WO2022062187A1 - 一种光信号调整装置、设备及方法、存储介质 - Google Patents

一种光信号调整装置、设备及方法、存储介质 Download PDF

Info

Publication number
WO2022062187A1
WO2022062187A1 PCT/CN2020/134441 CN2020134441W WO2022062187A1 WO 2022062187 A1 WO2022062187 A1 WO 2022062187A1 CN 2020134441 W CN2020134441 W CN 2020134441W WO 2022062187 A1 WO2022062187 A1 WO 2022062187A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
input
circuit
output
feedforward
Prior art date
Application number
PCT/CN2020/134441
Other languages
English (en)
French (fr)
Inventor
陈志�
肖礼
卜勤练
余春平
张蔚青
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to EP20955029.2A priority Critical patent/EP4221000A1/en
Priority to US18/027,090 priority patent/US20230336267A1/en
Publication of WO2022062187A1 publication Critical patent/WO2022062187A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02216Power control, e.g. to keep the total optical power constant by gain equalization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02219Distributed control

Definitions

  • the present invention relates to the technical field of optical communication, and in particular, to an optical signal adjustment device, device and method, and a storage medium.
  • EDFA Erbium-doped Optical Fiber Amplifer
  • the optical signal adjustment device samples the input optical signal and the output optical signal, and calculates the difference between the input optical signal and the output optical signal, so as to drive the pump laser according to the difference, and adjust the optical signal adjustment device.
  • the output detection power of the output because the optical signal transmission device needs to calculate the difference between the input optical signal and the output optical signal before adjusting the output detection power output by the optical signal adjustment device, so that the adjustment of the optical signal adjustment device is reduced. speed of the light signal.
  • the embodiments of the present invention are expected to provide an optical signal adjustment apparatus, device, method, and storage medium, which can improve the speed at which the optical signal adjustment apparatus adjusts the optical signal.
  • the present application provides an optical signal adjustment device, the optical signal adjustment device includes: a differential operation circuit, a feedforward amplifier circuit and a control circuit, wherein the input end of the control circuit is respectively connected with the output end of the differential operation circuit and the control circuit. The output terminal of the feedforward amplifier circuit is connected;
  • the differential operation circuit is configured to perform differential operation on the input optical signal and the output optical signal to obtain a differential value
  • the feedforward amplifying circuit is configured to perform feedforward amplification on the input optical signal to obtain a feedforward value
  • the control circuit is configured to receive the differential value and the feedforward value; adjust the output optical signal according to the differential value and the feedforward value to obtain an adjusted output optical signal.
  • the application provides an optical signal adjustment device, the optical signal adjustment device includes: a light source device, a spectrum analysis device, a control device, and the above-mentioned optical signal adjustment device;
  • the control device is respectively connected with the light source device and the spectrum analysis device; the output end of the light source device is connected with the input end of the optical signal adjustment device; the output end of the optical signal adjustment device is connected with the spectrum The input terminal of the analysis device is connected;
  • the light source device is configured to receive the original parameters sent by the control device and the input power parameter corresponding to the optical signal amplification factor; generate a light source signal corresponding to the input power parameter; send the light source signal to the optical signal adjustment device a light source signal; the original parameter and the input power parameter are parameters in the light signal adjustment device;
  • the spectral analysis device is configured to receive the optical signal output by the optical signal adjustment device; detect the power of the optical signal to obtain the first power;
  • the control device is configured to receive the original parameter and the input power parameter; receive the first power; and use the original parameter as a configuration parameter when the first power meets a preset condition; If the first power does not meet the preset condition, adjust the original parameter until the second power corresponding to the adjusted original parameter meets the preset condition, and use the adjusted original parameter as the A configuration parameter is used for the optical signal adjustment device to configure the input power detection circuit, the feedforward amplifier circuit and the noise compensation circuit by using the configuration parameter.
  • the embodiment of the present application provides an optical signal adjustment method, and the optical signal adjustment method is applied to an optical signal adjustment device, and the optical signal adjustment device includes a differential operation circuit, a feedforward amplifier circuit and a control circuit, and the input ends of the control circuit are respectively connected to the The output end of the differential operation circuit is connected to the output end of the feedforward amplifying circuit, and the method includes:
  • differential operation circuit to perform a differential operation on the input optical signal and the output optical signal corresponding to the input optical signal to obtain a differential value
  • the output optical signal is adjusted to obtain an adjusted output optical signal.
  • An embodiment of the present application provides a storage medium on which a computer program is stored, which is applied to an optical signal adjustment apparatus, and when the computer program is executed by a processor, implements the method described in any of the above.
  • Embodiments of the present invention provide an optical signal adjustment device, device and method, and a storage medium.
  • the optical signal adjustment device includes: a differential operation circuit, a feedforward amplifier circuit, and a control circuit.
  • the input end of the control circuit is respectively connected to the output of the differential operation circuit.
  • the terminal is connected to the output terminal of the feedforward amplifier circuit;
  • the differential operation circuit is configured to perform differential operation on the input optical signal and the output optical signal to obtain a differential value;
  • the feedforward amplifier circuit is configured to perform feedforward amplification on the input optical signal to obtain The feedforward value;
  • the control circuit is configured to receive the differential value and the feedforward value; adjust the output optical signal according to the differential value and the feedforward value to obtain the adjusted output optical signal.
  • the optical signal adjustment device when the optical signal adjustment device obtains the input optical signal and the output optical signal corresponding to the input optical signal, the optical signal adjustment device can directly utilize the differential operation circuit and feedforward.
  • Amplifying circuit to obtain the differential value and feedforward value no need to calculate the differential value between the input optical signal and the output optical signal separately, improving the optical signal adjustment device to calculate the differential value and the output optical signal between the input optical signal and the output optical signal The speed of the feedforward value is improved, thereby improving the speed of the optical signal adjusting device when adjusting the output optical signal.
  • FIG. 1 is a schematic diagram 1 of connection of an optical signal adjustment device according to an embodiment of the present application
  • FIG. 2 is a second structural schematic diagram of an optical signal adjustment apparatus provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram 1 of connection of an exemplary optical signal adjustment apparatus provided by an embodiment of the present application
  • FIG. 4 is a second schematic diagram of connection of an exemplary optical signal adjustment apparatus provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram 1 of connection of an optical signal adjustment device according to an embodiment of the present application.
  • FIG. 6 is a flowchart 1 of an optical signal adjustment method provided by an embodiment of the present application.
  • the EDFA control technology has gone through the following stages: pumping constant current control, which is simple to control.
  • the EDFA output residual signal will suddenly increase or suddenly increase. If it is reduced, it will affect the transmission quality; output constant power control, no matter how the input optical power of the EDFA changes, the output constant power control method can ensure that the output power is constant.
  • This method is the same as the pump constant current control.
  • the EDFA feedforward control method directly controls the pump through the linear formula of the input signal to achieve automatic gain control.
  • This method has the disadvantage that the gain control accuracy is not high, and at the same time, in the case of the aging of the pump, the gain will also decrease accordingly.
  • an optical signal adjustment device 1 As shown in FIG. 1, the optical signal adjustment device includes:
  • a differential operation circuit 11 a feedforward amplifier circuit 12 and a control circuit 13, the input end of the control circuit 13 is respectively connected to the output end of the differential operation circuit 11 and the output end of the feedforward amplifier circuit 12;
  • the differential operation circuit 11 is configured to perform a differential operation on the input optical signal and the output optical signal to obtain a differential value
  • the feedforward amplifying circuit 12 is configured to perform feedforward amplification on the input optical signal to obtain a feedforward value
  • the control circuit 13 is configured to receive the differential value and the feedforward value; adjust the output optical signal according to the differential value and the feedforward value to obtain an adjusted output optical signal.
  • the apparatus for adjusting an optical signal provided by the embodiment of the present application is suitable for amplifying a received input optical signal.
  • the input optical signal received by the differential operation circuit may specifically be the voltage value of the input optical signal, may be the current value of the input optical signal, may be the power value of the input optical signal, or may be expressed in other forms
  • the specific input optical signal may be determined according to the actual situation, which is not limited in this embodiment of the present application.
