RS according to the corresponding IE.
  • the configuration information of the downlink RS corresponds to different network devices, and there is no need to add additional information to indicate it.
  • the first network device sends the configuration information of the first downlink RS and the configuration information of the second downlink RS to the UE through an RRC message.
  • the RRC message In addition to carrying the configuration information of the first downlink RS through the original (or non-extended) IE, the RRC message also adds (or extends) one or more IEs, and these newly added IEs may Bearing configuration information of the second downlink RS.
  • the following RS is SSB as an example.
  • absolute frequency SSB2 absolute frequencySSB-2
  • SSB position burst SSB position burst
  • SSB periodic serving cell-2 SSB periodic serving cell-2
  • ssb-periodicityServingCell-2 SSB periodic serving cell-2
  • ssb-PBCH-BlockPower-2 ssb physical broadcast channel block energy-2
  • absolutefrequencySSB-2 is used to indicate the frequency information of the SSB configured by the configuration information of the second downlink RS, for example, the indicated frequency information is absolute radio frequency channel number (absolute radio frequency channel number, ARFCN)-ValueNR.
  • ssb-PositionInBurst-2 can indicate which SSBs will be sent by the second network device. For example, a cell has 64 SSBs, but the second network device may not necessarily send all the 64 SSBs. Which of the 64 SSBs will be sent by the second network device.
  • ssb-periodicityServingCell-2 may indicate the sending period of the SSB by the second network device.
  • ssb-PBCH-BlockPower-2 may indicate the transmit power of the second network device for the SSB.
  • the names of the IEs above are just examples, and the embodiments of the present application do not limit the names of the IEs.
  • the absolutefrequencySSB-2 is an optional IE, that is, the IE may be newly added to carry the configuration information of the second downlink RS, or the IE may not need to be added to carry the configuration information of the second downlink RS.
  • the ssb-PositionInBurst-2 is also an optional IE, that is, the IE may be newly added to carry the configuration information of the second downlink RS, or the IE may not need to be added to carry the configuration information of the second downlink RS.
  • the four IEs added in the RRC message are as follows:
  • RS is a CSI-RS
  • one or more IEs are added in the RRC message.
  • an IE added in the RRC message is expressed as follows:
  • one or more other IEs can be added, and the form of the newly added IE can refer to the form of the non-extended IE in the RRC message, or, in other words, can refer to the RRC message for carrying the first IE
  • the form of the IE of the configuration information of the downlink RS can be carried the first IE.
  • the names of the IEs above are just examples, and the embodiments of the present application do not limit the names of the IEs.
  • the first network device in addition to configuring the downlink RS of the first network device for the UE, can also configure the downlink RS of the second network device for the UE, so that the UE can not only receive the downlink RS from the first network device, Downlink RS from the second network device can also be received.
  • the second network device sends the downlink RS, and correspondingly, the UE receives the downlink RS from the second network device.
  • the downlink RS sent by the second network device is referred to as the second downlink RS (in FIG. 6, the second downlink RS is represented by the downlink RS2), wherein the second downlink RS may include one or more downlink RSs, that is,
  • the second network device may send one or more downlink RSs, but the downlink RSs sent by the second network device are collectively referred to as second downlink RSs.
  • the second network device sends the second downlink RS, and the UE may receive the second downlink RS from the second network device according to the second sub-configuration information.
  • the first network device sends the downlink RS, and correspondingly, the UE receives the downlink RS from the first network device.
  • the downlink RS sent by the first network device is referred to as the first downlink RS (in FIG. 6, the first downlink RS is represented by the downlink RS1), wherein the first downlink RS may include one or more downlink RSs That is, the first network device may send one or more downlink RSs, but the downlink RSs sent by the first network device are collectively referred to as the first downlink RS.
  • the first network device sends the first downlink RS, and the UE may receive the first downlink RS from the first network device according to the first sub-configuration information.
  • S603 and S604 are not limited. S603 may occur before S604, or S604 may occur before S603, or S603 and S604 may occur simultaneously.
  • the UE measures the received downlink RS to obtain a measurement result.
  • the measurement result is, for example, RS received power (reference signal receiving power, RSRP), RS receiving quality (reference signal receiving quality, RSRQ), or signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), etc.
  • the UE can measure the first downlink RS to obtain a measurement result 1 (also referred to as the first measurement result, or the measurement result of the downlink RS1), which is shown in FIG. 6 as Downlink RS1 measurement results.
  • the first downlink RS includes one or more downlink RSs.
  • the measurement result 1 includes the measurement results of the one or more downlink RSs, or the UE processes the measurement results of the one or more downlink RSs (for example, the measurement results of selecting the best downlink RS, or the measurement results of the one or more downlink RSs). Averaging process is performed), and measurement result 1 is obtained.
  • the UE may measure the second downlink RS to obtain a measurement result 2 (also referred to as a downlink RS2 measurement result), which is shown as a downlink RS2 measurement result in FIG. 6 .
  • the second downlink RS includes one or more downlink RSs
  • the measurement result 2 includes the measurement results of the one or more downlink RSs, or the UE processes the measurement results of the one or more downlink RSs (For example, select the best measurement result, or perform average processing on the measurement results), and obtain measurement result 2.
  • the UE sends the measurement result to the network device.
  • the measurement result includes the measurement result 1 and/or the measurement result 2.
  • the measurement result 1 and the measurement result 2 can be distinguished.
  • the UE may add information (eg, third information) to the measurement result 2 to indicate that the measurement result 2 corresponds to the configuration information of the second downlink RS, or to indicate that the measurement result 2 corresponds to the second network device, so that the first
  • the network device can specify the corresponding relationship between the measurement result and the network device.
  • the UE carries the measurement result 1 and the measurement result 2 in different IEs, and the first network device receives the measurement result reported by the UE, and according to the corresponding IE, can distinguish that the measurement result 1 and the measurement result 2 correspond to different network devices , so that the UE does not need to send additional indication information.
  • the UE sends the measurement result to the first network device through an RRC message.
  • the RRC message also adds (or extends) one or more IEs, and these newly added IEs can carry the measurement result 2.
  • two IEs are added in the RRC message, and one of the IEs is cell results 2 (cellResults2), which is used to indicate that the measurement result corresponds to the SSB and/or to the CSI-RS.
  • the other IE is rsIdexResusts2, which includes one or more SSB measurement results received by the UE from the second network device, and/or includes one or more CSI-RS measurements received by the UE from the second network device result.
  • rsIdexResusts2 which includes one or more SSB measurement results received by the UE from the second network device, and/or includes one or more CSI-RS measurements received by the UE from the second network device result.
  • the two IEs added in the RRC message are as follows:
  • the first network device sends the measurement result 2 to the second network device, and correspondingly, the second network device receives the measurement result 2 from the first network device.
  • the first network device can identify which measurement results correspond to the measurement results 2 of the second network device.
  • the first network device may send the measurement result 2 to the second network device.
  • the second network device After the second network device obtains the measurement result 2, it can determine, according to the measurement result 2, which downlink RS directions of the second network device the UE is located in.
  • the second network device determines the second state information according to the measurement result 2 .
  • the second status information may include the number of the downlink RS.
  • the second status information includes one or more numbers, and one of the numbers corresponds to one downlink RS of the second network device.
  • the second network device After the second network device obtains the first measurement result, it can determine which downlink RS directions of the second network device the UE is located in according to the first measurement result. For example, the second network device obtains second state information, such as For transmission configuration indicator (transmission configuration indicator, TCI) state (state), the TCI state may include one or more numbers, one of which corresponds to a downlink RS of the second network device, and the downlink RSs corresponding to these numbers, It is the downlink RS in the direction where the UE is located.
  • TCI transmission configuration indicator
  • the UE can receive it more accurately, thereby improving the receiving success rate of the UE, and the second network device does not need to send the indication information in other directions.
  • the indication information saves the power consumption of the second network device.
  • the second network device sends the second state information to the first network device, and correspondingly, the first network device receives the second state information from the second network device.
  • S608 and S609 are optional steps.
  • the first network device sends the first state information to the UE, and correspondingly, the UE receives the first state information from the first network device.
  • the first state information includes first sub-state information and second sub-state information
  • the second sub-state information and the second state information may be the same information, or the second sub-state information may be based on the first sub-state information.
  • the second state information is determined.
  • the first sub-state information may include a downlink RS number, for example, the first sub-state information includes one or more numbers, one of which corresponds to a downlink RS of the first network device.
  • the first network device determines, according to the measurement result 1, which downlink RS directions of the first network device the UE is located in. For example, the first network device obtains first sub-state information.
  • the first sub-state information is, for example, a TCI state.
  • the TCI state may include one or more numbers, one of which corresponds to a downlink RS of the first network device, and these The downlink RS corresponding to the number is the downlink RS in the direction where the UE is located. Then, if the first network device subsequently sends information in the direction corresponding to the TCI state, the UE can receive the information more accurately, thereby improving the UE's receiving success rate, and the first network device does not need to send instructions in other directions. information to save power consumption of the first network device.
  • the first network device obtains first state information according to the first sub-state information and the second state information, where the first state information is, for example, a TCI state.
  • the TCI state includes one or more numbers, one of which corresponds to a downlink RS, and the downlink RSs corresponding to these numbers include both the downlink RS of the second network device and the downlink RS of the first network device.
  • the first network device can distinguish the number of the downlink RS corresponding to the second network device and the number of the downlink RS corresponding to the first network device in the TCI state, for example, the first network device in the TCI state is corresponding to the second network device.
  • the fourth information is added to the number of the downlink RS of the network device to indicate that the corresponding number is different from the number without the fourth information.
  • the fourth information may also indicate that the corresponding number corresponds to the second network device. Therefore, after the UE receives the TCI state, it can determine that the numbers of the downlink RSs included in the first state information are different.
  • the TCI state may not include the second sub-state information.
  • the first network device is faulty.
  • the second network device determines that the first network device is faulty.
  • S612 is an optional step, and the UE determines the failure of the first network device. For example, if the UE detects that a radio link failure (RLF) event occurs between the UE and the first network device, it can determine the first network device. A network device is faulty, or the UE may determine that the first network device is faulty in other ways.
  • RLF radio link failure
  • the second network device sends the first indication information to the UE, and correspondingly, the UE receives the first indication information from the second network device.
  • the second network device sending the first indication information to the UE in S613 reference may be made to the introduction related to S301 in FIG. 3, and details are not repeated here.
  • the second network device may send the first indication information to the UE, and the UE may receive information from the second network device according to the first configuration information.
  • the second network device may send the configuration information of the indication information to the UE according to the protocol or according to the default rule, and the UE may receive the first indication information from the second network device according to the protocol or according to the default rule .
  • the second network device may send the first indication information through at least one transmit beam, and the UE detects and receives the first indication information on at least one receive beam.
  • the at least one receive beam corresponds to the first downlink RS.
  • the at least one receive beam includes all or part of the receive beams used by the UE to receive the first downlink RS.
  • the number of the at least one transmit beam may be greater than or equal to the number of the at least one receive beam, but at least one transmit beam in the at least one transmit beam and one receive beam in the at least one receive beam are Correspondingly, the UE can successfully receive the first indication information.
  • the second network device may send the first indication information according to the transmission beam corresponding to the number of the downlink RS included in the second sub-state information , the UE may also receive the first indication information on the receiving beam corresponding to the number of the downlink RS included in the second sub-state information.
  • the second network device does not need to send the first indication information on more transmit beams, and the UE does not need to detect the first indication information on more receive beams, and the transmit beams of the second network device and the UE do not need to detect the first indication information.
  • the received beams can be aligned, which can reduce the power consumption of the second network device and the UE.
  • S611 and S612 are optional steps, and even if it is not determined that the first network device is faulty, the second network device may send the first indication information to the UE.
  • S614 The UE sends response information corresponding to the first indication information to the second network device, and correspondingly, the second network device receives the response information from the UE.
  • S614 and S302 introduced in the embodiment shown in FIG. 3 may be the same step.
  • the UE determines that the first network device is faulty, it switches to the second network device. In this case, S612, S613 and S614 need not be performed, that is, optional steps.
  • the embodiment of the present application introduces a process of downlink beam training.
  • the second network device may send the first indication information according to the result of the downlink beam training, for example, in the direction in which the UE successfully receives the downlink RS. Therefore, the success rate of receiving the first indication information by the UE is improved, and since the first indication information does not need to be sent on too many beams, the power consumption of the second network device and the UE can be saved.
  • FIG. 7 shows another communication method provided by an embodiment of the present application, which can be applied to the network architecture shown in FIG. 2A , FIG. 2B , and/or FIG. 2C .
  • the embodiment shown in FIG. 7 introduces the process of uplink beam training, which can make the UE more efficient when sending response information to the second network device. Targeted.
  • the embodiments shown in Figures 4, 6 and 7 may be applied individually, in combination or in part.
  • the first network device sends configuration information that can be used to configure the uplink RS to the UE (for convenience of description, it is referred to as the configuration information of the uplink RS for short).
  • the UE receives the configuration information of the uplink RS from the first network device.
  • the configuration information of the uplink RS may be used to configure the transmission resources of the uplink RS.
  • the uplink RS is, for example, an SRS, or other signals.
  • the configuration information of the uplink RS may also be referred to as fifth configuration information.
  • the configuration information of the uplink RS includes one or more of the following: time domain information, frequency domain information, transmission mode information, or power control parameters.
  • the time domain information is used to indicate the time domain position of the uplink RS.
  • the frequency domain information is used to indicate the frequency domain position of the uplink RS.
  • the sending mode information includes the purpose of configuring the SRS, for example, the purpose of configuring the SRS is for beam management, codebook transmission, non-codebook transmission, or antenna switching, or other purposes.
  • the power control parameter can be used for the UE to perform power control when sending the uplink RS.
  • the configuration information of the uplink RS may be configured with one or more types of uplink RSs, and each of the uplink RSs corresponds to a set of configuration information.
  • the configuration information of the uplink RS may include one or more sub-configuration information, and one of the sub-configuration information is used to configure one type of uplink RS.
  • each sub-configuration information is identified by a number (eg, ID), respectively. Since the sub-configuration information corresponds to the uplink RS, the ID of the sub-configuration information can be used to indicate the uplink RS. If the configuration information of the uplink RS is configured with multiple uplink RSs, the "multiple" here can be understood as signals of different types.
  • the SRS is regarded as a kind of uplink RS
  • another signal other than the SRS is It is regarded as another kind of uplink RS
  • “multiple kinds” here may also be signals of the same type, for example, multiple RSs are all SRSs, but the corresponding sub-configuration information may be different (such as possible time domain information, At least one of the frequency domain information, power control parameters or transmission method is different).
  • the first network device may send the configuration information of the uplink RS through one or more RRC messages, MAC CE, or DCI and other messages.
  • the first network device may send the configuration information of the uplink RS to the UE alone without sending it together with other information, or may send the configuration information of the uplink RS together with other information.
  • the embodiment shown in FIG. 7 may be combined with the embodiment shown in FIG. 4 , S701 and S402 are combined into one step, and the first network device sends the configuration information of the uplink RS and the first step to the UE through a message.
  • Configuration information of a network device (S402); alternatively, S701 and S403 may be combined into one step, the first network device sends the configuration information of the uplink RS and the configuration information of the second network device to the UE together in one message.
  • the first network device sends the configuration information of the uplink RS to the second network device, and correspondingly, the second network device receives the configuration information of the uplink RS from the first network device.
  • the first network device can also send it to the second network device, so that if the UE sends the uplink signal according to the configuration information of the uplink RS, in addition to being able to receive the first network device, the first network device can receive it.
  • Two network devices can also receive.
  • S701 may occur before S702, or S701 may occur after S702, or S701 and S702 may occur simultaneously.
  • the UE sends the uplink RS.
  • the first network device receives the uplink RS from the UE.
  • the second network device may also receive the uplink RS from the UE.
  • the UE sends the uplink RS according to the configuration information of the uplink RS
  • the first network device and/or the second network device may respectively receive the uplink RS from the UE according to the configuration information of the uplink RS.
  • the configuration information of the uplink RS includes time domain information
  • the UE can send the uplink RS according to the time domain position indicated by the time domain information
  • the first network device can detect and receive data from the UE at the time domain position indicated by the time domain information.
  • the second network device may also detect and receive the uplink RS from the UE at the time domain position indicated by the time domain information.
  • the first network device measures the received uplink RS, and obtains measurement result 3 .
  • the first network device After receiving the uplink RS, the first network device measures the uplink RS to obtain a measurement result (referred to as measurement result 3). Wherein, if the configuration information of the uplink RS includes multiple sub-configuration information, and the uplink RS received by the first network device corresponds to different sub-configuration information, then the first network device may perform the corresponding steps on the uplink RS corresponding to the one or more sub-configuration information respectively.
  • the one or more sub-configuration information may be all or part of the sub-configuration information included in the configuration information of the uplink RS, and the measurement result 3 may include the measurement result of the first network device on the one or more sub-configuration information.
  • the measurement result 3 is, for example, RSRP, RSRQ, or SINR.
  • the second network device measures the received uplink RS, and obtains measurement result 4 .
  • the second network device may also measure the uplink RS to obtain a measurement result (referred to as measurement result 4).
  • measurement result 4 a measurement result
  • the configuration information of the uplink RS includes multiple sub-configuration information
  • the uplink RS received by the second network device corresponds to different sub-configuration information
  • the second network device may perform the corresponding steps on the uplink RS corresponding to the one or more sub-configuration information respectively.
  • the one or more sub-configuration information may be all or part of the sub-configuration information included in the configuration information of the uplink RS
  • the measurement result 4 may include the measurement result of the second network device on the one or more sub-configuration information.
  • the measurement result 4 is, for example, RSRP, RSRQ, or SINR.
  • S704 may occur before S705, or S704 may occur after S705, or S704 and S705 may occur simultaneously.
  • the second network device sends the measurement result 4 to the first network device, and correspondingly, the first network device receives the measurement result 4 from the second network device.
  • the second network device may send all or part of the measurement result 4 to the first network device, and may also call the part of the measurement result 4 sent by the second network device to the first network device as the second measurement result.
