WO2022061887A1 - 雷达测距方法和装置 - Google Patents

雷达测距方法和装置 Download PDF

Info

Publication number
WO2022061887A1
WO2022061887A1 PCT/CN2020/118402 CN2020118402W WO2022061887A1 WO 2022061887 A1 WO2022061887 A1 WO 2022061887A1 CN 2020118402 W CN2020118402 W CN 2020118402W WO 2022061887 A1 WO2022061887 A1 WO 2022061887A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo signal
signal
radar
stray
target
Prior art date
Application number
PCT/CN2020/118402
Other languages
English (en)
French (fr)
Inventor
韩二江
石现领
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20954737.1A priority Critical patent/EP4212911A4/en
Priority to PCT/CN2020/118402 priority patent/WO2022061887A1/zh
Priority to CN202080005145.4A priority patent/CN112752986B/zh
Publication of WO2022061887A1 publication Critical patent/WO2022061887A1/zh
Priority to US18/191,526 priority patent/US20230243949A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/103Systems for measuring distance only using transmission of interrupted, pulse modulated waves particularities of the measurement of the distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/038Feedthrough nulling circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present application relates to the field of sensor technology, and more particularly, to a radar ranging method and apparatus in the field of sensor technology.
  • Sensors play a very important role in the unmanned and intelligent driving of smart cars.
  • Sensors can include millimeter-wave radar, lidar, and ultrasonic radar, cameras, and the like.
  • the ranging principle of the radar ranging device is to send a radar signal through the transmitter of the radar ranging device, and receive the radar signal through the receiver of the radar ranging device and reflect the corresponding target generated by the target within the field of view.
  • the distance between the target and the radar ranging device is calculated by measuring the delay time from sending the radar signal to receiving the echo signal of the target.
  • some of the above radar signals may be reflected back by the inner wall or window of the radar ranging device during the transmission process, resulting in stray echo signals. It may include both the echo signal of the target and the above-mentioned stray echo signal, that is, the stray echo signal will interfere with the echo signal of the target. Therefore, the target is measured by the echo signal received by the receiver, and the accuracy is low.
  • Embodiments of the present application provide a radar ranging method and device, which can improve the accuracy of radar ranging.
  • an embodiment of the present application provides a radar ranging method, which can be applied to a radar ranging device.
  • the method may include: the radar ranging device sends a first radar signal from a first field of view angle through a first transmitter; the radar ranging device receives the first radar signal from the first field of view angle through a first receiver The first echo signal of the first echo signal includes the echo signal of the first target, the first transmitter and the first receiver belong to the first radar channel; the radar ranging device is based on the first target.
  • the first echo signal also includes a stray echo signal
  • the stray echo signal includes an echo generated by the first radar signal reflected by obstacles signal
  • at least one first signal parameter of the stray echo signal corresponds to at least one of the identifier of the first radar channel and the first field of view angle
  • the at least one first signal parameter includes at least one at least one of an amplitude value and a first delay time.
  • At least one of the identifier of the first radar channel and the first angle of view is obtained by at least one of the identifier of the first radar channel and the angle of the first field of view.
  • a first signal parameter determines the stray echo signal according to the at least one first signal parameter; cancel the stray echo signal from the first echo signal to obtain an echo signal of the first target; and For the echo signal of the first target, ranging processing is performed on the first target. In this way, interference and influence of the stray echo signal on the echo signal of the first target can be avoided, that is, the purity of the echo signal of the first target can be improved, thereby improving the accuracy of radar ranging.
  • the obstacle may include an object inside the radar ranging device and/or an object outside the radar ranging device, which is not limited in this embodiment of the present application.
  • the obstacle may include at least one of an inner wall, a window or an internal circuit of the radar ranging device.
  • the obstacle may include objects other than the first target outside the radar ranging device.
  • the first radar signal may be a pulsed light signal.
  • the radar ranging device only includes the first radar channel. That is, the stray echo signal includes the echo signal generated by the first radar signal reflected by the obstacle.
  • the radar ranging device can determine at least one first signal parameter of the stray echo signal according to at least one of the identifier of the first radar channel and the first angle of view; according to the at least one first signal parameters, determine the stray echo signal; cancel the stray echo signal from the first echo signal to obtain the echo signal of the first target; according to the echo signal of the first target, the first target Perform ranging processing.
  • the radar ranging apparatus may determine the at least one first signal parameter according to at least one of the identifier of the first radar channel and the first field of view angle in various ways, which is not the case in this embodiment of the present application. Do limit.
  • the at least one first signal parameter may only correspond to the first field of view angle, that is, the first field of view angle and the at least one first signal parameter may satisfy a predefined first mapping relationship .
  • the radar ranging apparatus may determine the at least one first signal parameter according to the first field of view angle and the first mapping relationship.
  • the at least one first signal parameter may correspond to the first field of view angle and the identifier of the first radar channel, that is, the first field of view angle, the identifier of the first radar channel and the The at least one first signal parameter may satisfy a predefined first mapping relationship.
  • the at least one first signal parameter may include at least one of an amplitude value and a first delay time of at least one first sampling moment, and the at least one first sampling moment may be understood as the stray echo signal.
  • the first delay time can be understood as the time difference from transmitting the first radar signal to receiving the stray echo signal.
  • the first delay time T 1 represents the time difference from the start time t 0 of transmitting the first radar signal to the start time t 1 of receiving the stray echo signal
  • the amplitude of the at least one first sampling time Amplitudes A 1 at time t 2 , A 3 at time t 3 , and A 2 at time t 4 may be included.
  • the radar ranging device may determine the spurious return based on the amplitude value at the first sampling time and the preset spurious return.
  • the waveform information of the wave signal is used to determine the stray echo signal, wherein the waveform information is used to indicate the waveform of the stray echo signal.
  • the radar ranging device can measure the waveform of the stray echo signal according to the The schematic diagram and the amplitude of the first sampling time t 1 are A max , determine the amplitudes of the other first sampling moments in the stray echo signal except the first sampling time t 1 , so as to determine the stray echo Signal.
  • the radar ranging apparatus may use the difference The value algorithm performs differential processing on the amplitude values of the plurality of first sampling moments to determine the stray echo signal.
  • the at least one first signal parameter includes the amplitude of the first sampling time t 2 on the leading edge of the spurious echo signal as A 1 , the amplitude of the first sampling time t 3 at the peak of the stray echo signal as A max and the following
  • the amplitude of the first sampling time t4 on the edge is A2
  • the radar ranging device can perform difference calculation according to the amplitudes of the above three first sampling moments, and determine the stray echo signal divided by the The amplitudes of the first sampling time t 2 , the first sampling time t 3 , and other first sampling time except the first sampling time t 4 , so as to determine the spurious echo signal.
  • the radar ranging device can obtain at least one mapping relationship, and the at least one mapping relationship includes the first A mapping relationship, where the at least one mapping relationship is used to represent the corresponding relationship between the identifier of the radar channel, the field of view angle and the first signal parameter.
  • the radar ranging apparatus may acquire the at least one first signal parameter corresponding to the identifier of the first radar channel and the first field of view angle according to the at least one mapping relationship.
  • the radar ranging apparatus may acquire the at least one mapping relationship in multiple ways, which is not limited in this embodiment of the present application.
  • the radar ranging apparatus may preconfigure the at least one mapping relationship.
  • the radar ranging apparatus may receive the at least one mapping relationship from other apparatuses in advance.
  • the radar ranging apparatus may generate the at least one mapping relationship.
  • the above at least one mapping relationship may be represented in various forms, which is not limited in this embodiment of the present application.
  • the mapping table 1 is used to represent at least one mapping relationship between radar channel identifiers, field of view angles and signal parameters.
  • a statically set mapping table is queried through at least one of the identifier of the first radar channel and the first field of view angle, and the identifier related to the first radar channel is obtained according to the mapping table at least one first signal parameter corresponding to the first field of view angle; determining the stray echo signal according to the at least one first signal parameter; canceling the stray echo signal from the first echo signal to obtain The echo signal of the first target; and performing ranging processing on the first target according to the echo signal of the first target.
  • interference and influence of the stray echo signal on the echo signal of the first target can be avoided, that is, the purity of the echo signal of the first target can be improved, thereby improving the accuracy of radar ranging.
  • the at least one first signal parameter can be used to characterize The signal parameters at the first operating temperature, that is, at least one of the identifier of the first radar channel and the first field of view angle, the first operating temperature and the at least one first signal parameter can satisfy the predefined The first mapping relationship.
  • the radar ranging device may determine the at least one first signal parameter according to at least one of the identifier of the first radar channel, the first field of view angle, and the first operating temperature.
  • mapping table 2 is used to represent at least one mapping relationship among radar channel identifiers, field of view angles, signal parameters and operating temperature.
  • mapping table 2 needs to include the first signal parameters at each operating temperature, the radar ranging device needs to store a large amount of data. Therefore, it may be considered to store only the first signal parameters under the standard operating temperature. A signal parameter is stored, and the change value of the first signal parameter at other working temperatures compared with the first signal parameter at the standard working temperature is incrementally stored, so that the amount of stored data can be reduced.
  • mapping table 3 is used to represent the radar channel, field of view angle, operating temperature, signal parameters and incremental information, and the incremental information is used to indicate that the signal parameters at different working temperatures are compared with the signal parameters at the standard working temperature. The change.
  • a statically set mapping table is queried through at least one of the identifier of the first radar channel, the first field of view angle, and the current first working temperature, and the corresponding mapping table is obtained according to the mapping table.
  • the stray echo signal is canceled in the first echo signal to obtain the echo signal of the first target; and the ranging process is performed on the first target according to the echo signal of the first target. In this way, the interference and influence of the stray echo signal on the echo signal of the first target can be avoided, thereby improving the accuracy of radar ranging.
  • the radar ranging device includes multiple radar channels, and at least two of the multiple radar channels belong to different signal transceiver groups.
  • the radar ranging device is based on the echo signal of the first target.
  • the radar ranging device may also send a second radar signal from a second field of view angle through the second transmitter.
  • the stray echo signal includes a first stray echo signal generated by the first radar signal reflected by the obstacle and a second stray echo signal generated by the second radar signal reflected by the obstacle .
  • the radar ranging device can determine at least one first signal parameter of the first stray echo signal according to at least one of the identifier of the first radar channel and the first angle of view; according to the at least one the first signal parameter, to determine the first stray echo signal; according to at least one of the identifier of the second radar channel and the second field of view angle, to determine at least one second signal of the second stray echo signal parameter; determine the second stray echo signal according to the at least one second signal parameter; cancel the first stray echo signal and the second stray echo signal from the first echo signal to obtain the first stray echo signal An echo signal of a target; and performing ranging processing on the first target according to the echo signal of the first target.
  • the first field of view angle and the second field of view angle may be the same, or may be different, which is not limited in this embodiment of the present application.
  • the process of determining at least one second signal parameter of the second stray echo signal by the radar ranging device according to at least one of the identifier of the second radar channel and the angle of the second field of view can be Referring to the process of determining at least one first signal parameter of the stray echo signal by the radar ranging device according to at least one of the identifier of the first radar channel and the first field of view angle in reference case 1, in order to avoid repetition, It will not be repeated here.
  • the process of the radar ranging device canceling the first stray echo signal and the second stray echo signal from the first echo signal to obtain the echo signal of the first target can be Reference is made to the process in which the radar ranging device cancels the stray echo signal from the first echo signal to obtain the echo signal of the first target in case 1.
  • the radar ranging device can cancel the target stray echo signal from the first echo signal in various ways to obtain the echo signal of the first target, which is not limited in this embodiment of the present application .
  • the stray echo signal includes P sampling moments, the P sampling moments correspond to P first amplitudes on the stray echo signal, and the first echo signal includes The P sampling moments and Q sampling moments, the P sampling moments correspond to P second amplitudes on the first echo signal, and the Q sampling moments correspond to Q third amplitudes on the first echo signal Amplitude, P and Q are both integers greater than 0.
  • the echo signal of the first target may include the P sampling instants and the Q sampling instants, wherein the P sampling instants are within the range of the first target.
  • the echo signal corresponds to P target amplitudes
  • the target amplitude corresponding to each of the P sampling moments is the difference between the first amplitude and the second amplitude
  • the Q sampling moments are in the first amplitude.
  • the Q third amplitude values are corresponding to the echo signal of the target.
  • an embodiment of the present application further provides a radar ranging method, which can be applied to a radar ranging device.
  • the method may include: the radar ranging device sends a first radar signal through a first transmitter; the radar ranging device receives a first echo signal of the first radar signal through a first receiver, where the first echo signal includes the first echo signal. An echo signal of a target; the radar ranging device receives the second echo signal of the first radar signal through a second receiver, and the second receiver is located between the first transmitter and the first receiver.
  • the radar ranging device performs ranging processing on the first target according to the first echo signal and the second echo signal; wherein the second echo signal is used to determine the corresponding The target stray echo signal of the obstacle, and the echo signal of the first target does not include the target stray echo signal.
  • the radar ranging device can cancel the target stray echo signal corresponding to the obstacle in the first echo signal based on the second stray echo signal received in real time,
  • the interference of the stray echo signal to the echo signal of the first target can be reduced, that is, the purity of the echo signal of the first target can be improved, thereby improving the accuracy of radar ranging.
  • the main signal transmission path between the first transmitter and the first receiver includes the first target, therefore, the first echo signal received by the first receiver includes the first target and the second receiver is located outside the main transmission path of the signal, therefore, the second echo signal received by the second receiver does not include the echo signal of the first target.
  • the radar ranging device may include a first signal transceiver group and a second signal transceiver group, the first signal transceiver group includes the first transmitter and the first receiver, and the second signal transceiver group
  • the device group includes the second receiver and the second transmitter, and the radar ranging device does not transmit radar signals through the second transmitter; or, the second receiver may be the first transmitter and the first receiver
  • a receiver is additionally provided outside the main path of signal transmission between the receivers, which is not limited in this embodiment of the present application.
  • the first transmitter may be an LD
  • the first receiver may be an APD
  • the second receiver may be a photodiode (positive intrinsic-negative, PIN).
  • the obstacle may include an object inside the radar ranging device and/or an object outside the radar ranging device, which is not limited in this embodiment of the present application.
  • the obstacle may include at least one of an inner wall of the housing of the radar ranging device, a window or an internal circuit.
  • the obstacle may further include objects other than the first target outside the radar ranging device.
  • the radar ranging device performs ranging processing on the first target according to the first echo signal and the second echo signal, which may include: the radar ranging device, according to the second echo signal, Determine the target stray echo signal corresponding to the obstacle; cancel the target stray echo signal from the first echo signal to obtain the echo signal of the first target; according to the echo signal of the first target , and perform ranging processing on the first target.
  • the first radar signal may be scattered during the propagation process, this part of the scattered signal may be reflected by obstacles, such as the inner wall, window and circuit inside the radar ranging device, to the second receiver That is, the second echo signal received by the second receiver may include a first stray echo signal corresponding to the obstacle, and the first echo signal received by the first receiver may also include a first stray echo signal corresponding to the obstacle. A second spurious echo signal corresponding to the obstacle may be included.
  • the delay time and/or amplitude of the first spurious echo signal and the second spurious echo signal may be different. Therefore, Directly use the first stray echo signal to cancel the second stray echo signal in the first echo signal, there may be incomplete cancellation (that is, the purity of the echo signal of the first target obtained after cancellation low) or excessive cancellation (ie, part of the echo signal of the first target obtained after cancellation is missing), resulting in poor accuracy of radar ranging based on the echo signal of the first target.
  • the radar ranging device may determine a target stray echo signal corresponding to the obstacle based on the first stray echo signal, and the target stray echo signal may be considered to be closest to the first echo the target stray echo signal in the signal, and cancel the target stray echo signal from the first echo signal to obtain the echo signal of the first target.
  • the radar ranging apparatus may correct the first stray echo signal based on the first echo signal to obtain the target stray echo signal.
  • the radar ranging apparatus may correct the first stray echo signal based on the first echo signal in various ways to obtain the target stray echo signal, which is not limited in this embodiment of the present application. .
  • the radar ranging device may adjust the delay time of the first stray echo signal multiple times to obtain a plurality of first adjustment signals, and the first echo signal is The ratio between the amplitude value at a sampling moment and the amplitude value of each first adjustment signal in the plurality of first adjustment signals at the first sampling moment and the ratio of the amplitude value of each first adjustment signal is determined as the amplitude coefficient of each first adjustment signal; Each first adjustment signal is multiplied by the amplitude coefficient of each first adjustment signal to obtain a plurality of second adjustment signals; according to the plurality of second adjustment signals and the first echo signal, the target spurious is determined echo signal.
  • the first sampling moment may be on the second stray echo signal. or, when the second stray echo signal in the first echo signal and the first target echo signal are superimposed on each other, the first sampling moment can be the second stray echo
  • the sampling instant corresponding to the peak value of the wave signal or the sampling instant on the leading edge of the second stray echo signal; or, when the second stray echo signal is saturated, the first sampling instant can be the second stray echo signal.
  • the radar ranging apparatus determines target stray echo signals according to the plurality of second adjustment signals and the first echo signals, which may include: Each second adjustment signal in the second adjustment signal and the first echo signal are subjected to minimum mean square error processing to obtain multiple processing results. The closer the signal is to the target stray echo signal; the second adjustment signal corresponding to the minimum value among the plurality of processing results is determined as the target stray echo signal.
  • the radar ranging device can saturate the target stray echo signal. value as the amplitude at this sampling time.
  • the echo signal of the first target included in the first echo signal and the second stray echo signal may be superimposed, and even in some cases, the superimposed amplitude may exceed the first echo signal
  • the saturation value will cause saturation distortion, so the echo signal of the first target may interfere with the correction, resulting in poor purity and accuracy of the target stray echo signal obtained after the correction.
  • the radar ranging device determines target stray echo signals according to the plurality of second adjustment signals and the first echo signals, which may include: The second adjustment signal and the first echo signal are subjected to minimum mean square error processing in the first sampling interval to obtain multiple processing results. the closer to the target stray echo signal; the adjustment signal corresponding to the minimum value among the plurality of processing results is determined as the target stray echo signal.
  • the preset first sampling interval may be a sampling interval on the leading edge of the second stray echo signal. If the second stray echo signal is saturated, the first sampling interval does not include the sampling time in the saturation interval.
  • the radar ranging apparatus may estimate a second stray echo signal corresponding to the obstacle from the first echo signal through a Gaussian decomposition algorithm, and based on the second stray echo signal The echo signal modifies the first stray echo signal to obtain the target stray echo signal.
  • the radar ranging device estimates the second stray echo signal from the first echo signal by using a Gaussian decomposition method, and based on the second stray echo signal The first stray echo signal is corrected, so that the purity and accuracy of the target stray echo signal can be improved, thereby improving the accuracy of radar ranging.
  • the radar ranging device can adjust the delay time of the first stray echo signal multiple times to obtain a plurality of first adjustment signals, and the second stray echo signal is The ratio of the amplitude value at the first sampling moment to the amplitude value of each first adjustment signal in the plurality of first adjustment signals at the first sampling moment is determined as the amplitude coefficient of each first adjustment signal; Each first adjustment signal is multiplied by the amplitude coefficient of each first adjustment signal to obtain a plurality of second adjustment signals; according to the plurality of second adjustment signals and the second spurious echo signal, the target spurious signal is determined scattered echo signals.
  • the radar ranging device determines the target stray echo signal according to the plurality of second adjustment signals and the second stray echo signal, which may include: the radar ranging device determines the target stray echo signal according to the plurality of second adjustment signals and the second stray echo signal. Perform minimum mean square error processing on the plurality of second adjustment signals and the second stray echo signal to obtain multiple processing results, wherein, the smaller the value of the processing result, the closer the second adjustment signal corresponding to the processing result is to the target stray echo signal; determine the second adjustment signal corresponding to the minimum value among the plurality of processing results as the target stray echo signal.
  • the process of the radar ranging device correcting the first stray echo signal based on the second stray echo signal to obtain the target stray echo signal may be based on the first stray echo signal of the radar ranging device.
  • the process of correcting the first stray echo signal by an echo signal is not repeated here in order to avoid repetition.
  • the process of the radar ranging device canceling the target stray echo signal from the first echo signal to obtain the echo signal of the first target can refer to the radar measurement introduced in the first aspect.
  • the process of the distance device canceling the stray echo signal from the first echo signal to obtain the echo signal of the first target will not be repeated here in order to avoid repetition.
  • an embodiment of the present application further provides a signal processing apparatus, which is configured to execute the method described in the first aspect or any possible implementation manner thereof.
  • the signal processing apparatus may include a unit for executing the radar ranging method described in the first aspect or any possible implementation manners thereof.
  • an embodiment of the present application further provides a signal processing apparatus, including: a communication interface and at least one processor, where the communication interface is configured to communicate with the first transmitter and the first receiver, when the at least one processing When the computer executes the program codes or instructions, the radar ranging method described in the first aspect or any possible implementation manners thereof is implemented.
  • an embodiment of the present application further provides a radar ranging device, including: the signal processing device described in the fourth aspect above, a first transmitter and a first receiver, where the signal processing device is used to control the first A transmitter and the first receiver implement the radar ranging method described in the first aspect or any possible implementation manners thereof.
  • an embodiment of the present application further provides a signal processing apparatus, configured to execute the method described in the second aspect or any possible implementation manner thereof.
  • the signal processing apparatus may include a unit for executing the radar ranging method described in the second aspect or any possible implementation manner thereof.
  • an embodiment of the present application further provides a signal processing apparatus, including: a communication interface and at least one processor, where the communication interface is configured to communicate with the first transmitter, the first receiver, and the second receiver, when When the at least one processor executes program codes or instructions, the radar ranging method described in the second aspect or any possible implementation manners thereof is implemented.
  • an embodiment of the present application further provides a radar ranging device, including: the signal processing device described in the seventh aspect, a first transmitter, a first receiver, and a second receiver, the signal processing device It is used to control the first transmitter, the first receiver and the second receiver to implement the radar ranging method described in the second aspect or any possible implementation manners.
  • the signal processing device described in the third aspect or the sixth aspect may be a chip device or an integrated circuit in a radar ranging device.
  • the present application further provides a computer-readable storage medium for storing a computer program, where the computer program includes a method for implementing the above aspects or any possible implementation manners thereof.
  • the embodiments of the present application further provide a computer program product including instructions, which, when run on a computer, enables the computer to implement the methods described in the above aspects or any possible implementation manners thereof.
  • an embodiment of the present application further provides a terminal, where the terminal includes the radar ranging device described in the fifth aspect or the eighth aspect.
  • the terminal may be a transportation tool or a smart device (such as a smart home or smart manufacturing device, etc.), including a drone, an unmanned transport vehicle, a car, or a robot.
  • the signal processing device, the radar ranging device, the computer storage medium, the computer program product, and the terminal provided in the embodiments of the present application are all used to execute the radar ranging method provided above. Therefore, for the beneficial effects that can be achieved, please refer to the above The beneficial effects of the radar ranging method provided in this paper will not be repeated here.
  • FIG. 1 is a schematic block diagram of a radar ranging apparatus 100 provided by an embodiment of the present application
  • FIG. 2 is another schematic block diagram of the radar ranging apparatus 100 provided by an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of still another radar ranging apparatus 100 provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a radar ranging method 200 provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of signal parameters provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a signal waveform provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a stray echo signal provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another stray echo signal provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a signal processing process in a radar ranging method 200 provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a radar ranging method 300 provided by an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of the radar ranging apparatus 100 provided by the embodiment of the present application.
  • FIG. 12 is a schematic waveform diagram of a first echo signal provided by an embodiment of the present application.
  • FIG. 13 is another schematic diagram of a waveform of a first echo signal provided by an embodiment of the present application.
  • FIG. 14 is another schematic waveform diagram of the first echo signal provided by the embodiment of the present application.
  • FIG. 15 is a schematic diagram of a signal processing process in a radar ranging method 300 provided by an embodiment of the present application.
  • 16 is a schematic waveform diagram of a target spurious echo signal provided by an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a radar ranging apparatus 400 provided by an embodiment of the present application.
  • FIG. 1 shows a schematic block diagram (top view) of a radar ranging apparatus 100 to which the radar ranging method provided by the embodiment of the present application is applied.
  • the radar ranging device 100 may include a signal processing device 110 , at least one signal transceiver group (signal transceiver group 1 is shown in FIG. 1 ) and a reflection device 140 .
  • the signal transceiver group 1 includes a transmitter 120 and N receivers (the receivers 131 to 13N are shown in FIG. 1 ), where N is an integer greater than 0.
  • the signal processing device 110 , the transmitter 120 , the receiver 131 to the receiver 13N are arranged in a cavity formed by a window and a casing.
  • the signal processing device 110 is respectively connected to the transmitter 120 and the receiver 131 to the receiver 13N through a communication interface.
  • the signal processing device 110 is used for controlling the transmitter 120 to send the first radar signal.
  • the above-mentioned signal processing apparatus 110 may include at least one processor.
  • the at least one processor may implement or execute the radar ranging method provided in combination with the embodiments of the present application.
  • the at least one processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of digital signal processing (DSP) and a microprocessor, and the like.
  • DSP digital signal processing
  • the first radar signal may be of multiple types, which is not limited in this embodiment of the present application.
  • the first radar signal may be a millimeter wave radar.
  • the first radar signal may be a lidar, such as pulsed light.
  • the transmitter 120 may be a laser diode (laster diode, LD).
  • LD laser diode
  • the reflecting device 140 is used for reflecting the first radar signal sent by the transmitter 120, and shooting out the radar ranging device 100 from a first field of view angle in a first plane; and/or from the first viewing angle
  • the first echo signal of the first radar signal received at the field angle is reflected to the receiver 131 to the receiver 13N, the first echo signal may include the echo signal of the first target, the echo signal of the first target
  • the wave signal is generated by the first radar signal being reflected by the first target within the field of view of the radar ranging device, and the field of view includes the first field of view angle.
  • the first plane may be parallel to the plane formed by the x-axis and the y-axis shown in FIG. 1 .
  • the range of the radar ranging device 100 is determined by the range of the field of view of the radar ranging device 100 in the horizontal plane.
  • the radar ranging apparatus 100 can only perform ranging processing on targets within the field of view. When the angle of the field of view where the target is located exceeds the range of the field of view, the radar ranging apparatus 100 will not be able to perform ranging processing on the target.
  • the above-mentioned field of view angle may be an angle, or may be an angle range, which is not limited in this embodiment of the present application.
  • the radar ranging device can complete the sending of radar signals, the receiving of echo signals and the ranging processing of the target within a 0.4 degree in the horizontal plane. , that is, an angular range of 0.4 degrees can correspond to a field of view angle.
  • the signal processing device 110 is further configured to control the receiver 131 to the receiver 13N to receive the first echo signal reflected by the reflection device 140; and through the radar ranging method provided by the embodiment of the present application, based on the first echo signal The echo signal is used to perform ranging processing on the first target.
  • the receivers 131 to 13N can be avalanche photodiodes (avalanche photodiodes, APDs).
  • the signal processing device 110 may measure the echo from the radar ranging device 100 sending the first radar signal to receiving the first target
  • the first duration required for the signal, the product of half of the first duration (that is, the duration of the laser being transmitted from the radar ranging device 100 to the first target) and the speed of light is understood as the radar ranging device 100 and the first target. the distance between.
  • the transmitter 120 may form a radar channel with each of the receivers 131 to 13N, so as to form N radar channels, through which the radar ranging device 100 may pass. At least one or all of the N radar channels enable radar scanning in the first plane.
  • the N receivers may be superimposed along a second direction, and the second direction is perpendicular to the first plane, that is, the N radar channels correspond to the second direction different locations. Three-dimensional radar scanning is realized through the N radar channels.
  • the radar ranging apparatus 100 includes a plurality of signal transceiver groups
  • the plurality of signal transceiver groups may be superimposed and arranged along the second direction.
  • FIG. 2 shows the radar provided by the embodiment of the present application
  • the reflecting device 140 may include a fixed reflecting part 141 and a rotating reflecting part 142 , the fixed reflecting part 141 and the reflecting surfaces of the rotating reflecting part 142 Relative settings.
  • the fixed reflection part 141 is used for reflecting the first radar signal transmitted by the transmitter 120 to the rotating reflection part 142; and/or reflecting the first echo signal reflected from the rotating reflection part to the receiver 131 to the receiver 13N.
  • the rotating reflection part 142 is used to emit the first radar signal reflected by the fixed reflection part 141 out of the window of the radar ranging device 100 ; and/or to inject the first echo signal into the radar ranging device 100 reflected to the fixed reflection part 141 .
  • the fixed reflection part 141 may be a first plane mirror, and/or the rotating reflection part 142 may be a second reflection mirror.
  • the signal transmission path shown by the solid line in FIG. 2 may be referred to as the main signal transmission path of the first radar channel, that is, the main signal transmission path between the transmitter 120 and the receiver 131 .
  • the radar ranging apparatus 100 may implement radar scanning in the first plane through one or more radar channels in the N radar channels in various manners, which is not limited in this embodiment of the present application.
  • the radar ranging device 100 may further include a power device 150 , and the signal processing device 100 is further configured to control the power device 150 to drive the rotating reflection part 142 , with O as the origin, based on a preset The angular resolution is rotated in the first plane to realize radar scanning of the radar ranging device 100 in the first plane.
  • the above-mentioned power device 150 may be an electric motor or a motor.
  • FIG. 3 shows the Another schematic block diagram (side view) of the radar ranging device 100 , as shown in FIG. 3 , the radar ranging device 100 may further include a connection part 160 and a power device 170 .
  • the lower surface of the housing of the radar ranging device 100 is rotatably connected to the power device 170 through the connecting portion 160 .
  • the power device 170 is used to drive the housing to rotate in the first plane with the connection portion 160 as a rotation axis based on a preset angular resolution, so as to realize the radar ranging device 100 in the first plane. Radar scan.
  • the above-mentioned power device 170 may be an electric motor or a motor.
  • the manner in which the radar ranging apparatus 100 shown in FIG. 2 and FIG. 3 implements radar scanning in the first plane is only an example, and the embodiment of the present application is not limited thereto.
  • the radar ranging apparatus may perform radar scanning in other planes based on the similar principles described in FIG. 2 and FIG. 3 , and details are not described herein again in this embodiment of the present application.
  • FIGS. 1 to 3 only schematically show schematic structural diagrams of the radar ranging apparatus 100 provided by the embodiment of the present application.
  • the radar ranging apparatus 100 may further include FIGS. 1 to 3
  • the embodiments of the present application are not limited thereto.
  • the radar ranging device when the radar ranging device measures the target, since the radar signal sent by the transmitter may be scattered during the propagation process, this part of the scattered signal may pass through the inner wall and window inside the radar ranging device.
  • the stray echo signal is generated by reflection from the circuit and the circuit, and this part of the stray echo signal will interfere with the echo signal of the target, that is, the first echo signal received by the receiver corresponding to the transmitter may include both the
  • the echo signal of the target also includes the above-mentioned stray echo signal. Therefore, the radar ranging device performs ranging on the target according to the echo signal received by the receiver, resulting in low accuracy of radar ranging.
  • FIG. 4 shows a schematic flowchart of a radar ranging method 200 provided by an embodiment of the present application.
  • the method 200 may be applied to the radar ranging apparatus 100 as described in FIGS. 1 to 4 .
  • the method 200 may be performed by the radar ranging apparatus 100 described in FIGS. 1 to 4 , or may be performed by the signal processing apparatus 110 controlled by the radar ranging apparatus 100 described in FIGS. 1 to 4 , for clarity
  • the method 200 is described below by taking the method 200 being performed by a radar ranging apparatus as an example, which is not limited in this embodiment of the present application.
  • the radar ranging apparatus sends a first radar signal from a first field of view angle through a first transmitter.
  • the first radar signal may be a pulsed light signal.
  • the radar ranging device receives a first echo signal of the first radar signal from the first field of view angle through a first receiver, where the first echo signal includes an echo signal of a first target, the first echo signal A transmitter and the first receiver belong to the first radar channel.
  • the radar ranging device performs ranging processing on the first target according to the echo signal of the first target; wherein the first echo signal further includes a stray echo signal, and the stray echo signal includes
  • the first radar signal is an echo signal generated by the reflection of the obstacle, and at least one first signal parameter of the stray echo signal corresponds to at least one of the identifier of the first radar channel and the first field of view angle, the at least one first signal parameter
  • a first signal parameter includes at least one of an amplitude of at least one first sampling instant and a first delay time.
  • the obstacle may include an object inside the radar ranging device and/or an object outside the radar ranging device, which is not limited in this embodiment of the present application.
  • the obstacle may include at least one of an inner wall, a window or an internal circuit of the radar ranging device.
  • the obstacle may include objects other than the first target outside the radar ranging device.
  • the radar ranging device only includes the first radar channel. That is, the stray echo signal includes the echo signal generated by the first radar signal reflected by the obstacle.
  • S230 may include: the radar ranging apparatus determines at least one first signal parameter of the stray echo signal according to at least one of the identifier of the first radar channel and the first angle of view; according to the at least one The stray echo signal is determined by the first signal parameter; the stray echo signal is cancelled from the first echo signal to obtain the echo signal of the first target; according to the echo signal of the first target, the echo signal of the first target is obtained.
  • the first target performs ranging processing.
  • the radar ranging apparatus may determine the at least one first signal parameter according to at least one of the identifier of the first radar channel and the first field of view angle in various ways, which is not the case in this embodiment of the present application. Do limit.
  • the at least one first signal parameter may only correspond to the first field of view angle, that is, the first field of view angle and the at least one first signal parameter may satisfy a predefined first mapping relationship .
  • the radar ranging apparatus may determine the at least one first signal parameter according to the first field of view angle and the first mapping relationship.
  • the at least one first signal parameter may correspond to the first field of view angle and the identifier of the first radar channel, that is, the first field of view angle, the identifier of the first radar channel and the The at least one first signal parameter may satisfy a predefined first mapping relationship.
  • the at least one first signal parameter may include at least one of an amplitude value and a first delay time of at least one first sampling moment, and the at least one first sampling moment may be understood as the stray echo signal.
  • the first delay time can be understood as the time difference from transmitting the first radar signal to receiving the stray echo signal.
  • the first radar signal may be shown in (a) of FIG. 5
  • the stray echo signal may be shown in (b) of FIG. 5
  • the first delay time T 1 indicates that the The time difference from the start time t 0 of the first radar signal to the start time t 1 when the stray echo signal is received
  • the amplitude of the at least one first sampling time may include the amplitude values A 1 and t 3 at time t 2 Amplitude at time A3 and A2 at time t4 .
  • the radar ranging device may determine the spurious return based on the amplitude value at the first sampling time and the preset spurious return.
  • the waveform information of the wave signal is used to determine the stray echo signal, wherein the waveform information is used to indicate the waveform of the stray echo signal.
  • the at least one first signal parameter includes the amplitude of the first sampling time t 1 at the peak of the stray echo signal as shown in FIG. 7 .
  • the radar ranging device can determine other parts of the stray echo signal except the first sampling time t 1 according to the schematic diagram of the waveform and the amplitude of the first sampling time t 1 as A max The amplitude value at the first sampling time, thereby determining the stray echo signal.
  • the radar ranging apparatus may use the difference The value algorithm performs differential processing on the amplitude values of the plurality of first sampling moments to determine the stray echo signal.
  • the amplitude of the first sampling time t 3 at the peak For example, the amplitude is Amax and the amplitude of the first sampling time t4 on the trailing edge is A2.
  • the radar ranging device can perform difference calculation according to the amplitudes of the above three first sampling moments to determine the The amplitudes of other first sampling moments in the stray echo signal except the first sampling time t 2 , the first sampling time t 3 and the first sampling time t 4 , so as to determine the stray echo signal.
  • the radar ranging device can obtain At least one mapping relationship, the at least one mapping relationship includes the first mapping relationship, and the at least one mapping relationship is used to represent the corresponding relationship between the identifier of the radar channel, the field of view angle and the first signal parameter.
  • the radar ranging apparatus may acquire the at least one first signal parameter corresponding to the identifier of the first radar channel and the first field of view angle according to the at least one mapping relationship.
  • the radar ranging apparatus may acquire the at least one mapping relationship in multiple ways, which is not limited in this embodiment of the present application.
  • the radar ranging apparatus may preconfigure the at least one mapping relationship.
  • the radar ranging apparatus may receive the at least one mapping relationship from other apparatuses in advance.
  • the radar ranging apparatus may generate the at least one mapping relationship.
  • the above at least one mapping relationship may be represented in various forms, which is not limited in this embodiment of the present application.
  • mapping table 1 shown in the following table 1.
  • FIG. 9 shows a schematic diagram of a signal processing process in the radar ranging method 200 provided by the embodiment of the present application.
  • the first radar signal transmitted by the radar ranging device through the first radar channel and the first field of view angle may be shown in (a) of FIG. 9 .
  • the first echo signal received by the radar ranging device may be as shown in (b) of FIG. 9 , wherein the first echo signal may include the echo signal of the first target and the stray echo signal .
  • the radar ranging device can look up the mapping table 1 as shown in Table 1 through the identifier 001 and the first field of view angle of 14.5 degrees (°), and obtain the at least one first signal parameter including the sampling time t1 .
  • the magnitude of 99, the magnitude of 121 at sampling time t2 , the magnitude of 87 at sampling time t3 , and the delay time ( t0 - t4) are 100 nanoseconds (ns).
  • the radar ranging device can obtain a stray echo signal as shown in (c) in FIG. 9 .
  • the radar ranging device cancels the stray echo signal shown in (c) in FIG. 9 from the first echo signal shown in (b) in FIG. 9 , and can obtain (d) in FIG. 9 ) to the echo signal of the first target, and performing ranging processing on the first target by using the echo signal of the first target.
  • the non-overlapping of the echo signal of the first target and the stray echo signal in the first echo signal in FIG. 9 is only an example, and the embodiment of the present application is not limited thereto.
  • the radar ranging method 200 provided in this embodiment of the present application is also applicable to the case where the echo signal of the first target and the stray echo signal are superimposed together, which is not limited in this embodiment of the present application.
  • At least one statically set mapping relationship is queried through at least one of the identifier of the first radar channel and the first field of view angle, and the first mapping relationship is obtained according to the at least one mapping relationship.
  • the at least one first signal parameter can be used to characterize The signal parameters at the first operating temperature, that is, at least one of the identifier of the first radar channel and the first field of view angle, the first operating temperature and the at least one first signal parameter can satisfy the predefined The first mapping relationship.
  • S230 may include: the radar ranging apparatus determines the at least one first signal parameter according to at least one of the identifier of the first radar channel, the first field of view angle, and the first operating temperature.
  • mapping table 2 shown in the following table 2.
  • the signal parameters corresponding to the working temperature not shown in Table 2 can be obtained by calculating the signal parameters corresponding to the existing working temperature, which is not limited in the embodiment of the present application.
  • mapping table 2 needs to include the first signal parameters at each operating temperature, the radar ranging device needs to store a large amount of data. Therefore, it may be considered to only store the first signal parameters under the standard operating temperature. A signal parameter is stored, and the change value of the first signal parameter at other working temperatures compared with the first signal parameter at the standard working temperature is incrementally stored, so that the amount of stored data can be reduced.
  • mapping table 2 shown in the above table 2 can also be represented by the mapping table 3 shown in the following table 3.
  • the radar ranging device can pass the 001, the first field of view angle of 14.5° and the first working temperature -9°C, look up the mapping table 3 as shown in Table 3, and obtain the amplitude value at the sampling time t 1 at the standard temperature is 99, and the amplitude at the sampling time t 2 is 121 , the amplitude at the sampling time t 3 is 87, the delay time is 100ns, and the amplitude coefficient is 0.95, and the delay time difference is +0.3ns, wherein the amplitude coefficient is used to represent the amplitude of the sampling time at the first operating temperature.
  • the ratio of the value to the amplitude of the sampling time at the standard working temperature, and the delay time difference is used to represent the time difference between the delay time at the first working temperature and the delay time at the standard temperature.
  • the radar ranging device can respectively correlate the amplitude 99 at the sampling time t1 , the amplitude 121 at the sampling time t2 , and the amplitude 87 at the sampling time t3 with the amplitude coefficient under the standard temperature. Multiply by 0.95 to obtain the amplitude of 94.05 at the sampling time t 1 , the amplitude of 114.95 at the sampling time t 2 , and the amplitude of 82.62 at the sampling time t 3 at the first working temperature of -9 °C; The delay time 100 at the lower temperature and the delay time difference 0.3 are added to obtain a delay time of 100.3ns at the first operating temperature of -9°C.
  • At least one statically set mapping relationship is queried through at least one of the identifier of the first radar channel, the first field of view angle, and the current first working temperature, and according to the at least one The mapping relationship acquires at least one first signal parameter corresponding to the identifier of the first radar channel and/or the first field of view angle and the first operating temperature; according to the at least one first signal parameter, the stray echo is determined signal; cancel the stray echo signal from the first echo signal to obtain the echo signal of the first target; and perform ranging processing on the first target according to the echo signal of the first target. In this way, the interference and influence of the stray echo signal on the echo signal of the first target can be avoided, thereby improving the accuracy of radar ranging.
  • the radar ranging device may cancel the stray echo signal from the first echo signal in various ways to obtain the echo signal of the first target, which is not performed in this embodiment of the present application. limited.
  • the stray echo signal includes P sampling moments, the P sampling moments correspond to P first amplitudes on the stray echo signal, and the first echo signal includes The P sampling moments and Q sampling moments, the P sampling moments correspond to P second amplitudes on the first echo signal, and the Q sampling moments correspond to Q third amplitudes on the first echo signal Amplitude, P and Q are both integers greater than 0.
  • the echo signal of the first target may include the P sampling instants and the Q sampling instants, wherein the P sampling instants are within the range of the first target.
  • the echo signal corresponds to P target amplitudes
  • the target amplitude corresponding to each of the P sampling moments is the difference between the first amplitude and the second amplitude
  • the Q sampling moments are in the first amplitude.
  • the Q third amplitude values are corresponding to the echo signal of the target.
  • the stray echo signal includes three sampling times, such as sampling time t 1 to sampling time t 3 , wherein the first amplitude value corresponding to sampling time t 1 is 110.3 (unit is omitted), and the first amplitude value corresponding to sampling time t 2 is 110.3.
  • the first amplitude value is 116, and the first amplitude value corresponding to sampling time t 3 is 114.7;
  • the first echo signal includes 6 sampling times, such as sampling time t 1 to sampling time t 6 , wherein sampling time t 1 corresponds to The second amplitude is 109.1, the second amplitude corresponding to sampling time t2 is 116, the second amplitude corresponding to sampling time t3 is 112.4, the third amplitude corresponding to sampling time t4 is 125.6 , and the sampling time t
  • the third amplitude corresponding to 5 is 120.6, and the third amplitude corresponding to sampling time t 6 is 118.9;
  • the target amplitude corresponding to the sampling time t 1 to the sampling time t 3 is less than or equal to the preset jitter threshold 5
  • the target amplitude corresponding to the sampling time t 1 to the sampling time t 3 can be used in the denoising process. It is filtered out during the processing. Therefore, the echo signal of the first target may only include the target amplitude corresponding to the sampling time t 4 to the sampling time t 6 .
  • the radar ranging device includes multiple radar channels, and at least two of the multiple radar channels belong to different signal transceiver groups.
  • the method 200 may further include: the radar detecting The distance device transmits the second radar signal from the second field of view angle through the second transmitter.
  • the stray echo signal includes a first stray echo signal generated by the first radar signal reflected by the obstacle and a second stray echo signal generated by the second radar signal reflected by the obstacle .
  • S230 may include: the radar ranging device determines at least one first signal parameter of the first stray echo signal according to at least one of the identifier of the first radar channel and the first angle of view; The at least one first signal parameter is used to determine the first spurious echo signal; and at least one of the second spurious echo signals is determined according to at least one of the identifier of the second radar channel and the second angle of view.
  • second signal parameter determine the second spurious echo signal according to the at least one second signal parameter; cancel the first spurious echo signal and the second spurious echo signal from the first echo signal , obtain the echo signal of the first target; perform ranging processing on the first target according to the echo signal of the first target.
  • the first field of view angle and the second field of view angle may be the same, or may be different, which is not limited in this embodiment of the present application.
  • the process of determining at least one second signal parameter of the second stray echo signal by the radar ranging device according to at least one of the identifier of the second radar channel and the angle of the second field of view can be Referring to the process of determining at least one first signal parameter of the stray echo signal by the radar ranging device according to at least one of the identifier of the first radar channel and the first field of view angle in reference case 1, in order to avoid repetition, It will not be repeated here.
  • the process of the radar ranging device canceling the first stray echo signal and the second stray echo signal from the first echo signal to obtain the echo signal of the first target can be Reference is made to the process in which the radar ranging device cancels the stray echo signal from the first echo signal to obtain the echo signal of the first target in case 1.
  • the radar ranging method 200 provided by the embodiments of the present application is described above with reference to FIGS. 4 to 9 , and the radar ranging method 300 provided by the embodiments of the present application will be described below with reference to FIGS. 10 to 14 .
  • FIG. 10 shows a schematic flowchart of a radar ranging method 300 provided by an embodiment of the present application.
  • the method 300 may be applied to the radar ranging apparatus 100 as shown in FIGS. 1 to 4 .
  • the method 300 may be performed by the radar ranging apparatus 100 described in FIGS. 1 to 4 , or may be performed by the signal processing apparatus 110 controlled by the radar ranging apparatus 100 described in FIGS. 1 to 4 , for clarity
  • the method 300 is performed by a radar ranging apparatus in the following description, which is not limited in this embodiment of the present application.
  • the radar ranging apparatus sends a first radar signal through the first transmitter.
  • the radar ranging apparatus receives a first echo signal of the first radar signal through the first receiver, where the first echo signal includes the echo signal of the first target.
  • the radar ranging apparatus receives the second echo signal of the first radar signal through a second receiver, and the second receiver is located between the main signal transmission path between the first transmitter and the first receiver outside.
  • the main signal transmission path between the first transmitter and the first receiver includes the first target, therefore, the first echo signal received by the first receiver includes the first target and the second receiver is located outside the main transmission path of the signal, therefore, the second echo signal received by the second receiver does not include the echo signal of the first target.
  • the radar ranging device may include a first signal transceiver group and a second signal transceiver group, the first signal transceiver group includes the first transmitter and the first receiver, and the second signal transceiver group
  • the device group includes the second receiver and the second transmitter, and the radar ranging device does not transmit radar signals through the second transmitter; or, the second receiver may be the first transmitter and the first receiver
  • a receiver is additionally provided outside the main path of signal transmission between the receivers, which is not limited in this embodiment of the present application.
  • the first transmitter may be the transmitter 120
  • the first receiver may be the receiver 131
  • the second receiver may be the receiver 191
  • the transmitter 120 and the receiver 131 The main signal transmission path between them is shown as a solid line, and the receiver 191 is located outside the above-mentioned main signal transmission path. Therefore, the first echo signal received by the receiver 131 includes the echo signal of the first target, and the second echo signal received by the receiver 191 does not include the echo signal of the first target.
  • the first transmitter may be an LD
  • the first receiver may be an APD
  • the second receiver may be a photodiode (positive intrinsic-negative, PIN).
  • the radar ranging device performs ranging processing on the first target according to the first echo signal and the second echo signal; wherein the second echo signal is used to determine the target noise corresponding to the obstacle A stray echo signal, the echo signal of the first target does not include the stray echo signal of the target.
  • the obstacle may include an object inside the radar ranging device and/or an object outside the radar ranging device, which is not limited in this embodiment of the present application.
  • the obstacle may include at least one of an inner wall of the housing of the radar ranging device, a window or an internal circuit.
  • the obstacle may further include objects other than the first target outside the radar ranging device.
  • S340 may include: the radar ranging device determines, according to the second echo signal, a target stray echo signal corresponding to the obstacle; and canceling the target stray echo from the first echo signal signal to obtain the echo signal of the first target; according to the echo signal of the first target, the ranging process is performed on the first target.
  • the first radar signal may be scattered during the propagation process, this part of the scattered signal may be blocked by obstacles, such as the inner wall, window and circuit inside the radar ranging device.
  • the second echo signal received by the second receiver may include a first stray echo signal corresponding to the obstacle, and the first stray echo signal received by the first receiver
  • An echo signal may also include a second stray echo signal corresponding to the obstacle.
  • the delay time and/or amplitude of the first spurious echo signal and the second spurious echo signal may be different. Therefore, Directly use the first stray echo signal to cancel the second stray echo signal in the first echo signal, there may be incomplete cancellation (that is, the purity of the echo signal of the first target obtained after cancellation low) or excessive cancellation (ie, part of the echo signal of the first target obtained after cancellation is missing), resulting in poor accuracy of radar ranging based on the echo signal of the first target.
  • the radar ranging device may determine a target stray echo signal corresponding to the obstacle based on the first stray echo signal, and the target stray echo signal may be considered to be closest to the first echo the target stray echo signal in the signal, and cancel the target stray echo signal from the first echo signal to obtain the echo signal of the first target.
  • the radar ranging apparatus may correct the first stray echo signal based on the first echo signal to obtain the target stray echo signal.
  • the radar ranging apparatus may correct the first stray echo signal based on the first echo signal in various ways to obtain the target stray echo signal, which is not limited in this embodiment of the present application. .
  • the radar ranging device may adjust the delay time of the first stray echo signal multiple times to obtain a plurality of first adjustment signals, and the first echo signal is The ratio between the amplitude value at a sampling moment and the amplitude value of each first adjustment signal in the plurality of first adjustment signals at the first sampling moment and the ratio of the amplitude value of each first adjustment signal is determined as the amplitude coefficient of each first adjustment signal; Each first adjustment signal is multiplied by the amplitude coefficient of each first adjustment signal to obtain a plurality of second adjustment signals; according to the plurality of second adjustment signals and the first echo signal, the target spurious is determined echo signal.
  • the first sampling moment may be on the second stray echo signal. or, when the second stray echo signal in the first echo signal and the first target echo signal are superimposed on each other, the first sampling moment can be the second stray echo
  • the sampling instant corresponding to the peak value of the wave signal or the sampling instant on the leading edge of the second stray echo signal; or, when the second stray echo signal is saturated, the first sampling instant can be the second stray echo signal.
  • the first sampling time may be any sampling time in the first echo signal, such as sampling time t 1 , sampling time t 2 or sampling time t 3 .
  • the first sampling time may be the sampling time t 2 corresponding to the peak of the first echo signal, or the first sampling time may be the first sampling time t 2 .
  • the sampling time t 1 on the leading edge of an echo signal.
  • the first sampling time may be the sampling time t 1 or the sampling time t on the leading edge of the first echo signal except the saturation interval t 3 to t 4 2 .
  • the radar ranging apparatus determines target stray echo signals according to the plurality of second adjustment signals and the first echo signals, which may include: Each second adjustment signal in the second adjustment signal and the first echo signal are subjected to minimum mean square error processing to obtain multiple processing results. The closer the signal is to the target stray echo signal; the second adjustment signal corresponding to the minimum value among the plurality of processing results is determined as the target stray echo signal.
  • FIG. 15 shows a schematic diagram of a signal processing process in the radar ranging method 300 provided by the embodiment of the present application.
  • the first radar signal transmitted by the radar ranging device through the first transmitter may be as shown in (a) of FIG. 15 .
  • the first echo signal received by the radar ranging device through the first receiver may be shown in (b) of FIG. 15 , and the first echo signal includes a second stray echo corresponding to an obstacle signal and the echo signal of the first target.
  • the second echo signal received by the radar ranging device through the second receiver may be shown in (c) of FIG. 15 , and the second echo signal includes a first stray echo corresponding to the obstacle wave signal.
  • the radar ranging device can measure the first stray echo based on the preset delay time difference ⁇ t.
  • the delay time of the wave signal is adjusted multiple times to obtain a plurality of first adjustment signals, such as f(t-2 ⁇ t), f(t- ⁇ t), f(t) and f as shown in (d) in FIG. 15 . (t+ ⁇ t).
  • the ratio K 1 A0/A1 of the amplitude A0 of the first echo signal at the sampling time t 2 and the amplitude A1 of f(t-2 ⁇ t) at the sampling time t 2 ; A0 and f(t- ⁇ t) at the sampling time
  • the ratio K 4 A0/A4 of the amplitude A4 of t 2 .
  • the radar ranging device may be based on f(t-2 ⁇ t) and amplitude coefficient K 1 , f(t- ⁇ t) and amplitude coefficient K 2 , f(t) and amplitude coefficient K 3 and f(t+ ⁇ t) and the amplitude coefficient K 4 to obtain a plurality of second adjustment signals, such as K 1 f(t-2 ⁇ t), K 2 f(t- ⁇ t), K 3 f(t) as shown in (e) of FIG. 15 and K 4 f(t+ ⁇ t).
  • the radar ranging device may The saturation value of the target spurious echo signal is taken as the amplitude value at the sampling time.
  • Figure 16 shows a schematic diagram of the waveform of the target stray echo signal.
  • the radar ranging device can take the saturation value as the saturation interval, that is, the value of each sampling time from sampling time t1 to sampling time t2 . Amplitude.
  • the radar ranging device can cancel the target stray echo signal corresponding to the obstacle in the first echo signal based on the second stray echo signal received in real time,
  • the interference of the stray echo signal to the echo signal of the first target can be reduced, that is, the purity of the echo signal of the first target can be improved, thereby improving the accuracy of radar ranging.
  • the echo signal of the first target included in the first echo signal and the second stray echo signal may be superimposed, and even in some cases, the superimposed amplitude may exceed the first echo signal , which will lead to saturation distortion (as shown in Figure 14), so the echo signal of the first target may interfere with the correction, resulting in the purity and accuracy of the target spurious echo signal obtained after the correction poor.
  • the radar ranging device determines target stray echo signals according to the plurality of second adjustment signals and the first echo signals, which may include: The second adjustment signal and the first echo signal are subjected to minimum mean square error processing in the first sampling interval to obtain multiple processing results. the closer to the target stray echo signal; the adjustment signal corresponding to the minimum value among the plurality of processing results is determined as the target stray echo signal.
  • the preset first sampling interval may be a sampling interval on the leading edge of the second stray echo signal. If the second stray echo signal is saturated, the first sampling interval does not include the sampling time in the saturation interval.
  • the first sampling interval may be from sampling time t 1 to sampling time t 2 .
  • the first sampling interval may be the sampling time t 1 to the sampling time t 2 .
  • the radar ranging apparatus may estimate a second stray echo signal corresponding to the obstacle from the first echo signal through a Gaussian decomposition algorithm, and based on the second stray echo signal The echo signal modifies the first stray echo signal to obtain the target stray echo signal.
  • the radar ranging device estimates the second stray echo signal from the first echo signal by using a Gaussian decomposition method, and based on the second stray echo signal The first stray echo signal is corrected, so that the purity and accuracy of the target stray echo signal can be improved, thereby improving the accuracy of radar ranging.
  • the radar ranging device can adjust the delay time of the first stray echo signal multiple times to obtain a plurality of first adjustment signals, and the second stray echo signal is The ratio of the amplitude value at the first sampling moment to the amplitude value of each first adjustment signal in the plurality of first adjustment signals at the first sampling moment is determined as the amplitude coefficient of each first adjustment signal; Each first adjustment signal is multiplied by the amplitude coefficient of each first adjustment signal to obtain a plurality of second adjustment signals; according to the plurality of second adjustment signals and the second spurious echo signal, the target spurious signal is determined scattered echo signals.
  • the radar ranging device determines the target stray echo signal according to the plurality of second adjustment signals and the second stray echo signal, which may include: the radar ranging device determines the target stray echo signal according to the plurality of second adjustment signals and the second stray echo signal. Perform minimum mean square error processing on the plurality of second adjustment signals and the second stray echo signal to obtain multiple processing results, wherein, the smaller the value of the processing result, the closer the second adjustment signal corresponding to the processing result is to the target stray echo signal; determine the second adjustment signal corresponding to the minimum value among the plurality of processing results as the target stray echo signal.
  • the radar ranging device corrects the first stray echo signal based on the second stray echo signal to obtain the target stray echo signal, please refer to the radar described in FIG. 15 .
  • the process of the ranging device correcting the first stray echo signal based on the first echo signal will not be repeated here in order to avoid repetition.
  • the radar ranging device cancels the target stray echo signal from the first echo signal to obtain the echo signal of the first target.
  • the radar ranging device cancels the stray echo signal from the first echo signal, and will not be repeated here in order to avoid repetition.
  • the radar ranging method provided by the embodiments of the present application is described above with reference to FIG. 4 to FIG. 16 , and the signal processing apparatus 400 for executing the above method will be described below with reference to FIG. 17 .
  • the signal processing apparatus 400 may be the signal processing apparatus described in the foregoing method embodiments, which is not limited in this embodiment of the present application.
  • the signal processing apparatus 400 includes corresponding hardware and/or software modules for executing each function.
  • the embodiments of the present application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functionality for each particular application in conjunction with the embodiments, but such implementations should not be considered beyond the scope of this application.
  • the signal processing apparatus 400 may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 17 shows a schematic block diagram of the signal processing apparatus 400 involved in the above embodiment.
  • the signal processing apparatus 400 may include: unit 410 and processing unit 420.
  • the processing unit 420 may control the transceiver unit 410 to implement the radar ranging method described in the above method embodiments, and/or other processes used in the technology described herein.
  • transceiver unit 410 is a functional division of the transceivers (including each transmitter and/or each receiver) described in the foregoing embodiments.
  • the signal processing apparatus 400 provided in this embodiment is used to execute the foregoing method embodiments, and thus can achieve the same effect as the foregoing implementation method.
  • the signal processing apparatus 400 may include a processing unit, a storage unit and a communication unit.
  • the processing unit may be used to control and manage the actions of the signal processing apparatus 400, for example, may be used to support the signal processing apparatus 400 to perform the steps performed by the above units.
  • the storage unit may be used to support the execution of the signal processing apparatus 400 to store program codes, data, and the like.
  • the communication unit can be used to support the communication between the signal processing apparatus 400 and other devices.
  • the processing unit may be a processor or a controller. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of digital signal processing (DSP) and a microprocessor, and the like.
  • the storage unit may be a memory.
  • the communication unit may specifically be a device that interacts with other electronic devices, such as a radio frequency circuit, a Bluetooth chip, and a Wi-Fi chip.
  • the signal processing apparatus 400 may be a chip or a system-on-chip in the radar ranging apparatus described in the foregoing embodiments.
  • Embodiments of the present application also provide a computer storage medium, where computer instructions are stored in the computer storage medium, and when the computer instructions are executed on an electronic device, the electronic device executes the above-mentioned relevant method steps to realize the radar ranging in the above-mentioned embodiments method.
  • Embodiments of the present application further provide a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the above-mentioned relevant steps, so as to realize the radar ranging method in the above-mentioned embodiment.
  • the signal processing device, radar ranging device, computer storage medium, computer program product or chip provided in this embodiment are all used to execute the corresponding method provided above. Therefore, the beneficial effects that can be achieved can be referred to above. The beneficial effects in the corresponding method provided in this article will not be repeated here.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read only memory (Read Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种雷达测距方法和装置,可以应用于传感器技术领域,如雷达测距领域,能够提高雷达测距的精确性。该方法包括:通过第一发射器从第一视场角度发送第一雷达信号;通过第一接收器从该第一视场角度接收第一回波信号,该第一回波信号包括第一目标的回波信号,该第一发射器和该第一接收器属于第一雷达通道(S210);根据该第一目标的回波信号,对该第一目标进行测距处理;该第一回波信号还包括杂散回波信号,该杂散回波信号中包括该第一雷达信号经障碍物反射产生的回波信号,该杂散回波信号的至少一个第一信号参数对应该第一雷达通道的标识和/或该第一视场角度,该至少一个第一信号参数包括至少一个第一采样时刻的幅值和/或第一延迟时间(S220)。

Description

雷达测距方法和装置 技术领域
本申请涉及传感器技术领域,并且更具体地,涉及传感器技术领域中的雷达测距方法和装置。
背景技术
随着社会的发展和科技的进步,智能汽车正在逐步进入人们的日常生活。传感器在智能汽车的无人驾驶和智能驾驶中发挥着十分重要的作用。传感器可以包括毫米波雷达、激光雷达以及超声波雷达、摄像头等。
雷达测距装置的测距原理是通过该雷达测距装置的发射器发送雷达信号,并通过该雷达测距装置的接收器接收该雷达信号经视场范围内的目标反射所产生的对应该目标的回波信号,通过测量从发送该雷达信号到接收到该目标的回波信号的延迟时间计算该目标与该雷达测距装置之间的距离。
然而,在实际应用中,由于上述雷达信号在传输过程中有一部分信号可能被雷达测距装置的内壁或者视窗反射回来,从而产生杂散回波信号,这样该接收器接收到的回波信号中可能既包括该目标的回波信号,也包括上述杂散回波信号,即该杂散回波信号会对该目标的回波信号产生干扰。因此,通过该接收器接收到的该回波信号对目标进行测距,准确性较低。
发明内容
本申请实施例提供一种雷达测距方法和装置,能够提高雷达测距的准确性。
第一方面,本申请实施例提供了一种雷达测距方法,该方法可以应用于雷达测距装置。该方法可以包括:雷达测距装置通过第一发射器从第一视场角度发送第一雷达信号;该雷达测距装置通过第一接收器从所述第一视场角度接收该第一雷达信号的第一回波信号,该第一回波信号包括第一目标的回波信号,该第一发射器和该第一接收器属于第一雷达通道;该雷达测距装置根据该第一目标的回波信号,对该第一目标进行测距处理;其中,该第一回波信号还包括杂散回波信号,该杂散回波信号包括该第一雷达信号经障碍物反射产生的回波信号,该杂散回波信号的至少一个第一信号参数对应该第一雷达通道的标识和该第一视场角度中的至少一个,该至少一个第一信号参数包括至少一个第一采样时刻的幅值和第一延迟时间中的至少一个。
本申请实施例提供的雷达测距方法,通过该第一雷达通道的标识和第一视场角度中的至少一个,获取与该第一雷达通道的标识和该第一视场角度对应的至少一个第一信号参数;根据该至少一个第一信号参数,确定该杂散回波信号;从该第一回波信号中抵消该杂散回波信号,得到该第一目标的回波信号;并根据该第一目标的回波信号,对该第一目标进行测距处理。这样一来,能够避免杂散回波信号对该第一目标的回波信号的干扰和影响, 即提高第一目标的回波信号的纯净度,从而能够提高雷达测距的准确性。
可选地,该障碍物可以包括该雷达测距装置内部的物体和/或该雷达测距装置外部的物体,本申请实施例对此不做限定。
在一种可能的实现方式中,该障碍物可以包括该雷达测距装置的内壁、视窗或者内部电路中的至少一个。
在另一种可能的实现方式中,该障碍物可以包括该雷达测距装置外部除该第一目标之外的物体。
在一种可能的实现方式中,该第一雷达信号可以为脉冲光信号。
下面将分两种情况介绍上述雷达测距装置根据该第一目标的回波信号,对该第一目标进行测距处理的过程。
情况一:该雷达测距装置只包括第一雷达通道。也就是说,该杂散回波信号包括该第一雷达信号经该障碍物反射产生的回波信号。
相应地,该雷达测距装置可以根据该第一雷达通道的标识和该第一视场角度中的至少一个,确定杂散回波信号的至少一个第一信号参数;根据该至少一个第一信号参数,确定该杂散回波信号;从该第一回波信号中抵消该杂散回波信号,得到第一目标的回波信号;根据该第一目标的回波信号,对该第一目标进行测距处理。
可选地,该雷达测距装置可以通过多种方式根据该第一雷达通道的标识和该第一视场角度中的至少一个,确定该至少一个第一信号参数,本申请实施例对此不做限定。
在一种可能的实现方式中,该至少一个第一信号参数可以仅对应该第一视场角度,即该第一视场角度和该至少一个第一信号参数可以满足预先定义的第一映射关系。
相应地,该雷达测距装置可以根据该第一视场角度和该第一映射关系,确定该至少一个第一信号参数。
在另一种可能的实现方式中,该至少一个第一信号参数可以对应该第一视场角度和该第一雷达通道的标识,即该第一视场角度、该第一雷达通道的标识和该至少一个第一信号参数可以满足预先定义的第一映射关系。
需要说明的是,该至少一个第一信号参数可以包括至少一个第一采样时刻的幅值和第一延迟时间中的至少一个,该至少一个第一采样时刻可以理解为该杂散回波信号的至少一个采样时刻,该第一延迟时间可以理解为从发射该第一雷达信号到接收该杂散回波信号的时间差。
例如:该第一延迟时间T 1表示从发射该第一雷达信号的起始时刻t 0至接收该杂散回波信号的起始时刻t 1的时间差,该至少一个第一采样时刻的幅值可以包括t 2时刻的幅值A 1、t 3时刻的幅值A 3和t 4时刻的幅值A 2
在一种可能的实现方式中,该至少一个第一信号参数包括一个第一采样时刻的幅值时,该雷达测距装置可以根据该第一采样时刻的幅值和预设的该杂散回波信号的波形信息,确定该杂散回波信号,其中,该波形信息用于指示该杂散回波信号的波形。
例如:以该至少一个第一信号参数包括杂散回波信号的波峰处的第一采样时刻t 1的幅值为A max为例,该雷达测距装置可以根据该杂散回波信号的波形示意图和第一采样时刻t 1的幅值为A max,确定该杂散回波信号中除该第一采样时刻t 1之外的其他第一采样时刻的幅值,从而确定该杂散回波信号。
在另一种可能的实现方式中,该至少一个第一信号参数的数量大于1,且该至少一个第一信号参数包括多个第一采样时刻的幅值时,该雷达测距装置可以采用差值算法对该多个第一采样时刻的幅值进行差值处理,确定该杂散回波信号。
例如:以该至少一个第一信号参数包括杂散回波信号的前沿上的第一采样时刻t 2的幅值为A 1、波峰处的第一采样时刻t 3的幅值为A max以及后沿上的第一采样时刻t 4的幅值为A 2为例,该雷达测距装置可以根据上述三个第一采样时刻的幅值进行差值计算,确定该杂散回波信号中除该第一采样时刻t 2、该第一采样时刻t 3和该第一采样时刻t 4之外的其他第一采样时刻的幅值,从而确定该杂散回波信号。
可选地,以该第一视场角度、该第一雷达通道的标识和该至少一个第一信号参数可以满足预先定义的第一映射关系为例,在该雷达测距装置根据该第一雷达通道的标识和该第一视场角度中的至少一个,确定杂散回波信号的至少一个第一信号参数之前,该雷达测距装置可以获取至少一个映射关系,该至少一个映射关系包括该第一映射关系,该至少一个映射关系用于表示雷达通道的标识、视场角度和第一信号参数之间的对应关系。
相应地,该雷达测距装置可以根据该至少一个映射关系获取与该第一雷达通道的标识和该第一视场角度对应的该至少一个第一信号参数。
可选地,该雷达测距装置可以通过多种方式获取该至少一个映射关系,本申请实施例对此不做限定。
在一种可能的实现方式中,该雷达测距装置可以预先配置该至少一个映射关系。
在另一种可能的实现方式中,该雷达测距装置可以预先接收来自其它装置的该至少一个映射关系。
在又一种可能的实现方式中,该雷达测距装置可以生成该至少一个映射关系。
可选地,上述至少一个映射关系可以通过多种形式表示,本申请实施例对此不做限定。
在一种可能的实现方式中,该映射表1用于表示雷达通道标识、视场角度和信号参数之间的至少一个映射关系。
本申请实施例提供的雷达测距方法,通过该第一雷达通道的标识和第一视场角度中的至少一个,查询静态设置的映射表,根据该映射表获取与该第一雷达通道的标识和该第一视场角度对应的至少一个第一信号参数;根据该至少一个第一信号参数,确定该杂散回波信号;从该第一回波信号中抵消该杂散回波信号,得到该第一目标的回波信号;并根据该第一目标的回波信号,对该第一目标进行测距处理。这样一来,能够避免杂散回波信号对该第一目标的回波信号的干扰和影响,即提高第一目标的回波信号的纯净度,从而能够提高雷达测距的准确性。
需要说明的是,由于第一采样时刻的幅值和/或第一延迟时间可能随着该雷达测距装置的工作温度的变化而变化,因此,该至少一个该第一信号参数可以用于表征第一工作温度下的信号参数,即该第一雷达通道的标识和该第一视场角度中的至少一个、该第一工作温度和该至少一个第一信号参数之间可以满足该预先定义的第一映射关系。
相应地,该雷达测距装置可以根据该第一雷达通道的标识和该第一视场角度中的至少一个以及该第一工作温度,确定该至少一个第一信号参数。
例如:映射表2用于表示雷达通道标识、视场角度、信号参数和工作温度之间的至少一个映射关系。
还需要说明的是,由于上述映射表2中需要包括每个工作温度下的第一信号参数,该雷达测距装置需要存储的数据量较大,因此,可以考虑仅存储标准工作温度下的第一信号参数,并增量存储其它工作温度下的第一信号参数相比于该标准工作温度下的第一信号参数的变化值,从而能够降低存储的数据量。
又例如:映射表3用于表示雷达通道、视场角度、工作温度、信号参数和增量信息,该增量信息用于指示不同工作温度下的信号参数相比于标准工作温度下的信号参数的变化。
本申请实施例提供的雷达测距方法,通过该第一雷达通道的标识和第一视场角度中的至少一个以及当前的第一工作温度,查询静态设置的映射表,根据该映射表获取与该第一雷达通道的标识和/或该第一视场角度以及该第一工作温度对应的至少一个第一信号参数;根据该至少一个第一信号参数,确定该杂散回波信号;从该第一回波信号中抵消该杂散回波信号,得到该第一目标的回波信号;并根据该第一目标的回波信号,对该第一目标进行测距处理。这样一来,能够避免杂散回波信号对该第一目标的回波信号的干扰和影响,从而能够提高雷达测距的准确性。
情况二:该雷达测距装置包括多个雷达通道,且该多个雷达通道中的至少两个属于不同的信号收发器组。
可选地,以该多个雷达通道包括该第一雷达通道和第二雷达通道,该第二雷达通道包括第二发射器为例,在该雷达测距装置根据该第一目标的回波信号,对该第一目标进行测距处理之前,该雷达测距装置还可以通过该第二发射器从第二视场角度发送第二雷达信号。
也就是说,该杂散回波信号包括该第一雷达信号经该障碍物反射产生的第一杂散回波信号以及该第二雷达信号经该障碍物反射产生的第二杂散回波信号。
相应地,该雷达测距装置可以根据该第一雷达通道的标识和该第一视场角度中的至少一个,确定该第一杂散回波信号的至少一个第一信号参数;根据该至少一个第一信号参数,确定该第一杂散回波信号;根据该第二雷达通道的标识和该第二视场角度中的至少一个,确定该第二杂散回波信号的至少一个第二信号参数;根据该至少一个第二信号参数,确定该第二杂散回波信号;从该第一回波信号中抵消该第一杂散回波信号和该第二杂散回波信号,得到第一目标的回波信号;根据该第一目标的回波信号,对该第一目标进行测距处理。
可选地,该第一视场角度和该第二视场角度可以相同,或者可以不同,本申请实施例对此不做限定。
需要说明的是,该雷达测距装置根据该第二雷达通道的标识和该第二视场角度中的至少一个,确定该第二杂散回波信号的至少一个第二信号参数的过程,可以参考情况一中该雷达测距装置根据该第一雷达通道的标识和该第一视场角度中的至少一个,确定该杂散回波信号的至少一个第一信号参数的过程,为避免重复,此处不再赘述。
还需要说明的是,该雷达测距装置从该第一回波信号中抵消该第一杂散回波信号和该第二杂散回波信号,得到第一目标的回波信号的过程,可以参考情况一中该雷达测距装置从该第一回波信号中抵消该杂散回波信号,得到第一目标的回波信号的过程。
可选地,该雷达测距装置可以通过多种方式,从该第一回波信号中抵消该目标杂散回波信号,得到该第一目标的回波信号,本申请实施例对此不作限定。
在一种可能的实现方式中,以该杂散回波信号包括P个采样时刻,该P个采样时刻在该杂散回波信号上对应P个第一幅值,该第一回波信号包括该P个采样时刻和Q个采样时刻,该P个采样时刻在该第一回波信号上对应P个第二幅值,该Q个采样时刻在该第一回波信号上对应Q个第三幅值,P和Q均为大于0的整数为例,该第一目标的回波信号可以包括该P个采样时刻和该Q个采样时刻,其中,该P个采样时刻在该第一目标的回波信号上对应P个目标幅值,该P个采样时刻中的每个采样时刻对应的目标幅值为第一幅值与第二幅值的差值,该Q个采样时刻在该第一目标的回波信号上对应该Q个第三幅值。
第二方面,本申请实施例还提供一种雷达测距方法,该方法可以应用于雷达测距装置。该方法可以包括:雷达测距装置通过第一发射器发送第一雷达信号;该雷达测距装置通过第一接收器接收第一雷达信号的第一回波信号,该第一回波信号包括第一目标的回波信号;该雷达测距装置通过第二接收器接收该第一雷达信号的第二回波信号,该第二接收器位于该第一发射器和该第一接收器之间的信号传输主路径之外;该雷达测距装置根据该第一回波信号和该第二回波信号,对该第一目标进行测距处理;其中,该第二回波信号用于确定对应于障碍物的目标杂散回波信号,该第一目标的回波信号不包括该目标杂散回波信号。
本申请实施例提供的雷达测距方法,该雷达测距装置能够基于实时接收到的第二杂散回波信号,抵消第一回波信号中对应于该障碍物的目标杂散回波信号,能够降低杂散回波信号对该第一目标的回波信号的干扰,即提高该第一目标的回波信号的纯净度,从而提高雷达测距的准确性。
也就是说,该第一发射器和该第一接收器之间的信号传输主路径上包括该第一目标,因此,该第一接收器接收到的该第一回波信号中包括该第一目标的回波信号;而该第二接收器位于该信号传输主路径之外,因此,该第二接收器接收到的该第二回波信号中不包括该第一目标的回波信号。
可选地,该雷达测距装置可以包括第一信号收发器组和第二信号收发器组,该第一信号收发器组包括该第一发射器和该第一接收器,该第二信号收发器组包括该第二接收器和第二发射器,且该雷达测距装置未通过该第二发射器发送雷达信号;或者,该第二接收器可以为在第一发射器和该第一接收器之间的信号传输主路径之外额外设置的接收器,本申请实施例对此不做限定。
例如:该第一发射器可以为LD,该第一接收器可以为APD,该第二接收器可以为光电二极管(positive intrinsic-negative,PIN)。
可选地,该障碍物可以包括该雷达测距装置内部的物体和/或该雷达测距装置外部的物体,本申请实施例对此不做限定。
在一种可能的实现方式中,该障碍物可以包括该雷达测距装置的壳体的内壁、视窗或者内部电路中的至少一个。
在另一种可能的实现方式中,该障碍物还可以包括该雷达测距装置外部除该第一目标之外的物体。
可选地,该雷达测距装置根据该第一回波信号和该第二回波信号,对该第一目标进行测距处理,可以包括:该雷达测距装置根据该第二回波信号,确定对应于该障碍物的目标 杂散回波信号;从该第一回波信号中抵消该目标杂散回波信号,得到该第一目标的回波信号;根据该第一目标的回波信号,对该第一目标进行测距处理。
需要说明的是,由于该第一雷达信号在传播过程中可能发生散射现象,这部分散射的信号可能被障碍物,例如该雷达测距装置内部的内壁、视窗和电路等反射至该第二接收器,即该第二接收器接收到的该第二回波信号中可以包括对应于该障碍物的第一杂散回波信号,该第一接收器接收到的该第一回波信号中还可以包括对应于该障碍物的第二杂散回波信号。
然而,由于该第一接收器和该第二接收器所在的位置不同,可能导致该第一杂散回波信号和该第二杂散回波信号的延迟时间和/或幅值不同,因此,直接用该第一杂散回波信号抵消该第一回波信号中的第二杂散回波信号,可能存在抵消不完全(即抵消后所得到的该第一目标的回波信号的纯净度较低)或抵消过度(即抵消后所得到的该第一目标的回波信号的部分信号缺失)的情况,从而导致基于该第一目标的回波信号进行雷达测距的准确性较差。
可选地,该雷达测距装置可以基于该第一杂散回波信号,确定对应该障碍物的目标杂散回波信号,该目标杂散回波信号可以被认为最接近该第一回波信号中的目标杂散回波信号,并从该第一回波信号中抵消该目标杂散回波信号,得到该第一目标的回波信号。
在一种可能的实现方式中,该雷达测距装置可以基于该第一回波信号对该第一杂散回波信号进行修正,得到该目标杂散回波信号。
可选地,雷达测距装置可以通过多种方式基于该第一回波信号对该第一杂散回波信号进行修正,得到该目标杂散回波信号,本申请实施例对此不做限定。
在一种可能的实现方式中,该雷达测距装置可以对该第一杂散回波信号的延迟时间进行多次调整,得到多个第一调整信号,将该第一回波信号在该第一采样时刻的幅值与该多个第一调整信号中的每个第一调整信号在该第一采样时刻的幅值与的比值,确定为该每个第一调整信号的幅值系数;将该每个第一调整信号与该每个第一调整信号的幅值系数相乘,得到多个第二调整信号;根据该多个第二调整信号和该第一回波信号,确定目标杂散回波信号。
可选地,当该第一回波信号中的该第二杂散回波信号和第一目标回波信号不存在互相叠加时,该第一采样时刻可以为该第二杂散回波信号上的任一采样时刻;或者,当该第一回波信号中的该第二杂散回波信号和第一目标回波信号存在互相叠加时,该第一采样时刻可以为该第二杂散回波信号的峰值所对应的采样时刻或该第二杂散回波信号的前沿上的采样时刻;或者,当该第二杂散回波信号存在饱和时,该第一采样时刻可以为该第二杂散回波信号的前沿上除饱和区间外的采样时刻。
在一种可能的实现方式中,该雷达测距装置根据该多个第二调整信号和该第一回波信号,确定目标杂散回波信号,可以包括:该雷达测距装置对该多个第二调整信号中的每个第二调整信号和该第一回波信号进行最小均方误差处理,得到多个处理结果,其中,处理结果的取值越小,该处理结果对应的第二调整信号越接近该目标杂散回波信号;将该多个处理结果中最小值所对应的第二调整信号确定为该目标杂散回波信号。
需要说明的是,若该目标杂散回波信在某个采样时刻的幅值超过该目标杂散回波信号的饱和值时,该雷达测距装置可以将该目标杂散回波信号的饱和值作为该采样时刻的幅 值。
由于该第一回波信号中包括的该第一目标的回波信号与该第二杂散回波信号可能产生叠加,甚至在某些情况下叠加后的幅值可能超过该第一回波信号的饱和值,从而会导致饱和失真,这样该第一目标的回波信号可能对修正产生干扰,从而导致修正后得到的目标杂散回波信号的纯净度和准确性较差。
在另一种可能的实现方式中,该雷达测距装置根据该多个第二调整信号和该第一回波信号,确定目标杂散回波信号,可以包括:该雷达测距装置对该多个第二调整信号和该第一回波信号在第一采样区间内进行最小均方误差处理,得到多个处理结果,其中,处理结果的取值越小,该处理结果对应的第二调整信号越接近该目标杂散回波信号;将该多个处理结果中的最小值所对应的调整信号确定为该目标杂散回波信号。
可选地,该预设的第一采样区间可以为该第二杂散回波信号的前沿上的采样区间。若该第二杂散回波信号存在饱和,则该第一采样区间不包括饱和区间内的采样时刻。
在又一种可能的实现方式中,该雷达测距装置可以通过高斯分解算法从该第一回波信号中估计出对应该障碍物的第二杂散回波信号,并基于该第二杂散回波信号对该第一杂散回波信号进行修正,得到该目标杂散回波信号。
本申请实施例提供的雷达测距方法,该雷达测距装置通过高斯分解法从该第一回波信号中估计出该第二杂散回波信号,并基于该第二杂散回波信号对该第一杂散回波信号进行修正,这样可以提高该目标杂散回波信号的纯净度和准确性,从而提高雷达测距的准确性。
在一种可能的实现方式中,该雷达测距装置可以对该第一杂散回波信号的延迟时间进行多次调整,得到多个第一调整信号,将该第二杂散回波信号在第一采样时刻的幅值和该多个第一调整信号中每个第一调整信号在该第一采样时刻的幅值的比值,确定为该每个第一调整信号的幅值系数;将该每个第一调整信号与该每个第一调整信号的幅值系数相乘,得到多个第二调整信号;根据该多个第二调整信号和该第二杂散回波信号,确定目标杂散回波信号。
在一种可能的实现方式中,该雷达测距装置根据该多个第二调整信号和该第二杂散回波信号,确定目标杂散回波信号,可以包括:该雷达测距装置对该多个第二调整信号和该第二杂散回波信号进行最小均方误差处理,得到多个处理结果,其中,处理结果的取值越小,该处理结果对应的第二调整信号越接近该目标杂散回波信号;将该多个处理结果中的最小值所对应的第二调整信号确定为该目标杂散回波信号。
需要说明的是,该雷达测距装置基于该第二杂散回波信号对该第一杂散回波信号进行修正,得到目标杂散回波信号的过程,可以上述雷达测距装置基于该第一回波信号对该第一杂散回波信号进行修正的过程,为避免重复,此处不再赘述。
还需要说明的是,该雷达测距装置从该第一回波信号中抵消该目标杂散回波信号,得到该第一目标的回波信号的过程,可以参考第一方面中介绍的雷达测距装置从第一回波信号中抵消杂散回波信号,得到该第一目标的回波信号的过程,为避免重复,此处不再赘述。
第三方面,本申请实施例还提供一种信号处理装置,用于执行上述第一方面或其任意可能的实现方式中所述的方法。具体地,该信号处理装置可以包括用于执行上述第一方面或其任意可能的实现方式中所述的雷达测距方法的单元。
第四方面,本申请实施例还提供一种信号处理装置,包括:通信接口和至少一个处理 器,所述通信接口用于与第一发射器和第一接收器通信,当所述至少一个处理器执行程序代码或指令时,实现上述第一方面或其任意可能的实现方式中所述的雷达测距方法。
第五方面,本申请实施例还提供一种雷达测距装置,包括:上述第四方面中所述的信号处理装置、第一发射器和第一接收器,该信号处理装置用于控制该第一发射器和该第一接收器,实现上述第一方面或其任意可能的实现方式中所述的雷达测距方法。
第六方面,本申请实施例还提供一种信号处理装置,用于执行上述第二方面或其任意可能的实现方式中所述的方法。具体地,该信号处理装置可以包括用于执行上述第二方面或其任意可能的实现方式中所述的雷达测距方法的单元。
第七方面,本申请实施例还提供一种信号处理装置,包括:通信接口和至少一个处理器,所述通信接口用于与第一发射器、第一接收器和第二接收器通信,当所述至少一个处理器执行程序代码或指令时,实现上述第二方面或其任意可能的实现方式中所述的雷达测距方法。
第八方面,本申请实施例还提供一种雷达测距装置,包括:上述第七方面中所述的信号处理装置、第一发射器、第一接收器和第二接收器,该信号处理装置用于控制该第一发射器、该第一接收器和该第二接收器,实现上述第二方面或其任意可能的实现方式中所述的雷达测距方法。
可选地,上述第三方面或第六方面中所述的信号处理装置可以为雷达测距装置中的芯片装置或者集成电路。
第九方面,本申请还提供一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于实现上述各方面或其任意可能的实现方式中所述的方法。
第十方面,本申请实施例还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机实现上述各方面或其任意可能的实现方式中所述的方法。
第十一方面,本申请实施例还提供一种终端,所述终端包括上述第五方面或第八方面中所述的雷达测距装置。进一步,所述终端可以为运输工具或者智能设备(例如智能家居或者智能制造设备等),含无人机、无人运输车、汽车或者机器人等。
本申请实施例提供的信号处理装置、雷达测距装置、计算机存储介质、计算机程序产品、终端均用于执行上文所提供的雷达测距方法,因此,其所能达到的有益效果可参考上文所提供的雷达测距方法中的有益效果,此处不再赘述。
附图说明
图1是本申请实施例提供的雷达测距装置100的示意性框图;
图2是本申请实施例提供的雷达测距装置100的另一的示意性框图;
图3是本申请实施例提供的雷达测距装置100的又一的示意性框图;
图4是本申请实施例提供的雷达测距方法200的示意性流程图;
图5是本申请实施例提供的信号参数示意图;
图6是本申请实施例提供的信号波形示意图;
图7是本申请实施例提供的杂散回波信号的示意图;
图8是本申请实施例提供的另一杂散回波信号的示意图;
图9是本申请实施例提供的雷达测距方法200中的信号处理过程的示意图;
图10是本申请实施例提供的雷达测距方法300的示意性流程图;
图11是本申请实施例提供的雷达测距装置100的又一示意性框图;
图12是本申请实施例提供的第一回波信号的波形示意图;
图13是本申请实施例提供的第一回波信号的另一波形示意图;
图14是本申请实施例提供的第一回波信号的又一波形示意图;
图15是本申请实施例提供的雷达测距方法300中的信号处理过程的示意图;
图16是本申请实施例提供的目标杂散回波信号的波形示意图;
图17是本申请实施例提供的雷达测距装置400的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了本申请实施例提供的雷达测距方法所应用的雷达测距装置100的示意性框图(俯视图)。如图1所示,该雷达测距装置100可以包括信号处理装置110、至少一个信号收发器组(图1中示出了信号收发器组1)和反射装置140。该信号收发器组1包括发射器120和N个接收器(图1中示出了接收器131~接收器13N),N为大于0的整数。该信号处理装置110、该发射器120和该接收器131~该接收器13N设置在由视窗和壳体构成的腔体内。该信号处理装置110通过通信接口分别与该发射器120和该接收器131~该接收器13N连接。
该信号处理装置110用于控制该发射器120发送第一雷达信号。
可选地,上述信号处理装置110可以包括至少一个处理器。该至少一个处理器可以实现或执行结合本申请实施例所提供的雷达测距方法。该至少一个处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理(digital signal processing,DSP)和微处理器的组合等。
可选地,该第一雷达信号可以为多种类型,本申请实施例对此不做限定。
在一种可能的实现方式中,该第一雷达信号可以为毫米波雷达。
在另一种可能的实现方式中,该第一雷达信号可以为激光雷达,例如脉冲光。
例如:该发射器120可以为激光二极管(laster diode,LD)。
该反射装置140用于对该发射器120发送的该第一雷达信号进行反射,并从第一平面内的第一视场角度射出该雷达测距装置100;和/或将从该第一视场角度接收到的该第一雷达信号的第一回波信号反射至该接收器131~该接收器13N,该第一回波信号可以包括第一目标的回波信号,该第一目标的回波信号是该第一雷达信号经该雷达测距装置的视场范围内的该第一目标反射所产生的,该视场范围包括该第一视场角度。
在一种可能的实现方式中,该第一平面可以与图1中所示的x轴和y轴所构成的平面平行。
需要说明的是,以该第一平面为水平面为例,该雷达测距装置100在水平面内的视场范围决定了该雷达测距装置100的测距范围。该雷达测距装置100只能对该视场范围内的目标进行测距处理。当目标所在的视场角度超过这个视场范围时,该雷达测距装置100将无法对该目标进行测距处理。
例如:当该雷达测距装置100在水平面内的视场范围是120度,该雷达测距装置100 的水平角分辨率是0.4度时,该雷达测距装置100在水平面内就具有120/0.4=300个水平视场角度。
可选地,上述视场角度可以是一个角度,或者可以是一个角度范围,本申请实施例对此不做限定。
例如,以雷达测距装置100的水平角分辨率为0.4度为例,该雷达测距装置可以水平面内的一个0.4度内完成雷达信号的发送、回波信号的接收和对目标的测距处理,也就是说,一个0.4度的角度范围可以对应于一个视场角度。
该信号处理装置110还用于控制该接收器131~该接收器13N接收经该反射装置140反射的该第一回波信号;并通过本申请实施例提供的雷达测距方法,基于该第一回波信号,对该第一目标进行测距处理。
例如:该接收器131~接收器13N可以为雪崩光电二极管(avalanche photo diode,APD)。
在一种可能的实现方式中,以该第一雷达信号为激光为例,该信号处理装置110可以测量从该雷达测距装置100发送该第一雷达信号到接收到该第一目标的回波信号所需要的第一时长,将该第一时长的一半(即激光由雷达测距装置100传输至该第一目标的时长)与光速的乘积理解为该雷达测距装置100与该第一目标之间的距离。
在一种可能的实现方式中,该发射器120可以与该接收器131~接收器13N中的每一个接收器形成一个雷达通道,从而形成N个雷达通道,该雷达测距装置100可以通过该N个雷达通道中的至少一个或者全部雷达通道实现在该第一平面内的雷达扫描。
此外,如图1所示,当N大于1时,该N个接收器可以沿第二方向叠加设置,该第二方向与该第一平面垂直,即该N个雷达通道对应该第二方向上的不同位置。通过该N个雷达通道实现实现三维的雷达扫描。
可选地,当该雷达测距装置100包括多个信号收发器组时,该多个信号收发器组可以沿该第二方向叠加设置。
在一种可能的实现方式中,以该雷达测距装置100包括第一雷达通道,该第一雷达通道包括发射器120和接收器131为例,图2示出了本申请实施例提供的雷达测距装置100的另一示意性框图(俯视图),如图2所示,该反射装置140可以包括固定反射部141和旋转反射部142,该固定反射部141和该旋转反射部142的反射面相对设置。
该固定反射部141用于将该发射器120发射的该第一雷达信号反射至该旋转反射部142;和/或将从该旋转反射部反射来的该第一回波信号反射至该接收器131~该接收器13N。
该旋转反射部142用于将该固定反射部141反射来的该第一雷达信号射出该雷达测距装置100的视窗;和/或将射入该雷达测距装置100的该第一回波信号反射至该固定反射部141。
在一种可能的实现方式中,上述固定反射部141可以为第一平面镜,和/或,上述旋转反射部142可以为第二反射镜。
需要说明的是,图2中实线所示的信号传输路径可以被称为该第一雷达通道的信号传输主路径,即该发射器120和该接收器131之间的信号传输主路径。
可选地,该雷达测距装置100可以通过多种方式,通过该N个雷达通道中的一个或多个雷达通道实现该第一平面内的雷达扫描,本申请实施例对此不做限定。
进一步,如图2所示,该雷达测距装置100还可以包括动力装置150,该信号处理装置100还用于控制该动力装置150驱动该旋转反射部142,以O为原点,基于预设的角分辨率在该第一平面内进行转动,以实现该雷达测距装置100在该第一平面内的雷达扫描。
可选的,上述动力装置150可以为电机或马达。
在另一种可能的实现方式中,以该雷达测距装置100包括第一雷达通道,该第一雷达通道包括发射器120和接收器131为例,图3示出了本申请实施例提供的雷达测距装置100又一示意性框图(侧视图),如图3所示,该雷达测距装置100还可以包括连接部160和动力装置170。该雷达测距装置100的壳体的下表面通过该连接部160与该动力装置170转动连接。
该动力装置170用于驱动该壳体以该连接部160为旋转轴,基于预设的角分辨率在该第一平面内进行旋转,以实现该雷达测距装置100在该第一平面内的雷达扫描。
在一种可能的实现方式中,上述动力装置170可以为电机或马达。
需要说明的是,图2和图3中示出的该雷达测距装置100在该第一平面内实现雷达扫描的方式仅为一种示例,本申请实施例不限于此。可选地,该雷达测距装置可以基于图2和图3中所述的类似原理,在其他平面内进行雷达扫描,本申请实施例在此不再赘述。
需要说明的是,图1至图3仅示意性示出本申请实施例提供的雷达测距装置100的示意性结构图,可选地,该雷达测距装置100还可以包括图1至图3中未示出的其他组成部分,本申请实施例不限于此。
在现有技术中,雷达测距装置对目标进行测距时,由于发射器发送的雷达信号在传播过程中可能发生散射现象,这部分散射的信号可能经该雷达测距装置内部的内壁、视窗和电路等反射产生杂散回波信号,这部分杂散回波信号会对目标的回波信号产生干扰,即该发射器对应的接收器接收到的该第一回波信号中可能既包括该目标的回波信号,也包括上述杂散回波信号。因此,雷达测距装置根据接收器接收到的回波信号对该目标进行测距,会导致雷达测距的准确性较低。
图4示出了本申请实施例提供的雷达测距方法200的示意性流程图。该方法200可以应用于如图1至图4中所述的雷达测距装置100。
可选地,该方法200可以由图1至4中所述的雷达测距装置100执行,或可以由图1至4中所述的信号处理装置110控制该雷达测距装置100执行,为清楚起见,下文中均以该方法200由雷达测距装置执行为例进行描述,本申请实施例对此不做限定。
S210,雷达测距装置通过第一发射器从第一视场角度发送第一雷达信号。
在一种可能的实现方式中,该第一雷达信号可以为脉冲光信号。
S220,该雷达测距装置通过第一接收器从所述第一视场角度接收该第一雷达信号的第一回波信号,该第一回波信号包括第一目标的回波信号,该第一发射器和该第一接收器属于第一雷达通道。
S230,该雷达测距装置根据该第一目标的回波信号,对该第一目标进行测距处理;其中,该第一回波信号还包括杂散回波信号,该杂散回波信号包括该第一雷达信号经障碍物反射产生的回波信号,该杂散回波信号的至少一个第一信号参数对应该第一雷达通道的标识和该第一视场角度中的至少一个,该至少一个第一信号参数包括至少一个第一采样时刻的幅值和第一延迟时间中的至少一个。
可选地,该障碍物可以包括该雷达测距装置内部的物体和/或该雷达测距装置外部的物体,本申请实施例对此不做限定。
在一种可能的实现方式中,该障碍物可以包括该雷达测距装置的内壁、视窗或者内部电路中的至少一个。
在另一种可能的实现方式中,该障碍物可以包括该雷达测距装置外部除该第一目标之外的物体。
下面将分两种情况介绍上述S230。
情况一:该雷达测距装置只包括第一雷达通道。也就是说,该杂散回波信号包括该第一雷达信号经该障碍物反射产生的回波信号。
相应地,S230可以包括:该雷达测距装置根据该第一雷达通道的标识和该第一视场角度中的至少一个,确定杂散回波信号的至少一个第一信号参数;根据该至少一个第一信号参数,确定该杂散回波信号;从该第一回波信号中抵消该杂散回波信号,得到第一目标的回波信号;根据该第一目标的回波信号,对该第一目标进行测距处理。
可选地,该雷达测距装置可以通过多种方式根据该第一雷达通道的标识和该第一视场角度中的至少一个,确定该至少一个第一信号参数,本申请实施例对此不做限定。
在一种可能的实现方式中,该至少一个第一信号参数可以仅对应该第一视场角度,即该第一视场角度和该至少一个第一信号参数可以满足预先定义的第一映射关系。
相应地,该雷达测距装置可以根据该第一视场角度和该第一映射关系,确定该至少一个第一信号参数。
在另一种可能的实现方式中,该至少一个第一信号参数可以对应该第一视场角度和该第一雷达通道的标识,即该第一视场角度、该第一雷达通道的标识和该至少一个第一信号参数可以满足预先定义的第一映射关系。
需要说明的是,该至少一个第一信号参数可以包括至少一个第一采样时刻的幅值和第一延迟时间中的至少一个,该至少一个第一采样时刻可以理解为该杂散回波信号的至少一个采样时刻,该第一延迟时间可以理解为从发射该第一雷达信号到接收该杂散回波信号的时间差。
例如:该第一雷达信号可以如图5中的(a)所示,该杂散回波信号可以如图5中的(b)所示,其中,该第一延迟时间T 1表示从发射该第一雷达信号的起始时刻t 0至接收该杂散回波信号的起始时刻t 1的时间差,该至少一个第一采样时刻的幅值可以包括t 2时刻的幅值A 1、t 3时刻的幅值A 3和t 4时刻的幅值A 2
在一种可能的实现方式中,该至少一个第一信号参数包括一个第一采样时刻的幅值时,该雷达测距装置可以根据该第一采样时刻的幅值和预设的该杂散回波信号的波形信息,确定该杂散回波信号,其中,该波形信息用于指示该杂散回波信号的波形。
例如:以该波形信息为如图6中所示的波形示意图,该至少一个第一信号参数包括如图7中所示的杂散回波信号的波峰处的第一采样时刻t 1的幅值为A max为例,该雷达测距装置可以根据该波形示意图和第一采样时刻t 1的幅值为A max,确定该杂散回波信号中除该第一采样时刻t 1之外的其他第一采样时刻的幅值,从而确定该杂散回波信号。
在另一种可能的实现方式中,该至少一个第一信号参数的数量大于1,且该至少一个第一信号参数包括多个第一采样时刻的幅值时,该雷达测距装置可以采用差值算法对该多 个第一采样时刻的幅值进行差值处理,确定该杂散回波信号。
例如:以该至少一个第一信号参数包括如图8中所示的杂散回波信号的前沿上的第一采样时刻t 2的幅值为A 1、波峰处的第一采样时刻t 3的幅值为A max以及后沿上的第一采样时刻t 4的幅值为A 2为例,该雷达测距装置可以根据上述三个第一采样时刻的幅值进行差值计算,确定该杂散回波信号中除该第一采样时刻t 2、该第一采样时刻t 3和该第一采样时刻t 4之外的其他第一采样时刻的幅值,从而确定该杂散回波信号。
可选地,以该第一视场角度、该第一雷达通道的标识和该至少一个第一信号参数可以满足预先定义的第一映射关系为例,在S230之前,该雷达测距装置可以获取至少一个映射关系,该至少一个映射关系包括该第一映射关系,该至少一个映射关系用于表示雷达通道的标识、视场角度和第一信号参数之间的对应关系。
相应地,S230中,该雷达测距装置可以根据该至少一个映射关系获取与该第一雷达通道的标识和该第一视场角度对应的该至少一个第一信号参数。
可选地,该雷达测距装置可以通过多种方式获取该至少一个映射关系,本申请实施例对此不做限定。
在一种可能的实现方式中,该雷达测距装置可以预先配置该至少一个映射关系。
在另一种可能的实现方式中,该雷达测距装置可以预先接收来自其它装置的该至少一个映射关系。
在又一种可能的实现方式中,该雷达测距装置可以生成该至少一个映射关系。
可选地,上述至少一个映射关系可以通过多种形式表示,本申请实施例对此不做限定。
例如:上述至少一个映射关系可以通过如下表一所示的映射表1表示。
表一:映射表1
Figure PCTCN2020118402-appb-000001
例如:以该第一雷达通道的标识为001以及该第一视场角度为14.5度为例,图9示出了本申请实施例提供的雷达测距方法200中的信号处理过程的示意图。该雷达测距装置通过该第一雷达通道和该第一视场角度发射的第一雷达信号可以如图9中的(a)所示。该雷达测距装置接收的该第一回波信号可以如图9中的(b)所示,其中,该第一回波信号可以包括该第一目标的回波信号和该杂散回波信号。该雷达测距装置可以通过该标识001和该第一视场角度14.5度(°),查找如表一中所示该映射表1,获取到该至少一个第一信号参数包括采样时刻t 1处的幅值99、采样时刻t 2处的幅值121、采样时刻t 3处的幅值87和延迟时间(t 0~t 4)为100纳秒(ns)。该雷达测距装置根据该至少一个第一信号参数,可以得到如图9中的(c)所示的杂散回波信号。该雷达测距装置从如图9中的(b)所示的第一回波信号中抵消如图9中的(c)所示的杂散回波信号,可以得到如图9中的(d)所示的第一目标的回波信号,并通过该第一目标的回波信号,对该第一目标进行测距处理。
需要说明的是,图9中该第一回波信号中的第一目标的回波信号和杂散回波信号互不重叠仅为一种示例,本申请实施例不限于此。可选地,本申请实施例提供的雷达测距方法200也适用于该第一目标的回波信号和该杂散回波信号叠加在一起的情况,本申请实施例对此不做限定。
本申请实施例提供的雷达测距方法,通过该第一雷达通道的标识和第一视场角度中的至少一个,查询静态设置的至少一个映射关系,根据该至少一个映射关系获取与该第一雷达通道和/或该第一视场角度对应的至少一个第一信号参数;根据该至少一个第一信号参数,确定该杂散回波信号;从该第一回波信号中抵消该杂散回波信号,得到该第一目标的回波信号;并根据该第一目标的回波信号,对该第一目标进行测距处理。这样一来,能够避免杂散回波信号对该第一目标的回波信号的干扰和影响,即提高第一目标的回波信号的纯净度,从而能够提高雷达测距的准确性。
需要说明的是,由于第一采样时刻的幅值和/或第一延迟时间可能随着该雷达测距装置的工作温度的变化而变化,因此,该至少一个该第一信号参数可以用于表征第一工作温度下的信号参数,即该第一雷达通道的标识和该第一视场角度中的至少一个、该第一工作温度和该至少一个第一信号参数之间可以满足该预先定义的第一映射关系。
相应地,S230可以包括:该雷达测距装置根据该第一雷达通道的标识和该第一视场角度中的至少一个以及该第一工作温度,确定该至少一个第一信号参数。
例如:上述至少一个映射关系还可以通过如下表二所示的映射表2表示。
表二:映射表2
Figure PCTCN2020118402-appb-000002
需要说明的是,表二中未示出的工作温度所对应的信号参数,可以通过已有的工作温度所对应的信号参数计算获得,本申请实施例对此不做限定。
例如:以第一雷达通道的标识为001以及该第一视场角度为14.5°为例,该雷达测距装置可以根据表二中示出的工作温度-10℃对应的延迟时间100ns,工作温度-9℃对应的延 迟时间100.3ns,确定工作温度-9.5℃对应的延迟时间为(100+100.3)/2=100.15ns。
还需要说明的是,由于上述映射表2中需要包括每个工作温度下的第一信号参数,该雷达测距装置需要存储的数据量较大,因此,可以考虑仅存储标准工作温度下的第一信号参数,并增量存储其它工作温度下的第一信号参数相比于该标准工作温度下的第一信号参数的变化值,从而能够降低存储的数据量。
又例如:上述表二中所示的映射表2也可以通过如下表三所示的映射表3表示。
表三:映射表3
Figure PCTCN2020118402-appb-000003
例如:以该第一雷达通道的标识为001、该第一视场角度为14.5°以及第一工作温度为-9℃为例,该雷达测距装置可以通过该001、该第一视场角度14.5°和该第一工作温度-9℃查找如表三中所示该映射表3,获取到在标准温度下采样时刻t 1处的幅值为99、采样时刻t 2处的幅值为121、采样时刻t 3处的幅值为87、延迟时间为100ns以及幅值系数为0.95,延迟时间差为+0.3ns,其中,幅值系数用于表示在该第一工作温度下的采样时刻的幅值与在该标准工作温度下的采样时刻的幅值的比例,该延迟时间差用于表示在该第一工作温度下的延迟时间与在该标准温度下的延迟时间的时间差。
相应地,该雷达测距装置可以将该标准温度下的采样时刻t 1处的幅值99、采样时刻t 2处的幅值121、采样时刻t 3处的幅值87分别与该幅值系数0.95相乘,得到该第一工作温度-9℃下的采样时刻t 1处的幅值94.05、采样时刻t 2处的幅值114.95、采样时刻t 3处的幅值82.62;并将该标准温度下的延迟时间100与该延迟时间差0.3相加,得到该第一工作温度-9℃下的延迟时间为100.3ns。
本申请实施例提供的雷达测距方法,通过该第一雷达通道的标识和第一视场角度中的至少一个以及当前的第一工作温度,查询静态设置的至少一个映射关系,根据该至少一个 映射关系获取与该第一雷达通道的标识和/或该第一视场角度以及该第一工作温度对应的至少一个第一信号参数;根据该至少一个第一信号参数,确定该杂散回波信号;从该第一回波信号中抵消该杂散回波信号,得到该第一目标的回波信号;并根据该第一目标的回波信号,对该第一目标进行测距处理。这样一来,能够避免杂散回波信号对该第一目标的回波信号的干扰和影响,从而能够提高雷达测距的准确性。
可选地,S230中,该雷达测距装置可以通过多种方式,从该第一回波信号中抵消该杂散回波信号,得到第一目标的回波信号,本申请实施例对此不作限定。
在一种可能的实现方式中,以该杂散回波信号包括P个采样时刻,该P个采样时刻在该杂散回波信号上对应P个第一幅值,该第一回波信号包括该P个采样时刻和Q个采样时刻,该P个采样时刻在该第一回波信号上对应P个第二幅值,该Q个采样时刻在该第一回波信号上对应Q个第三幅值,P和Q均为大于0的整数为例,该第一目标的回波信号可以包括该P个采样时刻和该Q个采样时刻,其中,该P个采样时刻在该第一目标的回波信号上对应P个目标幅值,该P个采样时刻中的每个采样时刻对应的目标幅值为第一幅值与第二幅值的差值,该Q个采样时刻在该第一目标的回波信号上对应该Q个第三幅值。
例如:该杂散回波信号包括3个采样时刻,如采样时刻t 1~采样时刻t 3,其中,采样时刻t 1对应的第一幅值为110.3(单位省略)、采样时刻t 2对应的第一幅值为116、采样时刻t 3对应的第一幅值为114.7;该第一回波信号包括6个采样时刻,如采样时刻t 1~采样时刻t 6,其中,采样时刻t 1对应的第二幅值为109.1、采样时刻t 2对应的第二幅值为116、采样时刻t 3对应的第二幅值为112.4,采样时刻t 4对应的第三幅值为125.6、采样时刻t 5对应的第三幅值为120.6、采样时刻t 6对应的第三幅值为118.9;那么,该杂散回波信号包括采样时刻t 1~采样时刻t 6,其中,采样时刻t 1对应的目标幅值为110.3-109.1=1.2、采样时刻t 2对应的目标幅值为116-116=0、采样时刻t 3对应的目标幅值为114.7-112.4=2.3,采样时刻t 4对应的目标幅值为125.6、采样时刻t 5对应的目标幅值为120.6、采样时刻t 6对应的目标幅值为118.9。
需要说明的是,由于采样时刻t 1~采样时刻t 3对应的目标幅值小于或等于预设的抖动阈值5,该采样时刻t 1~该采样时刻t 3对应的目标幅值可以在去噪处理过程中被滤除掉,因此,该第一目标的回波信号中可以仅包括采样时刻t 4~采样时刻t 6对应的目标幅值。
情况二:该雷达测距装置包括多个雷达通道,且该多个雷达通道中的至少两个属于不同的信号收发器组。
可选地,以该至少两个雷达通道包括该第一雷达通道和第二雷达通道,该第二雷达通道包括第二发射器为例,在S230之前,该方法200还可以包括:该雷达测距装置通过该第二发射器从第二视场角度发送第二雷达信号。
也就是说,该杂散回波信号包括该第一雷达信号经该障碍物反射产生的第一杂散回波信号以及该第二雷达信号经该障碍物反射产生的第二杂散回波信号。
相应地,S230可以包括:该雷达测距装置根据该第一雷达通道的标识和该第一视场角度中的至少一个,确定该第一杂散回波信号的至少一个第一信号参数;根据该至少一个第一信号参数,确定该第一杂散回波信号;根据该第二雷达通道的标识和该第二视场角度中的至少一个,确定该第二杂散回波信号的至少一个第二信号参数;根据该至少一个第二 信号参数,确定该第二杂散回波信号;从该第一回波信号中抵消该第一杂散回波信号和该第二杂散回波信号,得到第一目标的回波信号;根据该第一目标的回波信号,对该第一目标进行测距处理。
可选地,该第一视场角度和该第二视场角度可以相同,或者可以不同,本申请实施例对此不做限定。
需要说明的是,该雷达测距装置根据该第二雷达通道的标识和该第二视场角度中的至少一个,确定该第二杂散回波信号的至少一个第二信号参数的过程,可以参考情况一中该雷达测距装置根据该第一雷达通道的标识和该第一视场角度中的至少一个,确定该杂散回波信号的至少一个第一信号参数的过程,为避免重复,此处不再赘述。
还需要说明的是,该雷达测距装置从该第一回波信号中抵消该第一杂散回波信号和该第二杂散回波信号,得到第一目标的回波信号的过程,可以参考情况一中该雷达测距装置从该第一回波信号中抵消该杂散回波信号,得到第一目标的回波信号的过程。
上面结合图4至图9介绍了本申请实施例提供的雷达测距方法200,下面将结合图10至图14介绍本申请实施例提供的雷达测距方法300。
图10示出了本申请实施例提供的雷达测距方法300的示意性流程图。该方法300可以应用于如图1至图4中所示的雷达测距装置100。
可选地,该方法300可以由图1至4中所述的雷达测距装置100执行,或可以由图1至4中所述的信号处理装置110控制该雷达测距装置100执行,为清楚起见,下文中均以该方法300由雷达测距装置执行进行描述,本申请实施例对此不做限定。
S310,雷达测距装置通过第一发射器发送第一雷达信号。
S320,该雷达测距装置通过第一接收器接收第一雷达信号的第一回波信号,该第一回波信号包括第一目标的回波信号。
S330,该雷达测距装置通过第二接收器接收该第一雷达信号的第二回波信号,该第二接收器位于该第一发射器和该第一接收器之间的信号传输主路径之外。
也就是说,该第一发射器和该第一接收器之间的信号传输主路径上包括该第一目标,因此,该第一接收器接收到的该第一回波信号中包括该第一目标的回波信号;而该第二接收器位于该信号传输主路径之外,因此,该第二接收器接收到的该第二回波信号中不包括该第一目标的回波信号。
可选地,该雷达测距装置可以包括第一信号收发器组和第二信号收发器组,该第一信号收发器组包括该第一发射器和该第一接收器,该第二信号收发器组包括该第二接收器和第二发射器,且该雷达测距装置未通过该第二发射器发送雷达信号;或者,该第二接收器可以为在第一发射器和该第一接收器之间的信号传输主路径之外额外设置的接收器,本申请实施例对此不做限定。
例如:如图11所示,该第一发射器可以为发射器120,该第一接收器可以为接收器131,该第二接收器可以为接收器191,该发射器120与该接收器131之间的信号传输主路径如实线所示,而该接收器191位于上述信号传输主路径之外。因此,该接收器131接收到的第一回波信号中包括该第一目标的回波信号,该接收器191接收到第二回波信号中不包括该第一目标的回波信号。
例如:该第一发射器可以为LD,该第一接收器可以为APD,该第二接收器可以为光 电二极管(positive intrinsic-negative,PIN)。
S340,该雷达测距装置根据该第一回波信号和该第二回波信号,对该第一目标进行测距处理;其中,该第二回波信号用于确定对应于障碍物的目标杂散回波信号,该第一目标的回波信号不包括该目标杂散回波信号。
可选地,该障碍物可以包括该雷达测距装置内部的物体和/或该雷达测距装置外部的物体,本申请实施例对此不做限定。
在一种可能的实现方式中,该障碍物可以包括该雷达测距装置的壳体的内壁、视窗或者内部电路中的至少一个。
在另一种可能的实现方式中,该障碍物还可以包括该雷达测距装置外部除该第一目标之外的物体。
可选地,S340可以包括:该雷达测距装置根据该第二回波信号,确定对应于该障碍物的目标杂散回波信号;从该第一回波信号中抵消该目标杂散回波信号,得到该第一目标的回波信号;根据该第一目标的回波信号,对该第一目标进行测距处理。
需要说明的是,如图11所示,由于该第一雷达信号在传播过程中可能发生散射现象,这部分散射的信号可能被障碍物,例如该雷达测距装置内部的内壁、视窗和电路等反射至该第二接收器,即该第二接收器接收到的该第二回波信号中可以包括对应于该障碍物的第一杂散回波信号,该第一接收器接收到的该第一回波信号中还可以包括对应于该障碍物的第二杂散回波信号。
然而,由于该第一接收器和该第二接收器所在的位置不同,可能导致该第一杂散回波信号和该第二杂散回波信号的延迟时间和/或幅值不同,因此,直接用该第一杂散回波信号抵消该第一回波信号中的第二杂散回波信号,可能存在抵消不完全(即抵消后所得到的该第一目标的回波信号的纯净度较低)或抵消过度(即抵消后所得到的该第一目标的回波信号的部分信号缺失)的情况,从而导致基于该第一目标的回波信号进行雷达测距的准确性较差。
可选地,该雷达测距装置可以基于该第一杂散回波信号,确定对应该障碍物的目标杂散回波信号,该目标杂散回波信号可以被认为最接近该第一回波信号中的目标杂散回波信号,并从该第一回波信号中抵消该目标杂散回波信号,得到该第一目标的回波信号。
在一种可能的实现方式中,该雷达测距装置可以基于该第一回波信号对该第一杂散回波信号进行修正,得到该目标杂散回波信号。
可选地,雷达测距装置可以通过多种方式基于该第一回波信号对该第一杂散回波信号进行修正,得到该目标杂散回波信号,本申请实施例对此不做限定。
在一种可能的实现方式中,该雷达测距装置可以对该第一杂散回波信号的延迟时间进行多次调整,得到多个第一调整信号,将该第一回波信号在该第一采样时刻的幅值与该多个第一调整信号中的每个第一调整信号在该第一采样时刻的幅值与的比值,确定为该每个第一调整信号的幅值系数;将该每个第一调整信号与该每个第一调整信号的幅值系数相乘,得到多个第二调整信号;根据该多个第二调整信号和该第一回波信号,确定目标杂散回波信号。
可选地,当该第一回波信号中的该第二杂散回波信号和第一目标回波信号不存在互相叠加时,该第一采样时刻可以为该第二杂散回波信号上的任一采样时刻;或者,当该第一 回波信号中的该第二杂散回波信号和第一目标回波信号存在互相叠加时,该第一采样时刻可以为该第二杂散回波信号的峰值所对应的采样时刻或该第二杂散回波信号的前沿上的采样时刻;或者,当该第二杂散回波信号存在饱和时,该第一采样时刻可以为该第二杂散回波信号的前沿上除饱和区间外的采样时刻。
例如:以该第一回波信号如图12所示,该第一采样时刻可以为该第一回波信号中任一采样时刻,如采样时刻t 1、采样时刻t 2或采样时刻t 3
又例如:以该第一回波信号如图13所示,该第一采样时刻可以为该第一回波信号的波峰所对应的采样时刻t 2,或者,该第一采样时刻可以为该第一回波信号的前沿上的采样时刻t 1
又例如:以该第一回波信号如图14所示,该第一采样时刻可以为该第一回波信号的前沿上除饱和区间t 3~t 4外的采样时刻t 1或采样时刻t 2
在一种可能的实现方式中,该雷达测距装置根据该多个第二调整信号和该第一回波信号,确定目标杂散回波信号,可以包括:该雷达测距装置对该多个第二调整信号中的每个第二调整信号和该第一回波信号进行最小均方误差处理,得到多个处理结果,其中,处理结果的取值越小,该处理结果对应的第二调整信号越接近该目标杂散回波信号;将该多个处理结果中最小值所对应的第二调整信号确定为该目标杂散回波信号。
例如:图15示出了本申请实施例提供的雷达测距方法300中的信号处理过程的示意图。该雷达测距装置通过该第一发射器发射的该第一雷达信号可以如图15中的(a)所示。该雷达测距装置通过该第一接收器接收的该第一回波信号可以如图15中的(b)所示,该第一回波信号中包括对应于障碍物的第二杂散回波信号和第一目标的回波信号。该雷达测距装置通过该第二接收器接收的该第二回波信号可以如图15中的(c)所示,该第二回波信号中包括对应于该障碍物的第一杂散回波信号。
以该第一回波信号为s(t),该第一杂散回波信号为f(t)为例,该雷达测距装置可以基于预设的延迟时间差Δt,对该第一杂散回波信号的延迟时间进行多次调整,得到多个第一调整信号,如图15中的(d)中所示的f(t-2Δt)、f(t-Δt)、f(t)和f(t+Δt)。第一回波信号在采样时刻t 2的幅值A0与f(t-2Δt)在采样时刻t 2的幅值A1的比值K 1=A0/A1;A0与f(t-Δt)在采样时刻t 2的幅值A2的比值K 2=A0/A2;A0与f(t)在采样时刻t 2的幅值A3的比值K 3=A0/A3;A0与f(t+Δt)在采样时刻t 2的幅值A4的比值K 4=A0/A4。该雷达测距装置可以基于f(t-2Δt)和幅值系数K 1、f(t-Δt)和幅值系数K 2、f(t)和幅值系数K 3以及f(t+Δt)和幅值系数K 4,得到多个第二调整信号,如图15中的(e)所示的K 1f(t-2Δt)、K 2f(t-Δt)、K 3f(t)和K 4f(t+Δt)。该雷达测距装置可以将K 1f(t-2Δt)、K 2f(t-Δt)、K 3f(t)和K 4f(t+Δt)分别与该第一回波信号s(t)进行最小均方误差处理,得到多个处理结果;以K 2f(t-Δt)对应的处理结果为该多个处理结果中的最小值为例,该雷达测距装置可以将第二调整信号K 2f(t-Δt)确定为目标杂散回波信号;从该第一回波信号s(t)中抵消该目标杂散回波信号K 2f(t-Δt),得到该第一目标的回波信号n(t)=s(t)-K 2f(t-Δt),并基于n(t)对该第一目标进行测距处理。
需要说明的是,若该目标杂散回波信号K 2f(t-Δt)在某个采样时刻的幅值超过该目标杂散回波信号的饱和值时,该雷达测距装置可以将该目标杂散回波信号的饱和值作为该采样时刻的幅值。
例如:如图16示出了该目标杂散回波信号的波形示意图,如图16所示,该目标杂散 回波信号中的采样时刻t 1至采样时刻t 2的区间内的所有采样时刻所对应幅值均超过该目标杂散回波信号的饱和值,因此,该雷达测距装置可以将该饱和值作为饱和区间,即采样时刻t 1至采样时刻t 2内的每个采样时刻的幅值。
本申请实施例提供的雷达测距方法,该雷达测距装置能够基于实时接收到的第二杂散回波信号,抵消第一回波信号中对应于该障碍物的目标杂散回波信号,能够降低杂散回波信号对该第一目标的回波信号的干扰,即提高该第一目标的回波信号的纯净度,从而提高雷达测距的准确性。
由于该第一回波信号中包括的该第一目标的回波信号与该第二杂散回波信号可能产生叠加,甚至在某些情况下叠加后的幅值可能超过该第一回波信号的饱和值,从而会导致饱和失真(如图14所示),这样该第一目标的回波信号可能对修正产生干扰,从而导致修正后得到的目标杂散回波信号的纯净度和准确性较差。
在另一种可能的实现方式中,该雷达测距装置根据该多个第二调整信号和该第一回波信号,确定目标杂散回波信号,可以包括:该雷达测距装置对该多个第二调整信号和该第一回波信号在第一采样区间内进行最小均方误差处理,得到多个处理结果,其中,处理结果的取值越小,该处理结果对应的第二调整信号越接近该目标杂散回波信号;将该多个处理结果中的最小值所对应的调整信号确定为该目标杂散回波信号。
可选地,该预设的第一采样区间可以为该第二杂散回波信号的前沿上的采样区间。若该第二杂散回波信号存在饱和,则该第一采样区间不包括饱和区间内的采样时刻。
例如:如图13所示,该第一采样区间可以为采样时刻t 1~采样时刻t 2
又例如:如图14所示,该第一采样区间可以为采样时刻t 1~采样时刻t 2
在又一种可能的实现方式中,该雷达测距装置可以通过高斯分解算法从该第一回波信号中估计出对应该障碍物的第二杂散回波信号,并基于该第二杂散回波信号对该第一杂散回波信号进行修正,得到该目标杂散回波信号。
本申请实施例提供的雷达测距方法,该雷达测距装置通过高斯分解法从该第一回波信号中估计出该第二杂散回波信号,并基于该第二杂散回波信号对该第一杂散回波信号进行修正,这样可以提高该目标杂散回波信号的纯净度和准确性,从而提高雷达测距的准确性。
在一种可能的实现方式中,该雷达测距装置可以对该第一杂散回波信号的延迟时间进行多次调整,得到多个第一调整信号,将该第二杂散回波信号在第一采样时刻的幅值和该多个第一调整信号中每个第一调整信号在该第一采样时刻的幅值的比值,确定为该每个第一调整信号的幅值系数;将该每个第一调整信号与该每个第一调整信号的幅值系数相乘,得到多个第二调整信号;根据该多个第二调整信号和该第二杂散回波信号,确定目标杂散回波信号。
在一种可能的实现方式中,该雷达测距装置根据该多个第二调整信号和该第二杂散回波信号,确定目标杂散回波信号,可以包括:该雷达测距装置对该多个第二调整信号和该第二杂散回波信号进行最小均方误差处理,得到多个处理结果,其中,处理结果的取值越小,该处理结果对应的第二调整信号越接近该目标杂散回波信号;将该多个处理结果中的最小值所对应的第二调整信号确定为该目标杂散回波信号。
需要说明的是,该雷达测距装置基于该第二杂散回波信号对该第一杂散回波信号进行修正,得到目标杂散回波信号的过程,可以参考图15中所述的雷达测距装置基于该第一 回波信号对该第一杂散回波信号进行修正的过程,为避免重复,此处不再赘述。
还需要说明的是,S340中该雷达测距装置从该第一回波信号中抵消该目标杂散回波信号,得到该第一目标的回波信号的过程,可以参考方法200实施例的S230中介绍的雷达测距装置从第一回波信号中抵消杂散回波信号,得到该第一目标的回波信号的过程,为避免重复,此处不再赘述。
上面结合图4至图16介绍了本申请实施例提供雷达测距方法,下面将结合图17介绍用于执行上述方法的信号处理装置400。
需要说明的是,该信号处理装置400可以为上述各方法实施例中所述的信号处理装置,本申请实施例对此不作限定。
可以理解的是,该信号处理装置400为了实现上述功能,其包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例描述的各示例的算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对信号处理装置400进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图17示出了上述实施例中涉及的信号处理装置400的一种示意性框图,如图17所示,该信号处理装置400可以包括:收发单元410和处理单元420。其中,该处理单元420可以控制该收发单元410实现上述各方法实施例中所述的雷达测距方法,和/或用于本文所描述的技术的其他过程。
需要说明的是,该收发单元410是上述各实施例中所述的收发器(包括各发射器和/或各接收器)的功能化划分。
需要说明的是,上述各方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本实施例提供的信号处理装置400用于执行上述各方法实施例,因此可以达到与上述实现方法相同的效果。
在采用集成的单元的情况下,该信号处理装置400可以包括处理单元、存储单元和通信单元。其中,处理单元可以用于对该信号处理装置400的动作进行控制管理,例如,可以用于支持该信号处理装置400执行上述各个单元执行的步骤。存储单元可以用于支持该信号处理装置400执行存储程序代码和数据等。通信单元可以用于支持该信号处理装置400与其他设备的通信。
其中,处理单元可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理(digital signal processing,DSP)和微处理器的组合等等。存储单元可以是存储器。通信单元具体可以为射频电路、蓝牙芯片、Wi-Fi芯片等与其他电子设备交互的设备。
可选地,该信号处理装置400可以为上述各实施例中所述的雷达测距装置中的芯片或者片上系统。
本申请实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在电子设备上运行时,使得电子设备执行上述相关方法步骤实现上述实施例中的雷达测距方法。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的雷达测距方法。
其中,本实施例提供的信号处理装置、雷达测距装置、计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (30)

  1. 一种雷达测距方法,其特征在于,包括:
    通过第一发射器从第一视场角度发送第一雷达信号;
    通过第一接收器从所述第一视场角度接收所述第一雷达信号的第一回波信号,所述第一回波信号包括第一目标的回波信号,所述第一发射器和所述第一接收器属于第一雷达通道;
    根据所述第一目标的回波信号,对所述第一目标进行测距处理;
    其中,所述第一回波信号还包括杂散回波信号,所述杂散回波信号中包括所述第一雷达信号经障碍物反射产生的回波信号,所述杂散回波信号的至少一个第一信号参数对应所述第一雷达通道的标识和所述第一视场角度中的至少一个,所述至少一个第一信号参数包括所述杂散回波信号的至少一个第一采样时刻的幅值和第一延迟时间中的至少一个;
    其中,所述第一目标的回波信号不包括所述杂散回波信号。
  2. 根据权利要求1所述的方法,其特征在于,所述障碍物包括雷达测距装置的壳体的内壁、视窗或者内部电路中的至少一项。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一雷达通道的标识和所述第一视场角度中的至少一个以及所述至少一个第一信号参数之间满足预先定义的第一映射关系。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一信号参数用于表征第一工作温度下的信号参数,所述第一雷达通道的标识和所述第一视场角度中的至少一个、所述至少一个第一信号参数以及所述第一工作温度之间满足所述预先定义的第一映射关系。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述杂散回波信号还包括第二雷达信号经障碍物反射产生的回波信号,所述第二雷达信号是通过第二雷达通道的第二发射器从第二视场角度发射的,所述杂散回波信号的至少一个第二信号参数对应所述第二雷达通道的标识和所述第二视场角度中的至少一个,所述至少一个第二信号参数包括至少一个第二采样时刻的幅值和第二延迟时间中的至少一个。
  6. 一种雷达测距方法,其特征在于,所述方法包括:
    通过第一发射器发送第一雷达信号;
    通过第一接收器接收所述第一雷达信号的第一回波信号,所述第一回波信号包括第一目标的回波信号;
    通过第二接收器接收所述第一雷达信号的第二回波信号,所述第二接收器位于所述第一发射器和所述第一接收器之间的信号传输主路径之外;
    根据所述第一回波信号和所述第二回波信号,对所述第一目标进行测距处理;
    其中,所述第二回波信号用于确定对应于障碍物的目标杂散回波信号,所述第一目标的回波信号不包括所述目标杂散回波信号。
  7. 根据权利要求6所述的方法,其特征在于,所述障碍物包括雷达测距装置的壳体的内壁、视窗或者内部电路中的至少一项。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第二回波信号包括对应于所 述障碍物的第一杂散回波信号,所述目标杂散回波信号是基于所述第一杂散回波信号和所述第一回波信号获得的。
  9. 根据权利要求8所述的方法,其特征在于,所述目标杂散回波信号是基于多个第二调整信号和所述第一回波信号获得的,所述多个第二调整信号是基于所述第一杂散回波信号获得的。
  10. 根据权利要求9所述的方法,其特征在于,所述多个第二调整信号是基于多个第一调整信号和所述多个第一调整信号的幅值系数获得的,所述多个第一调整信号是对所述第一杂散回波信号的延迟时间进行多次调整后获得的,其中,所述多个第一调整信号中的每个第一调整信号的幅值系数为所述第一回波信号在第一采样时刻的幅值与所述每个第一调整信号在所述第一采样时刻的幅值的比值。
  11. 根据权利要求9或10所述的方法,其特征在于,所述目标杂散回波信号为所述多个第二调整信号中、与所述第一回波信号的最小均方误差处理结果最小的第二调整信号。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述第一回波信号中还包括对应于所述障碍物的第二杂散回波信号,所述第一杂散回波信号和所述第二杂散回波信号用于确定所述目标杂散回波信号。
  13. 根据权利要求12所述的方法,其特征在于,所述第二杂散回波信号是通过对所述第一回波信号进行高斯分解得到的。
  14. 一种信号处理装置,包括:通信接口和至少一个处理器,其特征在于,所述通信接口用于与第一发射器和第一接收器通信,当所述至少一个处理器执行程序代码或指令时,
    控制所述第一发射器从第一视场角度发送第一雷达信号;
    控制所述第一接收器从所述第一视场角度接收所述第一雷达信号的第一回波信号,所述第一回波信号包括第一目标的回波信号,所述第一发射器和所述第一接收器属于第一雷达通道;
    根据所述第一目标的回波信号,对所述第一目标进行测距处理;
    其中,所述第一回波信号还包括杂散回波信号,所述杂散回波信号中包括所述第一雷达信号经障碍物反射产生的回波信号,所述杂散回波信号的至少一个第一信号参数对应所述第一雷达通道的标识和所述第一视场角度中的至少一个,所述至少一个第一信号参数包括所述杂散回波信号的至少一个第一采样时刻的幅值和第一延迟时间中的至少一个;
    其中,所述第一目标的回波信号不包括所述杂散回波信号。
  15. 根据权利要求14所述的装置,其特征在于,所述障碍物包括雷达测距装置的壳体的内壁、视窗或者内部电路中的至少一项。
  16. 根据权利要求14或15所述的装置,其特征在于,所述第一雷达通道的标识和所述第一视场角度中的至少一个以及所述至少一个第一信号参数之间满足预先定义的第一映射关系。
  17. 根据权利要求14至16中任一项所述的装置,其特征在于,所述第一信号参数用于表征第一工作温度下的信号参数,所述第一雷达通道的标识和所述第一视场角度中的至少一个、所述至少一个第一信号参数以及所述第一工作温度之间满足所述预先定义的第一 映射关系。
  18. 根据权利要求14至17中任一项所述的装置,其特征在于,所述杂散回波信号还包括第二雷达信号经障碍物反射产生的回波信号,所述第二雷达信号是通过第二雷达通道的第二发射器从第二视场角度发射的,所述杂散回波信号的至少一个第二信号参数对应所述第二雷达通道的标识和所述第二视场角度中的至少一个,所述至少一个第二信号参数包括至少一个第二采样时刻的幅值和第二延迟时间中的至少一个。
  19. 一种信号处理装置,包括:通信接口和至少一个处理器,其特征在于,所述通信接口用于与第一发射器、第一接收器和第二接收器通信,且所述第二接收器位于所述第一发射器和所述第一接收器之间的信号传输主路径之外,当所述至少一个处理器执行程序代码或指令时,
    控制所述第一发射器发送第一雷达信号;
    控制所述第一接收器接收所述第一雷达信号的第一回波信号,所述第一回波信号包括第一目标的回波信号;
    控制所述第二接收器接收所述第一雷达信号的第二回波信号;
    根据所述第一回波信号和所述第二回波信号,对所述第一目标进行测距处理;
    其中,所述第二回波信号用于确定对应于障碍物的目标杂散回波信号,所述第一目标的回波信号不包括所述目标杂散回波信号。
  20. 根据权利要求19所述的装置,其特征在于,所述障碍物包括雷达测距装置的壳体的内壁、视窗或者内部电路中的至少一项。
  21. 根据权利要求19或20所述的装置,其特征在于,所述第二回波信号包括对应于所述障碍物的第一杂散回波信号,所述目标杂散回波信号是基于所述第一杂散回波信号和所述第一回波信号获得的。
  22. 根据权利要求21所述的装置,其特征在于,所述目标杂散回波信号是基于多个第二调整信号和所述第一回波信号获得的,所述多个第二调整信号是基于所述第一杂散回波信号获得的。
  23. 根据权利要求22所述的装置,其特征在于,所述多个第二调整信号是基于多个第一调整信号和所述多个第一调整信号的幅值系数获得的,所述多个第一调整信号是对所述第一杂散回波信号的延迟时间进行多次调整后获得的,其中,所述多个第一调整信号中的每个第一调整信号的幅值系数为所述第一回波信号在第一采样时刻的幅值与所述每个第一调整信号在所述第一采样时刻的幅值的比值。
  24. 根据权利要求22或23所述的装置,其特征在于,所述目标杂散回波信号为所述多个第二调整信号中、与所述第一回波信号的最小均方误差处理结果最小的第二调整信号。
  25. 根据权利要求21至24中任一项所述的装置,其特征在于,所述第一回波信号中还包括对应于所述障碍物的第二杂散回波信号,所述第一杂散回波信号和所述第二杂散回波信号用于确定所述目标杂散回波信号。
  26. 根据权利要求24所述的装置,其特征在于,所述第二杂散回波信号是通过对所述第一回波信号进行高斯分解得到的。
  27. 一种雷达测距装置,其特征在于,包括第一发射器、第一接收器以及如上述权利 要求14至18中任一项所述的信号处理装置。
  28. 一种雷达测距装置,其特征在于,包括第一发射器、第一接收器、第二接收器以及如上述权利要求19至26中任一项所述的信号处理装置。
  29. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述权利要求1至13中任一项所述的方法的指令。
  30. 一种计算机程序产品,所述计算机程序产品中包含指令,其特征在于,当所述指令在计算机或处理器上运行时,使得所述计算机或所述处理器实现上述权利要求1至13中任一项所述的方法。
PCT/CN2020/118402 2020-09-28 2020-09-28 雷达测距方法和装置 WO2022061887A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20954737.1A EP4212911A4 (en) 2020-09-28 2020-09-28 RADAR TELEMETRY METHOD AND DEVICE
PCT/CN2020/118402 WO2022061887A1 (zh) 2020-09-28 2020-09-28 雷达测距方法和装置
CN202080005145.4A CN112752986B (zh) 2020-09-28 2020-09-28 雷达测距方法和装置
US18/191,526 US20230243949A1 (en) 2020-09-28 2023-03-28 Radar ranging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118402 WO2022061887A1 (zh) 2020-09-28 2020-09-28 雷达测距方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/191,526 Continuation US20230243949A1 (en) 2020-09-28 2023-03-28 Radar ranging method and apparatus

Publications (1)

Publication Number Publication Date
WO2022061887A1 true WO2022061887A1 (zh) 2022-03-31

Family

ID=75651291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118402 WO2022061887A1 (zh) 2020-09-28 2020-09-28 雷达测距方法和装置

Country Status (4)

Country Link
US (1) US20230243949A1 (zh)
EP (1) EP4212911A4 (zh)
CN (1) CN112752986B (zh)
WO (1) WO2022061887A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117233734A (zh) * 2023-11-14 2023-12-15 山东富锐光学科技有限公司 基于tdc和adc的激光雷达数据采集方法、系统及激光雷达

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215114745U (zh) * 2021-05-17 2021-12-10 北京锐达仪表有限公司 多波束物位计

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160209499A1 (en) * 2015-01-16 2016-07-21 Shingo Suzuki Object detection device, sensing device, movable body device, and object detection method
CN106199538A (zh) * 2016-06-27 2016-12-07 中国人民解放军火箭军工程大学 用于提升扩频穿墙雷达跟踪动目标精度的杂波抑制方法
CN106443658A (zh) * 2016-09-09 2017-02-22 电子科技大学 一种近距雷达传感器及其测距方法
CN108594199A (zh) * 2018-07-18 2018-09-28 厦门镭通智能科技有限公司 一种雷达回波去干扰方法
CN110244311A (zh) * 2019-06-28 2019-09-17 深圳市速腾聚创科技有限公司 激光雷达接收装置、激光雷达系统和激光测距方法
CN110927681A (zh) * 2019-07-17 2020-03-27 循声科技(重庆)有限公司 一种信号处理方法、装置、终端及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320086B (zh) * 2008-06-27 2011-03-30 北京航空航天大学 一种多普勒测速激光雷达的回波信号处理装置和方法
CN103605125B (zh) * 2013-11-29 2016-02-24 深圳市航盛电子股份有限公司 倒车雷达抗干扰的方法及系统
CN106772404B (zh) * 2015-11-23 2023-11-03 北京万集科技股份有限公司 激光雷达测距装置及方法
CN205246876U (zh) * 2015-11-23 2016-05-18 北京万集科技股份有限公司 激光雷达测距装置
JP7165587B2 (ja) * 2016-06-01 2022-11-04 ベロダイン ライダー ユーエスエー,インコーポレイテッド 多重ピクセル走査lidar
US10495736B2 (en) * 2016-08-04 2019-12-03 Stmicroelectronics (Research & Development) Limited Single SPAD array ranging system
CN106405556B (zh) * 2016-11-02 2019-03-08 上海神添实业有限公司 车辆目标信息探测识别系统及其信号处理方法
CN111208527B (zh) * 2018-11-16 2022-03-08 北京万集科技股份有限公司 激光雷达的测距方法、装置、激光雷达及存储介质
CN109766851A (zh) * 2019-01-15 2019-05-17 珠海格力电器股份有限公司 障碍物的确定方法及装置、倒车成像设备
CN109946675A (zh) * 2019-03-27 2019-06-28 北醒(北京)光子科技有限公司 一种激光雷达杂散光抑制电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160209499A1 (en) * 2015-01-16 2016-07-21 Shingo Suzuki Object detection device, sensing device, movable body device, and object detection method
CN106199538A (zh) * 2016-06-27 2016-12-07 中国人民解放军火箭军工程大学 用于提升扩频穿墙雷达跟踪动目标精度的杂波抑制方法
CN106443658A (zh) * 2016-09-09 2017-02-22 电子科技大学 一种近距雷达传感器及其测距方法
CN108594199A (zh) * 2018-07-18 2018-09-28 厦门镭通智能科技有限公司 一种雷达回波去干扰方法
CN110244311A (zh) * 2019-06-28 2019-09-17 深圳市速腾聚创科技有限公司 激光雷达接收装置、激光雷达系统和激光测距方法
CN110927681A (zh) * 2019-07-17 2020-03-27 循声科技(重庆)有限公司 一种信号处理方法、装置、终端及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117233734A (zh) * 2023-11-14 2023-12-15 山东富锐光学科技有限公司 基于tdc和adc的激光雷达数据采集方法、系统及激光雷达
CN117233734B (zh) * 2023-11-14 2024-01-30 山东富锐光学科技有限公司 基于tdc和adc的激光雷达数据采集方法、系统及激光雷达

Also Published As

Publication number Publication date
US20230243949A1 (en) 2023-08-03
EP4212911A1 (en) 2023-07-19
EP4212911A4 (en) 2023-10-18
CN112752986B (zh) 2022-04-08
CN112752986A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2022061887A1 (zh) 雷达测距方法和装置
US20180003822A1 (en) Environmental sensing device and information acquiring method applied to environmental sensing device
US11733354B2 (en) LIDAR ring lens return filtering
CN107957581B (zh) 一种雷达探测方法、装置、存储介质及雷达
CN111712725B (zh) 激光雷达测距的多脉冲融合分析
EP3882659A1 (en) Method of calculating distance-correction data, range-finding device, and mobile object
CN109642949A (zh) 用于窄带测距系统的方法和装置
CN108169752B (zh) 一种基于无线通信的超声波测距方法及系统
TWI708070B (zh) 用於測距系統之光學串擾校準
CN109696684B (zh) 一种自相关激光雷达装置
JP7131180B2 (ja) 測距装置、測距方法、プログラム、移動体
CN113189606B (zh) 一种提高不同反射率目标测距精度的方法与装置
WO2020142939A1 (zh) 回波信号处理方法、设备及存储介质
CN109116322B (zh) 一种位移和距离激光雷达系统的回光消除方法
CN108008373A (zh) 一种基于脉冲式激光测距的回波补偿系统
WO2019157632A1 (zh) 测距系统、自动化设备及测距方法
KR20170090230A (ko) 주파수 변조 방식의 라이다 센서 시스템에서 멀티패스에 의한 상호 간섭 제거 방법 및 그 장치
CN112255637A (zh) 距离测量系统及方法
WO2020113360A1 (zh) 一种采样电路、采用方法及测距装置、移动平台
US20220248173A1 (en) Control device and storage medium
WO2022170535A1 (zh) 测距方法、测距装置、系统及计算机可读存储介质
WO2022256976A1 (zh) 稠密点云真值数据的构建方法、系统和电子设备
CN112241011B (zh) 一种雨雾霾环境下激光雷达测距方法
CN117480408A (zh) 一种物体测距方法及装置
JP2022007911A (ja) 通信装置、情報処理方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020954737

Country of ref document: EP

Effective date: 20230410

NENP Non-entry into the national phase

Ref country code: DE