WO2022062574A1 - 一种特厚钢板韧化调控方法 - Google Patents

一种特厚钢板韧化调控方法 Download PDF

Info

Publication number
WO2022062574A1
WO2022062574A1 PCT/CN2021/105222 CN2021105222W WO2022062574A1 WO 2022062574 A1 WO2022062574 A1 WO 2022062574A1 CN 2021105222 W CN2021105222 W CN 2021105222W WO 2022062574 A1 WO2022062574 A1 WO 2022062574A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
toughening
extra
thick steel
thickness
Prior art date
Application number
PCT/CN2021/105222
Other languages
English (en)
French (fr)
Inventor
田勇
王红涛
叶其斌
王昭东
王国栋
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to DE112021000496.4T priority Critical patent/DE112021000496T5/de
Publication of WO2022062574A1 publication Critical patent/WO2022062574A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the application belongs to the field of extra-thick steel plate rolling, and relates to a toughening control method for an extra-thick steel plate.
  • the continuous casting billet forging technology was used to improve the internal quality of the billet, and the ship steel with high crack arrest toughness was successfully produced with a thickness of 100mm; combined with the advantages of continuous casting and ingot casting, a super-thick slab continuous casting machine (PosMC) was developed to achieve maximum For mass production of slabs with a thickness of 700mm, in theory, this continuous casting slab can produce high-grade thick plates with a thickness of up to 233mm and forging materials for export.
  • the existing technology is limited by the continuous casting slab with a maximum thickness of 350/320mm, and most steel mills can only guarantee the core quality of the steel plate with a maximum thickness of 90mm.
  • the continuous casting billet is first heated to a certain temperature to achieve complete austenitization inside the billet and partially eliminate the internal defects of the continuous casting billet to prepare for the subsequent rolling of the austenite recrystallization zone.
  • the size of austenite grains will grow rapidly with the increase of heating temperature.
  • the austenite grains with suitable size, uniform size, and re-dissolved precipitates as much as possible are most favorable for rolling.
  • 1100 ⁇ 1250°C is selected as the best heating temperature range; in the austenite recrystallization zone, rolling deformation causes the austenite grains to recrystallize repeatedly, so as to achieve austenite recrystallization and refinement; During rolling in the recrystallization zone, the deformed austenite cannot achieve grain refinement through recrystallization, but at this time, the occurrence of rolling deformation will form austenite in a flattened state and full of defects, which will be used in the cooling process.
  • the phase transition is well prepared. In the traditional TMCP rolling process, heating, rolling in the austenite recrystallized zone and rolling in the austenite non-recrystallized zone play an important role. Only by fully coordinating the relationship between the three can the cooling process be improved. The phase transformation provides the best austenite state.
  • the purpose of this application is to provide a brand-new toughening control method for extra-thick steel.
  • This method can separate the traditional TMCP rolling process into two independent parts, improving the continuous casting slab quality by the first heating and rolling, and the second heating and rolling to control the austenite grain size and flattening state for the subsequent Prepare for the phase transformation, and finally realize the splitting and toughening of the impact fracture under the conditions of low compression ratio and high final rolling temperature, improve the ultra-low temperature toughness of non-quenched and tempered extra-thick steel for ships, and achieve -60°C impact energy ⁇ 210J, -80°C
  • the impact energy is greater than or equal to 165J, the invention is suitable for mass production, with high efficiency and low difficulty in implementation.
  • the entire rolling process is carried out on the hot rolling production line, which ensures the continuity of production. On the premise of this, it can solve the urgent problem of domestic
  • the first heating temperature of the continuous casting slab can be between 1050 and 1250 °C. After rolling in the austenite recrystallization zone (1000 to 1200 °C), the steel plate is rapidly cooled to room temperature by an ultra-fast cooling device.