  • the measurement result 4 includes uplink RS measurement results corresponding to multiple sub-configuration information
  • the second network device sends all or part of the measurement results included in the measurement result 4 to the first network device.
  • the second network device has a choice when feeding back the measurement results to the first network device, the second network device may obtain multiple measurement results, and the second network device may send a better measurement result to the first network device. In this way, when configuring an uplink beam directed to the second network device for the UE, the first network device can configure an uplink beam corresponding to a better measurement result, thereby improving the quality of information transmission.
  • S706 is an optional step.
  • the second network device may also not send the measurement result 4 to the first network device, but may send the measurement result 4 to the UE, and the UE may receive the measurement result 4 from the second network device.
  • the first network device determines the second transmission beam according to the measurement result 4 .
  • the second transmit beam is used to transmit information to the second network device.
  • the second transmit beam may include one or more transmit beams, where the transmit beam is aimed at the UE and refers to the uplink transmit beam of the UE.
  • the first network device can configure the uplink transmission direction according to the measurement result 4, or in other words, the first network device can configure the uplink beam according to the measurement result 4, and the uplink beam configured according to the measurement result 4 can be used by the UE to send information to the second network device,
  • the information is, for example, control information, which can be sent through a physical uplink control channel (PUCCH), or data, which can be sent through a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the first network device determines that the transmission beam corresponding to the direction corresponding to the measurement result is the second transmission beam. For another example, if the second measurement result includes multiple measurement results, the first network device determines that the multiple transmission beams corresponding to the multiple measurement results are all the second transmission beam, or the first network device determines from the multiple measurement results At least one measurement result is selected from among the at least one measurement result, and at least one transmission beam corresponding to the at least one measurement result is determined as the second transmission beam. For example, if the first network device wants to select at least one measurement result from multiple measurement results, the first network device selects the better at least one measurement result, thereby improving the quality of information sent by the UE through the second transmission beam.
  • the first network device may also configure the uplink transmission direction according to the measurement result 3, or in other words, the first network device may configure the transmission beam according to the measurement result 3, and the transmission beam configured according to the measurement result 3 is called the first transmission beam, and the first network device may configure the transmission beam according to the measurement result 3.
  • a transmit beam may include one or more transmit beams, where the transmit beam is aimed at the UE and refers to the uplink transmit beam of the UE.
  • the first sending beam may be used by the UE to send information to the first network device, for example, the information is control information, which may be sent through the PUCCH, or data, which may be sent through the PUSCH.
  • the configuration manner reference may be made to the manner in which the first network device configures the second transmit beam according to the measurement result 4 .
  • the first network device does not need to determine the second transmission beam according to the measurement result 4, but only needs to determine the second transmission beam according to the measurement result 3 Determine the first transmit beam.
  • the UE may determine the second transmission beam according to the measurement result 4, and for the determination method, reference may be made to the introduction of the method for determining the second transmission beam by the first network device.
  • the first network device sends second indication information to the UE, and accordingly, the UE receives the second indication information.
  • the second indication information may include information of the first transmission beam and information of the second transmission beam, or in other words, the second indication information may indicate the first transmission beam and the second transmission beam.
  • the transmit beam indicated by the information of the first transmit beam and the ID of the sub-configuration information may be in one-to-one correspondence, and the transmit beam indicated by the information of the second transmit beam and the ID of a sub-configuration information may also be the same A correspondence.
  • the first network device may further add fifth information to the information of the second transmission beam, the fifth information may indicate that the second transmission beam is a backup transmission beam, or the fifth information may indicate the second transmission beam The beam corresponds to the second network device.
  • the UE can determine that the second transmission beam is different from the first transmission beam according to the fifth information, or determine that the second transmission beam is applied after receiving the first indication information, or determine that the second transmission beam is Corresponds to the second network device.
  • the second indication information may include the information of the first transmission beam but not the information of the second transmission beam.
  • the first network device is faulty.
  • the second network device determines that the first network device is faulty.
  • S710 is an optional step, and the UE determines that the first network device is faulty. For example, if the UE detects that an RLF event occurs between the UE and the first network device, it determines that the first network device is faulty, or the UE can also pass Other ways to determine the failure of the first network device.
  • the second network device sends the first indication information to the UE, and correspondingly, the UE receives the first indication information from the second network device.
  • the second network device may send the first indication information to the UE, and the UE may receive information from the second network device according to the first configuration information.
  • the second network device may send the first configuration information to the UE according to the protocol or default rules, and the UE may receive the first indication information from the second network device according to the protocol or default rules.
  • S709 and S710 are optional steps, and even if it is not determined that the first network device is faulty, the second network device may send the first indication information to the UE.
  • S712 The UE sends response information corresponding to the first indication information to the second network device, and correspondingly, the second network device receives the response information from the UE.
  • the UE may enable the first transmit beam but not enable the second transmit beam.
  • the UE may activate the second transmit beam, or in other words, may enable the second transmit beam.
  • the UE sends the response information to the second network device on the second sending beam.
  • the second network device sends the response information on the receiving beam corresponding to the second sending beam (for example, referred to as the second receiving beam, the second receiving beam is here Refers to receiving the response information on the receiving beam of the second network device.
  • the second receive beam may be determined according to the second measurement result.
  • S711 and S712 are optional steps. If the UE determines that the first network device is faulty and switches to the second network device, in this case, S710 , S711 and S712 need not be performed.
  • the second network device determines whether another network device (the first network device) is faulty than for the UE to determine whether the network device is faulty.
  • the UE determines that the network device is faulty or needs to be switched through the indication of the network side, and can determine the time consumed by the failure of the first network device, thereby reducing the interruption time of service transmission, improving the continuity of the service, and also improving the reliability of the service. sex.
  • the embodiment of the present application adds the process of uplink beam training. When the UE sends the response information to the second network device, it can send the response information according to the result of the uplink beam training.
  • the UE sends the uplink RS in the direction that the second network device successfully receives the uplink RS. response information, thereby improving the success rate of the second network device for receiving the response information, and because there is no need to send the response information on too many beams, the power consumption of the second network device and the UE can be saved.
  • FIG. 8 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 800 may be the communication apparatus 30 in FIG. 1, or may be the terminal device in FIG. 2A, FIG. 2B, or FIG. 2C, for implementing the method for the terminal device in the above method embodiments.
  • the communication apparatus may also be the first network device or the second network device in FIG. 2A, or the network device in the RAN in FIG. 2B and FIG. 2C, such as CU, DU, CU-CP, or CU-UP, using The method corresponding to the first network device or the second network device in the above method embodiments is implemented.
  • Communication device 800 includes one or more processors 801 .
  • the processor 801 may also be referred to as a processing unit, and may implement certain control functions.
  • the processor 801 may be a general-purpose processor or a special-purpose processor or the like. For example, including: baseband processors, central processing units, application processors, modem processors, graphics processors, image signal processors, digital signal processors, video codec processors, controllers, memories, and/or Neural network processors, etc.
  • the baseband processor may be used to process communication protocols and communication data.
  • the central processing unit may be used to control the communication device 800, execute software programs and/or process data.
  • the different processors can be stand-alone devices, or they can be integrated in one or more processors, for example, on one or more application specific integrated circuits.
  • the communication apparatus 800 includes one or more memories 802 for storing instructions 804, and the instructions can be executed on the processor, so that the communication apparatus 800 executes the methods described in the above method embodiments.
  • the memory 802 may also store data.
  • the processor and the memory can be provided separately or integrated together.
  • the communication apparatus 800 may include instructions 803 (sometimes also referred to as codes or programs), and the instructions 803 may be executed on the processor, so that the communication apparatus 800 executes the methods described in the above embodiments .
  • Data may be stored in the processor 801 .
  • the communication apparatus 800 may further include a transceiver 805 and an antenna 806 .
  • the transceiver 805 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver, an input/output interface, etc., and is used to implement the transceiver function of the communication device 800 through the antenna 806 .
  • the communication device 800 may further include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (universal serial bus, USB) interface, a power management module, an antenna, Speakers, microphones, I/O modules, sensor modules, motors, cameras, or displays, etc. It can be understood that, in some embodiments, the communication apparatus 800 may include more or less components, or some components may be integrated, or some components may be separated. These components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 801 and the transceiver 805 described in this application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency identification (RFID), a mixed-signal IC, an application specific integrated circuit (application specific integrated circuit) , ASIC), printed circuit board (printed circuit board, PCB), or electronic equipment, etc.
  • IC integrated circuit
  • RFID radio frequency identification
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • electronic equipment etc.
  • it may be an independent device (eg, an independent integrated circuit, a mobile phone, etc.), or may be a part of a larger device (eg, a module that can be embedded in other devices). The description of the terminal device and the network device will not be repeated here.
  • the embodiments of the present application provide a terminal device (for convenience of description, referred to as UE), which can be used in the foregoing embodiments.
  • the terminal device includes corresponding means ( means), units and/or circuits.
  • a terminal device includes a transceiver module, which is used to support the terminal device to implement a transceiver function, and a processing module, which is used to support the terminal device to process signals.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 900 is applicable to the systems shown in FIG. 1 , FIG. 2A , FIG. 2B , and FIG. 2C .
  • FIG. 9 only shows the main components of the terminal device 900 .
  • the terminal device 900 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, and to control the entire terminal device 900, execute software programs, and process data of the software programs.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, microphones, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the control circuit.
  • the control circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data .
  • FIG. 9 only shows one memory and a processor.
  • terminal device 900 may include multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device 900.
  • the software program is executed, and the data of the software program is processed.
  • the processor in FIG. 9 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • the terminal device 900 may include multiple baseband processors to adapt to different network standards, the terminal device 900 may include multiple central processors to enhance its processing capability, and various components of the terminal device 900 may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with a transceiving function can be regarded as the transceiving unit 910 of the terminal device 900
  • the processor having a processing function can be regarded as the processing unit 920 of the terminal device 900
  • the terminal device 900 includes a transceiver unit 910 and a processing unit 920 .
  • Transceiver units may also be referred to as transceivers, transceivers, transceivers, and the like.
  • the device for implementing the receiving function in the transceiver unit 910 may be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 910 may be regarded as a transmitting unit, that is, the transceiver unit 910 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the embodiment of the present application also provides a network device, and the network device can be used in each of the foregoing embodiments.
  • the network device includes the first network device or the second network device described in the embodiment shown in FIG. 2A , FIG. 2B , FIG. 2C , FIG. 3 , FIG. 4 , FIG. 6 , and/or FIG. 7 .
  • Functional means, units and/or circuits.
  • the network device includes a transceiver module to support the terminal device to implement a transceiver function, and a processing module to support the network device to process signals.
  • the first network device and the second network device are relative to one or some UEs, and relative to some other UEs, the functions of the first online class device and the second network device may be different. exchange.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 20 can be applied to the systems shown in FIG. 1 , FIG. 2A , FIG. 2B , and FIG. 2C .
  • the network device 20 is, for example, the access network device 20 shown in FIG. 1 .
  • the network device 20 may have the function of the first network device as a first network device with respect to one or some UEs, and may also function as a second network device with respect to one or some UEs as a second network device.
  • the network equipment includes: a baseband device 201 , a radio frequency device 202 , and an antenna 203 .
  • the radio frequency apparatus 202 receives the information sent by the terminal equipment through the antenna 203, and sends the information sent by the terminal equipment to the baseband apparatus 201 for processing.
  • the baseband apparatus 201 processes the information of the terminal equipment and sends it to the radio frequency apparatus 202
  • the radio frequency apparatus 202 processes the information of the terminal equipment and sends it to the terminal equipment through the antenna 203 .
  • the baseband device 201 includes one or more processing units 2011 , storage units 2012 and interfaces 2013 .
  • the processing unit 2011 is configured to support the network device to perform the functions of the network device in the foregoing method embodiments.
  • the storage unit 2012 is used to store software programs and/or data.
  • the interface 2013 is used for exchanging information with the radio frequency device 202, and the interface includes an interface circuit for inputting and outputting information.
  • the processing unit is an integrated circuit, such as one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form chips.
  • the storage unit 2012 and the processing unit 2011 may be located in the same chip, that is, an on-chip storage element. Alternatively, the storage unit 2012 and the processing unit 2011 may also be located on different chips from the processing element 2011, that is, an off-chip storage element.
  • the storage unit 2012 may be a memory, or may be a collective term for multiple memories or storage elements
  • the network device may implement some or all of the steps in the foregoing method embodiments in the form of one or more processing unit schedulers. For example, the corresponding functions of the network devices in FIG. 3 , FIG. 4 , FIG. 6 , and/or FIG. 7 are implemented.
  • the one or more processing units may support wireless access technologies of the same standard, or may support wireless access standards of different standards.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the units described as separate components may or may not be physically separated.
  • the components shown may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium can be any available medium that can be accessed by a computer.
  • the computer-readable medium may include random access memory (RAM), read-only memory (ROM), programmable read-only memory (PROM), Erasable programmable read only memory (erasable PROM, EPROM), electrically erasable programmable read only memory (electrically erasable programmable read only memory, EEPROM), compact disc read-only memory (compact disc read-only memory, CD- ROM), universal serial bus flash disk, removable hard disk, or other optical disk storage, magnetic disk storage medium, or other magnetic storage device, or capable of carrying or storing desired data in the form of instructions or data structures program code and any other medium that can be accessed by a computer.
