WO2022059738A1 - Sealing material for display element, cured object obtained therefrom, and display device - Google Patents

Sealing material for display element, cured object obtained therefrom, and display device Download PDF

Info

Publication number
WO2022059738A1
WO2022059738A1 PCT/JP2021/034147 JP2021034147W WO2022059738A1 WO 2022059738 A1 WO2022059738 A1 WO 2022059738A1 JP 2021034147 W JP2021034147 W JP 2021034147W WO 2022059738 A1 WO2022059738 A1 WO 2022059738A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
mass
encapsulant
display element
Prior art date
Application number
PCT/JP2021/034147
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 富田
航太郎 舘野
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2022550605A priority Critical patent/JP7451740B2/en
Priority to KR1020237000655A priority patent/KR20230022966A/en
Priority to CN202180049165.6A priority patent/CN115867959A/en
Publication of WO2022059738A1 publication Critical patent/WO2022059738A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Definitions

  • the present invention relates to a sealant for a display element, a cured product thereof, and a display device.
  • Organic EL elements are being used in displays, lighting devices, and the like because they consume less power. Since organic EL elements are easily deteriorated by moisture and oxygen in the atmosphere, they are used by being sealed with various sealing members, and the durability of moisture and oxygen of various sealing members will be improved for practical use. It is desired.
  • a method for sealing the organic EL for example, a method is used in which a resin layer is formed on an organic EL element coated with a first layer of an inorganic material film, and then a second layer of the inorganic material film is coated. ing.
  • the method of coating with the inorganic material film include a method of forming an inorganic material film made of silicon nitride or silicon oxide by a sputtering method, an electron cyclotron resonance (ECR) plasma CVD method, or the like.
  • ECR electron cyclotron resonance
  • Patent Document 1 International Publication No. 2018/704878 describes a specific (meth) acrylate as a technique for providing a composition having excellent coatability and low moisture permeability when used for encapsulating an organic EL device.
  • a composition containing a specific amount of the above has been proposed.
  • an inorganic passion film is formed on the cured product of the composition of the present embodiment by a method such as CVD.
  • the thermal expansion prevents the occurrence of pinholes due to uneven film formation of the inorganic passivation film, and the reliability of the organic EL element is improved "(paragraph 0081).
  • Patent Document 2 Japanese Patent Laid-Open No. 2017-523549 provides a composition for encapsulating an organic light emitting device, which can realize an organic barrier layer having excellent plasma resistance and improve the reliability of the organic light emitting device. The purpose is to do.
  • patent document 1 may not be suitable for devices that require flexibility because the glass transition temperature of the cured product is high. In that respect, there was room for improvement.
  • the encapsulating composition contains a silicon-based di (meth) acrylate having a specific skeleton, it is suitable for a device having a high glass transition temperature and also requiring flexibility. There was room for improvement in that it was expected to be absent.
  • the present invention provides a sealant for a display element capable of forming a resin layer having excellent plasma resistance and high flexibility.
  • a sealant for a display element, a cured product, and a display device shown below are provided.
  • the component (C) is at least one of dibutylhydroxytoluene and pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], [1] or [ 2]
  • [6] A cured product obtained by curing the sealant for a display element according to any one of [1] to [5].
  • [7] With the board Display elements arranged on the substrate and The sealing layer that covers the display element and Including A display device in which the sealing layer is made of a cured product of the sealing agent for a display element according to any one of [1] to [5].
  • the sealing agent for a display element (hereinafter, also simply referred to as “sealing agent” as appropriate) is a composition used for sealing an element, and the following components (A) to (C).
  • the glass transition temperature of the cured product is 90 ° C. or higher and lower than 200 ° C.
  • C Hindered Amine
  • the component (A) is a polymerizable compound.
  • the component (A) may be a compound having a polymerizable functional group, and is preferably a compound having a radically polymerizable functional group.
  • the radically polymerizable functional group include one or more groups selected from the group consisting of (meth) acryloyl group and vinyl group.
  • the component (A) is preferably a compound containing a (meth) acryloyl group.
  • the (meth) acryloyl group means at least one of an acryloyl group and a methacryloyl group.
  • (meth) acrylic means at least one of acrylic and methacrylic.
  • the (meth) acrylate means at least one of acrylate and methacrylate.
  • the (meth) acrylic compound having a (meth) acryloyl group include a mono (meth) acrylic compound, a di (meth) acrylic compound, and a trifunctional or higher functional (meth) acrylic compound.
  • the mono (meth) acrylic compound examples include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, 3,3,5-trimethylcyclohexyl (meth) acrylate, and 4-tershalbutylcyclohexyl (meth) acrylate.
  • di (meth) acrylic compound examples include di (meth) acrylate of diol and di (meth) acrylate of (poly) alkylene glycol, and more specifically, 1,6-hexanediol diacrylate (for example).
  • A-HD-N manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • 1,9-nonanediol diacrylate for example, A-NOD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd .
  • light acrylate 1,9ND-A manufactured by Kyoeisha Chemical Co., Ltd.
  • 1,10-decanediol diacrylate for example, A-DOD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • neopentyl glycol diacrylate for example, A-NPG, manufactured by Shin-Nakamura Chemical Industry Co., Ltd .
  • Light Acrylate NP-A manufactured by Kyoeisha Chemical Co., Ltd.
  • Ethylene Glycol Diacrylate eg SR206NS, manufactured by Alchema
  • Polyethylene Glycol Diacrylate eg A-400, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • Dimethacrylate (eg BG, manufactured by Shin-Nakamura Chemical Industry), 1,4-butanediol dimethacrylate (eg BD, manufactured by Shin-Nakamura Chemical Industry), 1,6-hexanediol dimethacrylate (eg HD-N, manufactured by Shin-Nakamura) Chemical Industry Co., Ltd.), 1,9-Nonandiol dimethacrylate (for example, NOD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), 1,10-decanediol dimethacrylate (for example, DOD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), Examples thereof include 1,12-dodecanediol diacrylate (for example, SR262, manufactured by Sartmer) and neopentyl glycol dimethacrylate (for example, NPG, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.).
  • trifunctional or higher functional polyfunctional (meth) acrylic compounds include trimethylolpropane triacrylate (for example, A-TMPT, manufactured by Shin-Nakamura Chemical Industry Co., Ltd .; light acrylate TMP-A, manufactured by Kyoeisha Chemical Co., Ltd.), and ethoxylated trimethylol.
  • Propanetriacrylate eg A-TMPT-EO, manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • ethoxylated glycerin triacrylate eg A-GLY-6E, manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • propoxylated glycerin triacrylate eg A-GLY) -3P, manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • Pentaerythritol tetraacrylate eg A-TMMT, manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • ethoxylated pentaerythritol tetraacrylate eg ATM-4E, manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • ditrimethylolpropane tetraacrylate eg AD-TMP-L
  • Shin Nakamura Chemical Industry Co., Ltd. and other tetrafunctional (meth) acrylic compounds
  • the component (A) preferably contains a (meth) acrylic compound having two or more (meth) acryloyl groups in one molecule. , More preferably a di (meth) acrylic compound, and even more preferably a di (meth) acrylic compound having an alicyclic structure and a di (meth) acrylic compound having a chain structure.
  • the di (meth) acrylic compound having an alicyclic structure has an alicyclic hydrocarbon structure in the molecular structure, and the number of carbon atoms in the alicyclic hydrocarbon structure is preferably 4 or more from the viewpoint of improving heat resistance. Yes, more preferably 5 or more, still more preferably 6 or more, still preferably 14 or less, more preferably 12 or less, still more preferably 10 or less.
  • the alicyclic hydrocarbon structure may be a saturated hydrocarbon structure or an unsaturated hydrocarbon structure. From the viewpoint of improving heat resistance, the alicyclic hydrocarbon structure is preferably a saturated hydrocarbon structure.
  • the alicyclic hydrocarbon structure may be a monocyclic hydrocarbon structure, a fused ring hydrocarbon structure, or a polycyclic hydrocarbon structure having a bridge ring hydrocarbon group structure.
  • the di (meth) acrylic compound having an alicyclic structure may contain a group containing these alicyclic hydrocarbon structures in the molecular structure, and preferably contains a divalent group containing an alicyclic hydrocarbon structure.
  • the monocyclic hydrocarbon group examples include a group having a cycloalkane structure such as a cyclohexylene group and a cyclohexyl group; and a group having a cycloalkene skeleton such as a cyclodecatoriendiyl group and a cyclodecatorien group.
  • the polycyclic hydrocarbon group include a group having a dicyclopentadiene skeleton such as a tricyclodecandyl group, a dicyclopentanyl group, and a dicyclopentenyl group; a norbornanediyl group, an isobornanediyl group, and a norbornyl group.
  • Groups having a norbornane skeleton such as an isobornyl group; groups having an adamantane skeleton such as an adamantane diyl group and an adamantane group can be mentioned.
  • the cyclic hydrocarbon group in the di (meth) acrylic compound having an alicyclic structure is preferably a group having a dicyclopentadiene skeleton from the viewpoint of improving plasma resistance and low moisture permeability. Further, the di (meth) acrylic compound having an alicyclic structure contains tricyclodecanedimethanol di (meth) acrylate from the viewpoint of improving plasma resistance and low moisture permeability, and more preferably tricyclodecanedimethanol. Di (meth) acrylate.
  • the content of the di (meth) acrylic compound having an alicyclic structure in the encapsulant is preferably 5 parts by mass or more, and more preferably 10 parts by mass with respect to 100 parts by mass of the polymerizable compound from the viewpoint of improving heat resistance.
  • mass or more more preferably 15 parts by mass or more, even more preferably 20 parts by mass or more, even more preferably 25 parts by mass or more, still more preferably 30 parts by mass or more.
  • the content of the di (meth) acrylic compound having an alicyclic structure in the encapsulant is preferably 60 parts by mass or less with respect to 100 parts by mass of the polymerizable compound. It is more preferably 58 parts by mass or less, further preferably 56 parts by mass or less, and even more preferably 50 parts by mass or less.
  • the di (meth) acrylic compound having a chain structure is specifically a (meth) acrylate having a chain structure in its molecular structure and having two or more (meth) acrylic groups, from the viewpoint of improving strength. Therefore, it is preferably a (meth) acrylate having two (meth) acrylic groups.
  • the chain structure may be a linear structure or a structure having branches.
  • the chain structure preferably contains a divalent hydrocarbon group having a straight chain or a branched chain from the viewpoint of making the inkjet coatability more preferable.
