WO2022062673A1 - 一种超重力竖向振动台 - Google Patents

一种超重力竖向振动台 Download PDF

Info

Publication number
WO2022062673A1
WO2022062673A1 PCT/CN2021/110270 CN2021110270W WO2022062673A1 WO 2022062673 A1 WO2022062673 A1 WO 2022062673A1 CN 2021110270 W CN2021110270 W CN 2021110270W WO 2022062673 A1 WO2022062673 A1 WO 2022062673A1
Authority
WO
WIPO (PCT)
Prior art keywords
dynamic
static
accumulator
vertical
force
Prior art date
Application number
PCT/CN2021/110270
Other languages
English (en)
French (fr)
Inventor
周燕国
汪玉冰
蒋建群
林伟岸
凌道盛
陈云敏
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to EP21870567.1A priority Critical patent/EP4024024B1/en
Priority to JP2022525550A priority patent/JP7189645B2/ja
Publication of WO2022062673A1 publication Critical patent/WO2022062673A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/04Monodirectional test stands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • G01N2203/0037Generation of the force using mechanical means involving a rotating movement, e.g. gearing, cam, eccentric, or centrifuge effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/16Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces applied through gearing
    • G01N3/165Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces applied through gearing generated by rotation, i.e. centrifugal force

Definitions

  • the invention belongs to a hypergravity simulated vibration device in the field of centrifuge hypergravity experiments, in particular to a hypergravity vertical vibration table.
  • the seismic performance simulation of geotechnical structures is a very important geophysical simulation test.
  • a shaking table is usually used to conduct a shaking table test, that is, a reduced-size geotechnical building model is placed on the shaking table, and then a certain vibration waveform is input to observe the vibration.
  • the seismic response of the geotechnical structures under working conditions can be reversed to infer the seismic performance of the real geotechnical structures.
  • the shaking table test is divided into two types: constant gravity and hypergravity, that is, it is divided into 1g shaking table test and hypergravity centrifuge shaking table test. Among them, 1g represents constant gravity.
  • the 1g shaking table has relatively large defects because it pays more attention to the area rather than the depth.
  • the self-weight stress of the soil body is not correct, so it cannot truly reflect the response of the site under ground motion, and the real earthquake resistance of tunnels, nuclear power plants, high dams, etc. Features are also not reflected.
  • the constant gravity shaker is usually a large shaker (the size of the shaker table is relatively large) and does not use a centrifuge.
  • the hypergravity centrifuge test is a kind of simulation test carried out by a centrifuge.
  • the geotechnical model of reduced size is placed in a high-speed rotating centrifuge, so that the model can withstand the action of acceleration greater than gravity, and compensate the geotechnical structure caused by the scale of the model. weight loss.
  • the shaking table model test can generate the same self-weight stress as the prototype, truly reflect the dynamic response of the prototype under natural conditions, and reproduce the deformation and failure mechanism of the geotechnical structure under the action of earthquake. Taking advantage of the time-scaling effect of hypergravity, a shaking table mounted on a centrifuge can simulate the dynamic response of a large-scale site.
  • the research on hypergravity dynamic experiments has pushed geotechnical earthquake engineering to a new peak.
  • the advantages of the hypergravity centrifugal test are: it can accurately simulate the change of rock and soil stress with depth; it can realize the selection of soil, the design of stress history, and the controllable loading system; the cost and time are relatively low; the deformation and deformation can be observed in real time. destruction mechanism.
  • the amplification law of horizontal one-way shear waves in free sites, inclined sites and slopes has been obtained by using a supergravity one-way shaking table, as well as the amplification laws of dams, slopes, retaining walls, pile foundations and other geotechnical structures and sites.
  • One-way horizontal earthquake catastrophic mechanism is a supergravity one-way shaking table, as well as the amplification laws of dams, slopes, retaining walls, pile foundations and other geotechnical structures and sites.
  • the vertical shaking table only needs to balance the self-weight stress of the model itself in the constant gravity environment, and the vertical balance force that the shaking table needs to provide changes little during the vibration process, so the constant gravity vertical shaking table
  • the same driving method can be used in the vertical direction as in the horizontal direction, so the hydraulic control and structural design of the constant gravity vertical vibrating table are relatively less difficult.
  • the transition from a constant-gravity device to a hyper-gravity device creates the following problems:
  • the output force of the hydraulic cylinder needs to be greatly increased.
  • the output force can only be increased by increasing the piston area of the hydraulic cylinder.
  • the hydraulic cylinder flow demand is proportional to the piston area. The larger the piston area, the larger the required servo valve oil supply flow.
  • the frequency response characteristic of the servo valve is negatively correlated with the flow characteristic, which in turn leads to the worse the high-frequency performance of the system.
  • the g value in the vertical direction of the model changes when the centrifuge turns or stops, and how to dynamically feedback and adjust the vertical balance force in different operating states of the centrifuge is also critical.
  • the movable mass moves by the thrust of the dynamic cylinder; in the return direction, the clamping force of the static cylinder ensures that the movable mass and the dynamic cylinder are not separated, and the movable mass can completely follow the movement of the piston of the dynamic cylinder .
  • the rotation speed of the centrifuge is low, the centrifugal acceleration of the movable mass is small, and it is not enough to provide the pressing force required for the return stroke.
  • the hypergravity dynamic balance technology is the key technology for the simulation of hypergravity vertical ground motion in the process of high frequency vibration.
  • the purpose of the present invention is to provide a vertical earthquake simulation shaking table in a hypergravity field in order to solve the above problems.
  • the present invention realizes above-mentioned purpose through following technical scheme:
  • the invention includes a base plate, a vibration table mounted on the base plate, a vertical electro-hydraulic servo excitation system with preload, a table guide system and an accumulator;
  • the table guide system includes a sleeve base, a table guide shaft, Table guide shaft bearing, the bottom of the vibration table is fixed with a table guide shaft, the table guide shaft is sleeved on the sleeve base through the table guide shaft bearing, and the bottom of the sleeve base is fixed on the base plate.
  • the accumulator includes an upward pretightening force accumulator, a downward pretightening force accumulator, a dynamic actuating cylinder oil return accumulator, and a dynamic actuating cylinder oil supply accumulator, which are placed on the vibrating table surface.
  • the vertical electro-hydraulic servo vibration excitation system with preload includes a vertical dynamic servo actuator and a vertical static preload actuator that are arranged coaxially up and down, and the vertical dynamic servo actuator includes a dynamic The actuator sleeve, the vertical static force preloading actuator includes a static force actuator sleeve, the lower end of the static force actuator sleeve is fixed on the vibration table surface, and the lower end of the dynamic actuator sleeve is coaxially fixed on the sleeve On the upper end of the static actuator sleeve, the static actuator sleeve and the dynamic actuator sleeve are provided with an actuating rod, and the upper end of the actuating rod is top-connected with the center of the bottom surface of the vibration table.
  • the outer circumference of the actuating rod is provided with three flanges from top to bottom along the axial direction.
  • the three flanges are respectively an upper flange, a middle flange and a lower flange from top to bottom, and the outer circumference of the upper flange is connected by an upper sealing ring.
  • the outer periphery of the middle flange is connected to the inner wall of the dynamic actuator sleeve through the upper cavity sealing ring sealing sleeve