  • RAM random access memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM Erasable programmable read only memory
  • EEPROM electrically erasable programmable read only memory
  • compact disc read-only memory compact disc read-only memory
  • CD- ROM compact disc read-only memory
  • universal serial bus flash disk removable hard disk,
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及通信装置。终端设备接收来自第二网络设备的第一指示信息,所述第一指示信息用于指示第一网络设备故障,或用于指示从所述第一网络设备切换到所述第二网络设备,或用于指示服务于所述终端设备的网络设备发生切换。所述终端设备向所述第二网络设备发送响应于第一指示信息的响应信息。在本申请的一种可能的实施例中,终端设备借由第二网络设备的协助,可以快速确定第一网络设备是否故障,从而减少业务传输的中断时间,提高业务的连续性及可靠性。

Description

一种通信方法及通信装置
相关申请的交叉引用
本申请要求在2020年09月27日提交中国国家知识产权局、申请号为202011031704.7、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
目前,无线通信系统广泛部署,以提供各种类型的通信,例如语音业务,数据业务等。该通信系统中包括一个或多个终端设备,通过接入网连接到核心网,以实现多个通信设备之间的通信。在一些场景中,例如,工业场景中,对业务传输的可靠性要求高,那么,如果网络设备出现故障,则无法保证业务的传输,并且故障恢复的时间直接影响到业务是否中断,因此对系统的可靠性要求也比较高。
为了提高可靠性,通常会为网络设备提供一个或多个备用网络设备。例如,当操作网络设备(例如接入网设备,和/或核心网设备)发生故障时,操作网络设备与备用网络设备之间的切换被触发,从而使能备用网络设备为终端设备提供服务。现有技术中,当操作网络设备发生故障,操作网络设备与终端设备之间的无线链路会发生失败。对终端设备来讲,终端设备在检测到与接入网设备之间发生无线链路失败时,会发起无线资源控制(radio resource control,RRC)重建立过程。而重建立过程可能会失败,导致业务的可靠性降低。
发明内容
本申请实施例提供一种通信方法及通信装置,以改进通信系统的可靠性。
第一方面,提供一种通信方法、相应的通信装置及通信系统。该通信方法用于包括终端设备,第一网络设备和第二网络设备的通信系统中。所述终端设备接收来自所述第二网络设备的第一指示信息,所述第一指示信息用于指示所述第一网络设备故障,或用于指示从所述第一网络设备切换到所述第二网络设备,或用于指示服务于所述终端设备的网络设备发生切换;所述终端设备向所述第二网络设备发送所述第一指示信息的响应信息。在该方案中,由一个网络设备确定另一个网络设备是否故障并通知终端设备,使能终端设备尽快与第二网络设备通信,可以减少业务传输的中断时间,提高业务的连续性和可靠性。
在一种可选的实施方式中,所述终端设备根据第一配置信息接收所述第一指示信息。所述第一配置信息用于配置接收所述第一指示信息所需的时域,频域,或码域等资源。所述第一配置信息例如包括:带宽部分(bandwidth part,BWP)的信息,搜索空间的信息,时域资源的信息,和/或,无线网络临时标识(radio network tempory identity,RNTI)等。
一种可选的实现方式中,所述终端设备从网络侧接收第一配置信息中的部分或全部信息。例如,网络设备(所述第一网络设备,和/或第二网络设备)向终端设备发送第一配置 信息,使得终端设备可以获知用于接收所述第一指示信息所需的资源,提升接收效率。所述第一配置信息中包括用于接收第一指示信息所需的部分或全部资源(如,BWP的信息,时域资源信息,搜索空间的信息,和/或RNTI的信息等)。
另一种可选的实现方式中,终端设备通过默认方式获得所述第一配置信息中的部分或全部信息。例如,通过协议规定,预配置等方式,终端设备获得用于接收所述第一指示信息所需的部分或全部资源(如,BWP的信息,搜索空间的信息,时域资源的信息,和/或RNTI等等),从而网络设备无需再发送第一配置信息,以节省空口资源。
再一种可选的实现方式中,终端设备通过默认方式获得所述第一配置信息中的部分信息,而另一部分信息通过从网络设备接收第一配置信息获得。
所述BWP的信息用于指示第一BWP,所述第一BWP是预定的用于传输所述第一指示信息的一个或多个下行BWP。终端设备在所述第一BWP上接收所述第一指示信息。所述第一BWP可以为:为所述终端设备的激活下行BWP,或者初始下行BWP,或者控制资源集0(CORESET#0)对应的下行BWP。通过默认(例如协议规定,或预配置)或者网络设备指示(明示或暗示)的方式,告知终端设备用于传输第一指示信息的BWP信息,可以使得终端设备更高效的检测指示信息,提高了终端设备对指示信息的接收效率。
如果第一BWP不是所述终端设备的激活的下行BWP,例如第一BWP为所述初始下行BWP,或为CORESET#0对应的下行BWP,那么,如果所述第一BWP与所述终端设备的激活的下行BWP不同,则所述终端设备需要将所述终端设备的接收天线的射频频率从所述激活的下行BWP的频率调整为所述第一BWP的频率,以接收所述第一指示信息。所述终端设备使用合适的射频频率接收所述第一指示信息,提高了所述终端设备对所述第一指示信息的接收成功率。
所述RNTI用于对第一指示信息加扰。在一种可选的实现方式中,所述RNTI可以是公共RNTI(例如C-RNTI)。例如默认第二网络设备可以利用公共RNTI对第一指示信息进行加扰,所述终端设备使用公共RNTI解扰所述第一指示信息,因此网络无需再通过的信令配置RNTI,由此可以节省信令开销。在另一种实现方式中,所述RNTI为终端设备从网络侧接收的第一配置信息获得的。所述终端设备使用所述第一配置信息中获得的RNTI解扰所述第一指示信息。例如该RNTI可以表示为X-RNTI。所述X-RNTI可以是通信标准中已定义的RNTI,也可以是通信标准中新定义的RNTI。
所述终端设备向所述第二网络设备发送所述第一指示信息的响应信息,可以理解为:所述终端设备发送一条响应消息对所述第一指示信息进行响应;或者,所述终端设备发送响应信息,而是将所述终端设备收到第一指示信息后发起的某个流程作为对第一指示信息进行响应。所述响应消息可以是利用现有标准中规定的响应消息,也可以是新定义的消息。在一种可选的实施方式中,将终端设备向第二网络设备进行随机接入的过程视为所述终端设备对于所述第一指示信息的响应。例如,将终端设备在向第二网络设备进行随机接入的过程中发送给第二网络设备的某条消息视为所述响应信息,该响应信息例如是preamble,随机接入过程中消息3(Msg3),或者,随机接入过程中的MsgB等等。在另一种可选的实现方式中,终端设备不向第二网络设备发送所述响应信息,而是在接收到所述第一指示信息后,通过其他方式(例如小区重选,RRC连接建立,或RRC重建立等过程)切换到第二网络设备。
可选的,所述第一指示信息还包括第三配置信息,所述第三配置信息用于所述终端设 备与所述第二网络设备进行通信,所述第三配置信息包括随机接入资源的信息和/或第二BWP的信息;或者,所述方法还包括:所述终端设备接收来自所述第一网络设备的第二配置信息,所述第二配置信息用于所述终端设备与所述第二网络设备进行通信,所述第二配置信息包括如下一项或多项:随机接入资源的信息,第二BWP的信息,测量配置信息,无线承载配置信息,MAC层配置信息,或,物理层配置信息。
其中,所述第二BWP为所述终端设备在随机接入过程中应用的下行BWP。
第二网络设备可以预先将第二配置信息发送给终端设备,从而终端设备后续如果需要切换到第二网络设备,无需再等待第二网络设备下发配置信息,而利用预先获得的第二配置信息与第二网络设备通信,有助于提高终端设备的通信效率,减少业务中断的时间。或者,第二网络设备无需预先发送第二配置信息,而是在确定终端设备需要切换时,通过第一指示信息发送第三配置信息,提高第三配置信息的有效性,而且通过第一指示信息一并发送第三配置信息,也可以减少终端设备等待配置信息的时间,提高终端设备的通信效率。
在一种可选的实施方式中,所述方法还包括:所述终端设备接收来自所述第一网络设备的第四配置信息。所述第四配置信息包括两套或以上的配置,即包括两个或两个以上的子配置信息,每套配置对应于一个网络设备。故所述第四配置信息可以用于配置对应于不同网络设备的下行参考信号。例如,所述第四配置信息包括第一子配置信息和第二子配置信息,所述第一子配置信息用于配置所述第一网络设备的下行参考信号,所述第二子配置信息用于配置所述第二网络设备的下行参考信号;所述终端设备根据所述第四配置信息,接收来自所述第二网络设备的下行参考信号。
可选的,所述第四配置信息的子配置信息中可以包括用于指示该子配置信息对应哪个网络设备的信息。所述用于指示该子配置信息对应哪个网络设备的信息可以是明示或暗示。例如,所述第二子配置信息中包括第一信息,所述第一信息指示第二子配置信息对应于第二网络设备,或者指示第二子配置信息对应的网络设备与第一子配置信息对应的网络设备不同。又例如,第二子配置信息包括第二信息,且第二信息是预先设置的时域信息,例如是通过协议规定的,则终端设备根据第二子配置信息所包括的第二信息,就能明确第二子配置信息与第一子配置信息对应于不同的网络设备。终端设备能根据不同的子配置信息接收相应的下行参考信号,从而所述终端设备既能完成对来自所述第一网络设备的下行参考信号的测量,也能完成对所述第二网络设备的下行参考信号的测量,从而实现终端设备和第二网络设备之间的下行波束训练。
在一种可选的实施方式中,所述第二网络设备在第二网络设备的下行参考信号的至少一个接收波束对应的发送波束上发送第一指示信息。所述至少一个接收波束为接收到所述第二网络设备的下行参考信号的全部接收波束或部分接收波束。所述终端设备通过所述至少一个接收波束接收了第二网络设备的下行参考信号,并通过所述至少一个接收波束来接收第一指示信息,可以提高第一指示信息的接收成功率。
在一种可选的实施方式中,所述方法还包括:所述终端设备接收来自所述第一网络设备的第一状态信息,所述第一状态信息包括下行参考信号的编号,所述下行参考信号的编号所指示的下行参考信号是所述第二子配置信息配置的下行参考信号中的一个或多个。第一状态信息可以包括对应于第二网络设备的下行参考信号的编号,例如终端设备位于这些下行参考信号的编号所对应的方向上。如果第二网络设备在这些下行参考信号的编号所指示的下行参考信号对应的发送波束上发送第一指示信息,所述终端设备在所述下行参考信 号的编号对应的接收波束上接收所述第一指示信息。终端设备就能更为准确地接收,从而提高终端设备的接收成功率,而且第二网络设备也可以不必在其他方向上再发送指示信息,节省第二网络设备的功耗。在该实施方式中,所述终端设备基于网络设备所指示的下行参考信号的编号,在所述下行参考信号对应的接收波束上接收第一指示信息,可以提高第一指示信息的接收成功率以及接收质量。
在一种可选的实施方式中,所述方法还包括:所述终端设备接收来自所述第一网络设备的第二指示信息,所述第二指示信息包括第一发送波束的信息和第二发送波束的信息,所述第一发送波束用于向所述第一网络设备发送信息,所述第二发送波束用于向所述第二网络设备发送信息。
终端设备发送上行参考信号,第一网络设备和第二网络设备都能够对接收的上行参考信号测量。那么第二网络设备可以得到测量结果,根据这些测量结果就能确定第二网络设备在哪些接收波束上接收来自终端设备的信息的接收质量较好。第一网络设备除了为终端设备配置第一发送波束外,还可以为终端设备配置第二发送波束,第二发送波束对应于第二网络设备,第二发送波束例如是根据第二网络设备的测量结果确定的。如果终端设备在第二发送波束上向第二网络设备发送信息,第二网络设备就能更为准确地接收,从而提高第二网络设备的接收成功率,而且终端设备也可以不必在其他方向上再发送指示信息,节省终端设备的功耗。
在一种可选的实施方式中,基于所述来自第一网络设备的第二指示信息,所述终端设备通过所述第二发送波束向所述第二网络设备发送所述第一指示信息的响应信息,能够提高第二网络设备对于响应信息的接收成功率和接收质量。
第二方面,提供一种通信方法,相应的通信装置及通信系统。第二网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示第一网络设备故障,或用于指示从所述第一网络设备切换到所述第二网络设备,或用于指示服务于所述终端设备的网络设备发生切换;所述第二网络设备接收来自所述终端设备的所述第一指示信息的响应信息。关于所述第一指示信息,以及所述响应信息的可能实现方式及技术效果可以参照第一方面相关的描述。
该方案中,如果所述第二网络设备在第一时长内未接收到来自所述第一网络设备的心跳信息,所述第二网络设备确定所述第一网络设备故障;或,如果所述第二网络设备接收来自所述终端设备的测量信息,所述第二网络设备根据所述测量信息确定所述第一网络设备故障;或,如果所述第二网络设备接收来自所述终端设备的混合自动重传请求应答(hybrid automatic repeat request acknowledge,HARQ-ACK)信息,所述HARQ-ACK信息用于指示与所述第一网络设备的数据传输失败,所述第二网络设备根据所述HARQ-ACK信息确定所述第一网络设备故障。
如上的三种方式可以单独应用,即,第二网络设备只需使用其中一种方式就能确定第一网络设备是否故障;或者,如上三种方式中的任意两种或三种也可以结合应用,即,第二网络设备可以综合多种方式来分别确定第一网络设备是否故障,对于第二网络设备所应用的方式,如果通过其中每种方式都确定第一网络设备故障,则第二网络设备才确定第一网络设备故障,这样可以提高确定结果的准确性。第二网络设备究竟采用如上的哪一种或几种方式来确定第一网络设备是否故障,可以由第二网络设备自行确定,或者也可以通过协议规定。或者,除了如上方式之外,第二网络设备还可以通过其他方式来确定第一网络 设备是否故障,对于第二网络设备确定第一网络设备故障的方式,本申请实施例不做限制。
在一种可选的实施方式中,所述第二网络设备根据第一配置信息向所述终端设备发送所述第一指示信息。所述第一配置信息包括如下一项或多项:BWP的信息,搜索空间的信息,或,RNTI。关于第一配置信息的相关说明可以参见第一方面的描述。
可选的,所述第二网络设备向所述第一网络设备发送第二子配置信息,所述第二子配置信息用于配置所述第二网络设备的下行参考信号;所述第二网络设备接收来自所述终端设备的第一测量结果,所述第一测量结果为对所述第二网络设备的下行参考信号进行测量得到的测量结果;所述第二网络设备根据所述第一测量结果确定第二状态信息,所述第二状态信息包括下行参考信号的编号;所述第二网络设备向所述第一网络设备发送所述第二状态信息。
可选的,所述第二网络设备通过所述下行参考信号的编号对应的发送波束向所述终端设备发送所述第一指示信息。
在一种可选的实施方式中,所述方法还包括:所述第二网络设备接收来自所述第一网络设备的用于配置上行参考信号的配置信息,并根据所述配置信息,接收来自所述终端设备的所述上行参考信号。所述第二网络设备对所述上行参考信号测量,得到测量结果,并向第一网络设备发送所述测量结果。该测量结果可用于所述终端设备确定向所述第二网络设备发送信息的发送波束。可选的,所述第二网络设备通过第二接收波束接收来自所述终端设备的所述响应信息。
关于第二方面的部分可选的实施方式所带来的技术效果,可参考对于第一方面或第一方面的相应的实施方式的技术效果的介绍。
第三方面,提供一种通信方法、相应的通信装置及通信系统。第一网络设备接收来自第二网络设备的第一配置信息;所述第一网络设备向终端设备发送所述第一配置信息,所述第一配置信息用于所述终端设备接收来自所述第二网络设备的第一指示信息,所述第一指示信息用于指示所述第一网络设备故障,或用于指示所述终端设备从所述第一网络设备切换到所述第二网络设备,或用于指示服务于所述终端设备的网络设备发生切换。
在一种可选的实施方式中,所述第一配置信息包括如下一项或多项:BWP的信息;搜索空间的信息;或,RNTI。关于所述第一配置信息具体可以参照第一方面的相关描述。
在一种可选的实施方式中,所述方法还包括:所述第一网络设备向所述终端设备发送用于支持所述终端设备与所述第一网络设备进行通信的工作参数的配置信息(简称为:第一网络设备的配置信息)。例如,所述第一网络设备的配置信息包括如下的一项或多项:测量配置信息,无线承载配置信息,MAC层配置信息,或,物理层配置信息。
为了支持所述终端设备切换到所述第二网络设备工作,所述第二网络设备也需要为所述终端设备配置相应的工作参数。为了减小配置的复杂度,可采用迭代配置的方式。例如,所述第二网络设备根据所述终端设备在所述第一网络设备下的参数来为终端设备配置相应的参数。可选的,所述第一网络设备除了将所述第一网络设备的配置信息发送给终端设备之外,还可以将所述第一网络设备的配置信息发送给第二网络设备,从而使能所述第二网络设备为所述终端设备配置相应的工作参数。
可选的,所述第一网络设备接收来自所述第二网络设备的第二子配置信息,所述第二子配置信息用于配置所述第二网络设备的下行参考信号;所述第一网络设备向所述终端设备发送第四配置信息,所述第四配置信息包括第一子配置信息和所述第二子配置信息,所 述第一子配置信息用于配置所述第一网络设备的下行参考信号,所述第二子配置信息用于配置所述第二网络设备的下行参考信号。可选的,所述第四配置信息还可以包括其他一个或多个子配置信息,所述每个子配置信息对应于一个网络设备。
可选的,所述第一网络设备接收来自所述第二网络设备的第二状态信息,所述第二状态信息包括下行参考信号的编号;所述第一网络设备向所述终端设备发送第一状态信息,所述第一状态信息包括所述下行参考信号的编号。
可选的,所述第一网络设备向所述终端设备发送第五配置信息,所述第五配置信息用于配置上行参考信号。
在一种可选的实施方式中,所述方法还包括:所述第一网络设备接收来自所述第二网络设备的测量结果,该测量结果为所述第二网络设备对上行参考信号进行测量所得到的测量结果。所述第一网络设备根据所述来自第二网络设备的测量结果确定第二发送波束。所述第一网络设备向所述终端设备发送第二指示信息,所述第二指示信息包括第一发送波束的信息和所述第二发送波束的信息,所述第一发送波束用于所述终端设备向所述第一网络设备发送信息。所述第二发送波束用于所述终端设备向所述第二网络设备发送信息。
关于第三方面或第三方面的各种可选的实施方式及技术效果,可参考上述关于第一、和/或第二方面的介绍。
第四方面,提供一种通信装置。该通信装置可以为上述第一至第三方面中任意一方面所述的终端设备,或者为配置在所述终端设备中的电子设备,或者为包括所述终端设备的较大设备。所述终端设备包括用于执行上述方法的相应的手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。其中,所述处理单元,用于通过所述收发单元接收来自第二网络设备的第一指示信息,并通过所述收发模块向所述第二网络设备发送所述第一指示信息的响应信息。
又例如,所述通信装置包括:处理器,与存储器耦合,用于执行存储器中的指令,以实现上述第一至第三方面任意一方面中终端设备所执行的方法。可选的,该通信装置还包括其他部件,例如,天线,输入输出模块,接口等等。这些部件可以是硬件,软件,或者软件和硬件的结合。
第五方面,提供一种通信装置。所述通信装置可以为上述第一至第三方面中任意一方面所述的第一网络设备和/或第二网络设备。所述通信装置具备上述第一网络设备的功能,上述第二网络设备的功能,或者,上述第一网络设备和第二网络设备的功能。所述通信装置可以作为第一终端设备的第一网络设备,也可以作为第二终端设备的第二网络设备。所述第一网络设备和/或第二网络设备:例如为基站,或为基站中的基带装置。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。
所述处理单元,用于通过所述收发单元向终端设备发送第一指示信息,并通过收发模块接收来自所述终端设备的所述第一指示信息的响应信息。
在一种可选的实现方式中,所述通信装置包括处理单元,用于与存储单元耦合,并执行存储单元中的程序或指令,使能所述通信装置执行上述第一网络设备的功能,和/或第二网络设备的功能。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中终端设备,或第一网络设备,或第二网络 设备所执行的方法被实现。