  • the number of carbon atoms of the divalent hydrocarbon group is, for example, 1 or more, preferably 2 or more, and more preferably 4 or more, from the viewpoint of accessibility of the monomer. Further, from the viewpoint of improving heat resistance, the number of carbon atoms of the divalent hydrocarbon group is preferably 20 or less, more preferably 14 or less.
  • di (meth) acrylic compound having a chain structure examples include di (meth) acrylate of alkanediol and di (meth) acrylate of (poly) alkylene glycol, and specific examples of the di (meth) acrylic compound are preferable.
  • the di (meth) acrylic compound having a chain structure is a 1,9-nonanediol di (meth) acrylate.
  • the content of the di (meth) acrylic compound having a chain structure in the encapsulant is preferably 5 parts by mass or more with respect to 100 parts by mass of the polymerizable compound from the viewpoint of making the inkjet coating property more preferable. , More preferably 10 parts by mass or more, still more preferably 15 parts by mass or more, still more preferably 20 parts by mass or more, and even more preferably 25 parts by mass or more. Further, from the viewpoint of improving plasma resistance, the content of the di (meth) acrylic compound having a chain structure in the encapsulant is preferably 60 parts by mass or less with respect to 100 parts by mass of the polymerizable compound. It is preferably 58 parts by mass or less, more preferably 56 parts by mass or less, and even more preferably 50 parts by mass or less.
  • the content of the component (A) in the encapsulant is preferably 70% by mass or more, more preferably 80% by mass or more, based on the total composition of the encapsulant, from the viewpoint of improving the strength of the cured product. It is more preferably 85% by mass or more, still more preferably 90% by mass or more, and even more preferably 93% by mass or more. Further, from the viewpoint of improving the weather resistance of the encapsulant, the content of the component (A) in the encapsulant is preferably 99.9% by mass or less with respect to the total composition of the encapsulant, which is more preferable. Is 99.5% by mass or less, more preferably 99% by mass or less, and even more preferably 98% by mass or less.
  • the component (B) is a polymerization initiator. From the viewpoint of stably forming a cured product at a low temperature, the component (B) is preferably a photopolymerization initiator which is a compound that generates radicals or acids by irradiation with ultraviolet rays or visible light. Examples of the photopolymerization initiator include an acylphosphine oxide-based initiator, an oxyphenylacetic acid ester-based initiator, a benzoylformic acid-based initiator, a hydroxyphenylketone-based initiator, and the like.
  • photopolymerization initiator examples include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, and 2-hydroxy-.
  • the photopolymerization initiator is preferably 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenyl-1-propanol, 1- [4- ( 2-Hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propanone, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ - 2-Methyl-1-propanol, 2,2-dimethoxy-2-phenylacetophenone, oxy-phenyl-acetic acid 2- [2-oxo-2-phenyl-acetoxy-ethoxy] -ethyl ester, oxy-phenyl-acetic acid 2- [2-Hydroxy-ethoxy] -ethyl ester, methyl benzoylate, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-
  • photopolymerization initiators include Irgacure 184, Irgacure 651, Irgacure 127, Irgacure 1173, Irgacure 500, Irgacure 2959, Irgacure 754, IrgacureMBF, IrgacureMBF, IrgacureTPO (above, BASF), etc.
  • the content of the component (B) in the encapsulant is preferably 0.1% by mass or more, more preferably 0.5% by mass, based on the total composition of the encapsulant, from the viewpoint of improving the curability. As mentioned above, it is more preferably 1% by mass or more, and even more preferably 2% by mass or more. Further, from the viewpoint of suppressing the coloring of the encapsulant, the content of the component (B) in the encapsulant is preferably 10% by mass or less, more preferably 8% by mass, based on the total composition of the encapsulant. % Or less, more preferably 6% by mass or less, still more preferably 5% by mass or less.
  • the component (C) is an antioxidant.
  • the antioxidant include a hindered phenolic antioxidant and a phosphorus-based antioxidant.
  • a hindered phenolic antioxidant is preferable, and more specifically, a hindered phenol compound is preferable from the viewpoint of improving plasma resistance.
  • a hindered phenolic antioxidant is a substance having a phenolic hydroxyl group that receives a radical generated by a reaction with oxygen and changes it into a stable phenoxy radical.
  • hindered phenol compound examples include dibutylhydroxytoluene, that is, 2,6-bis (1,1-dimethylethyl) -4-methylphenol (BHT manufactured by Wako Pure Chemical Industries, Ltd.), 3,5-di-tert-butyl-4.
  • Phosphorus-based antioxidants include 2,2-methylenebis (4,6-dit-butylphenyl) octylphosphite (manufactured by ADEKA; trade name: ADEKA STAB HP-10), tris (2,4-dit-).
  • Phosphite esters such as butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168) can be mentioned.
  • the component (C) is dibutylhydroxytoluene and pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]. At least one of.
  • the content of the component (C) in the encapsulant is preferably 0.01% by mass or more, more preferably 0, based on the total composition of the encapsulant, from the viewpoint of improving the flexibility of the encapsulant. .1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.3% by mass or more. Further, from the viewpoint of improving the curability of the encapsulant, the content of the component (C) in the encapsulant is preferably 2% by mass or less, more preferably 1% by mass, based on the total composition of the encapsulant. % Or less, more preferably 0.8% by mass or less, still more preferably 0.6% by mass or less.
  • the content of the component (C) in the encapsulant is 100 parts by mass of the component (A). On the other hand, it is preferably 0.01 part by mass or more, more preferably 0.1 part by mass or more, still more preferably 0.2 part by mass or more, still more preferably 0.3 part by mass or more. Further, from the viewpoint of improving the curability of the encapsulating material, the content of the component (C) in the encapsulant is preferably 2 parts by mass or less with respect to 100 parts by mass of the component (A), more preferably. It is 1 part by mass or less, more preferably 0.8 part by mass or less, still more preferably 0.6 part by mass or less.
  • the encapsulant may be composed of the components (A) to (C), or may contain components other than the components (A) to (C).
  • the encapsulant may further contain component (D): a polymerization inhibitor.
  • the component (D) is a polymerization inhibitor.
  • Specific examples of the component (D) include 2,2,6,6-tetramethylpiperidine-1-oxyl (free radical) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (free radical).
  • the content of the component (D) in the encapsulant is preferable with respect to the entire composition of the encapsulant from the viewpoint of improving plasma resistance and suppressing damage to the element to which the encapsulant is applied. Is 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.005% by mass or more. Further, from the viewpoint of improving the curability of the encapsulant, the content of the component (D) in the encapsulant is preferably 1% by mass or less, more preferably 0. It is 75% by mass or less, more preferably 0.5% by mass or less.
  • components other than the components (A) to (C) include, in addition to the above-mentioned component (D), an antistatic agent, a filler, a curing accelerator, a plasticizer, a surfactant, a heat stabilizer, a flame retardant, and the like. Included is one or more additives selected from the group consisting of antistatic agents, defoaming agents, leveling agents and UV absorbers.
  • the glass transition temperature (Tg) of the cured product of the encapsulant is 90 ° C. or higher, preferably 110 ° C. or higher, and more preferably 130 ° C. or higher from the viewpoint of improving the heat resistance of the encapsulant. Further, from the viewpoint of improving the flexibility, the Tg of the cured product of the encapsulant is less than 200 ° C., preferably 190 ° C. or lower, more preferably 180 ° C. or lower.
  • the glass transition temperature (Tg) is measured by the following procedure.
  • the cured product of the encapsulant uses a 100 ⁇ m thick Teflon (registered trademark) sheet as a mold, sandwiches the uncured encapsulant between polyethylene terephthalate (PET) films, and has an illuminance of 1000 mW / LED with a UV-LED having a wavelength of 395 nm. It is obtained by curing under the conditions of cm 2 and an integrated light amount of 1500 mJ / cm 2 . The obtained cured product is cut into a size of 10 mm in width ⁇ 40 mm in length with a cutter.
  • Teflon registered trademark
  • the cured product cut out in the atmosphere is heated at a temperature of 5 ° C./min from room temperature to 250 ° C. while applying a frequency of 1 Hz.
  • Tan ⁇ is measured, and the temperature of the peak top of tan ⁇ is defined as Tg of the cured product.
  • the encapsulant having a Tg in a specific range can be obtained, for example, by appropriately selecting the components and the blending ratio contained in the resin composition and adjusting the production conditions.
  • the properties of the encapsulant are not limited, and the encapsulant is suitable from the viewpoint of improving the flexibility and plasma resistance of the encapsulating material and being suitable for forming a cured material by a coating method such as an inkjet method. It is preferably liquid.
  • the sealing agent is preferably a sealing agent used for coating, and more preferably a sealing used for coating by an inkjet method. It is a stop agent.
  • the dielectric constant of the cured product of the sealant is preferably 4.0 or less, more preferably 3.8 or less, still more preferably 3.6 or less, from the viewpoint of improving the sealing characteristics of the sealant. ..
  • the dielectric constant of the cured product of the encapsulant can be, for example, 1.0 or more.
  • the dielectric constant of the cured product of the encapsulant is the cured product obtained by curing the curable composition under the conditions of an illuminance of 1000 mW / cm 2 and an integrated light intensity of 1500 mJ / cm 2 with a UV-LED having a wavelength of 395 nm. Permittivity measured at a frequency of 100 kHz.
  • the method for producing the encapsulant is not limited, and includes, for example, mixing the components (A) to (C) and other components as appropriate, for example, various additives to be added as needed.
  • various known kneaders such as a planetary stirrer, a homodisper, a universal mixer, a Banbury mixer, a kneader, two rolls, three rolls, and an extruder are used alone or in combination. Examples thereof include a method of uniformly kneading under conditions such as normal pressure, reduced pressure, pressure, and an inert gas stream under normal temperature or heating.
  • a sealing material can be formed by using the obtained sealing agent.
  • a sealant may be applied onto the substrate and dried.
  • a known method such as an inkjet method, screen printing, or dispenser coating can be used. Further, the drying can be performed, for example, by heating to a temperature at which the component (A) does not polymerize.
  • the shape of the obtained encapsulating material is not limited and may be, for example, a film or a layer.
  • the encapsulating material is, for example, a cured product obtained by curing the encapsulant in the present embodiment, and more specifically, a photocured product of the encapsulant.
  • the method of photocuring the encapsulant include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, excima lasers, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, sodium lamps, and halogen lamps.
