WO2022062631A1 - 一种柔性机械臂的控制方法及机器人系统 - Google Patents

一种柔性机械臂的控制方法及机器人系统 Download PDF

Info

Publication number
WO2022062631A1
WO2022062631A1 PCT/CN2021/108600 CN2021108600W WO2022062631A1 WO 2022062631 A1 WO2022062631 A1 WO 2022062631A1 CN 2021108600 W CN2021108600 W CN 2021108600W WO 2022062631 A1 WO2022062631 A1 WO 2022062631A1
Authority
WO
WIPO (PCT)
Prior art keywords
output end
angular displacement
joint
torque sensor
angle sensor
Prior art date
Application number
PCT/CN2021/108600
Other languages
English (en)
French (fr)
Inventor
孙峰
彭维礼
李涛
何超
Original Assignee
苏州微创畅行机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州微创畅行机器人有限公司 filed Critical 苏州微创畅行机器人有限公司
Priority to US18/246,493 priority Critical patent/US20230339110A1/en
Priority to BR112023005042A priority patent/BR112023005042A2/pt
Priority to EP21871009.3A priority patent/EP4219087A1/en
Priority to AU2021350679A priority patent/AU2021350679A1/en
Publication of WO2022062631A1 publication Critical patent/WO2022062631A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1635Programme controls characterised by the control loop flexible-arm control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1638Programme controls characterised by the control loop compensation for arm bending/inertia, pay load weight/inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1641Programme controls characterised by the control loop compensation for backlash, friction, compliance, elasticity in the joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39186Flexible joint
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40279Flexible arm, link