第七方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
附图说明
图1为本申请实施例的通信系统的示意图;
图2A为本申请实施例的一种应用场景的示意图;
图2B为本申请实施例的另一种应用场景的示意图;
图2C为本申请实施例的又一种应用场景的示意图;
图3为本申请实施例提供的通信方法的流程图;
图4为本申请实施例提供的通信方法的一种流程图;
图5A和图5B为本申请实施例中第一BWP与终端设备的激活的BWP之间的频域位置关系示意图;
图6为本申请实施例提供的通信方法的另一种流程图;
图7为本申请实施例提供的通信方法的再一种流程图;
图8为本申请实施例提供的通信装置的一种示意性框图;
图9为本申请实施例提供的终端设备的一种示意性框图;
图10为本申请实施例提供的网络设备的一种示意性框图。
具体实施方式
本申请实施例提供的技术可以应用于图1所示的通信系统10中,通信系统10包括一个或多个通信装置30(例如,终端设备)经由一个或多个接入网设备20连接到一个或多个核心网设备,以实现多个通信设备之间的通信。所述通信系统例如可以支持2G,3G,4G,或5G(有时也称为new radio,NR)接入技术的通信系统,无线保真(wireless fidelity,WiFi)系统,第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统,支持多种无线技术融合的通信系统,或者是面向未来的演进系统。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
本申请中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等,为描述方便,本申请中将终端设备以UE为例进行说明。
本申请中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于上述通信系统中的基站(BTS,Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种接入技术的网络,也可以支持上述提及的不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。例如,V2X技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以为基站为例进行说明。所述通信系统中的多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
不同UE由于射频能力不同,所能支持的最大带宽也就不同,因此引入带宽部分(bandwidth part,BWP)的概念,在一个宽带上为UE分配部分频谱使用,以适应UE所能支持的带宽。因此,在通信系统中,UE的带宽是动态可变的,有时也可以用宽带自适应变化(bandwidth adaption)来指代该技术。通过为UE配置多种不同带宽的BWP,以实现对UE的灵活调度以及实现UE的节能。
为了降低通信过程中传输损耗,可以采用波束赋型的技术。例如下行和上行都使用波束发送。5G系统中有一系列的波束训练过程,可以使上下行波束可以对齐。例如,5G系统中有基于SSB的随机接入信道(random access channel,RACH)过程,该过程是接入过程中的波束训练过程,通过该过程可以使得基站的下行发送波束与UE的上行接收波束对齐,以及可以使得UE的上行发送波束与基站的下行接收波束对齐。5G系统中还有基于SSB或信道状态信息参考信号(channel state information-reference signal,CSI-RS)的下行波束训练过程,该过程可以发生在接入成功后,通过该过程可以使得基站的下行发送波束与UE的上行接收波束对齐。另外5G系统中还有基于探测参考信号(sounding reference signal,SRS)的上行波束训练过程,该过程也可以发生在接入成功后,通过该过程可以使得基站的下行接收波束与UE的上行发送波束对齐。
本申请中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时 存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一下行RS的配置信息和第二下行RS的配置信息,可以是同一个配置信息,也可以是不同的配置信息,且,这种名称也并不是表示这两个配置信息的信息量大小、内容、优先级或者重要程度等的不同。
图2A示出了本申请提供的通信系统10中的一种通信网络架构,后续提供的图4、图6或图7所示的实施例均可适用于该架构。第一网络设备是终端设备(后续以UE为例进行说明)的源网络设备(或称为,工作网络设备,或服务网络设备),第二网络设备为UE的目标网络设备(或称为,备用网络设备),即切换后为UE提供服务的网络设备。需要说明的是,本申请中,“故障”可以理解为网络设备出现故障,和/或因其他原因不能再为某个或多个UE提供服务,简称为故障。本申请中所述的“切换”,是指为UE提供服务的网络设备发生切换,并不限于“小区切换”。为方便描述,以网络设备为基站为例进行描述。所述“切换”可以指,由于为UE提供服务的基站发生变化而造成的切换。例如,当UE的源基站发生故障时,由备用基站为UE提供服务。又例如,UE从源基站切换到与另一个基站通信的过程中,由切换后的目标基站为UE提供服务。UE切换前与切换后的接入的小区可以变化,也可以不变。可以理解的是,所述备用网络设备是相对的概念,例如,相对于一个UE,基站2是基站1的备用网络设备,而相对于另一个UE,基站1是基站2的备用网络设备。
所述第一网络设备和所述第二网络设备可以是两个不同的设备,例如,第一网络设备和第二网络设备是两个不同的基站。可选的,所述第一网络设备和第二网络设备也可以是同一个设备中的两套功能模块。所述功能模块可以是硬件模块,或软件模块,或者硬件模块与软件模块。例如,所述第一网络设备和所述第二网络设备位于同一个基站中,是该基站中的两个不同的功能模块。一种实现方式中,所述第一网络设备和所述第二网络设备对于UE来说不是透明的。UE在与相应的网络设备交互时,能够知道究竟是在与哪个网络设备交互。另一种实现方式中,所述第一网络设备和所述第二网络设备对于UE来说是透明的。UE能够与网络设备通信,但并不知道是在与这两个网络设备中的哪个网络设备交互。或者说,对于UE来说,可能认为只有一个网络设备。图3、图4、图6以及图7中,所述第一网络设备和所述第二网络设备位于一个虚线框中,表示,所述第一网络设备和所述第二网络设备对于UE来说可以不是透明的,也可以是透明的。在后续描述中,第一网络设备、第二网络设备、以及终端设备(以UE为例)可以分别为图2A中所示网络架构中的第一网络设备,第二网络设备以及UE在本申请的各个实施例所对应的附图中,用虚线表示的步骤,是可选的步骤,在后文中不多赘述。
图2B示出了本申请提供的通信系统10中的另一种通信网络架构。如图2B所示,通信系统包括核心网(new core,CN)和无线接入网(radio access network,RAN)。其中RAN中的网络设备(例如,基站)包括基带装置和射频装置。基带装置可以由一个或多个节点 实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。RAN中的网络设备可以包括集中单元(CU)和分布单元(DU),多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请不作任何限制。
图2C示出了本申请提供的通信系统10中的另一种通信网络架构。相对于图2B所示的架构,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。在该网络架构中,CU产生的信令可以通过DU发送给UE,或者UE产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给UE或CU。在该网络架构中,将CU划分为作为RAN侧的网络设备,此外,也可以将CU划分作为CN侧的网络设备,本申请对此不做限制。
图3示出了本申请实施例提供的一种通信方法。
S301、第二网络设备向UE发送第一指示信息,相应的,UE接收来自第二网络设备的第一指示信息。
例如,第二网络设备在确定第一网络设备发生故障的情况下,向UE发送第一指示信息,第一指示信息指示第一网络设备故障,或者指示从第一网络设备切换到第二网络设备,或者指示服务于UE的网络设备发生变化,或者指示第二网络设备生效(所谓生效,可以理解为UE需要切换到第二网络设备工作),或者指示第一网络设备失效(所谓失效,可以理解为UE不能继续在第一网络设备下工作)。
所述第一指示信息可以承载于无线资源控制(radio resource control,RRC)消息、媒体接入控制(media access control,MAC)控制元素(control element,CE)或下行控制信息(downlink control information,DCI)等消息中发送给UE。
S302、UE向第二网络设备发送对应于第一指示信息的响应信息,相应的,第二网络设备接收来自UE的响应信息。
例如,将UE在向第二网络设备进行随机接入的过程中发送给第二网络设备的某条消息视为该响应信息,即,UE接入第二网络设备,就视为UE对于第一指示信息进行了响应,例如该响应信息是随机前导序列(preamble),或者,该响应信息可以是调度传输消息,调度传输消息例如为随机接入过程中的第三消息(Msg3),或者,该响应消息也可以是随机接入过程中的消息B(MsgB),等等。
可替换地,UE也可以不向第二网络设备发送响应信息,例如UE可能在接收第一指示信息后进行分组数据汇聚协议(packet data convergence protocol,PDCP)重建等操作,而不向第二网络设备发送响应信息,因此S302是可选的步骤。
第一网络设备是当前服务于UE的网络设备。也就是说,本申请实施例是由其他的网络设备(例如第二网络设备)来通知UE无法继续在第一网络设备下工作。由第二网络设备来确定第一网络设备是否故障,或者说,是由第二网络设备来使能第二网络设备为UE提供服务,可实现性较高,从而使得UE尽快切换,减小业务传输时延,提高了通信系统的可靠性。
基于图3的方案,图4,图6和图7分别给出了详细的通信方法举例。接下来请参考图4,给出了本申请实施例提供的一种通信方法的流程示意图。
第一网络设备分别向UE和第二网络设备发送配置信息(S401,S402)。该配置信息包括用于支持UE与第一网络设备通信的工作参数(为描述方便,简称为第一网络设备的配置信息)。第一网络设备的配置信息包括如下的一项或多项:测量配置信息,无线承载(radio bearer)配置信息,MAC层配置信息,或,物理层配置信息。其中,所述测量配置信息可用于配置UE在第一网络设备下的测量行为。所述物理层配置信息可用于为UE配置一个或多个带宽部分BWP。
S401、UE接收所述第一网络设备的配置信息。第一网络设备可以在UE与第一网络设备进行随机接入成功时将所述配置信息发送给所述UE,可选的,第一网络设备也可以在UE在第一网络设备下工作时(随机接入成功后的一段时间)将所述配置信息发送给UE。
S402、第二网络设备接收第一网络设备的配置信息。第二网络设备也可以为UE提供服务。也就是说第二网络设备可以为切换后的网络设备。第二网络设备可以为UE配置工作参数。例如,第二网络设备采用迭代配置的方式。第二网络设备可以根据UE在第一网络设备下的参数来为UE配置相应的参数,从而减小配置的复杂度。
S403、第二网络设备将用于支持UE与第二网络设备通信的配置信息(为描述方便,简称为第二网络设备的配置信息)发送给第一网络设备和/或UE,或者第二网络设备通过第一网络设备将第二网络设备的配置信息发送给UE。例如,第二网络设备的配置信息可以包括如下的一项或多项:随机接入资源的信息,BWP的信息,测量配置信息,无线承载配置信息,MAC层配置信息,物理层配置信息,搜索空间(search space)的信息,或,无线网络临时标识(radio network tempory identity,RNTI)。其中,BWP的信息用于指示一个或多个BWP,例如,所述BWP的信息为一个或多个BWP的标识,或者为用于标识一个或多个BWP的其他信息,或者用于配置一个或多个BWP的信息(例如,BWP的带宽等)。
在一种实现方式中,所述第二网络设备的配置信息,包括:第一配置信息和第二配置信息。其中所述第一配置信息用于配置时域资源,频域资源或码域资源中的一项或多项,使能UE接收来自第二网络设备的指示信息。所述指示信息例如可以为S301中的第一指示信息。UE根据所述指示信息可以获知第一网络设备发生故障,或者用于服务UE的网络设备发生切换,或者UE需要从所述第一网络设备切换到第二网络设备。例如,所述第一配置信息可以包括以下一项或多项:BWP的信息,搜索空间的信息,和/或RNTI。所述第二配置信息用于配置UE对应于第二网络设备的工作参数,例如可以包括以下一项或多项:随机接入资源的信息,与随机接入有关的BWP的信息、测量配置信息,无线承载配置信息,MAC层配置信息,物理层配置信息。
所述第一配置信息中的BWP信息,用于指示第二网络设备向UE发送指示信息的一个或多个BWP(为描述方便,称为第一BWP)。所述第一配置信息中的搜索空间的信息用于指示搜索空间,例如为搜索空间的标识,或者为用于指示搜索空间的其他信息,用于UE在所述搜索空间接收所述指示信息。所述搜索空间可以是公共搜索空间,例如第二网络设备通过波束扫描的方式发送指示信息。或者,搜索空间的标识所指示的搜索空间是该UE的专用搜索空间。所述第一配置信息中的RNTI可以是公共RNTI,例如小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)。
所述第一BWP为下行BWP,其可以为该UE配置的全部BWP或者部分BWP,即,第一BWP可包括为UE配置的一个或多个BWP。UE工作在第一网络设备下,第一网络设备会为该UE配置一个或多个BWP,那么所述BWP的信息可以指示这一个或多个BWP中的部分或全部。如果所述BWP的信息指示了一个BWP,则第二网络设备在向UE发送指示信息时,可以在该BWP上发送,UE也会在该BWP上检测并接收指示信息;或者,如果所述BWP的信息指示了多个BWP,则第二网络设备在向该UE发送指示信息时,可以在这多个BWP中的全部或部分BWP上发送,UE可以检测多个BWP中的全部或部分BWP以接收所述指示信息。因此,即使UE在其中一个BWP上检测失败或接收失败,也可能会在其他BWP上检测并接收成功,由此可以提高UE接收指示信息的成功率。
所述第一BWP可以是预定的用于传输所述指示信息(例如S301中的第一指示信息一个或多个下行BWP。例如第一BWP可以通过协议规定,或者也可以通过其他方式预先设置。
例如,第一BWP是该UE的初始(initial)下行BWP,初始下行BWP是指UE处于RRC非连接态时,从一个小区(cell)接收系统信息、寻呼以及进行随机接入的BWP。在UE接收系统信息块1(system information block 1,SIB1)之前,UE的初始下行BWP的带宽为MIB所指示的控制资源集0(CORESET#0)的带宽,UE接收SIB1后,如果SIB1未包括初始下行BWP的带宽,则UE的初始下行BWP的带宽仍然是MIB所指示的CORESET#0的带宽,因此也可以认为,第一BWP是控制资源集0(CORESET#0)对应的下行BWP。所述UE的初始下行BWP或CORESET#0,是小区级别的参数,使得UE和第二网络设备可以对齐。因此,如果第一BWP是UE的初始下行BWP,则第二网络设备和UE都能够明确究竟哪个BWP是第一BWP,从而第二网络设备可以在UE的初始下行BWP上向UE发送指示信息,UE也能在该UE的初始下行BWP上检测并接收指示信息,提高了UE对指示信息的接收成功率。而且第二网络设备只需在UE的初始下行BWP上发送指示信息即可,无需在多个BWP上都发送指示信息,减小了第二网络设备的功率消耗;UE同样只需在UE的初始下行BWP上检测指示信息,无需在多个BWP上检测指示信息,也减小了UE的功率消耗。而且这种方式也能减小由于发送指示信息所带来的信令开销。
又例如,第一BWP是该UE的激活(active)的下行BWP。当UE有业务到达时,基站会将该UE从初始BWP调度到一个带宽与该业务相匹配的BWP上,该BWP就称为该UE的激活BWP,UE可以在激活BWP上接收寻呼以及其他系统信息(other system information,OSI)。所述OSI包括除SIB1之外的其他的系统信息。一个UE可以被配置多个激活BWP,但是在某一个时刻,该UE只能使用一个激活BWP。在这种情况下,相当于所述第二网络设备的配置信息包括的BWP的信息指示了UE的激活的下行BWP,但如果第一网络设备为UE配置了多个下行BWP,则UE的激活的下行BWP是可能发生变化的。那么,所述第二网络设备的配置信息相当于并未指示某个固定的下行BWP,因此第二网络设备需要推测UE的激活的下行BWP是哪个BWP,以在向UE发送指示信息时能够在该BWP上发送,UE在检测指示信息时会在UE的激活的下行BWP上检测。在这种方式下,UE无需切换射频频率就能完成对指示信息的检测和接收,对于UE来说减少了由于切换射频频率所带来的功耗和时延。
再例如,第一BWP既不是UE的初始下行BWP,也不是UE的激活的下行BWP,而 是为UE配置的多个BWP中的其中一个BWP。由于第一BWP可以通过协议规定,因此第二网络设备和UE都能明确第一BWP究竟是哪个BWP。从而第二网络设备可以在第一BWP上向该UE发送指示信息,UE也能在第一BWP上检测并接收指示信息,提高了UE对指示信息的接收成功率。而且第二网络设备只需在第一BWP上发送指示信息即可,无需在多个BWP上都发送指示信息,减小了第二网络设备的功率消耗;UE同样只需在第一BWP上检测指示信息,无需在多个BWP上检测指示信息,也减小了UE的功率消耗。而且这种方式也能减小由于发送指示信息所带来的信令开销。
另一种实现方式中,如果考虑到所述工作参数的动态性,第二网络设备也可以无需事先将这些参数中的部分或者全部发送给UE。所述第一配置信息中的BWP信息,搜索空间的信息,或RNTI均为可选信息。也就是说第一配置信息可以不包括这些信息中的一项或多项,而UE通过默认方式(例如根据预定的规则,或者约定的方式,或者协议规定)获知这些信息中的一项或多项。当这些BWP信息,搜索空间的信息和RNTI的信息均采用默认的方式时,所述第二网络设备向UE发送的所述第二网络设备的配置信息中可以不包括所述第一配置信息。
例如,在以下情形中,第二网络设备不向UE发送第一BWP的信息。(1)默认(或,协议规定)第二网络设备会在为UE配置的全部的下行BWP上都发送指示信息,那么无论第二网络设备在发送指示信息时UE的激活的下行BWP是哪一个,UE都能检测到来自第二网络设备的指示信息。(2)默认(或,协议规定)第二网络设备会在UE的激活的下行BWP上发送指示信息,那么UE在激活的下行BWP上就能检测到来自第二网络设备的指示信息,从而接收该指示信息,在这种情况下,第二网络设备可以无需向UE发送第一BWP的信息。(3)默认(或,协议规定)第二网络设备会在UE的初始下行BWP上向UE发送指示信息,那么UE在该UE的初始下行BWP上就能检测到来自第二网络设备的指示信息,从而接收该指示信息。(4)默认(或,协议规定)第二网络设备会在第一BWP上向UE发送指示信息,那么UE在第一BWP上就能检测到来自第二网络设备的指示信息,从而接收该指示信息,第一BWP可以是为该UE配置的BWP中的一个。在第二网络设备不向UE发送第一BWP的信息的情况下,第二网络设备也可以向UE发送第一配置信息,以配置搜索空间的信息和/或RNTI的信息等。
又例如,在以下情形中,第二网络设备也可以不向UE发送RNTI的信息。(1)默认(或,协议规定)第二网络设备利用小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)对指示信息进行加扰,那么第二网络设备可以利用C-RNTI对第一指示信息进行加扰,UE也可以利用C-RNTI对第一指示信息进行解扰。可选的,(2)默认第二网络设备会利用公共RNTI对指示信息进行加扰,那么第二网络设备可以利用公共RNTI对第一指示信息进行加扰,UE也可以利用公共RNTI对第一指示信息进行解扰。
