WO2022062954A1 - 立体分布式液体雾化换热器及控制方法和制冷系统、空调 - Google Patents

立体分布式液体雾化换热器及控制方法和制冷系统、空调 Download PDF

Info

Publication number
WO2022062954A1
WO2022062954A1 PCT/CN2021/118126 CN2021118126W WO2022062954A1 WO 2022062954 A1 WO2022062954 A1 WO 2022062954A1 CN 2021118126 W CN2021118126 W CN 2021118126W WO 2022062954 A1 WO2022062954 A1 WO 2022062954A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
heat exchanger
atomization
atomizing
heat exchange
Prior art date
Application number
PCT/CN2021/118126
Other languages
English (en)
French (fr)
Inventor
杨建国
周成君
谢伟波
王全江
康建慧
张继龙
赵辉
郝立煊
毛同芹
曹文婕
晁海英
李军赠
Original Assignee
北京市京科伦工程设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京市京科伦工程设计研究院有限公司 filed Critical 北京市京科伦工程设计研究院有限公司
Priority to CA3193083A priority Critical patent/CA3193083A1/en
Priority to AU2021348321A priority patent/AU2021348321A1/en
Priority to JP2023518922A priority patent/JP2023542409A/ja
Priority to US18/246,164 priority patent/US20230366594A1/en
Priority to EP21871325.3A priority patent/EP4220058A1/en
Publication of WO2022062954A1 publication Critical patent/WO2022062954A1/zh
Priority to ZA2023/03948A priority patent/ZA202303948B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G7/00Cleaning by vibration or pressure waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/041Details of condensers of evaporative condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers

Definitions

  • the invention relates to the field of heat exchangers, in particular to a three-dimensional distributed liquid atomization heat exchanger and a control method, a refrigeration system and an air conditioner.
  • the conventional air-conditioning system is usually a water source heat pump unit or an air source heat pump unit, which uses water as a refrigerant to be transported to the end fan coil unit to provide the required cooling or heat for the building.
  • the system structure is complex.
  • it is also necessary to design a water circulation system. After the secondary heat exchange between the refrigerant and the water, the water is transported to the user side through the water pump for use.
  • Such a design requires a larger equipment room and takes up building space, which undoubtedly increases investment, and also has problems such as high energy consumption per unit area and low system efficiency.
  • carbon dioxide As an efficient, energy-saving and environmentally friendly refrigerant, carbon dioxide has broad application prospects and considerable economic value.
  • due to the inherent characteristics of carbon dioxide when the working temperature is higher than the critical temperature, no matter how high the pressure is applied, the carbon dioxide cannot be liquefied.
  • the heat exchange effect will be affected by the temperature and humidity of the outside natural wind, and the impact is very large.
  • the cooling effect of this heat exchanger is still poor, and the energy consumption is very large, making it more and more difficult to meet the cooling demand.
  • the heat exchangers are basically turned on or off as a whole, but in the actual use process, in order to make full use of energy, it is often not necessary to turn on the whole heat exchangers.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a three-dimensional distributed liquid atomization heat exchanger that is energy-saving and environmentally friendly, has high heat exchange efficiency, and is conducive to control, and a control method thereof.
  • the invention also provides a refrigeration system and a central air conditioner comprising a three-dimensional distributed liquid atomizing heat exchanger.
  • the three-dimensional distributed liquid atomization heat exchanger provided by the present invention has the following technical scheme:
  • a three-dimensional distributed liquid atomization heat exchanger comprising a shell, an air extraction device, a heat exchange device and a liquid atomization device, wherein the air extraction device is arranged outside the shell to form negative pressure in the shell; heat exchange
  • the device and the liquid atomization device are arranged in the shell;
  • the liquid atomization device includes a liquid supply pipe, an atomization exhaust pipe, and an atomization head.
  • the atomization exhaust pipe is connected with the liquid supply pipe, and the atomization head is arranged on the atomization exhaust pipe.
  • the atomizing pipes are arranged in a three-dimensional distribution in the casing, and a control device for controlling the opening or closing of the atomizing head is arranged on the atomizing head, and the control device is communicated with the control center.
  • control center can randomly select the atomizer heads that need to be turned on or off according to the set time and the set opening ratio of the atomizer heads according to a random function, and the opening or closing of each atomizer head is random, so that The atomized liquid in the shell is evenly distributed; the control center is an intelligent computer.
  • a heat exchange device is arranged around the atomization head, the heat exchange device is used for circulating refrigerant, the atomization head is used for spraying the atomized liquid, and the atomized liquid is diffused around the heat exchange device, under the effect of negative pressure After the liquid micelles and the carbon dioxide in the heat exchange device complete the radiation heat exchange, they are drawn out of the shell by the air extraction device.
  • the large micelles are dynamically and continuously decomposed into small micelles to take away the heat and condense and liquefy the carbon dioxide refrigerant.
  • the atomization exhaust pipes are arranged in layers in a matrix form, and a plurality of atomization heads are arranged on the atomization exhaust pipes.
  • the heat exchange device is formed by stacking multiple heat exchange units, and the heat exchange units include multiple rows of tubes for circulating carbon dioxide and fins for fixing the multiple rows of tubes, and the multiple rows of tubes and fins are fixed by a fixing frame , carbon dioxide flows in from the inlet end and is discharged from the outlet end; an atomization exhaust pipe is arranged in the heat exchange unit.
  • multiple rows of tubes of a plurality of heat exchange units are stacked and connected to each other in series, the heat exchange units are fixed on the casing, and the atomization tubes are respectively connected to the liquid supply pipes.
  • the atomization exhaust pipe is provided with a control device for controlling the opening or closing of the atomization exhaust pipe, and the control device is connected to a control center, and the control center is an intelligent computer.
  • the atomizing head is an ultrasonic atomizer
  • the ultrasonic atomizer includes an ultrasonic atomizing sheet
  • the ultrasonic atomizing sheet cooperates with ultrasonic waves to atomize the water.
  • the water vapor after heat exchange is not circulated or recovered, but is directly discharged into the atmosphere.
  • the suction device is a negative pressure fan, a magnetic levitation negative pressure fan or a vacuum suction pump.
  • the casing is a closed casing
  • the air extraction device can form a set negative pressure value in the closed casing to achieve more efficient heat exchange
  • the exhaust air volume of the air extraction device is greater than the evaporation volume of the atomized liquid in the casing.
  • the steam in the casing can be fully discharged to improve the evaporation efficiency of the atomized liquid, and on the other hand, the negative pressure environment in the casing can be maintained.
  • the heat exchanger includes a pressure regulating device, the air inlet of the pressure regulating device is arranged outside the casing, and the air outlet is arranged in the casing, and the regulated airflow can be sent into the casing through the pressure regulating device to promote the flow of steam in the casing , and form an aerosol inside the shell.
  • the liquid supply pipe is communicated with the liquid tank outside the casing to continuously supply liquid into the casing;
  • the liquid is softened water, which removes inorganic salts such as calcium and magnesium, reduces the entry of external impurities, avoids scaling of the condenser tube to the greatest extent, and increases the service life of the heat exchange tube.
  • a control method of a three-dimensional distributed liquid atomization heat exchanger the atomizing head is arranged in the shell of the heat exchanger according to the three-dimensional distribution, and the control center encodes the control device on the atomizing head.
  • the control center selects the atomizer head to be turned on or off according to a random function at a set time interval.
  • the opening or closing of each atomizer head is random. , to achieve the uniform effect of the atomized liquid in the shell.