  • a method of curing by irradiating light using a light source such as a xenon lamp, an LED lamp, a fluorescent lamp, sunlight, or an electron beam irradiator.
  • the encapsulant contains the components (A) to (C) in combination and Tg is in a specific range. Therefore, by using such an encapsulant, plasma resistance is excellent and flexibility is increased. A high resin layer can be formed. By using such a resin layer as a sealing material, a display device having excellent reliability can be obtained.
  • the encapsulant obtained in the present embodiment is suitably used for encapsulating a display element, preferably an organic EL display element, for example.
  • a sealing agent capable of forming a resin layer having excellent plasma resistance and high flexibility can be obtained. Therefore, for example, damage to a display element in a manufacturing process of a display device can be effectively suppressed. This makes it possible to improve the manufacturing stability of the display device.
  • a configuration example of the display device will be given by taking an organic EL display device as an example.
  • the organic EL display device has a layer made of a cured product of a sealing agent.
  • the organic EL display device may have a top emission structure or a bottom emission structure.
  • the organic EL element is arranged on a substrate and is pre-coated with an inorganic material film so as to cover the region containing the organic EL element before being protected by the resin layer obtained by curing the encapsulant in the present embodiment. It is preferable that it is.
  • FIG. 1 is a cross-sectional view showing a configuration example of an organic EL display device according to the present embodiment.
  • the display device 100 shown in FIG. 1 is an organic EL display device, which comprises a substrate (base material layer 50), an organic EL element (light emitting element 10) arranged on the base material layer 50, and a light emitting element 10.
  • a sealing layer 22 (which may be an overcoat layer 22 or a barrier layer 22) to be coated is included. Then, for example, the sealing layer 22 is composed of a cured product of the sealing agent in the present embodiment. Further, in FIG.
  • the display device 100 has a barrier layer 21 (may be a touch panel layer 21 or a surface protection layer 21) and a sealing layer 22 (which may be a touch panel layer 21 or a surface protection layer 21) as layers located on the observation side of the light emitting element 10. It has an overcoat layer 22 or a barrier layer 22), a flattening layer 23 (may be a sealing layer 23), and a barrier layer 24.
  • the flattening layer 23 is provided on the base material layer 50 so as to cover the light emitting element 10, and the barrier layer 24 is provided on the surface of the flattening layer 23.
  • the sealing layer 22 is provided on the base material layer 50 so as to cover the flattening layer 23 and the barrier layer 24. Further, a barrier layer 21 is provided on the sealing layer 22.
  • the material of the base material layer 50 is not limited, and various materials such as a glass substrate, a silicon substrate, and a plastic substrate can be used.
  • a TFT substrate having a plurality of TFTs (thin film transistors) and a flattening layer on the substrate can also be used.
  • the sputtering method can be carried out under the conditions of room temperature, electric power of 50 to 1000 W, and pressure of 0.001 to 0.1 Torr, for example, using a single gas such as argon or nitrogen as a carrier gas or a mixed gas.
  • a mixed gas of SiH 4 and O 2 or a mixed gas of SiH 4 and N 2 is used, and the temperature is 30 ° C to 100 ° C, the pressure is 10 mTorr to 1Torr, the frequency is 2.45 GHz, and the power is increased. It can be performed under the condition of 10 to 1000 W.
  • a sealing layer 22 for example, a method of applying a sealing agent on the light emitting element 10 and curing the light emitting element 10. And so on.
  • a coating method it is preferable to use an inkjet method.
  • the thickness of the resin layer is not limited, but is, for example, 0.1 to 50 ⁇ m, preferably 1 to 20 ⁇ m from the viewpoint of improving the sealing performance and the flexible performance.
  • an inorganic material film (barrier layer 24) on the above-mentioned resin layer.
  • the inorganic material and the forming method for forming the inorganic material film laminated on the resin layer are the same as those for the inorganic material film covering the light emitting element 10 described above.
  • the thickness of the inorganic material film formed on the resin layer is not limited, but is, for example, 0.01 to 10 ⁇ m, preferably 0.1 to 5 ⁇ m from the viewpoint of improving the sealing performance.
  • the barrier layer 24 and the sealing layer 22 are provided on the light emitting element 10, and the sealing layer 22 is composed of a resin layer obtained by curing the sealing agent in the present embodiment. Therefore, it is possible to obtain a display device 100 having excellent reliability. Specifically, damage to the barrier layer 24 can be suppressed even when the plasma treatment step is performed when the barrier layer 24 is formed on the sealing layer 22, and for example, a SiN x film. It is possible to suppress the generation of pinholes in the barrier layer 24. Therefore, for example, when the product is stored in a temperature range of about 85 ° C., outgas is less likely to be generated, so that damage to the light emitting element 10 can be suppressed. Further, since the resin layer itself constituting the sealing layer 22 is not easily deteriorated by the plasma treatment, damage to the light emitting element 10 can be suppressed.
  • UV curable resin 1 dimethylol-tricyclodecanediacrylate, light acrylate DCP-A, manufactured by Kyoeisha Chemical Co., Ltd.
  • UV curable resin 2 trimethylol propantriacrylate, light acrylate TMP-A, manufactured by Kyoeisha Chemical Co., Ltd.
  • UV curable resin 3 neopentyl glycol diacrylate, light acrylate NP-A, manufactured by Kyoeisha Chemical Co., Ltd.
  • UV curable resin 4 1.9-nonanediol diacrylate, light acrylate 1,9ND-A, Kyoeisha Chemical Co., Ltd.
  • UV curable resin 5 lauryl acrylate, light acrylate LA, Kyoeisha Chemical Co., Ltd.
  • B UV radical initiator 1: 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, Omnirad TPO H, IGM Resins
  • C Antioxidant 1: Dibutylhydroxytoluene, BHT, Tokyo Kasei Kogyo Co., Ltd.
  • Antioxidant 2 Pentaerythritol Tetrakiss [3- (3,5-di-tbutyl-4-hydroxy) Phenyl) propionate, AO-60, manufactured by ADEKA
  • Polymeric initiator 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-Oxyl Free Radical, manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • Examples 1 to 10 Comparative Examples 1 to 11
  • a liquid curable composition was obtained as a sealing agent.
  • the physical characteristics of the encapsulant or the cured product thereof obtained in each example were measured by the following methods. The measurement results are also shown in Tables 1 and 2.
  • the cured product of the encapsulant obtained in each example was obtained by the following procedure. That is, using a 100 ⁇ m thick Teflon (registered trademark) sheet as a mold, an uncured encapsulant is sandwiched between PET films, and a UV-LED with a wavelength of 395 nm has an illuminance of 1000 mW / cm 2 and an integrated light intensity of 1500 mJ / cm 2 . It was cured under the conditions to obtain a cured product. The obtained cured product was cut into a size of 10 mm in width ⁇ 40 mm in length with a cutter.
  • the cured product cut out in the atmosphere is heated at a temperature of 5 ° C./min from room temperature to 250 ° C. while applying a frequency of 1 Hz.
  • Tan ⁇ was measured, and the temperature of the peak top of tan ⁇ was taken as Tg of the cured product.
  • Those having a Tg of 90 ° C. or higher and lower than 200 ° C. were evaluated as acceptable ( ⁇ ), and those having a Tg of less than 90 ° C. or 200 ° C. or higher were evaluated as rejected ( ⁇ ).
  • viscosity The viscosity of the curable composition obtained in each example was measured at 25 ° C. and 20 rpm using an E-type viscometer (LV DV-II + Pro, manufactured by BROOKFIELD).
  • a coating film for obtaining a cured product for measuring the dielectric constant was prepared by the following method. That is, the obtained encapsulant was introduced into an inkjet cartridge DMC-11610 (manufactured by FUJIFILM Dimension). The inkjet cartridge was set in an inkjet device DMP-2831 (manufactured by Fujifilm Dimatix), and after adjusting the ejection state, the thickness after curing was increased on a substrate on which aluminum was vapor-deposited to a thickness of 100 nm on non-alkali glass. It was applied in a size of 5 cm ⁇ 5 cm so as to be 10 ⁇ m.
  • the obtained coating film was placed in a box at room temperature (25 ° C.) for 5 minutes to allow nitrogen to flow, and then irradiated with ultraviolet rays having a wavelength of 395 nm under the conditions of an illuminance of 1000 mW / cm 2 and an integrated light intensity of 1500 mJ / cm 2 , and cured. A film was formed. Then, aluminum was deposited on the inkjet coated surface to a thickness of 100 nm, and the dielectric constant was measured with an LCR meter HP4284A (manufactured by Agilent Technologies) under the condition of 100 kHz by an automatic balanced bridge method.
  • LCR meter HP4284A manufactured by Agilent Technologies
  • the damage of the organic EL element in the plasma processing step was evaluated by the following method.
  • the encapsulant obtained in each example was introduced into an inkjet cartridge DMC-11610 (manufactured by FUJIFILM Dimension).
  • the inkjet cartridge is set in the inkjet device DMP-2831 (manufactured by Fujifilm Dimatic), and after adjusting the ejection state, the glass substrate has a size of 15 mm ⁇ 15 mm so that the cured thickness is 10 ⁇ m. Applied.
  • the obtained coating film was placed in a box at room temperature (25 ° C.) for 5 minutes to allow nitrogen to flow, and then irradiated with ultraviolet rays having a wavelength of 395 nm at 1500 mW / cm 2 for 1 second to form a cured film.
  • the sample on which the cured film was formed was plasma-treated for 1 minute under a pressure condition of 2500 W ICP power supply, 300 W RF power supply, DC bias 200 V, argon (Ar) flow rate 50 sccm, and 10 mtorr. Then, an inorganic sealing layer (SiN x film) having a film thickness of 100 nm was formed by an RF sputtering method using a SiN x target. On the other hand, an OLED element was vapor-deposited on a facing substrate and bonded to a substrate on which an inorganic sealing layer was formed to obtain an evaluation sample.
  • SiN x film SiN x film
  • the reliability test of the sample obtained in each example was carried out under the condition of 85 ° C. Specifically, the emission area ratio (%) after storing the samples obtained in each example at 85 ° C. for 100 hours was determined by the following method. That is, the light emitting area was calculated in the initial state and after storage for 100 hours using Motic Images Plus software (manufactured by Shimadzu Rika Co., Ltd.), the light emitting area ratio was obtained, and the evaluation was made according to the following criteria. Those with ⁇ and ⁇ were accepted. ⁇ : 85% or more ⁇ : 75% or more and less than 85% ⁇ : More than 50 to less than 75% ⁇ : 50% or less
  • the curable composition obtained in each example was introduced into an inkjet cartridge DMC-11610 (manufactured by FUJIFILM Dimatix).
