WO2022062714A1 - 抗干扰控制装置及其方法、终端设备、可读存储介质 - Google Patents

抗干扰控制装置及其方法、终端设备、可读存储介质 Download PDF

Info

Publication number
WO2022062714A1
WO2022062714A1 PCT/CN2021/110920 CN2021110920W WO2022062714A1 WO 2022062714 A1 WO2022062714 A1 WO 2022062714A1 CN 2021110920 W CN2021110920 W CN 2021110920W WO 2022062714 A1 WO2022062714 A1 WO 2022062714A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
millimeter
antenna module
detection component
component
Prior art date
Application number
PCT/CN2021/110920
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2023515656A priority Critical patent/JP2023540607A/ja
Priority to KR1020237007609A priority patent/KR20230048367A/ko
Priority to US18/025,424 priority patent/US20230327691A1/en
Priority to EP21871091.1A priority patent/EP4199382A4/en
Publication of WO2022062714A1 publication Critical patent/WO2022062714A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/201Monitoring; Testing of receivers for measurement of specific parameters of the receiver or components thereof
    • H04B17/204Monitoring; Testing of receivers for measurement of specific parameters of the receiver or components thereof of interfering signals, e.g. passive intermodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of communication technologies, and in particular, relate to an anti-interference control apparatus and method thereof, a terminal device, and a computer-readable storage medium.
  • anti-jamming operation can be achieved by beam management on the side of the millimeter-wave antenna or the base station, but the adjustment method is relatively simple and limited, and for millimeter-wave communication In terms of equipment, the anti-interference effect of actual implementation is not good.
  • Embodiments of the present application provide an anti-interference control apparatus and method thereof, a terminal device, and a computer-readable storage medium.
  • an embodiment of the present application provides an anti-jamming control device, which is arranged in a terminal device, the terminal device includes a millimeter-wave antenna module, and the anti-jamming control device includes: an interference detection component, which is connected to the millimeter wave antenna module.
  • the wave antenna module is connected, and is set to determine whether the millimeter wave signal sent by the millimeter wave antenna module is interfered according to the channel quality parameter from the millimeter wave antenna module; the interference source detection component is connected with the interference detection component.
  • the component connection is configured to detect the position information of the interference source when the interference detection component determines that the millimeter wave signal sent by the millimeter wave antenna module is interfered; the control component is connected to the interference source detection component , arranged to perform anti-jamming processing corresponding to the position information according to the position information from the interference source detection component.
  • an embodiment of the present application further provides an anti-jamming control method, which is applied to an anti-jamming control device, where the anti-jamming control device is arranged in a terminal device, the terminal device includes a millimeter wave antenna module, and the The anti-interference control device includes an interference detection component and an interference source detection component, the millimeter wave antenna module, the interference detection component and the interference source detection component are connected in sequence; the anti-interference control method includes: controlling the interference detection The component obtains the channel quality parameter from the millimeter-wave antenna module; in response to the interference detection component determining according to the channel quality parameter that the millimeter-wave signal sent by the millimeter-wave antenna module is interfered, controlling the interference source The detection component acquires the location information of the interference source; acquires the location information from the interference source detection component, and performs anti-interference processing corresponding to the location information according to the location information.
  • an embodiment of the present application further provides an anti-interference control device, including: a memory, a processor, and a computer program stored in the memory and running on the processor, when the processor executes the computer program
  • an anti-interference control device including: a memory, a processor, and a computer program stored in the memory and running on the processor, when the processor executes the computer program
  • an embodiment of the present application further provides a terminal device, including the anti-jamming control device according to the first aspect or the anti-jamming control device according to the third aspect.
  • embodiments of the present application further provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the anti-interference control method described in the second aspect above.
  • FIG. 1 is a schematic diagram of an anti-interference control device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an anti-jamming control device provided by an embodiment of the present application acquiring position information of an interference source
  • FIG. 4 is a schematic diagram of an anti-jamming control device provided by another embodiment of the present application acquiring position information of an interference source
  • FIG. 5 is a schematic diagram of an anti-jamming control device provided by an embodiment of the present application performing anti-jamming processing corresponding to location information;
  • FIG. 6 is a schematic diagram of an anti-jamming control device provided by another embodiment of the present application performing anti-jamming processing corresponding to location information;
  • FIG. 7 is a schematic diagram of an anti-jamming control device that performs anti-jamming processing corresponding to location information provided by another embodiment of the present application;
  • FIG. 8 is a schematic diagram of an anti-interference control device provided by another embodiment of the present application.
  • FIG. 11 is a flowchart of an anti-interference control method provided by another embodiment of the present application.
  • FIG. 13 is a flowchart of an anti-interference control method provided by another embodiment of the present application.
  • Embodiments of the present application provide an anti-jamming control device, a terminal device, and a computer-readable storage medium.
  • the interference detection component can determine whether a millimeter-wave signal sent by a millimeter-wave antenna module is disturbed, so as to facilitate anti-jamming
  • the control device can accurately determine whether the millimeter-wave antenna module is interfered under the current conditions, so as to determine whether the millimeter-wave antenna module needs to perform anti-interference processing, and when it is determined that the millimeter-wave signal is interfered
  • the detection component detects the location information of the interference source, so that the user can understand the cause of the interference of the millimeter wave signal, and then the anti-interference processing corresponding to the location information can be performed based on the control component, that is, it can correspond to the actual scene and application environment. Therefore, this can help improve the anti-interference capability of the millimeter-wave antenna module, and accordingly, can further improve the throughput performance of the terminal.
  • FIG. 1 is a schematic diagram of an anti-interference control device 110 provided by an embodiment of the present application.
  • the anti-jamming control apparatus 110 is disposed in the terminal device 100 , and the terminal device 100 includes a millimeter-wave antenna module 114 , and the anti-jamming control apparatus 110 includes:
  • the interference detection component 111 is connected to the millimeter-wave antenna module 114, and is configured to determine whether the millimeter-wave signal sent by the millimeter-wave antenna module 114 is interfered according to the channel quality parameter from the millimeter-wave antenna module 114;
  • the interference source detection component 112 is connected to the interference detection component 111, and is configured to obtain the position information of the interference source when the interference detection component 111 determines that the millimeter-wave signal sent by the millimeter-wave antenna module 114 is interfered;
  • the control component 113 connected to the interference source detection component 112 , is configured to perform anti-interference processing corresponding to the location information according to the location information from the interference source detection component 112 .
  • the interference detection component 111 can determine whether the millimeter-wave signal sent by the millimeter-wave antenna module 114 is interfered, so that the anti-interference control device 110 can accurately determine whether the millimeter-wave antenna module 114 is under current conditions. In the case of interference, it can be determined whether the millimeter wave antenna module 114 needs to perform anti-interference processing, and when it is determined that the millimeter wave signal is interfered, the location information of the interference source can be detected according to the interference source detection component 112, which is convenient for users.
  • the control component 113 can perform anti-interference processing corresponding to the location information, that is, the anti-interference adjustment can be performed correspondingly according to the actual scene and application environment, so that the interference can be solved. Therefore, this can help improve the anti-interference ability of the millimeter-wave antenna module 114, and accordingly, can also further improve the throughput performance of the terminal.
  • the control component 113 can perform closed-loop adjustment according to the real-time feedback position information, that is, the control component 113 will continue to monitor the relevant information of the millimeter-wave antenna module 114 after the anti-interference processing has been performed, if there is still an interference source
  • the millimeter-wave antenna module 114 is affected, that is, the interference detection component 111 still determines that the millimeter-wave signal sent by the millimeter-wave antenna module 114 is interfered, and the control component 113 will continue to perform the anti-interference processing corresponding to the position information until Until the millimeter wave signal sent by the millimeter wave antenna module 114 is no longer disturbed.
  • the interference detection component 111 can detect the signal interference state and the wireless transmission interference state of the millimeter wave antenna module 114 according to the channel quality parameter, wherein,
  • the signal interference state is mainly used to characterize the interference effect of the millimeter-wave antenna module 114 in the process of transmitting the antenna signal
  • the wireless transmission interference state is mainly used to characterize the interference effect of the millimeter-wave antenna module 114 during the transmission of the antenna signal.
  • both of the above two interference states can be determined by channel quality parameters.
  • the channel quality parameters may be, but are not limited to, reference signal received power (Reference Signal Receiving Power, RSRP), bit error rate (Block Error Ratio, BLER), signal-to-noise ratio (SIGNAL NOISE RATIO, SNR), Received Signal Strength Indication (Received Signal Strength Indication, RSSI), etc., since the above-mentioned specific indicators are well known to those skilled in the art, they will not be repeated here.
  • RSRP Reference Signal Receiving Power
  • BLER Bit Error Ratio
  • SIGNAL NOISE RATIO SNR
  • RSSI Received Signal Strength Indication
  • the interference state of the millimeter-wave signal sent by the millimeter-wave antenna module 114 can be determined, that is, in response to the channel from the millimeter-wave antenna module 114 . If the quality parameter is greater than the first channel quality parameter threshold, the interference detection component 111 can determine that the millimeter-wave signal sent by the millimeter-wave antenna module 114 is interfered. It can be seen that the interference of the millimeter-wave signal can be easily and effectively obtained through numerical comparison.
  • the interference detection component 111 can determine that the millimeter-wave signal sent by the millimeter-wave antenna module 114 is not interfered, and accordingly , in the case where the millimeter wave signal is not interfered, the subsequent interference source detection component 112 and the control component 113 do not need to perform corresponding operations.
  • the millimeter-wave antenna module 114 may be a separate millimeter-wave antenna, or an antenna module that combines a millimeter-wave antenna and a radio frequency front-end device, which may be distributed on the top, frame or frame of the terminal device 100. corner area.
  • the millimeter-wave antenna module 114 is an array antenna, its number can be 4 groups, 8 groups, or any other number of antenna array combinations, which can realize orthogonal polarization radiation in different forms.
  • the interference detection component 111 can be set to detect the beam interference received by any millimeter-wave signal.
  • the interference detection component 111 may also be configured to detect the millimeter waves emitted by the millimeter wave antenna module 114 from other beams within the spatial radiation range. Whether the wave signal causes interference.
  • the interference source may be, but is not limited to, the user (including some parts of the user's body, such as fingers, torso, etc.), an obstacle or other interference beams, etc. It should be noted that whether it is the user, the obstacle or the Other interfering beams may cause interference during the millimeter-wave antenna module 114 sending the millimeter-wave signal, or may cause interference during its transmission (for example, a user or an obstacle is blocked between the millimeter-wave antenna module 114 and the base station) .
  • the location information acquired by the interference source detection component 112 may be the physical coordinate information of the user (including some parts of the user's body) or obstacles, or may be the information on the exit direction of the interference beam, etc., This is not limited in this embodiment.
  • the terminal device 100 is further provided with a millimeter-wave modulation and demodulation module connected to the millimeter-wave antenna module 114, which can be configured to transmit, receive, and perform modulation and demodulation processing of millimeter-wave signals
