WO2022062336A1 - 室内机、室外机和温控器以及控制空调通信的方法 - Google Patents

室内机、室外机和温控器以及控制空调通信的方法 Download PDF

Info

Publication number
WO2022062336A1
WO2022062336A1 PCT/CN2021/081819 CN2021081819W WO2022062336A1 WO 2022062336 A1 WO2022062336 A1 WO 2022062336A1 CN 2021081819 W CN2021081819 W CN 2021081819W WO 2022062336 A1 WO2022062336 A1 WO 2022062336A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameters
communication
indoor
module
outdoor
Prior art date
Application number
PCT/CN2021/081819
Other languages
English (en)
French (fr)
Inventor
牟宗娥
陈建兵
吴林涛
牛建勇
刘思聪
Original Assignee
海信(山东)空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信(山东)空调有限公司 filed Critical 海信(山东)空调有限公司
Publication of WO2022062336A1 publication Critical patent/WO2022062336A1/zh
Priority to US18/125,303 priority Critical patent/US20230235911A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control

Definitions

  • the present disclosure relates to the technical field of air conditioners, and in particular, to an indoor unit, an outdoor unit, a thermostat, and a method for controlling communication of an air conditioner.
  • the air conditioner is composed of three parts: an outdoor unit, an indoor unit, and a thermostat.
  • the user controls the thermostat to control the work of the air conditioner.
  • the signal sent by the thermostat to the outdoor unit and the indoor unit is the power frequency AC 24V, and the AC communication mode can only realize one-way opening and closing control, resulting in that the compressor frequency and coil cannot be controlled in real time between the outdoor unit and the indoor unit. Communication of parameter information such as temperature.
  • an indoor unit including:
  • the indoor main control module is arranged in the indoor unit casing, and is used for sending indoor unit parameters;
  • the indoor communication module is connected to the indoor main control module, and is used for generating a first high frequency signal including the indoor unit parameters based on the indoor unit parameters, and loading the first high frequency signal to the original power communication line to send the indoor unit parameters.
  • an outdoor unit including:
  • the outdoor main control module is arranged in the outdoor unit casing, and is used for sending outdoor unit parameters;
  • the outdoor communication module is connected to the outdoor main control module, and is configured to generate a third high frequency signal including the indoor unit parameter based on the outdoor unit parameter, and load the third high frequency signal to the original power communication line to send the outdoor unit parameters.
  • some embodiments of the present disclosure provide a thermostat comprising:
  • a temperature controller housing a temperature control module, the temperature control module is arranged in the temperature controller housing and is used for sending temperature control setting parameters;
  • a temperature control communication module the temperature control communication module is connected with the temperature control module, and is used for generating a fifth high-frequency signal including the temperature control setting parameters based on the temperature control setting parameters, and The frequency signal is loaded onto the original power communication line to send the temperature control setting parameters.
  • some embodiments of the present disclosure provide a method for controlling communication of an air conditioner, comprising:
  • the air conditioning parameters include at least one of indoor unit parameters, outdoor unit parameters and thermostat setting parameters;
  • a high-frequency signal is generated based on the air-conditioning parameter, wherein the high-frequency signal includes the air-conditioning parameter; the high-frequency signal including the air-conditioning parameter is loaded onto the original power communication line to transmit the air-conditioning parameter.
  • FIG. 1 is a schematic diagram of a general communication method for an air conditioner provided by the present disclosure
  • FIG. 2 is a block diagram of an indoor unit according to an embodiment of the present disclosure
  • FIG. 3 is a block diagram of an outdoor unit according to an embodiment of the present disclosure.
  • FIG. 4 is a block diagram of a thermostat according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a communication method of an air conditioner according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a communication waveform conversion of an air conditioner according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of a method for controlling air conditioner communication according to an embodiment of the present disclosure.
  • Indoor unit 10 outdoor unit 20, thermostat 30, indoor unit casing 101, indoor main control module 102, indoor communication module 103, indoor filter module 104, outdoor unit casing 201, outdoor main control module 202, outdoor communication module 203 , outdoor filter module 204 , thermostat housing 301 , temperature control module 302 , temperature control communication module 303 , temperature control filter module 304 , display module 305 , linear transformer 105 , and Y/B signal detection circuit 205 .
  • the indoor unit, outdoor unit, and thermostat can only identify high and low levels, and cannot obtain the specific operating parameters of the sender, so it is not conducive to improving the operating state of the air conditioner, and the energy efficiency is low.
  • the communication mode of the indoor unit, the outdoor unit and the thermostat is improved to realize the transmission of specific operating parameters, thereby providing support for the air conditioning optimization control strategy and achieving the purpose of timely communication.
  • the air conditioner communication implementation of the embodiments of the present disclosure will be described below.
  • FIG. 1 is a schematic diagram of a general communication method for an air conditioner provided by the present disclosure.
  • the user controls the thermostat to control the work of the outdoor unit and the indoor unit.
  • the signal sent by the thermostat to the outdoor unit and the indoor unit is the power frequency AC 24Vac.
  • the outdoor unit After the AC signal passes through the signal detection circuit, the outdoor unit only recognizes the high and low level signals.
  • the outdoor unit is a frequency conversion unit, the outdoor unit can only work by recognizing high and low level signals and receiving the start or ratio command of the thermostat.
  • the main control MCU (Microcontroller Unit) of the outdoor unit can only recognize two This state, that is, the AC communication mode can only realize one-way opening and closing control, such as compressor start or stop signal, four-way valve opening signal during heating, and defrost signal sent by the external unit to the internal unit.
  • the AC 24Vac signal is converted through the circuit, and the main control MCU receives only the high and low level signals.
  • the use of the above AC communication method results in the inability of real-time communication between the outdoor unit and the indoor unit, and the inability to grasp the operating parameters of the system.
  • the frequency of the outdoor unit, the temperature of the external disk and other parameters, the air conditioner cannot reach the optimal working state, resulting in low energy efficiency.
  • FIG. 2 is a block diagram of an indoor unit according to an embodiment of the present disclosure.
  • the indoor unit 10 includes an indoor unit housing 101 , an indoor main control module 102 , and an indoor communication module 103 .
  • the indoor main control module 102 is arranged in the indoor unit housing 101.
  • the indoor main control module 102 may be the main control MCU, and the indoor main control module 102 is used to send the parameters of the indoor unit.
  • the indoor unit parameters may include the parameters of the indoor unit. Parameters such as ambient temperature, inner disk temperature, etc. Under normal circumstances, the parameters of the indoor unit are sent out in the form of AC signals.
  • the indoor communication module 103 is connected to the indoor main control module 102 for receiving the parameters of the indoor unit, and based on the parameters of the indoor unit, generating a first high-frequency signal containing the parameters of the indoor unit, and loading the first high-frequency signal to the original power communication line to send the indoor unit parameters.
  • the indoor communication module 103 can be composed of an application-specific integrated circuit and corresponding peripheral circuits, wherein at least one communication chip can be set in the application-specific integrated circuit.
  • the main control MCU of the indoor unit sends the indoor unit parameters to the communication chip, and the communication chip generates the first communication chip.
  • a high-frequency signal, and the first high-frequency signal can be loaded on the original power communication line, and transmitted to the receiving end along with the original power communication line, so as to complete the transmission of indoor unit parameters, so as to realize the transmission from the interior of the indoor unit 10 to the indoor unit. 10 external communications.
  • the original power communication line can be the AC signal line currently used for the communication of the indoor unit of the air conditioner, such as a 24V power supply communication line, but not limited to the power frequency AC voltage of 24Vac, if the circuit device has sufficient withstand voltage and can filter It can be set to any AC working voltage range, such as 5V or 12V, or 20V, etc.
  • the parameters of the indoor unit can be communicated in the form of loading high-frequency signals on the original power communication line in time. Temperature, internal disk temperature and other parameters are sent to the original power communication line, which can realize real-time communication with other parts.
  • the indoor unit 10 further includes an indoor filter module 104.
  • the indoor filter module 104 is connected to the indoor communication module 103. After the receiving end receives the communication signal on the original power communication line, After the communication signal is passed through the indoor filtering module 104, the original power signal in the communication signal can be filtered out, and the second high-frequency signal including the parameters of the transmitting end can be obtained, wherein the transmitting end may include an outdoor unit or a thermostat, etc.
  • the indoor filtering module 104 may include a capacitor, and the filtering is realized by the capacitor.
  • the indoor filter module 104 can also analyze the parameters of the transmitting end based on the second high-frequency signal, and feed back the parameters of the transmitting end to the indoor main control module 102, so as to realize the communication from the outside of the indoor unit 10 to the inside of the indoor unit 10, and realize The two-way communication between the sender and the receiver can not only identify the high and low levels, but also know the specific operating parameters of the sender in time, so as to provide a reference for improving the control strategy.
  • FIG. 3 is a block diagram of an outdoor unit provided by an embodiment of the present disclosure.
  • the outdoor unit 20 may at least include an outdoor unit casing 201 , an outdoor main control module 202 , an outdoor communication module 203 and the like.