所述第二配置信息中的与随机接入有关的BWP的信息(简称为第二BWP的信息),用于指示UE在与第二网络设备的随机接入过程中应用的下行BWP。所述第二BWP的信息例如为一个或多个BWP的标识,或为用于标识一个或多个BWP的其他信息,或为用于配置一个或多个BWP的信息(例如包括BWP的带宽等)。
所述第二配置信息中的随机接入资源的信息,用于指示UE与第二网络设备进行随机接入的资源,例如用于随机接入的时频资源,或前导码(preamble)的编号等。例如UE在向第二网络设备发送preamble之后,在所述第二BWP的信息所指示的BWP上盲检来 自第二网络设备的物理下行控制信道(physical downlink control channel,PDCCH)。
所述第二配置信息中的搜索空间的信息例如为搜索空间的标识,或者用于指示搜索空间的其他信息。搜索空间的标识所指示的搜索空间可以是公共搜索空间。例如第二网络设备通过波束扫描的方式发送指示信息。或者,搜索空间的标识所指示的搜索空间是该UE的专用搜索空间。
所述第二配置信息中的RNTI可以为公共RNTI,或者也可以是其他类型的RNTI,例如专为该UE配置的RNTI。例如,在第二网络设备采用广播方式发送指示信息的情况下,多个UE都可以接收该指示信息,从而这多个UE中的部分或全部UE能够切换到第二网络设备,因此,第二网络设备无需发送过多的指示信息,有助于节省信令开销。在这种情况下,第二网络设备可以利用公共RNTI对所述指示信息进行加扰,UE也可以利用公共RNTI来解扰来自第二网络设备的信息。
一种实现方式中,第二网络设备事先将UE在第二网络设备下的部分或全部工作参数(第二网络设备的配置信息)发送给UE,以使得UE后续如果需要切换到第二网络设备,则可以应用这些参数,无需再请求或等待第二网络设备发送,能够提高UE的切换效率。
需要说明的是,所述第一配置信息与第二配置信息,可以通过一条消息发送,或者也可以通过不同的消息发送。例如,第一网络设备可以通过RRC消息,或MAC CE,或DCI等,将第二网络设备的配置信息发送给UE。上述第二网络设备的配置信息中包括的参数可以通过相同的消息一起发送,也可以通过不同的消息分开发送。例如,通过RRC消息/MAC CE/DCI携带以下信息中的一项或多项:随机接入资源的信息,第二BWP的信息,测量配置信息,无线承载配置信息,MAC层配置信息,物理层配置信息。通过另一RRC消息/MAC CE/DCI携带以下信息中的一项或多项,BWP的信息,搜索空间的信息,或,RNTI的信息。
S404、第一网络设备发生故障。
S405、第二网络设备确定第一网络设备故障。
一种实施方式中,第二网络设备通过心跳检测的方式确定第一网络设备是否故障。例如第一网络设备周期性向第二网络设备发送心跳包,第二网络设备接收了来自第一网络设备的心跳包,确定第一网络设备运行正常,而如果第二网络设备在第一时长内未接收来自第一网络设备的心跳包,确定第一网络设备故障。或者,第二网络设备周期性向第一网络设备发送心跳包,第一网络设备接收了来自第二网络设备的心跳包,向第二网络设备发送心跳反馈,第二网络设备接收了来自第一网络设备的心跳反馈,确定第一网络设备运行正常,而第二网络设备在正常向第一网络设备发送心跳包的情况下,如果在第一时长内未接收来自第一网络设备的心跳反馈,就可以确定第一网络设备故障。第一时长可以是第一网络设备和第二网络设备协商确定的时长,或者是第二网络设备设置的时长,或者也可以是通过协议规定的时长。
另一种实施方式中,第二网络设备通过来自UE的测量信息确定第一网络设备是否故障。例如,第一网络设备发送下行参考信号(reference signal,RS),例如CSI-RS等。UE接收来自第一网络设备的下行RS后可进行测量,得到测量结果(或者称为测量信息),UE将所述测量信息发送给第一网络设备,虽然UE是发送给第一网络设备,但第二网络设备可能也会在所述测量信息的时频域位置上进行检测,进而第二网络设备可能也会检测并接收到来自UE的该测量信息。那么,第二网络设备根据UE的测量信息就可以确定第一网 络设备是正常运行还是出现了故障。
再一种实施方式中,第二网络设备通过来自UE的混合自动重传请求应答(hybrid automatic repeat request acknowledge,HARQ-ACK)信息确定第一网络设备是否故障。例如,第一网络设备发送下行数据,UE接收来自第一网络设备的下行数据后,向第一网络设备发送HARQ-ACK信息。其中,如果UE接收下行数据成功,HARQ-ACK信息可以是肯定应答(ACK)信息,如果UE接收下行数据失败,HARQ-ACK信息可以是否定应答(NACK)信息。而第二网络设备可能也会在所述HARQ-ACK信息的时频域位置上进行检测,进而第二网络设备可能也会接收到来自UE的该HARQ-ACK信息,那么,第二网络设备根据UE的HARQ-ACK信息确定第一网络设备是正常运行还是出现了故障。例如,第二网络设备接收的HARQ-ACK信息用于指示UE与第一网络设备的数据传输成功,则第二网络设备就确定第一网络设备正常,或者,第二网络设备接收的HARQ-ACK信息指示UE与第一网络设备的数据传输失败,则第二网络设备确定第一网络设备故障。其中,第二网络设备可能会接收一个或多个HARQ-ACK信息,这一个或多个HARQ-ACK信息可能来自一个UE或多个UE。例如,如果这一个或多个HARQ-ACK信息中,用于指示与第一网络设备的数据传输失败的HARQ-ACK信息的个数大于或等于50%×N,则第二网络设备确定第一网络设备故障,N为第一网络设备接收的HARQ-ACK信息的总数量。
又一种实现方式中,当第一网络设备由于一些原因无法再为UE提供服务,可以主动通知第二网络设备,当第二网络设备获知第一网络设备无法再为UE提供服务,可以确认第一网络设备故障。
如上的第二网络设备确定第一网络设备故障的多种方式可以单独应用,即,第二网络设备使用其中一种方式就能确定第一网络设备是否故障;或者,如上三种方式中的任意两种或多种也可以结合应用,即,第二网络设备可以综合多种方式来确定第一网络设备是否故障,可以提高确定结果的准确性。第二网络设备究竟采用如上的哪一种或几种方式来确定第一网络设备是否故障,可以由第二网络设备自行确定,或者也可以通过协议规定。或者,除了如上方式之外,第二网络设备还可以通过其他方式来确定第一网络设备是否故障,对于第二网络设备确定第一网络设备故障的方式,本申请实施例不做限制。
S406、第二网络设备向UE发送第一指示信息。例如,第二网络设备在确定第一网络设备发生故障的情况下,向UE发送第一指示信息,以使得UE获知第一网络设备无法继续为UE提供服务。所述第一指示信息指示第一网络设备故障,或者指示从第一网络设备切换到第二网络设备,或者指示服务于UE的网络设备发生切换。其中,所述第一指示信息指示第一网络设备故障,可以理解为,第一网络发生故障,和/或者第一网络设备失效。所述第一指示信息指示从第一网络设备切换到第二网络设备,可以理解为,第二网络设备生效,和/或UE需要切换到第二网络设备。本申请实施例是由其他的网络设备(例如第二网络设备)来通知UE无法继续在服务网络设备(即第一网络设备)下工作。由第二网络设备来确定第一网络设备是否故障,可实现性较高,从而使得UE尽快切换,减小业务传输时延。S406与图3所示的实施例中所介绍的S301可以是同一步骤。
所述第一指示信息可以被携带在RRC消息、MAC CE或DCI等消息中发送给所述UE。
第二网络设备可以在选定的资源上发送第一指示信息,并发送配置信息告知UE。UE可以根据配置信息确定在哪些资源上接收所述第一指示信息。
例如,在S403中,UE接收了第二网络设备的配置信息,则UE获知用于接收第一指 示信息的资源。UE根据第二网络设备的配置信息接收来自第二网络设备的第一指示信息。
例如,UE从网络设备接收所述BWP的信息,如果所述BWP的信息指示为该UE配置的全部BWP或部分BWP,则UE在所述BWP的信息所指示的一个或多个BWP上检测并接收第一指示信息。或者,如果所述BWP的信息指示该UE的初始下行BWP,则UE在该UE的初始下行BWP上检测并接收第一指示信息。或者,如果所述BWP的信息指示该UE的激活的下行BWP,则UE在该UE的激活的下行BWP上检测并接收第一指示信息。或者,如果所述BWP的信息指示第一BWP,第一BWP是为UE配置的BWP中的一个或多个,则UE在第一BWP上检测并接收第一指示信息。
又例如,UE从网络设备接收了所述搜索空间的信息(例如,公共搜索空间和/或专用搜索空间),则UE在所述搜索空间的信息所指示的搜索空间内检测并接收第一指示信息。
再例如,UE从网络设备接收了所述RNTI的信息,并利用所述RNTI的信息对接收的第一指示信息进行解扰。例如,UE接收公共RNTI,并利用公共RNTI解扰通过广播方式发送的第一指示信息。
可选的,如果未执行S403,或者UE未接收到第二网络设备的配置信息,或者网络设备未发送第二网络设备的配置信息,UE可以根据预定的规则接收来自第二网络设备的第一指示信息。例如,默认(或,协议规定)第二网络设备通过以下资源中的一种发送第一指示信息:(1)第一BWP,第一BWP是预定的一个BWP;(2)为UE配置的全部的下行BWP;(3)UE激活的下行BWP;(4)UE的初始下行BWP。UE在相应的资源上检测并接收第一指示信息。又例如,默认(或,协议规定)第二网络设备利用C-RNTI对第一指示信息进行加扰,则UE利用所述C-RNTI对第一指示信息进行解扰。再例如,默认(或,协议规定)第二网络设备利用公共RNTI对指示信息进行加扰,UE利用所述公共RNTI对第一指示信息进行解扰。
其中,如果UE通过第一BWP接收第一指示信息,第一BWP例如是为UE配置的BWP中的一个。那么,如果第一BWP与UE当前的激活的下行BWP不同,则UE需要调整UE的射频频率,例如,UE将该UE的接收天线的射频频率从当前的激活的下行BWP的频率调整为第一BWP的频率,从而完成对第一指示信息的接收。第二网络设备可选的在UE将接收天线的射频频率调整为第一BWP的频率的期间,不为该UE调度数据,以减小丢包率。另外,如果第一网络设备虽然故障,但还有能力为该UE调度数据,则第一网络设备可选的在UE将接收天线的射频频率调整为第一BWP的频率的期间,也不为该UE调度数据,以减小丢包率。第一BWP与UE的激活的下行BWP不同,可以理解为,UE的射频接收范围无法同时覆盖第一BWP的带宽和UE的激活的下行BWP的带宽,或者说,第一BWP的带宽和UE的激活的下行BWP的带宽无法同时落在UE的射频接收范围内。从另一个角度来说,第一BWP与UE的激活的下行BWP不同,可以认为是第一BWP与UE的激活的下行BWP不存在交集,或者,第一BWP与UE的激活的下行BWP存在交集,但是,第一BWP还包括了UE的激活的下行BWP所不包括的带宽,和/或,UE的激活的下行BWP还包括了第一BWP所不包括的带宽。
而如果第一BWP与UE当前的激活的下行BWP相同,则UE无需调整UE的射频频率,UE在当前激活的下行BWP上就能接收第一指示信息。如果UE的射频接收范围能够同时覆盖第一BWP的带宽和UE的激活的下行BWP的带宽,或者说,第一BWP的带宽和UE的激活的下行BWP的带宽能够同时落在UE的射频接收范围内,认为第一BWP和 UE的激活的下行BWP相同。或者从另一个角度来说,如果第一BWP的带宽包括在UE的激活的下行BWP的带宽内,就认为第一BWP和UE的激活的下行BWP相同。
例如可参考图5A和图5B。在图5A中,第一BWP的带宽(图5A中画斜线的部分)位于UE的激活的下行BWP的带宽内,可认为第一BWP和UE的激活的下行BWP相同。在图5B中,第一BWP的带宽(图5B中画斜线的部分)和UE的激活的下行BWP的带宽无交集,可认为第一BWP和UE的激活的下行BWP不同。
如果UE通过该UE的初始下行BWP接收第一指示信息,UE对于接收天线的射频频率的调整方式,也与上述过程是类似的,不多赘述。
作为一种可选的实施方式,S403可以不执行,或者在S403中,网络设备可以无需向UE发送第二配置信息(例如,随机接入资源的信息,第二BWP的信息,测量配置信息,无线承载配置信息,MAC层配置信息,或物理层配置信息中的一项或多项),而是在所述第一指示信息包括第二配置信息,以用于支持UE与第二网络设备的通信,这样可以减少传输开销,尤其是当UE长时间不切换的情况下。也就是说第二网络设备是在UE需要进行切换时再向UE发送第二配置信息,该配置信息更为符合当前的网络情况。如果UE在S403中接收了配置信息,第一指示信息中可以可选的不包括这些配置信息。在这种情况下,当UE接收了第一指示信息,生效在S403中接收的第二网络设备的配置信息,或者说开始应用第二网络设备的配置信息与第二网络设备通信。
所述第二配置信息可参考S403中的相关描述。例如:包括如下的一项或多项:随机接入资源的信息,第二BWP的信息,测量配置信息,无线承载配置信息,MAC层配置信息,或,物理层配置信息。
一种实现方式中,所述第二配置信息可以分开发送。例如通过DCI发送与随机接入相关的信息,在UE完成第二网络设备下的随机接入后,网络设备再发送其他的参数。
一种实现方式中,第一指示信息和所述第二配置信息携带在一条消息中。例如第一网络设备通过RRC消息、MAC CE或DCI等消息将第一指示信息发送给UE,那么该消息除了包括第一指示信息外,还可以包括第二配置信息。例如第一指示信息占用一个或多个比特(bit),以第一指示信息占用1个比特为例,如果该比特的取值为“1”,可指示第一网络设备故障,或指示从第一网络设备切换到第二网络设备,或用于指示服务于所述UE的网络设备发生切换。如果该比特的取值为“0”,指示第一网络设备正常,或指示不从第一网络设备切换到第二网络设备,或用于指示服务于所述UE的网络设备未发生切换。可替换的,可以通过第一指示信息隐式指示第一网络设备不能为UE进行服务。例如,如果第二网络设备发送了第一指示信息,即暗示第一网络设备故障,或暗示需从第一网络设备切换到第二网络设备,或用于暗示服务于所述UE的网络设备发生切换。如果第二网络设备未发送第一指示信息,就暗示第一网络设备正常,或暗示不从第一网络设备切换到第二网络设备,或暗示服务于所述UE的网络设备未发生切换。在这种情况下,对于第一指示信息所占用的比特的个数和取值均不限制。
另一种实现方式中,第一指示信息包括与第二配置信息可以理解为,所述配置信息除了可以用于配置UE对应于第二网络设备的工作参数之外,还可以隐式指示第一网络设备故障,或隐式指示从第一网络设备切换到第二网络设备,或隐式指示服务于所述UE的网络设备发生切换。这种方式能够节省信令开销。
需要说明的是,所述第二网络设备向UE发送第一指示信息(S406),可选的,也可以 不必以第一网络设备故障为前提(S404,405),而是由第二网络设备主动发起。例如,当主设备与辅设备需要功能切换时,或者主设备需要检修时,第二网络设备可以主动发起第一指示信息,而不局限于第一网络设备处于故障状态的场景,进而,本申请实施例提供的方法可以使得第一网络设备和第二网络设备之间实现灵活的切换。
S407、作为可选的步骤,UE向第二网络设备发送对应于第一指示信息的响应信息,相应的,第二网络设备接收来自UE的响应信息。其中,如果第一网络设备和第二网络设备对于UE来说是不透明的,则UE可以明确是向第二网络设备发送响应信息;或者,如果第一网络设备和第二网络设备对于UE来说是透明的,则UE只知道是向网络设备发送响应信息,但并不知道网络设备可能有多个,在这种情况下,UE认为是向网络设备发送响应信息。S407与图3所示的实施例中所介绍的S302可以是同一步骤。
例如,可以将UE在向第二网络设备进行随机接入的过程中发送给第二网络设备的某条消息视为该响应信息,即,UE接入第二网络设备,就视为UE对于第一指示信息进行了响应,例如该响应信息是preamble,或者,该响应信息可以是调度传输消息,调度传输消息例如为随机接入过程中的Msg3,或者,该响应消息也可以是随机接入过程中的MsgB,等等。
在本申请实施例中,由一个网络设备(第二网络设备)来确定另一个网络设备(第一网络设备)是否故障,相较于由UE来确定网络设备是否故障,更容易实现。所述UE通过网络侧的指示确定网络设备故障,或者需要切换,可以确定第一网络设备故障所消耗的时间,从而减少业务传输的中断时间,提高业务的连续性,也就提高了业务的可靠性。
图6示出了本发明实施例提供的一种通信方法。相较于图4所示的实施例来说,图6所示的实施例增加了下行波束训练的过程,可以提高第二网络设备在向UE发送指示信息时的发送成功率。图6所示的实施例与图4所示的实施例单独或结合应用。
S601、第二网络设备向第一网络设备发送第二下行RS的配置信息,相应的,第一网络设备接收来自第二网络设备的第二下行RS的配置信息。在图6中,将第二下行RS的配置信息表示为下行RS2的配置信息。第二下行RS的配置信息可用于配置第二网络设备的下行RS,例如,第二下行RS的配置信息用于配置第二网络设备的下行RS的发送资源。第二网络设备的下行RS,例如为CSI-RS,或者是SSB,或者是其他信号。其中,SSB也可以视为一种特殊的RS。其中,第二下行RS的配置信息,也可以简称为第二子配置信息。
例如,第二下行RS的配置信息包括如下一项或多项:时域信息,比特地图(bitmap),或,频域信息。
例如下行RS为SSB,对于一个小区来说,可以对应固定数量的SSB,例如低频时规定共可以发送8个SSB,高频时规定共可以发送64个SSB。而第二网络设备可能不会将所有的SSB都发下去,可能只发送其中一部分SSB。在一种可能的实现中,第二下行RS的配置信息可以包括bitmap,该bitmap包括的比特数与第二网络设备总共能够发送的SSB的数量相同,则通过所述bitmap指示第二网络设备究竟会发送哪些SSB。例如对于高频的情况,所述bitmap可以包括64个比特,如果这64个比特中有的比特取值为“1”,表示第二网络设备会发送该比特对应的SSB,而如果这64个比特中有的比特取值为“0”,表示第二网络设备不发送该比特对应的SSB。那么UE根据所述bitmap就能确定第二网络设备会发送哪些下行RS。在另一种可能的实现中,第二下行RS的配置信息包括两组比特,例如,当一共有64个SSB时,可以将64个SSB分为8组,每组包括8个SSB,那么第一组8 比特用于指示8个组中网络设备会发送哪一组中的SSB,第二组8比特用于指示这一组中哪一个SSB被发送,例如第一组8比特中对应第三组的比特取值为“1”代表网络设备发送第三组中的SSB,第二组8比特中对应第二个SSB的比特取值为“1”代表网络设备发送第三组中的第二个SSB。其中分组的个数和每组中RS的个数仅为举例。
所述时域信息指示第二网络设备的下行RS的时域位置,所述频域信息指示第二网络设备的下行RS的频域位置。时域信息可以包括如下的一项或多项:周期,偏移量,或,半帧指示信息。其中,所述周期可以是第二网络设备的下行RS的发送周期;所述偏移量可以指示第二网络设备的下行RS在一个发送周期中的时域偏移,例如,第二网络设备的下行RS的发送周期是20ms,偏移量为2ms,就表示第二网络设备的下行RS会在一个发送周期内的第2ms开始发送;所述半帧指示用于指示第二网络设备的下行RS位于一个无线帧的前半帧或后半帧。
S602、第一网络设备向UE发送第一下行RS的配置信息以及第二下行RS的配置信息,相应的,UE接收第一下行RS的配置信息以及第二下行RS的配置信息。第一下行RS的配置信息可用于配置第一网络设备的下行RS,例如,第一下行RS的配置信息配置第一网络设备的下行RS的发送资源。在图6中,将第一下行RS的配置信息表示为下行RS1的配置信息。第一网络设备的下行RS,例如为CSI-RS,或者也可以是SSB,或者还可以是其他信号。第一下行RS的配置信息,也可以简称为第一子配置信息。
一种实现方式中,图6所示的实施例可以与图4所示的实施例相结合。例如,S602与图4所示的实施例中的S401可以是同一个步骤,第一网络设备可以通过一条消息向UE发送第一下行RS的配置信息,第二下行RS的配置信息,以及第一网络设备的配置信息;或者,S602与图4所示的实施例中的S403可以是同一个步骤,第一网络设备可以通过一条消息向UE发送第一下行RS的配置信息,第二下行RS的配置信息,以及第二网络设备的配置信息。另一种实现方式中,第一网络设备向UE发送第一下行RS的配置信息以及第二下行RS的配置信息,而不与其他信息一起发送。第一下行RS的配置信息和第二下行RS的配置信息,也可以简称为第四配置信息。
所述第一网络设备通过系统消息或者RRC消息向UE发送第一下行RS的配置信息以及第二下行RS的配置信息。所述系统消息例如为SIB1,所述RRC消息例如为RRC重配置消息。例如,第一网络设备在SIB1或者RRC重配置消息中通过非扩展字段定义第一下行RS的配置信息;而通过SIB1或者RRC重配消息中新增扩展字段定义第二下行RS的配置信息。