  • the second heating temperature of the continuous casting slab can be between 800 and 1100 °C.
  • the laminar cooling device is used to reduce the surface temperature of the steel plate to return to red. Temperature 420 ⁇ 40°C.
  • the total reduction ratio in the rolling process can be 3-4:1, the rolling reduction in the austenite recrystallized area can be controlled at 10-50%, and the rolling reduction in the austenite unrecrystallized area can be controlled at 45% ⁇ 70%, the thickness of the intermediate blank can be 1.5 to 3 times the thickness of the finished product.
  • the matrix structure at 1/2 thickness of the steel sheet regulated by the method may be a mixed structure composed of ferrite, bainite and strip-shaped M/A islands.
  • the impact energy at -60°C of the steel plate controlled by the method is ⁇ 210J, and the impact energy at -80°C is greater than or equal to 165J, and in all impact processes, the impact fracture occurs fracture fracture phenomenon.
  • the notch of the impact specimen may be V-shaped.
  • the finished thickness of the steel plate may be 100mm.
  • the continuous casting billet may be an industrial EH47 continuous casting billet, including the following components: C: 0.04-0.06%; Si: 0.10-0.18%; Mn: 1.20-2.00%; P ⁇ 0.010%; S ⁇ 0.0030%; Alt: 0.020-0.050%; Ni: 0.45-0.90%; Cu: 0.20-0.35%; Mo: 0.01-0.30%; Ti: 0.010-0.020%; Nb: 0.020-0.045%; the balance is Fe and inevitable trace impurities.
  • the same temperature measurement device, the same temperature measurement position and the same temperature measurement method are used.
  • the ultrafast cooling device and the laminar cooling device may adopt a water cooling process.
  • a consistent inlet water temperature, water boiling time, and boiling water volume can be maintained.
  • the beneficial effects of the present application at least include: using the billet of the existing alloy composition system, through twice controlled rolling and twice controlled cooling, under the condition of low compression ratio and high finishing rolling temperature, the toughness of extra-thick steel plate by split toughening can be realized. Therefore, the ultra-low temperature toughness of the non-quenched and tempered extra-thick steel for ships can be significantly improved, and the impact energy at -60°C is greater than or equal to 210J, and the impact energy at -80°C is greater than or equal to 165J.
  • the application is suitable for mass production, with high efficiency and low implementation difficulty. Under the premise of not transforming the current production line, solve the urgent problem of steel mills lacking large thickness continuous casting slabs.
  • Figure 1 shows the microstructure of the core of the steel plate rolled by the toughening control method of the extra-thick steel plate.
  • Figure 2 shows the macro-morphology of the -60 °C impact fracture of the steel plate rolled by the toughening control method of the extra-thick steel plate.
  • Figure 3 shows the macro-morphology of the -80 °C impact fracture of the steel plate rolled by the toughening control method of the extra-thick steel plate.
  • the described production method of NEU-Rolling—toughening control technology for extra-thick steel plate includes the following steps:
  • the first heating temperature of the continuous casting slab is between 1050 and 1250°C. After rolling in the austenite recrystallization zone (1000 to 1200°C), the steel plate is rapidly cooled to room temperature by an ultra-fast cooling device.
  • the second heating temperature of the continuous casting slab is between 800 and 1100 °C.
  • the laminar cooling device is used to reduce the surface temperature of the steel plate to the reddish temperature. 420 ⁇ 40°C.
  • the total reduction ratio in the rolling process is 3-4:1, the rolling reduction in the austenite recrystallized area is controlled at 10-50%, and the rolling reduction in the austenite unrecrystallized area is controlled at 45-70 %, the thickness of the intermediate blank is 1.5 to 3 times the thickness of the finished product.
  • the matrix structure at 1/2 thickness of the steel plate obtained by the above method is a mixed structure composed of ferrite + bainite + strip-shaped M/A islands; in some embodiments of the present application, the toughening control method of the extra-thick steel plate is used