  • the outdoor main control module 202 is arranged in the indoor unit housing 201.
  • the outdoor main control module 202 may be the main control MCU, and the outdoor main control module 202 is used to send outdoor unit parameters.
  • the outdoor unit parameters may include the outdoor unit 20 parameters such as frequency, external disk temperature, etc. Under normal circumstances, the parameters of the outdoor unit are sent in the form of AC signals.
  • the outdoor communication module 203 is connected to the outdoor main control module 202 for receiving the parameters of the outdoor unit, and based on the parameters of the outdoor unit, generating a third high-frequency signal including the parameters of the outdoor unit and loading the third high-frequency signal onto the original power communication line , to send indoor unit parameters.
  • the outdoor communication module 203 can be composed of an application-specific integrated circuit and corresponding peripheral circuits, wherein at least one communication chip can be set in the application-specific integrated circuit.
  • the main control MCU of the outdoor unit 20 sends the outdoor unit parameters to the communication chip, and the communication chip generates
  • the third high-frequency signal can be loaded on the original power communication line and transmitted to the receiving end along the original power communication line, so as to complete the transmission of outdoor unit parameters, so as to realize the transmission from the interior of the outdoor unit 20 to the outdoor unit. 20 of external communications.
  • the original power communication line can be the AC signal line currently used for communication of the indoor unit of the air conditioner, such as a 24V power supply communication line, but not limited to the power frequency AC voltage of 24V, if the circuit device has sufficient withstand voltage and can filter It can be set to any AC working voltage range, such as 5V or 12V, or 20V, etc.
  • the parameters of the outdoor unit can be communicated in the form of loading high-frequency signals on the original power communication line in time.
  • the indoor unit 10 in the embodiment of the present disclosure can also implement communication in the form of loading high-frequency signals on the original power communication line, the indoor unit 20 and the outdoor unit 10 can jointly load high-frequency signals on the original power communication line, so that the outdoor Real-time communication between the unit 20 and the indoor unit 10, for example, the indoor unit 10 can send parameters such as ambient temperature and inner disk temperature to the original power communication line in time and can be received by the outdoor unit 20, and the outdoor unit 20 can also send the frequency, outer disk temperature, etc. in time.
  • the parameters are sent to the original power communication line and can be received by the indoor unit 10.
  • the fault information can also be sent out in time, so that the air-conditioning system can be optimized and energy efficiency can be improved.
  • the outdoor unit 20 further includes an indoor filter module 204.
  • the outdoor filter module 204 is connected to the outdoor communication module 203. After the receiving end receives the communication signal on the original power communication line, Passing the communication signal through the outdoor filtering module 204 can filter out the original power signal in the communication signal, and obtain a fourth high-frequency signal including the parameters of the transmitting end, wherein the transmitting end may include the indoor unit 10 or the thermostat 30 and the like.
  • the outdoor filter module 204 may be a capacitor, and filtering is implemented through the capacitor to obtain the parameters of the transmitting end, thereby realizing the two-way communication between the transmitting end and the receiving end, and not only identifying the high and low levels, but also knowing the specific operating parameters in time, for Provide reference for improving control strategy.
  • the outdoor unit 20 can only perform frequency conversion work by detecting the parameters of the outdoor system, and cannot receive some key parameters of the indoor unit 10, so it cannot fully play the role of frequency conversion, resulting in that although the outdoor unit 20 is a frequency conversion unit work, but is relatively inefficient.
  • the outdoor filter module 204 in the embodiment of the present disclosure can analyze the parameters of the transmitting end based on the fourth high-frequency signal, and feed the parameters of the transmitting end to the outdoor main control module 202 , so as to realize the transmission from the outside of the outdoor unit 20 to the inside of the outdoor unit 20 . Communication.
  • the outdoor unit 20 can not only perform frequency conversion work by detecting the parameters of the outdoor unit, but also receive the parameters of the indoor unit, which can give full play to the role of frequency conversion, thereby improving energy efficiency.
  • the thermostat 30 in the embodiment of the present disclosure may at least include a thermostat housing 301 , a temperature control module 302 , a temperature control communication module 303 , a temperature control filter module 304 , a display module 305 , and the like.
  • the temperature control module 302 is arranged in the temperature controller housing 301 , and the user can send the temperature control setting parameters through the temperature control module 302 of the temperature controller 30 .
  • the temperature control communication module 303 is connected to the temperature control module 302 for receiving the temperature control setting parameters sent by the temperature control module 302 .
  • the temperature control communication module 303 may be composed of an application-specific integrated circuit and corresponding peripheral circuits, wherein at least one communication chip may be set in the application-specific integrated circuit.
  • the main control MCU of the temperature controller 30 sends the The corresponding AC signal is sent to the communication chip, the communication chip generates the fifth high-frequency signal, and can load the fifth high-frequency signal to the original power communication line, and transmit it to the receiving end along with the original power communication line, thereby completing the sending of temperature control setting parameters .
  • the temperature control setting parameters of the thermostat 30 can be loaded in the form of high-frequency signals on the original power communication line in time, which can Real-time communication with other parts is realized to optimize the air-conditioning system and improve energy efficiency.
  • the temperature controller 30 may further include a temperature control filter module 305, the temperature control filter module 305 is connected to the temperature control communication module 303, and the receiving end of the temperature control filter module 305 receives the original power communication line After the communication signal is obtained, the original power signal in the communication signal can be filtered out by passing the communication signal through the temperature control filter module 305, and the sixth high-frequency signal including the parameters of the transmitting end can be obtained, wherein the transmitting end may include the transmitting end of the indoor unit Or the transmitter of the outdoor unit, etc.
  • the temperature control filter module 305 can also analyze the parameters of the transmitting end based on the sixth high-frequency signal, and feed back the parameters of the transmitting end to the temperature control module 302, so as to realize the communication from the outside of the temperature controller 30 to the inside of the temperature controller 30 .
  • the transmission is performed by loading high-frequency signals on the original power communication line, and there is no need to set an AC strong current carrier communication circuit between each part.
  • the circuit is simple, the cost is saved, and the real-time communication with other parts can also be realized, so that the air-conditioning working system can be optimized and improved. efficiency.
  • the thermostat 30 may further include a display module 306 , and the display module 306 is connected to the temperature control module 302 .
  • the display module 306 may be a display set on the thermostat 30 . Screen or display light or alarm, etc., can be used to display the received parameters of the sender.
  • the alternating current communication method can only realize one-way on and off control.
  • the AC signal sent by the thermostat to the outdoor unit and the indoor unit takes 24V AC as an example.
  • the outdoor unit can only receive the thermostat's turn-on or variable ratio command to work, such as , the thermostat can only send the compressor start or stop signal in one direction or send the four-way valve open signal to the outdoor unit during heating, and the main control MCU only receives high and low level signals, resulting in the failure of each part. real-time communication.
  • the communication signal on the original power communication line includes both the alternating current signal and the high-frequency signal including the parameters of the transmitting end, and both the communication mode of connecting the alternating current on the original power communication line is retained, and the indoor unit 10 , the outdoor unit 20 and the temperature controller 30 can also receive the parameters of the transmitting end in real time to realize real two-way communication.
  • the indoor unit 10 , the outdoor unit 20 and the temperature controller 30 can also receive the parameters of the transmitting end in real time to realize real two-way communication.
  • the indoor unit 10 , the outdoor unit 20 and the temperature controller 30 can also receive the parameters of the transmitting end in real time to realize real two-way communication.
  • the indoor unit 10 , the outdoor unit 20 and the temperature controller 30 can also receive the parameters of the transmitting end in real time to realize real two-way communication.
  • the indoor unit 10 , the outdoor unit 20 and the temperature controller 30 can also receive the parameters of the transmitting end in real time to realize real two-way communication.
  • FIG. 5 is a schematic diagram of a communication method of an air conditioner according to an embodiment of the present disclosure.
  • a communication module and a filter module can be added to the indoor unit 10 and the outdoor unit 20 respectively, and both the indoor communication module 103 and the outdoor communication module 203 can be set as an ASIC and corresponding peripheral circuits. It is used for generating a high frequency signal including the sending end parameter based on the sending end parameter and generating the sending end parameter based on the high frequency signal including the sending end parameter.
  • the ASIC may include at least one communication chip.
  • the communication chip in the embodiment of the present disclosure takes the chip THVD8000 as an example, but is not limited to this chip, including any communication chip that can implement the air conditioner in the embodiment of the present disclosure. way of the chip. As shown in FIG.
  • both the indoor filtering module 104 and the outdoor filtering module 204 may be configured as at least two capacitors for filtering out the original power signal in the communication signal.