  • the feedforward amplifying circuit includes a feedforward parameter. After the feedforward amplifying circuit obtains the input optical signal, the feedforward amplifying circuit can obtain the feedforward according to the product of the feedforward parameter and the input optical signal. value.
  • the optical signal adjustment device includes a configuration register
  • the feedforward parameter may be a configuration parameter obtained by the control circuit from the configuration register.
  • the feedforward parameter may be that before the feedforward amplifier circuit receives the input optical signal, the optical signal adjustment device writes the feedforward parameter into the configuration register.
  • control circuit adjusts the way of outputting the optical signal according to the differential value and the feedforward value, and can determine the sum of the differential value and the feedforward value for the control circuit, and adjust according to the sum of the differential value and the feedforward value
  • the optical signal is output to obtain the adjusted output optical signal.
  • the differential operation circuit further includes an analog-to-digital converter (Analog-to-Digital Converter, ADC).
  • ADC Analog-to-Digital Converter
  • the differential operation circuit performs a differential operation on the input optical signal and the output optical signal, and after obtaining a differential value, the differential operation circuit
  • the ADC is used to convert the differential value into a differential value in the form of a digital signal, and the differential value converted into a digital signal is transmitted to the control circuit.
  • the feedforward amplifying circuit also includes an ADC.
  • the feedforward amplifying circuit performs feedforward amplification on the input optical signal, and after obtaining the feedforward value, the feedforward amplifying circuit uses the ADC to convert the feedforward value into a digital signal form The feedforward value is converted into a digital signal and transmitted to the control circuit.
  • the device further includes an optical signal input circuit 14, and the optical signal input circuit 14 further includes an optical signal input port 141 and an input power detection circuit 142;
  • the input terminal of the input power detection circuit 142 is connected to the optical signal input port 141 , and the output terminal of the input power detection circuit 142 is respectively connected to the input terminal of the feedforward amplifier circuit 12 and the differential operation circuit 11 . output connection;
  • the input power detection circuit 142 is configured to use the optical signal input port 141 to receive the original input optical signal; amplify the original input optical signal according to the input resistance value to obtain the input optical signal; 12 and the differential operation circuit 11 transmit the input optical signal.
  • the output end of the optical signal input circuit is connected to the input end of the feedforward amplifying circuit and the output end of the differential operation circuit, respectively.
  • the optical signal input port may be a port through which the optical signal adjustment apparatus receives the optical signal.
  • the optical signal input port is provided with a photodiode
  • the optical signal adjusting device can use the photodiode to receive the input optical signal.
  • the optical signal adjustment device may also receive the input optical signal in other manners, and the details may be determined according to the actual situation, which is not limited in this embodiment of the present application.
  • the optical signal adjustment device may be connected to the light source device, and the original input optical signal is received from the output end of the light source device by using the photodiode of the optical signal input port.
  • the optical signal amplification factor may be that before the input power detection circuit receives the input optical signal, the optical signal adjustment device writes the optical signal amplification factor into the configuration register.
  • the feedforward amplifying circuit 12 is configured to amplify the input optical signal by using the configured feedforward parameters to obtain the feedforward value.
  • the feedforward parameters specifically include the first parameter K and the second parameter B; after the feedforward amplifier circuit obtains the input optical signal, the feedforward amplifier circuit may first calculate K times the input optical signal and then add B, thus the feedforward value is obtained.
  • first parameter K may be the slope of the feedforward parameter
  • second parameter B may be the intercept of the feedforward parameter
  • the configuration register is set with the initial value of the configuration, including the initial value of the gain correction factor, the initial value of the feedforward parameter, and the initial value of the noise parameter, wherein the initial value of the feedforward parameter includes the initial K value and initial B value.
  • the initial value of the gain correction factor may be 100; the initial K value may be 0; the initial B value may be 0; the initial value of the noise parameter may be 0.
  • the optical signal adjustment device obtains the gain correction factor, feedforward parameter and noise parameter by adjusting the initial value of the gain correction factor, the initial value of the feedforward parameter and the initial value of the noise parameter respectively.
  • the optical signal adjustment device further includes a noise compensation circuit 15 and an adder 16;
  • the output end of the noise compensation circuit 15 and the output end of the input power detection circuit 142 are respectively connected to the input end of the adder 16;
  • the output end of the adder 16 is connected to the input end of the differential operation circuit 11;
  • the noise compensation circuit 15 is configured to generate a noise signal corresponding to the configured noise parameter
  • the adder 16 is configured to receive the noise signal; and fuse the noise signal with the input optical signal to obtain a fused input optical signal.
  • the noise compensation circuit may specifically be an amplified spontaneous emission (ASE) compensation circuit, or may be a circuit with an ASE compensation function, and the specificity can be determined according to the actual situation. This is not limited.
  • ASE amplified spontaneous emission
  • the power of the input light source device is adjusted to the lower limit value of the input power parameter of the optical signal adjustment device under the preset gain.
  • the output end of the light source device is connected with the input end of the optical signal adjusting device.
  • the noise parameter is adjusted so that the output signal power of the optical signal adjustment device detected by the OSA spectrum analysis device is equal to the sum of the lower limit value of the input power parameter and the preset gain, and the optical signal adjustment device obtains the noise parameter.
  • the differential operation circuit 11 is configured to receive the fused input optical signal; perform a differential operation on the fused input optical signal and the output optical signal to obtain the differential value.
  • the optical signal adjustment device further includes an optical signal output circuit 17 ;
  • the optical signal output circuit 17 includes an optical signal output port 171 and an output power detection circuit 172 ;
  • the input terminal of the output power detection circuit 172 is connected to the optical signal output port 171 , and the output terminal of the output power detection circuit 172 is connected to the input terminal of the differential operation circuit 11 ;
  • the output power detection circuit 172 is configured to acquire the output optical signal through the optical signal output port 171 ; and transmit the output optical signal to the differential operation circuit 11 .
  • the optical signal output port may be a port through which the optical signal adjustment apparatus outputs an optical signal.
  • the output power detection circuit can calculate the voltage value of the output optical signal, the output power detection circuit can also calculate the power value of the output optical signal, and can also calculate the current value of the output optical signal, and can also calculate Other parameter values of the output optical signal may be specifically determined according to the actual situation, which is not limited in this embodiment of the present application.
  • the output power detection circuit after the output power detection circuit calculates the voltage value, power value, current value or parameter value of the output optical signal, the output power detection circuit can use the output optical signal as the voltage value, power value, current value The form of value or parameter value is transmitted to the differential operation circuit.
  • the optical signal output port is provided with a photodiode, and the optical signal adjusting device can use the photodiode to obtain the output optical signal.
  • the optical signal adjustment device may also acquire the output optical signal in other manners, and the details may be determined according to the actual situation, which is not limited in this embodiment of the present application.
  • control circuit 13 includes a controller 131, and the controller 131 is configured to adjust the differential value to obtain an adjusted differential value; determine the adjusted differential value and the sum of the feedforward value to obtain the adjustment value of the output optical signal.
  • the input end of the controller 131 is respectively connected to the output end of the differential operation circuit 11 and the output end of the feedforward amplifier circuit 12;
  • the way that the optical signal adjustment device uses the controller to adjust the difference value may be that the controller performs a proportional integral derivative (PID) operation on the difference value, so as to obtain the adjusted difference value, and the controller also
  • PID proportional integral derivative
  • the difference value may be adjusted in other ways to obtain the adjusted difference value, which may be determined according to the actual situation, which is not limited in this embodiment of the present application.
  • control circuit 13 further includes a pump circuit 132 and a drive circuit 133;
  • the output end of the controller 131 is connected to the input end of the drive circuit 133; the output end of the drive circuit 133 is connected to the input end of the pump circuit 132; the output end of the pump circuit 132 is connected to the optical The output terminal of the signal output circuit 17 is connected;
  • the driving circuit 133 is configured to convert the adjustment value of the output optical signal into a voltage signal
  • the pump circuit 132 is configured to receive the voltage signal; output an optical signal matching the voltage signal, and fuse the optical signal and the output optical signal to obtain the adjusted output optical signal .