Definitions

  • the invention belongs to the technical field of medical devices, and in particular relates to a control method of a flexible mechanical arm and a robot system.
  • Flexible manipulators have been widely used due to their compact actuators, high precision, and low energy consumption. Compared with rigid manipulators, flexible manipulators are more flexible, safer, and have lower damage rates. However, the flexible manipulator also has a series of problems due to its own flexibility, including: (1) in the process of being driven by the motor, there will be a deviation between the end displacement of the flexible manipulator and the expected end displacement; (2) When the output end of the flexible manipulator is expected to keep the pose unchanged, the pose changes due to the change of the load on the joint output of the flexible manipulator.
  • the purpose of the present invention is to provide a control method and a robot system of a flexible manipulator, the control method can maintain the posture of the joint output end when the load of the joint output end of the flexible manipulator changes, so as to maintain the joint output in the joint holding state
  • the pose accuracy of the end of the flexible manipulator, or the pose accuracy of the end of the flexible manipulator is maintained in the flexible manipulator state.
  • the present invention provides a control method for a flexible robotic arm, comprising the following steps:
  • the joint output end is driven to move in a second direction according to the total amount of angular displacement, so as to restore the joint output end to the posture before the load changes; the second direction is opposite to the first direction.
  • an output interface is provided on the joint output end, and a first angle sensor is provided on the output interface;
  • the first angular displacement of the output interface is monitored by the first angle sensor as the total angular displacement of the joint output end.
  • the joint output end is provided with an output interface, the output interface is provided with a first angle sensor, and the output end of the first angle sensor is provided with a torque sensor;
  • the method for obtaining the total amount of angular displacement includes:
  • the sum of the first angular displacement and the second angular displacement is calculated as the total angular displacement.
  • the elastic constant of the torque sensor is obtained by the following method:
  • the spring constant is calculated from the predetermined torque and the angular displacement of the torque sensor when subjected to the predetermined torque.
  • the joint output end is provided with an output interface, the output interface is provided with a torque sensor, and the output end of the torque sensor is provided with a first angle sensor;
  • the method for obtaining the total amount of angular displacement includes:
  • the total amount of angular displacement is obtained according to the change in the reading of the torque sensor and the conversion relationship.
  • the method for establishing the conversion relationship between the reading variation of the torque sensor and the total angular displacement includes:
  • the joint output end is provided with an output interface, the output interface is provided with a torque sensor, and the output end of the torque sensor is provided with a first angle sensor;
  • the control method includes:
  • the total amount of angular displacement is monitored by the first angle sensor.
  • an output interface is provided on the joint output end, and a torque sensor is provided on the output interface;
  • the method for obtaining the total amount of angular displacement includes:
  • the total amount of angular displacement is obtained according to the change in the reading of the torque sensor and the conversion relationship.
  • the method for establishing the conversion relationship between the torque sensor and the total angular displacement includes:
  • the joint output end is driven to move in the second direction by a driving mechanism, and during the movement of the joint output end in the second direction, a second angle sensor is used to monitor the driving mechanism the rotational speed information, and perform servo control on the drive mechanism according to the rotational speed information.
  • the present invention also provides a robot system, comprising:
  • the flexible robotic arm includes a joint, and the joint includes a joint output end and an output interface arranged on the joint output end;
  • a monitoring device arranged on the joint output end
  • control unit connected in communication with the monitoring device and the driving mechanism
  • the control unit is configured to acquire the total amount of angular displacement of the joint output end along the first direction when the load of the joint output end monitored by the monitoring device changes; and to control the drive according to the total amount of angular displacement
  • the mechanism drives the joint output end to move in a second direction until the joint output end returns to the posture before the load changes; the second direction is opposite to the first direction.
  • the monitoring mechanism includes a first angle sensor or a torque sensor.
  • an output interface is provided on the joint output end;
  • the monitoring mechanism includes a first angle sensor and the torque sensor, the input end of the first angle sensor is connected to the output interface, and the first angle sensor is connected to the output interface.
  • the output end of the angle sensor is connected with the input end of the torque sensor; or,
  • the input end of the torque sensor is connected with the output interface, and the output end of the torque sensor is connected with the output end of the first angle sensor.
  • the first angle sensor includes an absolute value angle encoder.
  • a second angle sensor is included, the second angle sensor is arranged on the driving mechanism and is connected in communication with the control unit;
  • the control unit is further configured to, when the drive mechanism drives the joint output end to move in the second direction, perform the operation on the drive mechanism according to the rotational speed information of the drive mechanism monitored by the second angle sensor. Servo Control.
  • the second angle sensor includes an incremental angle encoder or a multi-turn absolute angle encoder.
  • the drive mechanism includes a servo motor and a reducer connected to each other, and the output end of the reducer is connected to the joint; the second angle sensor is arranged on the servo motor and monitors the servo motor speed.
  • control method and robot system of the flexible mechanical arm of the present invention have the following advantages:
  • the aforementioned control method of a flexible manipulator includes the following steps: obtaining the total angular displacement of the joint output end of the flexible manipulator moving in a first direction when the load on the joint output end changes; according to the total angular displacement The joint output end is driven to move in a second direction, so as to restore the joint output end to the posture before the load changes; the second direction is opposite to the first direction.
  • the joint output end is kept in the desired posture.
  • FIG. 1 is an overall flow chart of a control method of a flexible robotic arm provided by the present invention according to an embodiment
  • FIG. 2 is a schematic structural diagram of a flexible robotic arm of a robotic system provided by the present invention according to an embodiment
  • FIG. 3 is a schematic diagram of applying the robotic system to knee replacement surgery
  • FIG. 4 is a schematic structural diagram of a robot system provided according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of a robot system provided by the present invention according to Embodiment 2;
  • FIG. 6 is a flowchart of obtaining the total amount of angular displacement in the control method of the flexible robotic arm provided by the second embodiment of the present invention.
  • FIG. 8 is a flowchart of obtaining the total amount of angular displacement in the method for controlling a flexible manipulator according to Embodiment 3 of the present invention.
  • each embodiment of the following description has one or more technical features, but this does not mean that the person using the present invention must implement all the technical features in any embodiment at the same time, or can only implement different embodiments separately.
  • One or all of the technical features of the .
  • those skilled in the art can selectively implement some or all of the technical features in any embodiment according to the disclosure of the present invention and depending on design specifications or implementation requirements, or The combination of some or all of the technical features in the multiple embodiments is selectively implemented, thereby increasing the flexibility of the implementation of the present invention.
  • the singular forms “a,” “an,” and “the” include plural referents, and the plural forms “a plurality” include two or more referents unless the content clearly dictates otherwise.
  • the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise, and the terms “installed”, “connected”, “connected” shall be To be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection. It can be a mechanical connection or an electrical connection. It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the purpose of the present invention is to provide a control method for a flexible mechanical arm, which is used to keep the joint output end in the pose before the load change when the load of the joint output end of the flexible mechanical arm changes, so as to make the end of the mechanical arm change. The posture is maintained.
  • the "change in the load on the joint output” includes two situations, one is that the load directly acting on the joint output changes, and the other is that the load acting on other parts of the robotic arm changes, and the change is transmitted to the joint.
  • the output terminal causes the load on the joint output terminal to change accordingly.
  • control method includes the following steps:
  • Step S100 Acquire the total amount of angular displacement of the joint output end of the flexible robotic arm that moves in the first direction when the load on the joint output end changes.
  • Step S200 Drive the joint output end to move in a second direction according to the total amount of angular displacement, so as to restore the joint output end to the posture before the load changes, the second direction is the same as the first direction
  • the first direction is a clockwise direction
  • the second direction is a counterclockwise direction
  • the first direction is a counterclockwise direction
  • the second direction is a clockwise direction direction.
  • the control method of the flexible manipulator first obtains the total angular displacement of the joint output end of the flexible manipulator caused by the load change when the load of the joint output end of the flexible manipulator changes, and then drives the joint The output end moves in the reverse direction, and the angular displacement of the reverse movement is equivalent to the total amount of the angular displacement, so as to offset the position and attitude deviation of the joint output end caused by the load change.
  • the joint output will cause angular displacement, but for the end of the entire flexible robotic arm, there will be changes in displacement and/or attitude. .
  • the embodiment of the present invention further provides a robot system, as shown in FIG. 2 and FIG. 4 , the robot system includes a flexible robot arm 110 , a monitoring device, a driving mechanism 20 and a control unit (not shown in the figures).
  • the flexible robotic arm 110 includes a plurality of joints, such as six joints, each of the joints includes a joint input end and a joint output end, and the monitoring device can be arranged on the joint output end.
  • the joint output end is also provided with an output interface 111 , and the monitoring device is specifically provided on the output interface 111 .
  • the drive mechanism 20 is connected to the joint.
  • the control unit is connected in communication with the monitoring device and the drive mechanism 20 .
  • the monitoring device is configured to monitor the total angular displacement of the joint output end along the first direction when the load of the joint output end changes.
  • the control unit is configured to control the driving mechanism 20 to work according to the total amount of angular displacement, so as to drive the joint output end to move along the second direction until the joint output end returns to the posture before the load changes.
  • the monitoring device includes at least one of a first angle sensor 31 and a torque sensor 32 (as shown in FIG. 5 ). According to different configurations of the monitoring device, the methods for obtaining the total amount of angular displacement are different. It will be introduced in detail in the text.
  • the robot system includes a second angle sensor 40 , the second angle sensor 40 is disposed on the driving mechanism 20 and is connected in communication with the control unit.