  • the inkjet cartridge is set in an inkjet device DMP-2831 (manufactured by Fujifilm Dimatix), and after adjusting the ejection state, the thickness after curing becomes 10 ⁇ m on a 6 cm ⁇ 6 cm PET film (25 ⁇ m, A31). As described above, it was applied in a size of 5 cm ⁇ 5 cm.
  • the obtained coating film was placed in a box at room temperature (25 ° C.) for 5 minutes to allow nitrogen to flow, and then irradiated with ultraviolet rays having a wavelength of 395 nm at 1500 mW / cm 2 for 1 second to form a cured film.
  • the obtained cured film was used as a measurement sample to evaluate the bending resistance.
  • a bending tester DML HP, manufactured by Yuasa System
  • set the bending radius to 1 mm fix the measurement sample with double-sided tape (Nystack NW-15, manufactured by Nichiban), and 30 times per minute.
  • a bending test was performed 300,000 times at a bending speed.
  • the encapsulants obtained in each example were excellent in the effect of suppressing damage to the organic EL element against plasma irradiation and also in excellent bending resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a sealing material for display elements that comprises component (A), which is a polymerizable compound, component (B), which is a polymerization initiator, and component (C), which is an antioxidant. The sealing material for display elements gives a cured object having a glass transition temperature of 90°C or higher but lower than 200°C.

Description

表示素子用封止剤、その硬化物および表示装置Sealants for display elements, cured products thereof, and display devices
 本発明は、表示素子用封止剤、その硬化物および表示装置に関する。 The present invention relates to a sealant for a display element, a cured product thereof, and a display device.
 表示素子の分野において、封止剤の特性を向上させるための検討がなされている。以下、有機EL表示装置を例に挙げて説明する。
 有機EL素子は、消費電力が少ないことから、ディスプレイや照明装置などに用いられつつある。有機EL素子は、大気中の水分や酸素によって劣化しやすいことから、各種シール部材で封止されて使用されており、実用化に向けては各種シール部材の水分や酸素の耐久性の向上が望まれている。
In the field of display devices, studies have been made to improve the characteristics of sealants. Hereinafter, an organic EL display device will be described as an example.
Organic EL elements are being used in displays, lighting devices, and the like because they consume less power. Since organic EL elements are easily deteriorated by moisture and oxygen in the atmosphere, they are used by being sealed with various sealing members, and the durability of moisture and oxygen of various sealing members will be improved for practical use. It is desired.
 有機ELの封止方法としては、たとえば、有機EL素子上に1層目の無機材料膜を被覆させた上に樹脂層を形成し、さらに2層目の無機材料膜を被覆させる方法が用いられている。上記無機材料膜によって被覆する方法としては、たとえば、スパッタリング法や電子サイクロトロン共鳴(ECR)プラズマCVD法等によって、窒化珪素や酸化珪素からなる無機材料膜を形成する方法が挙げられる。 As a method for sealing the organic EL, for example, a method is used in which a resin layer is formed on an organic EL element coated with a first layer of an inorganic material film, and then a second layer of the inorganic material film is coated. ing. Examples of the method of coating with the inorganic material film include a method of forming an inorganic material film made of silicon nitride or silicon oxide by a sputtering method, an electron cyclotron resonance (ECR) plasma CVD method, or the like.
 特許文献1(国際公開第2018/70488号)には、有機EL素子封止用に用いた場合に塗布性や低透湿性に優れる組成物を提供するための技術として、特定の(メタ)アクリレートを特定量含む組成物が提案されている。同文献には、「組成物から得られる硬化体のガラス転移温度が200℃以上だと、本実施形態の組成物の硬化体上に無機パッシベーション膜を、CVD等の手法によって成膜する際に、熱膨張により無機パッシベーション膜の成膜ムラによるピンホールの発生が起こらなくなり、有機EL素子の信頼性が向上する」と記載されている(段落0089)。 Patent Document 1 (International Publication No. 2018/70488) describes a specific (meth) acrylate as a technique for providing a composition having excellent coatability and low moisture permeability when used for encapsulating an organic EL device. A composition containing a specific amount of the above has been proposed. According to the same document, "When the glass transition temperature of the cured product obtained from the composition is 200 ° C. or higher, an inorganic passion film is formed on the cured product of the composition of the present embodiment by a method such as CVD. , The thermal expansion prevents the occurrence of pinholes due to uneven film formation of the inorganic passivation film, and the reliability of the organic EL element is improved "(paragraph 0081).
 特許文献2(特表2017-523549号公報)においては、耐プラズマ性に優れた有機バリア層を実現することができ、有機発光素子の信頼性を向上できる有機発光素子封止用組成物を提供することを目的としている。 Patent Document 2 (Japanese Patent Laid-Open No. 2017-523549) provides a composition for encapsulating an organic light emitting device, which can realize an organic barrier layer having excellent plasma resistance and improve the reliability of the organic light emitting device. The purpose is to do.
国際公開第2018/070488号International Publication No. 2018/070488 特表2017-523549号公報Special Table 2017-523549 Publication No.
 本発明者らが上記特許文献に記載の技術について検討したところ、特許文献1においては、硬化体のガラス転移温度が高いため、フレキシブル性が要求されるデバイスには適さない場合があると予想される点で、改善の余地があった。 When the present inventors have studied the techniques described in the above patent documents, it is expected that patent document 1 may not be suitable for devices that require flexibility because the glass transition temperature of the cured product is high. In that respect, there was room for improvement.
 また、特許文献2に記載の技術においては、封止用組成物が特定の骨格のシリコン系ジ(メタ)アクリレートを含むため、ガラス転移温度が高く、やはりフレキシブル性が要求されるデバイスには適さない場合があると予想される点で、改善の余地があった。 Further, in the technique described in Patent Document 2, since the encapsulating composition contains a silicon-based di (meth) acrylate having a specific skeleton, it is suitable for a device having a high glass transition temperature and also requiring flexibility. There was room for improvement in that it was expected to be absent.
 本発明は、耐プラズマ性に優れ、フレキシブル性が高い樹脂層を形成できる、表示素子用封止剤を提供する。 The present invention provides a sealant for a display element capable of forming a resin layer having excellent plasma resistance and high flexibility.
 本発明によれば、以下に示す表示素子用封止剤、硬化物および表示装置が提供される。
[1] 以下の成分(A)~(C):
(A)重合性化合物
(B)重合開始剤
(C)酸化防止剤
 を含有する表示素子用封止剤であって、
 当該表示素子用封止剤の硬化物のガラス転移温度が90℃以上200℃未満である、表示素子用封止剤。
[2] 前記成分(C)がヒンダードフェノール化合物である、[1]に記載の表示素子用封止剤。
[3] 前記成分(C)が、ジブチルヒドロキシトルエンおよびペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]の少なくとも1つである、[1]または[2]に記載の表示素子用封止剤。
[4] 前記成分(A)が(メタ)アクリロイル基を含む化合物である、[1]乃至[3]いずれか1項に記載の表示素子用封止剤。
[5] 有機EL表示素子の封止用である、[1]乃至[4]いずれか1項に記載の表示素子用封止剤。
[6] [1]乃至[5]いずれか1項に記載の表示素子用封止剤を硬化してなる硬化物。
[7] 基板と、
 前記基板上に配置された表示素子と、
 前記表示素子を被覆する封止層と、
 を含み、
 前記封止層が、[1]乃至[5]いずれか1項に記載の表示素子用封止剤の硬化物により構成されている、表示装置。
According to the present invention, a sealant for a display element, a cured product, and a display device shown below are provided.
[1] The following components (A) to (C):
A sealant for a display device containing (A) a polymerizable compound (B) a polymerization initiator (C) an antioxidant.
A sealant for a display element, wherein the glass transition temperature of the cured product of the sealant for the display element is 90 ° C. or higher and lower than 200 ° C.
[2] The sealant for a display device according to [1], wherein the component (C) is a hindered phenol compound.
[3] The component (C) is at least one of dibutylhydroxytoluene and pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], [1] or [ 2] The sealant for a display element according to the above.
[4] The sealant for a display device according to any one of [1] to [3], wherein the component (A) is a compound containing a (meth) acryloyl group.
[5] The sealing agent for a display element according to any one of [1] to [4], which is used for sealing an organic EL display element.
[6] A cured product obtained by curing the sealant for a display element according to any one of [1] to [5].
[7] With the board
Display elements arranged on the substrate and
The sealing layer that covers the display element and
Including
A display device in which the sealing layer is made of a cured product of the sealing agent for a display element according to any one of [1] to [5].
 本発明によれば、耐プラズマ性に優れ、フレキシブル性が高い樹脂層を形成できる、表示素子用封止剤を提供することができる。 According to the present invention, it is possible to provide a sealing agent for a display element capable of forming a resin layer having excellent plasma resistance and high flexibility.
実施形態における有機EL表示装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the organic EL display device in Embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、本実施形態において、各成分について、それぞれ、1種を用いてもよいし、2種以上を組み合わせて用いてもよい。また、数値範囲を表す「~」は、以上、以下を表し、上限値および下限値をいずれも含む。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, similar components are designated by a common reference numeral, and the description thereof will be omitted as appropriate. Further, in the present embodiment, one kind may be used for each component, or two or more kinds may be used in combination. Further, "-" representing a numerical range indicates the above and below, and includes both an upper limit value and a lower limit value.
 (表示素子用封止剤)
 本実施形態において、表示素子用封止剤(以下、適宜単に「封止剤」とも呼ぶ。)は、素子の封止に用いられる組成物であって、以下の成分(A)~(C)を含み、硬化物のガラス転移温度が90℃以上200℃未満である。
(A)重合性化合物
(B)重合開始剤
(C)ヒンダードアミン
 はじめに、封止剤の構成成分について具体例を挙げて説明する。
(Seal for display elements)
In the present embodiment, the sealing agent for a display element (hereinafter, also simply referred to as “sealing agent” as appropriate) is a composition used for sealing an element, and the following components (A) to (C). The glass transition temperature of the cured product is 90 ° C. or higher and lower than 200 ° C.
(A) Polymerizable Compound (B) Polymerization Initiator (C) Hindered Amine First, the constituent components of the encapsulant will be described with specific examples.