  • the outer periphery of the lower flange is connected to the static actuator sleeve through the lower sealing ring sealing sleeve.
  • the inner wall, the static actuator sleeve between the middle flange and the lower flange is provided with an inner flange, and the inner wall of the inner flange and the outer circumference of the actuating rod are connected by an isolation sealing ring sealing sleeve; the upper flange and the middle convex
  • the dynamic hydraulic servo valve is connected to the dynamic actuating cylinder oil return accumulator and the dynamic actuating cylinder oil supply accumulator;
  • the static force servo valve is connected to the downward preload force accumulator;
  • the static force lower circular chamber is connected to the lower static force servo valve through the upper preload force hydraulic interface channel, and the lower static force servo valve is connected to the upward preload force force accumulator energy device.
  • the upper end face of the dynamic actuator sleeve is provided with an upper gasket of the actuating cylinder.
  • the dynamic upper annular chamber and the dynamic lower annular chamber are adjusted to enter and exit oil from the dynamic actuating cylinder oil return accumulator and the dynamic actuating cylinder oil supply accumulator, so that the dynamic upper annular chamber is The oil pressure in the chamber and the dynamic lower annular chamber is applied to the annular step surfaces on both sides of the middle flange, and the actuating rod is actuated;
  • the base bottom plate is provided with screw holes for connecting with the bottom plate of the hanging basket of the supergravity centrifuge, so that the base bottom plate is installed in the hanging basket of the supergravity centrifuge.
  • the ends of the actuators are equipped with hydrostatic support bearings.
  • the upward pretightening force accumulator, the downward pretightening force accumulator, the dynamic actuating cylinder oil return accumulator, and the dynamic actuating cylinder oil supply accumulator are placed on the vibrating table around the vibrating table.
  • the accumulators include three upward preloading force accumulators, one downward preloading force accumulator, one dynamic actuating cylinder oil return accumulator and one dynamic actuating cylinder oil supply accumulator.
  • the supergravity vertical vibration table is used for vibration in the direction of centrifugal force in the supergravity centrifuge.
  • the device of the invention adopts the flexible dynamic balance technology to realize the vertical excitation in the hypergravity environment, and can reproduce the site and foundation response and disaster effect under the action of vertical earthquake under the simulation scale, which is a major scientific and technological task for the national earthquake prevention and disaster reduction.
  • the research and development and verification of new engineering technologies provide advanced experimental platforms and basic conditions to support.
  • the invention separates the vertical electro-hydraulic servo excitation system with preload into static part and dynamic part through flexible dynamic balance, so that the smallest actuator and servo valve can be used for vertical excitation.
  • the supergravity is balanced by the vertical static preloading actuator, and the dynamic actuating cylinder realizes vertical excitation, which greatly reduces the difficulty of vibration excitation in the direction of supergravity, and ensures that the hydraulic servo valve is kept at any speed at any speed of the centrifuge. Near its zero position, the control accuracy of supergravity vertical ground motion simulation is improved.
  • the invention adopts a downward pre-tightening force pull-down scheme in which oil is directly supplied by the accumulator.
  • the downward static preload accumulator 11 directly applies oil pressure to the static lower circular chamber to provide downward preload, so as to ensure that the centrifugal force of the movable mass and the upward preload of the centrifuge at any speed
  • the force and downward preload are balanced so that the dynamic hydraulic servo valve is both held near zero.
  • the vibration excitation system and the table top guide system of the present invention are symmetrically arranged, and the accumulator is reasonably arranged according to the weight, so that the center of gravity is located in the middle of the vibration table, so as to solve the eccentric problem of the whole hanging basket after the vibration table is installed, and avoid giving the centrifuge rotating arm belt. to add bending moment.
  • Fig. 1 is the front schematic view of the device of the present invention
  • Fig. 2 is the side schematic diagram of the device of the present invention.
  • FIG. 3 is a schematic plan view of the device of the present invention.
  • Fig. 4 is the table top guide system schematic diagram of the device of the present invention.
  • Fig. 5 is the schematic diagram of the vertical electro-hydraulic servo excitation system with preload of the device of the present invention
  • the concretely implemented structure includes a base plate and a vibration table mounted on the base plate, a vertical electro-hydraulic servo vibration excitation system with preload, a table guide system and an accumulator; the top of the vibration table
  • the surface is flat, and the vibration table is used to connect the test piece and the excitation system. Its function is to reliably transmit the excitation force of the vibration table to the test piece, and at the same time, it is suitable for the installation and fixation of a variety of different test pieces.
  • the base bottom plate is provided with screw holes for connecting with the bottom plate of the hanging basket of the supergravity centrifuge, so that the base bottom plate is installed in the hanging basket of the supergravity centrifuge.
  • the table guide system is installed between the base plate and the vibration table, and is fixedly connected with the base plate and the vibration table, and its main function is to balance the table and guide the direction.
  • the table top guide system includes a sleeve base, a table top guide shaft, a table top guide shaft bearing and a guide shaft lower pad.
  • the bottom four corners of the vibrating table are fixed with vertically arranged table top guide shafts.
  • the table top guide shaft is sleeved on the sleeve through the table top guide shaft bearings.
  • the base, the bottom of the sleeve base is fixed on the base plate, and the guide shaft lower pad is connected between the table top guide shaft bearing and the inner bottom of the sleeve base for support.
  • the vibration excitation system and the table guide system are arranged symmetrically, and the accumulator is reasonably arranged according to the weight, so that the center of gravity is located in the middle of the shaking table, so as to solve the eccentric problem of the whole hanging basket after the shaking table is installed, and avoid additional bending to the rotating arm of the centrifuge. moment.
  • the vibration table adopts a high-strength alloy welding structure, and the static stiffness of the table is improved by optimizing the rib layout of the table and the local rigidity of the connecting parts, so as to achieve the purpose of light weight and high stiffness of the table, so as to reduce the load of the actuator and at the same time Able to withstand large loads.
  • the accumulator includes an upward preloading force accumulator, a downward preloading force accumulator, a dynamic actuating cylinder oil return accumulator, and a dynamic actuating cylinder oil supply accumulator placed on the vibration table. energy device;
  • the upward pretightening force accumulator, the downward pretightening force accumulator, the dynamic actuating cylinder oil return accumulator, and the dynamic actuating cylinder oil supply accumulator are placed on the vibrating table around the vibrating table.
  • the specific implementation of the accumulator includes three upward preloading force accumulators, one downward preloading force accumulator, one dynamic actuating cylinder oil return accumulator and one dynamic actuating cylinder oil supply accumulator.
  • the vertical electro-hydraulic servo excitation system with preload includes vertical dynamic servo actuators and vertical static preload actuators that are coaxially arranged up and down, and the two actuators share a set Rigid body and actuating rod;
  • vertical dynamic servo actuator includes dynamic actuator sleeve
  • vertical static preload actuator includes static actuator sleeve
  • the lower end of static actuator sleeve is fixed on the vibration table
