WO2022062871A1 - 频率补偿方法和频率补偿装置 - Google Patents

频率补偿方法和频率补偿装置 Download PDF

Info

Publication number
WO2022062871A1
WO2022062871A1 PCT/CN2021/116220 CN2021116220W WO2022062871A1 WO 2022062871 A1 WO2022062871 A1 WO 2022062871A1 CN 2021116220 W CN2021116220 W CN 2021116220W WO 2022062871 A1 WO2022062871 A1 WO 2022062871A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
frequency compensation
terminal device
frequency
compensation mode
Prior art date
Application number
PCT/CN2021/116220
Other languages
English (en)
French (fr)
Inventor
罗禾佳
王晓鲁
周建伟
陈莹
徐晨蕾
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21871243.8A priority Critical patent/EP4203342A4/en
Publication of WO2022062871A1 publication Critical patent/WO2022062871A1/zh
Priority to US18/191,591 priority patent/US20230247576A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation

Definitions

  • the present application relates to the field of satellite communications, and in particular, to a frequency compensation method and a frequency compensation device.
  • satellite communication Compared with traditional mobile communication systems, satellite communication has a wide coverage and can overcome natural geographical obstacles such as oceans, deserts, and mountains.
  • the communication cost is independent of communication distance, and the communication quality is high and the system reliability is high.
  • satellite communication can be used as an effective supplement to the traditional mobile communication system.
  • the relative movement of the satellite relative to the ground and the terminal equipment will produce Doppler frequency shift.
  • Doppler frequency shift will affect the communication quality, therefore, frequency compensation on the satellite side is a common method in satellite communication.
  • the network equipment on the satellite side should inform the terminal equipment of the Doppler frequency compensation value of the beam, so that the terminal equipment can accurately know the frequency of the downlink signal when receiving the downlink signal, or accurately when sending the uplink signal. Know the frequency used.
  • the network device can send the above-mentioned frequency compensation value to the terminal device, but this method will bring about a large signaling overhead.
  • the present application provides a frequency compensation method and a frequency compensation device, which can reduce the signaling overhead of transmitting a frequency compensation value, thereby improving system performance.
  • a frequency compensation method including: a terminal device receiving first information from a network device, where the first information is used to indicate a frequency compensation mode of an uplink signal of the terminal device, or the first information is used for Indicates the configuration parameters of the terminal device; the terminal device determines the frequency compensation mode according to the first information; wherein the frequency compensation mode is the first frequency compensation mode or the second frequency compensation mode, and the first compensation value corresponding to the first frequency compensation mode is the frequency offset generated by the relative motion of the network equipment and the terminal equipment, and the second compensation value corresponding to the second frequency compensation method is the difference between the frequency offset generated by the relative motion of the network equipment and the terminal equipment and the first threshold; the terminal equipment compensates according to the frequency method, frequency compensation is performed on the uplink signal.
  • the network device can indicate the frequency compensation method of the uplink signal of the terminal device in two ways.
  • the first information can clearly indicate the frequency compensation method adopted by the uplink signal.
  • the present application This method is also called an explicit indication method.
  • the first information may be an indication information including several bits; in the second method, the first information indicates the configuration parameters of the terminal device.
  • the terminal device can determine the frequency compensation mode adopted by the uplink signal through these configuration parameters and further judgment, which is also called the implicit indication mode in this application.
  • the first information can be It is the above configuration parameter, and may also be related information capable of determining the above configuration parameter, which is not limited in this embodiment of the present application.
  • the network device can inform the terminal device of the frequency compensation mode of the uplink signal by means of an explicit indication or an implicit indication, so that the terminal device can use the frequency compensation method consistent with the network device to compensate the uplink signal.
  • the network device can inform the terminal device of the specific frequency compensation value, and the compensation behavior of the network device and the terminal device is consistent, which can ensure the normal transmission of the uplink signal and reduce the signaling overhead of the network device to transmit the frequency compensation value. Thereby improving system performance.
  • the above-mentioned first threshold may be a positive value, a negative value, or a zero value, which is not limited in this embodiment of the present application. If the above-mentioned first threshold is zero, the second frequency compensation method is the same as the first frequency compensation method.
  • the first threshold may also have other names, such as a preset frequency offset, which is also not limited in this embodiment of the present application.
  • the above-mentioned first threshold is determined according to the compensation value of the downlink signal of the network device; or, the above-mentioned first threshold is agreed in a protocol.
  • the above-mentioned first threshold may also be based on one or more pieces of information such as the absolute position of the terminal device, the position of the terminal device relative to the network device, or the movement direction of the terminal device relative to the network device, etc., and then combined with the network
  • the position and movement direction of the device and the absolute frequency point of the uplink signal sent by the terminal device are calculated and obtained, which are not limited in this embodiment of the present application.
  • the first information is used to indicate a frequency compensation manner of the uplink signal of the terminal device.
  • the above-mentioned terminal device determines the frequency compensation mode according to the first information, including: if the first information is the first bit value, the terminal device determines the first frequency compensation mode corresponding to the first bit value as frequency compensation or, if the first information is the second bit value, the terminal device determines the second frequency compensation mode corresponding to the second bit value as the frequency compensation mode.
  • the protocol may stipulate that the first bit value corresponds to the first frequency compensation mode, and the second bit value corresponds to the second frequency compensation mode.
  • the first bit value may be 0 and the second bit value may be 1; or, the first bit value may be 1 and the second bit value may be 0.
  • the network device can inform the terminal device of the frequency compensation mode of the uplink signal by means of explicit instructions, so that the terminal device can use the frequency compensation mode consistent with the network device to perform frequency compensation on the uplink signal, without the need for a network
  • the device informs the terminal device of the specific frequency compensation value, and makes the compensation behavior of the network device and the terminal device consistent, which can reduce the signaling overhead of the network device transmitting the frequency compensation value while ensuring the normal transmission of the uplink signal, thereby improving the system performance.
  • the transmission frequency of the uplink signal is the difference between the absolute frequency of the uplink signal and the first compensation value; or, the transmission frequency of the uplink signal is the The difference between the absolute frequency point of the uplink signal and the second compensation value.
  • the frequency of the uplink signal between the beams of the network device can be continuous, and the terminal device does not need to change the frequency point when sending the uplink signal.
  • the second frequency compensation method can make the frequency offset of the uplink signal of the terminal equipment very small, and the guard band near the ground and the adjacent band will not change significantly.
  • the embodiments of the present application can flexibly select different frequency compensation modes, can adapt to guard band requirements of various different scenarios, and improve system performance.
  • the first information is used to indicate a configuration parameter of the terminal device.
  • the above-mentioned terminal device determines the frequency compensation mode according to the first information, including: the terminal device determines that the terminal device is in the high mobile communication state according to the configuration parameters; the terminal device determines the frequency compensation mode corresponding to the high mobile communication state is the frequency compensation method.
  • the high mobile communication state in the embodiments of the present application means that the network device and/or the terminal device is in a fast mobile communication state, for example, the network device or the terminal device is a non-geostationary orbit satellite or a high-speed moving aircraft or vehicle.
  • the protocol stipulates the frequency compensation mode corresponding to the high mobile communication state, and the terminal device can determine the frequency compensation mode corresponding to the high mobile communication state as long as it determines that it is currently in the high mobile communication state.
  • the frequency compensation manner corresponding to the high mobile communication state may be the first frequency compensation manner in the embodiment of the present application, or may be the second frequency compensation manner in the embodiment of the present application.
  • the network device can inform the terminal device of the frequency compensation method of the uplink signal by means of an implicit indication, so that the terminal device can use the frequency compensation method consistent with the network device to perform frequency compensation on the uplink signal, without the need for a network
  • the device informs the terminal device of the specific frequency compensation value, and makes the compensation behavior of the network device and the terminal device consistent, which can reduce the signaling overhead of the network device transmitting the frequency compensation value while ensuring the normal transmission of the uplink signal, thereby improving the system performance.
  • the configuration parameter includes reference point location information of the network device; the terminal device determines the frequency compensation method according to the first information, including: the terminal device determines the frequency compensation method according to the reference point of the network device.
  • the point location information is used to determine that the terminal device is in a high mobile communication state; the terminal device determines the frequency compensation mode corresponding to the high mobile communication state as the frequency compensation mode.
  • the network device may inform the terminal device of the location of a certain reference point (for example, the location of a satellite, a high-altitude platform, and an aircraft), motion information, time stamps, and other information. It can be determined that the terminal device is in a high mobile communication state according to the position change or speed of these reference points.
  • a certain reference point for example, the location of a satellite, a high-altitude platform, and an aircraft
  • motion information for example, the location of a satellite, a high-altitude platform, and an aircraft
  • time stamps time stamps
  • the location information of the reference point of the network device may be carried in any of the following messages: a broadcast message, a handover configuration message, or a measurement configuration message.
  • the configuration parameters include time stamp information; the terminal device determines a frequency compensation method according to the first information, including: the terminal device determines the frequency compensation method according to the time stamp information and the global satellite navigation system.
  • the time information of the global navigation satellite system (GNSS) determines the uplink timing information of the terminal device; the terminal device determines that the terminal device is in a high mobile communication state according to the uplink timing information; the terminal device uses the frequency compensation method corresponding to the high mobile communication state Determine the frequency compensation mode.
  • GNSS global navigation satellite system
  • the terminal device can obtain the moving speed of the network device by judging the change rate of the timestamp information notified by the network device by using the GNSS time obtained by itself as a reference, thereby determining that the terminal device is in a high mobile communication state.
  • the above timestamp information may be carried in any of the following messages: a broadcast message, a handover configuration message, or a measurement configuration message.
  • the method before the above-mentioned determination of the uplink timing information of the terminal device, the method further includes: the terminal device receives second information from the network device, where the second information is used for Instructing the terminal device to determine the uplink timing information; the above-mentioned determining the uplink timing information of the terminal device includes: the terminal device determines the uplink timing information of the terminal device according to the time stamp information and the time information of the GNSS based on the second information.
  • the second information may be carried in any of the following messages: a broadcast message, a handover configuration message, or a measurement configuration message.
  • the above-mentioned first information may include a cell identifier and/or a beam identifier.
  • the network device may configure a first piece of information for the terminal equipment in a cell, that is, the terminal equipment within the coverage of the cell can use the frequency compensation method indicated by the first information, Send upstream signals to network devices.
  • the above-mentioned first information may include a cell identity.
  • the network device may configure different first information for different beams in the cell, that is, each beam corresponds to its own first information.
  • the above-mentioned first information may include a beam identifier corresponding to the first information. Further, the above-mentioned first information may also include a beam identifier.
  • the above-mentioned first information may be carried in any of the following messages: a broadcast message, a handover configuration message, or a measurement configuration message.
  • the above-mentioned second information and the above-mentioned first information may be carried in the same signaling, or may be carried in different signaling, which is not limited in this embodiment of the present application.
  • another frequency compensation method including: the network device determines first information, where the first information is used to indicate a frequency compensation method of an uplink signal of the terminal device, or the first information is used to indicate the frequency compensation of the terminal device configuration parameters; the network device sends the first information to the terminal device; wherein, the above-mentioned frequency compensation mode is the first frequency compensation mode or the second frequency compensation mode, and the first compensation value corresponding to the first frequency compensation mode is the network device and the terminal device.
  • the frequency offset generated by the relative motion of the device, and the second compensation value corresponding to the second frequency compensation mode is the difference between the frequency offset generated by the relative motion of the network device and the terminal device and the first threshold.
  • the above-mentioned first information includes reference point location information and/or timestamp information of the network device.
  • the above-mentioned first information further includes: a cell identifier and/or a beam identifier.
  • the above-mentioned first information is carried in any one of the following messages: a broadcast message, a handover configuration message, or a measurement configuration message.
  • the above-mentioned first threshold is determined according to the compensation value of the downlink signal of the network device; or, the above-mentioned first threshold is agreed in a protocol.
  • a frequency compensation apparatus which is used to perform the above-mentioned various aspects or the methods in any possible implementation manners of the various aspects.
  • the apparatus includes means for performing the above-mentioned various aspects or the methods in any possible implementations of the various aspects.
  • the apparatus may include modules corresponding to one-to-one execution of the methods/operations/steps/actions described in the above aspects, and the modules may be hardware circuits, software, or hardware circuits combined with software accomplish.
  • the device is a communication chip, which may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device that may include a transmitter for transmitting information or data and a receiver for receiving information or data.
  • the apparatus is used to perform the above-mentioned various aspects or the methods in any possible implementation manners of the various aspects, and the apparatus may be configured in the above-mentioned terminal equipment or network equipment, or the apparatus itself is the above-mentioned terminal equipment or Network equipment.
  • another frequency compensation device including a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the device executes any one of the above-mentioned aspects method in any of the possible implementations.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • the transmitter and receiver can be set separately or integrated together, which is called a transceiver (transceiver).
  • a communication system comprising a device for implementing the above-mentioned first aspect or any of the possible implementation methods of the first aspect, and a device for implementing any of the above-mentioned second aspect or the second aspect Apparatus for possible implementation of the method.
  • the communication system may further include other devices that interact with the terminal device and/or the network device in the solutions provided in the embodiments of the present application.
  • a computer program product comprising: a computer program (also referred to as code, or instructions), which, when the computer program is executed, causes a computer to execute any of the above aspects.
  • a computer program also referred to as code, or instructions
  • a computer-readable medium stores a computer program (also referred to as code, or instruction) that, when executed on a computer, causes the computer to perform any of the above-mentioned aspects.
  • a computer program also referred to as code, or instruction
  • a communication device including a communication interface and a logic circuit, where the communication interface is configured to receive first information, and the logic circuit is configured to perform frequency compensation on an uplink signal according to the first information, so that the communication device executes The method in any one possible implementation manner of the above-mentioned first aspect.
  • another communication device comprising a communication interface and a logic circuit, the logic circuit is used to determine the first information, the communication interface is used to send the first information, so that the communication device performs the above-mentioned second aspect. method in any of the possible implementations.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a frequency compensation method provided by an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a frequency compensation apparatus provided by an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of another frequency compensation apparatus provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • 5th generation, 5G new radio
  • new radio new radio, NR
  • the terminal equipment in the embodiments of the present application may also be referred to as: user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), access terminal, subscriber unit, subscriber station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment, etc.
  • user equipment user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal subscriber unit, subscriber station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment, etc.