(成分(A))
 成分(A)は、重合性化合物である。成分(A)は、重合性の官能基を有する化合物であればよく、好ましくはラジカル重合性の官能基を有する化合物である。
(Ingredient (A))
The component (A) is a polymerizable compound. The component (A) may be a compound having a polymerizable functional group, and is preferably a compound having a radically polymerizable functional group.
 ラジカル重合性官能基の具体例として、(メタ)アクリロイル基およびビニル基からなる群から選択される1または2以上の基が挙げられる。硬化性を向上させる観点から、成分(A)が(メタ)アクリロイル基を含む化合物であることが好ましい。
 ここで、本明細書において、(メタ)アクリロイル基とは、アクリロイル基とメタクリロイル基のうちの少なくとも一方を意味する。また、(メタ)アクリルとは、アクリルまたはメタクリルのうちの少なくとも一方を意味する。また、(メタ)アクリレートとは、アクリレートとメタクリレートのうちの少なくとも一方を意味する。
Specific examples of the radically polymerizable functional group include one or more groups selected from the group consisting of (meth) acryloyl group and vinyl group. From the viewpoint of improving curability, the component (A) is preferably a compound containing a (meth) acryloyl group.
Here, in the present specification, the (meth) acryloyl group means at least one of an acryloyl group and a methacryloyl group. Further, (meth) acrylic means at least one of acrylic and methacrylic. Further, the (meth) acrylate means at least one of acrylate and methacrylate.
 (メタ)アクリロイル基を有する(メタ)アクリル化合物の具体例として、モノ(メタ)アクリル化合物、ジ(メタ)アクリル化合物、3官能以上の(メタ)アクリル化合物が挙げられる。 Specific examples of the (meth) acrylic compound having a (meth) acryloyl group include a mono (meth) acrylic compound, a di (meth) acrylic compound, and a trifunctional or higher functional (meth) acrylic compound.
 モノ(メタ)アクリル化合物の具体例としては、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、4-ターシャルブチルシクロヘキシル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジキシルエチル(メタ)アクリレート、エチルジグリコール(メタ)アクリレート、環状トリメチロールプロパンフォルマルモノ(メタ)アクリレート、イミド(メタ)アクリレート、イソアミル(メタ)アクリレート、エトキシ化コハク酸(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ジエチレングリコールモノブチルエーテル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、オクチル/デシル(メタ)アクリレート、トリデシル(メタ)アクリレート、カプロラクトン(メタ)アクリレート、エトキシ化(4)ノニルフェノール(メタ)アクリレート、メトキシポリエチレングリコール(350)モノ(メタ)アクリレート、メトキシポリエチレングリコール(550)モノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、メチルフェノキシエチル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、エトキシ化トリブロモフェニル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレートのエチレンオキサイド付加物、2-フェノキシエチル(メタ)アクリレートのプロピレンオキサイド付加物、フェノキシジエチレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、3-メタクリロイルオキシメチルシクロヘキセンオキサイド、及び3-(メタ)アクリロイルオキシメチルシクロヘキセンオキサイド等が挙げられる。 Specific examples of the mono (meth) acrylic compound include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, 3,3,5-trimethylcyclohexyl (meth) acrylate, and 4-tershalbutylcyclohexyl (meth) acrylate. , Dicyclopentenyloxyethyl (meth) acrylicate, tetrahydrofurfuryl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) ) Acrylate, Isooctyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxytriethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethoxyethyl (meth) Acrylate, Butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxydixylethyl (meth) acrylate, ethyldiglycol (meth) acrylate, cyclic trimethylolpropaneformal mono (meth) acrylate, imide (meth) acrylate, Isoamyl (meth) acrylate, ethoxylated succinic acid (meth) acrylate, trifluoroethyl (meth) acrylate, ω-carboxypolycaprolactone mono (meth) acrylate, cyclohexyl (meth) acrylate, 2- (2-ethoxyethoxy) ethyl ( Meta) acrylate, stearyl (meth) acrylate, diethylene glycol monobutyl ether (meth) acrylate, lauryl (meth) acrylate, isodecyl (meth) acrylate, isooctyl (meth) acrylate, octyl / decyl (meth) acrylate, tridecyl (meth) acrylate, Caprolactone (meth) acrylate, ethoxylated (4) nonylphenol (meth) acrylate, methoxypolyethylene glycol (350) mono (meth) acrylate, methoxypolyethylene glycol (550) mono (meth) acrylate, phenoxyethyl (meth) acrylate, cyclohexyl ( Meta) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, methylphenoxyethyl (meth) acrylate, caprolactone-modified tetrahydrofurfuryl (meth) acrylate, tribromophenyl (meth) ) Acrylate, ethoxylated tribromophenyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate ethylene oxide adduct, 2-phenoxyethyl (meth) acrylate propylene oxide adduct, Examples thereof include phenoxydiethylene glycol (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 3-methacryloyloxymethylcyclohexene oxide, and 3- (meth) acryloyloxymethylcyclohexene oxide.
 ジ(メタ)アクリル化合物の具体例として、ジオールのジ(メタ)アクリレート、(ポリ)アルキレングリコールのジ(メタ)アクリレートが挙げられ、さらに具体的には、1,6-ヘキサンジオールジアクリレート(たとえばA-HD-N、新中村化学工業社製)、1,9-ノナンジオールジアクリレート(たとえばA-NOD-N、新中村化学工業社製;ライトアクリレート1,9ND-A、共栄社化学社)、1,10-デカンジオールジアクリレート(たとえばA-DOD-N、新中村化学工業社製)、ネオペンチルグリコールジアクリレート(たとえばA-NPG、新中村化学工業社製;ライトアクリレートNP-A、共栄社化学社製)、エチレングリコールジアクリレート(たとえばSR206NS、アルケマ社製)、ポリエチレングリコールジアクリレート(たとえばA-400、新中村化学工業社製)、ポリプロピレングリコールジアクリレート(たとえばAPG-400、新中村化学工業社製)、トリシクロデカンジメタノールジアクリレート(ジメチロール-トリシクロデカンジアクリレート)(たとえばA-DCP、新中村化学工業社製;ライトアクリレートDCP-A、共栄社化学社製)、1,3-ブタンジオールジメタクリレート(たとえばBG、新中村化学工業社製)、1,4-ブタンジオールジメタクリレート(たとえばBD、新中村化学工業社製)、1,6-ヘキサンジオールジメタクリレート(たとえばHD-N、新中村化学工業社製)、1,9-ノナンジオールジメタクリレート(たとえばNOD-N、新中村化学工業社製)、1,10-デカンジオールジメタクリレート(たとえばDOD-N、新中村化学工業社製)、1,12-ドデカンジオールジアクリレート(たとえばSR262、サートマー社製)ネオペンチルグリコールジメタクリレート(たとえばNPG、新中村化学工業社製)が挙げられる。 Specific examples of the di (meth) acrylic compound include di (meth) acrylate of diol and di (meth) acrylate of (poly) alkylene glycol, and more specifically, 1,6-hexanediol diacrylate (for example). A-HD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), 1,9-nonanediol diacrylate (for example, A-NOD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd .; light acrylate 1,9ND-A, manufactured by Kyoeisha Chemical Co., Ltd.), 1,10-decanediol diacrylate (for example, A-DOD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), neopentyl glycol diacrylate (for example, A-NPG, manufactured by Shin-Nakamura Chemical Industry Co., Ltd .; Light Acrylate NP-A, manufactured by Kyoeisha Chemical Co., Ltd.) , Ethylene Glycol Diacrylate (eg SR206NS, manufactured by Alchema), Polyethylene Glycol Diacrylate (eg A-400, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), Polypropylene Glycol Diacrylate (eg APG-400, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) , Tricyclodecanedimethanol diacrylate (dimethylol-tricyclodecanediacrylate) (for example, A-DCP, manufactured by Shin-Nakamura Chemical Industry Co., Ltd .; light acrylate DCP-A, manufactured by Kyoeisha Chemical Co., Ltd.), 1,3-butanediol. Dimethacrylate (eg BG, manufactured by Shin-Nakamura Chemical Industry), 1,4-butanediol dimethacrylate (eg BD, manufactured by Shin-Nakamura Chemical Industry), 1,6-hexanediol dimethacrylate (eg HD-N, manufactured by Shin-Nakamura) Chemical Industry Co., Ltd.), 1,9-Nonandiol dimethacrylate (for example, NOD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), 1,10-decanediol dimethacrylate (for example, DOD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), Examples thereof include 1,12-dodecanediol diacrylate (for example, SR262, manufactured by Sartmer) and neopentyl glycol dimethacrylate (for example, NPG, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.).
 3官能以上の多官能(メタ)アクリル化合物の具体例として、トリメチロールプロパントリアクリレート(たとえばA-TMPT、新中村化学工業社製;ライトアクリレートTMP-A、共栄社化学社製)、エトキシ化トリメチロールプロパントリアクリレート(たとえばA-TMPT-EO、新中村化学工業社製)、エトキシ化グリセリントリアクリレート(たとえばA-GLY-6E、新中村化学工業社製)、プロポキシ化グリセリントリアクリレート(たとえばA-GLY-3P、新中村化学工業社製)等の3官能(メタ)アクリル化合物;
ペンタエリスリトールテトラアクリレート(たとえばA-TMMT、新中村化学工業社製)、エトキシ化ペンタエリスリトールテトラアクリレート(たとえばATM-4E、新中村化学工業社製)、ジトリメチロールプロパンテトラアクリレート(たとえばAD-TMP-L、新中村化学工業社製)等の4官能(メタ)アクリル化合物;
ジペンタエリスリトールペンタアクリレート(たとえばM-402、東亞合成社製)等の5官能(メタ)アクリレート化合物;および
ジペンタエリスリトールヘキサアクリレート(たとえばGM66G0H、國精化學社製)等の6官能(メタ)アクリル化合物が挙げられる。
Specific examples of trifunctional or higher functional polyfunctional (meth) acrylic compounds include trimethylolpropane triacrylate (for example, A-TMPT, manufactured by Shin-Nakamura Chemical Industry Co., Ltd .; light acrylate TMP-A, manufactured by Kyoeisha Chemical Co., Ltd.), and ethoxylated trimethylol. Propanetriacrylate (eg A-TMPT-EO, manufactured by Shin Nakamura Chemical Industry Co., Ltd.), ethoxylated glycerin triacrylate (eg A-GLY-6E, manufactured by Shin Nakamura Chemical Industry Co., Ltd.), propoxylated glycerin triacrylate (eg A-GLY) -3P, manufactured by Shin Nakamura Chemical Industry Co., Ltd.) and other trifunctional (meth) acrylic compounds;
Pentaerythritol tetraacrylate (eg A-TMMT, manufactured by Shin Nakamura Chemical Industry Co., Ltd.), ethoxylated pentaerythritol tetraacrylate (eg ATM-4E, manufactured by Shin Nakamura Chemical Industry Co., Ltd.), ditrimethylolpropane tetraacrylate (eg AD-TMP-L) , Shin Nakamura Chemical Industry Co., Ltd.) and other tetrafunctional (meth) acrylic compounds;
Five-functional (meth) acrylate compounds such as dipentaerythritol pentaacrylate (eg M-402, manufactured by Toagosei); and six-functional (meth) acrylics such as dipentaerythritol hexaacrylate (eg GM66G0H, manufactured by Kokusei Kagaku). Examples include compounds.