  • the rolling process is shown in Table 1, the mechanical properties are shown in Table 2, and the impact fracture morphology at -60 °C and -80 °C is shown in Figure 2-3.
  • the industrial EH47 continuous casting slab is used as the raw material, and contains the following components: C: 0.04-0.06%; Si: 0.10-0.18%; Mn: 1.20-2.00%; P ⁇ 0.010%; S ⁇ 0.0030%; Alt: 0.020-0.050%; Ni: 0.45-0.90%; Cu: 0.20-0.35%; Mo: 0.01-0.30%; Ti: 0.010-0.020%; Nb: 0.020-0.045%; Fe and inevitable trace impurities.
  • the specific composition of the target steel grade is C: 0.04-0.06%; Si: 0.10-0.18%; Mn: 1.20-2.00%; P ⁇ 0.010%; S ⁇ 0.0030%; Alt : 0.020-0.050%; Ni: 0.45-0.90%; Cu: 0.20-0.35%; Mo: 0.01-0.30%; Ti: 0.010-0.020%; Nb: 0.020-0.045%; impurities.
  • the rolling process is performed according to the exemplary embodiment of the present application in Table 1, and the mechanical properties are shown in the exemplary embodiment of the present application in Table 2.
  • the impact fracture at -60 °C is shown in Figure 2
  • the impact fracture at -80 °C is shown in Figure 2.
  • the rolling process of the target steel grade is performed according to another exemplary embodiment of the present application in Table 1, and the mechanical properties are shown in another exemplary embodiment of the present application in Table 2.
  • the rolling process of the target steel grade is performed according to another exemplary embodiment of the present application in Table 1, and the mechanical properties are shown in another exemplary embodiment of the present application in Table 2.
  • the impact fracture occurs fracture fracture fracture.
  • the same temperature measurement device in order to reduce the experimental error when measuring the surface temperature of the steel plate, the same temperature measurement device, the same temperature measurement position and the same temperature measurement method are used; in order to ensure the same cooling procedure, the cooling system during the water cooling process Consistent inlet water temperature, boiling water time, and boiling water volume.
  • the impact performance is performed according to the national standard GB-T229-2007, and the notch of the impact sample is V-shaped.
  • the average value of the three test data is taken as the final result.
  • the impact fracture splitting and toughening can be realized under the condition of low compression ratio and high final rolling temperature by using the billet of the existing alloy composition system. ; Improve the ultra-low temperature toughness of non-quenched and tempered extra-thick steel for ships, and achieve -60°C impact energy ⁇ 210J, -80°C impact energy ⁇ 165J. Due to equipment limitations, the thickness of the steel plate rolled in this application is 48mm. In actual industrial production, this technology can be used to enlarge the thickness of the finished steel plate to 100mm, which solves the problem that the core toughness of the extra-thick steel plate is relatively high due to the thickness of the continuous casting billet in actual production. Bad question.
  • the present application discloses a toughening control method for an extra-thick steel plate.
  • the present application uses the existing industrial EH47 continuous casting billet as the raw material, adopts two TMCP controlled rolling and controlled cooling processes, and under the conditions of low compression ratio and high final rolling temperature, the impact fracture is split, and the split and toughening effect is achieved, thereby significantly improving the Ultra-low temperature toughness of steel plates.
  • the production method of the present application can significantly improve the impact toughness of the steel sheet at -80°C, and meanwhile, the production process is simple, the operability is strong, the implementation difficulty is small, and the fracture splitting and toughening effect is remarkable. In actual industrial production, this method can be used to enlarge the thickness of the finished steel plate to 100mm, which solves the problem of poor core toughness of the extra-thick steel plate due to the thickness of the continuous casting slab in actual production.
  • the toughening control method of the ultra-thick steel plate of the present application is reproducible and can be used in a variety of industrial applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