  • the original power signal in the communication signal is filtered out when the communication signal passes through the capacitor at the receiving end, leaving only the high-frequency signal.
  • the indoor unit 10 is provided with a linear transformer 105, which is used to modulate the alternating current into the original power signal voltage.
  • the indoor unit 10 can supply power to the thermostat through the original power communication line, and the outdoor unit 20 can send a defrost signal to the indoor unit through the original power communication line, and the thermostat 30 can send a control compressor signal and a four-way valve control signal to the outdoor unit 20 through the original power communication line, and can also send a signal to control the indoor fan.
  • the outdoor unit 20 is provided with a Y/B signal detection circuit 205 for converting the 24V alternating current signal into a high and low level signal.
  • the main control MCU of the outdoor main control module 202 sends the parameters of the outdoor unit, such as the frequency of the outdoor unit, the temperature of the external disk and other parameters to the communication chip of the outdoor communication module 203.
  • the communication chip is based on The parameters of the outdoor unit generate high-frequency signals and load them into the original power communication line.
  • the original power communication line takes the 24V power communication line as an example.
  • the communication signals in the original power communication line include high-frequency signals and original power signals, and the communication signals vary with 24V.
  • the power communication line is transmitted to the receiving end of the indoor filter module 104 of the indoor unit 10 .
  • the communication signal passes through the indoor filter module 104, the original power signal in the communication signal is filtered out, leaving only the high-frequency signal and sent to the communication chip of the indoor communication module of the indoor unit.
  • the communication chip can be based on the received high-frequency signal.
  • the signal generation outdoor unit parameters are then transmitted to the main control MCU of the indoor main control module.
  • the indoor unit 10 sends the parameters of the indoor unit to the outdoor unit 20
  • the communication method of the air conditioner in the embodiment of the present disclosure can also be used, which can transmit and receive signals at the same time.
  • high-frequency signals are loaded to realize two-way communication.
  • a temperature controller communication module and a temperature control filter module can also be added to the temperature controller 30, which are omitted and not shown in FIG. 5, wherein the temperature controller communication module can also be set It is an application-specific integrated circuit and corresponding peripheral circuits, which are used to generate a high-frequency signal including the transmission-end parameters based on the transmission-end parameters and generate the transmission-end parameters based on the high-frequency signal including the transmission-end parameters.
  • the application-specific integrated circuit may include at least one communication chip , the communication chip of the present disclosure takes the chip THVD8000 as an example, but is not limited to this chip, including any chip that can realize the communication mode of the air conditioner of the embodiment of the present disclosure.
  • Each of the temperature control filtering modules may be configured to include at least two capacitors for filtering out the original power signal in the communication signal.
  • the original power signal in the communication signal is filtered out when the communication signal passes through the capacitor at the receiving end, leaving only the high-frequency signal.
  • the indoor unit or outdoor unit fails, a high-frequency signal containing the fault information can be generated based on the fault information, and the high-frequency signal is loaded on the original power communication line and transmitted to the thermostat. After being received by the thermostat, it passes through the temperature control filter module. And it can notify the user in time through the display module in the thermostat to realize real-time communication between the thermostat and the indoor unit and the outdoor unit.
  • FIG. 6 is a schematic diagram of a communication waveform conversion of an air conditioner according to an embodiment of the present disclosure.
  • the main control MCU can only send or identify high and low level signals.
  • the main control MCU sends the air conditioning parameters to the communication chip in the form of high and low level signals. Select and generate a high-frequency signal based on the air-conditioning parameters, and then transmit the high-frequency signal containing the air-conditioning parameters on the original power communication line, and transmit it to the receiving end along with the communication signal on the original power communication line.
  • the filter module filters out the original power signal in the communication signal, and obtains a high-frequency signal containing air conditioning parameters.
  • the communication chip obtains the corresponding air conditioning parameters based on the high frequency signal, and converts the air conditioning parameters into high and low.
  • the level signal is sent to the main control MCU to complete the transmission and identification of the signal.
  • the original power communication line is connected with the AC power source for the transmission of the AC power.
  • FIG. 7 is a flowchart of a method for controlling communication of an air conditioner according to an embodiment of the present disclosure.
  • the method for controlling air conditioner communication according to the embodiment of the present disclosure may at least include steps S101-S106.
  • an air conditioner parameter sent by a main control module is received, where the air conditioner parameter includes at least one of an indoor unit parameter, an outdoor unit parameter, and a thermostat setting parameter.
  • the parameters of the air conditioner may include parameters such as the ambient temperature of the indoor unit, the temperature of the inner panel, or the like of the frequency of the outdoor unit, the temperature of the outer panel, or fault information.
  • the air conditioning parameters are sent by the indoor unit, the outdoor unit or the thermostat and can be received by the communication module in the indoor unit, the outdoor unit or the thermostat.
  • a high-frequency signal is generated based on the air-conditioning parameter, wherein the high-frequency signal includes the air-conditioning parameter.
  • the communication module in the indoor unit, the outdoor unit or the thermostat modulates the received air conditioning parameters in the internal communication module to generate a high-frequency signal containing the air conditioning parameters.
  • S103 Load the high-frequency signal including the air conditioning parameters onto the original power communication line to send the air conditioning parameters.
  • the air conditioner communication method of the embodiment of the present disclosure compared with the communication method of AC strong current carrier communication, adopts the method of loading high-frequency signals on the original power communication line for transmission, which can realize the communication between the indoor unit, the outdoor unit and the thermostat. For real-time communication, there is no need to increase the communication circuit of AC strong current carrier, which saves costs.
  • a communication signal on the original power supply communication line is received, where the communication signal includes a high frequency signal including parameters of the transmitting end and an original power supply signal.
  • the prior art communication mode of passing alternating current on the original power communication line can be retained, and at the same time, the communication mode of loading high-frequency signals on the original power communication line can be added.
  • the communication signal on the original power communication line includes both the original power signal and the high-frequency signal containing the parameters of the sender.
  • the stop signal and the opening signal of the four-way valve during heating, etc. can also include the defrost signal sent by the external unit to the internal unit. Loading high-frequency signals on the original power communication line does not affect the transmission of the original power signal between parts.
  • S105 Filter out the original power signal in the communication signal to obtain a high-frequency signal including the parameters of the transmitting end.
  • the filter module can filter out the original power signal in the communication signal, leaving only the air conditioning parameters loaded in the communication signal. high frequency signal.
  • the communication module inside the indoor unit or the outdoor unit or the thermostat contains the high-frequency signal of the air conditioning parameters to parse out the parameters of the sender and feed it back to the main control module, so as to realize real-time communication between each part.
  • the transmitting end can not only send the original power signal, realize the one-way on and off control of the outdoor unit and the indoor unit by the thermostat, or the AC power of the indoor unit to the outdoor unit. It can also send high-frequency signals including air-conditioning parameters, realize real-time communication between each part through the sending and receiving of air-conditioning parameters by each part, and load high-frequency signals on the original power communication line, without affecting the two signals.
  • high-frequency signals including air-conditioning parameters realize real-time communication between each part through the sending and receiving of air-conditioning parameters by each part, and load high-frequency signals on the original power communication line, without affecting the two signals.
  • For transmission there is no need to increase the communication circuit of the AC strong current carrier, only the relevant communication circuit needs to be added to the indoor unit and the outdoor unit, and the circuit is simple and cost-saving.
  • high-frequency signals are loaded on the original power communication line to realize two-way communication between the air conditioner indoor unit, the outdoor unit and the thermostat. It is only necessary to add a related communication circuit to the indoor unit, outdoor unit or thermostat. The circuit is simple and the cost is optimal. If the outdoor unit is a variable frequency unit, it can not only perform frequency conversion work by detecting the parameters of the outdoor unit, but also receive The parameters of the indoor unit and the thermostat can give full play to the role of frequency conversion and improve energy efficiency.
  • first and second are used for descriptive purposes only and should not be construed to indicate or imply relative importance. Or implicitly indicate the number of technical features indicated. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature. In the description of the present disclosure, “plurality” means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种室内机(10)、室外机(20)和温控器(30)以及控制空调通信的方法。该室内机(10)包括:室内机壳体(101);室内主控模块(102),设置在室内机壳体(101)内,用于发送室内机参数;室内通信模块(102),与室内主控模块(102)连接,用于基于室内机参数产生包含室内机参数的第一高频信号,以及将第一高频信号加载到原始电源通信线上,以发送室内机参数。