 表示装置、たとえば有機EL表示装置の長期使用時の耐久性を向上させる観点から、成分(A)は、好ましくは一分子中に2以上の(メタ)アクリロイル基を有する(メタ)アクリル化合物を含み、より好ましくはジ(メタ)アクリル化合物を含み、さらに好ましくは脂環構造を有するジ(メタ)アクリル化合物および鎖状構造を有するジ(メタ)アクリル化合物を含む。 From the viewpoint of improving the durability of a display device, for example, an organic EL display device during long-term use, the component (A) preferably contains a (meth) acrylic compound having two or more (meth) acryloyl groups in one molecule. , More preferably a di (meth) acrylic compound, and even more preferably a di (meth) acrylic compound having an alicyclic structure and a di (meth) acrylic compound having a chain structure.
 脂環構造を有するジ(メタ)アクリル化合物は、分子構造中に脂環式炭化水素構造を有し、脂環式炭化水素構造における炭素数は、耐熱性向上の観点から、好ましくは4以上であり、より好ましくは5以上、さらに好ましくは6以上であり、また、好ましくは14以下であり、より好ましくは12以下、さらに好ましくは10以下である。
 脂環式炭化水素構造は、飽和炭化水素構造であってよいし不飽和炭化水素構造であってもよい。耐熱性向上の観点から、脂環式炭化水素構造は、好ましくは飽和炭化水素構造である。
The di (meth) acrylic compound having an alicyclic structure has an alicyclic hydrocarbon structure in the molecular structure, and the number of carbon atoms in the alicyclic hydrocarbon structure is preferably 4 or more from the viewpoint of improving heat resistance. Yes, more preferably 5 or more, still more preferably 6 or more, still preferably 14 or less, more preferably 12 or less, still more preferably 10 or less.
The alicyclic hydrocarbon structure may be a saturated hydrocarbon structure or an unsaturated hydrocarbon structure. From the viewpoint of improving heat resistance, the alicyclic hydrocarbon structure is preferably a saturated hydrocarbon structure.
 また、脂環式炭化水素構造は、単環式炭化水素構造であってもよいし、縮合環式炭化水素構造や橋架環式炭化水素基構造の多環式炭化水素構造であってもよい。脂環構造を有するジ(メタ)アクリル化合物は、分子構造中にこれらの脂環式炭化水素構造を含む基を含んでもよく、好ましくは脂環式炭化水素構造を含む2価の基を含む。
 単環式炭化水素基の具体例として、シクロヘキシレン基、シクロヘキシル基等のシクロアルカン構造を有する基;シクロデカトリエンジイル基、シクロデカトリエン基等のシクロアルケン骨格を有する基が挙げられる。
 多環式炭化水素基の具体例として、トリシクロデカンジイル基、ジシクロペンタニル基、ジシクロペンテニル基等のジシクロペンタジエン骨格を有する基;ノルボルナンジイル基、イソボルナンジイル基、ノルボルニル基、イソボルニル基等のノルボルナン骨格を有する基;アダマンタンジイル基、アダマンチル基等のアダマンタン骨格を有する基などが挙げられる。
Further, the alicyclic hydrocarbon structure may be a monocyclic hydrocarbon structure, a fused ring hydrocarbon structure, or a polycyclic hydrocarbon structure having a bridge ring hydrocarbon group structure. The di (meth) acrylic compound having an alicyclic structure may contain a group containing these alicyclic hydrocarbon structures in the molecular structure, and preferably contains a divalent group containing an alicyclic hydrocarbon structure.
Specific examples of the monocyclic hydrocarbon group include a group having a cycloalkane structure such as a cyclohexylene group and a cyclohexyl group; and a group having a cycloalkene skeleton such as a cyclodecatoriendiyl group and a cyclodecatorien group.
Specific examples of the polycyclic hydrocarbon group include a group having a dicyclopentadiene skeleton such as a tricyclodecandyl group, a dicyclopentanyl group, and a dicyclopentenyl group; a norbornanediyl group, an isobornanediyl group, and a norbornyl group. Groups having a norbornane skeleton such as an isobornyl group; groups having an adamantane skeleton such as an adamantane diyl group and an adamantane group can be mentioned.
 脂環構造を有するジ(メタ)アクリル化合物における環式炭化水素基は、耐プラズマ性向上の観点および低透湿性の観点から、好ましくはジシクロペンタジエン骨格を有する基である。
 また、脂環構造を有するジ(メタ)アクリル化合物は、耐プラズマ性向上の観点および低透湿性の観点から、トリシクロデカンジメタノールジ(メタ)アクリレートを含み、より好ましくはトリシクロデカンジメタノールジ(メタ)アクリレートである。
The cyclic hydrocarbon group in the di (meth) acrylic compound having an alicyclic structure is preferably a group having a dicyclopentadiene skeleton from the viewpoint of improving plasma resistance and low moisture permeability.
Further, the di (meth) acrylic compound having an alicyclic structure contains tricyclodecanedimethanol di (meth) acrylate from the viewpoint of improving plasma resistance and low moisture permeability, and more preferably tricyclodecanedimethanol. Di (meth) acrylate.
 封止剤中の脂環構造を有するジ(メタ)アクリル化合物の含有量は、耐熱性向上の観点から、重合性化合物100質量部に対し、好ましくは5質量部以上であり、より好ましくは10質量部以上、さらに好ましくは15質量部以上、さらにより好ましくは20質量部以上、よりいっそう好ましくは25質量部以上、さらにまた好ましくは30質量部以上である。
 また、インクジェット塗布性をより好ましいものとする観点から、封止剤中の脂環構造を有するジ(メタ)アクリル化合物の含有量は、重合性化合物100質量部に対し、好ましくは60質量部以下であり、より好ましくは58質量部以下、さらに好ましくは56質量部以下、さらにより好ましくは50質量部以下である。
The content of the di (meth) acrylic compound having an alicyclic structure in the encapsulant is preferably 5 parts by mass or more, and more preferably 10 parts by mass with respect to 100 parts by mass of the polymerizable compound from the viewpoint of improving heat resistance. By mass or more, more preferably 15 parts by mass or more, even more preferably 20 parts by mass or more, even more preferably 25 parts by mass or more, still more preferably 30 parts by mass or more.
Further, from the viewpoint of making the inkjet coatability more preferable, the content of the di (meth) acrylic compound having an alicyclic structure in the encapsulant is preferably 60 parts by mass or less with respect to 100 parts by mass of the polymerizable compound. It is more preferably 58 parts by mass or less, further preferably 56 parts by mass or less, and even more preferably 50 parts by mass or less.
 鎖状構造を有するジ(メタ)アクリル化合物は、具体的には、分子構造中に鎖状構造を有するとともに、(メタ)アクリル基を2個以上有する(メタ)アクリレートであり、強度向上の観点から、好ましくは(メタ)アクリル基を2個有する(メタ)アクリレートである。 The di (meth) acrylic compound having a chain structure is specifically a (meth) acrylate having a chain structure in its molecular structure and having two or more (meth) acrylic groups, from the viewpoint of improving strength. Therefore, it is preferably a (meth) acrylate having two (meth) acrylic groups.
 鎖状構造を有するジ(メタ)アクリル化合物において、鎖状構造は、直鎖構造であっても、分岐を有する構造であってもよい。
 鎖状構造は、インクジェット塗布性をより好ましいものとする観点から、好ましくは直鎖または分岐鎖を有する2価の炭化水素基を含む。2価の炭化水素基の炭素数は、モノマー入手容易性の観点から、たとえば1以上であり、好ましくは2以上、より好ましくは4以上である。また、耐熱性向上の観点から、2価の炭化水素基の炭素数は、好ましくは20以下、より好ましくは14以下である。
In the di (meth) acrylic compound having a chain structure, the chain structure may be a linear structure or a structure having branches.
The chain structure preferably contains a divalent hydrocarbon group having a straight chain or a branched chain from the viewpoint of making the inkjet coatability more preferable. The number of carbon atoms of the divalent hydrocarbon group is, for example, 1 or more, preferably 2 or more, and more preferably 4 or more, from the viewpoint of accessibility of the monomer. Further, from the viewpoint of improving heat resistance, the number of carbon atoms of the divalent hydrocarbon group is preferably 20 or less, more preferably 14 or less.
 鎖状構造を有するジ(メタ)アクリル化合物の具体例として、アルカンジオールのジ(メタ)アクリレート、(ポリ)アルキレングリコールのジ(メタ)アクリレートが挙げられ、好ましくはジ(メタ)アクリル化合物の具体例として前述したもののうち、アルカンジオールのジ(メタ)アクリレート、(ポリ)アルキレングリコールのジ(メタ)アクリレートからなる群から選択される1または2以上の化合物である。
 耐プラズマ性向上、インクジェット法での塗布安定性向上および低誘電率の効果のバランスを高める観点から、鎖状構造を有するジ(メタ)アクリル化合物は、1,9-ノナンジオールジ(メタ)アクリレートおよびネオペンチルグリコールジ(メタ)アクリレートからなる群から選択される1または2以上の(メタ)アクリレートである。
Specific examples of the di (meth) acrylic compound having a chain structure include di (meth) acrylate of alkanediol and di (meth) acrylate of (poly) alkylene glycol, and specific examples of the di (meth) acrylic compound are preferable. As an example, among the above-mentioned compounds, one or more compounds selected from the group consisting of di (meth) acrylate of alcandiol and di (meth) acrylate of (poly) alkylene glycol.