本申请公开了一种特厚钢板韧化调控方法。本申请以现有工业用EH47连铸坯为原料,采用两次TMCP控轧控冷工艺,在低压缩比和高终轧温度条件下,实现冲击断口分裂,达到分裂增韧效果,从而显著提高钢板的超低温韧性。本申请的生产方法能显著提高钢板-80℃的冲击韧性,同时生产工序简单、可操作性强、实施难度小、断口分裂增韧效果显著。在实际工业生产中,采用此方法可以将钢板成品厚度放大到100mm,解决实际生产中由于连铸坯厚度导致特厚钢板心部韧性较差的问题。

Description

一种特厚钢板韧化调控方法
相关申请的交叉引用
本申请要求于2020年09月25日提交中国专利局的申请号为202011023448.7、名称为“一种特厚钢板韧化调控方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于特厚钢板轧制领域,涉及一种特厚钢板韧化调控方法。
背景技术
目前,船舶和海洋工程建造领域对钢板要求高强度、高韧性的前提下,所需厚度越来越大。控制轧制细化特厚钢板心部显微组织是提高特厚钢板高韧性的有效途径,但受限于控制轧制过程中钢板厚度方向不均匀的温度分布和冷却过程中板厚方向不同的冷却速度,造成特厚钢板心部显微组织粗大和不均匀。理论上利用坯料锻造技术提高坯料内部质量、采用更大厚度连铸坯增大轧制压缩比或降低终轧温度增加钢板心部变形渗透成为潜在的解决思路。
采用连铸坯锻造技术,改善坯料内部质量,成功生产出厚度达100mm的高止裂韧性船舶用钢;结合连铸和铸锭的优点开发出超厚板坯连铸机(PosMC),实现最大厚度700mm板坯的批量生产,理论上采用此连铸坯可生产厚度最大为233mm的高级厚板材和外销的锻造用材料。现有技术受限于最大厚度350/320mm的连铸坯,大部分钢厂仅能保证最大厚度90mm钢板的心部质量,在100mm及以上非调质特厚钢板生产方面鲜有报道。
尽管不同钢厂根据自己生产线的特点,解决了特厚钢板生产方面的问题,但是就目前而言,两种解决思路依旧存在严重的缺陷:利用连铸坯锻造技术显著提高了生产成本、严重制约了产能、不能保证生产的连续性,且锻后坯料表面质量较差;新建或改建大厚度(≥350mm)连铸坯投资大周期长技术含量高且不能迅速解决目前钢厂普遍缺乏大厚度连铸坯的紧迫问题。因此在当前生产线基础上,采用现有厚度的连铸坯优化轧制工艺成为大多数钢厂解决非调质态特厚钢板生产难题的最佳途径。
传统TMCP轧制过程中,连铸坯先加热至一定温度以实现坯料内部完全奥氏体化并部分消除连铸坯内部缺陷为后续的奥氏体再结晶区轧制做准备,在加热过程中,奥氏体晶粒尺寸将随着加热温度的升高而快速长大,理论上大小合适、尺寸均匀、析出物尽可能再溶解的奥氏体晶粒对轧制最为有利,一般情况下1100~1250℃被选为最佳的加热温度区间;在奥氏体再结晶区,轧制变形使奥氏体晶粒反复发生再结晶,从而实现奥氏体再结晶细化;在奥氏体未再结晶区轧制时,变形奥氏体无法通过再结晶而实现晶粒细化,但此时轧制变 形的发生将形成处于压扁状态且内部充满缺陷的奥氏体,进而为冷却过程中的相变做好充足的准备。传统TMCP轧制过程中,加热、奥氏体再结晶区轧制和奥氏体未再结晶区轧制各阶段均扮演着重要的角色,只有充分协调三者之间的关系才能为冷却过程中的相变提供最佳的奥氏体状态。
受限于非调质态特厚钢板较小的轧制压缩比,不管如何优化轧制参数,在传统TMCP轧制工艺中,钢板心部的奥氏体状态均不能满足最佳的相变要求,因此必须提出全新的轧制工艺去解决轧制过程中轧制压缩比较小这一难题。
发明内容