  • a refrigeration system includes a compressor, a heat exchanger, a liquid accumulator and an evaporator connected in sequence, and the heat exchanger is the above-mentioned three-dimensional distributed liquid atomization heat exchanger.
  • a carbon dioxide multi-connected central air conditioner comprises an indoor heat exchanger and an outdoor unit, the outdoor unit is connected with the indoor heat exchanger through pipes, the outdoor unit includes a carbon dioxide compressor, a liquid accumulator and a heat exchanger, and the central air conditioner utilizes carbon dioxide as a single cycle
  • the working medium and the heat exchanger are the above-mentioned three-dimensional distributed liquid atomization heat exchanger.
  • the three-dimensional distributed liquid atomizing heat exchanger control center of the present invention can set the opening ratio of the atomizing head (for example, 10%-95% of the atomizing head) according to the set time (for example, 1 second to 300 seconds), according to the
  • the random function randomly selects the atomizing heads that need to be opened or closed, and the opening or closing of each atomizing head is random, so as to achieve the uniform effect of the atomized liquid in the shell. It can be precisely controlled while avoiding the waste of energy.
  • a heat exchange device is arranged around the atomization head.
  • the heat exchange device is used to circulate the refrigerant, and the atomization head is used to spray the atomized liquid.
  • the atomized liquid is diffused around the heat exchange device.
  • the liquid After the micelles and the carbon dioxide in the heat exchange device complete the radiation heat exchange, they are drawn out of the shell by the air extraction device.
  • the water micelles in the cavity absorb the radiant heat of carbon dioxide circulating in the heat exchange device, the large micelles are gradually decomposed into small micelles to take away the heat, and the carbon dioxide refrigerant is condensed and liquefied.
  • the water micelles are dynamically and continuously decomposed into small water micelles, taking away heat.
  • the heat exchange device is arranged in a way of stacking multiple heat exchange units, which is convenient for installation and maintenance. When a heat exchange unit is broken, the broken repair order can be removed for maintenance or replacement. It is also convenient to expand or reduce the size of the heat exchange device and simplify the preparation process.
  • the heat exchanger of the present invention uses the aerosol to gradually decompose from large micelles into small micelles under the condition of negative pressure under the condition of radiant heat for heat exchange. Except that the pressure regulating device will enter the external gas, no external gas will enter. , High temperature and high humidity conditions do not affect heat exchange, and can be used normally in different climatic conditions.
  • the carbon dioxide multi-connected central air conditioner of the present invention has the advantages of large pressure difference, good fluidity, low density and transcritical phase transition in view of using carbon dioxide as a circulating working medium, can be used in high-rise buildings, and can be completed at a height of more than 100 meters Circulation, the existing Freon multi-connected central air conditioner cannot do it, and the existing refrigerant needs to be equipped with a circulating pump, which consumes energy and costs a lot.
  • the central air conditioner of the present invention can increase the efficiency by more than 2 times, and can save energy by more than 50%.
  • FIG. 1 is a schematic cross-sectional structural diagram of a three-dimensional distributed liquid atomizing heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the three-dimensional structure of the heat exchange unit.
  • FIG. 3 is a schematic diagram of the front structure of the heat exchange unit.
  • FIG. 4 is a schematic top view of the structure of the heat exchange unit.
  • FIG. 5 is a schematic structural diagram of a refrigeration system with a three-dimensional distributed liquid atomizing heat exchanger.
  • a three-dimensional distributed liquid atomizing heat exchanger provided in this embodiment includes a shell 1 , an air extraction device 2 , a heat exchange device 3 and a liquid atomization device, and the air extraction device 2 It is arranged outside the shell 1 to form a negative pressure in the shell 1; the heat exchange device 3 and the liquid atomization device are arranged in the shell 1; the liquid atomization device includes a liquid supply pipe (not shown in the figure) , Atomization pipe 4, atomization head 5, the atomization pipe 4 is connected with the liquid supply pipe, the atomization head 5 is arranged on the atomization pipe 4, and the atomization pipe 4 is arranged in a three-dimensional distribution on the shell 1 Inside, the atomizing head 5 is provided with a control device for controlling the opening or closing of the atomizing head 5, the control device is connected to a control center, and the control center is an intelligent computer.
  • the control center can randomly select the fog that needs to be turned on or off according to the random function according to the set time (for example, 1 second to 300 seconds) and the set opening ratio of the atomizing head 5 (for example, 10%-95% of the atomizing head 5).
  • the opening or closing of each atomizing head 5 is random, so as to achieve the uniform effect of the atomized liquid in the casing 1 . It can be precisely controlled while avoiding the waste of energy.
  • a heat exchange device 3 is arranged around the atomizing head 5, the heat exchange device 3 is used for circulating refrigerant, and the atomizing head 5 is used for spraying the atomized liquid, and the atomized liquid is diffused in the Around the heat exchange device 3, under the action of negative pressure, the liquid micelles and the carbon dioxide in the heat exchange device 3 complete the radiation heat exchange and are drawn out of the shell 1 by the air extraction device 2.
  • the water micelles in the cavity absorb the radiant heat of carbon dioxide circulating in the heat exchange device 3, the large micelles are gradually decomposed into small micelles to take away the heat, and the carbon dioxide refrigerant is condensed and liquefied.
  • the water micelles are dynamically and continuously decomposed into small water micelles, taking away heat.
  • the atomizing exhaust pipes 4 are arranged in layers in a matrix form, and a plurality of atomizing heads 5 are arranged on the atomizing exhaust pipes 4 .
  • an atomization matrix of 18 rows*12 holes can be specifically selected.
  • 18 atomization exhaust pipes 4 are arranged in the heat exchanger shell 1, which are arranged in 9 layers.
  • Each row of atomization exhaust pipes 4 is provided with 12 atomization heads 5, and there are 216 atomization heads in total. 5.
  • Each atomizing head 5 is provided with a control device that can control its opening or closing, and the control device is connected to the control center.
  • the heat exchange device 3 is formed by stacking a plurality of heat exchange units 6 , and the heat exchange unit 6 includes multiple rows of tubes 60 for circulating carbon dioxide and fins for fixing the multiple rows of tubes 60 . 61.
  • the multi-row tubes 60 and the fins 61 are fixed by the fixing frame 62, carbon dioxide flows in from the inlet end and is discharged from the outlet end; the heat exchange unit 6 is provided with an atomizing exhaust tube 4.