  • the second angle sensor 40 monitors the rotational speed information of the driving mechanism 20, and the control unit performs servo control on the driving mechanism 20 according to the rotational speed information , so as to accurately control the angular displacement of the joint output end moving along the second direction.
  • the driving mechanism 20 includes a servo motor 21 and a reducer 22, and the output end of the reducer 22 is connected with the joint.
  • the second angle sensor 40 is disposed on the servo motor 21 to monitor the rotational speed of the servo motor 21 .
  • the second angle sensor 40 includes, but is not limited to, an incremental angle encoder or a multi-turn absolute angle encoder.
  • the flexible robotic arm can be controlled by using the control method of the flexible robotic arm, so that the pose of the joint output end of the flexible robotic arm can be maintained, and the connection with the joint output end can be maintained.
  • poses of other instruments such as the pose of the end of a robotic arm.
  • the joint output end of the arm maintains a fixed posture, etc.
  • the surgical equipment used in knee replacement surgery includes an operating trolley 100, a navigation trolley 200, a femoral target 300, a tibia target 400, a base target 500, and a sterile bag (not shown in the figure). ), osteotomy guide tool 600, tool target 700, etc.
  • the flexible robotic arm 110 is provided on the operating trolley 100
  • a navigation device 210 such as an NDI navigation device, is provided on the navigation trolley 200 .
  • the operating trolley 100 and the navigation trolley 200 are placed in appropriate positions beside the bedside carrying the patient, and then the femoral target 300, tibial target 400, base target 500, tool target 700 are installed, and The osteotomy guide tool 600 is mounted on the end of the flexible robotic arm 110 through a sterile bag.
  • Those skilled in the art are familiar with the specific installation method and operation method of the surgical equipment, which will not be repeated here.
  • the flexible robotic arm 110 includes a plurality of joints, wherein the osteotomy guide tool 600 and the tool target 700 are arranged at the end of the flexible robotic arm 110 , and more specifically, the tool target 700 can be arranged at the end of the flexible robotic arm 110 .
  • Osteotomy guide tool 600 Each of the joints includes a joint input end, a joint output end and an output interface connected in sequence, and the output interface of the joint at the end of the flexible robotic arm 110 is an instrument interface.
  • the instrument interface is connected with the osteotomy guide tool 600 , and the joint input end is connected with a drive mechanism, so as to transmit the driving force generated by the drive mechanism to the joint output end, the instrument interface, and the osteotomy guide tool 600 .
  • preoperative planning is required.
  • the doctor imports the CT scan model of the patient's bone into the computer system for preoperative planning, such as planning the coordinates of the osteotomy plane, selecting the appropriate type of prosthesis, and planning the installation position of the prosthesis.
  • the computer system includes a main display screen, a keyboard, and a controller located within the navigation cart 200 .
  • the doctor uses a target pen to point the feature points of the patient's femur and tibia.
  • the NDI navigation device 210 installed in the navigation trolley 200 takes the base target 500 as a reference, records the positions of the feature points, and records all the features.
  • the position information of the feature point is sent to the computer system.
  • the computer system obtains the actual orientation of the femur and the tibia through feature matching, and corresponds to the orientation of the femur and the tibia in the CT scan model.
  • the NDI navigation device 210 establishes a mapping relationship between the actual position of the femur and the femoral target 300 installed on the femur, and establishes a mapping relationship between the actual position of the tibia and the tibial target 400 installed on the tibia, thereby The actual position of the bone can be tracked from the femoral target 300 and the tibial target 400 .
  • Those skilled in the art should know that during the operation, as long as the mapping relationship between the femoral target 300 and the femur is fixed, and the mapping relationship between the tibial target 400 and the tibia is fixed, even if the bone moves, the operation effect will not be affected.
  • the NDI navigation device 210 sends the preoperative planning coordinates of the osteotomy plane to the flexible robotic arm 110 , and the flexible robotic arm 110 locates the osteotomy plane through the tool target 700 and moves to a predetermined position. After that, the joint output end of the flexible robotic arm 110 needs to maintain a fixed position/desired position, so as to maintain the fixed position/desired position of the osteotomy guide tool 600, so that the doctor can use the oscillating saw 800 to pass through all the
  • the osteotomy is performed through the guide groove on the osteotomy guide tool 600 , and the drilling operation is performed through the guide hole on the osteotomy guide tool 600 by using an electric drill.
  • the doctor can install the prosthesis and perform other surgical operations.
  • the load of the joint output end includes the osteotomy guide tool 600 and the first force exerted by the surgeon on the osteotomy guide tool.
  • the second acting force applied by the doctor to other parts of the flexible robotic arm 110 is transmitted to the joint output end, it also constitutes a part of the load of the joint output end.
  • the joints of the flexible robotic arm 110 are stressed and will generate a certain angular displacement, which affects the posture of the joint output end, thereby affecting the flexibility
  • the posture of the end of the robotic arm 110 or the posture of the osteotomy guide tool 600 is controlled by the control method of the flexible manipulator, so as to offset the end of the flexible manipulator or the position of the osteotomy guide tool caused by the angular displacement caused by the load change of the joint output end.
  • the posture changes, so that the joint output end can maintain the fixed posture, thereby ensuring that the distal end of the flexible mechanical arm or the osteotomy guiding tool maintains the fixed posture/desired posture.
  • the monitoring device includes a first angle sensor 31 , and the first angle sensor 31 is connected to the output interface 111 of the joint.
  • the first angle sensor 31 includes, but is not limited to, an absolute value angle encoder.
  • the rigid components on the flexible manipulator such as the rotating shaft of the drive mechanism 20
  • the rigid components on the flexible manipulator will generate angular displacements in the first direction, and these angular displacements will be transmitted to the output interface 111 is monitored by the first angle sensor 31 . That is, the first angular displacement of the output interface 111 monitored by the first angle sensor 31 is the total angular displacement of the joint output end, and the first angular displacement is directly determined by the first angle sensor 31 Monitoring.
  • the monitoring device includes a first angle sensor 31 and a torque sensor 32 .
  • the input end of the first angle sensor 31 is connected to the output interface 111
  • the output end of the first angle sensor 31 is connected to the input end of the torque sensor 32 .
  • the torque sensor 32 is mainly used to monitor the torque of the joints of the flexible manipulator, so that the flexible manipulator can be controlled by the torque of the joints, so as to avoid the flexible manipulator from interacting with others during the movement. Structural collision.
  • the torque sensor 32 deforms itself to generate a second angular displacement when monitoring the torque of the joint of the flexible robotic arm, and transmits the second angular displacement to the joint output end .
  • the second angular displacement of itself can be monitored by the torque sensor 32 .
  • the rigid components on the flexible manipulator such as the rotating shaft of the drive mechanism 20
  • the rigid components on the flexible manipulator will produce angular displacement along the first direction, and these angular displacements
  • the displacement will be transmitted to the output interface 111 to be monitored by the first angle sensor 31 .
  • the method for obtaining the total amount of angular displacement in the control method of the flexible manipulator in this embodiment includes:
  • Step S110 The first angle sensor monitors the first angular displacement of the output interface, and the value of the first angular displacement is obtained from the change in the reading of the first angle sensor.
  • Step S120 The torque sensor monitors the torque of the joint, and the torque is obtained from the change in the reading of the torque sensor.
  • Step S130 Calculate the second angular displacement of the torque sensor according to the torque and the elastic constant of the torque sensor.
  • Step S140 Calculate the sum of the first angular displacement and the second angular displacement as the total angular displacement.
  • step S110 and the step S120 may be performed synchronously.
  • step S130 the method for obtaining the elastic constant is shown in FIG. 7 :
  • Step S131 applying a predetermined torque to the torque sensor
  • Step S132 use a calibrated angle sensor to monitor the angular displacement of the torque sensor when the torque sensor receives the predetermined torque;
  • Step S133 Calculate the ratio of the angular displacement of the torque sensor when the torque sensor receives the predetermined torque to the predetermined torque, as the elastic constant.
  • the second angular displacement of the torque sensor 32 is the product of the joint torque measured by the torque sensor 32 and the elastic constant.
  • the calibration angle sensor is installed on the torque sensor 32 and is only used to obtain the elastic constant. After the elastic constant is calculated, the calibration angle sensor can be removed.
  • the elastic constant can be measured outside the robot system (that is, the torque sensor can be detached from the flexible manipulator to measure the elastic constant), or the elastic constant can be measured directly on the flexible manipulator. Measurement.
  • the flexible manipulator is provided with a first angle sensor 31 and a torque sensor 32 , and the input end of the torque sensor 32 is connected to the output interface 111 of the joint, so The output end of the torque sensor 32 is connected to the input end of the first angle sensor 31 .
  • only the torque sensor 32 is used to obtain the total amount of angular displacement.
  • the specific method is shown in Figure 8, including the following steps:
  • Step S110' Establish a conversion relationship between the torque sensor and the total angular displacement of the joint output before the load changes.
  • Step S120' when the load changes, the reading variation of the torque sensor is acquired.
  • Step S130' Obtain the total amount of angular displacement according to the change in the reading of the torque sensor and the conversion relationship.
  • step S110' includes the following steps:
  • Step S111' causing the load of the joint output to undergo a predetermined change.
  • Step S112' Acquire the change in the reading of the torque sensor when the predetermined change in the load occurs, and acquire the total angular displacement of the joint output end when the predetermined change in the load occurs, so as to establish the conversion relationship.
  • the first pose of the joint output end is obtained by the robot kinematics method, and then the robot kinematics method is used to obtain the first pose when the predetermined change occurs.
  • the second pose of the joint output end, and the total angular displacement of the joint output end when the predetermined change in the load occurs can be obtained according to the difference between the first pose and the second pose.
  • the method for obtaining the total angular displacement of the joint output end in this embodiment is the same as that in the fourth embodiment, that is, in the Before the load changes, the conversion relationship between the reading change of the torque sensor 32 and the total angular displacement of the joint output end is established, and then when the load changes, the reading change of the torque sensor 32 and the conversion relationship are obtained. the total amount of angular displacement.
  • the torque sensor 32 and the first angle sensor 31 are provided on the flexible robotic arm, and the input end of the torque sensor 32 is connected to the output interface 111 of the joint, and the torque The output end of the sensor 32 is connected to the input end of the first angle sensor 31 .
  • the angular displacement measured by the first angle sensor 31 includes the first angular displacement of the output interface and the second angular displacement of the torque sensor, that is, according to the first angular displacement of the output interface The total amount of angular displacement can be directly obtained by a reading change of the angle sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