综合考虑提高船舶用非调质态特厚钢低温韧性的主要途径及生产特点,本申请的目的是提供一种全新的特厚钢板韧化调控方法。该方法可以将传统TMCP轧制工艺分成独立的两部分,通过第一次加热和轧制改善连铸坯质量,第二次加热和轧制控制奥氏体晶粒尺寸和压扁状态为随后的相变做准备,最终在低压缩比、高终轧温度条件下实现冲击断口分裂增韧,改善船舶用非调质态特厚钢的超低温韧性,实现-60℃冲击功≥210J,-80℃冲击功≥165J,发明适合批量化生产,效率高,实施难度小,轧制全流程均在热轧生产线上进行,保障了生产的连续性,同时生产钢板表面质量较好,在不改造当前生产线的前提下,能够解决国内钢厂缺乏大厚度连铸坯的紧迫问题。
本申请采用以下技术方案:
特厚钢板韧化调控技术,其特征部分在于该生产方法可以包含以下工序:
1)连铸坯第一次加热温度可以介于1050~1250℃之间,在奥氏体再结晶区(1000~1200℃)轧制后利用超快冷装置将钢板迅速冷却至室温。
2)连铸坯第二次加热温度可以介于800~1100℃之间,在奥氏体未再结晶区(750~1050℃)轧制后利用层流冷却装置将钢板表面温度降低至返红温度420±40℃。
轧制过程中总的压缩比可以为3~4:1,奥氏体再结晶区轧制压下量控制在10~50%,奥氏体未再结晶区轧制压下量可以控制在45~70%,中间坯厚度可以为成品厚度的1.5~3倍。
可选地,所述方法调控后的钢板1/2厚度处的基体组织可以为铁素体、贝氏体以及条状M/A岛组成的混合组织。
可选地,所述方法调控后的钢板-60℃冲击功≥210J,-80℃冲击功≥165J,且在所有冲击过程中,冲击断口均发生断口分裂现象。
可选地,冲击试样的缺口可以为V型。
可选地,所述钢板的成品厚度可以为100mm。
可选地,所述连铸坯可以为工业用EH47连铸坯,包含以下组分:C:0.04~0.06%;Si:0.10~0.18%;Mn:1.20~2.00%;P≤0.010%;S≤0.0030%;Alt:0.020~0.050%;Ni: 0.45~0.90%;Cu:0.20~0.35%;Mo:0.01~0.30%;Ti:0.010~0.020%;Nb:0.020~0.045%;余量为Fe和不可避免的微量杂质。
可选地,在对所述钢板的表面温度进行测量时,采用同一测温装置、同一测温位置和相同测温方式来进行。
可选地,所述超快冷装置和所述层流冷却装置可以采用水冷过程。
可选地,在所述水冷过程中可以保持一致的进水温度、开水时间、开水量。
本申请的有益效果至少包括:利用现有合金成分体系的坯料,通过两次控制轧制和两次控制冷却,在低压缩比和高终轧温度条件下,实现特厚钢板分裂增韧的韧化调控;从而显著提高船舶用非调质态特厚钢的超低温韧性,实现-60℃冲击功≥210J,-80℃冲击功≥165J,本申请适合批量化生产,效率高,实施难度小,在不改造当前生产线的前提下,解决钢厂缺乏大厚度连铸坯的紧迫问题。
附图说明
图1为利用特厚钢板韧化调控方法轧制钢板的心部显微组织。
图2为利用特厚钢板韧化调控方法轧制钢板的-60℃冲击断口宏观形貌。
图3为利用特厚钢板韧化调控方法轧制钢板的-80℃冲击断口宏观形貌。
具体实施方式
以下结合具体实施例对本申请作进一步说明,但不以任何方式限制本申请。
NEU-Rolling—特厚钢板韧化调控技术所述生产方法包含以下工序:
1)连铸坯第一次加热温度介于1050~1250℃之间,在奥氏体再结晶区(1000~1200℃)轧制后利用超快冷装置将钢板迅速冷却至室温。
2)连铸坯第二次加热温度介于800~1100℃之间,在奥氏体未再结晶区(750~1050℃)轧制后利用层流冷却装置将钢板表面温度降低至返红温度420±40℃。
轧制过程中总的压缩比为3~4:1,奥氏体再结晶区轧制压下量控制在10~50%,奥氏体未再结晶区轧制压下量控制在45~70%,中间坯厚度为成品厚度的1.5~3倍。