  • Multiple rows of tubes 60 of a plurality of heat exchange units 6 are stacked and connected to each other in series.
  • the heat exchange units 6 are fixed on the casing 1 , and the atomization tubes 4 are respectively connected to the liquid supply pipes.
  • the heat exchange device 3 is arranged in a way of stacking a plurality of heat exchange units 6, which is convenient for installation and maintenance. When a heat exchange unit 6 is broken, the broken maintenance sheet can be disassembled for maintenance or replacement. It is also convenient to expand or reduce the size of the heat exchange device 3 and simplify the preparation process.
  • the atomization exhaust pipe 4 is provided with a control device for controlling the opening or closing of the atomization exhaust pipe 4, and the control device is connected to a control center, and the control center is an intelligent computer.
  • the entire atomizing head 5 can also be controlled independently of the atomizing exhaust pipe 4, and the control method is flexible and convenient.
  • the atomizing head 5 can choose an ultrasonic atomizer.
  • the ultrasonic atomizer includes an ultrasonic atomizing sheet, and the ultrasonic atomizing sheet cooperates with ultrasonic waves to atomize the water.
  • the ultrasonic atomized water itself has a descaling function to avoid scaling on the surfaces of the heat exchange tubes and the fins 61 .
  • Water vapor and unevaporated water mist are emitted directly into the atmosphere.
  • the water vapor after heat exchange is not circulated or recovered, but is directly discharged into the atmosphere. Since the heat is mainly converted into internal energy during the decomposition of water micelles, the temperature of the discharged water vapor is not high, and the heat island effect will not be generated.
  • the air extraction equipment is a negative pressure fan, a magnetic levitation negative pressure fan or a vacuum air pump.
  • the casing 1 is a closed casing
  • the air extraction device 2 can form a set negative pressure value in the closed casing to achieve more efficient heat exchange.
  • the exhaust air volume of the air extraction device 2 is greater than the evaporation volume of the atomized liquid in the shell 1.
  • the steam in the shell 1 can be fully discharged to improve the evaporation efficiency of the atomized liquid. negative pressure environment.
  • the heat exchanger also includes a pressure regulating device.
  • the air inlet of the pressure regulating device is arranged outside the casing 1 and the air outlet is arranged in the casing 1.
  • the regulated airflow can be sent into the casing 1 through the pressure regulating device to promote the The flow of steam in the body 1 and the formation of an aerosol in the shell 1.
  • the pressure regulating device can also be one or more fans, the fans are arranged near the bottom of the casing 1 , and the rotation of the fans can promote the flow of the steam and the atomized liquid in the casing 1 .
  • the heat exchanger of the present invention uses aerosols under the condition of negative pressure to convert large and small particles into radiant heat. The mass is gradually decomposed into small micelles for heat exchange. Except that the pressure regulating device will enter the external gas, no external gas will enter. The high temperature and high humidity conditions do not affect the heat exchange, and can be used normally under different climatic conditions.
  • the liquid supply pipe is communicated with a liquid tank (not shown in the figure) or a liquid pipe outside the shell 1, and continuously supplies liquid into the shell 1;
  • the liquid supply pipe can be a single linear pipeline, or can be Two or more pipelines are arranged side by side, or a single pipeline is used to form a disk-shaped arrangement.
  • the liquid in the present invention preferentially uses water, preferably softened water, which removes inorganic salts such as calcium and magnesium, reduces the entry of external impurities, avoids scaling of the condenser tube to the greatest extent, and increases the service life of the heat exchange tube.
  • the liquid atomization device atomizes each drop of water into about 1/500 of the volume of the original water droplet, forming a micron or nanometer water mist, which increases the contact area with the air and accelerates the evaporation rate by more than 300 times;
  • the heat absorbed from the liquid to the gaseous state is about 540 times that of the heat absorbed by the water at a temperature of 1 °C, which can achieve the effect of absorbing a large amount of heat and greatly enhance the heat exchange effect.
  • This embodiment also provides a control method for a three-dimensionally distributed liquid atomizing heat exchanger, in which the atomizing head 5 is arranged in the shell 1 of the heat exchanger in a three-dimensional distribution manner, and the control center targets the atomizing head 5 on the
  • the control center targets the atomizing head 5 on the
  • the opening or closing of each atomizing head 5 is random, so as to achieve the uniform effect of the atomized liquid in the housing 1 .
  • the random function can be selected from an existing random function, which is not limited in the present invention, and will not be described again.
  • the three-dimensional distribution method refers to a layered arrangement in the form of a matrix.
  • this embodiment also provides a refrigeration system, including a compressor 7 , a heat exchanger 8 , a liquid accumulator 9 and an evaporator 10 connected in sequence, and the heat exchanger 8 is the above-mentioned three-dimensional distributed liquid Atomizing heat exchanger.
  • This embodiment also provides a carbon dioxide multi-online central air conditioner, including an indoor heat exchanger and an outdoor unit, the outdoor unit is connected to the indoor heat exchanger through a pipeline, and the outdoor unit includes a carbon dioxide compressor, a liquid accumulator and an outdoor heat exchanger,
  • the central air conditioner uses carbon dioxide as a single circulating working medium, and the outdoor heat exchanger is the above-mentioned three-dimensional distributed liquid atomizing heat exchanger.
  • the flow direction of the carbon dioxide medium is to pass through the carbon dioxide compressor, the outdoor heat exchanger, the liquid accumulator, and the indoor heat exchanger in sequence to complete the cooling.
  • the carbon dioxide medium flows through the carbon dioxide compressor, indoor heat exchanger, liquid accumulator, and outdoor heat exchanger in sequence to complete heating.
  • the reversal of cooling and heating is realized through the four-way reversing valve, which will not be repeated in this embodiment.
  • carbon dioxide As a circulating working medium, it has the advantages of large pressure difference, good fluidity, low density and transcritical phase transition, which can be used in high-rise buildings and can complete the cycle at a height of more than 100 meters.
  • the existing Freon multi-connected central air conditioner It is impossible to do it, and besides, the existing refrigerant needs to be equipped with a circulating pump, which consumes energy and costs a lot.
  • the central air conditioner of the present invention can increase the efficiency by more than 2 times, and can save energy by more than 50%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Spray Control Apparatus (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Humidification (AREA)