第一网络设备可以发送两套配置,分别用于配置对应于不同网络设备的下行RS。为了区分这两套配置,第一网络设备可以为第二下行RS的配置信息添加第一信息,第一信息指示第二下行RS的配置信息对应于第二网络设备,或者指示第二下行RS的配置信息对应的网络设备与第一下行RS的配置信息对应的网络设备不同。从而UE接收第一下行RS的配置信息和第二下行RS的配置信息后,能明确这是两套下行RS的配置。或者,第一网络设备也可以无需为第二下行RS的配置信息添加额外的信息来明该第二下行RS的配置信息对应的网络设备,而通过已有的信息来指示。例如,第二下行RS的配置信息包括第二信息,且第二信息是预先设置的时域信息,例如是通过协议规定的,则UE根据第二下行RS的配置信息所包括的第二信息,就能明确第二下行RS的配置信息与第一下行RS的配置信息对应于不同的网络设备,第二信息可以是第二下行RS的配置信息所包括的周期、偏移 量、半帧指示、频域信息或bitmap等。或者,第一下行RS的配置信息和第二下行RS的配置信息可以通过不同的信息元素(information element,IE)承载,UE根据相应的IE,就能区分第二下行RS的配置信息和第一下行RS的配置信息对应于不同的网络设备,无需额外添加信息来指示。
例如,第一网络设备通过RRC消息向UE发送第一下行RS的配置信息和第二下行RS的配置信息。该RRC消息除了通过原有的(或者说,非扩展的)IE来承载第一下行RS的配置信息外,还新增(或者说,扩展)一个或多个IE,这些新增的IE可承载第二下行RS的配置信息。以下行RS是SSB为例,例如,在该RRC消息中新增4个IE,分别为绝对频率SSB2(absolutefrequencySSB-2)、SSB位置突发(ssb-PositionInBurst-2)、SSB周期服务小区-2(ssb-periodicityServingCell-2)、以及ssb物理广播信道块能量-2(ssb-PBCH-BlockPower-2)。其中,absolutefrequencySSB-2用于指示第二下行RS的配置信息所配置的SSB的频率信息,例如指示的频率信息为绝对无线频道编号(absolute radio frequency channel number,ARFCN)-ValueNR。ssb-PositionInBurst-2可以指示第二网络设备究竟会发送哪些SSB,例如一个小区有64个SSB,但第二网络设备不一定会全部发送这64个SSB,则通过ssb-PositionInBurst-2可以指示第二网络设备会发送这64个SSB中的哪些SSB。ssb-periodicityServingCell-2可以指示第二网络设备对于SSB的发送周期。ssb-PBCH-BlockPower-2可以指示第二网络设备对于SSB的发送功率。当然,如上的IE的名称只是示例,本申请实施例并不限制IE的名称。
其中,absolutefrequencySSB-2是可选的IE,即,可以新增该IE用于承载第二下行RS的配置信息,或者,也可以无需新增该IE来承载第二下行RS的配置信息。ssb-PositionInBurst-2也是可选的IE,即,可以新增该IE用于承载第二下行RS的配置信息,或者,也可以无需新增该IE来承载第二下行RS的配置信息。
例如,在RRC消息中新增的这4个IE如下:
Figure PCTCN2021118681-appb-000001
又以下行RS是CSI-RS为例,在该RRC消息中新增一个或多个IE,例如在RRC消息中新增的一个IE表示如下:
csi-MeasConfig2 SetupRelease{CSI-MeasConfig}
除了该IE外,还可以新增其余的一个或多个IE,新增的IE的形式可参考该RRC消息中非扩展的IE的形式,或者说,可参考该RRC消息中用于承载第一下行RS的配置信息的IE的形式。如上的IE的名称只是示例,本申请实施例并不限制IE的名称。
关于第一下行RS的配置信息所包括的内容,可参考对于第二子配置信息所包括的内 容的介绍,二者是类似的。
也就是说,第一网络设备除了可以为UE配置第一网络设备的下行RS之外,还可以为UE配置第二网络设备的下行RS,从而UE既能接收来自第一网络设备的下行RS,也能接收来自第二网络设备的下行RS。
S603、第二网络设备发送下行RS,相应的,UE接收来自第二网络设备的下行RS。例如将第二网络设备发送的下行RS称为第二下行RS(在图6中,将第二下行RS用下行RS2表示),其中,第二下行RS可以包括一个或多个下行RS,即,第二网络设备可能发送一个或多个下行RS,只是将第二网络设备发送的下行RS统称为第二下行RS。
第二网络设备发送第二下行RS,UE可以根据第二子配置信息接收来自第二网络设备的第二下行RS。
S604、第一网络设备发送下行RS,相应的,UE接收来自第一网络设备的下行RS。例如将第一网络设备发送的下行RS称为第一下行RS(在图6中,将第一下行RS用下行RS1表示),其中,第一下行RS可以包括一个或多个下行RS,即,第一网络设备可能发送一个或多个下行RS,只是将第一网络设备发送的下行RS统称为第一下行RS。
第一网络设备发送第一下行RS,UE可以根据第一子配置信息接收来自第一网络设备的第一下行RS。
需说明的是,本实施例中,对于S603,S604的步骤没有限定。S603可以发生在S604之前,或者,S604可以发生在S603之前,或者,S603和S604也可以同时发生。
S605、UE对接收的下行RS进行测量,得到测量结果。测量结果例如为RS接收功率(reference signal receiving power,RSRP)、RS接收质量(reference signal receiving quality,RSRQ)或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等。
如果UE接收了第一下行RS,则UE可以对第一下行RS进行测量,得到测量结果1(也可以称为第一测量结果,或者下行RS1的测量结果),在图6中表示为下行RS1的测量结果。所述第一下行RS包括一个或多个下行RS。所述测量结果1包括对这一个或多个下行RS的测量结果,或者UE对所述一个或多个下行RS的测量结果进行处理(例如选取最好的下行RS的测量结果,或对测量结果进行平均处理),得到测量结果1。
如果UE接收了第二下行RS,则UE可以对第二下行RS进行测量,得到测量结果2(也可以称为下行RS2的测量结果),在图6中表示为下行RS2的测量结果。所述第二下行RS包括一个或多个下行RS,所述测量结果2包括对这一个或多个下行RS的测量结果,或者所述UE对所述一个或多个下行RS的测量结果进行处理(例如选取最好的测量结果,或对测量结果进行平均处理),得到测量结果2。
S606、UE向网络设备发送测量结果。所述测量结果包括所述测量结果1和/或所述测量结果2。
UE在发送测量结果时,可以对测量结果1和测量结果2加以区分。例如,UE可以为测量结果2添加信息(如,第三信息),以指示测量结果2对应于第二下行RS的配置信息,或者,指示测量结果2对应于第二网络设备,从而使得第一网络设备能够明确测量结果与网络设备之间的对应关系。或者,UE将测量结果1和测量结果2承载在不同的IE中,第一网络设备收到UE上报的测量结果,根据相应的IE,能区分测量结果1和测量结果2对应于不同的网络设备,从而UE无需额外发送指示信息。
例如,UE通过RRC消息向第一网络设备发送测量结果。该RRC消息除了通过原有 的(或者说,非扩展的)IE来承载测量结果1外,还新增(或者说,扩展)一个或多个IE,这些新增的IE可承载测量结果2。例如,在该RRC消息中新增2个IE,其中一个IE为小区结果2(cellResults2),用于指示测量结果对应于SSB和/或对应于CSI-RS。其中另一个IE为rsIdexResusts2,包括UE所接收的一个或多个来自第二网络设备的SSB的测量结果,和/或包括UE所接收的一个或多个来自第二网络设备的CSI-RS的测量结果。当然,如上的IE的名称只是示例,本申请实施例并不限制IE的名称。
例如,在RRC消息中新增的这2个IE如下:
Figure PCTCN2021118681-appb-000002
S607、第一网络设备将测量结果2发送给第二网络设备,相应的,第二网络设备接收来自第一网络设备的测量结果2。
由于UE在发送测量结果时有所区分,因此第一网络设备能够识别出哪些测量结果是对应于第二网络设备的测量结果2。第一网络设备可以将测量结果2发送给第二网络设备。第二网络设备获得测量结果2后,就可以根据测量结果2确定UE位于第二网络设备的哪些下行RS的方向上。
S608、第二网络设备根据测量结果2确定第二状态信息。第二状态信息可以包括下行RS的编号,例如第二状态信息包括一个或多个编号,其中的一个编号对应第二网络设备的一个下行RS。
第二网络设备获得第一测量结果后,就可以根据第一测量结果确定UE位于第二网络设备的哪些下行RS的方向上,例如,第二网络设备获得第二状态信息,第二状态信息例如为传输配置指示(transmission configuration indicator,TCI)状态(state),该TCI状态可以包括一个或多个编号,其中的一个编号对应第二网络设备的一个下行RS,而这些编号所对应的下行RS,就是UE所在的方向上的下行RS。那么如果第二网络设备后续在该TCI状态对应的方向上发送指示信息,UE就能更为准确地接收,从而提高UE的接收成功率,而且第二网络设备也可以不必在其他方向上再发送指示信息,节省第二网络设备的功耗。
S609、第二网络设备向第一网络设备发送第二状态信息,相应的,第一网络设备接收来自第二网络设备的第二状态信息。
或者,如果第二网络设备并不采用波束方式发送指示信息,而是全向发送,那么第二网络设备无需确定第二状态信息,那么所述第二网络设备无需向第一网络设备发送第二状 态信息。因此,S608和S609是可选的步骤。
S610、第一网络设备向UE发送第一状态信息,相应的,UE接收来自第一网络设备的第一状态信息。
例如,第一状态信息包括第一子状态信息和第二子状态信息,所述第二子状态信息与所述第二状态信息可以是同一个信息,或者所述第二子状态信息是根据第二状态信息确定的。所述第一子状态信息可以包括下行RS的编号,例如第一子状态信息包括一个或多个编号,其中的一个编号对应第一网络设备的一个下行RS。
第一网络设备获得测量结果1后,根据测量结果1确定UE位于第一网络设备的哪些下行RS的方向上。例如,第一网络设备获得第一子状态信息,第一子状态信息例如是TCI状态,该TCI状态可以包括一个或多个编号,其中的一个编号对应第一网络设备的一个下行RS,而这些编号所对应的下行RS,就是UE所在的方向上的下行RS。那么如果第一网络设备后续在该TCI状态对应的方向上发送信息,UE就能更为准确地接收,从而提高UE的接收成功率,而且第一网络设备也可以不必在其他方向上再发送指示信息,节省第一网络设备的功耗。
第一网络设备根据第一子状态信息和第二状态信息得到第一状态信息,第一状态信息例如为TCI状态。TCI状态包括一个或多个编号,其中的一个编号对应于一个下行RS,这些编号所对应的下行RS,既包括第二网络设备的下行RS,也包括第一网络设备的下行RS。第一网络设备可以在TCI状态中将对应于第二网络设备的下行RS的编号和对应于第一网络设备的下行RS的编号加以区分,例如第一网络设备在TCI状态中为对应于第二网络设备的下行RS的编号添加信息(如,第四信息),以指示相应的编号与不带所述第四信息的编号不同。可选的,如果第一网络设备和第二网络设备对于UE来说不透明,则所述第四信息也可以指示相应的编号对应于第二网络设备。从而,UE接收TCI状态后,就能确定第一状态信息所包括的下行RS的编号有所不同。
或者,如果未执行S608和S609,则TCI状态可以不包括第二子状态信息。
S611、第一网络设备发生故障。
S612、第二网络设备确定第一网络设备故障。
关于S612中,第二网络设备确定第一网络设备故障的有关说明,可参考图4中与S405有关的介绍,在次不再赘述。
或者,S612是可选的步骤,由UE来确定第一网络设备故障,例如UE如果检测到与第一网络设备之间发生了无线链路失败(radio link failure,RLF)事件,则可以确定第一网络设备故障,或者UE也可以通过其他方式来确定第一网络设备故障。
S613、第二网络设备向UE发送第一指示信息,相应的,UE接收来自第二网络设备的第一指示信息。S613中第二网络设备向UE发送第一指示信息的有关说明,可以参照图3中与S301有关的介绍,在此不再赘述。
例如,图6所示的实施例与图4所示的实施例结合应用,且执行了S403,那么第二网络设备可以向UE发送第一指示信息,UE可以根据第一配置信息接收来自第二网络设备的第一指示信息;或者,图6所示的实施例与图4所示的实施例结合应用,但未执行S403,或者,图6所示的实施例与图4所示的实施例不结合,那么第二网络设备可以根据协议规定或根据默认的规则向UE发送所述指示信息的配置信息,UE可以根据协议的规定或根据默认的规则接收来自第二网络设备的第一指示信息。
如果未执行S608和S609,则第二网络设备可以通过至少一个发送波束发送第一指示信息,UE在至少一个接收波束上检测并接收第一指示信息。所述至少一个接收波束对应于第一下行RS。所述至少一个接收波束包括UE用于接收第一下行RS的全部接收波束或部分接收波束。其中,所述至少一个发送波束的个数,可以大于或等于至少一个接收波束的个数,但所述至少一个发送波束中至少存在一个发送波束与所述至少一个接收波束中的一个接收波束是对应的,从而使得UE能成功接收第一指示信息。
或者,如果执行了S608和S609,且第一状态信息包括第二子状态信息,那么第二网络设备可以按照第二子状态信息所包括的下行RS的编号对应的发送波束上发送第一指示信息,UE也可以在第二子状态信息所包括的下行RS的编号对应的接收波束上接收第一指示信息。通过这种方式,使得第二网络设备无需在更多的发送波束上发送第一指示信息,UE也无需在更多的接收波束上检测第一指示信息,且第二网络设备的发送波束和UE的接收波束能够对齐,能够减小第二网络设备和UE的功耗。
或者,S611和S612是可选的步骤,即使未确定第一网络设备故障,第二网络设备也可以向UE发送第一指示信息。
关于S613的更多内容,可参考图4所示的实施例中对于S406的介绍。
S614、UE向第二网络设备发送对应于第一指示信息的响应信息,相应的,第二网络设备接收来自UE的响应信息。S614与图3所示的实施例所介绍的S302可以是同一步骤。
关于S614的更多内容,可参考图4所示的实施例中对于S407的介绍。
如果由UE确定第一网络设备故障,切换到第二网络设备。在这种情况下,S612,S613和S614也可以不必执行,即为可选步骤。
在本申请实施例中,由一个网络设备(第二网络设备)来确定另一个网络设备(第一网络设备)是否故障,相较于由UE来确定网络设备是否故障,更容易实现,能够减少确定第一网络设备故障所消耗的时间,从而减少业务传输的中断时间,提高业务的连续性及可靠性。此外,本申请实施例引入了下行波束训练的过程,第二网络设备在向UE发送第一指示信息时,可以根据下行波束训练的结果来发送,例如在UE接收下行RS成功的方向上发送第一指示信息,从而提高了UE对于第一指示信息的接收成功率,且由于无需在过多的波束上发送第一指示信息,能够节省第二网络设备和UE的功耗。
图7示出了本申请实施例提供又一种通信方法,可应用于图2A,图2B,和/或图2C所示的网络架构。相较于图4所示的实施例或图6所示的实施例来说,图7所示的实施例引入了上行波束训练的过程,可以使得UE在向第二网络设备发送响应信息时更有针对性。图4、图6以及图7所示的实施例可以单独应用,结合或部分结合应用。
S701、第一网络设备向UE发送可用于配置上行RS的配置信息(为描述方便,简称为上行RS的配置信息)。相应的,UE接收来自第一网络设备的上行RS的配置信息。例如,上行RS的配置信息可用于配置上行RS的发送资源。上行RS例如为SRS,或者也可以是其他的信号。其中,上行RS的配置信息也可以称为第五配置信息。
例如,上行RS的配置信息包括如下的一项或多项:时域信息,频域信息,发送方式信息,或,功控参数。其中,所述时域信息用于指示上行RS的时域位置。所述频域信息用于指示上行RS的频域位置。所述发送方式信息包括配置SRS的目的,例如配置SRS是用于进行波束管理、码本传输、非码本传输、或天线切换,或其他用途等。所述功控参数可用于UE在发送上行RS时进行功率控制。
其中,所述上行RS的配置信息可配置一种或多种上行RS,其中的每种上行RS对应一套配置信息。换句话说,所述上行RS的配置信息可包括一个或多个子配置信息,其中的一个子配置信息用于配置一种上行RS。为了区分不同的子配置信息,每个子配置信息分别由编号(例如,ID)标识。由于子配置信息与上行RS对应,因此子配置信息的ID可以用于指示上行RS。如果所述上行RS的配置信息配置了多种上行RS,那么这里的“多种”,可以理解为类型不同的信号,例如SRS视为一种上行RS,而除SRS外的另一种信号又视为另一种上行RS;或者,这里的“多种”,也可能是类型相同的信号,例如多种RS均为SRS,但可能对应的子配置信息有所区别(例如可能时域信息、频域信息、功控参数或发送方式中有至少一种信息不同)。
第一网络设备可以通过一条或多条RRC消息、MAC CE或DCI等消息来发送上行RS的配置信息。第一网络设备可以单独向UE发送上行RS的配置信息,而不与其他信息一起发送,也可以将所述上行RS的配置信息与其他信息一起发送。例如,将图7所示的实施例可以与图4所示的实施例相结合,S701与S402和并为一个步骤,第一网络设备通过一条消息向UE发送所述上行RS的配置信息和第一网络设备的配置信息(S402);或者,S701与S403可以合并为一个步骤,第一网络设备通过一条消息一并向UE发送上行RS的配置信息和第二网络设备的配置信息。
S702、第一网络设备向第二网络设备发送上行RS的配置信息,相应的,第二网络设备接收来自第一网络设备的上行RS的配置信息。
第一网络设备除了将上行RS的配置信息发送给UE外,也可以发送给第二网络设备,从而如果UE按照上行RS的配置信息发送上行信号,则除了第一网络设备能够接收之外,第二网络设备也能接收。
其中,S701可以发生在S702之前,或者,S701可以发生在S702之后,或者,S701和S702可以同时发生。
S703、UE发送上行RS,相应的,第一网络设备接收来自UE的上行RS,另外,第二网络设备也可以接收来自UE的上行RS。
例如,UE根据上行RS的配置信息来发送上行RS,第一网络设备和/或第二网络设备可以根据上行RS的配置信息分别接收来自UE的上行RS。例如,上行RS的配置信息包括时域信息,UE可以按照该时域信息所指示的时域位置发送上行RS,第一网络设备可以在该时域信息所指示的时域位置检测并接收来自UE的上行RS,第二网络设备也可以在该时域信息所指示的时域位置检测并接收来自UE的上行RS。
S704、第一网络设备对接收的上行RS进行测量,得到测量结果3。
第一网络设备接收上行RS后,对上行RS进行测量,得到测量结果(称为测量结果3)。其中,如果上行RS的配置信息包括多个子配置信息,且第一网络设备接收的上行RS对应于不同的子配置信息,那么第一网络设备可以对一个或多个子配置信息对应的上行RS分别进行测量,这一个或多个子配置信息可以是上行RS的配置信息所包括的全部或部分子配置信息,测量结果3可以包括第一网络设备对于一个或多个子配置信息的测量结果。测量结果3例如为RSRP、RSRQ或SINR等。
S705、第二网络设备对接收的上行RS进行测量,得到测量结果4。
第二网络设备接收上行RS后,也可以对上行RS进行测量,得到测量结果(称为测量结果4)。其中,如果上行RS的配置信息包括多个子配置信息,且第二网络设备接收的上 行RS对应于不同的子配置信息,那么第二网络设备可以对一个或多个子配置信息对应的上行RS分别进行测量,这一个或多个子配置信息可以是上行RS的配置信息所包括的全部或部分子配置信息,测量结果4可以包括第二网络设备对于一个或多个子配置信息的测量结果。测量结果4例如为RSRP、RSRQ或SINR等。
其中,S704可以发生在S705之前,或者,S704可以发生在S705之后,或者,S704和S705可以同时发生。
S706、第二网络设备将测量结果4发送给第一网络设备,相应的,第一网络设备接收来自第二网络设备的测量结果4。其中,第二网络设备可以将测量结果4的全部内容或部分内容发送给第一网络设备,也可以将测量结果4中第二网络设备发送给第一网络设备的部分称为第二测量结果。