Description

室内机、室外机和温控器以及控制空调通信的方法
相关申请的交叉引用
本公开要求在2020年9月25日提交中国专利局、申请号为202011027015.9,发明名称为室内机、室外机和温控器以及控制空调通信的方法的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空调技术领域,尤其是涉及一种室内机、室外机和温控器以及控制空调通信的方法。
背景技术
空调由外机室外机、室内机、温控器三部分构成,用户操控温控器控制空调工作。温控器发出给室外机和室内机的信号是工频交流电24V,而交流电通讯方式只能实现单向的开启和关闭控制,导致室外机和室内机之间不能实时进行压机频率、盘管温度等参数信息的通讯。
发明内容
本公开一些实施例提供了一种室内机,包括:
室内机壳体;
室内主控模块,所述室内主控模块设置在所述室内机壳体内,用于发送室内机参数;
室内通信模块,所述室内通信模块与所述室内主控模块连接,用于基于所述室内机参数产生包含所述室内机参数的第一高频信号,以及将所述第一高频信号加载到原始电源通信线上,以发送所述室内机参数。
另一方面,本公开的一些实施例提供了一种室外机,包括:
室外机壳体;
室外主控模块,所述室外主控模块设置在所述室外机壳体内,用于发送室外机参数;
室外通信模块,所述室外通信模块与所述室外主控模块连接,用于基于所述室外机参数产生包含所述室内机参数的第三高频信号,以及将所述第三高频信号加载到原始电源通信线上,以发送所述室外机参数。
再一方面,本公开的一些实施例提供一种温控器,包括:
温控器壳体;温控模块,所述温控模块设置在所述温控器壳体内,用于发送温控设置 参数;
温控通信模块,所述温控通信模块与所述温控模块连接,用于基于所述温控设置参数产生包含所述温控设置参数的第五高频信号,以及将所述第五高频信号加载到原始电源通信线上,以发送所述温控设置参数。
再一方面,本公开的一些实施例提供了一种控制空调通信的方法,包括:
接收到主控模块发送的空调参数,其中,所述空调参数包括室内机参数、室外机参数和温控器设置参数中的至少一种;
基于所述空调参数产生高频信号,其中,所述高频信号包含所述空调参数;将包含空调参数的高频信号加载到原始电源通信线上,以发送所述空调参数。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开提供的一种空调器通用的通讯方式的示意图;
图2是本公开一个实施例的室内机的框图;
图3是本公开一个实施例的室外机的框图;
图4是本公开一个实施例的温控器的框图;
图5是本公开一个实施例的空调器的通讯方式的示意图;
图6是本公开一个实施例的空调器的通讯波形转换的示意图;
图7是本公开一个实施例的控制空调通信的方法的流程图。
附图标记:
室内机10、室外机20、温控器30、室内机壳体101、室内主控模块102、室内通信模块103、室内滤波模块104、室外机壳体201、室外主控模块202、室外通信模块203、室外滤波模块204、温控器壳体301、温控模块302、温控通信模块303、温控滤波模块304、显示模块305、线性变压器105、Y/B信号检测电路205。
具体实施方式
下面详细描述本公开的实施例,实施例的示例在附图中示处,其中自始至终相同或类似的元件标号表示相同或类似的元件具有相同或类似的功能的元件,参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制,下面详细描述本公开的实施例。
考虑到采用交流电信号例如24V交流电源通讯,室内机、室外机、温控器之间只能识 别高低电平,并不能获得发送方具体的运行参数,因而不利于改善空调运行状态,能效低。在本公开实施例中,对室内机、室外机和温控器的通信方式进行改进,以实现具体运行参数的传输,进而为空调优化控制策略提供支持,达到及时通信的目的。下面对本公开实施例的空调通信实现来进行描述。
图1是本公开提供的一种空调器通用的通讯方式的示意图。如图1所示,用户操控温控器控制室外机、室内机工作。例如,温控器发出给外机和内机的信号为工频交流电24Vac,该交流信号经过信号检测电路后,室外机识别的仅是高低电平信号。尤其室外机是变频机时,室外机只能通过识别高低电平信号,接收温控器的开启或变比指令进行工作,室外机主控MCU(Microcontroller Unit,微控制单元)只能识别出两种状态,即该交流电通讯方式只能实现单向的开启和关闭控制,如压缩机启动或停止信号、制热时四通阀开启信号以及外机发给内机的除霜信号等。交流电24Vac信号通过电路转换,主控MCU接收到的也只是高低电平信号。
因而,采用上面的交流电通讯方式,导致室外机和室内机之间不能实时通讯,不能掌握系统的运转参数,例如,室外机不知道室内机的环温、内盘温等参数,内室内机不知道室外机的频率、外盘温等参数,空调不能达到最优工作状态,导致能效偏低。
图2是本公开一个实施例的室内机的框图,如图2所示,室内机10包括室内机壳体101、室内主控模块102、室内通信模块103。
其中,室内主控模块102设置在室内机壳体101内,例如,室内主控模块102可以为主控MCU,室内主控模块102用于发送室内机参数,例如室内机参数可以包括室内机的环温、内盘温等参数,一般情况下室内机参数以交流信号的形式发送出去。室内通信模块103与室内主控模块102连接,用于接收到室内机参数,并基于室内机参数产生包含室内机参数的第一高频信号,以及将第一高频信号加载到原始电源通信线上,以发送室内机参数。
例如,室内通信模块103可以由一个专用集成电路及对应的周边电路组成,其中在专用集成电路中可以设置至少一个通讯芯片,室内机的主控MCU发送室内机参数给通讯芯片,通讯芯片产生第一高频信号,并能将第一高频信号加载到原始电源通信线上,随原始电源通信线传递到接收端,从而完成发送室内机参数,从而能够实现由室内机10的内部向室内机10的外部的通信。其中,在实施例中,原始电源通信线可以为目前空调室内机通信使用的交流电信号线例如24V电源通信线,但不仅限于工频交流电压24Vac,在满足电路器件耐压足够、且能够滤掉原始电源信号的要求下,可以设置为任意的交流工作电压范围,例如5V或12V、或20V等。
根据本公开实施例的室内机10,可以在不改变原始通讯方式的基础上,能及时地将室内机参数以在原始电源通信线上加载高频信号的形式实现通信,例如室内机能及时发送环 温、内盘温等参数到原始电源通信线上,可以实现与其他部分的的实时通讯。
在本公开的实施例中,如图2所示,室内机10还包括室内滤波模块104,室内滤波模块104与室内通信模块103连接,其接收端接收到原始电源通信线上的通信信号后,将通信信号后经过室内滤波模块104能够滤除通信信号中的原始电源信号,能够获得包含发送端参数的第二高频信号,其中,发送端可以包括室外机或者温控器等,在实施例中,室内滤波模块104可以包括电容,由电容实现滤波。室内滤波模块104还能够基于第二高频信号解析出发送端参数,并将发送端参数反馈给室内主控模块102,从而能够实现由室内机10的外部向室内机10的内部的通信,实现发送方与接收方的双向通信,并且不只是识别高低电平,可以及时了解发送方具体的运行参数,从而为改进控制策略提供参考。