Abstract

一种立体分布式液体雾化换热器,包括壳体(1)、抽气装置(2)、换热装置(3)和液体雾化装置,抽气装置(2)用于在壳体(1)内形成负压;液体雾化装置包括供液管、雾化排管(4)、雾化头(5),雾化排管(4)与供液管连接,雾化头(5)设置在雾化排管(4)上,雾化排管(4)立体分布式的设置在壳体(1)内,雾化头(5)上设置有控制雾化头(5)打开或关闭的控制装置,控制装置连通到控制中心,控制中心能够根据设定的时间、设定的雾化头(5)打开比例,依据随机函数随机选择需要打开或关闭的雾化头(5),每个雾化头(5)的打开或关闭都是随机的,达到壳体内的雾化液体均匀的效果。

Description

立体分布式液体雾化换热器及控制方法和制冷系统、空调 技术领域
本发明涉及换热器领域,特别涉及立体分布式液体雾化换热器及控制方法和制冷系统、空调。
背景技术
目前,我国商业建筑空调能耗占比较高,随着建筑节能的发展和要求的进一步提高,导致传统的商用空调系统的弊端越来越明显。在制冷剂方面,目前国内外的空调系统都是采用氟利昂作为制冷剂,但是氟利昂会破坏大气臭氧层和较高的温室效应。由于氨(R77)的不稳定性而且成本非常高,会使制冷系统存在不安全因素,故氨(R717)也不适合作为空调制冷剂。系统安装方面,常规空调系统通常是水源式热泵机组或空气源式热泵机组,以水作为载冷剂输送到末端风机盘管内,给建筑物提供所需的冷量或热量。系统结构复杂,除了制冷设备外,还需要设计一套水循环系统,制冷剂与水进行二次热交换后,通过水泵将水输送到用户侧进行使用。如此设计需要较大的设备机房,占用了建筑空间,这无疑也増加了投资,并且还存在单位面积能耗高、系统效率较低等问题。
二氧化碳作为一种高效、节能、环保的制冷剂,具有广泛的应用前景和可观的经济价值。但由于二氧化碳的固有特性,在工作温度高于临界温度时,无论施加多高的压力,均不能使二氧化碳液化,本领域一直存在偏见,以单独二氧化碳为介质的制冷系统无法用于大范围制冷,这大大降低了二氧化碳制冷系统的制冷效率,限制了二氧化碳制冷系统的推广和应用。
现有的风冷换热器和蒸发冷换热器都需要从外界引入空气,当外界温度和湿度都较高时,换热效果会受到外界自然风的温湿度的影响,且影响非常大。尤其在炎热潮湿的地区,这种换热器的制冷效果仍然较差,且能耗非常大,越来越难以满足制冷需求。再者,现在换热器基本都是整体打开或关闭,而现实使用过程中,为了充分利用能源,往往不需要将整体换热器全部打开。为了解决常规冷凝手段难以使二氧化碳液化冷凝的难题,提高二氧化碳系统的整体效率,使环保工质二氧化碳得以广泛应用在实际工程中,且节能环保,从而提出本发明的技术方案。
发明内容
本发明的目的在于克服现有技术的不足,提供一种节能环保、换热效率高、利于控制的立体分布式液体雾化换热器及其制控制方法。本发明还提供了包含立体分布式液体雾化换热器的制冷系统、中央空调。
本发明提供的立体分布式液体雾化换热器,其技术方案为:
一种立体分布式液体雾化换热器,包括壳体、抽气装置、换热装置和液体雾化装置,抽气装置设置在壳体的外部,用于在壳体内形成负压;换热装置和液体雾化装置设置在壳体内;液体雾化装置包括供液管、雾化排管、雾化头,雾化排管与供液管连接,雾化头设置在雾化排管上,雾化排管立体分布式的设置在壳体内,雾化头上设置有控制雾化头打开或关闭的控制装置,控制装置连通到控制中心。
优选地,控制中心能够根据设定的时间、设定的雾化头打开比例,依据随机函数随机选择需要打开或关闭的雾化头,每个雾化头的打开或关闭都是随机的,使得壳体内的雾化液体均匀分布;控制中心为智能计算机。
优选地,雾化头周围布置有换热装置,换热装置用于流通制冷剂,雾化头用于喷出雾化后的液体,雾化液体弥漫在换热装置周围,在负压的作用下,液体微团与换热装置内的二氧化碳完成辐射换热后被抽气装置抽出壳体。
优选地,制冷时,腔体内的水微团吸收换热装置内流通的二氧化碳的辐射热时由大微团动态连续地分解为小微团将热量带走,将二氧化碳制冷剂冷凝液化。
优选地,雾化排管呈矩阵形式分层布置,雾化排管上设置多个雾化头。
优选地,换热装置由多个换热单元叠装而成,换热单元包括用于流通二氧化碳的多排管和用于固定多排管的翅片,多排管和翅片通过固定架固定,二氧化碳从进口端流入,从出口端排出;换热单元内设置雾化排管。
优选地,多个换热单元的多排管叠装之后相互串接在一起,换热单元固定在壳体上,雾化排管分别连接到供液管。
优选地,雾化排管上设置有控制雾化排管打开或关闭的控制装置,控制装置连通到控制中心,控制中心为智能计算机。
优选地,雾化头是超声波雾化器,超声波雾化器包括超声波雾化片,超声波雾化片配合超声波将水雾化。
换热完成的水汽不循环,不回收,直接排放到大气中。
优选地,抽气设备是负压风机、磁悬浮负压风机或者真空抽气泵。
优选地,壳体为封闭壳体,抽气装置能够在封闭壳体内形成设定负压值,实现更高效的换热;
抽气装置的排风量大于壳体内雾化液体的蒸发量,一方面可充分排出壳体内的蒸汽,提高雾化液体的蒸发效率,另一方面可保持壳体内的负压环境。
优选地,换热器包括调压装置,调压装置的进气口设置在壳体外,出气口设置在壳体内,可通过调压装置将调节气流送进壳体内,以促进壳体内蒸汽的流动,并在壳体内形成气溶胶。
优选地,供液管与壳体外的液体箱相连通,持续向壳体内供液体;
液体为软化水,软化水去除钙、镁等无机盐类物质,减少外界杂质的进入,最大程度避免了冷凝管结垢,增加了换热管的使用寿命。
一种立体分布式液体雾化换热器的控制方法,将雾化头按照立体分布的方式设置在换热器的壳体内,控制中心针对雾化头上的控制装置进行编码,当换热器不需要全负荷运行时,输入需要打开雾化头的比例,控制中心每隔一段设定的时间根据随机函数选择需要打开或关闭的雾化头,每个雾化头的打开或关闭都是随机的,达到壳体内的雾化液体均匀的效果。
一种制冷系统,包括依次连接的压缩机、换热器、储液器和蒸发器,换热器是上述的的立体分布式液体雾化换热器。
一种二氧化碳多联机中央空调,包括室内换热器和室外机,室外机通过管道与室内换热器连接,室外机包括二氧化碳压缩机、储液器和换热器,中央空调利用二氧化碳作为单一循环工质,换热器是上述的立体分布式液体雾化换热器。
本发明的实施包括以下技术效果:
本发明的立体分布式液体雾化换热器控制中心能够根据设定的时间(例如1秒-300秒)、设定的雾化头打开比例(例如10%-95%雾化头),依据随机函数随机选择需要打开或关闭的雾化头,每个雾化头的打开或关闭都是随机的,达到壳体内的雾化液体均匀的效果。能够精确控制的同时还能够避免能量的浪费。
雾化头周围布置有换热装置,换热装置用于流通制冷剂,雾化头用于喷出雾化后的液体,雾化液体弥漫在换热装置周围,在负压的作用下,液体微团与换热装置内的二氧化碳完成辐射换热后被抽气装置抽出壳体。制冷时,腔体内的水微团吸收换热装置内流通的二氧化碳的辐射热时由大微团逐渐分解为小微团将热量带走,将二氧化碳制冷剂冷凝液化。水微团动态连续的分解为小水微团,带走热量。
多个换热单元的多排管叠装之后相互串接在一起,换热单元固定在壳体上,雾化排管分别连接到供液管。将换热装置设置为多个换热单元叠装的方式,方便安装和维修,当某个换热单元坏了,可以将坏了的维修单拆卸下来维修或者更换。还方便扩展或缩小换热装置的大小,简化了制备流程。
本发明的换热器为在负压条件下,利用气溶胶在辐射热的情况下由大微团逐渐分解为小微团进行换热,除了调压装置会进入外部气体外,没有外部气体进入,高温高湿条件也不影响换热,可以在不同气候条件下正常使用。