一种柔性机械臂的控制方法及机器人系统,控制方法包括如下步骤:获取柔性机械臂(110)的关节输出端在关节输出端的负载发生变动时沿第一方向运动的角位移总量;根据角位移总量驱使关节输出端沿第二方向运动,以使关节输出端恢复至负载发生变动前的位姿;第二方向与第一方向相反。该方法可在柔性机械臂(110)的关节输出端的负载发生变动时保持关节输出端的位姿,方便医生在该固定位姿执行预定手术操作。

Description

一种柔性机械臂的控制方法及机器人系统 技术领域
本发明属于医疗器械技术领域,具体涉及一种柔性机械臂的控制方法及机器人系统。
背景技术
柔性机械臂以其小巧的执行机构、高精度、低能耗的特点获得了广泛的应用。与刚性机械臂相比,柔性机械臂的灵活性更强、安全性更高、损伤率更低。但是柔性机械臂也因其自身的柔性存在一系列的问题,包括:(1)在被电机驱使运动的过程中,柔性机械臂的末端位移与期望的末端位移之间会存在偏差;(2)在希望柔性机械臂的输出端末端保持位姿不变时,由于柔性机械臂的关节输出端的负载发生变动而导致位姿变化。
针对以上问题,尽管现有技术中提出了一些解决方案,但是依然无法精确控制柔性机械臂的位姿,尤其在该柔性机械臂的关节输出端所受到外力或者负载发生变化时,而又期望该柔性机械臂的输出端末端保持位姿不变。
发明内容
本发明的目的在于提供一种柔性机械臂的控制方法及机器人系统,该控制方法可在柔性机械臂的关节输出端的负载发生变动时保持关节输出端的位姿,以在关节保持状态下维持关节输出端的位姿精度,或者在柔性机械臂保持状态下维持柔性机械臂的末端的位姿精度。
为实现上述目的,本发明提供了一种柔性机械臂的控制方法,包括如下步骤:
获取所述柔性机械臂的关节输出端在所述关节输出端的负载发生变动时沿第一方向运动的角位移总量;
根据所述角位移总量驱使所述关节输出端沿第二方向运动,以使所述关节输出端恢复至负载发生变动前的位姿;所述第二方向与所述第一方向相反。
可选地,所述关节输出端上设有输出接口,所述输出接口上设有第一角 度传感器;
通过所述第一角度传感器监测所述输出接口的第一角位移,以作为所述关节输出端的角位移总量。
可选地,所述关节输出端设有输出接口,所述输出接口上设有第一角度传感器,且所述第一角度传感器的输出端设有力矩传感器;
获取所述角位移总量的方法包括:
通过所述第一角度传感器监测所述输出接口的第一角位移;
通过所述力矩传感器监测关节的转矩;
计算所述关节的转矩与所述力矩传感器的弹性常数的乘积,以作为所述力矩传感器的第二角位移;
计算所述第一角位移和所述第二角位移之和,以作为所述角位移总量。
可选地,所述力矩传感器的弹性常数通过如下方法获得:
向所述力矩传感器施加预定转矩;
利用一标定角度传感器监测所述力矩传感器在受到所述预定转矩时的角位移;
根据所述预定转矩和所述力矩传感器在受到所述预定转矩时的角位移计算所述弹性常数。
可选地,所述关节输出端设有输出接口,所述输出接口上设有力矩传感器,所述力矩传感器的输出端设有第一角度传感器;
获取所述角位移总量的方法包括:
在负载发生变动前建立所述力矩传感器的读数变化量与所述角位移总量的转换关系;
在负载发生变动时获取所述力矩传感器的读数变化量;
根据所述力矩传感器的读数变化量和所述转换关系得到所述角位移总量。
可选地,建立所述力矩传感器的读数变化量与所述角位移总量的转换关系的方法包括:
使所述关节输出端的负载发生预定变动;
获取所述力矩传感器在负载发生所述预定变动时的读数变化量,以及通过机器人正向运动学方法获取所述关节输出端在负载发生所述预定变动时的角位移总量,以建立所述转换关系。
可选地,所述关节输出端设有输出接口,所述输出接口上设有力矩传感器,且所述力矩传感器的输出端设有第一角度传感器;所述控制方法包括:
通过所述第一角度传感器监测所述角位移总量。
可选地,所述关节输出端上设有输出接口,所述输出接口上设有力矩传感器;
获取所述角位移总量的方法包括:
在负载发生变动前建立所述力矩传感器与所述角位移总量的转换关系;
在负载发生变动时获取所述力矩传感器的读数变化量;
根据所述力矩传感器的读数变化量和所述转换关系得到所述角位移总量。
可选地,建立所述力矩传感器与所述角位移总量的转换关系的方法包括:
使所述关节输出端的负载发生预定变动;
获取所述力矩传感器在负载发生所述预定变动时的读数变化量,通过机器人运动学方法获取所述关节输出端在负载发生所述预定变动时的角位移总量,以建立所述转换关系。
可选地,通过驱动机构驱使所述关节输出端沿所述第二方向运动,且在所述关节输出端沿所述第二方向运动的过程中,还利用第二角度传感器监控所述驱动机构的转速信息,并根据所述转速信息对所述驱动机构进行伺服控制。
为实现上述目的,本发明还提供了一种机器人系统,包括:
柔性机械臂,包括关节,所述关节包括关节输出端和设置在所述关节输出端的输出接口;
监测装置,设置在所述关节输出端上;
驱动机构,与所述关节连接;以及,
控制单元,与所述监测装置和所述驱动机构通信连接;
所述控制单元被配置为,获取所述监测装置监测的所述关节输出端的负载发生变动时所述关节输出端沿第一方向的角位移总量;根据所述角位移总量控制所述驱动机构以驱使所述关节输出端沿第二方向运动至所述关节输出端恢复至负载发生变动前的位姿;所述第二方向与所述第一方向相反。
可选地,所述监测机构包括第一角度传感器或力矩传感器。
可选地,所述关节输出端上设有输出接口;所述监测机构包括第一角度传感器和所述力矩传感器,所述第一角度传感器的输入端与所述输出接口连接,所述第一角度传感器的输出端与所述力矩传感器的输入端连接;或,
所述力矩传感器的输入端与所述输出接口连接,所述力矩传感器的输出端与所述第一角度传感器的输出端连接。
可选地,所述第一角度传感器包括绝对值角度编码器。
可选地,包括第二角度传感器,所述第二角度传感器设置在所述驱动机构上,并与所述控制单元通信连接;
所述控制单元还被配置为当所述驱动机构驱使所述关节输出端沿所述第二方向运动时,根据所述第二角度传感器监测的所述驱动机构的转速信息对所述驱动机构进行伺服控制。
可选地,所述第二角度传感器包括增量式角度编码器或多圈式绝对值角度编码器。
可选地,所述驱动机构包括相互连接的伺服电机和减速机,所述减速机的输出端与所述关节连接;所述第二角度传感器设置在所述伺服电机上并监测所述伺服电机的转速。
与现有技术相比,本发明的柔性机械臂的控制方法及机器人系统具有如下优点:
前述的柔性机械臂的控制方法包括如下步骤:获取所述柔性机械臂的关节输出端在所述关节输出端的负载发生变动时沿第一方向运动的角位移总量;根据所述角位移总量驱使所述关节输出端沿第二方向运动,以使所述关节输出端恢复至负载发生变动前的位姿;所述第二方向与所述第一方向相反。通过根据角位移总量控制所述关节输出端反向运动,以补偿因关节输出端的 负载发生变动而造成的关节输出端位姿变化,使得关节输出端保持在期望位姿。
附图说明
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:
图1是本发明根据一实施例所提供的柔性机械臂的控制方法的整体流程图;
图2是本发明根据一实施例所提供的机器人系统的柔性机械臂的结构示意图;
图3是将所述机器人系统应用于膝关节置换术时的示意图;
图4是本发明根据实施例一所提供的机器人系统的结构简图;
图5是本发明根据实施例二所提供的机器人系统的结构简图;
图6是本发明根据实施例二所提供的柔性机械臂的控制方法中获取所述角位移总量的流程图;
图7是本发明根据实施例二所提供的柔性机械臂的控制方法中获取力矩传感器的弹性常数的流程图;