  • the output end of the pump circuit is specifically connected to the optical signal output port in the optical signal output circuit.
  • the pump circuit may be a circuit including a pump laser, and the pump circuit may generate pump light.
  • the driving circuit may be a circuit including a pumping circuit, and the driving circuit may drive the pumping circuit to generate pumping light.
  • the controller is connected with the driving circuit through a digital to analog converter (Digital to analog converter, DAC).
  • DAC Digital to analog converter
  • the digital-to-analog converter may be an electronic device capable of converting a digital signal into an analog signal, or a device having the function of converting a digital signal into an analog signal, and the specific one can be determined according to the actual situation. This is not limited.
  • the input terminal of the controller is respectively connected to the output terminal of the differential operation circuit 11 and the output terminal of the feedforward amplifier circuit 12 ; the output terminal of the controller 131 is connected to the driving circuit.
  • the input end of the driving circuit 133 is connected to the input end of the pump circuit 132 .
  • the output end of the input power detection circuit 142 is respectively connected with the input end of the feedforward amplifier circuit 12 and the input end of the adder 16; the output end of the noise compensation circuit 15 is connected with the input end of the adder 16;
  • the input terminals are respectively connected to the output terminal of the adder 16 and the output terminal of the output power detection circuit 172.
  • the input terminal of the differential operation circuit 11 is connected to the resistor R13.
  • the reference voltage VREF of the differential operation circuit 11 is connected to the resistor R12 in series with the resistor R12.
  • R13 is connected in parallel to the forward input terminal of the operational amplifier E of the differential operational circuit 11;
  • the reverse input terminal of the operational amplifier E is connected to the output terminal of the output power detection circuit 172 through the resistor R14, and the two ends of the resistor R15 are respectively connected to the operational amplifier
  • the output end of E and the inverting input end of the operational amplifier E, and the output end of the operational amplifier E is connected to the controller 131 .
  • the output end of the operational amplifier D in the adder 16 is connected to the forward input end of the operational amplifier D through the resistor R13; the forward input end of the operational amplifier D is connected to the output end of the input power detection circuit 142 and the feedforward through the resistor R6
  • the input end of the amplifier circuit 12 is connected, and the forward input end of the operational amplifier D is also connected to the output end of the noise compensation circuit 15 through the resistor R5; the reverse input end of the operational amplifier D is grounded through the resistor R3, and the reverse input end of the operational amplifier D
  • the terminal is connected to the output terminal of the adder 16 through the resistor R4.
  • the input end of the noise compensation circuit 15 is configured with a noise parameter ASE, and the noise parameter is connected to the forward input end of the operational amplifier B of the noise compensation circuit 15 through the resistor R1; the forward input end of the operational amplifier B is also grounded through the resistor 2; The inverting input terminal of the amplifier B is connected to the output terminal of the operational amplifier B, and the output terminal of the operational amplifier B is connected to the adder 16 through the resistor R5.
  • the forward input terminal of the operational amplifier A in the output power detection circuit 172 is grounded; the reverse input terminal of the operational amplifier A is grounded through the photodiode PD2; the output resistance Rout in the output power detection circuit 172 is connected in parallel with the capacitor Cout, wherein the parallel connection
  • the first terminal is connected to the inverting input terminal of the operational amplifier A; the second terminal connected in parallel is connected to the output terminal of the operational amplifier A; the output terminal of the operational amplifier A is connected to the differential operation circuit 11 through the resistor R14.
  • the variable resistor Rin1 and the variable resistor Rin2 of the input power detection circuit 142 are connected in series with the capacitor C1 in parallel.
  • the forward input end of the operational amplifier F of the feedforward amplifier circuit 12 is connected to the output end of the input power detection circuit 142 through the resistor R8; the reverse input end of the operational amplifier F is grounded through the resistor R7;
  • the variable resistor Rk is connected to the output end of the operational amplifier F; the output end of the operational amplifier F is connected to the forward input end of the operational amplifier G of the feedforward amplifier circuit 12 through the resistor R10; the forward input end of the operational amplifier G is connected to the forward input end of the operational amplifier G through the resistor R9.
  • the configuration parameter B is connected, the inverting input terminal of the operational amplifier G is grounded through the resistor R11, and the inverting input terminal of the operational amplifier G is also connected to the output terminal of the operational amplifier G through the variable resistor Rf; the output terminal of the operational amplifier G is connected to the controller 131 connections.
  • the optical signal adjustment device when the optical signal adjustment device obtains the input light and the signal and the output optical signal corresponding to the input optical signal, the optical signal adjustment device can directly use the differential operation circuit and the feedforward amplifier circuit to obtain the differential value. and the feedforward value, there is no need to calculate the differential value between the input optical signal and the output optical signal separately, which improves the speed of the optical signal adjustment device to calculate the differential value between the input optical signal and the output optical signal, thereby improving the optical
  • the signal adjusting device adjusts the speed at which the optical signal is output.
  • an optical signal adjustment device 2 As shown in FIG. 5, the device includes:
  • the light source device 21 the spectrum analysis device 22, the control device 23 and the optical signal adjustment device 1 described in the embodiment;
  • the control device 23 is respectively connected with the light source device 21 and the spectrum analysis device 22; the output end of the light source device 21 is connected with the input end of the optical signal adjustment device 1; The output end is connected with the input end of the spectral analysis device 22;
  • the light source device 21 is configured to receive the original parameters sent by the control device 23 and the input power parameter corresponding to the optical signal amplification factor; generate a light source signal corresponding to the input power parameter; sending the light source signal; the original parameter and the input power parameter are parameters in the optical signal adjustment device 1;
  • the spectral analysis device 22 is configured to receive the optical signal output by the optical signal adjustment device 1; detect the power of the processed optical signal to obtain the first power;
  • the control device 23 is configured to receive the original parameter and the input power parameter; receive the first power; in the case that the first power satisfies a preset condition, use the original parameter as a configuration parameter ; in the case that the first power does not meet the preset condition, adjust the original parameter until the second power corresponding to the adjusted original parameter satisfies the preset condition, and use the adjusted original parameter as the
  • the configuration parameters are used for the optical signal adjustment device 1 to configure the input power detection circuit, the feedforward amplifier circuit and the noise compensation circuit by using the configuration parameters.
  • the input power parameter includes a lower limit value of the input power parameter and an upper limit value of the input power parameter.
  • the original parameters include: an original gain correction factor, an original feedforward parameter, and an original noise parameter;
  • the configuration parameters include: a gain correction factor, a feedforward parameter and a noise parameter.
  • control device 23 is configured to receive a preset spectral ratio and a preset output resistance value in the optical signal adjustment device 1; according to the gain correction factor, the preset spectral ratio, the The input resistance value of the optical signal adjustment device 1 is determined by the preset output resistance value and the optical signal amplification factor; the input resistance value is transmitted to the optical signal adjustment device 1 .
  • the gain correction factor may be Factor Gain
  • the preset splitting ratio includes the input splitting ratio Tap in and the output splitting ratio Tap out
  • the preset output resistance value may be Rout
  • the optical signal amplification factor may be Gain
  • the input resistance value Rin can be determined according to formula (1):
  • the optical signal adjustment device performs the process of debugging the initial value of the gain correction factor, the initial value of the feedforward parameter, and the initial value of the noise parameter respectively, as follows:
  • the control device obtains the initial value of the gain correction factor, the initial K value, the initial B value and the initial value of the noise parameter.
  • the optical signal adjustment device of the control device sets the three parameters of P/I/D of the feedback proportional integral differential (PID) as initial values.
  • the optical signal adjustment device after the optical signal adjustment device sets the three parameters of P/I/D in the PID to initial values, the optical signal adjustment device enables the PID function.
  • the control device adjusts the output power of the light source device to the upper limit value of the input power parameter of the optical signal adjustment device under the preset gain.
  • the preset gain is the optical signal amplification factor.
  • the light source device may be a multi-wave light source device.
  • the control device adjusts the gain correction factor, so that the output signal power of the optical signal adjustment device detected by the OSA spectrum analysis device is equal to the sum of the preset gain and the upper limit value of the input power parameter.
  • the control device adjusts the power of the input light source device to the lower limit value of the input power parameter of the optical signal adjustment device under the preset gain.