本发明的二氧化碳多联机中央空调,鉴于利用二氧化碳作为循环工质,具有压差大、流动性好、密度小、跨临界相变的优势,能够用于高层建筑,能够在100米以上的高度完成循环,现有氟利昂多联机中央空调是无法做到的,再说现有的载冷剂都需要设置循环泵,耗能的同时造价还高。本发明的中央空调,相对于传统空调,效率能够提高2倍以上,能够节能50%以上。
附图说明
图1为本发明实施例的一种立体分布式液体雾化换热器剖面结构示意图。
图2为换热单元立体结构示意图。
图3为换热单元正面结构示意图。
图4为换热单元俯视结构示意图。
图5为带有立体分布式液体雾化换热器的制冷系统结构示意图。
图中:1、壳体;2、抽气装置;3、换热装置;4、雾化排管;5、雾化头;6、换热单元;60、多排管;61、翅片;62、固定架;7、压缩机;8、换热器;9、储液器;10、蒸发器。
具体实施方式
下面将结合实施例以及附图对本发明加以详细说明,需要指出的是,所描述的实施例仅旨在便于对本发明的理解,而对其不起任何限定作用。
参见图1至图4所示,本实施例提供的一种立体分布式液体雾化换热器,包括壳体1、抽气装置2、换热装置3和液体雾化装置,抽气装置2设置在壳体1的外部,用于在壳体1内形成负压;换热装置3和液体雾化装置设置在壳体1内;液体雾化装置包括供液管(图中未视出)、雾化排管4、雾化头5,雾化排管4与供液管连接,雾化头5设置在雾化排管4上,雾化排管4立体分布式的设置在壳体1内,雾化头5上设置有控制雾化头5打开或关闭的控制装置,控制装置连通到控制中心,控制中心为智能计算机。控制中心能够根据设定的时间(例如1秒-300秒)、设定的雾化头5打开比例(例如10%-95%雾化头5),依据随机函数随机选择需要打开或关闭的雾化头5,每个雾化头5的打开或关闭都是随机的,达到壳体1内的雾化液体均匀的效果。能够精确控制的同时还能够避免能量的浪费。
具体地,参见图1所示,雾化头5周围布置有换热装置3,换热装置3用于流通制冷剂,雾化头5用于喷出雾化后的液体,雾化液体弥漫在换热装置3周围,在负压的作用下,液体微团与换热装置3内的二氧化碳完成辐射换热后被抽气装置2抽出壳体1。制冷时,腔体内的水微团吸收换热装置3内流通的二氧化碳的辐射热时由大微团逐渐分解为小微团将热量带走,将二氧化碳制冷剂冷凝液化。水微团动态连续的分解为小水微团,带走热量。
参见图1所示,雾化排管4呈矩阵形式分层布置,雾化排管4上设置多个雾化头5。作为一种示例,具体可选择18排*12孔的雾化矩阵。参见图1所示,换热器壳体1内设置18个排雾化排管4,分9层设置,每排雾化排管4设置有12个雾化头5,共有216个雾化头5,每个雾化头5上设置有能够控制其打开或关闭的控制装置,控制装置连通到控制中心,实际运行过程中,当只需要打开50%的喷雾头就能够实现制冷或制热要求时,现有的做法是整排的关闭雾化排管4,如果这样操作,必然使得壳体1内的雾化液体分布不均匀,影响换热效果;如果手动关闭108个雾化头5,同样会带来不均匀的问题,且操作不方便,本发明中,可以在控制中心设置每间隔一定时间(例如30秒)随机关闭108个雾化头5,这就使得每一个雾化头5都有随机打开或关闭的相同概率,壳体1内的雾化液体就会始终处于均匀状态。
参见图2至图4所示,换热装置3由多个换热单元6叠装而成,换热单元6包括用于流通二氧化碳的多排管60和用于固定多排管60的翅片61,多排管60和翅片61通过固定架62固定,二氧化碳从进口端流入,从出口端排出;换热单元6内设置雾化排管4。多个换热单元6的多排管60叠装之后相互串接在一起,换热单元6固定在壳体1上,雾化排管4分别连接到供液管。将换热装置3设置为多个换热单元6叠装的方式,方便安装和维修,当某个换热单元6坏了,可以将坏了的维修单拆卸下来维修或者更换。还方便扩展或缩小换热装置3的大小,简化了制备流程。
进一步地,雾化排管4上设置有控制雾化排管4打开或关闭的控制装置,控制装置连通到控制中心,控制中心为智能计算机。可以单独控制整个雾化头5也可控制雾化排管4,控制方式灵活方便。
雾化头5可选择超声波雾化器,超声波雾化器包括超声波雾化片,超声波雾化片配合超声波将水雾化。超声波雾化水本身就具有去垢功能,避免换热管和翅片61表面结垢。水蒸气和未蒸发的水雾直接排放到大气中。换热完成的水汽不循环,不回收,直接排放到大气中,由于水微团分解过程中,主要将热量转换为内能,排出的水汽温度不高,不会产生热岛效应。抽气设备是负压风机、磁悬浮负压风机或者真空抽气泵。
具体地,壳体1为封闭壳体,抽气装置2能够使封闭壳体内形成设定负压值,实现更高效的换热。抽气装置2的排风量大于壳体1内雾化液体的蒸发量,一方面可充分排出壳体1内的蒸汽,以提高雾化液体的蒸发效率,另一方面可保持壳体1内的负压环境。换热器还包括调压装置,调压装置的进气口设置在壳体1外,出气口设置在壳体1内,可通过调压装置将调节气流送进壳体1内,以促进壳体1内蒸汽的流动,并在壳体1内形成气溶胶。调压装置也可以为一个或多个风扇,风扇靠近壳体1底部设置,风扇转动可促进壳体1内蒸汽及雾化液体的流动。需要特别说明的是,与现有的风冷式换热器与蒸发冷换热器原理不同,本发明的换热器为在负压条件下,利用气溶胶在辐射热的情况下由大微团逐渐分解为小微团进行换热,除了调压装置会进入外部气体外,没有外部气体进入,高温高湿条件也不影响换热,可以在不同气候条件下正常使用。
具体地,供液管与壳体1外的液体箱(图中未视出)或液体管相连通,持续向壳体1内供液体;供液管可为单条直线形管路,也可为两条或多条管路并排设置,或采用单条管路环绕成盘状设置。
本发明中的液体优先使用水,优选软化水,软化水去除钙、镁等无机盐类物质,减少外界杂质的进入,最大程度避免了冷凝管结垢,增加了换热管的使用寿命。液体雾化装置将每一滴水雾化成原水滴体积的1/500左右,形成微米级或纳米级的水雾,使其与空气接触面积加大,蒸发速度加快300倍以上;细化的水滴从液态到气态吸收的热量则为水升温1℃吸热的540倍左右,可以达到吸收大幅度热量的作用,大大强化换热效果。
本实施例还提供了一种立体分布式液体雾化换热器的控制方法,将雾化头5按照立体分布的方式设置在换热器的壳体1内,控制中心针对雾化头5上的控制装置进行编码,当换热器不需要全负荷运行时,输入需要打开雾化头5的比例,控制中心每隔一段设定的时间根据随机函数选择需要打开或关闭的雾化头5,每个雾化头5的打开或关闭都是随机的,达到壳体1内的雾化液体均匀的效果。随机函数可选择现有的随机函数,本发明不作限定,也不再赘述。立体分布的方式指的是呈矩阵形式的分层布置方式。
参见图5所示,本实施例还提供了一种制冷系统,包括依次连接的压缩机7、换热器8、储液器9和蒸发器10,换热器8是上述的立体分布式液体雾化换热器。
本实施例还提供了一种二氧化碳多联机中央空调,包括室内换热器和室外机,室外机通过管道与室内换热器连接,室外机包括二氧化碳压缩机、储液器和室外换热器,中央空调利用二氧化碳作为单一循环工质,室外换热器是上述的立体分布式液体雾化换热器。
在制冷模式下,二氧化碳介质的流向为依次经过二氧化碳压缩机、室外换热器、储液器、室内换热器,完成制冷。在制热模式下,二氧化碳介质流向为依次经过二氧化碳压缩机、室内换热器、储液器、室外换热器,完成制热。通过四通换向阀考实现制冷和制热的换向,本实施例不再赘述。鉴于利用二氧化碳作为循环工质,具有压差大、流动性好、密度小、跨临界相变的优势,能够用于高层建筑,能够在100米以上的高度完成循环,现有氟利昂多联机中央空调是无法做到的,再说现有的载冷剂都需要设置循环泵,耗能的同时造价还高。本发明的中央空调,相对于传统空调,效率能够提高2倍以上,能够节能50%以上。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (16)