From the viewpoint of improving plasma resistance, improving coating stability in the inkjet method, and improving the balance between the effects of low dielectric constant, the di (meth) acrylic compound having a chain structure is a 1,9-nonanediol di (meth) acrylate. And one or more (meth) acrylates selected from the group consisting of neopentyl glycol di (meth) acrylates.
 封止剤中の鎖状構造を有するジ(メタ)アクリル化合物の含有量は、インクジェット塗布性をより好ましいものとする観点から、重合性化合物100質量部に対し、好ましくは5質量部以上であり、より好ましくは10質量部以上、さらに好ましくは15質量部以上、さらにより好ましくは20質量部以上、よりいっそう好ましくは25質量部以上である。
 また、耐プラズマ性向上の観点から、封止剤中の鎖状構造を有するジ(メタ)アクリル化合物の含有量は、重合性化合物100質量部に対し、好ましくは60質量部以下であり、より好ましくは58質量部以下、さらに好ましくは56質量部以下、さらにより好ましくは50質量部以下である。
The content of the di (meth) acrylic compound having a chain structure in the encapsulant is preferably 5 parts by mass or more with respect to 100 parts by mass of the polymerizable compound from the viewpoint of making the inkjet coating property more preferable. , More preferably 10 parts by mass or more, still more preferably 15 parts by mass or more, still more preferably 20 parts by mass or more, and even more preferably 25 parts by mass or more.
Further, from the viewpoint of improving plasma resistance, the content of the di (meth) acrylic compound having a chain structure in the encapsulant is preferably 60 parts by mass or less with respect to 100 parts by mass of the polymerizable compound. It is preferably 58 parts by mass or less, more preferably 56 parts by mass or less, and even more preferably 50 parts by mass or less.
 封止剤中の成分(A)の含有量は、硬化物の強度を向上させる観点から、封止剤の全組成に対し、好ましくは70質量%以上であり、より好ましくは80質量%以上、さらに好ましくは85質量%以上、さらにより好ましくは90質量%以上、よりいっそう好ましくは93質量%以上である。
 また、封止材料の耐候性を向上させる観点から、封止剤中の成分(A)の含有量は、封止剤の全組成に対し、好ましくは99.9質量%以下であり、より好ましくは99.5質量%以下、さらに好ましくは99質量%以下、よりいっそう好ましくは98質量%以下である。
The content of the component (A) in the encapsulant is preferably 70% by mass or more, more preferably 80% by mass or more, based on the total composition of the encapsulant, from the viewpoint of improving the strength of the cured product. It is more preferably 85% by mass or more, still more preferably 90% by mass or more, and even more preferably 93% by mass or more.
Further, from the viewpoint of improving the weather resistance of the encapsulant, the content of the component (A) in the encapsulant is preferably 99.9% by mass or less with respect to the total composition of the encapsulant, which is more preferable. Is 99.5% by mass or less, more preferably 99% by mass or less, and even more preferably 98% by mass or less.
(成分(B))
 成分(B)は重合開始剤である。低温で安定的に硬化物を形成する観点から、成分(B)は、好ましくは、紫外線または可視光線の照射によりラジカルまたは酸を発生する化合物である光重合開始剤である。光重合開始剤としては、アシルフォスフィンオキサイド系開始剤、オキシフェニル酢酸エステル系開始剤、ベンゾイルギ酸系開始剤およびヒドロキシフェニルケトン系開始剤等が挙げられる。
(Component (B))
The component (B) is a polymerization initiator. From the viewpoint of stably forming a cured product at a low temperature, the component (B) is preferably a photopolymerization initiator which is a compound that generates radicals or acids by irradiation with ultraviolet rays or visible light. Examples of the photopolymerization initiator include an acylphosphine oxide-based initiator, an oxyphenylacetic acid ester-based initiator, a benzoylformic acid-based initiator, a hydroxyphenylketone-based initiator, and the like.
 光重合開始剤の具体例としては、ベンゾフェノン、ミヒラーズケトン、4,4'-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチル-4'-イソプロピルプロピオフェノン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4'-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4'-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3',4,4'-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3',4,4'-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3'-ジ(メトキシカルボニル)-4,4'-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4'-ジ(メトキシカルボニル)-4,3'-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4'-ジ(メトキシカルボニル)-3,3'-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-(4'-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3',4'-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2',4'-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2'-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4'-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2'-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4'-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3'-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2-クロロフェニル)-4,4',5,5'-テトラキス(4-エトキシカルボニルフェニル)-1,2'-ビイミダゾール、2,2'-ビス(2,4-ジクロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2,4-ジブロモフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2,4,6-トリクロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルフォリノプロピオニル)-9-n-ドデシルカルバゾール、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-1-プロパノン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパノン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-1-プロパノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、2-(ジメチルアミノ)-1-(4-モルホリノフェニル)-2-ベンジル-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、オキシ-フェニル-酢酸2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステル、オキシ-フェニル-酢酸2-[2-ヒドロキシ-エトキシ]-エチルエステル、ベンゾイルギ酸メチル、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィン酸エステル、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン2-(O-ベンゾイルオキシム)]、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン-1-(O-アセチルオキシム)などを挙げることができる。 Specific examples of the photopolymerization initiator include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, and 2-hydroxy-. 2-Methyl-4'-isopropylpropiophenone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, camphorquinone, benzanthron, 4-dimethylaminobenzo Ethyl acid, isoamyl 4-dimethylaminobenzoate, 4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4,4'-tri (t-butylperoxycarbonyl) benzophenone, 3,3', 4, 4'-Tetra (t-butylperoxycarbonyl) benzophenone, 3,3', 4,4'-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3'-di (methoxycarbonyl) -4,4'-di (T-butylperoxycarbonyl) benzophenone, 3,4'-di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxycarbonyl) -3,3' -Di (t-butylperoxycarbonyl) benzophenone, 2- (4'-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3', 4'-dimethoxystyryl) -4, 6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2'-methoxystyryl) -4 , 6-bis (trichloromethyl) -s-triazine, 2- (4'-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [p-N, N-di (ethoxy) Carbonylmethyl)] -2,6-di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2'-chlorophenyl) -s-triazine, 1,3-bis (trichloromethyl) )-5- (4'-methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-mercaptobenzothiazole, 3,3' -Mallynbis (7-Die) (Thylaminocoumarin), 2- (o-chlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2-chlorophenyl) -4,4' , 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4', 5,5'-tetraphenyl- 1,2'-biimidazole, 2,2'-bis (2,4-dibromophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 3- (2-methyl-2-dimethylaminopropionyl) carbazole, 3,6 -Bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, bis (η5-2,4-cyclopentadiene-1-yl) -bis (2,6-difluoro-3- (1H-) Pyrol-1-yl) -Phenyl) Titanium, 1-Hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenyl-1-propanol, 1- [4- (2-hydroxyethoxy) -phenyl] -2 -Hydroxy-2-methyl-1-propanone, 2-hydroxy-1-{4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-1-propanone, 2- Methyl-1- [4- (Methylthio) Phenyl] -2-morpholino-1-propanol, 2- (dimethylamino) -1- (4-morpholinophenyl) -2-benzyl-1-butanone, 2- (dimethylamino) )-2-[(4-Methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, oxy-phenyl-acetate 2- [2-oxo-2-phenyl-acetoxy-ethoxy ] -Ethyl ester, oxy-phenyl-acetic acid 2- [2-hydroxy-ethoxy] -ethyl ester, methyl benzoyllate, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethyl Phenylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphinic acid ester, 1- [4- (phenylthio) phenyl] -1,2-octanedione 2- (O-benzoyloxime)], 1- [ 9-Ethyl-6- (2-Methylbenzoyl) -9H-ka Lubazole-3-yl] -etanone-1- (O-acetyloxime) and the like can be mentioned.
 これらの中でも、硬化性を向上させる観点から、光重合開始剤は、好ましくは、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-1-プロパノン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパノン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-1-プロパノン、2,2-ジメトキシ-2-フェニルアセトフェノン、オキシ-フェニル-酢酸2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステル、オキシ-フェニル-酢酸2-[2-ヒドロキシ-エトキシ]-エチルエステル、ベンゾイルギ酸メチル、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド(TPO)および2,4,6-トリメチルベンゾイルジフェニルフォスフィン酸エステルからなる群から選択される1または2以上の化合物である。 Among these, from the viewpoint of improving curability, the photopolymerization initiator is preferably 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenyl-1-propanol, 1- [4- ( 2-Hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propanone, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl}- 2-Methyl-1-propanol, 2,2-dimethoxy-2-phenylacetophenone, oxy-phenyl-acetic acid 2- [2-oxo-2-phenyl-acetoxy-ethoxy] -ethyl ester, oxy-phenyl-acetic acid 2- [2-Hydroxy-ethoxy] -ethyl ester, methyl benzoylate, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenylphosphinoxide (TPO) and 2, One or more compounds selected from the group consisting of 4,6-trimethylbenzoyldiphenylphosphinic acid ester.
 光重合開始剤の市販品としては、Irgacure184、Irgacure651、Irgacure127、Irgacure1173、Irgacure500、Irgacure2959、Irgacure754、IrgacureMBF、IrgacureTPO(以上、BASF製)、Omnirad TPO H(IGM Resins社製)などが好ましい。 Commercially available photopolymerization initiators include Irgacure 184, Irgacure 651, Irgacure 127, Irgacure 1173, Irgacure 500, Irgacure 2959, Irgacure 754, IrgacureMBF, IrgacureMBF, IrgacureTPO (above, BASF), etc.
 封止剤中の成分(B)の含有量は、硬化性を向上させる観点から、封止剤の全組成に対し、好ましくは0.1質量%以上であり、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上、さらにより好ましくは2質量%以上である。
 また、封止剤の着色を抑制する観点から、封止剤中の成分(B)の含有量は、封止剤の全組成に対し、好ましくは10質量%以下であり、より好ましくは8質量%以下、さらに好ましくは6質量%以下、さらにより好ましくは5質量%以下である。
The content of the component (B) in the encapsulant is preferably 0.1% by mass or more, more preferably 0.5% by mass, based on the total composition of the encapsulant, from the viewpoint of improving the curability. As mentioned above, it is more preferably 1% by mass or more, and even more preferably 2% by mass or more.
Further, from the viewpoint of suppressing the coloring of the encapsulant, the content of the component (B) in the encapsulant is preferably 10% by mass or less, more preferably 8% by mass, based on the total composition of the encapsulant. % Or less, more preferably 6% by mass or less, still more preferably 5% by mass or less.