例如,测量结果4包括对应于多个子配置信息的上行RS的测量结果,第二网络设备将测量结果4所包括的全部测量结果或部分测量结果发送给第一网络设备。例如,第二网络设备在向第一网络设备反馈测量结果时有所选择,第二网络设备可能得到了多个测量结果,第二网络设备可以将较好的测量结果发送给第一网络设备。这样,第一网络设备在为UE配置指向第二网络设备的上行波束时,可以配置较好的测量结果对应的上行波束,提高信息发送质量。
或者,S706是可选的步骤。第二网络设备也可以不将测量结果4发送给第一网络设备,而是可以将测量结果4发送给UE,则UE可以接收来自第二网络设备的测量结果4。
S707、第一网络设备根据测量结果4确定第二发送波束。第二发送波束用于向第二网络设备发送信息。第二发送波束可以包括一个或多个发送波束,这里的发送波束是针对UE的,是指UE的上行发送波束。
第一网络设备可根据测量结果4配置上行发送方向,或者说,第一网络设备可根据测量结果4配置上行波束,根据测量结果4所配置的上行波束可用于UE向第二网络设备发送信息,该信息例如为控制信息,可通过物理上行控制信道(physical uplink control channel,PUCCH)发送,或者为数据,可通过物理上行物理共享信道(physical uplink shared channel,PUSCH)发送。
例如,测量结果4包括一个测量结果,那么第一网络设备确定该测量结果对应的方向所对应的发送波束为第二发送波束。又例如,第二测量结果包括多个测量结果,那么第一网络设备将这多个测量结果对应的多个发送波束均确定为第二发送波束,或者,第一网络设备从这多个测量结果中选择至少一个测量结果,并将这至少一个测量结果对应的至少一个发送波束确定为第二发送波束。例如,第一网络设备要从多个测量结果中选择至少一个测量结果,那么第一网络设备从中选择较好的至少一个测量结果,从而提高UE通过第二发送波束发送信息的质量。
另外,第一网络设备还可以根据测量结果3配置上行发送方向,或者说,第一网络设备可根据测量结果3配置发送波束,将根据测量结果3配置的发送波束称为第一发送波束,第一发送波束可以包括一个或多个发送波束,这里的发送波束是针对UE的,是指UE的上行发送波束。第一发送波束可用于UE向第一网络设备发送信息,该信息例如为控制信息,可通过PUCCH发送,或者为数据,可通过PUSCH发送。关于配置方式,可参考第一网络设备根据测量结果4配置第二发送波束的方式。
如果第二网络设备未将测量结果4发送给第一网络设备,而是将测量结果4发送给了 UE,那么第一网络设备无需根据测量结果4确定第二发送波束,而只需根据测量结果3确定第一发送波束。在这种情况下,UE可以根据测量结果4来确定第二发送波束,确定方式可参考对于第一网络设备确定第二发送波束的方式的介绍。
S708、第一网络设备向UE发送第二指示信息,相应的,UE接收所述第二指示信息。第二指示信息可以包括第一发送波束的信息和第二发送波束的信息,或者说,第二指示信息可以指示第一发送波束和第二发送波束。
在第二指示信息中,第一发送波束的信息所指示的发送波束与子配置信息的ID可以一一对应,第二发送波束的信息所指示的发送波束与一个子配置信息的ID也可以一一对应。另外,在第二指示信息中,第一网络设备还可以为第二发送波束的信息添加第五信息,第五信息可以指示第二发送波束为备用发送波束,或者第五信息可以指示第二发送波束对应于第二网络设备。从而UE接收第二指示信息后,根据第五信息就能确定第二发送波束和第一发送波束不同,或者确定第二发送波束是在接收了第一指示信息后应用,或者确定第二发送波束对应于第二网络设备。
或者,如果是由UE根据测量结果4来确定第二发送波束,那么第二指示信息可以包括第一发送波束的信息而不包括第二发送波束的信息。
S709、第一网络设备发生故障。
S710、第二网络设备确定第一网络设备故障。
关于S710中第二网络设备确定第一网络设备故障的更多内容,可参考图4所示的实施例中对于S405的介绍,在此不再赘述。
或者,S710是可选的步骤,由UE来确定第一网络设备故障,例如,UE如果检测到与第一网络设备之间发生了RLF事件,则确定第一网络设备故障,或者UE也可以通过其他方式来确定第一网络设备故障。
S711、第二网络设备向UE发送第一指示信息,相应的,UE接收来自第二网络设备的第一指示信息。
例如,图7所示的实施例与图4所示的实施例结合应用,且执行了S403,那么第二网络设备可以向UE发送第一指示信息,UE可以根据第一配置信息接收来自第二网络设备的第一指示信息;或者,图7所示的实施例与图4所示的实施例结合应用,但未执行S403,或者,图7所示的实施例与图4所示的实施例不结合,那么第二网络设备可以根据协议规定或根据默认的规则向UE发送第一配置信息,UE可以根据协议的规定或根据默认的规则接收来自第二网络设备的第一指示信息。
或者,S709和S710是可选的步骤,即使未确定第一网络设备故障,第二网络设备也可以向UE发送第一指示信息。
关于S711的更多内容,可参考图4所示的实施例中对于S406的介绍。
S712、UE向第二网络设备发送对应于第一指示信息的响应信息,相应的,第二网络设备接收来自UE的响应信息。
在未接收第一指示信息的情况下,UE可启用第一发送波束,而并不启用第二发送波束。UE在接收第一指示信息后,可以激活第二发送波束,或者说,可以启用第二发送波束。UE在第二发送波束上向第二网络设备发送响应信息,相应的,第二网络设备在所述第二发送波束所对应的接收波束(例如称为第二接收波束,第二接收波束此处是指第二网络设备的接收波束)上接收该响应信息。对于第二网络设备来说,第二接收波束可以是根 据第二测量结果确定的。
S711和S712为可选的步骤。如果由UE确定第一网络设备故障,并切换到第二网络设备,在这种情况下,则S710,S711和S712也可以不必执行。
在本申请实施例中,由一个网络设备(第二网络设备)来确定另一个网络设备(第一网络设备)是否故障,相较于由UE来确定网络设备是否故障,更容易实现。所述UE通过网络侧的指示确定网络设备故障,或者需要切换,可以确定第一网络设备故障所消耗的时间,从而减少业务传输的中断时间,提高业务的连续性,也就提高了业务的可靠性。而且本申请实施例加入了上行波束训练的过程,UE在向第二网络设备发送响应信息时,可以根据上行波束训练的结果来发送,例如UE在第二网络设备接收上行RS成功的方向上发送响应信息,从而提高了第二网络设备对于响应信息的接收成功率,且由于无需在过多的波束上发送响应信息,能够节省第二网络设备和UE的功耗。
图8给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置800可以是图1中的通信装置30,也可以是图2A,图2B,或图2C中终端设备,用于实现上述方法实施例中对于终端设备的方法。所述通信装置也可以是图2A中的第一网络设备或第二网络设备,或图2B,图2C中的RAN中的网络设备,如CU,DU,CU-CP,或CU-UP,用于实现上述方法实施例中对应于第一网络设备或第二网络设备的方法。具体的功能可以参见上述方法实施例中的说明。
通信装置800包括一个或多个处理器801。处理器801也可以称为处理单元,可以实现一定的控制功能。所述处理器801可以是通用处理器或者专用处理器等。例如,包括:基带处理器,中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述基带处理器可以用于对通信协议以及通信数据进行处理。所述中央处理器可以用于对通信装置800进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选的,通信装置800中包括一个或多个存储器802,用以存储指令804,所述指令可在所述处理器上被运行,使得通信装置800执行上述方法实施例中描述的方法。可选的,所述存储器802中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,通信装置800可以包括指令803(有时也可以称为代码或程序),所述指令803可以在所述处理器上被运行,使得所述通信装置800执行上述实施例中描述的方法。处理器801中可以存储数据。
可选的,通信装置800还可以包括收发器805以及天线806。所述收发器805可以称为收发单元、收发机、收发电路、收发器,输入输出接口等,用于通过天线806实现通信装置800的收发功能。
可选的,通信装置800还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置800可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
本申请中描述的处理器801和收发器805可实现在集成电路(integrated circuit,IC)、 模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
本申请实施例提供了一种终端设备,该终端设备(为描述方便,称为UE)可用于前述各个实施例中。所述终端设备包括用以实现图1,图2A,图2B,图2C,图3,图4,图6,和/或图7所示的实施例中所述的UE功能的相应的手段(means)、单元和/或电路。例如,终端设备,包括收发模块,用以支持终端设备实现收发功能,和,处理模块,用以支持终端设备对信号进行处理。
图9给出了本申请实施例提供的一种终端设备的结构示意图。
该终端设备900可适用于图1,图2A,图2B,图2C所示的系统中。为了便于说明,图9仅示出了终端设备900的主要部件。如图9所示,终端设备900包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备900进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏,显示屏,麦克风,键盘等主要用于接收用户输入的数据以及对用户输出数据。
以终端设备900为手机为例,当终端设备900开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备900时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在一些实施例中,终端设备900可以包括多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备900进行控制,执行软件程序,处理软件程序的数据。图9中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。终端设备900可以包括多个基带处理器以适应不同的网络制式,终端设备900可以包括多个中央处理器以增强其处理能力,终端设备900的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备900的收发单元910,将具有处理功能的处理器视为终端设备900的处理单元920。如图9所示,终端设备900包括收发单元910和处理单元920。收发单元也可以称为收发器、收发机、收发装置 等。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
本申请实施例还提供了一种网络设备,该网络设备可用于前述各个实施例中。所述网络设备包括用以实现图2A,图2B,图2C,图3,图4,图6,和/或图7所示的实施例中所述的第一网络设备或第二网络设备的功能的手段(means)、单元和/或电路。例如,网络设备包括收发模块,用以支持终端设备实现收发功能,和,处理模块,用以支持网络设备对信号进行处理。所述可以理解的是,所述第一网络设备与第二网络设备是相对于某个或某些UE而言,相对于其他一些UE,第一网课设备可以与第二网络设备的作用可以互换。
图10给出了本申请实施例提供的一种网络设备的结构示意图。如图10所示,网络设备20可适用于图1,图2A,图2B,图2C所示的系统中。网络设备20例如为图1所示的接入网设备20。网络设备20可以相对于某个或某些UE而言,作为第一网络设备具备第一网路设备的功能,也可以相对于某个或某些UE而言,作为第二网络设备具备第二网络设备的功能。该网络设备包括:基带装置201,射频装置202、天线203。在上行方向上,射频装置202通过天线203接收终端设备发送的信息,将终端设备发送的信息发送给基带装置201进行处理。在下行方向上,基带装置201对终端设备的信息进行处理,并发送给射频装置202,射频装置202对终端设备的信息进行处理后经过天线203发送给终端设备。
基带装置201包括一个或多个处理单元2011,存储单元2012和接口2013。其中处理单元2011用于支持网络设备执行上述方法实施例中网络设备的功能。存储单元2012用于存储软件程序和/或数据。接口2013用于与射频装置202交互信息,该接口包括接口电路,用于信息的输入和输出。在一种实现中,所述处理单元为集成电路,例如一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。存储单元2012与处理单元2011可以位于同一个芯片中,即片内存储元件。或者存储单元2012与处理单元2011也可以为与处理元件2011处于不同芯片上,即片外存储元件。所述存储单元2012可以是一个存储器,也可以是多个存储器或存储元件的统称。
网络设备可以通过一个或多个处理单元调度程序的形式实现上述方法实施例中的部分或全部步骤。例如实现图3,图4,图6,和/或图7中网络设备的相应的功能。所述一个或多个处理单元可以支持同一种制式的无线接入技术,也可以支持不同种制式的无线接入制式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或 者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。另外,通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)或直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (54)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收来自第二网络设备的第一指示信息,所述第一指示信息用于指示第一网络设备故障,或用于指示从所述第一网络设备切换到所述第二网络设备,或用于指示服务于所述终端设备的网络设备发生切换;
    所述终端设备向所述第二网络设备发送所述第一指示信息的响应信息。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备接收来自第二网络设备的第一指示信息,包括:
    所述终端设备根据来自所述第一网络设备的第一配置信息接收所述第一指示信息,所述第一配置信息包括如下一项或多项:带宽部分BWP的信息,搜索空间的信息,或,无线网络临时标识RNTI。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述BWP的信息用于指示第一BWP,所述第一BWP是预定的用于传输所述第一指示信息的一个或多个下行BWP。
  4. 根据权利要求1所述的方法,其特征在于,所述终端设备接收来自第二网络设备的第一指示信息,包括:
    所述终端设备在所述终端设备的初始下行BWP上接收所述第一指示信息。
  5. 根据权利要求4所述的方法,其特征在于,所述初始下行BWP与所述终端设备的激活的下行BWP不同,所述方法还包括:
    所述终端设备将接收天线的射频频率从所述激活的下行BWP的频率调整为所述初始下行BWP的频率。
  6. 根据权利要求2~5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备使用公共RNTI解扰所述第一指示信息;或,
    所述终端设备使用所述第一配置信息所包括的RNTI解扰所述第一指示信息。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,所述响应信息为随机接入前导序列或随机接入过程中的第三消息。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,
    所述第一指示信息还包括第三配置信息,所述第三配置信息用于所述终端设备与所述第二网络设备进行通信,所述第三配置信息包括随机接入资源的信息和/或第二BWP的信息;或者,所述方法还包括:所述终端设备接收来自所述第一网络设备的第二配置信息,所述第二配置信息用于所述终端设备与所述第二网络设备进行通信,所述第二配置信息包括如下一项或多项:随机接入资源的信息,第二BWP的信息,测量配置信息,无线承载配置信息,MAC层配置信息,或,物理层配置信息;
    其中,所述第二BWP为所述终端设备在随机接入过程中应用的下行BWP。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述第一网络设备的第四配置信息,所述第四配置信息包括第一子配置信息和第二子配置信息,所述第一子配置信息用于配置所述第一网络设备的下行参考信号,所述第二子配置信息用于配置所述第二网络设备的下行参考信号;
    所述终端设备根据所述第四配置信息,接收来自所述第二网络设备的下行参考信号。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备接收来自第二网络设备的第一指示信息,包括:
    所述终端设备在所述第二网络设备的下行参考信号对应的至少一个接收波束上接收所述第一指示信息,所述至少一个接收波束为接收到所述第二网络设备的下行参考信号的全部接收波束或部分接收波束。
  11. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述第一网络设备的第一状态信息,所述第一状态信息包括下行参考信号的编号,所述下行参考信号的编号所指示的下行参考信号是所述第二子配置信息配置的下行参考信号中的一个或多个。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备接收来自第二网络设备的第一指示信息,包括:
    所述终端设备在所述下行参考信号的编号对应的接收波束上接收所述第一指示信息。
  13. 根据权利要求1~12任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述第一网络设备的第二指示信息,所述第二指示信息包括第一发送波束的信息和第二发送波束的信息,所述第一发送波束用于向所述第一网络设备发送信息,所述第二发送波束用于向所述第二网络设备发送信息。
  14. 根据权利要求13所述的方法,其特征在于,所述终端设备向所述第二网络设备发送所述第一指示信息的响应信息,包括:
    所述终端设备通过所述第二发送波束向所述第二网络设备发送所述响应信息。
  15. 一种通信方法,其特征在于,包括:
    第二网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示第一网络设备故障,或用于指示从所述第一网络设备切换到所述第二网络设备,或用于指示服务于所述终端设备的网络设备发生切换;
    所述第二网络设备接收来自所述终端设备的所述第一指示信息的响应信息。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    如果所述第二网络设备在第一时长内未接收到来自所述第一网络设备的心跳信息,所述第二网络设备确定所述第一网络设备故障;或,
    如果所述第二网络设备接收来自所述终端设备的测量信息,所述第二网络设备根据所述测量信息确定所述第一网络设备故障;或,
    如果所述第二网络设备接收来自所述终端设备的混合自动重传请求应答HARQ-ACK信息,所述HARQ-ACK信息用于指示与所述第一网络设备的数据传输失败,所述第二网络设备根据所述HARQ-ACK信息确定所述第一网络设备故障。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第二网络设备向终端设备发送第一指示信息,包括:
    所述第二网络设备根据第一配置信息向所述终端设备发送所述第一指示信息,所述第一配置信息包括如下一项或多项:带宽部分BWP的信息,搜索空间的信息,或,无线网络临时标识RNTI。
  18. 根据权利要求17所述的方法,其特征在于,所述第二网络设备根据第一配置信息向所述终端设备发送所述第一指示信息,包括:
    所述第二网络设备在为所述终端设备配置的一个或多个下行BWP上向所述终端设备 发送所述第一指示信息;或,