上述方法制得的钢板1/2厚度处的基体组织为铁素体+贝氏体+条状M/A岛组成的混合组织;在本申请的一些实施例中利用特厚钢板韧化调控方法的轧制工艺如表1所示,力学性能如表2所示,-60℃和-80℃的冲击断口形貌如图2-3所示。在本申请的一些实施例中是以工业用EH47连铸坯为原料,包含以下组分:C:0.04~0.06%;Si:0.10~0.18%;Mn:1.20~2.00%;P≤0.010%;S≤0.0030%;Alt:0.020~0.050%;Ni:0.45~0.90%;Cu:0.20~0.35%;Mo:0.01~0.30%;Ti:0.010~0.020%;Nb:0.020~0.045%;余量为Fe和不可避免的微量杂质。
在本申请的示例性实施例中,目标钢种的具体组分为C:0.04~0.06%;Si:0.10~0.18%; Mn:1.20~2.00%;P≤0.010%;S≤0.0030%;Alt:0.020~0.050%;Ni:0.45~0.90%;Cu:0.20~0.35%;Mo:0.01~0.30%;Ti:0.010~0.020%;Nb:0.020~0.045%;余量为Fe和不可避免的微量杂质。轧制工艺如表1中本申请的示例性实施例进行轧制,力学性能如表2中本申请的示例性实施例所示,-60℃冲击断口如图2所示,-80℃冲击断口如图3所示。
本申请的另一示例性实施例
目标钢种轧制工艺如表1中本申请的另一示例性实施例进行轧制,力学性能如表2中本申请的另一示例性实施例所示。
本申请的又一示例性实施例
目标钢种轧制工艺如表1中本申请的又一示例性实施例进行轧制,力学性能如表2中本申请的又一示例性实施例所示。
表1
Figure PCTCN2021105222-appb-000001
表2
Figure PCTCN2021105222-appb-000002
-60℃冲击功≥210J,-80℃冲击功≥165J,且在所有冲击过程中,冲击断口均发生断口分裂现象。
在本申请的一些实施例中,测量钢板表面温度时为减小实验误差,采用同一测温装置、同一测温位置和相同测温方式进行;为保证同样的冷却规程,水冷过程中冷却系统保持一致的进水温度、开水时间、开水量。
在本申请的一些实施例中,冲击性能均按国标GB-T229-2007进行,冲击试样缺口为V型,同时为保证实验结果的可靠性,均取三个测试数据的平均值作为最终的结果。
综上所述,根据本申请的一些实施例所提供的特厚钢板韧化调控技术,利用现有合金成分体系的坯料,在低压缩比、高终轧温度条件下,实现冲击断口分裂增韧;改善船舶用非调质态特厚钢的超低温韧性,实现-60℃冲击功≥210J,-80℃冲击功≥165J。由于设备限制,本申请轧制出来的钢板厚度为48mm,在实际工业生产中,采用此技术可以将钢板 成品厚度放大到100mm,解决实际生产中由于连铸坯厚度导致特厚钢板心部韧性较差的问题。
对于任何熟悉本领域的技术人员而言,在不脱离本申请技术方案范围情况下,都可利用上述揭示的技术内容对本申请技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应仍属于本申请技术方案保护的范围内。
工业实用性
本申请公开了一种特厚钢板韧化调控方法。本申请以现有工业用EH47连铸坯为原料,采用两次TMCP控轧控冷工艺,在低压缩比和高终轧温度条件下,实现冲击断口分裂,达到分裂增韧效果,从而显著提高钢板的超低温韧性。本申请的生产方法能显著提高钢板-80℃的冲击韧性,同时生产工序简单、可操作性强、实施难度小、断口分裂增韧效果显著。在实际工业生产中,采用此方法可以将钢板成品厚度放大到100mm,解决实际生产中由于连铸坯厚度导致特厚钢板心部韧性较差的问题。
此外,可以理解的是,本申请的特厚钢板韧化调控方法是可以重现的,并且可以用在多种工业应用中。