图3是本公开实施例提供的室外机的框图。
如图3所示,室外机20可以至少包括室外机壳体201、室外主控模块202、室外通信模块203等。其中,室外主控模块202设置在室内机壳体201内,例如,室外主控模块202可以为主控MCU,室外主控模块202用于发送室外机参数,例如室外机参数可以包括室外机20的频率、外盘温等参数,一般情况下室外机参数以交流信号的形式发送出去。室外通信模块203与室外主控模块202连接,用于接收到室外机参数,并基于室外机参数产生包含室外机参数的第三高频信号以及将第三高频信号加载到原始电源通信线上,以发送室内机参数。
例如,室外通信模块203可以由一个专用集成电路及对应的周边电路组成,其中在专用集成电路中可以设置至少一个通讯芯片,室外机20的主控MCU发送室外机参数给通讯芯片,通讯芯片产生第三高频信号,并能将第三高频信号加载到原始电源通信线上随原始电源通信线传递到接收端,从而完成发送室外机参数,从而能够实现由室外机20的内部向室外机20的外部的通信。其中,在实施例中,原始电源通信线可以为目前空调室内机通信使用的交流电信号线例如24V电源通信线,但不仅限于工频交流电压24V,在满足电路器件耐压足够、且能够滤掉原始电源信号的要求下,可以设置为任意的交流工作电压范围,例如5V或12V、或20V等。
根据本公开实施例的室外机20,可以在不改变原始通讯方式的基础上,能及时地将室外机参数以在原始电源通信线上加载高频信号的形式实现通信。由于本公开实施例的室内机10也可以采用在原始电源通信线上加载高频信号的形式实现通信,可以实现室内机20与室外机10共同在原始电源通信线上加载高频信号,实现室外机20与室内机10的实时通讯,例如室内机10能及时发送环温、内盘温等参数到原始电源通信线上并能被室外机20接收,室外机20也能及时发送频率、外盘温等参数到原始电源通信线上并能被室内机10接收,当室外机20有故障时,故障信息也能及时发送出来,使空调工作系统达到最优,提高能效。
在本公开的实施例中,如图3所示,室外机20还包括室内滤波模块204,室外滤波模块204与室外通信模块203连接,其接收端接收到原始电源通信线上的通信信号后,将通信信号后经过室外滤波模块204能够滤除通信信号中的原始电源信号,能够获得包含发送端参数的第四高频信号,其中,发送端可以包括室内机10或者温控器30等。在实施例中,室外滤波模块204可以为电容,通过电容实现滤波以获得发送端参数,从而实现了发送端和接收端的双向通信,并且不只是识别高低电平,可以及时了解具体运行参数,为改善控制策略提供参考。
如果室外机20为变频机时,则室外机20只能通过检测室外系统的参数进行变频工作,接收不到室内机10的一些关键参数,不能充分发挥变频的作用,造成室外机20虽然是变频工作,但能效相对较低。本公开实施例的室外滤波模块204能够基于第四高频信号解析出发送端参数,并将发送端参数反馈给室外主控模块202,从而能够实现由室外机20的外部向室外机20的内部的通信。例如室外变频系统,室外机20不仅可以通过检测室外机参数进行变频工作,同时还可以接收到室内机参数,能充分发挥变频的作用,从而提高能效。
图4是本公开一个实施例的温控器的框图。如图4所示,本公开实施例的温控器30至少可以包括温控器壳体301、温控模块302、温控通信模块303、温控滤波模块304、显示模块305等。其中,温控模块302设置在温控器壳体301内,用户可以通过温控器30的温控模块302发送温控设置参数。温控通信模块303与温控模块302连接,用于接收温控模块302发送的温控设置参数。例如,温控通信模块303可以由一个专用集成电路及对应的周边电路组成,其中在专用集成电路中可以设置至少一个通讯芯片,在发送温控设置参数时,温控器30的主控MCU发送相应的交流信号给通讯芯片,通讯芯片产生第五高频信号,并能将第五高频信号加载到原始电源通信线上,随原始电源通信线传递到接收端,从而完成发送温控设置参数。
根据本公开实施例的温控器30,可以在不改变原始通讯方式的基础上,能及时地将温控器30的温控设置参数以在原始电源通信线上加载高频信号的形式,可以实现与其他部分的实时通讯,使空调工作系统达到最优,提高能效。
在本公开的实施例中,如图4所示,温控器30还可以包括温控滤波模块305,温控滤波模块305与温控通信模块303连接,其接收端接收到原始电源通信线上的通信信号后,将通信信号后经过温控滤波模块305能够滤除通信信号中的原始电源信号,能够获得包含发送端参数的第六高频信号,其中,发送端可以包括室内机的发送端或者室外机的发送端等。温控滤波模块305还能够基于第六高频信号解析出发送端参数,并将发送端参数反馈给温控模块302,从而能够实现由温控器30的外部向温控器30的内部的通信。
根据本公开实施例的温控器30,相对于交流强电载波通讯通信方式,采用在原始电源通信线上加载高频信号的方式进行传输,不用在各部分之间设置交流强电载波通讯电路, 只需要在内室机10、室外机20、或者温控器30中增加相关的通讯电路,电路简单,节省成本,还能实现与其他部分的实时通信,使空调工作系统达到最优,提高能效。
在本公开的实施例中,如图4所示,温控器30还可以包括显示模块306,显示模块306与温控模块302连接,例如,显示模块306可以为温控器30上设置的显示屏或者显示灯或者报警器等,能够用于显示接收到的发送端参数。
在相关技术中,在原始电源通信线上通交流电从而实现信号传递为常见的通信方式,交流电通信方式只能实现单向的开启和关闭控制。温控器发出给外室机和内室机的交流电信号以交流电24V为例,尤其室外机是变频机时,外室机只能接收到温控器的开启或变比指令进行工作,例如,温控器只能单向发送压缩机启动或停止信号或者在制热时发送四通阀开启信号给外室机,主控MCU接收到的也只是高低电平信号,导致各部分之间不能实时通讯。
在本公开实施例中,原始电源通信线上的通信信号既包括交流电信号也包括包含有发送端参数的高频信号,既保留了在原始电源通信线上通交流电的通信方式,室内机10、室外机20和温控器30还能实时接收发送端参数,实现实双向通信,例如当室外机10发生故障时,能将故障信息参数发送出来,被温控器30接收后,将接收到的包括有故障信息参数的高频信号转换成发送端故障信息参数,并可以通过显示模块306显示出来,从而能及时通知到用户。能够实现与内室机10和外室机20之间实时通讯,使系统工作在最优模式,提高能效。
图5是本公开一个实施例的空调器的通讯方式的示意图。