  • the output end of the light source device is connected to the input end of the optical signal adjusting device.
  • the control device adjusts the noise parameter so that the output signal power of the optical signal adjustment device detected by the OSA spectrum analysis device is equal to the sum of the lower limit value of the input power parameter and the preset gain.
  • the optical signal adjustment device turns off the PID function .
  • the control device adjusts the power of the input light source device to the upper limit value of the input power parameter of the optical signal adjustment device under the preset gain.
  • the output end of the light source device is connected to the input end of the optical signal adjusting device.
  • the control device adjusts the initial K value in the feedforward parameter, so that the output signal power of the optical signal adjustment device to be measured detected by the OSA spectrum analysis device is equal to the sum of the upper limit value of the input power parameter and the preset gain.
  • the control device adjusts the power of the input light source device to the lower limit value of the input power parameter of the optical signal adjustment device under the preset gain.
  • the output end of the light source device is connected to the input end of the optical signal adjusting device.
  • the control device adjusts the initial B value in the feedforward parameter, so that the output signal power of the optical signal adjustment device detected by the OSA spectrum analysis device is equal to the sum of the lower limit value of the input power parameter and the preset gain.
  • the control device adjusts the power of the input light source device to the upper limit value of the input power parameter of the optical signal adjustment device under the preset gain.
  • the control device ends the debugging, otherwise, re-adjusts the K value and the B value until the OSA
  • the spectral analysis device detects that the output power of the optical signal adjustment device approaches the sum of the lower limit value of the input power parameter and the preset gain.
  • the control device writes the gain correction factor, the feedforward parameter and the noise parameter into the configuration register.
  • the connection between the OSA spectrum analysis device, the light source device and the optical signal adjustment device is shown in FIG. 4 , the light source device outputs the original input optical signal, the optical signal adjustment device receives the original input optical signal, and the optical signal The adjustment device transmits the output optical signal to the OSA spectroscopic analysis device.
  • the optical signal adjustment device obtains the configuration parameters by adjusting the original parameters in the optical signal adjustment device, so that the optical signal adjustment device can obtain the input resistance value of the optical signal adjustment device according to the configuration parameters, so as to obtain the input resistance value of the optical signal adjustment device according to the input resistance value.
  • the resistance value amplifies the input optical signal according to the amplification factor of the input optical signal, which improves the accuracy of the optical signal adjusting device when amplifying the input optical signal.
  • An embodiment of the present application provides an optical signal adjustment method, which is applied to an optical signal adjustment device. As shown in FIG. 6 , the method includes:
  • the apparatus for adjusting an optical signal provided by the embodiment of the present application is suitable for amplifying a received input optical signal.
  • the optical signal adjustment device includes: a differential operation circuit, a feedforward amplifier circuit, a control circuit, an optical signal input circuit, and an optical signal output circuit, and the input end of the control circuit is respectively connected with the output end of the differential operation circuit and the feedforward circuit.
  • the output end of the amplifier circuit is connected; the output end of the control circuit is connected with the output end of the optical signal output circuit; the output end of the optical signal input circuit is respectively connected with the input end of the differential operation circuit and the input end of the feedforward amplifier circuit; the optical signal output The output end of the circuit is connected with the input end of the differential operation circuit.
  • the input optical signal received by the differential operation circuit may specifically be the voltage value of the input optical signal, may be the current value of the input optical signal, may be the power value of the input optical signal, or may be expressed in other forms
  • the specific input optical signal may be determined according to the actual situation, which is not limited in this embodiment of the present application.
  • the optical signal adjustment device uses a differential operation circuit to perform differential operation on the input optical signal and the output optical signal corresponding to the input optical signal, and before obtaining the differential value, the optical signal adjustment device can receive the original input optical signal; According to the configuration The original input optical signal is amplified by the optical signal amplification factor to obtain the input optical signal.
  • the optical signal adjustment device may also acquire noise parameters, generate a noise signal corresponding to the noise parameter, and fuse the noise signal with the input optical signal to obtain a fused input optical signal;
  • the optical signal is subjected to a differential operation to obtain a differential value.
  • the optical signal adjustment device may also obtain the configured initial noise parameter; use the noise feedback compensation factor to adjust the initial noise parameter to obtain the noise parameter.
  • the optical signal adjustment device may use a feedforward amplifying circuit to perform a differential operation on the input optical signal and the output optical signal corresponding to the input optical signal by using a differential operation circuit to obtain a differential value.
  • the input optical signal is feed-forward amplified to obtain a feed-forward value; the optical signal adjustment device may also use a differential operation circuit to perform differential operation on the input optical signal and the output optical signal corresponding to the input optical signal to obtain a differential value, the optical signal adjustment device.
  • the feedforward amplifying circuit is used to feedforward amplify the input optical signal to obtain a feedforward value;
  • the optical signal adjustment device can also use a differential operation circuit to perform a differential operation on the input optical signal and the output optical signal corresponding to the input optical signal to obtain a differential operation.
  • the optical signal adjustment device uses the feedforward amplifier circuit to feedforward amplify the input optical signal to obtain the feedforward value; the specific value can be determined according to the actual situation, which is not limited in the embodiment of the present application.
  • the optical signal adjustment device includes a feedforward parameter; the optical signal adjustment device can amplify the input optical signal by using the configured feedforward parameter to obtain a feedforward value.
  • the optical signal adjustment device uses the configured feedforward parameters to amplify the input optical signal, and before obtaining the feedforward value, the optical signal adjustment device may first obtain the configured gain correction factor; the input power detection is determined according to the gain correction factor. The input resistance value of the circuit; according to the preset input resistance value and the preset amplification factor, the optical signal amplification factor corresponding to the input resistance value is determined.
  • the optical signal adjustment device after the optical signal adjustment device obtains the differential value and the feedforward value, the optical signal adjustment device can adjust the output optical signal according to the differential value and the feedforward value to obtain the adjusted output optical signal.
  • the optical signal adjustment device may further adjust the differential value to obtain the adjusted differential value; determine the sum of the adjusted differential value and the feedforward value to obtain the adjusted value of the output optical signal; The adjusted value of the signal is converted into a voltage signal; an optical signal matching the voltage signal is output, and the optical signal and the output optical signal are fused to obtain an adjusted output optical signal.
  • the optical signal adjustment device when the optical signal adjustment device obtains the input optical signal and the output optical signal corresponding to the input optical signal, the optical signal adjustment device can directly use the differential operation circuit and the feedforward amplifying circuit to obtain the differential value sum.
  • the feedforward value eliminates the need to separately calculate the differential value between the input optical signal and the output optical signal, which improves the speed at which the optical signal adjustment device calculates the differential value between the input optical signal and the output optical signal, thereby improving the optical signal
  • the adjusting device adjusts the speed at which the optical signal is output.
  • An embodiment of the present application provides a storage medium on which a computer program is stored, the storage medium stores one or more programs, the one or more programs can be executed by one or more processors, and is applied to an optical signal adjustment device , the computer program implements the optical signal adjustment method described in the second embodiment.
  • embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the invention may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • Embodiments of the present application provide an optical signal adjustment device, device, method, and storage medium.
  • the optical signal adjustment device obtains an input optical signal and an output corresponding to the input optical signal.
  • the optical signal adjustment device can directly use the differential operation circuit and the feedforward amplifier circuit to obtain the differential value and the feedforward value, and there is no need to calculate the differential value between the input optical signal and the output optical signal separately.
  • the speed at which the optical signal adjusting device calculates the difference value and the feedforward value between the input optical signal and the output optical signal is increased, thereby increasing the speed when the optical signal adjusting device adjusts the output optical signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