  1. 一种立体分布式液体雾化换热器,包括壳体、抽气装置、换热装置和液体雾化装置,所述抽气装置设置在所述壳体的外部,用于在壳体内形成负压;所述换热装置和所述液体雾化装置设置在所述壳体内;其特征在于:所述液体雾化装置包括供液管、雾化排管、雾化头,所述雾化排管与所述供液管连接,所述雾化头设置在所述雾化排管上,所述雾化排管立体分布式的设置在所述壳体内,所述雾化头上设置有控制雾化头打开或关闭的控制装置,控制装置连通到控制中心。
  2. 根据权利要求1所述的一种立体分布式液体雾化换热器,其特征在于:控制中心能够根据设定的时间、设定的雾化头打开比例,依据随机函数随机选择需要打开或关闭的雾化头,每个雾化头的打开或关闭都是随机的,使得壳体内的雾化液体均匀分布;控制中心为智能计算机。
  3. 根据权利要求1所述的一种立体分布式液体雾化换热器,其特征在于:所述雾化头周围布置有换热装置,所述换热装置用于流通制冷剂,雾化头用于喷出雾化后的液体,雾化液体弥漫在换热装置周围,在负压的作用下,液体微团与所述换热装置内的二氧化碳完成辐射换热后被抽气装置抽出壳体。
  4. 根据权利要求3所述的一种立体分布式液体雾化换热器,其特征在于:制冷时,腔体内的水微团吸收换热装置内流通的二氧化碳的辐射热时由大微团动态连续地分解为小微团将热量带走,将二氧化碳制冷剂冷凝液化。
  5. 根据权利要求1所述的一种立体分布式液体雾化换热器,其特征在于:所述雾化排管呈矩阵形式分层布置,所述雾化排管上设置多个雾化头。
  6. 根据权利要求1所述的一种立体分布式液体雾化换热器,其特征在于:所述换热装置由多个换热单元叠装而成,换热单元包括用于流通二氧化碳的多排管和用于固定多排管的翅片,所述多排管和所述翅片通过固定架固定,二氧化碳从进口端流入,从出口端排出;所述换热单元内设置雾化排管。
  7. 根据权利要求6所述的一种立体分布式液体雾化换热器,其特征在于:多个换热单元的多排管叠装之后相互串接在一起,换热单元固定在壳体上,雾化排管分别连接到供液管。
  8. 根据权利要求1所述的一种立体分布式液体雾化换热器,其特征在于:所述雾化排管上设置有控制雾化排管打开或关闭的控制装置,控制装置连通到控制中心,控制中心为智能计算机。
  9. 根据权利要求1所述的一种立体分布式液体雾化换热器,其特征在于:所述雾化头是超声波雾化器,所述超声波雾化器包括超声波雾化片,所述超声波雾化片配合超声波将水雾化;
    换热完成的水汽不循环,不回收,直接排放到大气中。
  10. 根据权利要求1所述的一种立体分布式液体雾化换热器,其特征在于:所述抽气设备是负压风机、磁悬浮负压风机或者真空抽气泵。
  11. 根据权利要求1所述的一种立体分布式液体雾化换热器,其特征在于:所述壳体为封闭壳体,抽气装置能够在封闭壳体内形成设定负压值,实现更高效的换热;
    抽气装置的排风量大于壳体内雾化液体的蒸发量,一方面可充分排出壳体内的蒸汽,提高雾化液体的蒸发效率,另一方面可保持壳体内的负压环境。
  12. 根据权利要求1所述的一种立体分布式液体雾化换热器,其特征在于:所述换热器包括调压装置,调压装置的进气口设置在壳体外,出气口设置在壳体内,可通过调压装置将调节气流送进壳体内,以促进壳体内蒸汽的流动,并在壳体内形成气溶胶。
  13. 根据权利要求1所述的一种立体分布式液体雾化换热器,其特征在于:供液管与壳体外的液体箱相连通,持续向壳体内供液体;
    液体为软化水,软化水去除钙、镁等无机盐类物质,减少外界杂质的进入,最大程度避免了冷凝管结垢,增加了换热管的使用寿命。
  14. 一种立体分布式液体雾化换热器的控制方法,其特征在于:将雾化头按照立体分布的方式设置在换热器的壳体内,控制中心针对雾化头上的控制装置进行编码,当换热器不需要全负荷运行时,输入需要打开雾化头的比例,控制中心每隔一段设定的时间根据随机函数选择需要打开或关闭的雾化头,每个雾化头的打开或关闭都是随机的,达到壳体内的雾化液体均匀的效果。
  15. 一种制冷系统,包括依次连接的压缩机、换热器、储液器和蒸发器,所述换热器是权利要求1-13任一所述的立体分布式液体雾化换热器。
  16. 一种二氧化碳多联机中央空调,包括室内换热器和室外机,所述室外机通过管道与所述室内换热器 连接,其特征在于:所述室外机包括二氧化碳压缩机、储液器和换热器,所述中央空调利用二氧化碳作为单一循环工质,所述换热器是权利要求1-13任一所述的立体分布式液体雾化换热器。
PCT/CN2021/118126 2020-09-25 2021-09-14 立体分布式液体雾化换热器及控制方法和制冷系统、空调 WO2022062954A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3193083A CA3193083A1 (en) 2020-09-25 2021-09-14 Three-dimensionally distributed liquid atomization heat exchanger, control method thereof, refrigeration system, and air conditioner
AU2021348321A AU2021348321A1 (en) 2020-09-25 2021-09-14 Three-dimensionally distributed liquid atomization heat exchanger, control method thereof, refrigeration system, and air conditioner
JP2023518922A JP2023542409A (ja) 2020-09-25 2021-09-14 立体分散型液体霧化熱交換器、制御方法及び冷凍システム、エアコン
US18/246,164 US20230366594A1 (en) 2020-09-25 2021-09-14 Three-dimensionally distributed liquid atomization heat exchanger, control method thereof, refrigeration system, and air conditioner
EP21871325.3A EP4220058A1 (en) 2020-09-25 2021-09-14 Three-dimensionally distributed liquid atomization heat exchanger, control method thereof, refrigeration system, and air conditioner
ZA2023/03948A ZA202303948B (en) 2020-09-25 2023-03-29 Three-dimensionally distributed liquid atomization heat exchanger, control method thereof, refrigeration system, and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011021378.1A CN114251879A (zh) 2020-09-25 2020-09-25 立体分布式液体雾化换热器及控制方法和制冷系统、空调
CN202011021378.1 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022062954A1 true WO2022062954A1 (zh) 2022-03-31