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminals are: mobile phone (mobile phone), tablet computer, notebook computer, PDA, mobile internet device (MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, cellular phone, cordless phone, session initiation protocol , SIP) telephones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, automotive A device, a wearable device, a terminal device in a 5G network, or a terminal device in a future evolved public land mobile network (public land mobile network, PLMN), etc., are not
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • IoT is an important part of the future development of information technology, and its main technical feature is that items pass through communication technology Connect with the network, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the network device in this embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be referred to as an access network device or a wireless access network device, and may be a transmission reception point (TRP) ), it can also be an evolved base station (evolved NodeB, eNB or eNodeB) in the LTE system, it can also be a home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU) , it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a 5G network or
  • the network equipment in the future evolving PLMN network can be an access point (AP) in a WLAN, a gNB in a new wireless (new radio, NR) system, or a satellite base station in a satellite communication system. etc
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • CU-UP nodes user plane CU nodes
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment, and the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , can also belong to the base station corresponding to the small cell, where the small cell can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), femto cell (femto cell), etc. , these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a macro base station for example, a macro eNB or a macro gNB, etc.
  • the small cell can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), femto cell (femto cell), etc.
  • these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to provide the methods provided by the embodiments of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute a program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer readable device, carrier or medium.
  • computer readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs) etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), card, stick or key drives, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 To facilitate understanding of the embodiments of the present application, a communication system applicable to the embodiments of the present application is first described in detail with reference to FIG. 1 .
  • FIG. 1 is a schematic diagram of a communication system 100 according to an embodiment of the present application.
  • the communication system 100 may include a network device 101 and at least one terminal device 102 .
  • the network device 101 and at least one terminal device 102 can perform wireless communication.
  • the network device 101 can send downlink data to the terminal device 102, the network device 101 can use channel coding to encode the downlink data, and then send the channel-coded data to the terminal device 102 after constellation modulation; the terminal device 102
  • the uplink data can also be sent to the network device 101, and the terminal device 102 can encode the uplink data by using channel coding, and then send the encoded data to the network device 101 after constellation modulation.
  • the communication system 100 of the embodiment of the present application may include satellite communication, inter-satellite communication, air to ground (ATG), high altitude platform station (HAPS), unmanned aerial vehicle (unmanned aerial vehicle, UAV) and other non-terrestrial network (non-terrestrial network, NTN) communication scenarios.
  • the network device 101 moves towards the ground at a high speed, and there is speed and acceleration, which causes the carrier to shift during the communication between the network device 101 and the terminal device 102. This shift is called Doppler shift.
  • the Doppler frequency shift will cause difficulties in data demodulation in the communication process, and affect the communication quality between the network device 101 and the terminal device 102 . Therefore, the network device 101 and the terminal device 102 must compensate for the Doppler frequency shift to achieve frequency synchronization between the network device 101 and the terminal device 102, thereby improving the communication quality between the network device 101 and the terminal device 102.
  • Compensation of the Doppler frequency shift of the network equipment may include pre-compensation and post-compensation.
  • pre-compensation means that the network device offsets the frequency of the downlink signal when sending the downlink signal, and the offset is the common part of the Doppler offset in the beam coverage area, so that the downlink received by the terminal device The frequency offset of the signal is reduced.
  • Post-compensation means that the network equipment performs an overall frequency offset on the received uplink signal, or the network equipment performs an overall frequency offset on the receiving frequency window. The offset is the common part of the Doppler offset in the beam coverage area. In order to reduce the frequency compensation value required by the terminal equipment to send the uplink signal.
  • the foregoing pre-compensation may also be called Doppler pre-compensation or other names
  • the foregoing post-compensation may also be called Doppler post-compensation or other names, which are not limited in this embodiment of the present application.
  • the Doppler frequency shift compensation methods commonly used by network equipment include two methods, one is not to perform pre-compensation; the other is to perform pre-compensation.
  • the terminal device when performing uplink frequency compensation, the terminal device will generate at least two options, one of which is to compensate the whole Doppler frequency shift amount, and the other option is to compensate the partial Doppler frequency shift amount.
  • the network device can inform the terminal device of the Doppler frequency compensation value of the beam, so that the terminal device can accurately know the frequency point of the downlink signal when receiving the downlink signal, or accurately know the frequency point of the downlink signal when sending the uplink signal. frequency point.
  • the network device does not inform the terminal device of the above frequency compensation value, the terminal device cannot determine which of the above at least two options to use, the behavior of the terminal device is uncertain, and the terminal device cannot determine the exact transmission frequency of the uplink signal. , it may make the network device unable to receive the uplink signal, resulting in the failure of uplink signal transmission. If the network device informs the terminal device of the above frequency compensation value, it will bring about a large signaling overhead.
  • the present application provides a frequency compensation method and a frequency compensation device, which do not require the network device to inform the terminal device of the specific frequency compensation value, and make the compensation behavior of the network device and the terminal device consistent, which can reduce the information of the transmission frequency compensation value. This reduces overhead and improves system performance.
  • "used for indication” may include direct indication and indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by a certain piece of information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the information to be indicated.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of the information to be indicated can also be implemented by means of a pre-agreed agreement (eg, the agreement stipulates) whether there is a certain information element, thereby reducing the indication overhead to a certain extent.
  • the first, second, third and various numeral numbers are only for the convenience of description, and are not used to limit the scope of the embodiments of the present application. For example, distinguish different information, distinguish different frequency compensation methods, etc.
  • predefined may be a protocol definition.
  • pre-definition can be realized by pre-saving corresponding codes, forms or other methods that can be used to indicate relevant information in the equipment (for example, including terminal equipment and network equipment). limited.
  • the "protocol” involved in the embodiments of this application may refer to a standard protocol in the communication field, for example, it may include a long term evolution (long term evolution, LTE) protocol, a new radio (new radio, NR) protocol and applications in future communications.
  • LTE long term evolution
  • NR new radio
  • the embodiments of this application are described by taking a terminal device and a network device as examples. It should be understood that the terminal device can be replaced by a device or chip that can implement functions similar to the terminal device, and the network device can also be replaced by a device that can implement functions similar to the network device. device or chip, the name of which is not limited in this embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a frequency compensation method 200 provided by an embodiment of the present application.
  • the method 200 may be applied to the communication system 100 shown in FIG. 1 , but the embodiment of the present application is not limited thereto.
  • the method 200 may include the following steps:
  • the network device determines first information, where the first information is used to indicate a frequency compensation mode of an uplink signal of the terminal device, or the first information is used to indicate a configuration parameter of the terminal device.
  • the above frequency compensation mode is the first frequency compensation mode or the second frequency compensation mode
  • the first compensation value corresponding to the first frequency compensation mode is the frequency offset generated by the relative motion of the network device and the terminal device
  • the second frequency compensation mode corresponding to the second frequency compensation mode is the difference between the frequency offset generated by the relative motion of the network device and the terminal device and the first threshold.
  • the network device sends the first information to the terminal device, and correspondingly, the terminal device receives the first information.
  • the terminal device determines, according to the first information, a frequency compensation mode used by the terminal device to send the uplink signal.
  • the terminal device performs frequency compensation on the above uplink signal according to the above frequency compensation manner.
  • the network device can indicate the frequency compensation method of the uplink signal of the terminal device in two ways.
  • the first information can clearly indicate the frequency compensation method adopted by the uplink signal.
  • the present application This method is also called an explicit indication method.
  • the first information may be indication information including several bits; in the second method, the first information indicates the configuration parameters of the terminal device.
  • the terminal device can determine the frequency compensation mode adopted by the uplink signal through these configuration parameters and further judgment, which is also called the implicit indication mode in this application.
  • the first information can be It is the above configuration parameter, and may also be related information capable of determining the above configuration parameter, which is not limited in this embodiment of the present application.
  • the network device can inform the terminal device of the frequency compensation mode of the uplink signal by means of an explicit indication or an implicit indication, so that the terminal device can use the frequency compensation method consistent with the network device to compensate the uplink signal.
  • the network device can inform the terminal device of the specific frequency compensation value, and the compensation behavior of the network device and the terminal device is consistent, which can ensure the normal transmission of the uplink signal and reduce the signaling overhead of the network device to transmit the frequency compensation value. Thereby improving system performance.
  • the above-mentioned first threshold may be a positive value, a negative value, or a zero value, which is not limited in this embodiment of the present application. If the above-mentioned first threshold is zero, the second frequency compensation method is the same as the first frequency compensation method.
  • the first threshold may also have other names, such as a preset frequency offset, which is also not limited in this embodiment of the present application.
  • the above-mentioned first threshold value is determined according to the compensation value of the downlink signal of the network device; or, the above-mentioned first threshold value is agreed in a protocol.
  • the above-mentioned first threshold is determined according to the compensation value of the downlink signal of the network device.
  • the unit of the compensation value of the downlink signal is the absolute value of frequency, such as hertz (hertz, Hz)
  • the first threshold can be calculated according to the following formula:
  • fpre is the first threshold
  • fpreDL is the compensation value of the downlink signal
  • fDLref is the absolute frequency point of the downlink signal
  • fULref is the absolute frequency point of the uplink signal.
  • a carrier in a cell may have a certain width, and a cell may also have multiple carriers.
  • a cell using the carrier aggregation mode may include multiple carriers, or, in an NR system, Multiple bandwidth parts (BWP) located at different frequency points can be deployed. Therefore, the Doppler pre-compensation and/or Doppler post-compensation performed by the network device on a carrier is usually to compensate a given frequency point. The more offset the given frequency point in the cell bandwidth, the greater the residual frequency offset. many.
  • the values of fDLref and fULref used by the terminal device when calculating the uplink compensation frequency point are inconsistent with those expected by the network device, the frequency of the uplink signal received by the network device will be inaccurate, thereby affecting the communication performance. . Therefore, the values of the above fDLref and fULref may be stipulated in the protocol, or may be notified by the network device to the terminal device, which is not limited in this embodiment of the present application.
  • the protocol may stipulate that the values of fDLref and fULref default to a relatively central position of the carrier, for example, the position of the central subcarrier or the position of plus or minus 1 of the central subcarrier.
  • the first threshold can be calculated according to the following formula:
  • the above-mentioned first threshold value is agreed in a protocol.
  • the first threshold may be half of the Doppler frequency shift, that is:
  • the above-mentioned first threshold may also be determined by one or more of the information such as the absolute position of the terminal device, the position of the terminal device relative to the network device, or the movement direction of the terminal device relative to the network device, etc. It is calculated by combining the position and movement direction of the network device and the absolute frequency of the uplink signal sent by the terminal device, which is not limited in this embodiment of the present application.
  • the terminal device may send an uplink signal to the network device on the frequency point after compensation.
  • the network device may not perform any compensation operation, and only need to receive the uplink signal at the original frequency; if the above-mentioned frequency compensation method is the second frequency compensation method, the network equipment can use The shifted frequency points receive the uplink signal, or perform subsequent compensation on the received signal, which is not limited in this embodiment of the present application.
  • the frequency compensation mode of the uplink signal is the first frequency compensation mode
  • the transmission frequency of the uplink signal is the absolute frequency offset of the uplink signal by the first compensation value.
  • the first compensation value is the frequency offset generated by the relative motion of the network device and the terminal device, which is referred to as the Doppler frequency shift fd in the embodiment of the present application. Therefore, the transmission frequency of the uplink signal is: fULref-fd. It should be understood that fd may be a positive value, a negative value, or zero, which is not limited in this embodiment of the present application.
  • the frequency compensation mode of the uplink signal is the second frequency compensation mode
  • the transmission frequency of the uplink signal is the absolute frequency offset of the uplink signal by the second compensation value.
  • the second compensation value is the difference between the frequency offset generated by the relative motion of the network device and the terminal device and the above-mentioned first threshold. Therefore, the transmission frequency of the uplink signal is: fULref-(fd-fpre).
  • the frequency of the uplink signal between the beams of the network device can be continuous, and the terminal device does not need to change the frequency point when sending the uplink signal.
  • the second frequency compensation method can make the frequency offset of the uplink signal of the terminal equipment very small, and the guard band near the ground and the adjacent band will not change significantly.
  • the first frequency compensation method is more suitable for the scenario where the beam of the network device is far away from the ground, and a network device has multiple beams with different orientations, because the frequency points of each beam on the network device side are not offset, The original protective tape can be maintained.
  • the network equipment has a large beam, and the terminal equipment between the beams is far apart as a whole.
  • the interference caused by the frequency offset near the ground has little effect.
  • the second frequency compensation method is more suitable for the scenario where the service frequency of the network device and the ground service frequency are adjacent, because the frequency of the beam of the network device and the guard band of the adjacent band will not change significantly near the ground.
  • the embodiments of the present application can flexibly select different frequency compensation modes, can adapt to guard band requirements of various different scenarios, and improve system performance.
  • the first information is used to indicate the frequency compensation mode of the uplink signal of the terminal device.
  • the terminal device determines the frequency compensation mode according to the first information, including: if the first information is the first bit value, the terminal device determines the first frequency compensation mode corresponding to the first bit value as frequency compensation mode; or, if the first information is the second bit value, the terminal device determines the second frequency compensation mode corresponding to the second bit value as the frequency compensation mode.
  • the protocol may stipulate that the first bit value corresponds to the first frequency compensation mode, and the second bit value corresponds to the second frequency compensation mode.
  • the first bit value may be 0 and the second bit value may be 1; or, the first bit value may be 1 and the second bit value may be 0.
  • the network device can inform the terminal device of the frequency compensation method of the uplink signal by means of an explicit instruction, so that the terminal device can use the frequency compensation method consistent with the network device to perform frequency compensation on the uplink signal, without the need for a network
  • the device informs the terminal device of the specific frequency compensation value, and makes the compensation behavior of the network device and the terminal device consistent, which can reduce the signaling overhead of the network device transmitting the frequency compensation value while ensuring the normal transmission of the uplink signal, thereby improving the system performance.
  • the first information is used to indicate the configuration parameters of the terminal device.
  • the terminal device determines the frequency compensation method according to the first information, including: the terminal device determines that the terminal device is in the high mobile communication state according to the configuration parameters; the terminal device compensates the frequency corresponding to the high mobile communication state
  • the mode is determined as frequency compensation mode.
  • the high mobile communication state in the embodiments of the present application means that the network device and/or the terminal device is in a fast mobile communication state, for example, the network device or the terminal device is a non-geostationary orbit satellite or a high-speed moving aircraft or vehicle.
  • the protocol stipulates the frequency compensation mode corresponding to the high mobile communication state, and the terminal device can determine the frequency compensation mode corresponding to the high mobile communication state as long as it determines that it is currently in the high mobile communication state.