一种光信号调整装置、设备及方法、存储介质,所述光信号调整装置(1)包括:差分运算电路(11)、前馈放大电路(12)和控制电路(13),控制电路(13)的输入端分别与差分运算电路(11)的输出端和前馈放大电路(12)的输出端连接;差分运算电路(11),配置于对输入光信号和输出光信号进行差分运算,得到差分值;前馈放大电路(12),配置于对输入光信号进行前馈放大,得到前馈值;控制电路(13),配置于接收差分值和前馈值;根据差分值和前馈值,调整输出光信号,得到调整后的输出光信号。

Description

一种光信号调整装置、设备及方法、存储介质
相关申请的交叉引用
本申请要求在2020年09月23日提交中国专利局、申请号为202011009105.5、申请名称为“一种光信号调整装置及方法、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光通信技术领域,尤其涉及一种光信号调整装置、设备及方法、存储介质。
背景技术
近年来,在光通讯领域中,特别是密集型光波复用(Dense Wavelength Division Multiplexing,DWDM)光传输中,为了提升光传输的距离,掺铒光纤放大器(Erbium-doped Optical Fiber Amplifer,EDFA)作为DWDM光传输的关键器件,EDFA直接影响了DWDM光传输的关键性能。
相关技术中,是光信号调整装置采样输入光信号和输出光信号,并计算输入光信号和输出光信号之间的差值,从而根据该差值来驱动泵浦激光器,并调整光信号调整装置输出的输出探测功率,由于光信号传输装置在调整光信号调整装置输出的输出探测功率之前,需要先计算出输入光信号和输出光信号之间的差值,如此,降低了光信号调整装置调整光信号时的速度。
发明内容
为解决上述技术问题,本发明实施例期望提供一种光信号调整装置、设备及方法、存储介质,能够提光信号调整装置调整光信号时的速度。
本发明的技术方案是这样实现的:
本申请提供一种光信号调整装置,所述光信号调整装置包括:差分运算电路、前馈放大电路和控制电路,所述控制电路的输入端分别与所述差分运算电路的输出端和所述前馈放大电路的输出端连接;
其中,所述差分运算电路,配置于对输入光信号和输出光信号进行差分运算,得到差分值;
所述前馈放大电路,配置于对所述输入光信号进行前馈放大,得到前馈值;
所述控制电路,配置于接收所述差分值和所述前馈值;根据所述差分值和所述前馈值,调整所述输出光信号,得到调整后的输出光信号。
本申请提供一种光信号调整设备,所述光信号调整设备包括:光源装置、光谱分析装置、控制装置和上述所述的光信号调整装置;
所述控制装置分别与所述光源装置和所述光谱分析装置连接;所述光源装置的输出端与所述光信号调整装置的输入端连接;所述光信号调整装置的输出端与所述光谱分析装置的输入端连接;
其中,所述光源装置,配置于接收控制装置发送的原始参数和与光信号放大倍数对应的输入功率参数;产生与所述输入功率参数对应的光源信号;向所述光信号调整装置发送所述光源信号;所述原始参数和所述输入功率参数为所述光信号调整装置中的参数;
所述光谱分析装置,配置于接收所述光信号调整装置输出的光信号;检测所述光信号的功率,得到第一功率;
所述控制装置,配置于接收所述原始参数和所述输入功率参数;接收所述第一功率;在所述第一功率满足预设条件的情况下,将与所述原始参数作为配置参数;在所述第一功率不满足预设条件的情况下,调整所述原始参数,直至调整后的原始参数对应的第二功率满足所述预设条件,将所述调整后的原始参数作为所述配置参数,以供所述光信号调整装置利用所 述配置参数配置输入功率探测电路、前馈放大电路和噪声补偿电路。
本申请实施例提供光信号调整方法,光信号调整方法应用于光信号调整装置,所述光信号调整装置包括差分运算电路、前馈放大电路和控制电路,所述控制电路的输入端分别与所述差分运算电路的输出端和所述前馈放大电路的输出端连接,所述方法包括:
利用所述差分运算电路对输入光信号和所述输入光信号对应的输出光信号进行差分运算,得到差分值;
利用所述前馈放大电路对所述输入光信号进行前馈放大,得到前馈值;
根据所述差分值和所述前馈值,调整所述输出光信号,得到调整后的输出光信号。
本申请实施例提供一种存储介质,其上存储有计算机程序,应用于光信号调整装置,该计算机程序被处理器执行时实现如上述任一项所述的方法。
本发明实施例提供了一种光信号调整装置、设备及方法、存储介质,光信号调整装置包括:差分运算电路、前馈放大电路和控制电路,控制电路的输入端分别与差分运算电路的输出端和前馈放大电路的输出端连接;差分运算电路,配置于对输入光信号和输出光信号进行差分运算,得到差分值;前馈放大电路,配置于对输入光信号进行前馈放大,得到前馈值;控制电路,配置于接收差分值和前馈值;根据差分值和前馈值,调整输出光信号,得到调整后的输出光信号。采用上述光信号调整装置的实现方案,光信号调整装置在获取到输入光信号和与所述输入光信号对应的输出光信号的情况下,光信号调整装置就可以直接利用差分运算电路和前馈放大电路来得到差分值和前馈值,不需要再单独计算输入光信号和输出光信号之间的差分值了,提高了光信号调整装置计算输入光信号和输出光信号之间的差分值和前馈值的速度,从而提高了光信号调整装置调整输出光信号时的速度。
附图说明
图1为本申请实施例提供的一种光信号调整装置连接示意图一;
图2为本申请实施例提供的一种光信号调整装置结构示意图二;
图3为本申请实施例提供的一种示例性地光信号调整装置连接示意图一;
图4为本申请实施例提供的一种示例性地光信号调整装置连接示意图二;
图5为本申请实施例提供的一种光信号调整设备连接示意图一;
图6为本申请实施例提供的一种光信号调整方法流程图一。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
现有技术中,EDFA控制技术经历了以下几个阶段:泵浦恒电流控制,这种方式控制简单,然而,EDFA在输入光信号出现上下信道时,EDFA输出剩余信号会出现突然增大或者突然减小的情况,影响传输质量;输出恒功率控制,无论EDFA输入光功率如何变化,输出恒功率控制的方式都可以保证输出功率恒定,该方式和泵浦恒电流控制一样,EDFA在输入光信号出现上下信道的情况下,EDFA输出剩余信号会出现突然增大或者突然减小的情况,影响传输质量;EDFA前馈控制方式是通过输入信号的线性公式直接控制泵浦,达到自动增益控制,该方式存在增益控制精度不高的缺点,同时,在泵浦出现老化的情况下,增益也会随之下降。
对于现有技术中存在的问题,具体可通过以下实施例中的方法进行解决
实施例一
本申请实施例提供一种光信号调整装置1,如图1所示,该光信号调整装置包括:
差分运算电路11、前馈放大电路12和控制电路13,所述控制电路13的输入端分别与所述差分运算电路11的输出端和所述前馈放大电路12的输出端连接;
其中,所述差分运算电路11,配置于对所述输入光信号和所述输出光信号进行差分运算,得到差分值;
所述前馈放大电路12,配置于对所述输入光信号进行前馈放大,得到前馈值;
所述控制电路13,配置于接收所述差分值和所述前馈值;根据所述差分值和所述前馈值,调整所述输出光信号,得到调整后的输出光信号。
本申请实施例提供的一种光信号调整装置适用于对接收到的输入光信号进行放大的场景下。
在本申请实施例中,差分运算电路接收到的输入光信号具体可以为输入光信号的电压值,可以为输入光信号的电流值;可以为输入光信号的功率值;也可以为其他形式表示的输入光信号,具体的可根据实际情况进行确定,本申请实施例对此不作限定。
在本申请实施例中,前馈放大电路中包括前馈参数,前馈放大电路在得到输入光信号之后,前馈放大电路可以根据前馈参数与输入光信号的乘积,从而就得到了前馈值。
需要说明的是,光信号调整装置包括配置寄存器,前馈参数可以为控制电路从配置寄存器中获取到的配置参数。
还需要说明的是,前馈参数可以为前馈放大电路在接收到输入光信号之前,光信号调整装置就将前馈参数写入配置寄存器。
在本申请实施例中,控制电路根据差分值和前馈值,调整输出光信号的方式,可以为控制电路确定差分值和前馈值的和,并根据差分值和前馈 值的和来调整输出光信号,从而得到调整后的输出光信号。
在本申请实施例中,差分运算电路还包括模拟数字转换器(Analog-to-Digital Converter,ADC),差分运算电路对输入光信号和输出光信号进行差分运算,得到差分值之后,差分运算电路就利用ADC将差分值转化为数字信号形式的差分值,并将该转化为数字信号形式的差分值传输至控制电路。
在本申请实施例中,前馈放大电路也包括ADC,前馈放大电路对输入光信号进行前馈放大,得到前馈值之后,前馈放大电路就利用ADC将前馈值转化为数字信号形式的前馈值,并将该转化为数字信号形式的前馈值传输至控制电路。
可选的,如图2所示,所述装置还包括光信号输入电路14,所述光信号输入电路14还包括光信号输入端口141和输入功率探测电路142;
所述输入功率探测电路142的输入端与所述光信号输入端口141连接,所述输入功率探测电路142的输出端分别与所述前馈放大电路12的输入端和所述差分运算电路11的输出端连接;
所述输入功率探测电路142,配置于利用所述光信号输入端口141接收原始输入光信号;根据输入电阻值放大所述原始输入光信号,得到所述输入光信号;向所述前馈放大电路12和所述差分运算电路11传输所述输入光信号。
在本申请实施例中,光信号输入电路的输出端与分别与所述前馈放大电路的输入端和所述差分运算电路的输出端连接。
在本申请实施例中,光信号输入端口可以为光信号调整装置接收光信号的端口。