  • the lower end of the dynamic actuator sleeve is coaxially fixed on the upper end of the static actuator sleeve
  • the static actuator sleeve and the dynamic actuator sleeve are installed with actuating rods
  • the ends of the actuators are installed with static Press the support bearing
  • the upper part of the actuating rod is sheathed in the dynamic actuator sleeve
  • the lower part of the actuating rod is sheathed in the static actuator sleeve
  • the outer periphery of the actuating rod is provided with three flanges arranged at intervals from top to bottom in the axial direction.
  • the three flanges are respectively an upper flange, a middle flange and a lower flange from top to bottom.
  • the ring seal sleeve is connected to the inner wall of the dynamic actuator sleeve.
  • the inner wall of the actuator sleeve, the static actuator sleeve between the middle flange and the lower flange is provided with an inner flange, and the inner wall of the inner flange and the outer circumference of the actuating rod are connected by an isolation sealing ring sealing sleeve; the upper convex There is an annular gap between the outer circumference of the actuating rod between the flange and the middle flange and the inner wall of the dynamic actuator sleeve to form a dynamic upper annular chamber, and the outer circumference of the actuating rod between the middle flange and the lower flange is connected to the dynamic There is an annular gap between the inner wall of the actuator sleeve and the static actuator sleeve to form a middle annular chamber, and the middle annular chamber is divided by a flexible isolation sealing ring into a dynamic lower annular chamber located above and a static upper annular chamber located below.
  • the annular chamber has an annular gap between the outer circumference of the actuating rod under the lower flange and the inner wall of the static actuator sleeve to form a static lower circular chamber; the dynamic upper annular chamber and the dynamic lower annular chamber are respectively opened
  • the respective vertical actuation power hydraulic interface channel inside the dynamic actuator sleeve is connected to the dynamic hydraulic servo valve, which is connected to the dynamic actuation cylinder oil return accumulator and the dynamic actuation cylinder oil supply accumulator ;
  • the static upper annular chamber is connected to the upper static servo valve through the downward preload hydraulic interface channel opened inside the static actuator sleeve, and the upper static servo valve is connected to the downward preload accumulator;
  • the static lower circular chamber is connected to the lower static servo valve through the upper preload hydraulic interface channel opened inside the static actuator sleeve, and the lower static servo valve is connected to the upward preload accumulator.
  • the vertical dynamic servo actuator is used for high-frequency dynamic action
  • the vertical static preload actuator is used for static and large load-bearing action
  • the upper end face of the dynamic actuator sleeve is provided with an upper pad of an actuating cylinder, and the upper pad of the actuating cylinder is used to assist in buffering the force between the upper end of the actuating rod and the bottom surface of the vibration table.
  • both the upper flange and the lower flange are provided with outwardly convex flanges as piston rings, so as to increase the effective piston area of the actuating rod.
  • the oil of the vertical static preload actuator is provided by the accumulator.
  • the hydraulic interface channel of the downward preload force and the hydraulic interface channel of the upward preload force are respectively connected with the upward preload force through the external servo valve hose.
  • the accumulator is connected to the downward preload accumulator.
  • the vertical power hydraulic interface channel is connected to the dynamic hydraulic cylinder oil return accumulator and the dynamic hydraulic cylinder oil supply accumulator through the dynamic hydraulic servo valve with the hose.
  • the dynamic hydraulic servo valve controls the flow to the actuator. Controls the movement of the vertical dynamic actuator.
  • the hydraulic oil supply of the vertical static preload actuator is connected to a plurality of large-capacity upward preload force accumulators.
  • the capacity of the cylinder return accumulator, the dynamic actuating cylinder supply accumulator to allow free flow with minimal pressure loss when the actuating rod is moved dynamically.
  • a servo valve regulates the static pressure between the vertical static preload actuator and the accumulator.
  • the control program collects the centrifugal acceleration from the tachometer, calculates the corresponding control voltage, and sends it to the servo valve through the digital-to-analog conversion module to control the pressure of the static cylinder to control the cylinder's pressure. output force.
  • the power of the moving rod to vibrate up and down in both directions is generated by the pressure difference between the annular stepped surfaces on the upper and lower sides of the flange.
  • the servo valve controls the movement of the vertical dynamic actuator by controlling the flow to the actuator.
  • the dynamic hydraulic servo valve is a flow control valve. Through the control of the dynamic hydraulic servo valve, the dynamic upper annular chamber and the dynamic lower annular chamber are uniformly adjusted to enter and exit oil from the dynamic actuating cylinder oil return accumulator and the dynamic actuating cylinder oil supply accumulator, so that the dynamic upper The oil pressure in the annular chamber and the dynamic lower annular chamber is applied to the annular stepped surfaces on both sides of the middle flange, and the actuating rod is actuated;
  • the middle flange moves downward through the transmission through the annular stepped surfaces on both sides of the middle flange, and vice versa.
  • the lower flange is driven to move downward through the annular step surfaces on both sides of the lower flange, otherwise, the lower flange is driven to move upward.
  • the hydraulic pressure acting on the steps of the middle flange and the lower flange is combined to drive the actuating rod to act upward or downward as a whole, which realizes the vibration actuation balance under supergravity, improves stability and prevents failure.
  • the dynamic system is realized under static preloading.
  • the supergravity centrifuge starts to run, with the continuous increase of centrifugal acceleration, the supergravity of the vibrating table gradually increases, the downward preloading force gradually decreases, and the upward preloading force acts with
  • the centrifugal force on the movable mass increases proportionally, due to the large area of the action rod providing the upward preload and the capacity of the accumulator, its accuracy is affected, especially when the centrifuge speed is low, the centrifugal force of the movable mass
  • the acceleration is small, and it is difficult to accurately balance the centrifugal force of the movable mass.
  • a downward static force preload accumulator 11 is used to directly apply oil pressure to the circular chamber under static force to provide downward preload force and ensure centrifugal force. At any speed of the machine, the centrifugal force of the movable mass is balanced with the upward and downward preloading force, so that the dynamic hydraulic servo valve is kept near the zero position.
  • the dynamic actuating cylinder oil return accumulator 12 and the dynamic actuating cylinder oil supply accumulator 13 are controlled by the dynamic hydraulic servo valve 17 through the vertical hydraulic interface channel 18 Dynamic oil pressure is applied to the dynamic annular chamber to generate vertical excitation for ground motion simulation. Since the piston displacement of the vertical dynamic servo actuator is generally only 5mm at most, and the hydraulic interface channel of the upward preload is connected to a large-capacity accumulator by a large-diameter oil pipe, the oil pressure fluctuation of the static annular chamber is very small. The force provided by the vertical static preload actuator remains essentially unchanged.
  • the vertical dynamic servo actuator does not need to balance the centrifugal force of the movable mass, so the flow rate of the dynamic hydraulic servo valve is small, which ensures the frequency response characteristics of the servo valve and can realize high frequency excitation. vibrate.
  • the present invention can greatly reduce the vibration loading difficulty in the supergravity direction, and improve and guarantee the control accuracy of the supergravity vertical ground motion simulation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