  • the frequency compensation manner corresponding to the high mobile communication state may be the first frequency compensation manner in the embodiment of the present application, or may be the second frequency compensation manner in the embodiment of the present application.
  • the network device can inform the terminal device of the frequency compensation method of the uplink signal by means of an implicit indication, so that the terminal device can use the frequency compensation method consistent with the network device to perform frequency compensation on the uplink signal, without the need for a network
  • the device informs the terminal device of the specific frequency compensation value, and makes the compensation behavior of the network device and the terminal device consistent, which can reduce the signaling overhead of the network device transmitting the frequency compensation value while ensuring the normal transmission of the uplink signal, thereby improving the system performance.
  • the configuration parameters of the terminal device may include many types of parameters, for example, the reference point location information and time stamp information of the network device. It should be understood that as long as the configuration parameters that the terminal device is in a high mobile communication state can be determined , all fall within the protection scope of the embodiments of the present application.
  • the above configuration parameters include reference point location information of the network device
  • the above S203 includes: the terminal device determines, according to the reference point location information of the network device, that the terminal device is in a high mobile communication state; The frequency compensation mode corresponding to the state is determined as the frequency compensation mode.
  • the network device may inform the terminal device of the location of a certain reference point (for example, the location of a satellite, a high-altitude platform, and an aircraft), motion information, time stamps, and other information. It can be determined that the terminal device is in a high mobile communication state according to the position change or speed of these reference points.
  • a certain reference point for example, the location of a satellite, a high-altitude platform, and an aircraft
  • motion information for example, the location of a satellite, a high-altitude platform, and an aircraft
  • time stamps time stamps
  • the location information of the reference point of the network device may be carried in any of the following messages: a broadcast message, a handover configuration message, or a measurement configuration message.
  • the above-mentioned configuration parameters include time stamp information
  • the above-mentioned S203 includes: the terminal device determines the uplink timing information of the terminal device according to the above-mentioned time stamp information and time information of a global navigation satellite system (GNSS). ; The terminal device determines that the terminal device is in a high mobile communication state according to the uplink timing information; the terminal device determines the frequency compensation mode corresponding to the high mobile communication state as the frequency compensation mode.
  • GNSS global navigation satellite system
  • the terminal device can obtain the moving speed of the network device by judging the change rate of the timestamp information notified by the network device by using the GNSS time obtained by itself as a reference, thereby determining that the terminal device is in a high mobile communication state.
  • the above timestamp information may be carried in any of the following messages: a broadcast message, a handover configuration message, or a measurement configuration message.
  • the method before determining the uplink timing information of the terminal device, the method further includes: the network device sends second information to the terminal device, where the second information is used to instruct the terminal device to determine the uplink timing information; corresponding to ground, the terminal device receives the second information.
  • the above-mentioned determining of the uplink timing information of the terminal device includes: the terminal device determines the uplink timing information of the terminal device based on the second information, according to the timestamp information and the time information of the GNSS.
  • the above-mentioned second information may be carried in any of the following messages: a broadcast message, a handover configuration message, or a measurement configuration message. It should be understood that the second information and the above-mentioned first information may be carried in the same signaling, or may be carried in different signaling, which is not limited in this embodiment of the present application.
  • the protocol may agree on a frequency compensation manner of the terminal device when the indication of the above-mentioned first information is default, so as to further reduce the overhead of indication signaling.
  • the protocol may stipulate that the terminal device adopts the first frequency compensation method, or stipulates that the terminal device adopts the second frequency compensation method. Frequency compensation method.
  • the foregoing first information may include a cell identifier and/or a beam identifier.
  • the network device may configure a first piece of information for the terminal equipment in a cell, that is, the terminal equipment within the coverage of the cell can use the frequency compensation method indicated by the first information, Send upstream signals to network devices.
  • the above-mentioned first information may include a cell identity.
  • the network device may configure different first information for different beams in the cell, that is, each beam corresponds to its own first information.
  • the above-mentioned first information may include a beam identifier corresponding to the first information. Further, the above-mentioned first information may also include a beam identifier.
  • the frequency compensation method provided in the embodiments of the present application may be applicable to the current serving cell or the beam of the current serving cell, and optionally, the beam may also be mapped to a synchronization signal block (synchronization signal block, SSB), BWP, channel state Information reference signal (channel status information-reference signal, CSI-RS) port or logical entity such as transmission configuration indicator (transmission configuration indicator, TCI). Therefore, the aforementioned beam configuration information can be carried in the configuration parameters of these logical entities.
  • a synchronization signal block synchronization signal block, SSB
  • BWP channel state Information reference signal
  • CSI-RS channel state Information reference signal
  • TCI transmission configuration indicator
  • the frequency compensation method provided in this embodiment of the present application may also be applied to a target cell in the handover process or a beam of the target cell, and optionally, the beam may also be mapped to SSB, CSI-RS, TCI, or BWP, etc. logical entity.
  • the foregoing first information may be carried in any of the following messages: a broadcast message, a handover configuration message, or a measurement configuration message.
  • the network device may carry the first information in system information block (system information block, SIB) signaling, and send it to the terminal device through a broadcast channel.
  • SIB system information block
  • the network device may also carry the first information in radio resource control (radio resource control, RRC) signaling, and send it to the terminal device during the handover or measurement process.
  • radio resource control radio resource control
  • FIG. 3 shows a frequency compensation apparatus 300 provided by an embodiment of the present application.
  • the apparatus 300 may be a terminal device or a chip in the terminal device. In another design, the apparatus 300 may be a network device or a chip in the network device.
  • the apparatus 300 includes: a transceiver unit 310 and a processing unit 320 .
  • the apparatus 300 is configured to execute each process and step corresponding to the terminal device in the foregoing method embodiments.
  • the transceiver unit 310 is configured to: receive first information from a network device, where the first information is used to indicate a frequency compensation mode of an uplink signal of the terminal device, or the first information is used to indicate a configuration parameter of the terminal device.
  • the processing unit 320 is configured to: determine a frequency compensation method according to the above-mentioned first information; and perform frequency compensation on the uplink signal according to the frequency compensation method.
  • the frequency compensation method is the first frequency compensation method or the second frequency compensation method.
  • the first compensation value corresponding to the first frequency compensation method is the frequency offset generated by the relative movement between the network equipment and the device, and the second frequency compensation method corresponding to the second frequency compensation method is the frequency offset.
  • the compensation value is the difference between the frequency offset generated by the relative motion of the network device and the device and the first threshold.
  • the above-mentioned first threshold is determined according to the compensation value of the downlink signal of the network device; or, the first threshold is agreed in a protocol.
  • the above-mentioned first information is used to indicate the frequency compensation mode of the uplink signal of the above-mentioned device; the processing unit 320 is specifically configured to: if the first information is a first bit value, compensate the first frequency corresponding to the first bit value The mode is determined as the frequency compensation mode; or, if the first information is the second bit value, the second frequency compensation mode corresponding to the second bit value is determined as the frequency compensation mode.
  • the transmission frequency of the uplink signal is the difference between the absolute frequency of the uplink signal and the first compensation value; or, the transmission frequency of the uplink signal is the difference between the absolute frequency of the uplink signal and the second compensation value.
  • the configuration parameters include reference point location information of the network device; the processing unit 320 is further configured to: determine that the device is in a high-mobility communication state according to the above-mentioned configuration parameters; determine the frequency compensation mode corresponding to the high-mobility communication state as Frequency compensation method.
  • the above-mentioned configuration parameters include reference point position information of the network equipment; the above-mentioned processing unit 320 is specifically configured to: according to the reference point position information of the network equipment, determine that the device is in a high mobile communication state; The corresponding frequency compensation mode is determined as the frequency compensation mode.
  • the above-mentioned configuration parameters include timestamp information; the processing unit 320 is further configured to: determine uplink timing information according to the timestamp information and the time information of the Global Navigation Satellite System GNSS; determine that the device is in a high state according to the uplink timing information The mobile communication state; the frequency compensation mode corresponding to the high mobile communication state is determined as the frequency compensation mode.
  • the transceiver unit 310 is specifically configured to: before determining the above uplink timing information, receive second information, where the second information is used to indicate the uplink timing information; the processing unit 320 is specifically configured to: based on the second information, according to The above-mentioned time stamp information and the above-mentioned time information of the global navigation satellite system GNSS determine the uplink timing information.
  • the above-mentioned first information further includes: a cell identifier and/or a beam identifier.
  • the above-mentioned first information is carried in any one of the following messages: a broadcast message, a handover configuration message, or a measurement configuration message.
  • the apparatus 300 is configured to execute each process and step corresponding to the network device in the foregoing method embodiments.
  • the processing unit 320 is configured to: determine first information, where the first information is used to indicate a frequency compensation mode of an uplink signal of the terminal device, or the first information is used to indicate a configuration parameter of the terminal device.
  • the transceiver unit 310 is used for: sending the first information to the terminal device.
  • the above frequency compensation method is the first frequency compensation method or the second frequency compensation method.
  • the first compensation value corresponding to the first frequency compensation method is the frequency offset generated by the relative motion of the device and the terminal equipment
  • the second frequency compensation method corresponds to the frequency offset.
  • the second compensation value is the difference between the frequency offset generated by the relative motion of the apparatus and the terminal equipment and the first threshold.
  • the above-mentioned first information includes reference point location information and/or time stamp information.
  • the transceiver unit 310 is further configured to: send second information to the terminal device, where the second information is used to instruct the terminal device to determine uplink timing information according to the timestamp information.
  • the above-mentioned first information further includes: a cell identifier and/or a beam identifier.
  • the above-mentioned first information is carried in any one of the following messages: a broadcast message, a handover configuration message, or a measurement configuration message.
  • the above-mentioned first threshold is determined according to the compensation value of the downlink signal of the network device; or, the first threshold is agreed in a protocol.
  • the apparatus 300 here is embodied in the form of functional units.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a dedicated processor, or a group of processors, etc.) and memory, merge logic, and/or other suitable components to support the described functions.
  • ASIC application specific integrated circuit
  • the apparatus 300 may be specifically a terminal device or a network device in the foregoing embodiment, and the apparatus 300 may be configured to execute various functions corresponding to the terminal device or the network device in the foregoing method embodiments. The process and/or steps are not repeated here in order to avoid repetition.
  • the apparatus 300 of each of the above solutions has the function of implementing the corresponding steps performed by the terminal device or the network device in the above method; the above function may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the above-mentioned transceiver unit 310 may include a sending unit and a receiving unit, the sending unit may be used to implement various steps and/or processes corresponding to the above-mentioned transceiver unit for performing the sending action, and the receiving unit may be used to implement the above-mentioned transceiver unit corresponding to The various steps and/or processes for performing the receiving action.
  • the sending unit may be replaced by a transmitter, and the receiving unit may be replaced by a receiver, respectively performing the transceiving operations and related processing operations in each method embodiment.
  • the apparatus 300 in FIG. 3 may also be a chip or a system of chips, such as a system on chip (system on chip, SoC).
  • the transceiver unit 310 may be a transceiver circuit of the chip, which is not limited herein.
  • FIG. 4 shows another frequency compensation apparatus 400 provided by an embodiment of the present application.
  • the apparatus 400 includes a processor 410 , a transceiver 420 and a memory 430 .
  • the processor 410, the transceiver 420 and the memory 430 communicate with each other through an internal connection path, the memory 430 is used to store instructions, and the processor 410 is used to execute the instructions stored in the memory 430 to control the transceiver 420 to send signals and / or receive signals.
  • the apparatus 400 is configured to execute each process and step corresponding to the terminal device in the foregoing method 200 .
  • the transceiver 420 is configured to: receive first information from a network device, where the first information is used to indicate a frequency compensation mode of an uplink signal of the terminal device, or the first information is used to indicate a configuration parameter of the terminal device.
  • the processor 410 is configured to: determine a frequency compensation mode according to the above-mentioned first information; and perform frequency compensation on the uplink signal according to the frequency compensation mode.
  • the frequency compensation method is the first frequency compensation method or the second frequency compensation method.
  • the first compensation value corresponding to the first frequency compensation method is the frequency offset generated by the relative movement between the network equipment and the device, and the second frequency compensation method corresponding to the second frequency compensation method is the frequency offset.
  • the compensation value is the difference between the frequency offset generated by the relative motion of the network device and the device and the first threshold.
  • the apparatus 400 is configured to execute each process and step corresponding to the network device in the foregoing method 200 .
  • the processor 410 is configured to: determine first information, where the first information is used to indicate a frequency compensation mode of an uplink signal of the terminal device, or the first information is used to indicate a configuration parameter of the terminal device.
  • the transceiver 420 is used for: sending the first information to the terminal device.
  • the above frequency compensation method is the first frequency compensation method or the second frequency compensation method.
  • the first compensation value corresponding to the first frequency compensation method is the frequency offset generated by the relative motion of the device and the terminal equipment
  • the second frequency compensation method corresponds to the frequency offset.
  • the second compensation value is the difference between the frequency offset generated by the relative motion of the apparatus and the terminal equipment and the first threshold.
  • the apparatus 400 may specifically be a terminal device or a network device in the foregoing embodiments, and may be configured to execute various steps and/or processes corresponding to the terminal device or network device in the foregoing method embodiments.
  • the memory 430 may include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor 410 may be configured to execute the instructions stored in the memory, and when the processor 410 executes the instructions stored in the memory, the processor 410 is configured to execute each of the foregoing method embodiments corresponding to the terminal device or network device steps and/or processes.
  • the transceiver 420 may include a transmitter and a receiver, the transmitter may be used to implement various steps and/or processes corresponding to the foregoing transceiver for performing the sending action, and the receiver may be used to implement the application corresponding to the foregoing transceiver. Each step and/or process for performing the receiving action.
  • the processor of the above device may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSPs digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software units in the processor.
  • the software unit may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the present application also provides a communication device on the terminal side, including a communication interface and a logic circuit, where the communication interface is used to receive the above-mentioned first information, and the logic circuit is used to perform a pairing operation according to the first information and the method in the above-mentioned embodiment.
  • the upstream signal is frequency compensated.
  • the present application also provides a communication device on the network side, including a communication interface and a logic circuit, where the logic circuit is used for determining the first information according to the method in the above embodiment, and the communication interface is used for sending the first information.
  • the implementation of the present application also provides a communication system, which may include the terminal equipment shown in FIG. 3 or FIG. 4 (the apparatus 300 or the apparatus 400 is embodied as terminal equipment), and the network shown in FIG. 3 or FIG. 4 .
  • Equipment apparatus 300 or apparatus 400 embodied as network equipment).
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种频率补偿方法和频率补偿装置,能够减少网络设备传输频率补偿值的信令开销,提高系统性能。该方法包括: 网络设备确定并向终端设备发送第一信息,该第一信息用于指示终端设备的上行信号的频率补偿方式或该第一信息用于指示终端设备的配置参数,该频率补偿方式为第一频率补偿方式或第二频率补偿方式,第一频率补偿方式对应的第一补偿值为网络设备和终端设备相对运动产生的频偏,第二频率补偿方式对应的第二补偿值为网络设备和终端设备相对运动产生的频偏和第一阈值之差; 终端设备接收该第一信息,并根据该第一信息,确定发送上行信号所采用的频率补偿方式; 终端设备根据该频率补偿方式,对上行信号进行频率补偿。