示例性的,光信号输入端口设置有光电二极管,光信号调整装置可以利用该光电二极管来接收输入光信号。光信号调整装置也可以利用其它方式来接收输入光信号,具体的可根据实际情况进行确定,本申请实施例对 此不作限定。
在本申请实施例中,光信号调整装置可以与光源装置连接,利用光信号输入端口的光电二极管从光源装置的输出端接收原始输入光信号。
需要说明的是,光信号放大倍数可以为输入功率探测电路在接收到输入光信号之前,光信号调整装置就将光信号放大倍数写入配置寄存器。
可选的,如图2所示,所述前馈放大电路12,配置于利用配置的前馈参数对所述输入光信号进行放大处理,得到所述前馈值。
在本申请实施例中,前馈参数具体包括第一参数K和第二参数B;前馈放大电路在得到输入光信号之后,前馈放大电路可以先计算输入光信号的K倍然后再加上B,从而就得到了前馈值。
需要说明的是,第一参数K可以为前馈参数的斜率,第二参数B可以为前馈参数的截距。
在本申请实施例中,配置寄存器中设置有配置的初始值,包括增益修正因子的初始值、前馈参数的初始值、和噪声参数的初始值,其中,前馈参数的初始值包括初始K值和初始B值。
需要说明的是,增益修正因子的初始值可以为100;初始K值可以为0;初始B值可以为0;噪声参数的初始值可以为0。
在本申请实施例中,光信号调整装置通过对增益修正因子的初始值、前馈参数的初始值和噪声参数的初始值分别进行调试,从而得到增益修正因子、前馈参数和噪声参数。
可选的,如图2所示,所述光信号调整装置还包括噪声补偿电路15和加法器16;
所述噪声补偿电路15的输出端和所述输入功率探测电路142的输出端分别与所述加法器16的输入端连接;
所述加法器16的输出端与所述差分运算电路11的输入端连接;
所述噪声补偿电路15,配置于产生与配置的噪声参数对应的噪声信号;
所述加法器16,配置于接收所述噪声信号;将所述噪声信号与所述输入光信号进行融合,得到融合输入光信号。
在本申请实施例中,噪声补偿电路具体可以为放大自发辐射(amplified spontaneous emission,ASE)补偿电路,也可以为具有ASE补偿功能的电路,具体的可根据实际情况进行确定,本申请实施例对此不作限定。
在本申请实施例中,将输入光源装置功率调节为光信号调整装置在预设增益下的输入功率参数下限值。光源装置的输出端与光信号调整装置的输入端连接。调节噪声参数,使得OSA光谱分析装置探测到的光信号调整装置的输出信号功率等于输入功率参数下限值与预设增益之和的情况下,光信号调整装置就得到了噪声参数。
可选的,如图2所示,所述差分运算电路11,配置于接收所述融合输入光信号;对所述融合输入光信号和所述输出光信号进行差分运算,得到所述差分值。
可选的,如图2所示,所述光信号调整装置还包括光信号输出电路17;所述光信号输出电路17包括光信号输出端口171和输出功率探测电路172;
所述输出功率探测电路172的输入端与所述光信号输出端口171连接,所述输出功率探测电路172的输出端与所述差分运算电路11的输入端连接;
所述输出功率探测电路172,配置于通过所述光信号输出端口171获取所述输出光信号;向所述差分运算电路11传输所述输出光信号。
在本申请实施例中,光信号输出端口可以为光信号调整装置输出光信号的端口。
在本申请实施例中,输出功率探测电路可以计算出输出光信号的电压值,输出功率探测电路也可以计算出输出光信号的功率值,还可以计算出输出光信号的电流值,也可以计算出输出光信号的其他参数值,具体的可根据实际情况进行确定,本申请实施例对此不作限定。
在本申请实施例中,输出功率探测电路在计算出输出光信号的电压值、 功率值、电流值或者参数值之后,输出功率探测电路就可以将该输出光信号以电压值、功率值、电流值或者参数值的形式传输至差分运算电路。
示例性的,光信号输出端口设置有光电二极管,光信号调整装置可以利用该光电二极管来获取输出光信号。光信号调整装置也可以利用其它方式来获取输出光信号,具体的可根据实际情况进行确定,本申请实施例对此不作限定。
可选的,如图2所示,所述控制电路13包括控制器131,所述控制器131配置于对所述差分值进行调整,得到调整后的差分值;确定所述调整后的差分值和所述前馈值的和,得到输出光信号的调整值。
所述控制器131的输入端分别与所述差分运算电路11的输出端和所述前馈放大电路12的输出端连接;
在本申请实施例中,光信号调整装置利用控制器对差分值进行调整的方式可以为,控制器对该差分值进行比例积分微分(PID)运算,从而得到调整后的差分值,控制器也可以利用其它的方式对差分值进行调整,得到调整后的差分值,具体的可根据实际情况进行确定,本申请实施例对此不作限定。
可选的,如图2所示,所述控制电路13还包括泵浦电路132和驱动电路133;
所述控制器131的输出端与所述驱动电路133的输入端连接;所述驱动电路133的输出端与所述泵浦电路132的输入端连接;所述泵浦电路132的输出端与光信号输出电路17的输出端连接;
所述驱动电路133,配置于将所述输出光信号的调整值转化为电压信号;
所述泵浦电路132,配置于接收所述电压信号;输出与所述电压信号匹配的光信号,并将所述光信号和所述输出光信号进行融合,得到所述调整后的输出光信号。
在本申请实施例中,泵浦电路的输出端具体是与光信号输出电路中的 光信号输出端口连接。
在本申请实施例中,泵浦电路可以为包括泵浦激光器的电路,泵浦电路可以产生泵浦光。
在本申请实施例中,驱动电路可以为包括泵浦电路的电路,驱动电路可以驱动泵浦电路产生泵浦光。
在本申请实施例中,控制器通过数字模拟转换器(Digital to analog converter,DAC)与驱动电路进行连接。
需要说明的是,数字模拟转换器可以为能够将数字信号转化为模拟信号的电子器件,也可以为具有数字信号转化为模拟信号功能的器件,具体的可根据实际情况进行确定,本申请实施例对此不作限定。
示例性的,如图3所示,控制器的输入端分别与所述差分运算电路11的输出端和所述前馈放大电路12的输出端连接;所述控制器131的输出端与驱动电路133的输入端连接,驱动电路133的输出端与泵浦电路132的输入端连接。输入功率探测电路142的输出端分别与前馈放大电路12的输入端和加法器16的输入端与连接;噪声补偿电路15的输出端与加法器16的输入端与连接;差分运算电路11的输入端分别与加法器16的输出端和输出功率探测电路172的输出端连接,具体的,差分运算电路11的输入端连接电阻R13,差分运算电路11的参考电压VREF与电阻R12串联之后与电阻R13并联接入至差分运算电路11的运算放大器E的正向输入端;运算放大器E的反向输入端通过电阻R14与输出功率探测电路172的输出端连接,电阻R15的两端分别连接运算放大器E的输出端和运算放大器E的反向输入端,算放大器E的输出端与控制器131连接。加法器16中的运算放大器D的输出端与通过电阻R13与运算放大器D的正向输入端连接;运算放大器D的正向输入端通过电阻R6分别与输入功率探测电路142的输出端和前馈放大电路12的输入端连接,运算放大器D的正向输入端还通过电阻R5与噪声补偿电路15的输出端连接;运算放大器D的反向输入端通过电 阻R3接地,运算放大器D的反向输入端通过电阻R4与加法器16的输出端连接。噪声补偿电路15的输入端配置有噪声参数ASE,该噪声参数通过电阻R1与噪声补偿电路15的运算放大器B的正向输入端连接;运算放大器B的正向输入端还通过电阻2接地;运算放大器B的反向输入端与运算放大器B的输出端连接,运算放大器B的输出端通过电阻R5与加法器16连接。输出功率探测电路172中的运算放大器A的正向输入端接地;运算放大器A的反向输入端通过光电二极管PD2接地;输出功率探测电路172中的输出电阻Rout与电容Cout并联,其中,并联的第一端接运算放大器A的反向输入端;并联的第二端接运算放大器A的输出端;运算放大器A的输出端通过电阻R14与差分运算电路11连接。输入功率探测电路142的可变电阻Rin1和可变电阻Rin2串联之后与电容C1并联,并联的第一端与输入功率探测电路142中的运算放大器C的反向输入端连接,并联的第二端与运算放大器C的输出端连接;运算放大器C的反向输入端还通过光电二极管PD1接地;运算放大器C的正向输入端接地;运算放大器C的输出端通过电阻R6与加法器16连接。前馈放大电路12的运算放大器F的正向输入端通过电阻R8输入功率探测电路142的输出端连接;运算放大器F的反向输入端通过电阻R7接地;运算放大器F的反向输入端通过可变电阻Rk与运算放大器F的输出端连接;运算放大器F的输出端通过电阻R10与前馈放大电路12的运算放大器G的正向输入端连接;运算放大器G的正向输入端通过电阻R9与配置参数B连接,运算放大器G的反向输入端通过电阻R11接地,运算放大器G的反向输入端还通过可变电阻Rf与运算放大器G的输出端连接;运算放大器G的输出端与控制器131连接。
可以理解的是,光信号调整装置在获取到输入光与信号和与输入光信号对应的输出光信号的情况下,光信号调整装置就可以直接利用差分运算电路和前馈放大电路来得到差分值和前馈值,不需要再单独计算输入光信号和输出光信号之间的差分值了,提高了光信号调整装置计算输入光信号 和输出光信号之间的差分值的速度,从而提高了光信号调整装置调整输出光信号时的速度。
实施例二
本申请实施例提供一种光信号调整设备2,如图5所示,该装置包括:
光源装置21、光谱分析装置22、控制装置23和实施例所述的光信号调整装置1;
所述控制装置23分别与所述光源装置21和所述光谱分析装置22连接;所述光源装置21的输出端与所述光信号调整装置1的输入端连接;所述光信号调整装置1的输出端与所述光谱分析装置22的输入端连接;