  • Millimeter wave modulation and demodulation modules are not limited to millimeter wave radio frequency chip modules, millimeter wave digital signal processing units, etc.
  • another embodiment of the present application also provides an anti-interference control device, wherein the interference source detection component includes a radiator and a radiation signal detection component connected to the radiator; The emitted millimeter wave signal is interfered, and the radiation signal detection component transmits the radiation signal through the radiator, and determines the position information of the interference source according to the feedback signal when the feedback signal from the radiator is obtained, wherein the feedback signal is caused by the radiation The signal is reflected by the interference source.
  • the interference source detection component includes a radiator and a radiation signal detection component connected to the radiator; The emitted millimeter wave signal is interfered, and the radiation signal detection component transmits the radiation signal through the radiator, and determines the position information of the interference source according to the feedback signal when the feedback signal from the radiator is obtained, wherein the feedback signal is caused by the radiation The signal is reflected by the interference source.
  • the feedback signal reflected by the interference source can be obtained by transmitting the radiation signal through the radiator, so that two sets of signals, namely the radiation signal and the feedback signal, can be determined.
  • the difference between the group signals can determine the influence of the position of the interference source on the corresponding signal, and then determine the position information of the interference source. It can be seen that in this process, there is no need to obtain the interference source based on the millimeter wave antenna module.
  • the location information can improve the detection accuracy. At the same time, it does not involve complex algorithms, and only needs to be measured through information interaction. Therefore, the detection is more convenient and effective.
  • the interference source detection component further includes a camera component, and the camera component can perform image detection on the surroundings of the terminal device, so as to determine the position information of the user or the obstacle, wherein the camera component may include an unlimited number of cameras or Similar camera devices, for example, a camera is provided on the front and rear surfaces of the terminal device.
  • the front-facing camera is used to detect user blocking
  • the rear-facing camera is used to detect obstacles behind the back of the terminal device.
  • the acquisition of the location information of the interference source can also be realized, and a specific example is given below to illustrate the working principle of the above embodiment.
  • the terminal device 100 shown in FIG. 2 in addition to the millimeter wave antenna module, other types of antennas are also included, and these other types of antennas can be used as radiators for transmitting radiated signals, such as the main antenna 200 ( It can be a cellular antenna under 2G, 3G or 4G, etc.), a Bluetooth wireless communication antenna 300, a GPS receiving antenna 400, and a near-field communication sensing antenna 500, etc., with any one or more of these antennas as a radiator; or, Any one or more metal units in the terminal device 100 can also be used as radiators, for example, the metal frame 600 in the terminal device 100 as shown in FIG. 2 , or the metal coil 700 on the PVB motherboard in the terminal device 100 .
  • the radiation signal detection component can be a detection chip for reducing the specific absorption rate (an index for measuring the electromagnetic radiation of the antenna to the human body).
  • the chip is provided with a charge induction circuit for determining the position information of the interference source. 800, the charge induction circuit 800 can be connected to any radiator.
  • Each antenna and metal unit can be connected by a shielded coaxial line or a microstrip line with a certain width and length, and the connecting line is arranged at each channel position of the charge induction circuit 800, because the above-mentioned units will be at a corresponding angle with the to-be-contacted.
  • a certain vertical projection area is formed between the objects.
  • the detection chip takes each antenna and metal unit corresponding to the terminal device 100 as a reference plane (that is, it is used as a probe array), and the plane contacted by the terminal device 100, such as a human body, an object, etc., is used as a sensing plane.
  • the two planes There is a slight change in the charge value between the terminal equipment 100 and the corresponding area, so that it can be judged whether the corresponding area of the terminal device 100 leaves the sensing plane.
  • the principle is: as shown in FIG.
  • the charge signal when the radiated charge signal encounters an obstacle or a user (ie, an interference source), part of it will be reflected back, and the amount of the reflected charge is affected by the distance and projected area of the interference source (ie, the terminal device 100 shown in FIG. 3 ).
  • ADC Analog To Digital Converter
  • the contact materials may be metal products, wood products, glass products, leather products, cloth, human hands, plastic or air with different temperatures and humidity.
  • the typical value of the charge reflection model can be preset and set accordingly.
  • the fluctuation range is stored as a threshold value, so that for any obstacle of any material, the distance relationship between the radiator and the obstacle of the material can be judged by the difference of the detected amount of induced charge, that is, , the location information of the interference source can be obtained.
  • FIG. 4 is a schematic diagram of obtaining location information of an interference source by an anti-interference control apparatus provided by another embodiment of the present application.
  • the antenna scanning is switched from angle 1 to angle 2, and the charge sensing circuit can detect the reflected signal, so that the User presence is detected in this direction.
  • another embodiment of the present application also provides an anti-interference control device, wherein the terminal device further includes an information prompting component, and the information prompting component is connected to the control component; in response to the control component acquiring the position information from the interference source detection component , the control component determines the grip position adjustment guide information and/or the three-dimensional beam information according to the position information, and prompts the user with the grip position adjustment guide information and/or the three-dimensional beam information through the information prompting component.
  • the control component can provide corresponding grip adjustment guidance information and/or three-dimensional adjustment according to the position information.
  • the beam information is prompted by the information prompting component to the user, so that the user can make corresponding adjustments according to the guidance, thereby eliminating or weakening the interference caused by the interference source.
  • the grip adjustment and the three-dimensional beam adjustment are set from different references, that is, in practice, only one of them can be used for adjustment, or both methods can be used for adjustment, but based on the corresponding adjustment
  • the obtained anti-interference effect is the same, therefore, the above-mentioned related description of "and/or" is adopted in this embodiment.
  • the information prompting component can be a speaker or a display screen.
  • it can play the grip adjustment guidance information and the three-dimensional beam information through voice, and when it is a display screen, it can display video or image information. Instruct the user to adjust the grip.
  • the grip posture adjustment guidance information is mainly applicable to the interference situation caused by the user holding the terminal device. In this case, notifying the user to adjust the grip posture can avoid the interference situation.
  • a certain blocking effect will be formed when the user's finger or palm touches the position corresponding to the frame of the mobile phone, so most of the millimeter wave signal will be blocked or attenuated. For example, if the edge of the mobile phone is held by fingers or hands in a certain area, and the holding position is just near the position of the millimeter-wave antenna module 114, the holding posture will cause interference (as shown in FIG.
  • the control component when the control component obtains the grip information, it can determine its corresponding grip adjustment according to the grip information, and prompt on the information prompting component, for example, prompting in the form of display, it can be that the contacts at different positions will be displayed in different colors or patterns, here can be expressed in a fixed color, such as display Red is the contact point with poor signal, black is the contact point with unaffected signal, and green is the contact point with enhanced signal. Therefore, the information prompt component can display the contact points of different colors on the terminal device 100, so that the The user provides hints for gripping gestures.
  • the antenna signal transmission may be interfered.
  • the information prompt component will also display the current touch. Click the color status and prompt the best contact position. After seeing the prompt, the user can change the grip position or finger contact point, thereby reducing the interference of the current antenna signal and improving the communication quality of the antenna signal.
  • the terminal device is also provided with a beam storage management module, which is configured to realize the storage and management of beam information of the millimeter-wave antenna module, involving beam scanning range, beam spacing, and beam omnidirectional cumulative distribution function value. and the effective radiated power of any beam, etc.
  • the beam is a state presented by the millimeter-wave antenna module when it is working.
  • the millimeter-wave antenna module uses the beam as the basic unit for wireless connection.
  • each beam will radiate a certain amount of power.
  • the millimeter wave antenna module can include several beams, and these beams can also be of different types, and can be divided into different positions in the spatial orientation, and the beams can also be divided into two categories, one is V Under the polarization condition, the other type is under the H polarization condition, which can correspond to different millimeter-wave antenna modules respectively. It can be seen that by using the beam storage management module, the pre-tested beam information of the above-mentioned millimeter-wave antenna module can be matched with the ID of any beam information in the form of a parameter table, and stored in the corresponding module. It is divided into different areas, so that different areas correspond to different millimeter wave radiation ranges, which is convenient for control components to compare and call.
  • the three-dimensional beam information is used to characterize the beam outgoing situation of the millimeter-wave antenna module at this time, that is, the outgoing beam at this time is affected by an obstacle, so as to guide and adjust the position of the terminal device to avoid the obstacle.
  • the outgoing beam a specific example is given below to illustrate the working principle of this embodiment, as shown in FIG. Schematic representation of interference processing.
  • the information prompting component 120 adopts a visual operation guidance interface, so as to realize the visual direction and angle switching guidance for the user, and its on and off can be checked and called out through the relevant settings on the UI of the terminal device 100 to call up the corresponding window. , and then feedback the current scanning status of the 3D beam, such as which beams are being scanned, the scanning angle range of the corresponding beam, etc.
  • the beams in different directions will be displayed in different colors or patterns, for example, the green scanning area indicates that the antenna signal is more Strong, the red scanning area indicates that the antenna signal is weaker, or the strength of the antenna signal can be directly calculated through numerical values, thereby giving the corresponding position guidance (for example, the position guidance of the terminal device 100 shown in FIG.
  • another embodiment of the present application also provides an anti-interference control device, wherein the terminal device further includes a driving component, and the driving component is respectively connected with the millimeter-wave antenna module and the control component; in response to the control component acquiring information from the interference source The position information of the component is detected, and the control component controls the drive component to adjust the position of the millimeter wave antenna module in the terminal device according to the position information.
  • the position of the millimeter-wave antenna module in the terminal device can be directly adjusted by the driving component, that is, by changing the relative position between the millimeter-wave antenna module and the interference source, so that the millimeter-wave antenna module can be adjusted.
  • the driving component that is, by changing the relative position between the millimeter-wave antenna module and the interference source, so that the millimeter-wave antenna module can be adjusted.
  • Group anti-jamming adjustment
  • the driving component may be any type of driving component, for example, a motor, an electric motor, etc., which can be selected by those skilled in the art according to the actual situation, which is not limited.
  • FIG. 7 is a schematic diagram of an anti-jamming control apparatus provided by another embodiment of the present application performing anti-jamming processing corresponding to location information.
  • the position of the millimeter-wave antenna module can be adjusted by driving the component, so as to switch the millimeter-wave antenna module to the millimeter-wave radiation blind area for work. For example, suppose that the main lobe radiation range of a certain millimeter-wave antenna module is 90 °, if a terminal device wants to achieve 360-degree dead-end communication with the base station, the millimeter-wave antenna module needs to be switched and adjusted in 4 directions.