Description

频率补偿方法和频率补偿装置
本申请要求于2020年9月28日提交中国专利局、申请号为202011045471.6、申请名称为“频率补偿方法和频率补偿装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星通信领域,尤其涉及一种频率补偿方法和频率补偿装置。
背景技术
卫星通信相对于传统的移动通信系统,覆盖范围广,可以克服海洋、沙漠、高山等自然地理障碍,通信成本与通信距离无关,通信质量高,系统可靠性高。鉴于卫星通信的上述诸多优点,卫星通信可以作为传统的移动通信系统的一个有效的补充。
在卫星通信系统中,卫星相对于地面、终端设备相对运动,会产生多普勒频移。多普勒频移会影响通信质量,因此,卫星侧的频率补偿是卫星通信中的常用手段。在这种情况下,卫星侧的网络设备应该把波束的多普勒频率补偿值告知终端设备,以便终端设备在接收下行信号时准确知道该下行信号的频点,或者,在发送上行信号时准确知道所采用的频点。
因此,网络设备可以向终端设备发送上述频率补偿值,但这种方式会带来较大的信令开销。
发明内容
本申请提供了一种频率补偿方法和频率补偿装置,能够减少传输频率补偿值的信令开销,从而提高系统性能。
第一方面,提供了一种频率补偿方法,包括:终端设备接收来自网络设备的第一信息,该第一信息用于指示终端设备的上行信号的频率补偿方式,或者,该第一信息用于指示终端设备的配置参数;终端设备根据第一信息,确定频率补偿方式;其中,该频率补偿方式为第一频率补偿方式或第二频率补偿方式,该第一频率补偿方式对应的第一补偿值为网络设备和终端设备相对运动产生的频偏,该第二频率补偿方式对应的第二补偿值为网络设备和终端设备相对运动产生的频偏和第一阈值之差;终端设备根据该频率补偿方式,对该上行信号进行频率补偿。
在本申请实施例中,网络设备可以通过两种方式指示终端设备的上行信号的频率补偿方式,在第一种方式中,第一信息能够明确指示出上行信号所采用的频率补偿方式,本申请也将这种方式称为显式指示方式,在这种情况下,该第一信息可以是一个包括若干比特的指示信息;在第二种方式中,第一信息指示的是终端设备的配置参数,终端设备通过这些配置参数,再结合进一步判断,可以确定出上行信号所采用的频率补偿方式,本申请也 将这种方式称为隐式指示方式,在这种情况下,该第一信息可以就是上述配置参数,也可以是能够确定上述配置参数的相关信息,本申请实施例对此不作限定。
因此,本申请实施例的频率补偿方法,网络设备可以通过显式指示或隐式指示的方式告知终端设备的上行信号的频率补偿方式,以便终端设备采用与网络设备一致的频率补偿方式对上行信号进行频率补偿,无需网络设备告知终端设备具体的频率补偿值,且使网络设备和终端设备的补偿行为一致,能够在保证上行信号正常传输的同时,减少网络设备传输频率补偿值的信令开销,从而提高系统性能。
应理解,上述第一阈值可以为正值,也可以为负值,也可以为零,本申请实施例对此不作限定。若上述第一阈值为零,则第二频率补偿方式与第一种频率补偿方式相同。该第一阈值还可以具有其他叫法,例如预设频偏,本申请实施例对此也不作限定。
结合第一方面,在第一方面的某些实现方式中,上述第一阈值是根据网络设备的下行信号的补偿值确定的;或者,上述第一阈值是协议约定的。
在其他可能的实现方式中,上述第一阈值也可以通过终端设备的绝对位置、终端设备相对网络设备的位置、或者终端设备相对网络设备的运动方向等信息中的一个或多个,再结合网络设备的位置和运动方向,以及该终端设备发送的上行信号的绝对频点计算得到,本申请实施例对此不作限定。
结合第一方面,在第一方面的某些实现方式中,第一信息用于指示终端设备的上行信号的频率补偿方式。在这种情况下,上述终端设备根据第一信息,确定频率补偿方式,包括:若第一信息为第一比特值,终端设备将与第一比特值对应的第一频率补偿方式确定为频率补偿方式;或者,若第一信息为第二比特值,终端设备将与第二比特值对应的第二频率补偿方式确定为频率补偿方式。
应理解,协议可以约定第一比特值对应第一频率补偿方式,以及第二比特值对应第二频率补偿方式。示例性地,第一比特值可以为0,第二比特值可以为1;或者,第一比特值可以为1,第二比特值可以为0。
本申请实施例的频率补偿方法,网络设备可以通过显式指示的方式告知终端设备的上行信号的频率补偿方式,以便终端设备采用与网络设备一致的频率补偿方式对上行信号进行频率补偿,无需网络设备告知终端设备具体的频率补偿值,且使网络设备和终端设备的补偿行为一致,能够在保证上行信号正常传输的同时,减少网络设备传输频率补偿值的信令开销,从而提高系统性能。
结合第一方面,在第一方面的某些实现方式中,上述上行信号的发送频点为该上行信号的绝对频点与第一补偿值之差;或者,上述上行信号的发送频点为该上行信号的绝对频点与第二补偿值之差。
应理解,采用第一频率补偿方式可以使网络设备的波束间的上行信号频率连续,终端设备发送上行信号时无需改变频点。而采用第二频率补偿方式可以使终端设备的上行信号的频点偏移很小,在地面附近和邻带的保护带不会发生明显变化。
因此,本申请实施例可以灵活选择不同的频率补偿方式,能够适应多种不同场景的保护带需求,提升系统性能。
结合第一方面,在第一方面的某些实现方式中,第一信息用于指示终端设备的配置参数。在这种情况下,上述终端设备根据第一信息,确定频率补偿方式,包括:终端设备根 据配置参数,确定终端设备处于高移动通信状态;终端设备将高移动通信状态所对应的频率补偿方式确定为频率补偿方式。
本申请实施例中的高移动通信状态是指网络设备和/或终端设备处于快速移动通信状态,例如,网络设备或终端设备为非同步轨卫星或者高速移动的飞机、车辆。应理解,协议约定了高移动通信状态所对应的频率补偿方式,终端设备只要确定了当前处于高移动通信状态,即可确定该高移动通信状态所对应的频率补偿方式。该高移动通信状态所对应的频率补偿方式可以是本申请实施例中的第一频率补偿方式,也可以是本申请实施例中的第二频率补偿方式。
本申请实施例的频率补偿方法,网络设备可以通过隐式指示的方式告知终端设备的上行信号的频率补偿方式,以便终端设备采用与网络设备一致的频率补偿方式对上行信号进行频率补偿,无需网络设备告知终端设备具体的频率补偿值,且使网络设备和终端设备的补偿行为一致,能够在保证上行信号正常传输的同时,减少网络设备传输频率补偿值的信令开销,从而提高系统性能。
结合第一方面,在第一方面的某些实现方式中,上述配置参数包括网络设备的参考点位置信息;上述终端设备根据第一信息,确定频率补偿方式,包括:终端设备根据网络设备的参考点位置信息,确定终端设备处于高移动通信状态;终端设备将高移动通信状态所对应的频率补偿方式确定为频率补偿方式。
示例性地,网络设备可以告知终端设备某个参考点的位置(例如,卫星、高空平台、飞机的位置)、运动信息、时间戳等信息,本申请实施例统称为参考点位置信息,终端设备可以根据这些参考点的位置变化情况或者速度情况,判断出该终端设备处于高移动通信状态。
可选地,上述网络设备的参考点位置信息可以携带在下列任一消息中:广播消息、切换配置消息、或者测量配置消息。
结合第一方面,在第一方面的某些实现方式中,上述配置参数包括时间戳信息;上述终端设备根据第一信息,确定频率补偿方式,包括:终端设备根据上述时间戳信息和全球卫星导航系统(global navigation satellite system,GNSS)的时间信息,确定终端设备上行定时信息;终端设备根据该上行定时信息,确定终端设备处于高移动通信状态;终端设备将高移动通信状态所对应的频率补偿方式确定为频率补偿方式。
示例性地,终端设备可以以自身获取的GNSS时间作为参考,通过判断网络设备告知的时间戳信息的变化速率,得到网络设备的移动速度,从而确定该终端设备处于高移动通信状态。
可选地,上述时间戳信息可以携带在下列任一消息中:广播消息、切换配置消息、或者测量配置消息。
结合第一方面,在第一方面的某些实现方式中,在上述确定终端设备的上行定时信息之前,所述方法还包括:终端设备接收来自网络设备的第二信息,该第二信息用于指示终端设备确定上行定时信息;上述确定终端设备的上行定时信息包括:终端设备基于该第二信息,根据时间戳信息和GNSS的时间信息,确定终端设备的上行定时信息。
可选地,该第二信息可以承载在下列任一消息中:广播消息、切换配置消息、或者测量配置消息。
结合第一方面,在第一方面的某些实现方式中,上述第一信息可以包括小区标识和/或波束标识。
在一种可能的实现方式中,网络设备可以为一个小区内的终端设备配置一个第一信息,即处于该小区覆盖范围内的终端设备,都可以采用该第一信息所指示的频率补偿方式,向网络设备发送上行信号。在这种情况下,上述第一信息可以包括小区标识即可。
在另一种可能的实现方式中,网络设备可以为小区中不同波束配置不同的第一信息,即每个波束都对应各自的第一信息。在这种情况下,上述第一信息可以包括该第一信息所对应的波束标识。进一步地,上述第一信息还可以包括波束标识。
结合第一方面,在第一方面的某些实现方式中,上述第一信息可以承载在下列任一消息中:广播消息、切换配置消息、或者测量配置消息。
应理解,上述第二信息和上述第一信息可以承载在同一条信令中,也可以承载在不同的信令中,本申请实施例对此不作限定。
第二方面,提供了另一种频率补偿方法,包括:网络设备确定第一信息,该第一信息用于指示终端设备的上行信号的频率补偿方式,或者,第一信息用于指示终端设备的配置参数;网络设备向终端设备发送该第一信息;其中,上述频率补偿方式为第一频率补偿方式或第二频率补偿方式,该第一频率补偿方式对应的第一补偿值为网络设备和终端设备相对运动产生的频偏,该第二频率补偿方式对应的第二补偿值为网络设备和终端设备相对运动产生的频偏和第一阈值之差。
结合第二方面,在第二方面的某些实现方式中,上述第一信息包括网络设备的参考点位置信息和/或时间戳信息。
结合第二方面,在第二方面的某些实现方式中,上述第一信息还包括:小区标识和/或波束标识。
结合第二方面,在第二方面的某些实现方式中,上述第一信息承载在下列任一消息中:广播消息、切换配置消息、或者测量配置消息。
结合第二方面,在第二方面的某些实现方式中,上述第一阈值是根据网络设备的下行信号的补偿值确定的;或者,上述第一阈值是协议约定的。
第三方面,提供了一种频率补偿装置,用于执行上述各个方面或各个方面任意可能的实现方式中的方法。具体地,该装置包括用于执行上述各个方面或各个方面任意可能的实现方式中的方法的单元。
在一种设计中,该装置可以包括执行上述各个方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
在另一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,该装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
在另一种设计中,该装置用于执行上述各个方面或各个方面任意可能的实现方式中的方法,该装置可以配置在上述终端设备或网络设备中,或者该装置本身即为上述终端设备或网络设备。
第四方面,提供了另一种频率补偿装置,包括,处理器,存储器,该存储器用于存储 计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该装置执行上述任一方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选地,该通信设备还包括,发射机(发射器)和接收机(接收器),发射机和接收机可以分离设置,也可以集成在一起,称为收发机(收发器)。
第五方面,提供了一种通信系统,包括用于实现上述第一方面或第一方面的任一种可能实现的方法的装置,以及用于实现上述第二方面或第二方面的任一种可能实现的方法的装置。
在一个可能的设计中,该通信系统还可以包括本申请实施例所提供的方案中与终端设备和/或网络设备进行交互的其他设备。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述任一方面中任一种可能实现方式中的方法。
第七方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述任一方面中任一种可能实现方式中的方法。
第八方面,提供了一种通信装置,包括通信接口和逻辑电路,该通信接口用于接收第一信息,该逻辑电路用于根据该第一信息对上行信号进行频率补偿,使得该通信装置执行上述第一方面中任一种可能实现方式中的方法。
第九方面,提供了另一种通信装置,包括通信接口和逻辑电路,该逻辑电路用于确定第一信息,该通信接口用于发送该第一信息,使得该通信装置执行上述第二方面中任一种可能实现方式中的方法。
附图说明
图1是本申请实施例提供的通信系统的示意图。
图2是本申请实施例提供的一种频率补偿方法的示意性流程图。
图3是本申请实施例提供的一种频率补偿装置的示意性框图。
图4是本申请实施例提供的另一种频率补偿装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统或新无线(new radio,NR)或者其他演进的通信系统等。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台 (mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