一种超重力竖向振动台,包括基础底板(1)和安装在基础底板(1)上的振动台面(2)、带预载的竖向电液伺服激振系统(4)、台面导向系统(5)和蓄能器(3);台面导向系统(5)包括套筒底座、台面导向轴(14)、台面导向轴轴承(15),振动台面(2)的底部固定设有台面导向轴(14),台面导向轴(14)通过台面导向轴轴承(15)套装在套筒底座上,套筒底座底部固定于基础底板(1)上。超重力竖向振动台保证离心机在静止或低速旋转过程中作动杆(9)上的压力,以防止在离心机转速较低时无法跟随其振动面而运动失效;实现超重力下竖向激振,分离静态和动态系统,极大降低了超重力方向的振动激励难度,提高了超重力地震动模拟的控制精度。

Description

一种超重力竖向振动台 技术领域
本发明属于离心机超重力实验领域的一种超重力模拟振动装置,尤其是涉及了一种超重力竖向振动台。
背景技术
土工建构筑物(高坝、高陡边坡、软弱地基、地铁车站、隧道、地下综合管廊、城市建筑群、核电站等)的抗震性能模拟是非常重要的一种土工物理模拟试验。为减少震害、研究土工建构筑物的抗震性能,通常会采用振动台来进行振动台试验,也就是将缩小尺寸的土工建构筑物模型放置在振动台上,然后输入一定的振动波形,观测该振动工况下土工建构筑物的地震响应,从而反推真实土工建构筑物的抗震性能。振动台试验分为常重力和超重力两种,也就是分为1g振动台试验和超重力离心机振动台试验。其中,1g表示常重力。
1g振动台因为更多的注意了面积而不是深度就存在比较大的缺陷,土体自重应力不正确,因而不能真实反映场地在地震动下的响应问题,隧道、核电站、高坝等的真实抗震特性也无法反映出来。常重力振动台通常是大型振动台(振动台台面尺寸比较大),不使用离心机。
超重力离心机试验是通过离心机进行的一种模拟试验,将缩小尺寸的土工模型置于高速旋转的离心机中,让模型承受大于重力加速度的作用,补偿因模型缩尺带来的土工构筑物的自重损失。基于离心机提供的超重力场环境,振动台模型试验可以产生与原型相同的自重应力,真实反应原型在自然条件下的动力响应,再现地震作用下的土工结构变形与破坏机理。利用超重力的缩尺缩时效应,在离心机上搭载振动台可以模拟大尺度场地的动力响应,超重力动力实验研究将岩土地震工程推向新高峰。超重力离心试验所具备的优点是:可正确模拟岩土体应力随深度的变化;可实现土的选择、应力历史的设计、加载系统可控;费用和时间相对较省;可实时观测变形和破坏机理。目前,利用超重力单向振动台已经获取了水平单向剪切波在自由场地、倾斜场地和边坡中的放大规律,以及堤坝、边坡、挡土墙、桩基础等土工构筑物和场地的单向水平地震灾变机理。
但是,当前国际上超重力下的振动台只涉及水平向振动,而竖向振动台只在常重力下涉及。而近年来的大地震都观测到地震动具有显著的多向性,比如2008年汶川地震中什邡八角台站记录到显著的多向地震动,2008年日本Iwate地震中IWTH25地表台站记录的竖向加速度分量达3.8g,远超过水平加速度的峰值,由多向地震动产生的灾害效应非常突出:汶川地震中产生了严重的抛射型滑坡、神户地震中多向振动产生复杂的土-结相互作用引起大开车站柱子压屈破坏、基督城地震中竖向地震动的频率接近场地基频引起场地产生大量的液化。对于竖向地震动演变规律和岩土体致灾效应的研究目前在理论和数值方面均取得显著成果,但是尚未在物理模型试验中进行验证。
在常重力条件下,竖向振动台只需要平衡模型本身在常重力环境下的自重应力,且在施振过程中振动台竖向需要提供的平衡力变化不大,因而常重力竖向振动台可以在竖向采用与水平向相同的驱动方式,因此常重力竖向振动台的液压控制和结构设计难度相对较小。但从常重力装置向超重力装置过渡会产生如下问题:
(1)离心机运行时,水平方向上可动质量往返运动受力状态完全相同,故液压缸的输出力对称,且全部用于提供可动质量加速度;但在竖直方向,可动质量受到数十倍于自重的超重力离心力作用,导致可动质量往返运动受力状况不一致。若竖直方向采用与水平方向相同驱动方式,则液压缸活塞杆受力状况不对称且需要提供额外用于抵消离心力的输出力。为抵消离心机产生的离心力,需要大幅度增加液压缸的输出力。在供油压力不变的情况下,只能通过增大液压缸活塞面积来提高输出力。液压缸流量需求与活塞面积成正比,活塞面积越大,所需伺服阀供油流量越大,而伺服阀的频响特性与流量特性成负相关,进而导致系统高频性能越差。
(2)在离心机转机或者停机过程中模型竖向方向的g值发生变化,如何在离心机不同运行状态动态反馈和调节竖向平衡力也是极为关键。可动质量在远离吊篮的方向上,靠动态缸的推力运动;在回程方向上,静力缸的夹紧力保证可动质量与动态缸不分离,可动质量能完全跟随动态缸活塞运动。在离心机转速较低时,可动质量的离心加速度小,不足以提供返程所需压紧力时,振动台面便会与液压缸分离,无法跟随其振动,运动失效。国内外已研制的三台水平-竖向振动台中有两台因未采取超重力平衡措施,导致竖向地震动加载难以实现;另一台采用静力支撑缸和动态激振器联合工作模式,但由于支撑缸动态刚度较大, 导致高频振动过程中超重力动态平衡效果差,地震动模拟控制效果不理想。高频振动过程中超重力动态平衡技术是超重力竖向地震动模拟的关键技术。
发明内容
为了解决背景技术中存在的问题,本发明的目的就在于为了解决上述问题而提供了一种超重力场竖向地震模拟振动台。
本发明通过以下技术方案来实现上述目的:
本发明包括基础底板和安装在基础底板上的振动台面、带预载的竖向电液伺服激振系统、台面导向系统和蓄能器;所述台面导向系统包括套筒底座、台面导向轴、台面导向轴轴承,振动台面的底部固定设有台面导向轴,台面导向轴通过台面导向轴轴承套装在套筒底座,套筒底座底部固定于基础底板上。
所述蓄能器包括置于振动台面上的向上预紧力蓄能器、向下预紧力蓄能器、动态作动缸回油蓄能器、动态作动缸供油蓄能器。
所述带预载的竖向电液伺服激振系统包括分别上下同轴布置的竖向动态伺服作动器、竖向静力预紧作动器,所述竖向动态伺服作动器包含动态作动器套筒,所述竖向静力预紧作动器包含静力作动器套筒,静力作动器套筒下端固定于振动台面上,动态作动器套筒下端同轴固定套装在静力作动器套筒上端上,静力作动器套筒和动态作动器套筒内安装有作动杆,作动杆上端和振动台面底面中心顶接。