Family

ID=80790261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118126 WO2022062954A1 (zh) 2020-09-25 2021-09-14 立体分布式液体雾化换热器及控制方法和制冷系统、空调

Country Status (8)

Country Link
US (1) US20230366594A1 (zh)
EP (1) EP4220058A1 (zh)
JP (1) JP2023542409A (zh)
CN (1) CN114251879A (zh)
AU (1) AU2021348321A1 (zh)
CA (1) CA3193083A1 (zh)
WO (1) WO2022062954A1 (zh)
ZA (1) ZA202303948B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117167851A (zh) * 2022-05-27 2023-12-05 北京市京科伦工程设计研究院有限公司 一种模块化数据中心水汽冷剂空调及其数据中心

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606928A (zh) * 2017-09-01 2018-01-19 苏州卓润赛豚节能环保科技有限公司 一种干燥尾气的低温余热处理设备
CN108994087A (zh) * 2018-07-03 2018-12-14 中冶赛迪工程技术股份有限公司 一种乳化液分段冷却的控制方法
CN110319613A (zh) * 2019-07-22 2019-10-11 北京市京科伦冷冻设备有限公司 单级二氧化碳制冷系统
CN110896831A (zh) * 2019-12-04 2020-03-24 西安建筑科技大学 一种能实时自动调节喷灌强度的智能绿地喷灌系统与方法
CN210952468U (zh) * 2019-09-27 2020-07-07 河南金山化工装备有限公司 一种冷凝塔结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324406A (zh) * 2008-08-06 2008-12-17 卓永冰 均匀换热节能器
JPWO2011099056A1 (ja) * 2010-02-10 2013-06-13 三菱電機株式会社 空気調和装置
CN203231586U (zh) * 2013-03-22 2013-10-09 广东美的电器股份有限公司 一种翅片换热器及应用该翅片换热器的空调设备
CN203634593U (zh) * 2014-01-15 2014-06-11 佛山市凯亚医疗科技有限公司 一种医用雾化器
KR101870672B1 (ko) * 2016-09-21 2018-07-23 (주)다해에너지세이빙 지능형 냉방 제어장치
CN109595783A (zh) * 2018-12-08 2019-04-09 宁波敖群电器有限公司 煤气热水器自适应控制机构
CN110906047A (zh) * 2019-12-06 2020-03-24 北京市京科伦冷冻设备有限公司 基于新型浮球结构的浮球阀及包含该浮球阀的制冷系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606928A (zh) * 2017-09-01 2018-01-19 苏州卓润赛豚节能环保科技有限公司 一种干燥尾气的低温余热处理设备
CN108994087A (zh) * 2018-07-03 2018-12-14 中冶赛迪工程技术股份有限公司 一种乳化液分段冷却的控制方法
CN110319613A (zh) * 2019-07-22 2019-10-11 北京市京科伦冷冻设备有限公司 单级二氧化碳制冷系统
CN210952468U (zh) * 2019-09-27 2020-07-07 河南金山化工装备有限公司 一种冷凝塔结构
CN110896831A (zh) * 2019-12-04 2020-03-24 西安建筑科技大学 一种能实时自动调节喷灌强度的智能绿地喷灌系统与方法

Also Published As

Publication number Publication date
ZA202303948B (en) 2023-05-31
JP2023542409A (ja) 2023-10-06
AU2021348321A1 (en) 2023-05-11
CN114251879A (zh) 2022-03-29
CA3193083A1 (en) 2022-03-31
EP4220058A1 (en) 2023-08-02
US20230366594A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
CN105485800A (zh) 数据中心用自然冷却-机械制冷一体化空调系统
CN110769646B (zh) 一种适用于数据中心节能高效的蒸发冷却空调系统
CN203116193U (zh) 直接蒸发冷却器与蒸发式冷凝器相结合的冷水机组
WO2023088066A1 (zh) 一种同时进行制冷和制热的多联机中央空调系统
CN110454897A (zh) 一种蒸发冷却-太阳能吸收式制冷空调系统
CN207599917U (zh) 间接蒸发供冷装置
CN204128100U (zh) 水冷却制冷工质的户式空调装置
WO2022062954A1 (zh) 立体分布式液体雾化换热器及控制方法和制冷系统、空调
CN108954617A (zh) 一种多系统制冷空调机组
JP7520432B2 (ja) 単段二酸化炭素マルチ型冷暖房多機能セントラルエアコン
CN105020832A (zh) 适用于地铁内的一体式空调机组
CN204880414U (zh) 一种适用于地铁内的空调机组
CN109237683A (zh) 一种利用空调余热的加湿器及其加湿方法
CN212902108U (zh) 立体分布式液体雾化换热器和制冷系统及空调
CN104566709A (zh) 水冷却制冷工质的户式空调方法和装置
CN202133306U (zh) 一种真空蒸发降温装置
CN109282371A (zh) 空调微雾冷却节能结构
CN210050935U (zh) 闪蒸式空调
CN104819536B (zh) 蒸发冷却与热管、热泵相结合的热回收空调机组
CN209857278U (zh) 一种蒸发冷却冷水机组冷却系统
CN212806129U (zh) 一种高层建筑用单级二氧化碳中央空调
CN102230751A (zh) 一种真空蒸发降温装置
CN201293412Y (zh) 利用超声波雾化技术的制冷制热双效空调系统
CN205783461U (zh) 带绝热蒸发冷却和自然冷却的一体式冷水机组
CN220653888U (zh) 双预冷-冷凝-过滤蒸发式空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3193083

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2023518922

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317026589

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021871325

Country of ref document: EP

Effective date: 20230425

ENP Entry into the national phase

Ref document number: 2021348321

Country of ref document: AU

Date of ref document: 20210914

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 523440158

Country of ref document: SA

WWE Wipo information: entry into national phase

Ref document number: 523440158

Country of ref document: SA