图8是本发明根据实施例三所提供的柔性机械臂的控制方法中获取所述角位移总量的流程图。
[附图标记说明如下]:
100-手术台车;
110-柔性机械臂;
111-输出端接口;
200-导航台车;
210-NDI导航设备;
300-股骨靶标;
400-胫骨靶标;
500-基座靶标;
600-截骨导向工具;
700-工具靶标;
800-摆锯;
20-驱动机构;
21-伺服电机,22-减速机;
31-第一角度传感器,32-力矩传感器;
40-第二角度传感器。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
另外,以下说明内容的各个实施例分别具有一或多个技术特征,然此并不意味着使用本发明者必需同时实施任一实施例中的所有技术特征,或仅能分开实施不同实施例中的一部或全部技术特征。换句话说,在实施为可能的前提下,本领域技术人员可依据本发明的公开内容,并视设计规范或实作需求,选择性地实施任一实施例中部分或全部的技术特征,或者选择性地实施多个实施例中部分或全部的技术特征的组合,借此增加本发明实施时的弹性。
如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,复数形式“多个”包括两个以上的对象,除非内容另外明确指出外。如在本说明书中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外,以及术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介 间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
为使本发明的目的、优点和特征更加清楚,以下结合附图对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。附图中相同或相似的附图标记代表相同或相似的部件。
本发明的目的在于提供一种柔性机械臂的控制方法,用于在柔性机械臂的关节输出端的负载发生变化时,使关节输出端保持在负载发生变动前的位姿,进而使得机械臂的末端位姿得以保持。本领域技术人员应知晓,所谓“柔性机械臂”是指在驱动机械臂运动的电机处于保持状态,且机械臂的关节输出端的负载发生变化时,关节输出端随之产生角位移的机械臂;反之,若关节输出端不随负载的变化而产生角位移,则该机械臂为传统的刚性机械臂(实际上,刚性机械臂也有一定的柔性,但是对于刚性机械臂而言,其采用RV减速器或齿轮箱,导致其柔性极小,可忽略不计)。另外,所述“关节输出端的负载发生变化”包括两种情况,其一是直接作用于关节输出端的负载发生变化,其二是作用于机械臂其他部位的负载发生变化,并且该变化传递至关节输出端,引起关节输出端的负载随之发生变化。
如图1所示,该控制方法包括如下步骤:
步骤S100:获取所述柔性机械臂的关节输出端在所述关节输出端的负载发生变动时沿第一方向运动的角位移总量。
步骤S200:根据所述角位移总量驱使所述关节输出端沿第二方向运动,以使所述关节输出端恢复至负载发生变动前的位姿,所述第二方向与所述第一方向相反,例如在一些实施例中,所述第一方向是顺时针方向,则所述第二方向为逆时针方向,或者所述第一方向是逆时针方向,而所述第二方向为顺时针方向。
即,所述柔性机械臂的控制方法在柔性机械臂的关节输出端的负载发生变动时,先获取所述柔性机械臂的关节输出端因负载变动而产生的角位移总 量,然后驱使所述关节输出端反向运动,且反向运动的角位移与所述角位移总量相当,以抵消所述关节输出端因负载变动而产生的位姿偏移。另外,本领域技术人员可理解,所述关节输出端的负载发生变化时,导致所述关节输出端产生角位移,但对于整个柔性机械臂的末端而言,其会有位移和/或姿态的变化。
本发明实施例还提供了一种机器人系统,如图2及图4所示,所述机器人系统包括柔性机械臂110、监测装置、驱动机构20和控制单元(图中未示出)。其中,所述柔性机械臂110包括多个关节,例如六个关节,每个所述关节包括关节输入端和关节输出端,所述监测装置可设置在所述关节输出端上。进一步地,所述关节输出端上还设置有输出接口111,所述监测装置具体设置在所述输出接口111上。所述驱动机构20与所述关节连接。所述控制单元与所述监测装置和所述驱动机构20通信连接。如此,所述监测装置用于监测所述关节输出端的负载发生变动时所述关节输出端沿所述第一方向的角位移总量。所述控制单元用于根据所述角位移总量控制所述驱动机构20工作,以驱使所述关节输出端沿所述第二方向运动至所述关节输出端恢复至负载发生变动前的位姿。所述监测装置包括第一角度传感器31和力矩传感器32(如图5所示)中的至少一个,根据所述监测装置的不同配置,其获取所述角位移总量的方法有所不同,下文中将详细介绍。
进一步地,如图4所示,所述机器人系统包括第二角度传感器40,所述第二角度传感器40设置在所述驱动机构20上,并与所述控制单元通信连接。当所述关节输出端沿所述第二方向运动时,所述第二角度传感器40监测所述驱动机构20的转速信息,所述控制单元根据所述转速信息对所述驱动机构20进行伺服控制,从而准确地控制所述关节输出端沿所述第二方向运动的角位移。
通常,所述驱动机构20包括伺服电机21和减速机22,所述减速机22的输出端与所述关节连接。所述第二角度传感器40设置在所述伺服电机21上以监测所述伺服电机21的转速。所述第二角度传感器40包括但不限于增量式角度编码器或多圈式绝对值角度编码器。
在所述机器人系统应用时,利用所述柔性机械臂的控制方法来对所述柔性机械臂进行控制,可保持所述柔性机械臂的关节输出端的位姿,进而保持与该关节输出端相连接的其他器械的位姿,例如机械臂末端的位姿。例如膝关节置换术中保持截骨导向工具的位姿、各类使用持镜机器人握持内窥镜进行的手术中医生对创口进行缝合处理时保持内窥镜的位姿、或其他需要柔性机械臂的关节输出端保持固定位姿的情形等。下面以膝关节置换术为例介绍所述柔性机械臂的控制方法的应用情形。
请参考图2及图3,应用于膝关节置换术的手术设备包括手术台车100、导航台车200、股骨靶标300、胫骨靶标400、基座靶标500、无菌袋(图中未示出)、截骨导向工具600和工具靶标700等。其中,所述手术台车100上设置有所述柔性机械臂110,所述导航台车200上设有导航设备210,例如NDI导航设备。在手术前,将手术台车100和所述导航台车200放置在承载有患者的病床旁的合适位置,然后安装所述股骨靶标300、胫骨靶标400、基座靶标500、工具靶标700,并通过无菌袋将截骨导向工具600安装到所述柔性机械臂110末端上。本领域技术人员熟知所述手术设备的具体安装方式以及操作方式,此处不再赘述。
所述柔性机械臂110包括多个关节,其中所述截骨导向工具600和所述工具靶标700设置在所述柔性机械臂110的末端,更具体的,所述工具靶标700可设置在所述截骨导向工具600上。每个所述关节包括依次连接关节输入端、关节输出端和输出接口,所述柔性机械臂110的末端的关节的所述输出接口即为器械接口。所述器械接口与所述截骨导向工具600连接,所述关节输入端与驱动机构连接,以用于将驱动机构产生的驱动力传递至关节输出端、器械接口及所述截骨导向工具600。
手术开始前需进行术前规划,具体地,医生将患者的骨头的CT扫描模型导入计算机系统进行术前规划,例如规划截骨平面坐标,选择合适型号的假体,以及规划假体的安装方位。应知晓,所述计算机系统包括主显示屏、键盘及位于所述导航台车200内的控制器。