作动杆外周沿轴向从上到下设有三个凸缘,三个凸缘从上到下分别为上凸缘、中凸缘和下凸缘,上凸缘外周通过上密封圈密封套装连接于动态作动器套筒的内壁,中凸缘外周通过上腔密封圈密封套装连接于动态作动器套筒的内壁,下凸缘外周通过下密封圈密封套装连接于静力作动器套筒的内壁,中凸缘和下凸缘之间的静力作动器套筒设有内凸缘,内凸缘的内壁和作动杆外周之间通过隔离密封圈密封套装连接;上凸缘和中凸缘之间的作动杆外周和动态作动器套筒内壁之间具有动态上环形腔室,中凸缘和下凸缘之间的作动杆外周与动态作动器套筒和静力作动器套筒的内壁之间具有中部环形腔室,中部环形腔室被隔离密封圈分隔为位于上方的动态下环形腔室和位于下方的静力上环形腔室,下凸缘下方的作动杆外周和静力作动器套筒的内壁之间具有静力下圆形腔室;动态上环形腔室和动态下环形腔室分别经各自的竖向作动力液压接口通道和动态液压伺服阀连接,动态液压伺服阀连接到动态作动缸回油蓄能器和动态作动缸供油蓄能器;静力上环形腔室经向下预紧力液压接口通道和上静力伺服阀连接,上静力伺服阀连接到向下预紧力蓄能器;静力下圆形腔室经上预紧力液压接口 通道和下静力伺服阀连接,下静力伺服阀连接到向上预紧力蓄能器。
所述的动态作动器套筒的上端面安装有作动缸上垫。
通过动态液压伺服阀的控制,调整动态上环形腔室和动态下环形腔室从动态作动缸回油蓄能器和动态作动缸供油蓄能器进油和出油,使得动态上环形腔室和动态下环形腔室内的油压施加到中凸缘的两侧环形台阶面上,带动作动杆作动;
分别通过动态液压伺服阀的控制,调整静力上环形腔室从向下预紧力蓄能器进出油,以及静力下圆形腔室从向上预紧力蓄能器进出油,使得静力上环形腔室和静力下圆形腔室内的油压施加到下凸缘的两侧环形台阶面上,带动作动杆作动。
所述基础底板开设有用于与超重力离心机吊篮底板连接的螺孔,使得基础底板安装在超重力离心机的吊篮中。
所述的作动器端部均安装静压支撑轴承。
向上预紧力蓄能器、向下预紧力蓄能器、动态作动缸回油蓄能器、动态作动缸供油蓄能器置于振动台面周围的振动台面上。
所述蓄能器包括三个向上预紧力蓄能器、一个向下预紧力蓄能器、一个动态作动缸回油蓄能器和一个动态作动缸供油蓄能器。
所述的超重力竖向振动台用于超重力离心机中沿离心力方向的振动。
本发明的有益效果在于:
本发明的装置在超重力环境中采用柔性动态平衡技术实现竖向激振,能在模拟尺度下再现竖向地震作用下的场地与地基响应与灾害效应,为国家防震减灾重大科技任务开展、重大工程新技术研发和验证提供先进的实验平台和基础条件支撑。
本发明通过柔性动态平衡将带预载的竖向电液伺服激振系统分离为静力部分和动态部分,以能够采用最小的作动器和伺服阀进行竖向激振。通过竖向静力预紧作动器平衡超重力,动态作动缸实现竖向激振,极大降低了超重力方向的振动激励难度,保证离心机在任何转速下,液压伺服阀都保持在其零位附近,提高了超重力竖向地震动模拟的控制精度。
本发明采用了一种由蓄能器直接供油的向下预紧力下拉方案,在离心机转速较低时,可动质量的离心加速度较小,难以精确平衡可动质量的离心力,采用一种由向下静力预紧蓄能器11直接向静力下圆形腔室施加油压,以提供向下预紧力,保证离心机在任何转速下,可动质量的离心力与向上预紧力和向下预紧力达到平衡,从而使动态液压伺服阀都保持在零位附近。且本发明激振系统 和台面导向系统采用对称布置,蓄能器根据重量合理布置,使重心位于振动台中部,以解决安装振动台后,吊篮整体的偏心问题,避免给离心机转臂带来附加弯矩。
附图说明
图1是本发明装置的正面示意图;
图2是本发明装置的侧面示意图;
图3是本发明装置的平面示意图;
图4是本发明装置的台面导向系统示意图;
图5是本发明装置的带预载的竖向电液伺服激振系统示意图;
图中:1-基础底板,2-振动台面,3-蓄能器,4-带预载的竖向电液伺服激振系统,5-台面导向系统,6-竖向动态伺服作动器,7-竖向静力预紧作动器,9-作动杆,10-向上预紧力蓄能器,11-向下预紧力蓄能器,12-动态作动缸回油蓄能器,13-动态作动缸供油蓄能器,14-台面导向轴,15-台面导向轴轴承,16-导向轴下垫,17-动态液压伺服阀,18-竖向作动力液压接口通道,19-上密封圈,20-上腔密封圈,21-隔离密封圈,22-下密封圈,23-下静力伺服阀,24-上凸缘,25-中凸缘,26-下凸缘,27-向下预紧力液压接口通道,28-向上预紧力液压接口通道,29-作动缸上垫,30-上静力伺服阀,31-动力环形腔室,32-静力上环形腔室,-33静力下圆形腔室。
具体实施方式
下面结合附图和具体实施对本发明作进一步说明。
如图1和图2所示,具体实施的结构包括基础底板和安装在基础底板上的振动台面、带预载的竖向电液伺服激振系统、台面导向系统和蓄能器;振动台面顶面为平面,振动台面用于连接试验件与激振系统,其功能主要是将振动台的激振力可靠地传递给试验件,同时要适合多种不同试验件的安装和固定。具体实施中,基础底板开设有用于与超重力离心机吊篮底板连接的螺孔,使得基础底板安装在超重力离心机的吊篮中。
如图4所示,台面导向系统安装于基础底板与振动台面之间并与基础底板与振动台面固定连接,主要作用为平衡台面和方向导向。台面导向系统包括套筒底座、台面导向轴、台面导向轴轴承和导向轴下垫,振动台面的底部四角固定设有竖直布置的台面导向轴,台面导向轴通过台面导向轴轴承套装在套筒底座,套筒底座底部固定于基础底板上,台面导向轴轴承和套筒底座内底部之间连接有导向轴下垫进行支撑。
激振系统和台面导向系统采用对称布置,蓄能器根据重量合理布置,使重心位于振动台中部,以解决安装振动台后,吊篮整体的偏心问题,避免给离心机转臂带来附加弯矩。
作为优选,振动台面采用高强度合金焊接结构,通过优化台面的肋板布局及联接部位的局部刚度等手段提高台面的静刚度,达到台面轻量化高刚度的目的,以减轻作动器的负载同时能够承受大负载力。
如图3所示,蓄能器包括置于振动台面上的向上预紧力蓄能器、向下预紧力蓄能器、动态作动缸回油蓄能器、动态作动缸供油蓄能器;
向上预紧力蓄能器、向下预紧力蓄能器、动态作动缸回油蓄能器、动态作动缸供油蓄能器置于振动台面周围的振动台面上。