如图5所示,在现有的通讯方案基础上,可以在室内机10、室外机20分别增加通信模块和滤波模块,室内通信模块103和室外通信模块203均可以设置为一个专用集成电路及对应的周边电路。用于基于发送端参数生成包含发送端参数的高频信号以及基于包含发送端参数的高频信号生成发送端参数。其中,例如图5所示,专用集成电路可以包括至少一个通信芯片,本公开实施例的通讯芯片以芯片THVD8000为例,但不仅限于此芯片,包括任何能实现本公开实施例的空调器的通讯方式的芯片。如图5所示,室内滤波模块104和室外滤波模块204均可以设置为至少两个电容,用于滤除通信信号中的原始电源信号。使通信信号在经过接收端电容时通信信号中的原始电源信号被滤掉,只留下高频信号。
如图5所示,室内机10中设置有线性变压器105,用于将交流电调制为原始电源信号电压,以交流电24V为例,室内机10可以通过原始电源通信线给温控器供电,室外机20可以通过原始电源通信线给室内机发送除霜信号,温控器30可以通过原始电源通信线发送控制压缩机信号和控制四通阀信号给室外机20,还可以发送控制室内风机信号。室外机20中设置有Y/B信号检测电路205,用于将24V交流电信号转换成高低电平信号。以室外机20与室内机10的通信过程为例,室外主控模块202的主控MCU发送室外机参数,如 室外机的频率、外盘温等参数给室外通信模块203的通讯芯片,通讯芯片基于室外机参数产生高频信号,加载到原始电源通信线上,原始电源通信线以24V电源通信线为例,原始电源通信线中的通信信号包含有高频信号和原始电源信号,通信信号随24V电源通信线传递到室内机10的室内滤波模块104的接收端。使通信信号在经过室内滤波模块104时通信信号中的原始电源信号被滤掉,只留下高频信号并输送到室内机的室内通信模块的通讯芯片中,通讯芯片可以基于接收到的高频信号生成室外机参数再传递到室内主控模块的主控MCU中。同理,室内机10发送室内机参数给室外机20也可以采用本公开实施例的空调器的通讯方式,能够同时实现发送和接收信号,实现室内机10与室外机20之间在现有的通讯方案基础上加载高频信号实现双向通讯。
再例如,在本公开的实施例中,还可以在温控器30中增加温控器通信模块和温控滤波模块,在图5中省略未画出,其中,温控器通信模块也可以设置为一个专用集成电路及对应的周边电路,用于基于发送端参数生成包含发送端参数的高频信号以及基于包含发送端参数的高频信号生成发送端参数,专用集成电路可以包括至少一个通信芯片,本公开的通讯芯片以芯片THVD8000为例,但不仅限于此芯片,包括任何能实现本公开实施例的空调器的通讯方式的芯片。如果温控器30将温控设置参数在原始电源通信线上加载高频信号的形式发送至接收端,可以实现与其他部分的实时通讯。温控滤波模块均可以设置为包括至少两个电容,用于滤除通信信号中的原始电源信号。使通信信号在经过接收端电容时通信信号中的原始电源信号被滤掉,只留下高频信号。如果室内机或者室外机发生故障时可以基于故障信息产生包含故障信息的高频信号,将高频信号加载在原始电源通信线上传输给温控器,被温控器接收后经过温控滤波模块并能通过温控器中的显示模块及时通知到用户,实现温控器与室内机和室外机之间的实时通信。
图6是本公开一个实施例的空调器的通讯波形转换的示意图。
在本公开的实施例中,能够实现在现有的通讯方案基础上加载高频信号实现空调室内机、室外机以及温控器间的双向通讯。如图6所示,主控MCU只能发出或者识别高低电平信号,主控MCU将空调参数以高低电平信号形式发送给通讯芯片,通讯芯片通过与主控MCU之间的接地电阻进行频率选择,并基于空调参数产生高频信号,然后将包含有空调参数的高频信号在原始电源通信线上,并随原始电源通信线上的通信信号传输到接收端。接收端接收到通信信号后,滤波模块将通信信号中的原始电源信号滤掉,得到包含有空调参数的高频信号,通信芯片基于高频信号得到对应的空调参数,并将空调参数转换成高低电平信号发送到主控MCU中,完成信号的传输与识别。原始电源通信线与交流电源连接,用于交流电的传输。
图7是本公开一个是实施例的控制空调通信的方法的流程图。
本公开实施例的控制空调通信的方法,如图7所示,可以至少包括步骤S101-S106.
S101,接收到主控模块发送的空调参数,其中,空调参数包括室内机参数、室外机参数和温控器设置参数中的至少一种。例如空调参数可以包括室内机的环温、内盘温等参数,或者室外机的频率、外盘温或者故障信息等参数。空调参数由室内机、室外机或者温控器发出并可以被室内机、室外机或者温控器中的通信模块接收。
S102,基于空调参数产生高频信号,其中,高频信号包含空调参数。室内机、室外机或者温控器中的通信模块将接收到的空调参数在内部的通信模块中进行调制产生包含空调参数的高频信号。
S103,将包含空调参数的高频信号加载到原始电源通信线上,以发送空调参数。
本公开实施例的空调通信方法,相对于交流强电载波通讯通信方式,采用在原始电源通信线上加载高频信号的方式进行传输,既能实现室内机与室外机与温控器之间的实时通信,还不用增加交流强电载波通讯电路,节省成本。
S104,接收到原始电源通信线上的通信信号,通信信号包括包含发送端参数的高频信号和原始电源信号。
在本公开的实施例中,可以保留现有技术中在原始电源通信线上通交流电的通信方式,同时增加在原始电源通信线上加载高频信号的通信方式。则原始电源通信线上的通信信号既包括原始电源信号也包括包含发送端参数的高频信号,例如原始电源信号包括温控器给室外机发出的开启或变比指令信号,如压缩机启动或停止信号以及制热时四通阀开启信号等,还可以包括外机发给内机的除霜信号等。在原始电源通信线上加载高频信号,并不影响原始电源信号在各部分之间的传输。
S105,滤除通信信号中的原始电源信号,以获得包含发送端参数的高频信号。原始电源通信线上的通信信号被室内机或者室外机或者温控器内部的滤波模块接收后,滤波模块可以将通信信号中的原始电源信号滤掉,只剩下通信信号中加载的包含空调参数的高频信号。
S106,根据包含空调参数的高频信号解析出发送端参数,并将发送端参数反馈给主控模块。室内机或者室外机或者温控器内部的通信模块包含空调参数的高频信号解析出发送端参数并反馈给主控模块,从而实现各部分之间的实时通信。
根据本公开实施例的控制空调通信的方法,使发送端既能发送原始电源信号,实现由温控器对室外机以及室内机的单向的开启和关闭控制或者是室内机对室外机的交流电通信,也能发送包含空调参数的高频信号,通过各部分对空调参数的发送与接收实现各部分之间的实时通信,并且在原始电源通信线上加载高频信号,不影响两种信号的传输,也不用增加交流强电载波通讯电路,只需要在室内机、室外机分别增加相关通讯电路,且电路简单,节省成本。
总的来说,在本公开实施例中,在现有的通讯方案基础上,在原始电源通信线上加载 高频信号从而实现空调室内机、室外机以及温控器间的双向通讯。只需要在室内机、室外机或者温控器中分别增加一个相关通讯电路,电路简单,成本最优,如果室外机为变机时,不仅能通过检测室外机的参数进行变频工作,还能接收到室内机以及温控器的参数,能充分发挥变频的作用,提高能效。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (9)