其中,所述光源装置21,配置于接收控制装置23发送的原始参数和与光信号放大倍数对应的输入功率参数;产生与所述输入功率参数对应的光源信号;向所述光信号调整装置1发送所述光源信号;所述原始参数和所述输入功率参数为所述光信号调整装置1中的参数;
所述光谱分析装置22,配置于接收所述光信号调整装置1输出的光信号;检测所述处理后的光信号的功率,得到第一功率;
所述控制装置23,配置于接收所述原始参数和所述输入功率参数;接收所述第一功率;在所述第一功率满足预设条件的情况下,将与所述原始参数作为配置参数;在所述第一功率不满足预设条件的情况下,调整所述原始参数,直至调整后的原始参数对应的第二功率满足所述预设条件,将所述调整后的原始参数作为所述配置参数,以供所述光信号调整装置1利用所述配置参数配置输入功率探测电路、前馈放大电路和噪声补偿电路。
在本申请实施例中,输入功率参数包括输入功率参数下限值和输入功率参数上限值。
可选的,所述原始参数包括:原始增益修正因子、原始前馈参数和原始噪声参数;
所述配置参数包括:增益修正因子、前馈参数和噪声参数。
可选的,所述控制装置23,配置于接收所述光信号调整装置1中预设的分光比和预设输出电阻值;根据所述增益修正因子、所述预设的分光比、所述预设输出电阻值和光信号放大倍数确定所述光信号调整装置1的输入电阻值;向所述光信号调整装置1传输所述输入电阻值。
在本申请实施例中,增益修正因子可以为Factor Gain,预设的分光比包括输入分光比Tap in和输出分光比Tap out,预设输出电阻值可以为Rout,光信号放大倍数可以为 Gain,则可以根据公式(1)确定输入电阻值Rin:
Figure PCTCN2020134441-appb-000001
在本申请实施例中,光信号调整设备通过对增益修正因子的初始值、前馈参数的初始值和噪声参数的初始值分别进行调试的过程,如下所示:
1、控制装置获取增益修正因子的初始值、初始K值、初始B值和噪声参数的初始值。
2、控制装置光信号调整装置将反馈比例积分微分(Proportion Integral Differential,PID)的P/I/D三个参数设置为初始值。
在本申请实施例中,光信号调整装置将PID中的P/I/D三个参数设置为初始值之后,光信号调整装置就使能PID功能。
3、控制装置将光源装置的输出功率调节为光信号调整装置在预设增益下的输入功率参数上限值。
需要说明的是,预设增益为光信号放大倍数。
在本申请实施例中,光源装置可以为多波光源装置。
4、控制装置调节增益修正因子,使得OSA光谱分析装置探测到光信号调整装置的输出信号功率等于预设增益与输入功率参数上限值之和。
5、控制装置将输入光源装置功率调节为光信号调整装置在预设增益下的输入功率参数下限值。
在本申请实施例中,光源装置的输出端与光信号调整装置的输入端连接。
6、控制装置调节噪声参数,使得OSA光谱分析装置探测到的光信号调整装置的输出信号功率等于输入功率参数下限值与预设增益之和。
在本申请实施例中,调节噪声参数,使得OSA光谱分析装置探测到的光信号调整装置的输出信号功率等于输入功率参数下限值与预设增益之和之后,光信号调整装置就关闭PID功能。
7、控制装置将输入光源装置功率调节为光信号调整装置在预设增益下的输入功率参数上限值。
在本申请实施例中,光源装置的输出端与光信号调整装置的输入端连接。
8、控制装置调节前馈参数中的初始K值,使得OSA光谱分析装置探测到的待测光信号调整装置输出信号功率等于输入功率参数上限值与预设增益之和。
9、控制装置将输入光源装置功率调节为光信号调整装置在预设增益下的输入功率参数下限值。
在本申请实施例中,光源装置的输出端与光信号调整装置的输入端连接。
10、控制装置调节前馈参数中的初始B值,使得OSA光谱分析装置探测到的光信号调整装置输出信号功率等于输入功率参数下限值与预设增益之和。
11、控制装置将输入光源装置功率调节为光信号调整装置在预设增益下的输入功率参数上限值。
12、控制装置在OSA光谱分析装置探测到光信号调整装置的输出功率逼近输入功率参数下限值与预设增益之和的情况下,调试结束,否则,重新调节K值和B值,直至OSA光谱分析装置探测到光信号调整装置的输出 功率逼近输入功率参数下限值与预设增益之和。
13、控制装置将增益修正因子、前馈参数和噪声参数写入配置寄存器。
在本申请实施例中,OSA光谱分析装置、光源装置和光信号调整装置之间的连接方式如图4所示,光源装置输出原始输入光信号,光信号调整装置接收该原始输入光信号,光信号调整装置向OSA光谱分析装置传输输出光信号。
可以理解的是,光信号调整设备通过对光信号调整装置中的原始参数进行调整,得到配置参数,使得光信号调整装置可以根据该配置参数得到光信号调整装置的输入电阻值,从而根据该输入电阻值将输入光信号按照输入光信号放大倍数进行放大,提高了光信号调整装置放大输入光信号时的准确性。
实施例三
本申请实施例提供一种光信号调整方法,应用于光信号调整装置,如图6所示,该方法包括:
S101、利用差分运算电路对输入光信号和输入光信号对应的输出光信号进行差分运算,得到差分值。
本申请实施例提供的一种光信号调整装置适用于对接收到的输入光信号进行放大的场景下。
在本申请实施例中,光信号调整装置包括:差分运算电路、前馈放大电路、控制电路、光信号输入电路和光信号输出电路,控制电路的输入端分别与差分运算电路的输出端和前馈放大电路的输出端连接;控制电路的输出端与光信号输出电路的输出端连接;光信号输入电路的输出端分别与差分运算电路的输入端和前馈放大电路的输入端连接;光信号输出电路的输出端与差分运算电路的输入端连接。
在本申请实施例中,差分运算电路接收到的输入光信号具体可以为输入光信号的电压值,可以为输入光信号的电流值;可以为输入光信号的功 率值;也可以为其他形式表示的输入光信号,具体的可根据实际情况进行确定,本申请实施例对此不作限定。
在本申请实施例中,光信号调整装置利用差分运算电路对输入光信号和输入光信号对应的输出光信号进行差分运算,得到差分值之前,光信号调整装置可以接收原始输入光信号;根据配置的光信号放大倍数对原始输入光信号进行放大处理,得到输入光信号。
在本申请实施例中,光信号调整装置还可以获取噪声参数,产生与噪声参数对应的噪声信号,并将噪声信号与输入光信号进行融合,得到融合输入光信号;对融合输入光信号和输出光信号进行差分运算,得到差分值。
需要说明的是,光信号调整装置获取噪声参数之前,光信号调整装置还可以获取配置的初始噪声参数;利用噪声反馈补偿因子对初始噪声参数进行调整,得到噪声参数。
S102、利用前馈放大电路对输入光信号进行前馈放大,得到前馈值。
在本申请实施例中,光信号调整装置可以在利用差分运算电路对输入光信号和输入光信号对应的输出光信号进行差分运算,得到差分值之前,光信号调整装置就利用前馈放大电路对输入光信号进行前馈放大,得到前馈值;光信号调整装置也可以在利用差分运算电路对输入光信号和输入光信号对应的输出光信号进行差分运算,得到差分值之后,光信号调整装置再利用前馈放大电路对输入光信号进行前馈放大,得到前馈值;光信号调整装置还可以在利用差分运算电路对输入光信号和输入光信号对应的输出光信号进行差分运算,得到差分值的同时,光信号调整装置再利用前馈放大电路对输入光信号进行前馈放大,得到前馈值;具体的可根据实际情况进行确定,本申请实施例对此不作限定。
在本申请实施例中,光信号调整装置包括前馈参数;光信号调整装置可以利用配置的前馈参数对输入光信号进行放大处理,得到前馈值。
需要说明的是,光信号调整装置利用配置的前馈参数对输入光信号进 行放大处理,得到前馈值之前,光信号调整装置可以先获取配置的增益修正因子;根据增益修正因子确定输入功率探测电路的输入电阻值;根据预设输入电阻值与预设放大倍数,确定与输入电阻值对应的光信号放大倍数。
S103、根据差分值和前馈值,调整输出光信号,得到调整后的输出光信号。
在本申请实施例中,光信号调整装置在得到差分值和前馈值之后,光信号调整装置就可以根据差分值和前馈值,调整输出光信号,得到调整后的输出光信号了。
在本申请实施例中,光信号调整装置还可以对差分值进行调整,得到调整后的差分值;确定调整后的差分值和前馈值的和,得到输出光信号的调整值;将输出光信号的调整值转化为电压信号;输出与电压信号匹配的光信号,并将光信号和输出光信号进行融合,得到调整后的输出光信号。
可以理解的是,光信号调整装置在获取到输入光信号和与输入光信号对应的输出光信号的情况下,光信号调整装置就可以直接利用差分运算电路和前馈放大电路来得到差分值和前馈值,不需要再单独计算输入光信号和输出光信号之间的差分值了,提高了光信号调整装置计算输入光信号和输出光信号之间的差分值的速度,从而提高了光信号调整装置调整输出光信号时的速度。
本申请实施例提供一种存储介质,其上存储有计算机程序,上述存储介质存储有一个或者多个程序,上述一个或者多个程序可被一个或者多个处理器执行,应用于光信号调整装置,该计算机程序实现如实施例二所述的光信号调整方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘 存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本申请实施例提供了一种光信号调整装置、设备及方法、存储介质,采用上述光信号调整装置的实现方案,光信号调整装置在获取到输入光信号和与所述输入光信号对应的输出光信号的情况下,光信号调整装置就可以直接利用差分运算电路和前馈放大电路来得到差分值和前馈值,不需要 再单独计算输入光信号和输出光信号之间的差分值了,提高了光信号调整装置计算输入光信号和输出光信号之间的差分值和前馈值的速度,从而提高了光信号调整装置调整输出光信号时的速度。