Claims (9)

  1. 一种特厚钢板韧化调控方法,其特征在于,包括步骤如下:
    1)连铸坯第一次加热温度介于1050~1250℃之间,在奥氏体再结晶区,1000~1200℃,轧制后利用超快冷装置将钢板迅速冷却至室温;
    2)连铸坯第二次加热温度介于800~1100℃之间,在奥氏体未再结晶区,750~1050℃,轧制后利用层流冷却装置将钢板表面温度降低至返红温度380~460℃;
    所述轧制过程中总的压缩比为3~4:1,奥氏体再结晶区轧制压下量控制在10~50%,奥氏体未再结晶区轧制压下量控制在45~70%,中间坯厚度为成品厚度的1.5~3倍。
  2. 根据权利要求1所述的特厚钢板韧化调控方法,其特征在于,所述方法调控后的钢板1/2厚度的基体组织为铁素体、贝氏体以及条状M/A岛组成的混合组织。
  3. 根据权利要求1或2所述的特厚钢板韧化调控方法,其特征在于,所述方法调控后的钢板-60℃冲击功≥210J,-80℃冲击功≥165J,且在所有冲击过程中,冲击断口均发生断口分裂现象。
  4. 根据权利要求3所述的特厚钢板韧化调控方法,其特征在于,冲击试样的缺口为V型。
  5. 根据权利要求1至4中的任一项所述的特厚钢板韧化调控方法,其特征在于,所述钢板的成品厚度为100mm,特别地,所述钢板的成品厚度为48mm。
  6. 根据权利要求1至5中的任一项所述的特厚钢板韧化调控方法,其特征在于,所述连铸坯为工业用EH47连铸坯,包含以下组分:C:0.04~0.06%;Si:0.10~0.18%;Mn:1.20~2.00%;P≤0.010%;S≤0.0030%;Alt:0.020~0.050%;Ni:0.45~0.90%;Cu:0.20~0.35%;Mo:0.01~0.30%;Ti:0.010~0.020%;Nb:0.020~0.045%;余量为Fe和不可避免的微量杂质。
  7. 根据权利要求1至6中的任一项所述的特厚钢板韧化调控方法,其特征在于,在对所述钢板的表面温度进行测量时,采用同一测温装置、同一测温位置和相同测温方式来进行。
  8. 根据权利要求1至7中的任一项所述的特厚钢板韧化调控方法,其特征在于,所述超快冷装置和所述层流冷却装置采用水冷过程。
  9. 根据权利要求1至8中的任一项所述的特厚钢板韧化调控方法,其特征在于,在所述水冷过程中保持一致的进水温度、开水时间、开水量。
PCT/CN2021/105222 2020-09-25 2021-07-08 一种特厚钢板韧化调控方法 WO2022062574A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021000496.4T DE112021000496T5 (de) 2020-09-25 2021-07-08 Verfahren zur Regulierung und Steuerung der Zähigkeit eines extradicken Stahlblechs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011023448.7 2020-09-25
CN202011023448.7A CN112126758B (zh) 2020-09-25 2020-09-25 一种特厚钢板韧化调控方法

Publications (1)

Publication Number Publication Date
WO2022062574A1 true WO2022062574A1 (zh) 2022-03-31

Family

ID=73840663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105222 WO2022062574A1 (zh) 2020-09-25 2021-07-08 一种特厚钢板韧化调控方法

Country Status (3)