蓄能器具体实施包括三个向上预紧力蓄能器、一个向下预紧力蓄能器、一个动态作动缸回油蓄能器和一个动态作动缸供油蓄能器。
如图5所示,带预载的竖向电液伺服激振系统包括分别上下同轴布置的竖向动态伺服作动器、竖向静力预紧作动器,两作动器共用一套刚体和作动杆;竖向动态伺服作动器包含动态作动器套筒,竖向静力预紧作动器包含静力作动器套筒,静力作动器套筒下端固定于振动台面上,动态作动器套筒下端同轴固定套装在静力作动器套筒上端上,静力作动器套筒和动态作动器套筒内安装有作动杆,作动器端部均安装静压支撑轴承,作动杆上部套装在动态作动器套筒内,作动杆下部套装在静力作动器套筒内,作动杆上端和振动台面底面中心顶接;
作动杆外周沿轴向从上到下设有间隔布置的三个凸缘,三个凸缘从上到下分别为上凸缘、中凸缘和下凸缘,上凸缘外周通过上密封圈密封套装连接于动态作动器套筒的内壁,中凸缘外周通过上腔密封圈密封套装连接于动态作动器套筒的内壁,下凸缘外周通过下密封圈密封套装连接于静力作动器套筒的内壁,中凸缘和下凸缘之间的静力作动器套筒设有内凸缘,内凸缘的内壁和作动杆外周之间通过隔离密封圈密封套装连接;上凸缘和中凸缘之间的作动杆外周和动态作动器套筒内壁之间具有环形间隙形成动态上环形腔室,中凸缘和下凸缘之间的作动杆外周与动态作动器套筒和静力作动器套筒的内壁之间具有环形间隙形成中部环形腔室,中部环形腔室被柔性的隔离密封圈分隔为位于上方的动态下环形腔室和位于下方的静力上环形腔室,下凸缘下方的作动杆外周和静力作动器套筒的内壁之间具有环形间隙形成静力下圆形腔室;动态上环形腔室和动态下环形腔室分别经开设在动态作动器套筒内部的各自的竖向作动力液压接口通道和动态液压伺服阀连接,动态液压伺服阀连接到动态作动缸回油蓄能器和 动态作动缸供油蓄能器;静力上环形腔室经开设在静力作动器套筒内部的向下预紧力液压接口通道和上静力伺服阀连接,上静力伺服阀连接到向下预紧力蓄能器;静力下圆形腔室经开设在静力作动器套筒内部的上预紧力液压接口通道和下静力伺服阀连接,下静力伺服阀连接到向上预紧力蓄能器。
竖向动态伺服作动器用于高频动态作动,竖向静力预紧作动器用于静止大承载作动。
动态作动器套筒的上端面安装有作动缸上垫,作动缸上垫用于辅助缓冲承载作动杆上端和振动台面底面之间作用力。
具体实施中,上凸缘和下凸缘自身均设置有外凸的凸缘作为活塞环,以增加作动杆的有效活塞面积。
竖向静力预紧作动器的油是由蓄能器提供的,向下预紧力液压接口通道和向上预紧力液压接口通道通过外部的伺服阀用软管分别与向上预紧力蓄能器和向下预紧力蓄能器连接。竖向做动力液压接口通道通过动态液压伺服阀用软管与动态作动缸回油蓄能器及动态作动缸供油蓄能器连接,动态液压伺服阀通过控制流向作动器的流量来控制竖向动态作动缸的运动。
竖向静力预紧作动器的液压供油连接多个大容量的向上预紧力蓄能器,向上预紧力蓄能器的容量均大于向下预紧力蓄能器、动态作动缸回油蓄能器、动态作动缸供油蓄能器的容量,以允许作动杆动态移动时以最小的压力损失实现自由流动。
竖向静力预紧作动器和蓄能器之间由一个伺服阀来调节静态压力。在离心机加速过程中,控制程序从转速计中采集离心加速度,并以此计算出相应的控制电压,通过数模转换模块发送给伺服阀,对静态缸进行压力的控制,以控制该缸的输出力。
动杆双向上下振动的动力是由凸缘上下两侧的环形台阶面的压力差产生的。伺服阀通过控制流向作动器的流量来控制竖向动态作动缸的运动。
动态液压伺服阀为配流调节阀。通过动态液压伺服阀的控制,统一调整动态上环形腔室和动态下环形腔室从动态作动缸回油蓄能器和动态作动缸供油蓄能器进油和出油,使得动态上环形腔室和动态下环形腔室内的油压施加到中凸缘的两侧环形台阶面上,带动作动杆作动;
分别通过动态液压伺服阀的控制,调整静力上环形腔室从向下预紧力蓄能器进出油,以及静力下圆形腔室从向上预紧力蓄能器进出油,使得静力上环形腔室和静力下圆形腔室内的油压施加到下凸缘的两侧环形台阶面上,带动作动杆作动。
具体地,若动态上环形腔室的油压大于动态下环形腔室内的油压,经中凸缘的两侧环形台阶面传递带动中凸缘向下移动,反之则带动中凸缘向上移动。
若静力上环形腔室的油压大于静力下圆形腔室内的油压,经下凸缘的两侧环形台阶面传递带动下凸缘向下移动,反之则带动下凸缘向上移动。
综合中凸缘和下凸缘台阶上的作用油压,带动作动杆整体向上或者向下作用,实现了超重力下的振动作动平衡,提高了稳定性,防止失效。
本发明超重力场竖向振动台的激振方法具体如下:
分离静态预压和动态驱动系统,在超重力离心机运转前,通过下静力伺服阀23的控制带动竖向静力预紧作动器的向上预紧力液压接口通道向静力下圆形腔室施加恒定油压,产生向上预紧力而向上顶起振动台面并维持,相对应地,通过上静力伺服阀30经向下预紧力液压接口通道27向静力上环形腔室施加对应油压产生向下预紧力,进而对振动台面施加向下压的作用力以保持平衡。
在静力预压下实现动态系统,当超重力离心机开始运转后,随着离心加速度的不断提升,振动台面的超重力逐渐增大,向下预紧力逐渐减少,向上预紧力随作用在可动质量上的离心力成比例地增加,由于提供向上预紧力的作用杆面积和蓄能器容量均较大,其精度受到影响,尤其在离心机转速较低时,可动质量的离心加速度较小,难以精确平衡可动质量的离心力,采用一种由向下静力预紧蓄能器11直接向静力下圆形腔室施加油压,以提供向下预紧力,保证离心机在任何转速下,可动质量的离心力与向上预紧力和向下预紧力达到平衡,从而使动态液压伺服阀都保持在零位附近。
当超重力离心机达到目标转速后,动态作动缸回油蓄能器12和动态作动缸供油蓄能器13在动态液压伺服阀17的控制下,通过竖向做动力液压接口通道18向动力环形腔室施加动态油压,以产生竖向激振,实现地震动模拟。由于竖向动态伺服作动器的活塞位移最大一般仅有5mm,而向上预紧力液压接口通道是由大直径油管连接大容量的蓄能器,静力环形腔室的油压波动很小,竖向静力预紧作动器提供的力基本保持不变。
这样分离静态预紧力和动态驱动系统,竖向动态伺服作动器无需平衡可动质量的离心力,从而动态液压伺服阀的流量较小,保证了伺服阀的频响特性,能够实现高频激振。
因此,这样在超重力情况下工作,本发明能极大降低超重力方向的振动加载难度,提高和保障了超重力竖向地震动模拟的控制精度。