  1. 一种室内机,其特征在于,包括:
    室内机壳体;
    室内主控模块,所述室内主控模块设置在所述室内机壳体内,用于发送室内机参数;
    室内通信模块,所述室内通信模块与所述室内主控模块连接,用于基于所述室内机参数产生包含所述室内机参数的第一高频信号,以及将所述第一高频信号加载到原始电源通信线上,以发送所述室内机参数。
  2. 根据权利要求1所述的室内机,其特征在于,所述室内机还包括:
    室内滤波模块,所述室内滤波模块与所述室内通信模块连接,用于接收到原始电源通信线上的通信信号,滤除所述通信信号中的原始电源信号,以获得包含发送端参数的第二高频信号;
    所述室内通信模块还用于基于所述第二高频信号解析出所述发送端参数,并将所述发送端参数反馈给所述室内主控模块。
  3. 一种室外机,其特征在于,包括:
    室外机壳体;
    室外主控模块,所述室外主控模块设置在所述室外机壳体内,用于发送室外机参数;
    室外通信模块,所述室外通信模块与所述室外主控模块连接,用于基于所述室外机参数产生包含所述室内机参数的第三高频信号,以及将所述第三高频信号加载到原始电源通信线上,以发送所述室外机参数。
  4. 根据权利要求3所述的室外机,其特征在于,所述室外机还包括:
    室外滤波模块,所述室外滤波模块与所述室外通信模块连接,用于接收到原始电源通信线上的通信信号,滤除所述通信信号中的原始电源信号,以获得包含发送端参数的第四高频信号;
    所述室外通信模块还用于根据所述第四高频信号解析出所述发送端参数,并将所述发送端参数反馈给所述室外主控模块。
  5. 一种温控器,其特征在于,包括:
    温控器壳体;
    温控模块,所述温控模块设置在所述温控器壳体内,用于发送温控设置参数;
    温控通信模块,所述温控通信模块与所述温控模块连接,用于基于所述温控设置参数产生包含所述温控设置参数的第五高频信号,以及将所述第五高频信号加载到原始电源通信线上,以发送所述温控设置参数。
  6. 根据权利要求5所述的温控器,其特征在于,所述温控器还包括:
    温控滤波模块,所述温控滤波模块与所述温控通信模块连接,用于接收到原始电源通 信线上的通信信号,滤除通信信号中的原始电源信号,以获得包含发送端参数的第六高频信号;
    所述温控通信模块还用于根据所述第六高频信号解析出所述发送端参数,并将所述发送端参数反馈给所述温控模块。
  7. 根据权利要求6所述的温控器,其特征在于,所述温控器还包括:
    显示模块,所述显示模块与所述温控模块连接,用于显示所述发送端参数。
  8. 一种控制空调通信的方法,其特征在于,所述方法包括:
    接收到主控模块发送的空调参数,其中,所述空调参数包括室内机参数、室外机参数和温控器设置参数中的一种;
    基于所述空调参数产生高频信号,其中,所述高频信号包含所述空调参数;
    将包含空调参数的高频信号加载到原始电源通信线上,以发送所述空调参数。
  9. 根据权利要求8所述的空调通信方法,其特征在于,所述方法还包括:
    接收到所述原始电源通信线上的通信信号,所述通信信号包括包含发送端参数的高频信号和原始电源信号;
    滤除所述通信信号中的原始电源信号,以获得包含发送端参数的高频信号;
    根据所述包含空调参数的高频信号解析出发送端参数,并将所述发送端参数反馈给所述主控模块。
PCT/CN2021/081819 2020-09-25 2021-03-19 室内机、室外机和温控器以及控制空调通信的方法 WO2022062336A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/125,303 US20230235911A1 (en) 2020-09-25 2023-03-23 Air conditioner, temperature protector, and method for controlling communication of air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011027015.9 2020-09-25
CN202011027015.9A CN112161386B (zh) 2020-09-25 2020-09-25 室内机、室外机和温控器以及控制空调通信的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/125,303 Continuation US20230235911A1 (en) 2020-09-25 2023-03-23 Air conditioner, temperature protector, and method for controlling communication of air conditioner