另外,本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,可以是传输接收点(transmission reception point,TRP),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,可以是WLAN中的接入点(access point,AP),可以是新型无线(new radio,NR)系统中的gNB,可以是卫星通信系统中的卫星基站等,本申请实施例并不限定。
在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先结合图1对适用于本申请实施例的通信系统进行详细说明。
图1为本申请实施例提供的通信系统100的示意图。如图1所示,该通信系统100可以包括网络设备101和至少一个终端设备102。其中,网络设备101和至少一个终端设备102可进行无线通信。具体而言,网络设备101可以向终端设备102发送下行数据,网络设备101可以采用信道编码对该下行数据进行编码,再将信道编码后的数据经过星座调制后发送给终端设备102;终端设备102也可以向网络设备101发送上行数据,终端设备102可以采用信道编码对该上行数据进行编码,再将编码后的数据经过星座调制后发送给网络设备101。
本申请实施例的通信系统100可以包括卫星通信、星间通信、空中和地面连接的网络(air to ground,ATG)、高空平台(high altitude platform station,HAPS)、无人机(unmanned aerial vehicle,UAV)等非地面网络(non-terrestrial network,NTN)通信场景。在上述场景中,网络设备101对地高速运动,存在速度和加速度,导致网络设备101与终端设备102通信过程中的载波发生偏移,这种偏移叫做多普勒频移。多普勒频移会对通信过程中的数据解调造成困难,影响网络设备101与终端设备102之间的通信质量。因此,网络设 备101与终端设备102必须对多普勒频移进行补偿,实现网络设备101与终端设备102之间的频率同步,进而提高网络设备101与终端设备102的通信质量。
网络设备的多普勒频移的补偿可以包括预补偿和后补偿两种方式。其中,预补偿是指网络设备在发送下行信号时对该下行信号的频点进行偏移,偏移量是波束覆盖区域内的多普勒偏移的公共部分,从而使得终端设备接收到的下行信号的频偏减小。后补偿是指网络设备对接收到的上行信号进行整体频率偏移,或者,网络设备将接收频率窗进行整体频率偏移,偏移量是波束覆盖区域内的多普勒偏移的公共部分,以减少终端设备发送上行信号所需的频率补偿值。上述预补偿也可以称作多普勒预补偿或者其他叫法,上述后补偿也可以称作多普勒后补偿或者其他叫法,本申请实施例对此不作限定。
在信号传输前,网络设备通常采用的多普勒频移的补偿方式包括两种,一种方式是不进行预补偿;另一种方式是进行预补偿。对应地,终端设备在进行上行频率补偿时会产生至少两个选项,其中一个选项是补偿全部的多普勒频移量,另一个选项是补偿部分的多普勒频移量。
在这种情况下,网络设备可以把波束的多普勒频率补偿值告知终端设备,以便终端设备在接收下行信号时准确知道该下行信号的频点,或者,在发送上行信号时准确知道所采用的频点。
但是,若网络设备不告知终端设备上述频率补偿值,终端设备无法判断采用上述至少两个选项中的哪一个选项,终端设备的行为存在不确定性,终端设备无法确定上行信号的准确发送频点,可能会使网络设备无法接收到该上行信号,导致上行信号传输失败。若网络设备告知终端设备上述频率补偿值,会带来较大的信令开销。
有鉴于此,本申请提供了一种频率补偿方法和频率补偿装置,无需网络设备告知终端设备具体的频率补偿值,且使网络设备和终端设备的补偿行为一致,能够减少传输频率补偿值的信令开销,从而提高系统性能。
为了便于理解本申请实施例,做出以下几点说明。
1、在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示,也可以包括显式指示和隐式指示。将某一信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)是否存在某个信元来实现对待指示信息的指示,从而在一定程度上降低指示开销。
2、在下文示出的实施例中第一、第二、第三以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信息、区分不同的频率补偿方式等。
3、在下文示出的实施例中,“预先定义”可以是协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
4、本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括长 期演进(long term evolution,LTE)协议、新无线(new radio,NR)协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
下面将详细说明本申请提供的各个实施例。
本申请实施例以终端设备和网络设备为例进行描述,应理解,终端设备可以替换为能够实现与终端设备类似的功能的装置或芯片,网络设备也可以替换为能够实现与网络设备类似的功能的装置或芯片,本申请实施例对其名称不作限定。
图2为本申请实施例提供的频率补偿方法200的示意性流程图。该方法200可以应用于图1所示的通信系统100,但本申请实施例不限于此。如图2所示,该方法200可以包括下列步骤:
S201,网络设备确定第一信息,该第一信息用于指示终端设备的上行信号的频率补偿方式,或者,该第一信息用于指示终端设备的配置参数。上述频率补偿方式为第一频率补偿方式或第二频率补偿方式,第一频率补偿方式对应的第一补偿值为网络设备和终端设备相对运动产生的频偏,第二频率补偿方式对应的第二补偿值为网络设备和终端设备相对运动产生的频偏和第一阈值之差。
S202,网络设备向终端设备发送该第一信息,对应地,终端设备接收该第一信息。
S203,终端设备根据该第一信息,确定该终端设备发送上行信号所采用的频率补偿方式。
S204,终端设备根据上述频率补偿方式,对上述上行信号进行频率补偿。
在本申请实施例中,网络设备可以通过两种方式指示终端设备的上行信号的频率补偿方式,在第一种方式中,第一信息能够明确指示出上行信号所采用的频率补偿方式,本申请也将这种方式称为显式指示方式,在这种情况下,该第一信息可以是一个包括若干比特的指示信息;在第二种方式中,第一信息指示的是终端设备的配置参数,终端设备通过这些配置参数,再结合进一步判断,可以确定出上行信号所采用的频率补偿方式,本申请也将这种方式称为隐式指示方式,在这种情况下,该第一信息可以就是上述配置参数,也可以是能够确定上述配置参数的相关信息,本申请实施例对此不作限定。
因此,本申请实施例的频率补偿方法,网络设备可以通过显式指示或隐式指示的方式告知终端设备的上行信号的频率补偿方式,以便终端设备采用与网络设备一致的频率补偿方式对上行信号进行频率补偿,无需网络设备告知终端设备具体的频率补偿值,且使网络设备和终端设备的补偿行为一致,能够在保证上行信号正常传输的同时,减少网络设备传输频率补偿值的信令开销,从而提高系统性能。
应理解,上述第一阈值可以为正值,也可以为负值,也可以为零,本申请实施例对此不作限定。若上述第一阈值为零,则第二频率补偿方式与第一种频率补偿方式相同。该第一阈值还可以具有其他叫法,例如预设频偏,本申请实施例对此也不作限定。
作为一个可选的实施例,上述第一阈值是根据网络设备的下行信号的补偿值确定的;或者,上述第一阈值是协议约定的。
在一种可能的实现方式中,上述第一阈值是根据网络设备的下行信号的补偿值确定的。示例性地,若下行信号的补偿值的单位是频率绝对值,例如赫兹(hertz,Hz),则第一阈值可以根据如下公式计算得到:
Figure PCTCN2021116220-appb-000001
其中,fpre为第一阈值,fpreDL为下行信号的补偿值,fDLref为下行信号的绝对频点,fULref为上行信号的绝对频点。
应理解,一个小区中的载波可以有一定的宽度,一个小区也可能有多个载波,例如,在LTE系统中,使用载波聚合模式的一个小区可以包含多个载波,或者,在NR系统中,可以部署多个位于不同频点的带宽部分(bandwidth part,BWP)。因此,网络设备对一个载波进行多普勒预补偿和/或多普勒后补偿通常是对一个给定频点进行补偿,小区带宽中偏移给定频点越多,残留的频偏也越多。如果终端设备在计算上行补偿频点(即上述第二补偿值)时使用的fDLref和fULref的取值与网络设备预期的不一致,会导致网络设备收到的上行信号频率不准确,进而影响通信性能。因此,上述fDLref和fULref的取值可以是协议约定的,也可以是网络设备告知终端设备的,本申请实施例对此不作限定。在一种可能的实现方式中,协议可以约定fDLref和fULref的取值默认为载波较为中心的位置,例如,中心子载波位置或者中心子载波正负1的位置。
示例性地,若下行信号的补偿值的单位相对比例关系,例如是百万分率(parts per million,PPM),则第一阈值可以根据如下公式计算得到:
fpre=fpreDL*fULref
在另一种可能的实现方式中,上述第一阈值是协议约定的。示例性地,第一阈值可以为多普勒频移量的二分之一,即:
Figure PCTCN2021116220-appb-000002
应理解,在其他可能的实现方式中,上述第一阈值也可以通过终端设备的绝对位置、终端设备相对网络设备的位置、或者终端设备相对网络设备的运动方向等信息中的一个或多个,再结合网络设备的位置和运动方向,以及该终端设备发送的上行信号的绝对频点计算得到,本申请实施例对此不作限定。
作为一个可选的实施例,在上述S204之后,终端设备可以在补偿后的频点上向网络设备发送上行信号。
应理解,若上述频率补偿方式为第一频率补偿方式,网络设备可以不执行任何补偿操作,在原频点上接收上行信号即可;若上述频率补偿方式为第二频率补偿方式,网络设备可以使用偏移后的频点接收上行信号,或者对接收到的信号再进行后续补偿,本申请实施例对此不作限定。
可选地,上行信号的频率补偿方式为第一频率补偿方式,则该上行信号的发送频点为该上行信号的绝对频点偏移第一补偿值。其中,该第一补偿值为网络设备和终端设备相对运动产生的频偏,本申请实施例将其称为多普勒频移量fd,因此,上行信号的发送频点为:fULref-fd。应理解,fd可以为正值,也可以为负值,也可以为零,本申请实施例对此不作限定。
可选地,上行信号的频率补偿方式为第二频率补偿方式,则该上行信号的发送频点为该上行信号的绝对频点偏移第二补偿值。其中,该第二补偿值为网络设备和终端设备相对运动产生的频偏和上述第一阈值之差,因此,上行信号的发送频点为:fULref-(fd-fpre)。
应理解,采用第一频率补偿方式可以使网络设备的波束间的上行信号频率连续,终端设备发送上行信号时无需改变频点。而采用第二频率补偿方式可以使终端设备的上行信号的频点偏移很小,在地面附近和邻带的保护带不会发生明显变化。
还应理解,网络设备选择上述第一频率补偿方式还是第二频率补偿方式取决于网络设备的业务的频点分配情况。具体而言,第一频率补偿方式更适用于网络设备的波束和地面较远、且一个网络设备有多个朝向各异的波束的场景,因为在网络设备侧的各波束频点没有偏移,原本的保护带能够得以维持。终端设备侧虽然存在频点偏移问题,但是网络设备的波束较大,波束间的终端设备整体间隔较远,在地面附近因为频点偏移带来的干扰影响不大。而第二频率补偿方式更适用于网络设备的业务频点和地面业务频点相邻的场景,因为在地面附近网络设备的波束的频点和邻带的保护带不会发生明显变化。
因此,本申请实施例可以灵活选择不同的频率补偿方式,能够适应多种不同场景的保护带需求,提升系统性能。
下面详细介绍本申请实施例的第一信息所对应的显式指示和隐式指示两种方式。
方式一,第一信息用于指示终端设备的上行信号的频率补偿方式。
在这种情况下,上述S203,终端设备根据第一信息,确定频率补偿方式,包括:若第一信息为第一比特值,终端设备将与第一比特值对应的第一频率补偿方式确定为频率补偿方式;或者,若第一信息为第二比特值,终端设备将与第二比特值对应的第二频率补偿方式确定为频率补偿方式。
应理解,协议可以约定第一比特值对应第一频率补偿方式,以及第二比特值对应第二频率补偿方式。示例性地,第一比特值可以为0,第二比特值可以为1;或者,第一比特值可以为1,第二比特值可以为0。
本申请实施例的频率补偿方法,网络设备可以通过显式指示的方式告知终端设备的上行信号的频率补偿方式,以便终端设备采用与网络设备一致的频率补偿方式对上行信号进行频率补偿,无需网络设备告知终端设备具体的频率补偿值,且使网络设备和终端设备的补偿行为一致,能够在保证上行信号正常传输的同时,减少网络设备传输频率补偿值的信令开销,从而提高系统性能。
方式二,第一信息用于指示终端设备的配置参数。