接着,医生使用靶标笔点病人的股骨及胫骨的特征点,所述导航台车200 中安装的NDI导航设备210以所述基座靶标500为基准,记录所述特征点的位置,并将所述特征点的位置信息发送给所述计算机系统。然后所述计算机系统通过特征匹配计算得到股骨和胫骨的实际方位,并与CT扫描模型中的股骨、胫骨的方位对应。随后,所述NDI导航设备210对股骨的实际方位与安装在股骨上的所述股骨靶标300建立映射关系,以及对胫骨的实际方位和安装在胫骨上的所述胫骨靶标400建立映射关系,从而可根据所述股骨靶标300和所述胫骨靶标400跟踪到骨头的实际位置。本领域技术人员应知晓,在手术过程中,只要股骨靶标300与股骨的映射关系固定,以及胫骨靶标400与胫骨的映射关系固定,骨头即使发生移动也不会影响手术效果。
所述NDI导航设备210将术前规划的截骨平面坐标发送给所述柔性机械臂110,所述柔性机械臂110通过所述工具靶标700定位截骨平面并运动到预定位置。之后,所述柔性机械臂110的关节输出端需要保持固定位姿/期望位姿,以保持所述截骨导向工具600的在固定位姿/期望位姿,从而医生可利用摆锯800通过所述截骨导向工具600上的导向槽进行截骨,以及利用电钻通过所述截骨导向工具600上的导向孔进行钻孔操作。
截骨及钻孔操作后,医生可安装假体,并进行其他手术操作。
在膝关节置换手术中,执行截骨操作或钻孔操作时医生会对截骨导向工具施加一定的作用力,且所述作用力的大小根据需要改变。所述关节输出端的负载包括所述截骨导向工具600、医生施加于所述截骨导向工具上的第一作用力。此外,医生施加于所述柔性机械臂110的其他部位的第二作用力在传递至所述关节输出端后,也构成所述关节输出端的负载的一部分。在所述第一作用力或所述第二作用力发生改变时,所述柔性机械臂110的关节受力并会产生一定的角位移而影响所述关节输出端的位姿,进而影响所述柔性机械臂110的末端位姿或所述截骨导向工具600的位姿。此时,利用所述柔性机械臂的控制方法来控制所述柔性机械臂,以抵消因所述关节输出端的负载变化而引起的角位移造成的柔性机械臂的末端或所述截骨导向工具位姿的变化,使得所述关节输出端可保持在所述的固定位姿,进而确保所述柔性机械臂的末端或所述截骨导向工具保持所述固定位姿/期望位姿。
下面,本文将通过具体的实施例来说明所述机器人系统具有不同配置的所述监测装置时,所述柔性机械臂的控制方法中获取所述关节输出端的角位移总量的具体实现方式。
实施例一
请参考图4,所述监测装置包括第一角度传感器31,所述第一角度传感器31与所述关节的所述输出接口111连接。所述第一角度传感器31包括但不限于绝对值角度编码器。
当所述关节输出端的负载发生变化时,所述柔性机械臂上的刚性部件例如驱动机构20的旋转轴等结构会产生沿第一方向的角位移,并且这些角位移会传递至所述输出接口111而被所述第一角度传感器31监测。也即,所述第一角度传感器31所监测的所述输出接口111的第一角位移即为所述关节输出端的角位移总量,且所述第一角位移直接由所述第一角度传感器31监测。
实施例二
请参考图5,本实施例中,所述监测装置包括第一角度传感器31和力矩传感器32。所述第一角度传感器31的输入端与所述输出接口111连接,所述第一角度传感器31的输出端与所述力矩传感器32的输入端连接。所述力矩传感器32主要用于监测所述柔性机械臂的关节的转矩,从而可通过所述关节的转矩对所述柔性机械臂进行控制,避免所述柔性机械臂在运动过程中与其他结构碰撞。但在本实施例中,所述力矩传感器32在监测所述柔性机械臂的关节的转矩时,其自身发生变形产生第二角位移,并将该第二角位移传递至所述关节输出端。通过所述力矩传感器32可监测其自身的所述第二角位移。
同时,类似于实施例一,当所述关节输出端的负载发生变动时,所述柔性机械臂上的刚性部件例如驱动机构20的旋转轴等结构会产生沿第一方向的角位移,并且这些角位移会传递至所述输出接口111而被所述第一角度传感器31监测。
故而,如图6所示,本实施例中所述柔性机械臂的控制方法中获取角位移总量的方法包括:
步骤S110:所述第一角度传感器监测所述输出接口的第一角位移,所述 第一角位移的数值由所述第一角度传感器的读数变化量得到。
步骤S120:所述力矩传感器监测所述关节的转矩,所述转矩由所述力矩传感器的读数变化量得到。
步骤S130:根据所述转矩和所述力矩传感器的弹性常数计算所述力矩传感器的第二角位移。
步骤S140:计算所述第一角位移和所述第二角位移之和,以作为所述角位移总量。
其中,所述步骤S110和所述步骤S120可同步执行。
以及,所述步骤S130中,所述弹性常数的获取方法如图7所示:
步骤S131:向所述力矩传感器施加预定转矩;
步骤S132:利用一标定角度传感器监测所述力矩传感器受到所述预定转矩时的角位移;
步骤S133:计算所述力矩传感器在受到所述预定转矩时的角位移与所述预定转矩的比值,以作为所述弹性常数。
如此,在所述关节输出端的负载发生变化时,所述力矩传感器32的所述第二角位移为所述力矩传感器32所测得的关节的转矩与所述弹性常数的乘积。
本领域技术人员可理解,所述标定角度传感器安装于所述力矩传感器32上,且仅用于获取弹性常数,在计算得到所述弹性常数之后,所述标定角度传感器可被拆除。另外,可在机器人系统之外测量所述弹性常数(即将所述力矩传感器从所述柔性机械臂上拆卸下来以进行弹性常数的测量),也可直接在所述柔性机械臂上进行弹性常数的测量。
实施例三
本实施例中,如图5所示,所述柔性机械臂上设置有第一角度传感器31和力矩传感器32,所述力矩传感器32的输入端与所述关节的所述输出接口111连接,所述力矩传感器32的输出端与所述第一角度传感器31的输入端连接。本实施例中仅利用所述力矩传感器32获取所述角位移总量。具体方法如图8所示,包括如下步骤:
步骤S110’:在负载发生变动前建立所述力矩传感器与所述关节输出端的角位移总量之间的转换关系。
步骤S120’:在负载发生变动时获取所述力矩传感器的读数变化量。
步骤S130’:根据所述力矩传感器的读数变化量和所述转换关系得到所述角位移总量。
其中,所述步骤S110’包括如下步骤:
步骤S111’:使所述关节输出端的负载发生预定变动。
步骤S112’:获取所述力矩传感器在负载发生所述预定变动时的读数变化量,以及获取所述关节输出端在负载发生所述预定变动时的角位移总量,以建立所述转换关系。
所述步骤S112’中,在所述预定变动发生前,通过所述机器人运动学方法得到所述关节输出端的第一位姿,然后在所述预定变动发生时通过所述机器人运动学方法得到所述关节输出端的第二位姿,根据所述第一位姿和所述第二位姿的差值即可获得所述关节输出端在负载发生所述预定变动时的角位移总量。
实施例四
本实施例中,所述柔性机械臂上仅设置有力矩传感器32而未设置第一角度传感器31,且本实施例获取所述关节输出端的角位移总量的方法与实施例四相同,即在负载发生变动前先建立力矩传感器32的读数变化量与所述关节输出端的角位移总量之间的转换关系,然后再在负载发生变动时根据力矩传感器32的读数变化量与所述转换关系得到所述角位移总量。
实施例五
本实例中,所述柔性机械臂上设置有所述力矩传感器32和所述第一角度传感器31,并且所述力矩传感器32的输入端与所述关节的所述输出接口111连接,所述力矩传感器32的输出端与所述第一角度传感器31的输入端连接。这样一来,所述第一角度传感器31所测得的所述角位移包括了所述输出接口的所述第一角位移和所述力矩传感器的所述第二角位移,即根据所述第一角度传感器的读数变化量即可直接获取所述角位移总量。
虽然本发明披露如上,但并不局限于此。本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (17)