  • the current position of the millimeter-wave antenna module 114 is oriented in the direction A and blocked by the user's finger, and the rotating motor 130 is connected to the millimeter-wave antenna module 114, so that the millimeter-wave antenna module 114 can be controlled.
  • the directions are adjusted to the directions B, C, and D, respectively, wherein the directions A, B, C, and D are spaced 90 degrees in turn.
  • the rotation motor 130 can reuse the vibration motor in the terminal device 100, which is in the non-vibration working state.
  • Clockwise or counterclockwise rotation can be achieved, so that the millimeter-wave antenna module 114 can be driven to adjust the direction, so that the millimeter-wave radiation range of the millimeter-wave antenna module 114 can cover the radiation blind area, that is, it can eliminate or weaken the interference caused by the source. interference.
  • FIG. 8 is a schematic diagram of an anti-interference control device 110 provided by another embodiment of the present application.
  • the anti-interference control device 110 includes: one or more control processors 115 and a memory 116 .
  • a control processor 115 and a memory 116 are taken as an example.
  • control processor 115 and the memory 116 may be connected through a bus or in other ways, and the connection through a bus is taken as an example in FIG. 8 .
  • the memory 116 can be used to store non-transitory software programs and non-transitory computer-executable programs. Additionally, memory 116 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device. In some embodiments, the memory 116 may include remote memories located remotely from the control processor 115, which may be connected to the control processor 115 through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the anti-interference control device 110 and the application scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. With the evolution of the anti-interference control device 110 and the emergence of new application scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the anti-interference control device 110 shown in FIG. 8 does not constitute a limitation to the embodiments of the present application, and may include more or less components than those shown in the figure, or combine certain components, or Different component arrangements.
  • the corresponding anti-jamming control method can be executed by the control processor 115 based on the instructions stored in the memory 116 thereof.
  • FIG. 9 is a flowchart of an anti-jamming control method provided by an embodiment of the present application, which can be applied to the anti-jamming control apparatus in the embodiment shown in FIG. 1 or FIG. 8 , and the anti-jamming control method includes: But not limited to steps S100 to S300.
  • Step S100 controlling the interference detection component to obtain channel quality parameters from the millimeter-wave antenna module
  • Step S200 in response to the interference detection component determining according to the channel quality parameter that the millimeter wave signal sent by the millimeter wave antenna module is interfered, controlling the interference source detection component to obtain the position information of the interference source;
  • Step S300 Acquire location information from the interference source detection component, and perform anti-interference processing corresponding to the location information according to the location information.
  • the channel quality parameter from the millimeter-wave antenna module can be obtained through the interference detection component, so as to determine the interference situation of the millimeter-wave antenna module, and under the condition that the millimeter-wave signal is determined to be interfered, it can be determined according to the interference detection component.
  • the interference source detection component detects the location information of the interference source, so that the user can understand the cause of the interference of the millimeter wave signal, and then can perform anti-interference processing corresponding to the location information based on the control component, that is, it can be based on the actual scene and application environment. Therefore, this can help to improve the anti-interference ability of the millimeter-wave antenna module, and correspondingly, it can also further improve the throughput of the terminal. performance.
  • the specific implementation of the anti-interference control method in this embodiment may refer to the above-mentioned embodiment.
  • the specific implementation manner of the anti-jamming control method in this embodiment will not be repeated here.
  • FIG. 10 is a flowchart of an anti-jamming control method provided by an embodiment of the present application, wherein, in step S200, “determining that the millimeter-wave signal sent by the millimeter-wave antenna module is interfered according to the channel quality parameter” includes: But it is not limited to step S210.
  • Step S210 when the channel quality parameter of the millimeter-wave antenna module is greater than the first channel quality parameter threshold, it is determined that the millimeter-wave signal sent by the millimeter-wave antenna module is interfered.
  • the interference detection component can determine the millimeter-wave signal sent by the millimeter-wave antenna module. It can be seen that the interference result of the millimeter-wave signal can be easily and effectively obtained by numerical comparison; on the contrary, if the channel quality parameter of the millimeter-wave antenna module is not greater than the first channel quality parameter threshold, then the interference detection component It can be determined that the millimeter-wave signal sent by the millimeter-wave antenna module is not interfered, that is, in the case that the millimeter-wave signal is not interfered, the subsequent interference source detection component and control component are not required to perform corresponding operations.
  • the specific implementation of the anti-interference control method in this embodiment may refer to the above-mentioned embodiment.
  • the specific implementation manner of the anti-jamming control method in this embodiment will not be repeated here.
  • FIG. 11 is a flowchart of an anti-jamming control method provided by an embodiment of the present application, wherein the anti-jamming control method can also be applied to the anti-jamming control device shown in FIG. 4 , that is, wherein
  • the interference source detection component includes a radiator and a radiation signal detection component connected to the radiator.
  • "controlling the interference source detection component to obtain the position information of the interference source” in step S200 includes but is not limited to steps S220 to S230.
  • Step S220 controlling the radiation signal detection component to emit radiation signals through the radiator
  • Step S230 in response to the radiation signal detection unit acquiring the feedback signal from the radiator, control the radiation signal detection unit to determine the position information of the interference source according to the feedback signal, wherein the feedback signal is obtained by reflecting the radiation signal by the interference source.
  • the feedback signal reflected by the interference source can be obtained by transmitting the radiation signal through the radiator, so that two sets of signals, namely the radiation signal and the feedback signal, can be determined.
  • the difference between the group signals can determine the influence of the position of the interference source on the corresponding signal, and then determine the position information of the interference source. It can be seen that in this process, there is no need to obtain the interference source based on the millimeter wave antenna module.
  • the location information can improve the detection accuracy. At the same time, it does not involve complex algorithms, and only needs to be measured through information interaction. Therefore, the detection is more convenient and effective.
  • the specific implementation of the anti-interference control method in this embodiment may refer to the above-mentioned embodiment.
  • the specific implementation manner of the anti-jamming control method in this embodiment will not be repeated here.
  • FIG. 12 is a flowchart of an anti-jamming control method provided by an embodiment of the present application, wherein the anti-jamming control method can also be applied to the anti-jamming control device shown in FIG. 5 or FIG. 6 , wherein, in step S300, "performing anti-interference processing corresponding to the location information according to the location information" includes but is not limited to step S310.
  • Step S310 determining the grip position adjustment guide information and/or the three-dimensional beam information according to the position information, and prompting the grip position adjustment guide information and/or the three-dimensional beam information to the user through the information prompting component.
  • corresponding grip adjustment guidance information and/or three-dimensional beam information can be provided according to the position information.
  • the information prompting component will prompt the user, so that the user can make corresponding adjustments according to the guide, so as to remove or weaken the interference caused by the interference source.
  • the specific implementation of the anti-interference control method in this embodiment may refer to the above-mentioned embodiment.
  • the specific implementation manner of the anti-jamming control method in this embodiment will not be repeated here.
  • FIG. 13 is a flowchart of an anti-jamming control method provided by an embodiment of the present application, wherein the anti-jamming control method can also be applied to the anti-jamming control device shown in FIG. 7 , wherein the steps In S300, "performing anti-interference processing corresponding to the location information according to the location information" also includes but is not limited to step S320.
  • Step S320 controlling the driving component to adjust the position of the millimeter wave antenna module in the terminal device according to the position information.
  • the position of the millimeter-wave antenna module in the terminal device can be directly adjusted by the driving component, that is, by changing the relative position between the millimeter-wave antenna module and the interference source, so that the millimeter-wave antenna module can be adjusted.
  • the driving component that is, by changing the relative position between the millimeter-wave antenna module and the interference source, so that the millimeter-wave antenna module can be adjusted.
  • Group anti-jamming adjustment
  • the specific implementation of the anti-interference control method in this embodiment may refer to the above-mentioned embodiment.
  • the specific implementation manner of the anti-jamming control method in this embodiment will not be repeated here.
  • an embodiment of the present application further provides a terminal device, where the terminal device includes: the anti-jamming control apparatus in the embodiment shown in FIG. 1 or the anti-jamming control apparatus shown in the embodiment of FIG. 8 .
  • the non-transitory software programs and instructions required to implement the anti-jamming control method of the above-mentioned embodiment are stored in the memory, and when executed by the processor, the anti-jamming control method of the above-mentioned embodiment is executed.
  • Method steps S100 to S300 in FIG. 9 Method steps S210 in FIG. 10 , method steps S220 to S230 in FIG. 11 , method steps S310 in FIG. 12 or method step S320 in FIG. 13 .
  • the terminal device in this embodiment may be applied to the anti-interference control apparatus in the embodiment shown in FIG. 1 or the anti-jamming control apparatus shown in the embodiment of FIG. 8 , and these embodiments belong to the same Therefore, these embodiments have the same realization principle and technical effect, and will not be described in detail here.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, that is, may be located in one place, or may be distributed to a plurality of units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • an embodiment of the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, by the above-mentioned Executed by a processor in the embodiment, the above-mentioned processor can execute the anti-interference control method in the above-mentioned embodiment, for example, the above-described method steps S100 to S300 in FIG. 9 , method steps S210 in FIG. 10 , Method steps S220 to S230 in FIG. 11 , method step S310 in FIG. 12 or method step S320 in FIG. 13 .
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .
  • the anti-interference control device includes an interference detection component connected with the millimeter wave antenna module, an interference source detection component connected with the interference detection component, and a control component connected with the interference source detection component;
  • the interference detection component is set to Determine whether the millimeter-wave signal sent by the millimeter-wave antenna module is interfered according to the channel quality parameter from the millimeter-wave antenna module;
  • the interference source detection component is set to determine the millimeter-wave signal sent by the millimeter-wave antenna module in the interference detection component In the case of interference, the location information of the interference source is detected;
  • the control component is configured to perform anti-interference processing corresponding to the location information according to the location information from the interference source detection component; wherein the terminal device includes a millimeter wave antenna module.
  • the interference detection component it can be determined whether the millimeter-wave signal sent by the millimeter-wave antenna module is interfered, so that the anti-interference control device can accurately judge the interference of the millimeter-wave antenna module under the current conditions, so that the millimeter-wave antenna can be determined.
  • the location information of the interference source can be detected according to the interference source detection component, so that the user can understand the cause of the interference of the millimeter-wave signal, and then can
  • the anti-interference processing corresponding to the location information is performed based on the control component, that is, the anti-interference adjustment can be performed correspondingly according to the actual scene and application environment, so that the interference caused by the interference source to the millimeter wave signal can be solved. Therefore, this The anti-interference capability of the millimeter-wave antenna module can be assisted to improve, and correspondingly, the throughput performance of the terminal can also be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