Publications (1)

Publication Number Publication Date
WO2022062336A1 true WO2022062336A1 (zh) 2022-03-31

Family

ID=73864101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081819 WO2022062336A1 (zh) 2020-09-25 2021-03-19 室内机、室外机和温控器以及控制空调通信的方法

Country Status (3)

Country Link
US (1) US20230235911A1 (zh)
CN (1) CN112161386B (zh)
WO (1) WO2022062336A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161386B (zh) * 2020-09-25 2022-07-19 海信(山东)空调有限公司 室内机、室外机和温控器以及控制空调通信的方法
CN114963477A (zh) * 2022-06-07 2022-08-30 海信空调有限公司 室外机及其通信控制方法和空调器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538118A (zh) * 2003-04-15 2004-10-20 ��ʽ���������յ�ϵͳ 空调系统
KR100836821B1 (ko) * 2007-02-16 2008-06-12 삼성전자주식회사 대기전력 절감 공기조화기 시스템 및 그 동작방법
JP2016219983A (ja) * 2015-05-19 2016-12-22 ダイキン工業株式会社 リンク確立方法及び伝送装置
CN106440052A (zh) * 2016-11-03 2017-02-22 广东美的制冷设备有限公司 一种空调器及其控制方法
CN206073362U (zh) * 2016-07-05 2017-04-05 广东美的制冷设备有限公司 一种空调器室内外机的通信装置
CN206145811U (zh) * 2016-11-03 2017-05-03 广东美的制冷设备有限公司 一种空调器
CN112161386A (zh) * 2020-09-25 2021-01-01 海信(山东)空调有限公司 室内机、室外机和温控器以及控制空调通信的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529390B2 (ja) * 1989-05-09 1996-08-28 松下電器産業株式会社 空気調和機
JP4336142B2 (ja) * 2003-05-23 2009-09-30 日立アプライアンス株式会社 空気調和機の通信制御装置
KR20090017009A (ko) * 2007-08-13 2009-02-18 삼성전자주식회사 공기조화시스템
KR101277212B1 (ko) * 2010-03-29 2013-06-24 엘지전자 주식회사 배관 통신 장치, 이를 포함한 공기 조화기 및 공기 조화기의 배관 통신 방법
KR101587066B1 (ko) * 2010-08-05 2016-01-21 삼성전자 주식회사 공기 조화기 및 그의 통신 방법
CN206176665U (zh) * 2016-09-21 2017-05-17 珠海格力电器股份有限公司 空调通信系统及空调器
CN108119994B (zh) * 2017-12-26 2023-11-17 奥克斯空调股份有限公司 空调器的低功耗控制电路及低功耗控制方法
CN209415693U (zh) * 2018-12-29 2019-09-20 奥克斯空调股份有限公司 一种空调的通信控制系统及空调器
CN110686368B (zh) * 2019-09-26 2021-03-23 珠海格力电器股份有限公司 通讯控制装置、内机、外机、温控器、通讯方法和空调
CN211233263U (zh) * 2019-12-26 2020-08-11 Tcl空调器(中山)有限公司 通信检测电路及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538118A (zh) * 2003-04-15 2004-10-20 ��ʽ���������յ�ϵͳ 空调系统
KR100836821B1 (ko) * 2007-02-16 2008-06-12 삼성전자주식회사 대기전력 절감 공기조화기 시스템 및 그 동작방법
JP2016219983A (ja) * 2015-05-19 2016-12-22 ダイキン工業株式会社 リンク確立方法及び伝送装置
CN206073362U (zh) * 2016-07-05 2017-04-05 广东美的制冷设备有限公司 一种空调器室内外机的通信装置
CN106440052A (zh) * 2016-11-03 2017-02-22 广东美的制冷设备有限公司 一种空调器及其控制方法
CN206145811U (zh) * 2016-11-03 2017-05-03 广东美的制冷设备有限公司 一种空调器
CN112161386A (zh) * 2020-09-25 2021-01-01 海信(山东)空调有限公司 室内机、室外机和温控器以及控制空调通信的方法

Also Published As

Publication number Publication date
CN112161386A (zh) 2021-01-01
US20230235911A1 (en) 2023-07-27
CN112161386B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2022062336A1 (zh) 室内机、室外机和温控器以及控制空调通信的方法
US10601882B2 (en) System, method and apparatus for binding communication devices through common association
CN102374610B (zh) 空调以及用于该空调的通信方法
CN103292389B (zh) 空调器及其室外机、温控器和该空调器的控制方法
CN108895624A (zh) 一种一拖一空调控制系统及控制方法
CN101865506B (zh) 一种空调节能系统的监测控制方法
CN101949572B (zh) 一种汽车空调智能控制方法和装置
JPWO2014024443A1 (ja) 家電機器、及び家電システム
EP1952072B1 (en) Apparatus and method for controlling air conditioner
CN108758987A (zh) 一种空调控制系统
CN101737905B (zh) 一种空调的节能方法及用于空调的节能器
CN105737344A (zh) 空调器及其控制方法、装置和遥控器
CN201051302Y (zh) 分体式变频空调室外机数据采集和调试装置
CN103912961A (zh) 基于can总线的电动客车电动空调技术
CN102313341A (zh) 无线多联空调装置
CN109708394A (zh) 用于冰箱的散热风机的控制方法及控制系统
CN105091248A (zh) 机房空调控制系统
CN104676835B (zh) 空调的节能运行控制装置及其控制方法
CN102538127B (zh) 变频空调器的手持调节装置及系统
CN206637792U (zh) 一种新型智能酒店空调控制器
CN1641278A (zh) 一种兼容型双压机空调控制器
US10648686B2 (en) HVAC high voltage powerline communication systems and methods
KR101155346B1 (ko) 공기조화기 및 그 통신방법
CN202229360U (zh) 无线多联空调装置
CN112460748B (zh) 一种内外机通讯装置、方法和直流供电变频空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21870725

Country of ref document: EP

Kind code of ref document: A1