    所述第二网络设备在第一BWP上向所述终端设备发送所述第一指示信息,所述第一BWP是预定的用于传输所述第一指示信息的一个或多个下行BWP。
  19. 根据权利要求15所述的方法,其特征在于,所述第二网络设备向终端设备发送第一指示信息,包括:
    所述第二网络设备在所述终端设备的初始下行BWP上向所述终端设备发送所述第一指示信息。
  20. 根据权利要求17~19任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备使用公共RNTI加扰所述第一指示信息;或,
    所述第二网络设备使用所述第一配置信息包括的RNTI加扰所述第一指示信息。
  21. 根据权利要求15~20任一项所述的方法,其特征在于,所述响应信息为随机接入前导序列或随机接入过程中的第三消息。
  22. 根据权利要求15~21任一项所述的方法,其特征在于,
    所述第一指示信息还包括第三配置信息,所述第三配置信息用于所述终端设备与所述第二网络设备进行通信,所述第三配置信息包括随机接入资源的信息和/或第二BWP的信息;或者,所述方法还包括:所述第二网络设备向所述终端设备发送第二配置信息,所述第二配置信息用于所述终端设备与所述第二网络设备进行通信,所述第二配置信息包括如下一项或多项:随机接入资源的信息,第二BWP的信息,测量配置信息,无线承载配置信息,MAC层配置信息,或,物理层配置信息;
    其中,所述第二BWP为所述终端设备在随机接入过程中应用的下行BWP。
  23. 根据权利要求15~22任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备向所述第一网络设备发送第二子配置信息,所述第二子配置信息用于配置所述第二网络设备的下行参考信号;
    所述第二网络设备接收来自所述终端设备的第一测量结果,所述第一测量结果为对所述第二网络设备的下行参考信号进行测量得到的测量结果;
    所述第二网络设备根据所述第一测量结果确定第二状态信息,所述第二状态信息包括下行参考信号的编号;以及
    所述第二网络设备向所述第一网络设备发送所述第二状态信息。
  24. 根据权利要求23所述的方法,其特征在于,所述第二网络设备向终端设备发送第一指示信息,包括:
    所述第二网络设备通过所述下行参考信号的编号对应的发送波束向所述终端设备发送所述第一指示信息。
  25. 根据权利要求15~24任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备接收来自所述第一网络设备的第五配置信息,所述第五配置信息用于配置上行参考信号;
    所述第二网络设备根据所述第五配置信息,接收来自所述终端设备的所述上行参考信号;
    所述第二网络设备对所述上行参考信号测量,得到第二测量结果;
    所述第二网络设备向所述第一网络设备发送所述第二测量结果,所述第二测量结果用于确定向所述第二网络设备发送信息的发送波束。
  26. 根据权利要求25所述的方法,其特征在于,所述第二网络设备接收来自所述终端设备的对应于所述第一指示信息的响应信息,包括:
    所述第二网络设备通过第二接收波束接收所述响应信息,所述第二接收波束是根据所述第二测量结果确定的。
  27. 一种通信装置,其特征在于,包括处理器和存储器;所述存储器用于存储一个或多个计算机程序,当所述一个或多个计算机程序被运行时,使得如权利要求1~14中任一项所述的方法被执行,或使得如权利要求15~26中任一项所述的方法被执行。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~14中任一项所述的方法,或使得所述计算机执行如权利要求15~26中任一项所述的方法。
  29. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自第二网络设备的第一指示信息,所述第一指示信息用于指示第一网络设备故障,或用于指示从所述第一网络设备切换到所述第二网络设备,或用于指示服务于所述通信装置的网络设备发生切换;
    发送单元,用于向所述第二网络设备发送所述第一指示信息的响应信息。
  30. 根据权利要求29所述的通信装置,其特征在于,所述接收单元用于通过如下方式接收来自第二网络设备的第一指示信息:
    所述接收单元根据来自所述第一网络设备的第一配置信息接收所述第一指示信息,所述第一配置信息包括如下一项或多项:带宽部分BWP的信息,搜索空间的信息,或,无线网络临时标识RNTI。
  31. 根据权利要求29或30所述的通信装置,其特征在于,
    所述BWP的信息用于指示第一BWP,所述第一BWP是预定的用于传输所述第一指示信息的一个或多个下行BWP。
  32. 根据权利要求29所述的通信装置,其特征在于,所述接收单元用于通过如下方式接收来自第二网络设备的第一指示信息:
    所述接收单元在所述通信装置的初始下行BWP上接收所述第一指示信息。
  33. 根据权利要求32所述的通信装置,其特征在于,所述通信装置还包括处理单元;在所述初始下行BWP与所述通信装置的激活的下行BWP不同的情况下,所述处理单元将接收天线的射频频率从所述激活的下行BWP的频率调整为所述初始下行BWP的频率。
  34. 根据权利要求30~33任一项所述的通信装置,其特征在于,所述通信装置还包括处理单元,用于:
    使用公共RNTI解扰所述第一指示信息;或,
    使用所述第一配置信息所包括的RNTI解扰所述第一指示信息。
  35. 根据权利要求29~34任一项所述的通信装置,其特征在于,所述响应信息为随机接入前导序列或随机接入过程中的第三消息。
  36. 根据权利要求29~35任一项所述的通信装置,其特征在于,
    所述第一指示信息还包括第三配置信息,所述第三配置信息用于所述通信装置与所述第二网络设备进行通信,所述第三配置信息包括随机接入资源的信息和/或第二BWP的信息;或者,所述接收单元,还用于接收来自所述第一网络设备的第二配置信息,所述第二配置信息用于所述通信装置与所述第二网络设备进行通信,所述第二配置信息包括如下一 项或多项:随机接入资源的信息,第二BWP的信息,测量配置信息,无线承载配置信息,MAC层配置信息,或,物理层配置信息;
    其中,所述第二BWP为所述通信装置在随机接入过程中应用的下行BWP。
  37. 根据权利要求29~36任一项所述的通信装置,其特征在于,所述接收单元还用于:
    接收来自所述第一网络设备的第四配置信息,所述第四配置信息包括第一子配置信息和第二子配置信息,所述第一子配置信息用于配置所述第一网络设备的下行参考信号,所述第二子配置信息用于配置所述第二网络设备的下行参考信号;
    根据所述第四配置信息,接收来自所述第二网络设备的下行参考信号。
  38. 根据权利要求37所述的通信装置,其特征在于,所述接收单元用于通过如下方式接收来自第二网络设备的第一指示信息:
    在所述第二网络设备的下行参考信号对应的至少一个接收波束上接收所述第一指示信息,所述至少一个接收波束为接收到所述第二网络设备的下行参考信号的全部接收波束或部分接收波束。
  39. 根据权利要求38所述的通信装置,其特征在于,所述接收单元,还用于接收来自所述第一网络设备的第一状态信息,所述第一状态信息包括下行参考信号的编号,所述下行参考信号的编号所指示的下行参考信号是所述第二子配置信息配置的下行参考信号中的一个或多个。
  40. 根据权利要求39所述的通信装置,其特征在于,所述接收单元用于通过如下方式接收来自第二网络设备的第一指示信息:
    在所述下行参考信号的编号对应的接收波束上接收所述第一指示信息。
  41. 根据权利要求29~40任一项所述的通信装置,其特征在于,所述接收单元,还用于接收来自所述第一网络设备的第二指示信息,所述第二指示信息包括第一发送波束的信息和第二发送波束的信息,所述第一发送波束用于向所述第一网络设备发送信息,所述第二发送波束用于向所述第二网络设备发送信息。
  42. 根据权利要求41所述的通信装置,其特征在于,所述发送单元用于通过如下方式向所述第二网络设备发送所述第一指示信息的响应信息:
    通过所述第二发送波束向所述第二网络设备发送所述响应信息。
  43. 一种通信装置,其特征在于,包括:
    发送单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示第一网络设备故障,或用于指示从所述第一网络设备切换到所述通信装置,或用于指示服务于所述终端设备的网络设备发生切换;
    接收单元,用于接收来自所述终端设备的所述第一指示信息的响应信息。
  44. 根据权利要求43所述的通信装置,其特征在于,所述通信装置还包括处理单元,用于:
    如果所述接收单元在第一时长内未接收到来自所述第一网络设备的心跳信息,确定所述第一网络设备故障;或,
    如果所述接收单元接收来自所述终端设备的测量信息,根据所述测量信息确定所述第一网络设备故障;或,
    如果所述接收单元接收来自所述终端设备的混合自动重传请求应答HARQ-ACK信息,所述HARQ-ACK信息用于指示与所述第一网络设备的数据传输失败,根据所述 HARQ-ACK信息确定所述第一网络设备故障。
  45. 根据权利要求43或44所述的通信装置,其特征在于,所述发送单元用于通过如下方式向终端设备发送第一指示信息:
    根据第一配置信息向所述终端设备发送所述第一指示信息,所述第一配置信息包括如下一项或多项:带宽部分BWP的信息,搜索空间的信息,或,无线网络临时标识RNTI。
  46. 根据权利要求45所述的通信装置,其特征在于,所发送单元用于通过如下方式根据第一配置信息向所述终端设备发送所述第一指示信息:
    在为所述终端设备配置的一个或多个下行BWP上向所述终端设备发送所述第一指示信息;或,
    在第一BWP上向所述终端设备发送所述第一指示信息,所述第一BWP是预定的用于传输所述第一指示信息的一个或多个下行BWP。
  47. 根据权利要求43所述的通信装置,其特征在于,所述发送单元用于通过如下方式向终端设备发送第一指示信息:
    在所述终端设备的初始下行BWP上向所述终端设备发送所述第一指示信息。
  48. 根据权利要求45~47任一项所述的通信装置,其特征在于,所述通信装置还包括处理单元,用于:
    使用公共RNTI加扰所述第一指示信息;或,
    使用所述第一配置信息包括的RNTI加扰所述第一指示信息。
  49. 根据权利要求43~48任一项所述的通信装置,其特征在于,所述响应信息为随机接入前导序列或随机接入过程中的第三消息。
  50. 根据权利要求43~49任一项所述的通信装置,其特征在于,
    所述第一指示信息还包括第三配置信息,所述第三配置信息用于所述终端设备与所述通信装置进行通信,所述第三配置信息包括随机接入资源的信息和/或第二BWP的信息;或者,所述发送单元,还用于向所述终端设备发送第二配置信息,所述第二配置信息用于所述终端设备与所述通信装置进行通信,所述第二配置信息包括如下一项或多项:随机接入资源的信息,第二BWP的信息,测量配置信息,无线承载配置信息,MAC层配置信息,或,物理层配置信息;
    其中,所述第二BWP为所述终端设备在随机接入过程中应用的下行BWP。
  51. 根据权利要求43~50任一项所述的通信装置,其特征在于,所述通信装置还包括处理单元;
    所述发送单元,还用于向所述第一网络设备发送第二子配置信息,所述第二子配置信息用于配置所述通信装置的下行参考信号;
    所述接收单元,还用于接收来自所述终端设备的第一测量结果,所述第一测量结果为对所述通信装置的下行参考信号进行测量得到的测量结果;
    所述处理单元,用于根据所述第一测量结果确定第二状态信息,所述第二状态信息包括下行参考信号的编号;以及
    所述发送单元,还用于向所述第一网络设备发送所述第二状态信息。
  52. 根据权利要求51所述的通信装置,其特征在于,所述发送单元用于通过如下方式向终端设备发送第一指示信息:
    通过所述下行参考信号的编号对应的发送波束向所述终端设备发送所述第一指示信 息。
  53. 根据权利要求43~52任一项所述的通信装置,其特征在于,所述通信装置还包括处理单元;
    所述接收单元,还用于接收来自所述第一网络设备的第五配置信息,所述第五配置信息用于配置上行参考信号;
    所述接收单元,还用于根据所述第五配置信息,接收来自所述终端设备的所述上行参考信号;
    所述处理单元,用于对所述上行参考信号测量,得到第二测量结果;
    所述发送单元,还用于向所述第一网络设备发送所述第二测量结果,所述第二测量结果用于确定向所述通信装置发送信息的发送波束。
  54. 根据权利要求53所述的通信装置,其特征在于,所述接收单元用于通过如下方式接收来自所述终端设备的对应于所述第一指示信息的响应信息:
    通过第二接收波束接收所述响应信息,所述第二接收波束是根据所述第二测量结果确定的。
PCT/CN2021/118681 2020-09-27 2021-09-16 一种通信方法及通信装置 WO2022063012A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011031704.7A CN114286359A (zh) 2020-09-27 2020-09-27 一种通信方法及通信装置
CN202011031704.7 2020-09-27

Publications (1)

Publication Number Publication Date
WO2022063012A1 true WO2022063012A1 (zh) 2022-03-31

Family

ID=80846206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118681 WO2022063012A1 (zh) 2020-09-27 2021-09-16 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN114286359A (zh)
WO (1) WO2022063012A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033504A (zh) * 2022-12-21 2023-04-28 三维通信股份有限公司 新无线通信系统中bwp的切换方法、装置和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170164221A1 (en) * 2015-07-17 2017-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Terminal devices, network nodes and methods of operating the same
CN108632065A (zh) * 2017-03-20 2018-10-09 华为技术有限公司 管理网络切片实例的方法、网络设备和系统
CN110036666A (zh) * 2016-11-03 2019-07-19 Oppo广东移动通信有限公司 切换通信模式的方法、终端设备和网络设备
CN110035472A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种传输方法和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170164221A1 (en) * 2015-07-17 2017-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Terminal devices, network nodes and methods of operating the same
CN110036666A (zh) * 2016-11-03 2019-07-19 Oppo广东移动通信有限公司 切换通信模式的方法、终端设备和网络设备
CN108632065A (zh) * 2017-03-20 2018-10-09 华为技术有限公司 管理网络切片实例的方法、网络设备和系统
CN110035472A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种传输方法和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Necessity of Handover Type Indication in RLF Report", 3GPP DRAFT; R3-197028, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820681 *

Also Published As

Publication number Publication date
CN114286359A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
US9185721B2 (en) Random access preamble transmission design with multiple available random access channel resources
CN114845391B (zh) 一种传输寻呼消息的方法及装置
CN110312309B (zh) 一种随机接入的方法及装置
JP2020508604A (ja) サイドリンク送信制御のための方法および装置
EP3120588B1 (en) Methods and devices for device to device communication source address change indication
US11019543B2 (en) Methods and system for managing handover procedure in a radio access network
WO2016161900A1 (zh) 一种进行数据传输的方法和设备
CN114731642A (zh) 一种通信方法及装置
TW201911935A (zh) 處理載波聚合及雙連結的裝置及方法
US20240008084A1 (en) Method of supporting industrial internet of things (iiot) with configured uplink grants on a shared spectrum
KR20210047940A (ko) 무선 통신 네트워크에서 수행되는 무선 네트워크 노드, 사용자 장비(ue) 및 방법
US11716739B2 (en) Method and apparatus for uplink transmission
TW201824893A (zh) 用於傳輸數據的方法、終端設備和網絡設備
CN115039469A (zh) 通信系统及通信终端
CN115915304A (zh) 通信方法及装置
CN115486134A (zh) 通信系统、通信终端及基站
WO2022022661A1 (en) Method and apparatus for radio connection
WO2022063012A1 (zh) 一种通信方法及通信装置
JP2023554677A (ja) Slリレーの場合の障害監視および回復機構
EP3609251A1 (en) Communication method and device
CN113424645B (zh) Ue、无线电网络节点以及其中执行的用于处理通信的方法
US11540252B2 (en) Data transmission method, network device
US20230021043A1 (en) HANDLING OVERLAPPING OF MULTIPLE PHYSICAL UPLINK SHARED CHANNELS (PUSCHs)
WO2022042948A1 (en) Early pdcch / cg activation based on survival time
CN114503773A (zh) 用于信道状态信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871383

Country of ref document: EP

Kind code of ref document: A1