在这种情况下,上述S203,终端设备根据第一信息,确定频率补偿方式,包括:终端设备根据配置参数,确定终端设备处于高移动通信状态;终端设备将高移动通信状态所对应的频率补偿方式确定为频率补偿方式。
本申请实施例中的高移动通信状态是指网络设备和/或终端设备处于快速移动通信状态,例如,网络设备或终端设备为非同步轨卫星或者高速移动的飞机、车辆。应理解,协议约定了高移动通信状态所对应的频率补偿方式,终端设备只要确定了当前处于高移动通信状态,即可确定该高移动通信状态所对应的频率补偿方式。该高移动通信状态所对应的频率补偿方式可以是本申请实施例中的第一频率补偿方式,也可以是本申请实施例中的第二频率补偿方式。
本申请实施例的频率补偿方法,网络设备可以通过隐式指示的方式告知终端设备的上行信号的频率补偿方式,以便终端设备采用与网络设备一致的频率补偿方式对上行信号进行频率补偿,无需网络设备告知终端设备具体的频率补偿值,且使网络设备和终端设备的 补偿行为一致,能够在保证上行信号正常传输的同时,减少网络设备传输频率补偿值的信令开销,从而提高系统性能。
在本申请实施例中,终端设备的配置参数可以包括很多类型的参数,例如,网络设备的参考点位置信息、时间戳信息,应理解,只要能确定出终端设备处于高移动通信状态的配置参数,都在本申请实施例的保护范围之内。
作为一个可选的实施例,上述配置参数包括网络设备的参考点位置信息,上述S203包括:终端设备根据网络设备的参考点位置信息,确定终端设备处于高移动通信状态;终端设备将高移动通信状态所对应的频率补偿方式确定为频率补偿方式。
示例性地,网络设备可以告知终端设备某个参考点的位置(例如,卫星、高空平台、飞机的位置)、运动信息、时间戳等信息,本申请实施例统称为参考点位置信息,终端设备可以根据这些参考点的位置变化情况或者速度情况,判断出该终端设备处于高移动通信状态。
可选地,上述网络设备的参考点位置信息可以携带在下列任一消息中:广播消息、切换配置消息、或者测量配置消息。
作为一个可选的实施例,上述配置参数包括时间戳信息,上述S203包括:终端设备根据上述时间戳信息和全球卫星导航系统(global navigation satellite system,GNSS)的时间信息,确定终端设备上行定时信息;终端设备根据该上行定时信息,确定终端设备处于高移动通信状态;终端设备将高移动通信状态所对应的频率补偿方式确定为频率补偿方式。
示例性地,终端设备可以以自身获取的GNSS时间作为参考,通过判断网络设备告知的时间戳信息的变化速率,得到网络设备的移动速度,从而确定该终端设备处于高移动通信状态。
上述时间戳信息可以携带在下列任一消息中:广播消息、切换配置消息、或者测量配置消息。
作为一个可选的实施例,在上述确定终端设备的上行定时信息之前,所述方法还包括:网络设备向终端设备发送第二信息,该第二信息用于指示终端设备确定上行定时信息;对应地,终端设备接收该第二信息。上述确定终端设备的上行定时信息包括:终端设备基于该第二信息,根据时间戳信息和GNSS的时间信息,确定终端设备的上行定时信息。
上述第二信息可以承载在下列任一消息中:广播消息、切换配置消息、或者测量配置消息。应理解,该第二信息和上述第一信息可以承载在同一条信令中,也可以承载在不同的信令中,本申请实施例对此不作限定。
除了上述方式一和方式二之外,协议可以约定在上述第一信息的指示缺省时终端设备的频率补偿方式,进一步减少指示信令的开销。示例性地,当网络设备不进行第一信息的指示(即网络设备不向终端设备发送上述第一信息)时,协议可以约定终端设备采用第一频率补偿方式,或者,约定终端设备采用第二频率补偿方式。
作为一个可选的实施例,上述第一信息可以包括小区标识和/或波束标识。
在一种可能的实现方式中,网络设备可以为一个小区内的终端设备配置一个第一信息,即处于该小区覆盖范围内的终端设备,都可以采用该第一信息所指示的频率补偿方式,向网络设备发送上行信号。在这种情况下,上述第一信息可以包括小区标识即可。
在另一种可能的实现方式中,网络设备可以为小区中不同波束配置不同的第一信息, 即每个波束都对应各自的第一信息。在这种情况下,上述第一信息可以包括该第一信息所对应的波束标识。进一步地,上述第一信息还可以包括波束标识。
应理解,本申请实施例提供的频率补偿方法可以适用于当前服务小区或者当前服务小区的波束,可选地,波束也可以被映射为同步信号块(synchronization signal block,SSB)、BWP、信道状态信息参考信号(channel status information-reference signal,CSI-RS)端口或者传输配置指示(transmission configuration indicator,TCI)等逻辑实体。因此,前述波束配置信息可以承载于这些逻辑实体的配置参数之中。
还应理解,本申请实施例提供的频率补偿方法也可以适用于切换过程中的目标小区或者该目标小区的波束,可选地,波束也可以被映射为SSB、CSI-RS、TCI或者BWP等逻辑实体。
作为一个可选的实施例,上述第一信息可以承载在下列任一消息中:广播消息、切换配置消息、或者测量配置消息。
示例性地,网络设备可以将该第一信息承载在系统消息块(system information block,SIB)信令中,通过广播信道发送至终端设备。
示例性地,网络设备也可以将该第一信息承载在无线资源控制(radio resource control,RRC)信令中,在切换或者测量过程中发送给终端设备。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1和图2,详细描述了本申请实施例的方法,下面将结合3和图4,详细描述本申请实施例的装置。
图3示出了本申请实施例提供的一种频率补偿装置300。该装置300可以终端设备,也可以是终端设备中的芯片,在另一种设计中,该装置300可以是网络设备,也可以是网络设备中的芯片。该装置300包括:收发单元310、处理单元320。
在一种可能的实现方式中,装置300用于执行上述方法实施例中终端设备对应的各个流程和步骤。
该收发单元310用于:接收来自网络设备的第一信息,该第一信息用于指示终端设备的上行信号的频率补偿方式,或者,该第一信息用于指示终端设备的配置参数。
该处理单元320用于:根据上述第一信息,确定频率补偿方式;以及,根据频率补偿方式,对上行信号进行频率补偿。该频率补偿方式为第一频率补偿方式或第二频率补偿方式,第一频率补偿方式对应的第一补偿值为网络设备和该装置相对运动产生的频偏,第二频率补偿方式对应的第二补偿值为网络设备和该装置相对运动产生的频偏和第一阈值之差。
可选地,上述第一阈值是根据网络设备的下行信号的补偿值确定的;或者,该第一阈值是协议约定的。
可选地,上述第一信息用于指示上述装置的上行信号的频率补偿方式;处理单元320具体用于:若第一信息为第一比特值,将与第一比特值对应的第一频率补偿方式确定为频率补偿方式;或者,若第一信息为第二比特值,将与第二比特值对应的第二频率补偿方式确定为频率补偿方式。
可选地,上述上行信号的发送频点为上行信号的绝对频点与第一补偿值之差;或者, 上行信号的发送频点为上行信号的绝对频点与第二补偿值之差。
可选地,配置参数包括网络设备的参考点位置信息;处理单元320还用于:根据上述配置参数,确定该装置处于高移动通信状态;将该高移动通信状态所对应的频率补偿方式确定为频率补偿方式。
可选地,上述配置参数包括网络设备的参考点位置信息;上述处理单元320具体用于:根据该网络设备的参考点位置信息,确定该装置处于高移动通信状态;将该高移动通信状态所对应的频率补偿方式确定为频率补偿方式。
可选地,上述配置参数包括时间戳信息;处理单元320还用于:根据该时间戳信息和全球卫星导航系统GNSS的时间信息,确定上行定时信息;根据该上行定时信息,确定该装置处于高移动通信状态;将该高移动通信状态所对应的频率补偿方式确定为频率补偿方式。
可选地,收发单元310具体用于:在确定上述上行定时信息之前,接收第二信息,该第二信息用于指示该上行定时信息;处理单元320具体用于:基于该第二信息,根据上述时间戳信息和上述全球卫星导航系统GNSS的时间信息,确定该上行定时信息。
可选地,上述第一信息还包括:小区标识和/或波束标识。
可选地,上述第一信息承载在下列任一消息中:广播消息、切换配置消息、或者测量配置消息。
在另一种可能的实现方式中,装置300用于执行上述方法实施例中网络设备对应的各个流程和步骤。
该处理单元320用于:确定第一信息,该第一信息用于指示终端设备的上行信号的频率补偿方式,或者,该第一信息用于指示终端设备的配置参数。
该收发单元310用于:向终端设备发送该第一信息。
上述频率补偿方式为第一频率补偿方式或第二频率补偿方式,该第一频率补偿方式对应的第一补偿值为该装置和终端设备相对运动产生的频偏,该第二频率补偿方式对应的第二补偿值为该装置和终端设备相对运动产生的频偏和第一阈值之差。
可选地,上述第一信息包括参考点位置信息和/或时间戳信息。
可选地,收发单元310还用于:向终端设备发送第二信息,该第二信息用于指示终端设备根据上述时间戳信息确定上行定时信息。
可选地,上述第一信息还包括:小区标识和/或波束标识。
可选地,上述第一信息承载在下列任一消息中:广播消息、切换配置消息、或者测量配置消息。
可选地,上述第一阈值是根据网络设备的下行信号的补偿值确定的;或者,该第一阈值是协议约定的。
应理解,这里的装置300以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置300可以具体为上述实施例中的终端设备或网络设备,装置300可以用于执行上述方法实施例中与终端设备或网络设备对应的各个流程和/或步骤,为避免重复, 在此不再赘述。
上述各个方案的装置300具有实现上述方法中终端设备或网络设备执行的相应步骤的功能;上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。例如,上述收发单元310可以包括发送单元和接收单元,该发送单元可以用于实现上述收发单元对应的用于执行发送动作的各个步骤和/或流程,该接收单元可以用于实现上述收发单元对应的用于执行接收动作的各个步骤和/或流程。该发送单元可以由发射器替代,该接收单元可以由接收器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图3中的装置300也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,收发单元310可以是该芯片的收发电路,在此不做限定。
图4示出了本申请实施例提供的另一种频率补偿装置400。该装置400包括处理器410、收发器420和存储器430。其中,处理器410、收发器420和存储器430通过内部连接通路互相通信,该存储器430用于存储指令,该处理器410用于执行该存储器430存储的指令,以控制该收发器420发送信号和/或接收信号。
在一种可能的实现方式中,装置400用于执行上述方法200中终端设备对应的各个流程和步骤。
其中,该收发器420用于:接收来自网络设备的第一信息,该第一信息用于指示终端设备的上行信号的频率补偿方式,或者,该第一信息用于指示终端设备的配置参数。
该处理器410用于:根据上述第一信息,确定频率补偿方式;以及,根据频率补偿方式,对上行信号进行频率补偿。该频率补偿方式为第一频率补偿方式或第二频率补偿方式,第一频率补偿方式对应的第一补偿值为网络设备和该装置相对运动产生的频偏,第二频率补偿方式对应的第二补偿值为网络设备和该装置相对运动产生的频偏和第一阈值之差。
在另一种可能的实现方式中,装置400用于执行上述方法200中网络设备对应的各个流程和步骤。
其中,该处理器410用于:确定第一信息,该第一信息用于指示终端设备的上行信号的频率补偿方式,或者,该第一信息用于指示终端设备的配置参数。
该收发器420用于:向终端设备发送该第一信息。
上述频率补偿方式为第一频率补偿方式或第二频率补偿方式,该第一频率补偿方式对应的第一补偿值为该装置和终端设备相对运动产生的频偏,该第二频率补偿方式对应的第二补偿值为该装置和终端设备相对运动产生的频偏和第一阈值之差。
应理解,装置400可以具体为上述实施例中的终端设备或网络设备,并且可以用于执行上述方法实施例中与终端设备或网络设备对应的各个步骤和/或流程。可选地,该存储器430可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器410可以用于执行存储器中存储的指令,并且当该处理器410执行存储器中存储的指令时,该处理器410用于执行上述与该终端设备或网络设备对应的方法实施例的各个步骤和/或流程。该收发器420可以包括发射器和接收器,该发射器可以用于实现上述收发器对应的用于执行发送动作的各个步骤和/或流程,该接收器可以用于实现上述收发器对 应的用于执行接收动作的各个步骤和/或流程。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请还提供了终端侧的一种通信装置,包括通信接口和逻辑电路,该通信接口用于接收上述的第一信息,该逻辑电路用于根据该第一信息以及上述实施例中的方法对上行信号进行频率补偿。