Claims (14)

  1. 一种光信号调整装置,所述光信号调整装置包括:差分运算电路、前馈放大电路和控制电路,所述控制电路的输入端分别与所述差分运算电路的输出端和所述前馈放大电路的输出端连接;
    其中,所述差分运算电路,配置于对输入光信号和输出光信号进行差分运算,得到差分值;
    所述前馈放大电路,配置于对所述输入光信号进行前馈放大,得到前馈值;
    所述控制电路,配置于接收所述差分值和所述前馈值;根据所述差分值和所述前馈值,调整所述输出光信号,得到调整后的输出光信号。
  2. 根据权利要求1所述的装置,其中,所述装置还包括光信号输入电路,所述光信号输入电路包括光信号输入端口和输入功率探测电路;
    所述输入功率探测电路的输入端与所述光信号输入端口连接;所述输入功率探测电路的输出端分别与所述前馈放大电路的输入端和所述差分运算电路的输出端连接;
    所述输入功率探测电路,配置于利用所述光信号输入端口接收原始输入光信号;根据输入电阻值放大所述原始输入光信号,得到所述输入光信号;向所述前馈放大电路和所述差分运算电路传输所述输入光信号。
  3. 根据权利要求1所述的装置,其中,
    所述前馈放大电路,配置于利用配置的前馈参数对所述输入光信号进行放大处理,得到所述前馈值。
  4. 根据权利要求1所述的装置,其中,所述装置还包括噪声补偿电路和加法器;
    所述噪声补偿电路的输出端和所述输入功率探测电路的输出端分别与所述加法器的输入端连接;
    所述加法器的输出端与所述差分运算电路的输入端连接;
    所述噪声补偿电路,配置于产生与配置的噪声参数对应的噪声信号;
    所述加法器,配置于接收所述噪声信号;将所述噪声信号与所述输入光信号进行融合,得到融合输入光信号。
  5. 根据权利要求4所述的装置,其中,
    所述差分运算电路,配置于接收所述融合输入光信号;对所述融合输入光信号和所述输出光信号进行差分运算,得到所述差分值。
  6. 根据权利要求1或5所述的装置,其中,所述装置还包括光信号输出电路;所述光信号输出电路包括输出功率探测电路和光信号输出端口;
    所述输出功率探测电路的输入端与所述光信号输出端口连接,所述输出功率探测电路的输出端与所述差分运算电路的输入端连接;
    所述输出功率探测电路,配置于通过所述光信号输出端口获取所述输出光信号;向所述差分运算电路传输所述输出光信号。
  7. 根据权利要求5所述的装置,其中,所述控制电路包括控制器;
    所述控制器的输入端分别与所述差分运算电路的输出端和所述前馈放大电路的输出端连接;
    所述控制器,配置于对所述差分值进行调整,得到调整后的差分值;确定所述调整后的差分值和所述前馈值的和,得到输出光信号的调整值。
  8. 根据权利要求7所述的装置,其中,所述控制电路还包括泵浦电路和驱动电路;
    所述控制器的输出端与所述驱动电路的输入端连接;所述驱动电路的输出端与所述泵浦电路的输入端连接;所述泵浦电路的输出端与光信号输出电路的输出端连接;
    其中,所述驱动电路,配置于将所述输出光信号的调整值转化为电压信号;
    所述泵浦电路,配置于接收所述电压信号;输出与所述电压信号匹配 的光信号,并将所述光信号和所述输出光信号进行融合,得到所述调整后的输出光信号。
  9. 一种光信号调整设备,所述设备包括光源装置、光谱分析装置、控制装置和权利要求1-8任一项所述的光信号调整装置;
    所述控制装置分别与所述光源装置和所述光谱分析装置连接;所述光源装置的输出端与所述光信号调整装置的输入端连接;所述光信号调整装置的输出端与所述光谱分析装置的输入端连接;
    其中,所述光源装置,配置于接收控制装置发送的原始参数和与光信号放大倍数对应的输入功率参数;产生与所述输入功率参数对应的光源信号;向所述光信号调整装置发送所述光源信号;所述原始参数和所述输入功率参数为所述光信号调整装置中的参数;
    所述光谱分析装置,配置于接收所述光信号调整装置输出的光信号;检测所述光信号的功率,得到第一功率;
    所述控制装置,配置于接收所述原始参数和所述输入功率参数;接收所述第一功率;在所述第一功率满足预设条件的情况下,将与所述原始参数作为配置参数;在所述第一功率不满足预设条件的情况下,调整所述原始参数,直至调整后的原始参数对应的第二功率满足所述预设条件,将所述调整后的原始参数作为所述配置参数,以供所述光信号调整装置利用所述配置参数配置输入功率探测电路、前馈放大电路和噪声补偿电路。
  10. 根据权利要求9所述的设备,其中,
    所述原始参数包括:原始增益修正因子、原始前馈参数和原始噪声参数;
    所述配置参数包括:增益修正因子、前馈参数和噪声参数。
  11. 根据权利要求9所述的设备,其中,
    所述控制装置,配置于接收所述光信号调整装置中预设的分光比和预设输出电阻值;根据所述增益修正因子、所述预设的分光比、所述预设输 出电阻值和光信号放大倍数确定所述光信号调整装置的输入电阻值;向所述光信号调整装置传输所述输入电阻值。
  12. 一种光信号调整方法,光信号调整方法应用于光信号调整装置,所述光信号调整装置包括差分运算电路、前馈放大电路和控制电路,所述控制电路的输入端分别与所述差分运算电路的输出端和所述前馈放大电路的输出端连接,所述方法包括:
    利用所述差分运算电路对输入光信号和所述输入光信号对应的输出光信号进行差分运算,得到差分值;
    利用所述前馈放大电路对所述输入光信号进行前馈放大,得到前馈值;
    根据所述差分值和所述前馈值,调整所述输出光信号,得到调整后的输出光信号。
  13. 根据权利要求12所述的方法,其中,所述前馈放大电路包括前馈参数;所述利用所述前馈放大电路对所述输入光信号进行前馈放大,得到前馈值,包括:
    利用所述前馈参数对所述输入光信号进行放大处理,得到所述前馈值。
  14. 一种存储介质,其上存储有计算机程序,应用于光信号调整装置,该计算机程序被处理器执行时实现权利要求12至13任一项所述的方法。
PCT/CN2020/134441 2020-09-23 2020-12-08 一种光信号调整装置、设备及方法、存储介质 WO2022062187A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20955029.2A EP4221000A1 (en) 2020-09-23 2020-12-08 Optical signal adjustment apparatus, device and method, and storage medium
US18/027,090 US20230336267A1 (en) 2020-09-23 2020-12-08 Optical signal adjustment apparatus, device and method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011009105.5 2020-09-23
CN202011009105.5A CN112217595B (zh) 2020-09-23 2020-09-23 一种光信号调整装置及方法、存储介质

Publications (1)

Publication Number Publication Date
WO2022062187A1 true WO2022062187A1 (zh) 2022-03-31

Family

ID=74050842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134441 WO2022062187A1 (zh) 2020-09-23 2020-12-08 一种光信号调整装置、设备及方法、存储介质

Country Status (4)

Country Link
US (1) US20230336267A1 (zh)
EP (1) EP4221000A1 (zh)
CN (1) CN112217595B (zh)
WO (1) WO2022062187A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813654B1 (en) * 2005-04-27 2010-10-12 Hrl Laboratories, Llc Broadband linearization of photonic modulation using transversal equalization
CN101877572A (zh) * 2009-04-30 2010-11-03 昂纳信息技术(深圳)有限公司 一种高速自动增益控制的装置和方法
CN102857301A (zh) * 2011-06-30 2013-01-02 昂纳信息技术(深圳)有限公司 一种光功率控制方法和采用该方法的光放大器
CN105068355A (zh) * 2015-08-26 2015-11-18 武汉光迅科技股份有限公司 一种单级多泵光纤放大器的控制系统和控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040051938A1 (en) * 2002-09-16 2004-03-18 Chan Les Yu Chung Gain controlled optical amplifier
US6867852B2 (en) * 2003-06-05 2005-03-15 Lucent Technologies Inc. Method and apparatus for channel detection
JP6244672B2 (ja) * 2013-06-04 2017-12-13 富士通オプティカルコンポーネンツ株式会社 光源モジュール、および光送受信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813654B1 (en) * 2005-04-27 2010-10-12 Hrl Laboratories, Llc Broadband linearization of photonic modulation using transversal equalization
CN101877572A (zh) * 2009-04-30 2010-11-03 昂纳信息技术(深圳)有限公司 一种高速自动增益控制的装置和方法
CN102857301A (zh) * 2011-06-30 2013-01-02 昂纳信息技术(深圳)有限公司 一种光功率控制方法和采用该方法的光放大器
CN105068355A (zh) * 2015-08-26 2015-11-18 武汉光迅科技股份有限公司 一种单级多泵光纤放大器的控制系统和控制方法

Also Published As

Publication number Publication date
CN112217595B (zh) 2021-12-10
CN112217595A (zh) 2021-01-12
US20230336267A1 (en) 2023-10-19
EP4221000A1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
KR100416975B1 (ko) 광섬유 증폭기의 자동 이득 제어 장치
CN101479896A (zh) 可变增益光放大器
US7657187B2 (en) Optical transmission apparatus and optical transmission control method for wavelength-division-multiplexed optical signal
US20080218269A1 (en) Power amplifier circuit, control method thereof and control program thereof
US20120249238A1 (en) Envelope Path Processing for Envelope Tracking Amplification Stage
WO2017166869A1 (zh) 一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器
WO2013077434A1 (ja) 光増幅器および光増幅器の制御方法
WO2019033331A1 (zh) 一种全光再生器自适应装置
US7224515B2 (en) Optical amplifiers
CN113497666B (zh) 光信号补偿装置、方法、设备以及计算机可读存储介质
WO2022062187A1 (zh) 一种光信号调整装置、设备及方法、存储介质
CN110601766B (zh) 一种控制方法及光纤放大器
JPH1075002A (ja) 光フィルタを備えた光ファイバ増幅装置及び光フィルタ調整方法
JP4126994B2 (ja) 光増幅器、光増幅器の利得制御方法、及び光増幅器の利得制御回路
US6865017B2 (en) Optical fiber amplifier with error correction
JP3977287B2 (ja) 光ファイバ増幅器
JP5054099B2 (ja) 可変ゲイン光増幅器
JP3320225B2 (ja) 光ファイバ増幅装置
JP4615438B2 (ja) 光増幅方法および光増幅装置
JP6534187B2 (ja) トランスインピーダンスアンプ回路
JP2013523037A (ja) 光増幅器のase補正
WO2022134920A1 (zh) 环路控制系统及方法
KR20030048969A (ko) 기지국 송신기의 자동 이득 조절 회로 및 방법
JP2004236259A (ja) 光受信機
JP2003249895A (ja) 対数変換回路、光検出回路および光増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020955029

Country of ref document: EP

Effective date: 20230424