Country Link
CN (1) CN112126758B (zh)
DE (1) DE112021000496T5 (zh)
WO (1) WO2022062574A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126758B (zh) * 2020-09-25 2022-02-22 东北大学 一种特厚钢板韧化调控方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950973A (zh) * 2016-05-13 2016-09-21 江阴兴澄特种钢铁有限公司 超低温落锤性能优异的厚规格x80管线用钢板及其制造方法
CN106435130A (zh) * 2016-07-27 2017-02-22 江苏省沙钢钢铁研究院有限公司 一种提高低合金钢厚板低温韧性的制造方法
CN109182919A (zh) * 2018-11-22 2019-01-11 湖南华菱湘潭钢铁有限公司 一种多相组织高韧性船板钢eh47的生产方法
CN112126758A (zh) * 2020-09-25 2020-12-25 东北大学 一种特厚钢板韧化调控方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106316A (ja) * 1992-09-22 1994-04-19 Kawasaki Steel Corp 板厚中心部のじん性および内質に優れた極厚鋼板の製造方法
US5483087A (en) 1994-07-08 1996-01-09 International Rectifier Corporation Bidirectional thyristor with MOS turn-off capability with a single gate
JP3528504B2 (ja) * 1997-03-27 2004-05-17 Jfeスチール株式会社 極厚鋼板の製造方法
CN105256117A (zh) * 2015-10-22 2016-01-20 南京钢铁股份有限公司 一种极地用-80℃低温韧性优异的高强度船用tmcp钢的制造方法
CN107267862A (zh) * 2017-05-31 2017-10-20 舞阳钢铁有限责任公司 570MPa级特厚高韧低温服役管件钢板及生产方法
CN108085592B (zh) * 2017-12-08 2019-12-31 南京钢铁股份有限公司 一种小于等于100mm厚的屈服强度390MPa级船板钢及制备方法
CN109207855A (zh) * 2018-10-16 2019-01-15 五矿营口中板有限责任公司 微观组织均匀冲击具有良好韧性的特厚板及其制造方法
CN112280957B (zh) * 2020-10-27 2021-10-08 上海交通大学 一种析出强化型非调质低温厚板钢及其轧制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950973A (zh) * 2016-05-13 2016-09-21 江阴兴澄特种钢铁有限公司 超低温落锤性能优异的厚规格x80管线用钢板及其制造方法
CN106435130A (zh) * 2016-07-27 2017-02-22 江苏省沙钢钢铁研究院有限公司 一种提高低合金钢厚板低温韧性的制造方法
CN109182919A (zh) * 2018-11-22 2019-01-11 湖南华菱湘潭钢铁有限公司 一种多相组织高韧性船板钢eh47的生产方法
CN112126758A (zh) * 2020-09-25 2020-12-25 东北大学 一种特厚钢板韧化调控方法

Also Published As

Publication number Publication date
CN112126758B (zh) 2022-02-22
DE112021000496T5 (de) 2022-11-03
CN112126758A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
CN103266266B (zh) 薄板坯连铸连轧流程生产低牌号无取向硅钢及其制备方法
CN110438416A (zh) 一种消除超宽幅高氮奥氏体不锈钢中厚板表面裂纹的方法
WO2021022542A1 (zh) 轧制-等温球化退火处理制备GCr15轴承钢的方法
CN110499448A (zh) 一种性能优异的高n奥氏体不锈钢中厚板及其制造方法
CN107385328B (zh) 两坯复合生产的具有优良内部质量、低温冲击韧性和抗层状撕裂性能的低合金特厚钢板
CN110306111A (zh) 一种厚规格钢板及其制造方法
CN112981235A (zh) 一种屈服强度420MPa级的调质型建筑结构用钢板及其生产方法
CN105177422B (zh) 一种超长薄规格eh36钢及其在卷炉卷轧机上的生产方法
CN110735085A (zh) 一种薄规格Q345qE、Q370qE钢板的制造方法
CN105177257A (zh) 一种高氮无镍奥氏体不锈钢抗晶间腐蚀处理工艺
CN101748342B (zh) 高强度18Cr-8Ni不锈钢热轧中厚板及其制造方法
CN110453157A (zh) 一种低屈强比薄规格管线钢的制造方法
CN112322995B (zh) 低屈强比高韧性tmcp型桥梁钢板及其生产方法
CN110438396A (zh) 一种低压缩比、高性能q 345r超宽特厚容器钢及其制造方法
CN104451379A (zh) 一种高强度低合金铌钒结构钢及其制备方法
KR20240005716A (ko) 고효율 용접 교량강 및 그 제조 방법
WO2012024939A1 (zh) 一种改善无取向硅钢表面粗晶的方法
CN109023057A (zh) 一种提高x80m级管线钢心部冲击的生产方法
CN104846176A (zh) 一种消除马氏体时效不锈钢薄带中δ铁素体的铸轧方法
WO2022062574A1 (zh) 一种特厚钢板韧化调控方法
CN105925889A (zh) 一种特厚规格1.2311模具钢板及其制备方法
CN106957996B (zh) 一种含Sn超级奥氏体不锈钢冷轧板的制备方法
CN110814030B (zh) 一种耐热复合不锈钢及其热轧生产工艺
CN108203788B (zh) 一种薄带连铸低磁各向异性无取向硅钢的制备方法
CN109022732A (zh) 一种能降低中高碳结构钢板带状组织的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870953

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21870953

Country of ref document: EP

Kind code of ref document: A1