本申请还提供了网络侧的一种通信装置,包括通信接口和逻辑电路,该逻辑电路用于按照上述实施例中的方法确定第一信息,该通信接口用于发送该第一信息。
本申请实施还提供了一种通信系统,该通信系统可以包括上述图3或图4所示的终端设备(装置300或装置400体现为终端设备),以及上述图3或图4所示的网络设备(装置300或装置400体现为网络设备)。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种频率补偿方法,其特征在于,包括:
    终端设备接收来自网络设备的第一信息,所述第一信息用于指示所述终端设备的上行信号的频率补偿方式,或者,所述第一信息用于指示所述终端设备的配置参数;
    所述终端设备根据所述第一信息,确定所述频率补偿方式;
    其中,所述频率补偿方式为第一频率补偿方式或第二频率补偿方式,所述第一频率补偿方式对应的第一补偿值为所述网络设备和所述终端设备相对运动产生的频偏,所述第二频率补偿方式对应的第二补偿值为所述网络设备和所述终端设备相对运动产生的频偏和第一阈值之差;
    所述终端设备根据所述频率补偿方式,对所述上行信号进行频率补偿。
  2. 根据权利要求1所述的方法,其特征在于,所述第一阈值是根据所述网络设备的下行信号的补偿值确定的;或者,
    所述第一阈值是协议约定的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息用于指示所述终端设备的上行信号的频率补偿方式;
    所述终端设备根据所述第一信息,确定所述频率补偿方式,包括:
    若所述第一信息为第一比特值,所述终端设备将与所述第一比特值对应的所述第一频率补偿方式确定为所述频率补偿方式;或者,
    若所述第一信息为第二比特值,所述终端设备将与所述第二比特值对应的所述第二频率补偿方式确定为所述频率补偿方式。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述上行信号的发送频点为所述上行信号的绝对频点与所述第一补偿值之差;或者,
    所述上行信号的发送频点为所述上行信号的绝对频点与所述第二补偿值之差。
  5. 根据权利要求1或2所述的方法,其特征在于,所述第一信息用于指示所述终端设备的配置参数;
    所述终端设备根据所述第一信息,确定所述频率补偿方式,包括:
    所述终端设备根据所述配置参数,确定所述终端设备处于高移动通信状态;
    所述终端设备将所述高移动通信状态所对应的频率补偿方式确定为所述频率补偿方式。
  6. 根据权利要求1或2所述的方法,其特征在于,所述配置参数包括所述网络设备的参考点位置信息;
    所述终端设备根据所述第一信息,确定所述频率补偿方式,包括:
    所述终端设备根据所述网络设备的参考点位置信息,确定所述终端设备处于高移动通信状态;
    所述终端设备将所述高移动通信状态所对应的频率补偿方式确定为所述频率补偿方式。
  7. 根据权利要求1或2所述的方法,其特征在于,所述配置参数包括时间戳信息;
    所述终端设备根据所述第一信息,确定所述频率补偿方式,包括:
    所述终端设备根据所述时间戳信息和全球卫星导航系统GNSS的时间信息,确定所述终端设备的上行定时信息;
    所述终端设备根据所述上行定时信息,确定所述终端设备处于高移动通信状态;
    所述终端设备将所述高移动通信状态所对应的频率补偿方式确定为所述频率补偿方式。
  8. 根据权利要求7所述的方法,其特征在于,在所述确定所述终端设备的上行定时信息之前,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二信息,所述第二信息用于指示所述终端设备确定所述上行定时信息;
    所述确定所述终端设备的上行定时信息,包括:
    所述终端设备基于所述第二信息,根据所述时间戳信息和所述全球卫星导航系统GNSS的时间信息,确定所述终端设备的上行定时信息。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一信息还包括:
    小区标识和/或波束标识。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一信息承载在下列任一消息中:
    广播消息、切换配置消息、或者测量配置消息。
  11. 一种频率补偿方法,其特征在于,包括:
    网络设备确定第一信息,所述第一信息用于指示终端设备的上行信号的频率补偿方式,或者,所述第一信息用于指示所述终端设备的配置参数;
    所述网络设备向所述终端设备发送所述第一信息;
    其中,所述频率补偿方式为第一频率补偿方式或第二频率补偿方式,所述第一频率补偿方式对应的第一补偿值为所述网络设备和所述终端设备相对运动产生的频偏,所述第二频率补偿方式对应的第二补偿值为所述网络设备和所述终端设备相对运动产生的频偏和第一阈值之差。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信息包括所述网络设备的参考点位置信息和/或时间戳信息。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示所述终端设备根据所述时间戳信息确定上行定时信息。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述第一信息还包括:
    小区标识和/或波束标识。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述第一信息承载在下列任一消息中:
    广播消息、切换配置消息、或者测量配置消息。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述第一阈值是根据所述网络设备的下行信号的补偿值确定的;或者,
    所述第一阈值是协议约定的。
  17. 一种频率补偿装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第一信息,所述第一信息用于指示所述装置的上行信号的频率补偿方式,或者,所述第一信息用于指示所述装置的配置参数;
    处理单元,用于根据所述第一信息,确定所述频率补偿方式;以及,根据所述频率补偿方式,对所述上行信号进行频率补偿;
    其中,所述频率补偿方式为第一频率补偿方式或第二频率补偿方式,所述第一频率补偿方式对应的第一补偿值为所述网络设备和所述装置相对运动产生的频偏,所述第二频率补偿方式对应的第二补偿值为所述网络设备和所述装置相对运动产生的频偏和第一阈值之差。
  18. 根据权利要求17所述的装置,其特征在于,所述第一阈值是根据所述网络设备的下行信号的补偿值确定的;或者,
    所述第一阈值是协议约定的。
  19. 根据权利要求17或18所述的装置,其特征在于,所述第一信息用于指示所述装置的上行信号的频率补偿方式;
    所述处理单元用于:
    若所述第一信息为第一比特值,将与所述第一比特值对应的所述第一频率补偿方式确定为所述频率补偿方式;或者,
    若所述第一信息为第二比特值,将与所述第二比特值对应的所述第二频率补偿方式确定为所述频率补偿方式。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,所述上行信号的发送频点为所述上行信号的绝对频点与所述第一补偿值之差;或者,
    所述上行信号的发送频点为所述上行信号的绝对频点与所述第二补偿值之差。
  21. 根据权利要求17或18所述的装置,其特征在于,所述第一信息用于指示所述装置的配置参数;
    所述处理单元用于:
    根据所述配置参数,确定所述装置处于高移动通信状态;
    将所述高移动通信状态所对应的频率补偿方式确定为所述频率补偿方式。
  22. 根据权利要求17或18所述的装置,其特征在于,所述配置参数包括所述网络设备的参考点位置信息;
    所述处理单元用于:
    根据所述网络设备的参考点位置信息,确定所述装置处于高移动通信状态;
    将所述高移动通信状态所对应的频率补偿方式确定为所述频率补偿方式。
  23. 根据权利要求17或18所述的装置,其特征在于,所述配置参数包括时间戳信息;
    所述处理单元用于:
    根据所述时间戳信息和全球卫星导航系统GNSS的时间信息,确定所述装置的上行定时信息;
    根据所述上行定时信息,确定所述装置处于高移动通信状态;
    将所述高移动通信状态所对应的频率补偿方式确定为所述频率补偿方式。
  24. 根据权利要求23所述的装置,其特征在于,所述收发单元用于:
    在所述确定上行定时信息之前,接收第二信息,所述第二信息用于指示所述装置确定所述上行定时信息;
    所述处理单元用于:
    基于所述第二信息,根据所述时间戳信息和所述全球卫星导航系统GNSS的时间信息,确定所述装置的上行定时信息。
  25. 根据权利要求17至24中任一项所述的装置,其特征在于,所述第一信息还包括:
    小区标识和/或波束标识。
  26. 根据权利要求17至25中任一项所述的装置,其特征在于,所述第一信息承载在下列任一消息中:
    广播消息、切换配置消息、或者测量配置消息。
  27. 一种频率补偿装置,其特征在于,包括:
    处理单元,用于确定第一信息,所述第一信息用于指示终端设备的上行信号的频率补偿方式,或者,所述第一信息用于指示所述终端设备的配置参数;
    收发单元,用于向所述终端设备发送所述第一信息;
    其中,所述频率补偿方式为第一频率补偿方式或第二频率补偿方式,所述第一频率补偿方式对应的第一补偿值为所述装置和所述终端设备相对运动产生的频偏,所述第二频率补偿方式对应的第二补偿值为所述装置和所述终端设备相对运动产生的频偏和第一阈值之差。
  28. 根据权利要求27所述的装置,其特征在于,所述第一信息包括所述装置的参考点位置信息和/或时间戳信息。
  29. 根据权利要求28所述的装置,其特征在于,所述收发单元还用于:
    向所述终端设备发送第二信息,所述第二信息用于指示所述终端设备根据所述时间戳信息确定上行定时信息。
  30. 根据权利要求27至29中任一项所述的装置,其特征在于,所述第一信息还包括:
    小区标识和/或波束标识。
  31. 根据权利要求27至30中任一项所述的装置,其特征在于,所述第一信息承载在下列任一消息中:
    广播消息、切换配置消息、或者测量配置消息。
  32. 根据权利要求27至31中任一项所述的装置,其特征在于,所述第一阈值是根据所述装置的下行信号的补偿值确定的;或者,
    所述第一阈值是协议约定的。
  33. 一种通信系统,其特征在于,包括权利要求17至26中任一项所述的装置和权利要求27至32中任一项所述的装置。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1至16中任一项所述的方法。
  35. 一种通信装置,其特征在于,包括:通信接口和逻辑电路,所述通信接口用于接收第一信息,所述逻辑电路用于根据所述第一信息对上行信号进行频率补偿,使得所述通信装置执行权利要求1至10中任一项所述的方法。
  36. 一种通信装置,其特征在于,包括:通信接口和逻辑电路,所述逻辑电路用于确定第一信息,所述通信接口用于发送所述第一信息,使得所述通信装置执行权利要求11至16中任一项所述的方法。
PCT/CN2021/116220 2020-09-28 2021-09-02 频率补偿方法和频率补偿装置 WO2022062871A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21871243.8A EP4203342A4 (en) 2020-09-28 2021-09-02 FREQUENCY COMPENSATION METHOD AND FREQUENCY COMPENSATION DEVICE
US18/191,591 US20230247576A1 (en) 2020-09-28 2023-03-28 Frequency compensation method and frequency compensation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011045471.6A CN114337769A (zh) 2020-09-28 2020-09-28 频率补偿方法和频率补偿装置
CN202011045471.6 2020-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/191,591 Continuation US20230247576A1 (en) 2020-09-28 2023-03-28 Frequency compensation method and frequency compensation apparatus