Claims (8)

  1. 一种超重力竖向振动台,其特征在于:包括基础底板(1)和安装在基础底板(1)上的振动台面(2)、带预载的竖向电液伺服激振系统(4)、台面导向系统(5)和蓄能器(3);所述台面导向系统(5)包括套筒底座、台面导向轴(14)、台面导向轴轴承(15),振动台面(2)的底部固定设有台面导向轴(14),台面导向轴(14)通过台面导向轴轴承(15)套装在套筒底座上,套筒底座底部固定于基础底板(1)上。
  2. 根据权利要求1所述的一种超重力竖向振动台,其特征在于:
    所述蓄能器(3)包括置于振动台面(2)上的向上预紧力蓄能器(10)、向下预紧力蓄能器(11)、动态作动缸回油蓄能器(12)、动态作动缸供油蓄能器(13);
    所述带预载的竖向电液伺服激振系统(4)包括分别上下同轴布置的竖向动态伺服作动器(6)、竖向静力预紧作动器(7),所述竖向动态伺服作动器(6)包含动态作动器套筒,所述竖向静力预紧作动器(7)包含静力作动器套筒,静力作动器套筒下端固定于振动台面(2)上,动态作动器套筒下端同轴固定套装在静力作动器套筒上端上,静力作动器套筒和动态作动器套筒内安装有作动杆(9),作动杆(9)上端和振动台面(2)底面中心顶接;
    作动杆(9)外周沿轴向从上到下设有三个凸缘,三个凸缘从上到下分别为上凸缘(24)、中凸缘(25)和下凸缘(26),上凸缘(24)外周通过上密封圈(19)密封套装连接于动态作动器套筒的内壁,中凸缘(25)外周通过上腔密封圈(20)密封套装连接于动态作动器套筒的内壁,下凸缘(26)外周通过下密封圈(22)密封套装连接于静力作动器套筒的内壁,中凸缘(25)和下凸缘(26)之间的静力作动器套筒设有内凸缘,内凸缘的内壁和作动杆(9)外周之间通过隔离密封圈(21)密封套装连接;上凸缘(24)和中凸缘(25)之间的作动杆(9)外周和动态作动器套筒内壁之间具有动态上环形腔室,中凸缘(25)和下凸缘(26)之间的作动杆(9)外周与动态作动器套筒和静力作动器套筒的内壁之间具有中部环形腔室,中部环形腔室被隔离密封圈(21)分隔为位于上方的动态下环形腔室和位于下方的静力上环形腔室,下凸缘(26)下方的作动杆(9)外周和静力作动器套筒的内壁之间具有静力下圆形腔室;动态上环形腔室和动态下环形腔室分别经各自的竖向作动力液压接口通道(18)和动态液压伺服阀(17)连接,动态液压伺服阀(17)连接到动态作动缸回油蓄能器(12)和动态作动缸供油蓄能器(13);静力上环形腔室经向下预紧力液压接口通道 (27)和上静力伺服阀(30)连接,上静力伺服阀(30)连接到向下预紧力蓄能器(11);静力下圆形腔室经向上预紧力液压接口通道(28)和下静力伺服阀(23)连接,下静力伺服阀(23)连接到向上预紧力蓄能器(10)。
  3. 根据权利要求2所述的一种超重力竖向振动台,其特征在于:
    所述的动态作动器套筒的上端面安装有作动缸上垫(29)。
  4. 根据权利要求2所述的一种超重力竖向振动台,其特征在于:
    通过动态液压伺服阀(17)的控制,调整动态上环形腔室和动态下环形腔室从动态作动缸回油蓄能器(12)和动态作动缸供油蓄能器(13)进油和出油,使得动态上环形腔室和动态下环形腔室内的油压施加到中凸缘(25)的两侧环形台阶面上,带动作动杆(9)作动;
    分别通过动态液压伺服阀(17)的控制,调整静力上环形腔室从向下预紧力蓄能器(11)进出油,以及静力下圆形腔室从向上预紧力蓄能器(10)进出油,使得静力上环形腔室和静力下圆形腔室内的油压施加到下凸缘(26)的两侧环形台阶面上,带动作动杆(9)作动。
  5. 根据权利要求1所述的一种超重力竖向振动台,其特征在于:
    所述基础底板(1)开设有用于与超重力离心机吊篮底板连接的螺孔,使得基础底板(1)安装在超重力离心机的吊篮中。
  6. 根据权利要求1所述的一种超重力竖向振动台,其特征在于:
    所述的作动杆(9)端部均安装静压支撑轴承。
  7. 根据权利要求1所述的一种超重力竖向振动台,其特征在于:
    所述蓄能器(3)包括三个向上预紧力蓄能器(10)、一个向下预紧力蓄能器(11)、一个动态作动缸回油蓄能器(12)和一个动态作动缸供油蓄能器(13)。
  8. 权利要求1所述的一种超重力竖向振动台的应用,其特征在于:所述的超重力竖向振动台用于超重力离心机中沿离心力方向的振动。
PCT/CN2021/110270 2020-09-25 2021-08-03 一种超重力竖向振动台 WO2022062673A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21870567.1A EP4024024B1 (en) 2020-09-25 2021-08-03 Supergravity vertical vibration table
JP2022525550A JP7189645B2 (ja) 2020-09-25 2021-08-03 過重力鉛直方向振動台