抗干扰控制装置及其方法、终端设备、计算机可读存储介质。其中,所述抗干扰控制装置包括:与毫米波天线模组连接的干扰检测组件,被设置成根据来自毫米波天线模组的信道质量参数确定毫米波天线模组所发出的毫米波信号是否受到干扰;以及与干扰检测组件连接的干扰源检测组件,被设置成在干扰检测组件确定毫米波天线模组所发出的毫米波信号受到干扰的情况下,检测干扰源的位置信息;与干扰源检测组件连接的控制组件,被设置成根据来自干扰源检测组件的位置信息执行与位置信息对应的抗干扰处理;其中,终端设备包括毫米波天线模组。

Description

抗干扰控制装置及其方法、终端设备、可读存储介质
相关申请的交叉引用
本申请基于申请号为202011043478.4、申请日为2020年09月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信技术领域,尤其涉及一种抗干扰控制装置及其方法、终端设备、计算机可读存储介质。
背景技术
随着5G通信技术的发展,部分终端中已经开始应用毫米波来进行通讯,相比于传统技术中的通讯方式,采用毫米波的通讯效果会更好,但是,由于毫米波的波长较短,其对应的衍射能力不强,因此,其穿透能力相对较弱,很容易受到外部物体所带来的通信干扰,相应地,如何抗干扰成为当前针对5G毫米波技术的一个重要课题。目前,在一些情况中,在使用毫米波通信设备进行通信时,通过对毫米波天线或者基站一侧进行波束管理可以实现抗干扰操作,但是该调节方式较为单一且具有限制性,对于毫米波通信设备而言,实际执行起来的抗干扰效果并不好。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种抗干扰控制装置及其方法、终端设备、计算机可读存储介质。
第一方面,本申请实施例提供了一种抗干扰控制装置,设置于终端设备内,所述终端设备包括毫米波天线模组,所述抗干扰控制装置包括:干扰检测组件,与所述毫米波天线模组连接,被设置成根据来自所述毫米波天线模组的信道质量参数确定所述毫米波天线模组所发出的毫米波信号是否受到干扰;干扰源检测组件,与所述干扰检测组件连接,被设置成在所述干扰检测组件确定所述毫米波天线模组所发出的毫米波信号受到干扰的情况下,检测干扰源的位置信息;控制组件,与所述干扰源检测组件连接,被设置成根据来自所述干扰源检测组件的所述位置信息执行与所述位置信息对应的抗干扰处理。
第二方面,本申请实施例还提供了一种抗干扰控制方法,应用于抗干扰控制装置,所述抗干扰控制装置设置于终端设备内,所述终端设备包括毫米波天线模组,所述抗干扰控制装置包括干扰检测组件和干扰源检测组件,所述毫米波天线模组、所述干扰检测组件和所述干扰源检测组件依次连接;所述抗干扰控制方法包括:控制所述干扰检测组件获取来自所述毫米波天线模组的信道质量参数;响应于所述干扰检测组件根据所述信道质量参数确定所述毫米波天线模组所发出的毫米波信号受到干扰,控制所述干扰源检测组件获取干扰源的位置信息;获取来自所述干扰源检测组件的所述位置信息,并根据所述位置信息执 行与所述位置信息对应的抗干扰处理。
第三方面,本申请实施例还提供了一种抗干扰控制装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第二方面所述的抗干扰控制方法。
第四方面,本申请实施例还提供了一种终端设备,包括有如上述第一方面所述的抗干扰控制装置或者如上述第三方面所述的抗干扰控制装置。
第五方面,本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上第二方面所述的抗干扰控制方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的抗干扰控制装置的示意图;
图2是本申请一个实施例提供的终端设备的示意图;
图3是本申请一个实施例提供的抗干扰控制装置获取干扰源的位置信息的示意图;
图4是本申请另一个实施例提供的抗干扰控制装置获取干扰源的位置信息的示意图;
图5是本申请一个实施例提供的抗干扰控制装置执行与位置信息对应的抗干扰处理的示意图;
图6是本申请另一个实施例提供的抗干扰控制装置执行与位置信息对应的抗干扰处理的示意图;
图7是本申请另一个实施例提供的抗干扰控制装置执行与位置信息对应的抗干扰处理的示意图;
图8是本申请另一个实施例提供的抗干扰控制装置的示意图;
图9是本申请一个实施例提供的抗干扰控制方法的流程图;
图10是本申请另一个实施例提供的抗干扰控制方法的流程图;
图11是本申请另一个实施例提供的抗干扰控制方法的流程图;
图12是本申请另一个实施例提供的抗干扰控制方法的流程图;
图13是本申请另一个实施例提供的抗干扰控制方法的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别 类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例提供了一种抗干扰控制装置及其方法、终端设备、计算机可读存储介质,通过干扰检测组件能够确定毫米波天线模组所发出的毫米波信号是否受到干扰,以便于抗干扰控制装置能够准确判断毫米波天线模组在当前条件下受到干扰的情况,从而可以确定毫米波天线模组是否需要执行抗干扰处理,并且在确定毫米波信号受到干扰的情况下,能够根据干扰源检测组件检测出干扰源的位置信息,便于用户了解到毫米波信号受到干扰的形成原因,进而可基于控制组件执行与该位置信息对应的抗干扰处理,即,能够根据实际场景和应用环境来对应地执行抗干扰调节,从而能够解决该干扰源对毫米波信号所造成的干扰情况,因此,这能够辅助提高毫米波天线模组的抗干扰能力,相应地,也能够进一步提高终端的吞吐性能。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的抗干扰控制装置110的示意图。
在图1的示例中,该抗干扰控制装置110设置于终端设备100内,终端设备100包括毫米波天线模组114,该抗干扰控制装置110包括:
干扰检测组件111,与毫米波天线模组114连接,被设置成根据来自毫米波天线模组114的信道质量参数确定毫米波天线模组114所发出的毫米波信号是否受到干扰;
干扰源检测组件112,与干扰检测组件111连接,被设置成在干扰检测组件111确定毫米波天线模组114所发出的毫米波信号受到干扰的情况下,获取干扰源的位置信息;
控制组件113,与干扰源检测组件112连接,被设置成根据来自干扰源检测组件112的位置信息执行与位置信息对应的抗干扰处理。
在一实施例中,通过干扰检测组件111能够确定毫米波天线模组114所发出的毫米波信号是否受到干扰,以便于抗干扰控制装置110能够准确地判断毫米波天线模组114在当前条件下受到干扰的情况,从而可以确定毫米波天线模组114是否需要执行抗干扰处理,并且在确定毫米波信号受到干扰的情况下,能够根据干扰源检测组件112检测出干扰源的位置信息,便于用户了解到毫米波信号受到干扰的形成原因,进而可基于控制组件113执行与该位置信息对应的抗干扰处理,即,能够根据实际场景和应用环境来对应地执行抗干扰调节,从而能够解决该干扰源对毫米波信号所造成的干扰情况,因此,这能够辅助提高毫米波天线模组114的抗干扰能力,相应地,也能够进一步提高终端的吞吐性能。
在一实施例中,控制组件113能够根据实时反馈的位置信息进行闭环调节,即,控制组件113会继续监测执行过抗干扰处理之后的毫米波天线模组114的相关信息,若仍存在干扰源对毫米波天线模组114造成影响,即,干扰检测组件111仍确定毫米波天线模组114所发出的毫米波信号受到干扰,则控制组件113会继续执行与位置信息对应的抗干扰处理,直至毫米波天线模组114所发出的毫米波信号不再受到干扰为止。
在一实施例中,干扰检测组件111在获取到来自毫米波天线模组114的信道质量参数后,能够根据信道质量参数检测毫米波天线模组114的信号干扰状态和无线传输干扰状态,其中,信号干扰状态主要用于表征毫米波天线模组114在发出天线信号过程中所受到的干扰影响,无线传输干扰状态主要用于表征毫米波天线模组114在传输天线信号过程中所受到的干扰影响,上述两干扰状态均可以通过信道质量参数来进行确定。
在一实施例中,信道质量参数可以但不限于是:参考信号接收功率(Reference Signal  Receiving Power,RSRP)、误码率(Block Error Ratio,BLER)、信号噪声比(SIGNAL NOISE RATIO,SNR)、所接收的信号强度指示(Received Signal Strength Indication,RSSI)等,由于上述具体指标是本领域技术人员所熟知的,故在此不对其作赘述。
在一实施例中,通过预先设定的第一信道质量参数阈值,可以确定毫米波天线模组114所发出的毫米波信号的受干扰状态,即,响应于来自毫米波天线模组114的信道质量参数大于第一信道质量参数阈值,干扰检测组件111可以确定毫米波天线模组114所发出的毫米波信号受到干扰,可见,通过数值比较的方式可以简便有效地获取到毫米波信号的受干扰结果;反之,若毫米波天线模组114的信道质量参数不大于第一信道质量参数阈值,则干扰检测组件111可以确定毫米波天线模组114所发出的毫米波信号并未受到干扰,相应地,在毫米波信号并未受到干扰的这种情况下,也无需后续的干扰源检测组件112和控制组件113来执行相应操作。
在一实施例中,毫米波天线模组114可以是单独的毫米波天线,也可以是毫米波天线和射频前端器件组合在一起的天线模组,其可以分布在终端设备100的顶部、边框或边角区域。当毫米波天线模组114为阵列天线时,其数目可以是4组、8组、或者其它任意数目的天线阵列组合,能够实现不同形式下的正交极化辐射。
在一实施例中,当毫米波天线模组114包括不止一个时,不同的毫米波天线模组114所发出的毫米波信号之间可能会产生干扰,即在两者的波束方向上可能会产生干扰偏移,在这种情况下,干扰检测组件111可被设置成检测任一毫米波信号所受到的波束干扰情况,可以类比的,若毫米波天线模组114只设置为一个,但是在空间辐射范围内可能还存在着其它波束(比如存在多个终端设备100的情况),那么干扰检测组件111也可被设置成检测空间辐射范围内的其它波束对毫米波天线模组114所发出的毫米波信号是否造成干扰。
在一实施例中,干扰源可以但不限于是用户(包括用户身体的某些部位,比如手指、躯体等)、障碍物或者其它干扰波束等,应当说明的是,无论是用户、障碍物还是其它干扰波束均可能在毫米波天线模组114发出毫米波信号过程中产生干扰,也可能在其进行传输时产生干扰(比如用户或者障碍物阻挡在了毫米波天线模组114与基站之间)。
在一实施例中,干扰源检测组件112所获取到的位置信息可以是用户(包括用户身体的某些部位)或者障碍物的物理坐标信息,也可以是造成干扰的波束的出射方向信息等,这在本实施例中并未限制。
在一实施例中,终端设备100内还设置有与毫米波天线模组114相连接的毫米波调制解调模组,能够被设置成实现毫米波信号的发射、接收以及进行调制解调处理,毫米波调制解调模组但不限于毫米波射频芯片模块、毫米波数字信号处理单元等。
此外,本申请另一个实施例还提供了一种抗干扰控制装置,其中,干扰源检测组件包括辐射体和与辐射体连接的辐射信号检测部件;响应于干扰检测组件确定毫米波天线模组所发出的毫米波信号受到干扰,辐射信号检测部件通过辐射体发射辐射信号,并在获取到来自辐射体的反馈信号的情况下,根据反馈信号确定干扰源的位置信息,其中,反馈信号为由辐射信号被干扰源反射而得到。
在一实施例中,由于辐射信号能够被反射,因此,通过辐射体发射辐射信号即能够获取到干扰源所反射的反馈信号,从而能够确定两组信号,即辐射信号和反馈信号,通过比较两组信号之间的差异即可以确定干扰源的位置对于相应信号所带来的的影响,进而确定 干扰源的位置信息,可见,在该过程中,无需基于毫米波天线模组来进行获取干扰源的位置信息,可以提高检测准确性,同时,也并未涉及到复杂算法,而只需通过信息交互即可进行测量,因此,检测更加方便有效。
在一实施例中,干扰源检测组件还包括摄像组件,摄像组件能够对终端设备的周围进行图像检测,以便于确定用户或者障碍物的位置信息,其中,摄像组件可以包括不限制数量的摄像头或类似的摄像装置,比如,在终端设备的前置面和后置面上各设置一个摄像头,前置面摄像头用于检测用户阻挡情况,后置面摄像头有用于检测终端设备背面之后的障碍物阻挡情况,即也能够实现干扰源位置信息的获取,以下给出具体示例说明上述实施例的工作原理。
示例一
在如图2所示的终端设备100内,除了毫米波天线模组之外,还包括有其他类型的天线,这些其他类型的天线可以作为用于发射辐射信号的辐射体,比如主天线200(可以是2G、3G或4G下的蜂窝天线等)、蓝牙无线通讯天线300、全球定位系统接收天线400以及近场通讯感应天线500等,以其中任意一种或多种天线作为辐射体;或者,终端设备100内的任意一种或多种金属单元也可以作为辐射体,比如,如图2所示的终端设备100内的金属边框600,或者是终端设备100内的PVB主板上的金属线圈700。另外,辐射信号检测部件可以是用于降低比吸收率(衡量天线对人体的电磁辐射的指标)的检测芯片,如图2所示,该芯片内部设置有用于确定干扰源位置信息的电荷感应电路800,该电荷感应电路800能够与任一辐射体进行连接。
各天线及金属单元可以通过一定宽度与长度的屏蔽保护同轴线或微带线进行连接,连接线设置在电荷感应电路800的各通道位置上,由于上述各单元都会在对应的角度与待接触物之间形成一定的垂直投影区域,因此,通过该方向上的投影区域上和待接触物上的感应电荷之间的反射采集,即可判断出哪一个面或角接触到了待接触物,即,检测芯片以终端设备100对应的各天线及金属单元为参考平面(即以其作为探头阵列),而终端设备100所接触的平面,比如人体、物体等则作为感应平面,通过测量两个平面之间的微小电荷值变化,从而可判断终端设备100对应区域是否离开感应平面,其原理在于:如图3所示,其中终端设备100内的辐射体中的电荷棒电路可以持续向外辐射微量电荷信号,当辐射出的电荷信号遇到障碍物或用户(即干扰源)时部分会反射回来,反射回来的电荷数量值受到干扰源的距离及投影面积(即图3所示的终端设备100中的虚线区域部分)的影响,其中,干扰源的距离可通过如图3所示的使终端设备100靠近或远离干扰源来进行调整,最终电荷感应电路800再将反射回来的电荷数量采集起来,基于模数转换器(Analog To Digital Converter,ADC)通过模数转换为对应的数字信号值并存储在对应的寄存器中,其中,感应电荷量和可探测距离由灵敏度增益参数控制,其同时与测试距离成反比以及与感应投影面积成正比,因此,通过比较电荷量变化则可以确定两者之间的测试距离和投影面积,从而基于此获取到干扰源的位置信息。
值得说明的是,由于不同障碍物的电导率和介电常数不同,比如接触的材质可能为金属材品、木制品、玻璃材质品、皮制品、布料、人手、塑料或者不同温度及湿度的空气等,当障碍物和终端设备对应各天线或金属单元形成感应区间后,对于微量电荷的反射值也会不同,因此,在检测之前,可以预先设定电荷反射模型的典型值并配合设定相应的波动范 围,以之作为阈值存储起来,这样针对任意一种材质的障碍物,通过所检测到的感应电荷量不同,都能够判断出辐射体与该材质的障碍物之间的距离关系,即,能够获取到干扰源的位置信息。
如图4所示,图4是本申请另一个实施例提供的抗干扰控制装置获取干扰源的位置信息的示意图。
在图4的示例中,基于与上述实施例同样的原理可知,当用户从位置1移动到位置2时,天线扫描从角度1切换到角度2,电荷感应电路则能够探测到反射信号,从而可探测到在该方向上有用户存在。
此外,本申请另一个实施例还提供了一种抗干扰控制装置,其中,终端设备还包括信息提示部件,信息提示部件与控制组件连接;响应于控制组件获取到来自干扰源检测组件的位置信息,控制组件根据位置信息确定握姿调整指引信息和/或三维波束信息,并通过信息提示部件向用户提示握姿调整指引信息和/或三维波束信息。
在本实施例中,在获取到来自干扰源检测组件的位置信息之后,即此时已经确定干扰源的位置信息,则控制组件能够根据该位置信息提供相应的握姿调整指引信息和/或三维波束信息,并由信息提示部件向用户进行提示,使得用户能够根据指引来进行相应调整,从而解除或削弱干扰源所造成的干扰。值得注意的是,握姿调整和三维波束调整是从不同参照来进行设置的,即,在实际中可以仅采用其中一种方式来进行调整,或者同时采用两种方式进行调整,但基于相应调整所获得的抗干扰效果是相同的,因此,本实施例采用了上述的“和/或”的相关描述。
在一实施例中,信息提示部件可以是扬声器,也可以是显示屏,当其为扬声器时,通过语音播放握姿调整指引信息和三维波束信息,当其为显示屏时,以视频或图像方式指引用户进行握姿调整。
在一实施例中,握姿调整指引信息主要适用于用户握持终端设备所造成的干扰情况,此时通知用户调整握姿即能够避免干扰情况,以下给出具体示例说明该实施例的工作原理,如图5所示,图5是本申请一个实施例提供的抗干扰控制装置执行与位置信息对应的抗干扰处理的示意图。
示例二
如图5所示,在终端设备100的使用过程中,由于用户手指或手掌接触到手机边框对应的位置时会形成的一定的阻挡效应,因此这会将毫米波信号大部分阻挡或衰减掉,比如,若手机边缘在某一个区域有手指或手掌握持,且握持位置刚好是毫米波天线模组114位置附近,则该握姿会造成干扰(如图5所示,由于手指的阻挡作用,使得单个毫米波天线模组114的辐射信号部分被遮挡,即只能向部分方向进行辐射),当控制组件获取到该握姿信息后,则能够根据该握姿确定其对应的握姿调整信息,并在信息提示部件上进行提示,比如,以显示的方式进行提示,可以是,不同位置的触点会以不同的颜色或图案进行显示,在这里可以以固定的颜色进行表示,比如显示红色则为信号较差的接触点,黑色则为信号不受影响的接触点,绿色则为信号增强的接触点,因此,信息提示部件可以显示终端设备100上的不同颜色的接触点,从而为用户提供握姿指引提示。
此外,如果终端设备的当前无线信号不佳,即可能出现天线信号传输受到干扰,此时检测出当前用户的握姿和当前终端设备的无线模式不匹配,同样,信息提示部件也会显示 当前触点颜色状态并提示最佳触点位置,用户看到提示之后即可改变握姿或手指接触点,从而降低当前天线信号所受到的干扰,提高天线信号的通信质量。
在一实施例中,终端设备内还设置有波束存储管理模块,其被设置成实现毫米波天线模组的波束信息存储和管理,涉及到波束扫描范围、波束间隔、波束全向累积分布函数值以及任一波束的有效辐射功率等。其中,波束是毫米波天线模组工作时呈现的一种状态,毫米波天线模组是以波束为基本单元进行无线连接的,对应地,每一波束都会辐射一定的功率。毫米波天线模组内可以包括有若干个波束,同时这些波束也可以有不同的种类,并且在空间方位上可以进行不同位置的划分,并且,波束也可以分为两大类,一类是V极化条件下的,另一类是H极化条件下的,其可以分别对应到不同毫米波天线模组。可见,采用波束存储管理模块,能够将预先测试出的上述毫米波天线模组的波束信息以参数表的形式与任一波束信息的ID所对应起来,并将其存储到对应的模块中,同时将其划分为不同的区域,使得不同区域对应不同的毫米波辐射区间范围,便于控制组件进行对比调用。
在一实施例中,三维波束信息用于表征此时毫米波天线模组的波束出射情况,即此时的出射波束受到障碍物所影响的情况,从而指引调整终端设备的位置来避免该障碍物对出射波束所造成的的干扰,以下给出具体示例说明该实施例的工作原理,如图6所示,图6是本申请另一个实施例提供的抗干扰控制装置执行与位置信息对应的抗干扰处理的示意图。
示例三
如图6所示,信息提示部件120采用可视化的操作导引界面,从而能够为用户实现可视化的方向角度切换指引,其开启和关闭可以通过终端设备100的UI上相关设置来勾选调出对应窗口,进而反馈当前的三维波束的扫描状况,比如,哪些波束在进行扫描、相应波束的扫描角度范围等,不同方向的波束会以不同的颜色或图案进行显示,比如,绿色扫描区域表示天线信号更强,红色扫描区域表示天线信号更弱,或者,也可以通过数值直接计算出天线信号的强弱,从而给出相应的位置指引(比如,图6中所示的终端设备100的位置指引)。可以看出,如图4所示,若当前用户的位置或操控方式与基站之间出现角度失配,或者遇到障碍物阻挡等,均超出了波束的扫描范围,即落入波束扫描盲区,以致于无法正常进行通讯,这会导致毫米波通讯的吞吐率降低,因此,此时需要进行三维波束调整操作,比如,用户通过操作导引界面来调整自身的方向位置,从而实现水平方向上360度的旋转调整以及垂直方向上360度的纵向调整,从而实现三维波束调整,以解除或削弱干扰源所造成的干扰。
此外,本申请另一个实施例还提供了一种抗干扰控制装置,其中,终端设备还包括驱动组件,驱动组件分别与毫米波天线模组和控制组件连接;响应于控制组件获取到来自干扰源检测组件的位置信息,控制组件根据位置信息控制驱动组件调整毫米波天线模组在终端设备中的位置。
在一实施例中,通过驱动组件能够直接调整毫米波天线模组在终端设备中的位置,即,通过改变毫米波天线模组与干扰源之间的相对位置,从而能够实现对于毫米波天线模组的抗干扰调整。
在一实施例中,驱动组件可以是任意一种类型的驱动部件,比如,可以是马达、电机等,本领域技术人员可以根据实际情况进行选择,并不限定。
以下给出具体示例说明上述实施例的工作原理,如图7所示,图7是本申请另一个实施例提供的抗干扰控制装置执行与位置信息对应的抗干扰处理的示意图。
示例四
当终端设备的方向和用户位置不方便调整时,或者当前的毫米波天线模组的数量较少,无法实现全向强信号范围内的大面积覆盖,同时此时波束处于毫米波辐射盲区内,则可以通过驱动组件来调整毫米波天线模组的位置,从而实现将毫米波天线模组切换到毫米波辐射盲区内进行工作,比如,假定某一毫米波天线模组的主瓣辐射范围为90°,如果在一个终端设备上要实现与基站之间的360度无死角通讯,则需要将该毫米波天线模组进行4个方向上的切换调整。
如图7所示,当前毫米波天线模组114的位置朝向为方向A且受到用户手指的阻挡,且旋转马达130与毫米波天线模组114相连接,则能够控制毫米波天线模组114的方向分别调整到B、C和D方向,其中,方向A、B、C和D之间依次间隔90度,该旋转马达130可以复用终端设备100内的振动马达,其在非振动工作状态时可以实现顺时针或逆时针转动,从而能够带动毫米波天线模组114进行方向调整,使得毫米波天线模组114的毫米波辐射范围能够覆盖到辐射盲区,即,能够解除或削弱干扰源所造成的干扰。
参照图8,图8是本申请另一个实施例提供的抗干扰控制装置110的示意图。
如图8所示,该抗干扰控制装置110包括:一个或多个控制处理器115和存储器116,图8中以一个控制处理器115及一个存储器116为例。
控制处理器115和存储器116可以通过总线或者其他方式连接,图8中以通过总线连接为例。
存储器116作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器116可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器116可包括相对于控制处理器115远程设置的远程存储器,这些远程存储器可以通过网络连接至该控制处理器115。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例描述的抗干扰控制装置110以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着抗干扰控制装置110的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图8中示出的抗干扰控制装置110并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在图8所示的抗干扰控制装置110中,可通过其存储器116内部所存储的指令,由控制处理器115基于该指令进行执行相应的抗干扰控制方法。
基于上述抗干扰控制装置110的结构,提出本申请的抗干扰控制方法的各个实施例。
如图9所示,图9是本申请一个实施例提供的抗干扰控制方法的流程图,可以应用于如图1或图8所示实施例中的抗干扰控制装置,该抗干扰控制方法包括但不限于步骤S100至S300。
步骤S100,控制干扰检测组件获取来自毫米波天线模组的信道质量参数;
步骤S200,响应于干扰检测组件根据信道质量参数确定毫米波天线模组所发出的毫米波信号受到干扰,控制干扰源检测组件获取干扰源的位置信息;
步骤S300,获取来自干扰源检测组件的位置信息,并根据位置信息执行与位置信息对应的抗干扰处理。
在一实施例中,通过干扰检测组件能够获取来自毫米波天线模组的信道质量参数,以便于确定毫米波天线模组受到干扰的情况,并且在确定毫米波信号受到干扰的条件下,能够根据干扰源检测组件检测出干扰源的位置信息,便于用户了解到毫米波信号受到干扰的形成原因,进而可基于控制组件执行与该位置信息对应的抗干扰处理,即,能够根据实际场景和应用环境来对应地执行抗干扰调节,从而能够解决该干扰源对毫米波信号所造成的干扰情况,因此,这能够辅助提高毫米波天线模组的抗干扰能力,相应地,也能够进一步提高终端的吞吐性能。
值得注意的是,由于本实施例中的抗干扰控制方法与上述实施例中的抗干扰控制装置属于同一发明构思,因此本实施例中的抗干扰控制方法的具体实施方式,可以参照上述实施例中的抗干扰控制装置的具体实施例,为避免冗余,本实施例的抗干扰控制方法的具体实施方式在此不再赘述。
如图10所示,图10是本申请一个实施例提供的抗干扰控制方法的流程图,其中,步骤S200中“根据信道质量参数确定毫米波天线模组所发出的毫米波信号受到干扰”包括但不限于步骤S210。
步骤S210,当毫米波天线模组的信道质量参数大于第一信道质量参数阈值,确定毫米波天线模组所发出的毫米波信号受到干扰。
在一实施例中,基于干扰检测组件通过预先设定的第一信道质量参数阈值与当前毫米波天线模组的信道质量参数之间的比较,可以确定毫米波天线模组所发出的毫米波信号的受干扰状态,可见通过数值比较的方式可以简便有效地获取到毫米波信号的受干扰结果;反之,若毫米波天线模组的信道质量参数不大于第一信道质量参数阈值,则干扰检测组件可以确定毫米波天线模组所发出的毫米波信号并未受到干扰,即,在毫米波信号并未受到干扰的这种情况下,也无需后续的干扰源检测组件和控制组件来执行相应操作。
值得注意的是,由于本实施例中的抗干扰控制方法与上述实施例中的抗干扰控制装置属于同一发明构思,因此本实施例中的抗干扰控制方法的具体实施方式,可以参照上述实施例中的抗干扰控制装置的具体实施例,为避免冗余,本实施例的抗干扰控制方法的具体实施方式在此不再赘述。
如图11所示,图11是本申请一个实施例提供的抗干扰控制方法的流程图,其中,该抗干扰控制方法还可以应用于如图4中所示的抗干扰控制装置,即,其中的干扰源检测组件包括辐射体和与辐射体连接的辐射信号检测部件,相应地,步骤S200中“控制干扰源检测组件获取干扰源的位置信息”包括但不限于步骤S220至S230。
步骤S220,控制辐射信号检测部件通过辐射体发射辐射信号;
步骤S230,响应于辐射信号检测部件获取到来自辐射体的反馈信号,控制辐射信号检测部件根据反馈信号确定干扰源的位置信息,其中,反馈信号为由辐射信号被干扰源反射而得到。
在一实施例中,由于辐射信号能够被反射,因此,通过辐射体发射辐射信号即能够获取到干扰源所反射的反馈信号,从而能够确定两组信号,即辐射信号和反馈信号,通过比较两组信号之间的差异即可以确定干扰源的位置对于相应信号所带来的的影响,进而确定干扰源的位置信息,可见,在该过程中,无需基于毫米波天线模组来进行获取干扰源的位置信息,可以提高检测准确性,同时,也并未涉及到复杂算法,而只需通过信息交互即可进行测量,因此,检测更加方便有效。
值得注意的是,由于本实施例中的抗干扰控制方法与上述实施例中的抗干扰控制装置属于同一发明构思,因此本实施例中的抗干扰控制方法的具体实施方式,可以参照上述实施例中的抗干扰控制装置的具体实施例,为避免冗余,本实施例的抗干扰控制方法的具体实施方式在此不再赘述。
如图12所示,图12是本申请一个实施例提供的抗干扰控制方法的流程图,其中,该抗干扰控制方法还可以应用于如图5或图6中所示的抗干扰控制装置,其中,步骤S300中“根据位置信息执行与位置信息对应的抗干扰处理”包括但不限于步骤S310。
步骤S310,根据位置信息确定握姿调整指引信息和/或三维波束信息,并通过信息提示部件向用户提示握姿调整指引信息和/或三维波束信息。
在一实施例中,在获取到来自干扰源检测组件的位置信息之后,即此时已经确定干扰源的位置信息,则能够根据该位置信息提供相应的握姿调整指引信息和/或三维波束信息,并由信息提示部件向用户进行提示,使得用户能够根据指引来进行相应调整,从而解除或削弱干扰源所造成的干扰。
值得注意的是,由于本实施例中的抗干扰控制方法与上述实施例中的抗干扰控制装置属于同一发明构思,因此本实施例中的抗干扰控制方法的具体实施方式,可以参照上述实施例中的抗干扰控制装置的具体实施例,为避免冗余,本实施例的抗干扰控制方法的具体实施方式在此不再赘述。
如图13所示,图13是本申请一个实施例提供的抗干扰控制方法的流程图,其中,该抗干扰控制方法还可以应用于如图7中所示的抗干扰控制装置,其中,步骤S300中“根据位置信息执行与位置信息对应的抗干扰处理”还包括但不限于步骤S320。
步骤S320,根据位置信息控制驱动组件调整毫米波天线模组在终端设备中的位置。
在一实施例中,通过驱动组件能够直接调整毫米波天线模组在终端设备中的位置,即,通过改变毫米波天线模组与干扰源之间的相对位置,从而能够实现对于毫米波天线模组的抗干扰调整。
值得注意的是,由于本实施例中的抗干扰控制方法与上述实施例中的抗干扰控制装置属于同一发明构思,因此本实施例中的抗干扰控制方法的具体实施方式,可以参照上述实施例中的抗干扰控制装置的具体实施例,为避免冗余,本实施例的抗干扰控制方法的具体实施方式在此不再赘述。
另外,本申请的一个实施例还提供了一种终端设备,该终端设备包括:如图1所示实施例中的抗干扰控制装置或者如图8实施例所示的抗干扰控制装置。
其中,实现上述实施例的抗干扰控制方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例的抗干扰控制方法,例如,执行以上描述的图9中的方法步骤S100至步骤S300、图10中的方法步骤S210、图11中的方法步骤S220至 S230、图12中的方法步骤S310或图13中的方法步骤S320。
需要说明的是,本实施例中的终端设备,可以应用于如图1所示实施例中的抗干扰控制装置或者如图8实施例所示的抗干扰控制装置,这些实施例均属于相同的发明构思,因此这些实施例具有相同的实现原理以及技术效果,此处不再详述。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的抗干扰控制方法,例如,执行以上描述的图9中的方法步骤S100至步骤S300、图10中的方法步骤S210、图11中的方法步骤S220至S230、图12中的方法步骤S310或图13中的方法步骤S320。本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本申请实施例包括:抗干扰控制装置包括与毫米波天线模组连接的干扰检测组件、与干扰检测组件连接的干扰源检测组件以及与干扰源检测组件连接的控制组件;干扰检测组件被设置成根据来自毫米波天线模组的信道质量参数确定毫米波天线模组所发出的毫米波信号是否受到干扰;干扰源检测组件被设置成在干扰检测组件确定毫米波天线模组所发出的毫米波信号受到干扰的情况下,检测干扰源的位置信息;控制组件被设置成根据来自干扰源检测组件的位置信息执行与位置信息对应的抗干扰处理;其中,终端设备包括毫米波天线模组。通过干扰检测组件能够确定毫米波天线模组所发出的毫米波信号是否受到干扰,以便于抗干扰控制装置能够准确判断毫米波天线模组在当前条件下受到干扰的情况,从而可以确定毫米波天线模组是否需要执行抗干扰处理,并且在确定毫米波信号受到干扰的情况下,能够根据干扰源检测组件检测出干扰源的位置信息,便于用户了解到毫米波信号受到干扰的形成原因,进而可基于控制组件执行与该位置信息对应的抗干扰处理,即,能够根据实际场景和应用环境来对应地执行抗干扰调节,从而能够解决该干扰源对毫米波信号所造成的干扰情况,因此,这能够辅助提高毫米波天线模组的抗干扰能力,相应地,也能够进一步提高终端的吞吐性能。
以上是对本申请的一些实施方式进行的具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (12)

  1. 一种抗干扰控制装置,设置于终端设备内,其中,所述终端设备包括毫米波天线模组,所述抗干扰控制装置包括:
    干扰检测组件,与所述毫米波天线模组连接,被设置成根据来自所述毫米波天线模组的信道质量参数确定所述毫米波天线模组所发出的毫米波信号是否受到干扰;
    干扰源检测组件,与所述干扰检测组件连接,被设置成在所述干扰检测组件确定所述毫米波天线模组所发出的毫米波信号受到干扰的情况下,获取干扰源的位置信息;
    控制组件,与所述干扰源检测组件连接,被设置成根据来自所述干扰源检测组件的所述位置信息执行与所述位置信息对应的抗干扰处理。
  2. 根据权利要求1所述的抗干扰控制装置,其中:
    响应于来自所述毫米波天线模组的信道质量参数大于第一信道质量参数阈值,所述干扰检测组件确定所述毫米波天线模组所发出的毫米波信号受到干扰。
  3. 根据权利要求1所述的抗干扰控制装置,其中:所述干扰源检测组件包括辐射体和与所述辐射体连接的辐射信号检测部件;
    响应于所述干扰检测组件确定所述毫米波天线模组所发出的毫米波信号受到干扰,所述辐射信号检测部件通过所述辐射体发射辐射信号,并在获取到来自所述辐射体的反馈信号的情况下,根据所述反馈信号确定干扰源的位置信息,其中,所述反馈信号为由所述辐射信号被干扰源反射而得到。
  4. 根据权利要求1至3任意一项所述的抗干扰控制装置,其中,所述终端设备还包括信息提示部件,所述信息提示部件与所述控制组件连接;
    响应于所述控制组件获取到来自所述干扰源检测组件的所述位置信息,所述控制组件根据所述位置信息确定握姿调整指引信息和/或三维波束信息,并通过所述信息提示部件向用户提示所述握姿调整指引信息和/或所述三维波束信息。
  5. 根据权利要求1至3任意一项所述的抗干扰控制装置,其中,所述终端设备还包括驱动组件,所述驱动组件分别与所述毫米波天线模组和所述控制组件连接;
    响应于所述控制组件获取到来自所述干扰源检测组件的所述位置信息,所述控制组件根据所述位置信息控制所述驱动组件调整所述毫米波天线模组在所述终端设备中的位置。
  6. 一种抗干扰控制方法,应用于抗干扰控制装置,其中,所述抗干扰控制装置设置于终端设备内,所述终端设备包括毫米波天线模组,所述抗干扰控制装置包括干扰检测组件和干扰源检测组件,所述毫米波天线模组、所述干扰检测组件和所述干扰源检测组件依次连接;
    所述抗干扰控制方法包括:
    控制所述干扰检测组件获取来自所述毫米波天线模组的信道质量参数;
    响应于所述干扰检测组件根据所述信道质量参数确定所述毫米波天线模组所发出的毫米波信号受到干扰,控制所述干扰源检测组件获取干扰源的位置信息;
    获取来自所述干扰源检测组件的所述位置信息,并根据所述位置信息执行与所述位置信息对应的抗干扰处理。
  7. 根据权利要求6所述的抗干扰控制方法,其中,所述干扰源检测组件包括辐射体和 与所述辐射体连接的辐射信号检测部件;
    所述控制所述干扰源检测组件获取干扰源的位置信息,包括:
    控制所述辐射信号检测部件通过所述辐射体发射辐射信号;
    响应于所述辐射信号检测部件获取到来自所述辐射体的反馈信号,控制所述辐射信号检测部件根据所述反馈信号确定干扰源的位置信息,其中,所述反馈信号为由所述辐射信号被干扰源反射而得到。
  8. 根据权利要求6或7所述的抗干扰控制方法,其中,所述终端设备还包括信息提示部件;所述根据所述位置信息执行与所述位置信息对应的抗干扰处理,包括:
    根据所述位置信息确定握姿调整指引信息和/或三维波束信息,并通过所述信息提示部件向用户提示所述握姿调整指引信息和/或所述三维波束信息。
  9. 根据权利要求6或7所述的抗干扰控制方法,其中,所述终端设备还包括驱动组件,所述驱动组件与所述毫米波天线模组连接;所述根据所述位置信息执行与所述位置信息对应的抗干扰处理,包括:
    根据所述位置信息控制所述驱动组件调整所述毫米波天线模组在所述终端设备中的位置。
  10. 一种抗干扰控制装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求6至9中任意一项所述的抗干扰控制方法。
  11. 一种终端设备,包括有如权利要求1至5任意一项所述的抗干扰控制装置或者如权利要求10所述的抗干扰控制装置。
  12. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求6至9中任意一项所述的抗干扰控制方法。
PCT/CN2021/110920 2020-09-28 2021-08-05 抗干扰控制装置及其方法、终端设备、可读存储介质 WO2022062714A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023515656A JP2023540607A (ja) 2020-09-28 2021-08-05 干渉防止制御装置及びその方法、端末機器、読み取り可能な記憶媒体
KR1020237007609A KR20230048367A (ko) 2020-09-28 2021-08-05 간섭방지 제어장치 및 그 방법, 단말 설비, 판독가능 저장 매체
US18/025,424 US20230327691A1 (en) 2020-09-28 2021-08-05 Anti-interference control apparatus and method, terminal device, and readable storage medium
EP21871091.1A EP4199382A4 (en) 2020-09-28 2021-08-05 ANTI-INTERFERENCE CONTROL APPARATUS AND METHOD, TERMINAL DEVICE AND READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011043478.4 2020-09-28
CN202011043478.4A CN114285498A (zh) 2020-09-28 2020-09-28 抗干扰控制装置及其方法、终端设备、可读存储介质

Publications (1)

Publication Number Publication Date
WO2022062714A1 true WO2022062714A1 (zh) 2022-03-31

Family

ID=80844839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110920 WO2022062714A1 (zh) 2020-09-28 2021-08-05 抗干扰控制装置及其方法、终端设备、可读存储介质

Country Status (6)

Country Link
US (1) US20230327691A1 (zh)
EP (1) EP4199382A4 (zh)
JP (1) JP2023540607A (zh)
KR (1) KR20230048367A (zh)
CN (1) CN114285498A (zh)
WO (1) WO2022062714A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117007895B (zh) * 2023-10-07 2024-01-16 成都汉芯国科集成技术有限公司 一种毫米波抗干扰测试治具及测试工装总成
CN117728906B (zh) * 2024-02-05 2024-04-09 深圳市思翰铭科技有限公司 一种有源天线的抗干扰性能测试系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2974439A1 (en) * 2013-03-15 2016-01-20 ISCO International, LLC Method and appartus for signal interference processing
CN107276599A (zh) * 2016-04-07 2017-10-20 中兴通讯股份有限公司 抗干扰方法、电路及移动终端
CN108847906A (zh) * 2018-07-06 2018-11-20 西安电子科技大学 基于最佳协作搜寻算法的毫米波回程网络干扰管理方法
CN109407088A (zh) * 2017-08-18 2019-03-01 恩智浦有限公司 用于检测并缓解相互干扰的雷达单元、集成电路和方法
CN109765529A (zh) * 2018-12-30 2019-05-17 成都汇蓉国科微系统技术有限公司 一种基于数字波束形成的毫米波雷达抗干扰方法及系统
CN110971250A (zh) * 2019-04-02 2020-04-07 成都云溯新起点科技有限公司 一种单通道同频干扰检测与分离方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142147B2 (en) * 2004-11-22 2006-11-28 The Boeing Company Method and apparatus for detecting, locating, and identifying microwave transmitters and receivers at distant locations
US11205843B2 (en) * 2018-05-01 2021-12-21 Phase Sensitive Innovations, Inc. Phased-array radio frequency receiver and methods of operation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2974439A1 (en) * 2013-03-15 2016-01-20 ISCO International, LLC Method and appartus for signal interference processing
CN107276599A (zh) * 2016-04-07 2017-10-20 中兴通讯股份有限公司 抗干扰方法、电路及移动终端
CN109407088A (zh) * 2017-08-18 2019-03-01 恩智浦有限公司 用于检测并缓解相互干扰的雷达单元、集成电路和方法
CN108847906A (zh) * 2018-07-06 2018-11-20 西安电子科技大学 基于最佳协作搜寻算法的毫米波回程网络干扰管理方法
CN109765529A (zh) * 2018-12-30 2019-05-17 成都汇蓉国科微系统技术有限公司 一种基于数字波束形成的毫米波雷达抗干扰方法及系统
CN110971250A (zh) * 2019-04-02 2020-04-07 成都云溯新起点科技有限公司 一种单通道同频干扰检测与分离方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199382A4 *

Also Published As

Publication number Publication date
CN114285498A (zh) 2022-04-05
EP4199382A1 (en) 2023-06-21
US20230327691A1 (en) 2023-10-12
KR20230048367A (ko) 2023-04-11
EP4199382A4 (en) 2024-03-20
JP2023540607A (ja) 2023-09-25

Similar Documents

Publication Publication Date Title
WO2022062714A1 (zh) 抗干扰控制装置及其方法、终端设备、可读存储介质
CN111480303B (zh) 基于移动传感器的波束转向控制装置和方法
CN108958490B (zh) 电子装置及其手势识别方法、计算机可读存储介质
EP3142185B1 (en) Sensitive screen, control circuit thereof, control method therefor, and sensitive screen apparatus
WO2019205678A1 (zh) 定位通信设备、定位方法及计算机存储介质
US20140270306A1 (en) Proximity sensing device control architecture and data communication protocol
US9260079B2 (en) Keyless entry system
KR102155560B1 (ko) 근거리 장애물 감지를 통한 빔 추적 방법 및 장치
WO2020228242A1 (zh) 目标物体的追踪方法、装置及存储介质
US11510047B2 (en) Learning based wireless performance adjustment for mobile information handling system
CN109617587B (zh) 天线选择方法、终端及存储介质
CN113852387B (zh) 天线功率的调整方法、装置及电子设备
EP3893019A1 (en) Radar antenna array, mobile user equipment, method and device for identifying gesture, and storage medium
WO2023020415A1 (zh) 定位方法、装置和电子设备
CN103716855A (zh) 一种智能电视无线工作站的数据传输方法和装置
WO2019024795A1 (zh) 天线波束侦测系统、方法及移动终端
WO2023134652A1 (zh) 一种无线充电方法、装置和电子设备
CN114501119A (zh) 互动显示方法、装置、电子设备、系统及存储介质
CN113242056B (zh) 客户前置设备、天线控制方法及计算机可读存储介质
CN114978270A (zh) 一种天线选择方法及电子设备、存储介质
CN109032354B (zh) 电子装置及其手势识别方法、计算机可读存储介质
WO2023109795A1 (zh) 波束扫描方法及装置、计算机可读存储介质
CN114521015B (zh) 定位方法、装置、存储介质及电子设备
CN113382336B (zh) 一种天线控制方法、装置和系统
CN112436876A (zh) 5g天线控制方法和装置、5g终端及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237007609

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023515656

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021871091

Country of ref document: EP

Effective date: 20230314

NENP Non-entry into the national phase

Ref country code: DE