Publications (1)

Publication Number Publication Date
WO2022062871A1 true WO2022062871A1 (zh) 2022-03-31

Family

ID=80844901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116220 WO2022062871A1 (zh) 2020-09-28 2021-09-02 频率补偿方法和频率补偿装置

Country Status (4)

Country Link
US (1) US20230247576A1 (zh)
EP (1) EP4203342A4 (zh)
CN (1) CN114337769A (zh)
WO (1) WO2022062871A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115941032A (zh) * 2023-01-07 2023-04-07 成都川美新技术股份有限公司 一种基于多载波时空轨迹多特征融合的多普勒纠偏方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188193A (zh) * 2011-12-29 2013-07-03 同济大学 一种用于td-lte系统的多普勒偏移补偿方法
CN107317779A (zh) * 2016-04-26 2017-11-03 中兴通讯股份有限公司 一种频偏估计方法和装置
EP3447936A1 (en) * 2017-08-22 2019-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wireless communication system, base-station and user-side-device
CN109716689A (zh) * 2016-09-16 2019-05-03 高通股份有限公司 用于补偿通信中的多普勒效应的技术
CN110247697A (zh) * 2019-05-30 2019-09-17 西安空间无线电技术研究所 一种提高低轨通信卫星系统频率利用率的方法
CN110855346A (zh) * 2019-11-26 2020-02-28 辰芯科技有限公司 一种卫星信号接收装置和多普勒频偏处理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109005135B (zh) * 2017-06-06 2022-06-17 中兴通讯股份有限公司 一种处理通信系统上行链路频偏的方法与装置
US20220038139A1 (en) * 2018-11-02 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Frequency offset in non-terrestrial networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188193A (zh) * 2011-12-29 2013-07-03 同济大学 一种用于td-lte系统的多普勒偏移补偿方法
CN107317779A (zh) * 2016-04-26 2017-11-03 中兴通讯股份有限公司 一种频偏估计方法和装置
CN109716689A (zh) * 2016-09-16 2019-05-03 高通股份有限公司 用于补偿通信中的多普勒效应的技术
EP3447936A1 (en) * 2017-08-22 2019-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wireless communication system, base-station and user-side-device
CN110247697A (zh) * 2019-05-30 2019-09-17 西安空间无线电技术研究所 一种提高低轨通信卫星系统频率利用率的方法
CN110855346A (zh) * 2019-11-26 2020-02-28 辰芯科技有限公司 一种卫星信号接收装置和多普勒频偏处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4203342A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115941032A (zh) * 2023-01-07 2023-04-07 成都川美新技术股份有限公司 一种基于多载波时空轨迹多特征融合的多普勒纠偏方法

Also Published As

Publication number Publication date
US20230247576A1 (en) 2023-08-03
EP4203342A4 (en) 2024-03-13
CN114337769A (zh) 2022-04-12
EP4203342A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
CN110972156B (zh) 一种干扰测量方法、装置、芯片及存储介质
JP2021503845A (ja) 通信方法および通信デバイス
CN113259974A (zh) 用于配置主辅小区的方法和装置
WO2021062730A1 (zh) 无线通信方法和装置
CN109428687B (zh) 触发无线链路失败rlf的方法和装置
CN110912661A (zh) 一种能力信息接收、发送方法及装置
CN114125928A (zh) 一种基于卫星网络的通信方法以及相关装置
CN116097807A (zh) 测量的方法、终端设备及网络设备
US20220303961A1 (en) Physical channel monitoring method and terminal device
US20230247576A1 (en) Frequency compensation method and frequency compensation apparatus
CN114503504A (zh) Csi报告的发送方法、接收方法、装置、设备及介质
US20230362869A1 (en) Wireless communication method and device
CN113595698B (zh) 一种调整信道质量指标cqi的方法和终端设备
EP4160946A1 (en) Wireless communication method and device
AU2016431911B2 (en) Method and apparatus for wireless communication
US20230047970A1 (en) Power adjustment method, apparatus, and system
US20220224405A1 (en) Beam Handover Method, Apparatus, And Communications Device
EP4207922A1 (en) Wireless communication method, terminal device and network device
CN116250324A (zh) 一种通信方法、装置及计算机可读存储介质
WO2024092423A1 (zh) 一种通信方法及相关装置
WO2024077446A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024082198A1 (zh) 感知信息上报方法和设备
WO2024138361A1 (zh) 无线通信的方法、终端设备和网络设备
CN117729633B (zh) 通信方法、通信装置及通信系统
US20230224754A1 (en) Quality of service (qos) control method, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021871243

Country of ref document: EP

Effective date: 20230323

NENP Non-entry into the national phase

Ref country code: DE