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011024011.5 2020-09-25
CN202011024011.5A CN112284659B (zh) 2020-09-25 2020-09-25 一种超重力竖向振动台

Publications (1)

Publication Number Publication Date
WO2022062673A1 true WO2022062673A1 (zh) 2022-03-31

Family

ID=74421276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110270 WO2022062673A1 (zh) 2020-09-25 2021-08-03 一种超重力竖向振动台

Country Status (4)

Country Link
EP (1) EP4024024B1 (zh)
JP (1) JP7189645B2 (zh)
CN (1) CN112284659B (zh)
WO (1) WO2022062673A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076164A (zh) * 2022-05-13 2022-09-20 浙江大学高端装备研究院 离心机机载液压伺服高频地震模拟实验测试平台

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112284659B (zh) * 2020-09-25 2021-07-30 浙江大学 一种超重力竖向振动台
CN114813174B (zh) * 2022-04-26 2023-01-13 浙江大学 用于超重力环境的轨道交通列车运行荷载模拟系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060248955A1 (en) * 2005-04-07 2006-11-09 Imv Corporation Vibration-testing system
CN102794235A (zh) * 2011-05-27 2012-11-28 中国水利水电科学研究院 一种离心机用振动台
CN104502210A (zh) * 2014-12-30 2015-04-08 天津福云天翼科技有限公司 离心机振动台
CN204439479U (zh) * 2014-12-30 2015-07-01 天津福云天翼科技有限公司 离心机振动台
CN205449713U (zh) * 2016-02-29 2016-08-10 成都理工大学 一种离心机振动台
CN108318201A (zh) * 2018-01-11 2018-07-24 中国工程物理研究院总体工程研究所 一种超重力场中高频大推力单自由度水平振动台
CN207730415U (zh) * 2018-01-11 2018-08-14 中国工程物理研究院总体工程研究所 一种超重力场中高频大推力单自由度水平振动台
CN112284659A (zh) * 2020-09-25 2021-01-29 浙江大学 一种超重力竖向振动台

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155603A (ja) * 1983-02-23 1984-09-04 Hitachi Ltd 流体圧駆動装置
JPS60183072A (ja) * 1984-03-01 1985-09-18 株式会社振研 二方向加振機
CN103016453B (zh) * 2012-12-14 2015-02-04 浙江大学 液压软管脉冲试验系统
CN204479256U (zh) * 2015-01-14 2015-07-15 中国矿业大学 一种单台面水平垂直振动试验台
CN108414177A (zh) * 2018-06-20 2018-08-17 中国工程物理研究院总体工程研究所 工作在高离心场下的大负载高频响电液伺服振动装置
GB2574689B (en) * 2019-01-04 2020-07-15 Libertine Fpe Ltd Linear electrical machine
CN111595692A (zh) * 2020-04-03 2020-08-28 浙江大学 用于材料制备与性能测试的悬臂式离心超重力实验装置
CN111441081B (zh) * 2020-04-03 2023-10-27 浙江大学 离心超重力熔铸与定向凝固系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060248955A1 (en) * 2005-04-07 2006-11-09 Imv Corporation Vibration-testing system
CN102794235A (zh) * 2011-05-27 2012-11-28 中国水利水电科学研究院 一种离心机用振动台
CN104502210A (zh) * 2014-12-30 2015-04-08 天津福云天翼科技有限公司 离心机振动台
CN204439479U (zh) * 2014-12-30 2015-07-01 天津福云天翼科技有限公司 离心机振动台
CN205449713U (zh) * 2016-02-29 2016-08-10 成都理工大学 一种离心机振动台
CN108318201A (zh) * 2018-01-11 2018-07-24 中国工程物理研究院总体工程研究所 一种超重力场中高频大推力单自由度水平振动台
CN207730415U (zh) * 2018-01-11 2018-08-14 中国工程物理研究院总体工程研究所 一种超重力场中高频大推力单自由度水平振动台
CN112284659A (zh) * 2020-09-25 2021-01-29 浙江大学 一种超重力竖向振动台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024024A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076164A (zh) * 2022-05-13 2022-09-20 浙江大学高端装备研究院 离心机机载液压伺服高频地震模拟实验测试平台

Also Published As

Publication number Publication date
EP4024024A1 (en) 2022-07-06
EP4024024B1 (en) 2023-06-07
CN112284659B (zh) 2021-07-30
JP2022546876A (ja) 2022-11-09
EP4024024A4 (en) 2022-11-16
EP4024024C0 (en) 2023-06-07
CN112284659A (zh) 2021-01-29
JP7189645B2 (ja) 2022-12-14

Similar Documents

Publication Publication Date Title
WO2022062673A1 (zh) 一种超重力竖向振动台
US9909966B2 (en) Shear test device and test method of rock mass discontinuities under constant normal stiffness condition
Wang et al. Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling
Jia et al. Bearing capacity of composite bucket foundations for offshore wind turbines in silty sand
CN106198264A (zh) 一种真三轴岩石加卸载扰动实验装置及其使用方法
CN106323750A (zh) 变地压巷道掘进负载实验台
CN111780938B (zh) 一种离心机三向振动台
Lam et al. A new apparatus for modelling excavations
Wang et al. Centrifuge modeling of offshore wind turbine with bucket foundation under earthquake loading
CN102794235A (zh) 一种离心机用振动台
Severn et al. The contribution of shaking tables to earthquake engineering
CN114705386A (zh) 一种长大隧道结构拟静力抗震试验装置及试验方法
CN108318201A (zh) 一种超重力场中高频大推力单自由度水平振动台
CN117250654B (zh) 一种基于土工离心机平台的地震断层模拟系统
Schaumann et al. Numerical investigations on local degradation and vertical misalignments of grouted joints in monopile foundations
CN103018100B (zh) 土工离心模拟试验水平加载装置
CN214669045U (zh) 一种多场耦合作用下岩质边坡开挖模型试验装置
CN107830980A (zh) 一种空心变截面单向剪切模型箱
CN109781560B (zh) 一种采动影响充填材料承载变形的震动波激发装置及方法
CN208383411U (zh) 工作在高离心场下的大负载高频响电液伺服振动装置
CN202577376U (zh) 高g值土工离心试验四维机械手
Liu et al. Study of combined pile raft foundations for heavy dynamic equipment
CN220301409U (zh) 一种土工离心机中冲击打桩装置
Lou et al. Research on the Synchronization and Shock Characteristics of an Air Adjustment Mechanism for Cluster‐Type DTH Hammers under Partial Loads
CN112986026B (zh) 一种岩石高频高载的循环动载试验装置及试验方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 21 870 567.1

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021870567

Country of ref document: EP

Effective date: 20220331

ENP Entry into the national phase

Ref document number: 2022525550

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE