WO2022059917A1 - 전지 모듈 및 이를 포함하는 전지팩 - Google Patents

전지 모듈 및 이를 포함하는 전지팩 Download PDF

Info

Publication number
WO2022059917A1
WO2022059917A1 PCT/KR2021/010478 KR2021010478W WO2022059917A1 WO 2022059917 A1 WO2022059917 A1 WO 2022059917A1 KR 2021010478 W KR2021010478 W KR 2021010478W WO 2022059917 A1 WO2022059917 A1 WO 2022059917A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive resin
resin layer
thermally conductive
battery
battery cell
Prior art date
Application number
PCT/KR2021/010478
Other languages
English (en)
French (fr)
Inventor
이상기
이범희
이종철
강도혁
이다진
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2022558533A priority Critical patent/JP2023519001A/ja
Priority to US17/913,098 priority patent/US20230135629A1/en
Priority to EP21869540.1A priority patent/EP4120441A4/en
Priority to CN202180028787.0A priority patent/CN115428233A/zh
Publication of WO2022059917A1 publication Critical patent/WO2022059917A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a battery pack including the same, and more particularly, to a battery module having improved temperature deviation between battery cells and a battery pack including the same.
  • secondary batteries are of great interest not only as mobile devices such as mobile phones, digital cameras, laptops, and wearable devices, but also as energy sources for power devices such as electric bicycles, electric vehicles, and hybrid electric vehicles.
  • the mid-to-large-sized battery module be manufactured as small as possible in size and weight, a prismatic battery, a pouch-type battery, etc. that can be stacked with a high degree of integration and have a small weight to capacity are mainly used as battery cells of the mid- to large-sized battery module.
  • the battery module in order to protect the battery cell stack from external impact, heat, or vibration, the front and rear are opened may include a module frame for accommodating the battery cell stack in an internal space.
  • FIG. 1 is an exploded perspective view of a conventional battery module.
  • FIG. 2 is a perspective view illustrating a state in which components constituting the battery module of FIG. 1 are combined.
  • the conventional battery module 10 is a battery cell stack 12 in which a plurality of battery cells 11 are stacked in one direction, and to accommodate the battery cell stack 12. It includes a module frame 20 , an end plate 15 covering the front and rear surfaces of the battery cell stack, and a bus bar frame 13 formed between the end plate 15 and the front and rear surfaces of the battery cell stack 12 . .
  • the module frame 20 includes a lower frame 30 covering the lower and both sides of the battery cell stack 12 and an upper plate 40 covering the upper surface of the battery cell stack 12 .
  • a thermally conductive resin layer 31 is applied to a bottom surface covering the lower portion of the battery cell stack 12 in the lower frame 30 . The thermally conductive resin layer 31 may cool the heat generated in the battery cell stack 12 while transferring heat generated in the battery cell stack 12 to the outside of the battery module 10 .
  • FIG. 3 is a cross-sectional view taken along the cutting line A-A of FIG. 2 .
  • 4 is a top view of the bottom surface of the module frame, which is a component of the battery module of FIG. 1 .
  • the conventional battery module 10 has a structure that cools the lower portion of the battery cell stack 12 , and the heat generated in the battery cell 11 is directed downward in the first cooling direction D1 . It is a flowing structure.
  • the temperature of the central battery cell is the highest and the temperature of the outer battery cell is the lowest.
  • heat is generated relatively more compared to the central portion in the charging/discharging process of the battery module 10 .
  • the battery cell 11 stops charging and discharging of the battery module 10 when the voltage is lower than a predetermined voltage. At this time, there is no problem based on the central battery cell of the battery cell stack 12 in terms of use of the battery module 10 .
  • the outer battery cell is cooler than the central battery cell, so the voltage drop of the outer battery cell is severe, and thus, the use of the module may be limited.
  • the thermally conductive resin layer 31 is formed on the bottom of the lower frame 30 without considering the characteristics related to the temperature deviation of the battery cell stack 12 . Since the thermally conductive resin layer 31 is coated on the entire surface, a cooling deviation occurs in the battery cell stack 12 . In particular, in a low-temperature environment, the thermal conductive resin layer 31 has a large effect on cooling of the battery cell laminate 12 , and the cooling deviation of the battery cell laminate 12 due to the thermal conductive resin layer 31 . can be formed to be larger than in a high-temperature environment. Accordingly, in the conventional battery module 10, the outer battery cells of the battery cell stack 12 are limited in terms of module use due to voltage drop, and it is necessary to improve the cooling deviation between the central battery cell and the outer battery cell. there is.
  • An object of the present invention is to provide a battery module having improved temperature deviation between battery cells and a battery pack including the same.
  • a battery module includes a battery cell stack in which a plurality of battery cells are stacked; and a module frame accommodating the battery cell stack, wherein a thermally conductive resin layer is formed on a bottom surface of the module frame, and the thermally conductive resin layer includes a first thermally conductive resin layer and a second thermally conductive resin layer Including, wherein the first thermally conductive resin layer is formed adjacent to the front surface of the battery cell stack, the second heat conductive resin layer is formed adjacent to the rear surface of the battery cell stack, the first thermoelectric At least a portion of the conductive resin layer and at least a portion of the second thermally conductive resin layer are spaced apart from each other.
  • the first thermally conductive resin layer and the second thermally conductive resin layer may have the same width, and the first thermally conductive resin layer and the second thermally conductive resin layer may be spaced apart from each other.
  • a first distance spaced apart between the first thermally conductive resin layer and the second thermally conductive resin layer may be different depending on a position on the bottom surface of the module frame.
  • the first distance may increase from the center of the bottom surface of the module frame toward the outside.
  • the first thermally conductive resin layer and the second thermally conductive resin layer formed at a position corresponding to the center of the bottom surface of the module frame may be in contact with each other.
  • the first thermally conductive resin layer and the second thermally conductive resin layer formed at a position corresponding to the center of the bottom surface of the module frame may be spaced apart from each other.
  • the first thermally conductive resin layer and the second thermally conductive resin layer may have a symmetrical shape with respect to a longitudinal direction of the module frame.
  • the first thermally conductive resin layer and the second thermally conductive resin layer may have symmetrical shapes with respect to the width direction of the module frame.
  • the first thermally conductive resin layer and the second thermally conductive resin layer may be formed of the same thermally conductive resin material.
  • the module frame may include a lower frame accommodating the lower and both sides of the battery cell stack and an upper plate covering the upper surface of the battery cell stack.
  • a battery pack according to another embodiment of the present invention includes the battery module described above.
  • a thermally conductive resin layer having a different length is formed according to the position of the bottom surface of the module frame corresponding to the battery cell stack, so that the temperature deviation between the battery cells can be improved.
  • FIG. 1 is an exploded perspective view of a conventional battery module.
  • FIG. 2 is a perspective view illustrating a state in which components constituting the battery module of FIG. 1 are combined.
  • FIG. 3 is a cross-sectional view taken along the cutting line A-A of FIG. 2 .
  • FIG. 4 is a top view of the bottom surface of the module frame, which is a component of the battery module of FIG. 1 .
  • FIG. 5 is an exploded perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 6 is a view showing a thermally conductive resin layer formed on the bottom surface of the module frame of FIG. 5 .
  • FIG. 7 and 8 are views illustrating a thermally conductive resin layer formed on a bottom surface of a module frame according to another embodiment of the present invention.
  • planar it means when the target part is viewed from above, and "cross-sectional” means when viewed from the side when a cross-section of the target part is vertically cut.
  • FIG. 5 is an exploded perspective view of a battery module according to an embodiment of the present invention.
  • 6 is a view showing a thermally conductive resin layer formed on the bottom surface of the module frame of FIG. 5 .
  • the battery module 100 includes a battery cell stack 120 and a battery cell stack in which a plurality of battery cells 110 are stacked in a first direction (y-axis).
  • the module frame 200 for accommodating 120, the end plate 150 respectively positioned on the front and rear surfaces of the battery cell stack 120, and the battery cell stack 120 and the end plate 150 located between the and a bus bar frame 130 .
  • the module frame 200 includes a U-shaped frame 300 having an upper surface, an open front and rear surface, and an upper plate 400 covering the upper portion of the battery cell stack 120 .
  • the first thermally conductive resin layer 310 may be positioned between the battery cell stack 120 and the bottom surface of the U-shaped frame 300 .
  • the first thermally conductive resin layer 310 may be coated with a thermally conductive resin on the bottom surface of the U-shaped frame 300 before the battery cell stack 120 is mounted on the bottom surface of the U-shaped frame 300 . there is. Thereafter, as the thermally conductive resin is cured, the first thermally conductive resin layer 310 may be formed. Accordingly, the first thermally conductive resin layer 310 may transfer heat generated in the battery cell 110 to the bottom of the battery module 100 to cool the battery cell 110 .
  • the thermally conductive resin layer 310 may include a first thermally conductive resin layer 311 and a second thermally conductive resin layer 315 .
  • the first thermally conductive resin layer 311 and the second thermally conductive resin layer 315 may be formed of the same thermally conductive resin material.
  • the first thermally conductive resin layer 311 is formed adjacent to the front surface of the battery cell laminate 120
  • the second thermally conductive resin layer 315 is the battery cell laminate It may be formed adjacent to the rear surface of 120 .
  • at least a portion of the first thermally conductive resin layer 311 and at least a portion of the second thermally conductive resin layer 315 may be spaced apart from each other.
  • the first thermally conductive resin layer 311 and the second thermally conductive resin layer 315 may be spaced apart from each other.
  • the first thermally conductive resin layer 311 and the second thermally conductive resin layer 315 may be formed to have different or the same width. More preferably, the first thermally conductive resin layer 311 and the second thermally conductive resin layer 315 may be formed to have the same width. That is, in the battery module 100 according to the present embodiment, on the lower surface of the module frame 200 , the thermally conductive resin layer 310 may be formed around both ends of the battery cell stack.
  • the thermal conductive resin layer 310 relatively reduces the degree of cooling for the outer battery cells of the battery cell stack, thereby reducing the cooling deviation within the battery cell stack.
  • the thermally conductive resin layer 310 can effectively cool the heat generated as the positive and negative electrodes are positioned at both ends in the longitudinal direction of the battery cell stack. Accordingly, in the present embodiment, the voltage drop of the outer battery cells is relatively weak, so that the use of the module is not limited even with reference to the outer battery cells, and thus, uneven deterioration between the battery cells in the module can be prevented. In addition, energy efficiency can also be increased.
  • thermally conductive resin layer 310 is spaced apart from the first thermally conductive resin layer 311 and the second thermally conductive resin layer 315, the amount of application of the thermally conductive resin can be reduced, and the manufacturing cost is reduced economically There is an advantage.
  • first thermally conductive resin layer 311 and the second thermally conductive resin layer 315 may have a symmetrical shape with respect to the longitudinal direction of the module frame 200 .
  • first thermally conductive resin layer 311 and the second thermally conductive resin layer 315 may have symmetrical shapes with respect to the width direction of the module frame 200 . Accordingly, the thermally conductive resin layer 310 can be cooled more uniformly with respect to the battery cell stack 120 , so that the cooling deviation of the battery module 100 can be further improved.
  • FIG. 7 and 8 are views illustrating a thermally conductive resin layer formed on a bottom surface of a module frame according to another embodiment of the present invention.
  • the thermally conductive resin layer 310 is spaced apart between the first thermally conductive resin layer 311 and the second thermally conductive resin layer 315.
  • the first distance is the module frame 200. may be different depending on the position on the bottom surface of the Other than that, the contents are the same as those described above, and the following description will be focused on the thermally conductive resin layer 310 .
  • the first distance between the first thermally conductive resin layer 311 and the second thermally conductive resin layer 315 is from the center of the bottom surface of the module frame 200 to the outside. may grow larger. In other words, the width of the first thermally conductive resin layer 311 and the second thermally conductive resin layer 315 may decrease from the center of the bottom surface of the module frame 200 toward the outside. For example, the first thermally conductive resin layer 311 and the second thermally conductive resin layer may contact each other at a position corresponding to the center of the bottom surface of the module frame 200 . In addition, the first thermally conductive resin layer 311 and the second thermally conductive resin layer may be spaced apart from each other at positions corresponding to the center of the bottom surface of the module frame 200 .
  • the thermally conductive resin layer 310 has a relatively large width at a position corresponding to the central battery cell of the battery cell stack, and a relatively small width at a position corresponding to the outer battery cell of the battery cell stack. may be formed of That is, in the battery module 100 according to this embodiment, on the lower surface of the module frame 200 , the thermally conductive resin layer 310 is formed around the central battery cell of the battery cell stack and both ends of the battery cell stack. may have been
  • the thermal conductive resin layer 310 further reduces the degree of cooling for the outer battery cells of the battery cell stack while maintaining the degree of cooling for the central battery cells of the battery cell stack, so that the battery cell Cooling variations within the laminate can be further reduced.
  • the thermal conductive resin layer 310 reduces the degree of cooling for the outer battery cells of the battery cell stack while maintaining the degree of cooling for both ends of the battery cell stack, so that the cooling deviation within the battery cell stack is more efficient. can be reduced to Accordingly, in the present embodiment, the voltage drop of the outer battery cells is relatively weaker, so even with reference to the outer battery cells, the use of the module is not further limited, and thus non-uniform deterioration between the battery cells in the module can be further prevented. there is. Also, energy efficiency can be further increased.
  • the thermally conductive resin layer 310 has a larger distance between the first thermally conductive resin layer 311 and the second thermally conductive resin layer 315 depending on the position of the module frame 200, so that the thermally conductive resin It is possible to further reduce the amount of coating, there is an economic advantage that the manufacturing cost is further reduced.
  • a battery pack according to another embodiment of the present invention includes the battery module described above. Meanwhile, one or more battery modules according to the present embodiment may be packaged in a pack case to form a battery pack.
  • the above-described battery module and battery pack including the same may be applied to various devices.
  • a device may be applied to transportation means such as an electric bicycle, an electric vehicle, and a hybrid vehicle, but the present invention is not limited thereto and is applicable to various devices that can use a battery module and a battery pack including the same, and this It belongs to the scope of the right of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명의 일 실시예에 따른 전지 모듈은, 복수의 전지셀이 적층되어 있는 전지셀 적층체; 및 상기 전지셀 적층체를 수용하는 모듈 프레임을 포함하고, 상기 모듈 프레임의 바닥면에 열전도성 수지층이 형성되어 있고, 상기 열전도성 수지층은 제1 열전도성 수지층 및 제2 열전도성 수지층을 포함하고, 상기 제1 열전도성 수지층은 상기 전지셀 적층체의 전면에 인접하게 형성되고, 상기 제2 열전도성 수지층은 상기 전지셀 적층체의 후면에 인접하게 형성되고, 상기 제1 열전도성 수지층의 적어도 일부와 상기 제2 열전도성 수지층의 적어도 일부는 서로 이격되어 있다.

Description

전지 모듈 및 이를 포함하는 전지팩
관련 출원(들)과의 상호 인용
본 출원은 2020년 09월 21일자 한국 특허 출원 제10-2020-0121336호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈 및 이를 포함하는 전지팩에 관한 것으로, 보다 구체적으로는 전지셀 간의 온도 편차가 개선된 전지 모듈 및 이를 포함하는 전지팩에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 특히, 이차전지는 휴대폰, 디지털 카메라, 노트북, 웨어러블 디바이스 등의 모바일 기기뿐만 아니라, 전기 자전거, 전기 자동차, 하이브리드 전기 자동차 등의 동력 장치에 대한 에너지원으로도 많은 관심을 가지고 있다.
소형 모바일 기기들에는 디바이스 1대당 하나 또는 두서너 개의 전지셀들이 사용됨에 반해, 자동차 등과 같이 중대형 디바이스들에는 고출력 대용량이 필요하다. 따라서, 다수의 전지셀을 전기적으로 연결한 중대형 전지 모듈이 사용된다.
중대형 전지 모듈은 가능하면 작은 크기와 중량으로 제조되는 것일 바람직하므로, 높은 집적도로 적층될 수 있고 용량 대비 중량이 작은 각형 전지, 파우치형 전지 등이 중대형 전지 모듈의 전지셀로서 주로 사용되고 있다. 한편, 전지 모듈은, 전지셀 적층체를 외부 충격, 열 또는 진동으로부터 보호하기 위해, 전면과 후면이 개방되어 전지셀 적층체를 내부 공간에 수납하는 모듈 프레임을 포함할 수 있다.
도 1은 종래 전지 모듈의 분해 사시도이다. 도 2는 도 1의 전지 모듈을 구성하는 구성 요소들을 결합한 상태를 나타내는 사시도이다.
도 1 및 도 2를 참고하면, 종래의 전지 모듈(10)은 복수의 전지셀(11)이 일방향으로 적층된 적층되어 있는 전지셀 적층체(12), 전지셀 적층체(12)를 수용하는 모듈 프레임(20), 전지셀 적층체의 전후면을 커버하는 엔드 플레이트(15) 및 엔드 플레이트(15)와 전지셀 적층체(12)의 전후면 사이에 형성된 버스바 프레임(13)을 포함한다. 모듈 프레임(20)은 전지셀 적층체(12)의 하부 및 양 측면을 덮는 하부 프레임(30)과 전지셀 적층체(12)의 상면을 덮는 상부 플레이트(40)를 포함한다. 전지 모듈(10)은 하부 프레임(30)에서 전지셀 적층체(12)의 하부를 덮는 바닥면에 열전도성 수지층(31)이 도포되어 있다. 열전도성 수지층(31)은 전지셀 적층체(12)에서 발생한 열을 전지 모듈(10) 바깥으로 전달하면서, 전지셀 적층체(12)의 발생한 열을 냉각할 수 있다.
도 3은 도 2의 절단선 A-A를 따라 자른 단면도이다. 도 4는 도 1의 전지 모듈의 구성요소인 모듈 프레임의 바닥면의 상면도이다.
도 3을 참고하면, 종래의 전지 모듈(10)은 전지셀 적층체(12)의 하부를 냉각해주는 구조로, 전지셀(11)에서 발생된 열은 하부를 향하는 제1 냉각 방향(D1)으로 흐르는 구조이다. 그러나, 전지셀 적층체(12)는 중심 전지셀의 온도가 가장 높고, 외곽 전지셀의 온도가 가장 낮은 특성을 가진다. 이와 더불어, 전지셀 적층체(12)는 길이 방향을 기준으로 양 단부에 양극 및 음극이 위치됨에 따라, 전지 모듈(10)의 충방전 과정에서 열이 상대적으로 중심부에 비해 많이 발생된다.
특히, 전지셀(11)은 리튬 플레이팅 현상을 방지하기 위해, 일정 전압 이하가 되면 전지 모듈(10) 전체의 충방전을 중지하게 된다. 이 때, 전지 모듈(10)의 사용 측면에서 전지셀 적층체(12)의 중심 전지셀을 기준으로는 문제되지 않는다. 그러나, 전지셀 간의 냉각 편차로 인해 외곽 전지셀이 중심 전지셀에 비해 보다 냉각되어 있어, 외곽 전지셀의 전압 강하가 심하고, 이에 따라, 모듈 사용 측면에서 제한될 수 있다.
그러나, 도 4를 참조하면, 종래의 전지 모듈(10)의 경우, 열전도성 수지층(31)이 전지셀 적층체(12)의 온도 편차에 관한 특성에 대한 고려 없이 하부 프레임(30)의 바닥면 전체에 열전도성 수지층(31)이 도포되어 있어, 전지셀 적층체(12)에서 냉각 편차가 발생된다. 특히, 저온 환경에서는, 전지셀 적층체(12)의 냉각과 관련하여 열전도성 수지층(31)이 미치는 영향이 크며, 열전도성 수지층(31)에 의한 전지셀 적층체(12)의 냉각 편차는 고온 환경에 비해 더 크게 형성될 수 있다. 이에 따라, 종래의 전지 모듈(10)은 전지셀 적층체(12)의 외곽 전지셀은 전압 강하로 인해 모듈 사용 측면에서 제한적이며, 중심 전지셀과 외곽 전지셀 사이의 냉각 편차를 개선할 필요가 있다.
본 발명의 해결하고자 하는 과제는, 전지셀 간의 온도 편차가 개선된 전지 모듈 및 이를 포함하는 전지팩을 제공하는 것이다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 전지 모듈은, 복수의 전지셀이 적층되어 있는 전지셀 적층체; 및 상기 전지셀 적층체를 수용하는 모듈 프레임을 포함하고, 상기 모듈 프레임의 바닥면에 열전도성 수지층이 형성되어 있고, 상기 열전도성 수지층은 제1 열전도성 수지층 및 제2 열전도성 수지층을 포함하고, 상기 제1 열전도성 수지층은 상기 전지셀 적층체의 전면에 인접하게 형성되고, 상기 제2 열전도성 수지층은 상기 전지셀 적층체의 후면에 인접하게 형성되고, 상기 제1 열전도성 수지층의 적어도 일부와 상기 제2 열전도성 수지층의 적어도 일부는 서로 이격되어 있다.
상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 동일한 폭으로 형성되어 있되, 상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 서로 이격되어 있을 수 있다.
상기 제1 열전도성 수지층 및 제2 열전도성 수지층 사이에 이격되어 있는 제1 거리는 상기 모듈 프레임의 바닥면에서의 위치에 따라 상이할 수 있다.
상기 제1 거리는 상기 모듈 프레임의 바닥면 중심에서 외곽으로 갈수록 커질 수 있다.
상기 모듈 프레임의 바닥면 중심에 대응되는 위치에 형성된 상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 서로 접하고 있을 수 있다.
상기 모듈 프레임의 바닥면 중심에 대응되는 위치에 형성된 상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 서로 이격되어 있을 수 있다.
상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 상기 모듈 프레임의 길이 방향을 기준으로 대칭인 형상을 가질 수 있다.
상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 상기 모듈 프레임의 폭 방향을 기준으로 서로 대칭인 형상을 가질 수 있다.
상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 동일한 열전도성 수지 물질로 구성될 수 있다.
상기 모듈 프레임은 상기 전지셀 적층체의 하부 및 양 측면을 수용하는 하부 프레임과 상기 전지셀 적층체의 상면을 덮는 상부 플레이트를 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 전지팩은 상기에서 설명한 전지 모듈을 포함한다.
실시예들에 따르면, 본 발명은 전지셀 적층체에 대응되는 모듈 프레임의 바닥면의 위치에 따라 다른 길이를 가지는 열전도성 수지층이 형성되어, 전지셀 간의 온도 편차가 개선될 수 있다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 종래 전지 모듈의 분해 사시도이다.
도 2는 도 1의 전지 모듈을 구성하는 구성 요소들을 결합한 상태를 나타내는 사시도이다.
도 3은 도 2의 절단선 A-A를 따라 자른 단면도이다.
도 4는 도 1의 전지 모듈의 구성요소인 모듈 프레임의 바닥면의 상면도이다.
도 5는 본 발명의 일 실시 예에 따른 전지 모듈의 분해 사시도이다.
도 6은 도 5의 모듈 프레임의 바닥면에 형성된 열전도성 수지층을 나타내는 도면이다.
도 7 및 도 8은 본 발명의 다른 실시 예에 따른 모듈 프레임의 바닥면에 형성된 열전도성 수지층을 나타내는 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
이하에서는, 본 발명의 실시예에 따른 전지 모듈에 대해 설명하고자 한다. 다만, 여기서 전지 모듈의 전후면 중 전면을 기준으로 설명될 것이나, 반드시 이에 한정되는 것은 아니고 후면인 경우에도 동일하거나 유사한 내용으로 설명될 수 있다.
도 5는 본 발명의 일 실시 예에 따른 전지 모듈의 분해 사시도이다. 도 6은 도 5의 모듈 프레임의 바닥면에 형성된 열전도성 수지층을 나타내는 도면이다.
도 5 및 도 6을 참조하면, 본 실시예에 따른 전지 모듈(100)은 복수의 전지셀(110)이 제1 방향(y축)으로 적층되는 전지셀 적층체(120), 전지셀 적층체(120)를 수용하는 모듈 프레임(200), 전지셀 적층체(120)의 전면과 후면에 각각 위치하는 엔드 플레이트(150), 및 전지셀 적층체(120)와 엔드 플레이트(150) 사이에 위치하는 버스바 프레임(130)을 포함한다. 모듈 프레임(200)은 상부면, 전면 및 후면이 개방된 U자형 프레임(300), 전지셀 적층체(120)의 상부를 덮는 상부 플레이트(400)를 포함한다.
본 실시 예에 따른 전지 모듈(100)은 전지셀 적층체(120)와 U자형 프레임(300)의 바닥면 사이에 제1 열전도성 수지층(310)이 위치할 수 있다. 제1 열전도성 수지층(310)은 상기 전지셀 적층체(120)가 U자형 프레임(300)의 바닥면에 장착되기 전에, U자형 프레임(300)의 바닥면에 열전도성 수지가 도포될 수 있다. 이후, 열전도성 수지가 경화됨에 따라 제1 열전도성 수지층(310)이 형성될 수 있다. 이에 따라, 제1 열전도성 수지층(310)은 전지셀(110)에서 발생되는 열을 전지 모듈(100)의 바닥으로 전달하여, 전지셀(110)을 냉각시킬 수 있다.
또한, 도 5 및 도 6을 참조하면, 열전도성 수지층(310)은 제1 열전도성 수지층(311) 및 제2 열전도성 수지층(315)을 포함할 수 있다. 여기서, 제1 열전도성 수지층(311)과 제2 열전도성 수지층(315)은 동일한 열전도성 수지 물질로 구성될 수 있다.
모듈 프레임(200)의 바닥면에서, 제1 열전도성 수지층(311)은 전지셀 적층체(120)의 전면에 인접하게 형성되어 있고, 제2 열전도성 수지층(315)은 전지셀 적층체(120)의 후면에 인접하게 형성되어 있을 수 있다. 또한, 제1 열전도성 수지층(311)의 적어도 일부와 제2 열전도성 수지층(315)의 적어도 일부는 서로 이격되어 있을 수 있다.
일 예로, 제1 열전도성 수지층(311)와 제2 열전도성 수지층(315)은 서로 이격되어 있을 수 있다. 이 때, 제1 열전도성 수지층(311)과 제2 열전도성 수지층(315)은 서로 상이하거나 동일한 폭으로 형성되어 있을 수 있다. 보다 바람직하게는, 제1 열전도성 수지층(311)과 제2 열전도성 수지층(315)은 서로 동일한 폭으로 형성되어 있을 수 있다. 즉, 본 실시 예에 따른 전지 모듈(100)은 모듈 프레임(200) 하부면에서, 열전도성 수지층(310)이 전지셀 적층체의 양 단부를 중심으로 형성되어 있을 수 있다.
이에 따라, 본 실시 예는 열전도성 수지층(310)이 전지셀 적층체의 외곽 전지셀에 대한 냉각 정도를 상대적으로 감소시켜, 전지셀 적층체 내의 냉각 편차를 감소시킬 수 있다. 이와 더불어, 열전도성 수지층(310)은 전지셀 적층체의 길이 방향을 기준으로 양 단부에 양극 및 음극이 위치됨에 따라 발생되는 열을 효과적으로 냉각시킬 수 있다. 이에 따라, 본 실시 예는 외곽 전지셀의 전압 강하가 상대적으로 약해져, 외곽 전지셀을 기준으로 하더라도 모듈 사용 측면에서 제한되지 않고, 이에 따른 모듈 내 전지셀 간의 비균등 퇴화를 방지할 수 있다. 또한, 에너지 효율도 증가할 수 있다.
또한, 열전도성 수지층(310)은 제1 열전도성 수지층(311)과 제2 열전도성 수지층(315)이 이격되어 있어, 열전도성 수지의 도포량을 줄일 수 있고, 제조 비용이 절감되는 경제적 이점이 있다.
또한, 제1 열전도성 수지층(311)과 제2 열전도성 수지층(315)은 모듈 프레임(200)의 길이 방향을 기준으로 대칭인 형상을 가질 수 있다. 또한, 제1 열전도성 수지층(311)과 제2 열전도성 수지층(315)은 모듈 프레임(200)의 폭 방향을 기준으로 서로 대칭인 형상을 가질 수 있다. 이에 따라, 열전도성 수지층(310)은 전지셀 적층체(120)에 대해 보다 균일하게 냉각시킬 수 있어, 전지 모듈(100)의 냉각 편차가 보다 개선될 수 있다.
도 7 및 도 8은 본 발명의 다른 실시 예에 따른 모듈 프레임의 바닥면에 형성된 열전도성 수지층을 나타내는 도면이다.
도 7 및 도 8을 참조하면, 열전도성 수지층(310)은 제1 열전도성 수지층(311) 및 제2 열전도성 수지층(315) 사이에 이격되어 있는 제1 거리는 상기 모듈 프레임(200)의 바닥면에서의 위치에 따라 상이할 수 있다. 이외에 내용은 상술한 내용들과 동일하며, 이하에서는 열전도성 수지층(310)을 중심으로 설명한다.
도 7 및 도 8을 참조하면, 본 실시예에서 제1 열전도성 수지층(311)과 제2 열전도성 수지층(315) 사이의 상기 제1 거리는 모듈 프레임(200)의 바닥면 중심에서 외곽으로 갈수록 커질 수 있다. 다르게 말하면, 제1 열전도성 수지층(311)과 제2 열전도성 수지층(315)의 폭은 모듈 프레임(200)의 바닥면 중심에서 외곽으로 갈수록 줄어들 수 있다. 일 예로, 제1 열전도성 수지층(311)과 제2 열전도성 수지층은 모듈 프레임(200)의 바닥면 중심에 대응되는 위치에서 서로 접할 수 있다. 또한, 제1 열전도성 수지층(311)과 제2 열전도성 수지층은 모듈 프레임(200)의 바닥면 중심에 대응되는 위치에서 서로 이격되어 있을 수 있다.
이에 따라, 열전도성 수지층(310)은 전지셀 적층체의 중심 전지셀에 대응되는 위치에서 상대적으로 큰 폭으로 형성되어 있고, 전지셀 적층체의 외곽 전지셀에 대응되는 위치에서 상대적으로 작은 폭으로 형성되어 있을 수 있다. 즉, 본 실시 예에 따른 전지 모듈(100)은 모듈 프레임(200) 하부면에서, 열전도성 수지층(310)이 전지셀 적층체의 중심 전지셀과 전지셀 적층체의 양 단부를 중심으로 형성되어 있을 수 있다.
이에 따라, 본 실시 예는 열전도성 수지층(310)이 전지셀 적층체의 중심 전지셀에 대한 냉각 정도를 유지하면서, 전지셀 적층체의 외곽 전지셀에 대한 냉각 정도를 더욱 감소시켜, 전지셀 적층체 내의 냉각 편차가 더욱 감소될 수 있다. 또한, 열전도성 수지층(310)이 전지셀 적층체의 양단부에 대한 냉각 정도를 유지하면서, 전지셀 적층체의 외곽 전지셀에 대한 냉각 정도를 감소시켜, 전지셀 적층체 내의 냉각 편차가 보다 효율적으로 감소될 수 있다. 이에 따라, 본 실시 예는 외곽 전지셀의 전압 강하가 상대적으로 보다 약해져, 외곽 전지셀을 기준으로 하더라도 모듈 사용 측면에서 더욱 제한되지 않고, 이에 따른 모듈 내 전지셀 간의 비균등 퇴화를 더욱 방지할 수 있다. 또한, 에너지 효율도 보다 증가할 수 있다.
이와 더불어, 열전도성 수지층(310)은 제1 열전도성 수지층(311)과 제2 열전도성 수지층(315)이 모듈 프레임(200)의 위치에 따라 이격되어 있는 거리가 커져, 열전도성 수지의 도포량을 더욱 줄일 수 있고, 제조 비용이 보다 절감되는 경제적 이점이 있다.
본 발명의 다른 일 실시예에 따른 전지팩은 상기에서 설명한 전지 모듈을 포함한다. 한편, 본 실시 예에 따른 전지 모듈은 하나 또는 그 이상이 팩 케이스 내에 패키징되어 전지팩을 형성할 수 있다.
앞에서 설명한 전지 모듈 및 이를 포함하는 전지팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈 및 이를 포함하는 전지팩을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리 범위에 속한다.
이상에서 본 발명의 바람직한 실시 예에 대하여 상세하게 설명하였으나, 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
부호의 설명
100: 전지 모듈
110: 전지셀
120: 전지셀 적층체
130: 버스바 프레임
150: 엔드 플레이트
200: 모듈 프레임
310: 열전도성 수지층

Claims (11)

  1. 복수의 전지셀이 적층되어 있는 전지셀 적층체; 및
    상기 전지셀 적층체를 수용하는 모듈 프레임을 포함하고,
    상기 모듈 프레임의 바닥면에 열전도성 수지층이 형성되어 있고,
    상기 열전도성 수지층은 제1 열전도성 수지층 및 제2 열전도성 수지층을 포함하고,
    상기 제1 열전도성 수지층은 상기 전지셀 적층체의 전면에 인접하게 형성되고, 상기 제2 열전도성 수지층은 상기 전지셀 적층체의 후면에 인접하게 형성되고,
    상기 제1 열전도성 수지층의 적어도 일부와 상기 제2 열전도성 수지층의 적어도 일부는 서로 이격되어 있는 전지 모듈.
  2. 제1항에서,
    상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 동일한 폭으로 형성되어 있되, 상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 서로 이격되어 있는 전지 모듈.
  3. 제1항에서,
    상기 제1 열전도성 수지층 및 제2 열전도성 수지층 사이에 이격되어 있는 제1 거리는 상기 모듈 프레임의 바닥면에서의 위치에 따라 상이한 전지 모듈.
  4. 제3항에서,
    상기 제1 거리는 상기 모듈 프레임의 바닥면 중심에서 외곽으로 갈수록 커지는 전지 모듈.
  5. 제4항에서,
    상기 모듈 프레임의 바닥면 중심에 대응되는 위치에 형성된 상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 서로 접하고 있는, 전지 모듈.
  6. 제4항에서,
    상기 모듈 프레임의 바닥면 중심에 대응되는 위치에 형성된 상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 서로 이격되어 있는, 전지 모듈.
  7. 제1항에서,
    상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 상기 모듈 프레임의 길이 방향을 기준으로 대칭인 형상을 가지는 전지 모듈.
  8. 제1항에서,
    상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 상기 모듈 프레임의 폭 방향을 기준으로 서로 대칭인 형상을 가지는 전지 모듈.
  9. 제1항에서,
    상기 제1 열전도성 수지층과 상기 제2 열전도성 수지층은 동일한 열전도성 수지 물질로 구성되는, 전지 모듈.
  10. 제1항에서,
    상기 모듈 프레임은 상기 전지셀 적층체의 하부 및 양 측면을 수용하는 하부 프레임과 상기 전지셀 적층체의 상면을 덮는 상부 플레이트를 포함하는, 전지 모듈.
  11. 제1항에 따른 전지 모듈을 포함하는 전지팩.
PCT/KR2021/010478 2020-09-21 2021-08-09 전지 모듈 및 이를 포함하는 전지팩 WO2022059917A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022558533A JP2023519001A (ja) 2020-09-21 2021-08-09 電池モジュールおよびこれを含む電池パック
US17/913,098 US20230135629A1 (en) 2020-09-21 2021-08-09 Battery module and battery pack including the same
EP21869540.1A EP4120441A4 (en) 2020-09-21 2021-08-09 BATTERY MODULE AND BATTERY PACK WITH IT
CN202180028787.0A CN115428233A (zh) 2020-09-21 2021-08-09 电池模块和包括该电池模块的电池组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200121336A KR20220038920A (ko) 2020-09-21 2020-09-21 전지 모듈 및 이를 포함하는 전지팩
KR10-2020-0121336 2020-09-21

Publications (1)

Publication Number Publication Date
WO2022059917A1 true WO2022059917A1 (ko) 2022-03-24

Family

ID=80776212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010478 WO2022059917A1 (ko) 2020-09-21 2021-08-09 전지 모듈 및 이를 포함하는 전지팩

Country Status (6)

Country Link
US (1) US20230135629A1 (ko)
EP (1) EP4120441A4 (ko)
JP (1) JP2023519001A (ko)
KR (1) KR20220038920A (ko)
CN (1) CN115428233A (ko)
WO (1) WO2022059917A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207541A (ja) * 2014-04-23 2015-11-19 日立建機株式会社 作業機械及びこれに搭載される蓄電装置の冷却構造
KR20170113466A (ko) * 2016-04-01 2017-10-12 주식회사 엘지화학 배터리 모듈
WO2019088625A1 (ko) * 2017-10-30 2019-05-09 주식회사 엘지화학 배터리 모듈 및 배터리 모듈을 조립하는 방법
KR20190078521A (ko) * 2017-12-26 2019-07-04 에스케이이노베이션 주식회사 배터리 모듈 및 이의 제조 방법
KR20190106715A (ko) * 2018-03-07 2019-09-18 에스케이이노베이션 주식회사 배터리 모듈 및 이의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208723044U (zh) * 2018-08-24 2019-04-09 微宏动力系统(湖州)有限公司 一种电池模组
KR20210150843A (ko) * 2020-06-04 2021-12-13 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207541A (ja) * 2014-04-23 2015-11-19 日立建機株式会社 作業機械及びこれに搭載される蓄電装置の冷却構造
KR20170113466A (ko) * 2016-04-01 2017-10-12 주식회사 엘지화학 배터리 모듈
WO2019088625A1 (ko) * 2017-10-30 2019-05-09 주식회사 엘지화학 배터리 모듈 및 배터리 모듈을 조립하는 방법
KR20190078521A (ko) * 2017-12-26 2019-07-04 에스케이이노베이션 주식회사 배터리 모듈 및 이의 제조 방법
KR20190106715A (ko) * 2018-03-07 2019-09-18 에스케이이노베이션 주식회사 배터리 모듈 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120441A4 *

Also Published As

Publication number Publication date
JP2023519001A (ja) 2023-05-09
EP4120441A4 (en) 2024-03-27
EP4120441A1 (en) 2023-01-18
US20230135629A1 (en) 2023-05-04
KR20220038920A (ko) 2022-03-29
CN115428233A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2020262832A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2018199521A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2021221300A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021210771A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2020145600A1 (ko) 전지 모듈, 및 이를 포함하는 전지팩
WO2021071052A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021075688A1 (ko) 전지 모듈 및 이을 포함하는 전지 팩
WO2020251171A1 (ko) 전지 모듈, 그 제조 방법 및 전지 모듈을 포함하는 전지 팩
WO2021060735A1 (ko) 배터리 모듈 및 이러한 배터리 모듈을 포함하는 배터리 랙 및 전력 저장 장치
WO2021071053A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021256661A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022182063A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022059917A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221310A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022158792A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021071057A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021221284A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021096023A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022158855A1 (ko) 전지 셀, 전지 모듈, 및 이를 포함하는 전지 팩
WO2021261702A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022124660A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023096096A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022225191A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022182062A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558533

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021869540

Country of ref document: EP

Effective date: 20221010

NENP Non-entry into the national phase

Ref country code: DE