  1. 一种柔性机械臂的控制方法,其特征在于,包括如下步骤:
    获取所述柔性机械臂的关节输出端在负载发生变动时沿第一方向运动的角位移总量;
    根据所述角位移总量驱使所述关节输出端沿第二方向运动,以使所述关节输出端恢复至负载发生变动前的位姿;所述第二方向与所述第一方向相反。
  2. 根据权利要求1所述的柔性机械臂的控制方法,其特征在于,所述关节输出端上设有输出接口,所述输出接口上设有第一角度传感器;
    通过所述第一角度传感器监测所述输出接口的第一角位移,以作为所述关节输出端的所述角位移总量。
  3. 根据权利要求1所述的柔性机械臂的控制方法,其特征在于,所述关节输出端设有输出接口,所述输出接口上设有第一角度传感器,且所述第一角度传感器的输出端设有力矩传感器;
    获取所述角位移总量的方法包括:
    通过所述第一角度传感器监测所述输出接口的第一角位移;
    通过所述力矩传感器监测关节的转矩;
    计算所述关节的转矩与所述力矩传感器的弹性常数的乘积,以作为所述力矩传感器的第二角位移;
    计算所述第一角位移和所述第二角位移之和,以作为所述角位移总量。
  4. 根据权利要求3所述的柔性机械臂的控制方法,其特征在于,所述力矩传感器的弹性常数通过如下方法获得:
    向所述力矩传感器施加预定转矩;
    利用一标定角度传感器监测所述力矩传感器在受到所述预定转矩时的角位移;
    根据所述预定转矩和所述力矩传感器在受到所述预定转矩时的角位移计算所述弹性常数。
  5. 根据权利要求1所述的柔性机械臂的控制方法,其特征在于,所述关 节输出端设有输出接口,所述输出接口上设有力矩传感器,所述力矩传感器的输出端设有第一角度传感器;
    获取所述角位移总量的方法包括:
    在负载发生变动前建立所述力矩传感器的读数变化量与所述角位移总量的转换关系;
    在负载发生变动时获取所述力矩传感器的读数变化量;
    根据所述力矩传感器的读数变化量和所述转换关系得到所述角位移总量。
  6. 根据权利要求5所述的柔性机械臂的控制方法,其特征在于,建立所述力矩传感器的读数变化量与所述角位移总量的转换关系的方法包括:
    使所述关节输出端的负载发生预定变动;
    获取所述力矩传感器在负载发生所述预定变动时的读数变化量,以及通过机器人正向运动学方法获取所述关节输出端在负载发生所述预定变动时的角位移总量,以建立所述转换关系。
  7. 根据权利要求1所述的柔性机械臂的控制方法,其特征在于,所述关节输出端设有输出接口,所述输出接口上设有力矩传感器,且所述力矩传感器的输出端设有第一角度传感器;所述控制方法包括:
    通过所述第一角度传感器监测所述角位移总量。
  8. 根据权利要求1所述的柔性机械臂的控制方法,其特征在于,所述关节输出端上设有输出接口,所述输出接口上设有力矩传感器;
    获取所述角位移总量的方法包括:
    在负载发生变动前建立所述力矩传感器与所述角位移总量的转换关系;
    在负载发生变动时获取所述力矩传感器的读数变化量;
    根据所述力矩传感器的读数变化量和所述转换关系得到所述角位移总量。
  9. 根据权利要求8所述的柔性机械臂的控制方法,其特征在于,建立所述力矩传感器与所述角位移总量的转换关系的方法包括:
    使所述关节输出端的负载发生预定变动;
    获取所述力矩传感器在负载发生所述预定变动时的读数变化量,通过机器人运动学方法获取所述关节输出端在负载发生所述预定变动时的角位移总量,以建立所述转换关系。
  10. 根据权利要求1-9中任一项所述柔性机械臂的控制方法,其特征在于,通过驱动机构驱使所述关节输出端沿所述第二方向运动,且在所述关节输出端沿所述第二方向运动的过程中,还利用第二角度传感器监控所述驱动机构的转速信息,并根据所述转速信息对所述驱动机构进行伺服控制。
  11. 一种机器人系统,其特征在于,包括:
    柔性机械臂,包括关节,所述关节包括关节输出端;
    监测装置,设置在所述关节输出端上;
    驱动机构,与所述关节连接;以及,
    控制单元,与所述监测装置和所述驱动机构通信连接;
    所述控制单元被配置为,获取所述监测装置监测的所述关节输出端的负载发生变动时所述关节输出端沿第一方向的角位移总量;根据所述角位移总量控制所述驱动机构以驱使所述关节输出端沿第二方向运动至所述关节输出端恢复至负载发生变动前的位姿;所述第二方向与所述第一方向相反。
  12. 根据权利要求11所述的机器人系统,其特征在于,所述监测机构包括第一角度传感器或力矩传感器。
  13. 根据权利要求11所述的机器人系统,其特征在于,所述关节输出端上设有输出接口;所述监测机构包括第一角度传感器和力矩传感器,所述第一角度传感器的输入端与所述输出接口连接,且所述第一角度传感器的输出端与所述力矩传感器的输入端连接;或,
    所述力矩传感器的输入端与所述输出接口连接,所述力矩传感器的输出端与所述第一角度传感器的输出端连接。
  14. 根据权利要求12或13所述的机器人系统,其特征在于,所述第一角度传感器包括绝对值角度编码器。
  15. 根据权利要求11-13中任一项所述的机器人系统,其特征在于,包括第二角度传感器,所述第二角度传感器设置在所述驱动机构上,并与所述控 制单元通信连接;
    所述控制单元还被配置为当所述驱动机构驱使所述关节输出端沿所述第二方向运动时,根据所述第二角度传感器监测的所述驱动机构的转速信息对所述驱动机构进行伺服控制。
  16. 根据权利要求15所述的机器人系统,其特征在于,所述第二角度传感器包括增量式角度编码器或多圈式绝对值角度编码器。
  17. 根据权利要求15所述的机器人系统,其特征在于,所述驱动机构包括相互连接的伺服电机和减速机,所述减速机的输出端与所述关节连接;所述第二角度传感器设置在所述伺服电机上并监测所述伺服电机的转速。
PCT/CN2021/108600 2020-09-25 2021-07-27 一种柔性机械臂的控制方法及机器人系统 WO2022062631A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/246,493 US20230339110A1 (en) 2020-09-25 2021-07-27 Flexible mechanical arm control method and robot system
BR112023005042A BR112023005042A2 (pt) 2020-09-25 2021-07-27 Método de controle de braço mecânico flexível e sistema robótico
EP21871009.3A EP4219087A1 (en) 2020-09-25 2021-07-27 Flexible mechanical arm control method and robot system
AU2021350679A AU2021350679A1 (en) 2020-09-25 2021-07-27 Flexible mechanical arm control method and robot system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011024129.8A CN112171674B (zh) 2020-09-25 2020-09-25 一种柔性机械臂的控制方法及机器人系统
CN202011024129.8 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022062631A1 true WO2022062631A1 (zh) 2022-03-31

Family

ID=73945325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108600 WO2022062631A1 (zh) 2020-09-25 2021-07-27 一种柔性机械臂的控制方法及机器人系统

Country Status (6)

Country Link
US (1) US20230339110A1 (zh)
EP (1) EP4219087A1 (zh)
CN (1) CN112171674B (zh)
AU (1) AU2021350679A1 (zh)
BR (1) BR112023005042A2 (zh)
WO (1) WO2022062631A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112171674B (zh) * 2020-09-25 2022-11-11 苏州微创畅行机器人有限公司 一种柔性机械臂的控制方法及机器人系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138562A (ja) * 1991-11-22 1993-06-01 Yaskawa Electric Corp ロボツトの制御方法
US20130184869A1 (en) * 2012-01-17 2013-07-18 Seiko Epson Corporation Robot controller, robot system, robot control method
CN109129475A (zh) * 2018-08-15 2019-01-04 珠海格力电器股份有限公司 机械臂的重力补偿方法、装置、系统及存储介质
CN110154065A (zh) * 2019-05-15 2019-08-23 西安电子科技大学 用于柔性机械臂关节的柔性光电式力矩传感器及使用方法
CN111055285A (zh) * 2020-01-08 2020-04-24 山东理工大学 一种仿人柔性关节手臂变负载工况下的振动抑制方法
CN112171674A (zh) * 2020-09-25 2021-01-05 苏州微创畅行机器人有限公司 一种柔性机械臂的控制方法及机器人系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645408A (en) * 1985-09-27 1987-02-24 Mizuno Tekko Kabushiki Kaisha Uncontrolled angular displacement compensating device for industrial robot
WO2008032591A1 (fr) * 2006-09-12 2008-03-20 Kabushiki Kaisha Yaskawa Denki Appareils de transfert de pièces à travailler
EP4082466A1 (en) * 2014-10-27 2022-11-02 Intuitive Surgical Operations, Inc. System and method for instrument disturbance compensation
TWI651176B (zh) * 2017-11-16 2019-02-21 財團法人工業技術研究院 機械手臂加工系統及其加工方法
CN109514545A (zh) * 2018-11-15 2019-03-26 詹子勋 一种多功能柔性机械手

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138562A (ja) * 1991-11-22 1993-06-01 Yaskawa Electric Corp ロボツトの制御方法
US20130184869A1 (en) * 2012-01-17 2013-07-18 Seiko Epson Corporation Robot controller, robot system, robot control method
CN109129475A (zh) * 2018-08-15 2019-01-04 珠海格力电器股份有限公司 机械臂的重力补偿方法、装置、系统及存储介质
CN110154065A (zh) * 2019-05-15 2019-08-23 西安电子科技大学 用于柔性机械臂关节的柔性光电式力矩传感器及使用方法
CN111055285A (zh) * 2020-01-08 2020-04-24 山东理工大学 一种仿人柔性关节手臂变负载工况下的振动抑制方法
CN112171674A (zh) * 2020-09-25 2021-01-05 苏州微创畅行机器人有限公司 一种柔性机械臂的控制方法及机器人系统

Also Published As

Publication number Publication date
CN112171674B (zh) 2022-11-11
BR112023005042A2 (pt) 2023-04-18
AU2021350679A1 (en) 2023-04-27
US20230339110A1 (en) 2023-10-26
EP4219087A1 (en) 2023-08-02
CN112171674A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
US6899705B2 (en) Friction compensation in a minimally invasive surgical apparatus
US11478316B2 (en) Surgical robot system
JP6892967B2 (ja) ロボット手首を制御するためのシステム及び方法
CN107961078A (zh) 手术机器人系统及其手术器械
CN108210078B (zh) 手术机器人系统
CN110811833B (zh) 截骨校验方法、校验工具、可读存储介质及骨科手术系统
Tadano et al. Development of a master slave system with force sensing using pneumatic servo system for laparoscopic surgery
WO2022127794A1 (zh) 导航手术系统及其注册方法、计算机可读存储介质及电子设备
WO2022062631A1 (zh) 一种柔性机械臂的控制方法及机器人系统
Chrysilla et al. A compliance model to improve the accuracy of the da Vinci Research Kit (dVRK)
Wang et al. Design and experimental validation of a miniaturized robotic tendon-driven articulated surgical drill for enhancing distal dexterity in minimally invasive spine fusion
RU2718595C1 (ru) Контроллер оператора для управления роботохирургическим комплексом
WO2021098177A1 (zh) 截骨校验方法、校验设备、可读存储介质及骨科手术系统
Guo et al. Performance evaluation of the novel grasper for a robotic catheter navigation system
CN113742992A (zh) 基于深度学习的主从控制方法及应用
CN116138837A (zh) 一种机器人骨钻削刀具侧向受力状态检测装置及使用方法
CN115300110A (zh) 内窥镜手术控制系统
Zhu et al. A force-sensing retractor for robot-assisted transoral surgery
CN111132630A (zh) 包括双编码器的机器人手术系统控制臂
WO2022121964A1 (zh) 手术工具导向及驱动机构、引导装置、机器人系统
KR20140132113A (ko) 백래시 보상 방법 및 백래시 보상값 산출식 생성 방법
Sun et al. Development of a Novel Hand-eye Coordination Algorithm for Robot Assisted Minimally Invasive Surgery
Li et al. Development of a 7-DoF Haptic Operator Interface Based on Redundantly Actuated Parallel Mechanism
Sarakankosol et al. Development of the microVibrated Robot for orthopedic surgery in drilling application
Song et al. Mechanical Design and Control Method of a Hollow Modular Joint for Minimally Invasive Spinal Surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871009

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2021350679

Country of ref document: AU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023005042

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023005042

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230317

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021350679

Country of ref document: AU

Date of ref document: 20210727

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021871009

Country of ref document: EP

Effective date: 20230425