(成分(C))
 成分(C)は、酸化防止剤である。酸化防止剤の具体例としては、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤を挙げることができる。中でも、耐プラズマ性を向上させる観点から、ヒンダードフェノール系酸化防止剤が好ましく、さらに具体的にはヒンダードフェノール化合物が好ましい。ヒンダードフェノール系酸化防止剤は、酸素との反応で生成するラジカルを受け取って安定なフェノキシラジカルに変化するフェノール性水酸基を有する物質である。
(Component (C))
The component (C) is an antioxidant. Specific examples of the antioxidant include a hindered phenolic antioxidant and a phosphorus-based antioxidant. Among them, a hindered phenolic antioxidant is preferable, and more specifically, a hindered phenol compound is preferable from the viewpoint of improving plasma resistance. A hindered phenolic antioxidant is a substance having a phenolic hydroxyl group that receives a radical generated by a reaction with oxygen and changes it into a stable phenoxy radical.
 ヒンダードフェノール化合物としては、ジブチルヒドロキシトルエンすなわち2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール(和光純薬社製、BHT)、3,5-ジ-tert-ブチル-4-ヒドロキシトルエン、ペンタエリトリトール-テトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕(BASF社製、商品名IRGANOX1010;ADEKA社製、AO-60)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(BASF社製、商品名IRGANOX1076)などが挙げられる。 Examples of the hindered phenol compound include dibutylhydroxytoluene, that is, 2,6-bis (1,1-dimethylethyl) -4-methylphenol (BHT manufactured by Wako Pure Chemical Industries, Ltd.), 3,5-di-tert-butyl-4. -Hydrhydroxytoluene, pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (BASF, trade name IRGANOX1010; ADEKA, AO-60), octadecyl-3 -(3,5-Di-tert-butyl-4-hydroxyphenyl) propionate (manufactured by BASF, trade name IRGANOX1076) and the like can be mentioned.
 リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジt-ブチルフェニル)オクチルホスファイト(ADEKA社製;商品名:アデカスタブHP-10)、トリス(2,4-ジt-ブチルフェニル)ホスファイト(BASF社製;商品名:IRGAFOS168)などの亜リン酸エステルが挙げられる。 Phosphorus-based antioxidants include 2,2-methylenebis (4,6-dit-butylphenyl) octylphosphite (manufactured by ADEKA; trade name: ADEKA STAB HP-10), tris (2,4-dit-). Phosphite esters such as butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168) can be mentioned.
 封止材料のフレキシブル性および耐プラズマ性を向上させる観点から、成分(C)は、ジブチルヒドロキシトルエンおよびペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]の少なくとも1つである。 From the viewpoint of improving the flexibility and plasma resistance of the encapsulating material, the component (C) is dibutylhydroxytoluene and pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]. At least one of.
 封止剤中の成分(C)の含有量は、封止材料のフレキシブル性を向上させる観点から、封止剤の全組成に対し、好ましくは0.01質量%以上であり、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上、さらにより好ましくは0.3質量%以上である。
 また、封止材料の硬化性向上の観点から、封止剤中の成分(C)の含有量は、封止剤の全組成に対し、好ましくは2質量%以下であり、より好ましくは1質量%以下、さらに好ましくは0.8質量%以下、さらにより好ましくは0.6質量%以下である。
The content of the component (C) in the encapsulant is preferably 0.01% by mass or more, more preferably 0, based on the total composition of the encapsulant, from the viewpoint of improving the flexibility of the encapsulant. .1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.3% by mass or more.
Further, from the viewpoint of improving the curability of the encapsulant, the content of the component (C) in the encapsulant is preferably 2% by mass or less, more preferably 1% by mass, based on the total composition of the encapsulant. % Or less, more preferably 0.8% by mass or less, still more preferably 0.6% by mass or less.
 成分(C)と成分(A)との量比については、封止材料のフレキシブル性を向上すさせ観点から、封止剤中の成分(C)の含有量は、成分(A)100質量部に対して、好ましくは0.01質量部以上であり、より好ましくは0.1質量部以上、さらに好ましくは0.2質量部以上、さらにより好ましくは0.3質量部以上である。
 また、封止材料の硬化性向上の観点から、封止剤中の成分(C)の含有量は、成分(A)100質量部に対して、好ましくは2質量部以下であり、より好ましくは1質量部以下、さらに好ましくは0.8質量部以下、さらにより好ましくは0.6質量部以下である。
Regarding the amount ratio of the component (C) to the component (A), from the viewpoint of improving the flexibility of the encapsulating material, the content of the component (C) in the encapsulant is 100 parts by mass of the component (A). On the other hand, it is preferably 0.01 part by mass or more, more preferably 0.1 part by mass or more, still more preferably 0.2 part by mass or more, still more preferably 0.3 part by mass or more.
Further, from the viewpoint of improving the curability of the encapsulating material, the content of the component (C) in the encapsulant is preferably 2 parts by mass or less with respect to 100 parts by mass of the component (A), more preferably. It is 1 part by mass or less, more preferably 0.8 part by mass or less, still more preferably 0.6 part by mass or less.
 本実施形態において、封止剤は、成分(A)~(C)から構成されてもよいし、成分(A)~(C)以外の成分を含んでもよい。たとえば、封止剤が成分(D):重合禁止剤をさらに含んでもよい。 In the present embodiment, the encapsulant may be composed of the components (A) to (C), or may contain components other than the components (A) to (C). For example, the encapsulant may further contain component (D): a polymerization inhibitor.
(成分(D))
 成分(D)は重合禁止剤である。成分(D)の具体例として、2,2,6,6-テトラメチルピペリジン-1-オキシル(フリーラジカル)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル(フリーラジカル)、4-アミノー2,2,6,6-テトラメチルピペリジン-1-オキシル(フリーラジカル)、4-パータミド-2,2,6,6-テトラメチルピペリジン-1-オキシル(フリーラジカル)、4-アセトアミド-2,2,6,6-テトラメチルピペリジン-1-オキシル(フリーラジカル)、4-カルボキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル(フリーラジカル)、4-メトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル(フリーラジカル)4-オキソ-2,2,6,6-テトラメチルピペリジン-1-オキシル(フリーラジカル)が挙げられる。
(Component (D))
The component (D) is a polymerization inhibitor. Specific examples of the component (D) include 2,2,6,6-tetramethylpiperidine-1-oxyl (free radical) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (free radical). Radical), 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (free radical), 4-partamide-2,2,6,6-tetramethylpiperidine-1-oxyl (free radical), 4-Acetamide-2,2,6,6-tetramethylpiperidine-1-oxyl (free radical), 4-carboxy-2,2,6,6-tetramethylpiperidine-1-oxyl (free radical), 4- Examples thereof include methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (free radical) 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl (free radical).
 封止剤中の成分(D)の含有量は、耐プラズマ性を向上させる観点、および、封止剤が適用される素子のダメージを抑制する観点から、封止剤の全組成に対し、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上、さらに好ましくは0.005質量%以上である。
 また、封止材料の硬化性向上の観点から、封止剤中の成分(D)の含有量は、封止剤の全組成に対し、好ましくは1質量%以下であり、より好ましくは0.75質量%以下、さらに好ましくは0.5質量%以下である。
The content of the component (D) in the encapsulant is preferable with respect to the entire composition of the encapsulant from the viewpoint of improving plasma resistance and suppressing damage to the element to which the encapsulant is applied. Is 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.005% by mass or more.
Further, from the viewpoint of improving the curability of the encapsulant, the content of the component (D) in the encapsulant is preferably 1% by mass or less, more preferably 0. It is 75% by mass or less, more preferably 0.5% by mass or less.
(その他成分)
 成分(A)~(C)以外の成分の具体例として、上述の成分(D)の他、粘着付与剤、充填剤、硬化促進剤、可塑剤、界面活性剤、熱安定剤、難燃剤、帯電防止剤、消泡剤、レベリング剤および紫外線吸収剤からなる群から選択される1または2以上の添加剤が挙げられる。
(Other ingredients)
Specific examples of the components other than the components (A) to (C) include, in addition to the above-mentioned component (D), an antistatic agent, a filler, a curing accelerator, a plasticizer, a surfactant, a heat stabilizer, a flame retardant, and the like. Included is one or more additives selected from the group consisting of antistatic agents, defoaming agents, leveling agents and UV absorbers.
 次に、封止剤の特性を説明する。
 封止剤の硬化物のガラス転移温度(Tg)は、封止材料の耐熱性向上の観点から、90℃以上であり、好ましくは110℃以上、より好ましくは130℃以上である。
 また、屈曲性向上の観点から、封止剤の硬化物のTgは、200℃未満であり、好ましくは190℃以下、より好ましくは180℃以下である。
Next, the characteristics of the encapsulant will be described.
The glass transition temperature (Tg) of the cured product of the encapsulant is 90 ° C. or higher, preferably 110 ° C. or higher, and more preferably 130 ° C. or higher from the viewpoint of improving the heat resistance of the encapsulant.
Further, from the viewpoint of improving the flexibility, the Tg of the cured product of the encapsulant is less than 200 ° C., preferably 190 ° C. or lower, more preferably 180 ° C. or lower.
 ここで、ガラス転移温度(Tg)は以下の手順で測定される。
 封止剤の硬化物は、100μm厚のテフロン(登録商標)シートを型枠として、ポリエチレンテレフタレート(PET)フィルム間に未硬化の封止剤を挟みこみ、波長395nmのUV-LEDで照度1000mW/cm2、積算光量1500mJ/cm2の条件で硬化させ、得られる。
 得られた硬化物をカッターで幅10mm×長さ40mmの大きさに切りだす。
 そして、動的粘弾性測定装置「DMS6100」(セイコーインスツルメンツ社製)により、大気中にて切りだした硬化物に1Hzの周波数をかけながら、室温から250℃まで5℃/分で昇温しながら、tanδを測定して、tanδのピークトップの温度を硬化物のTgとする。
Here, the glass transition temperature (Tg) is measured by the following procedure.
The cured product of the encapsulant uses a 100 μm thick Teflon (registered trademark) sheet as a mold, sandwiches the uncured encapsulant between polyethylene terephthalate (PET) films, and has an illuminance of 1000 mW / LED with a UV-LED having a wavelength of 395 nm. It is obtained by curing under the conditions of cm 2 and an integrated light amount of 1500 mJ / cm 2 .
The obtained cured product is cut into a size of 10 mm in width × 40 mm in length with a cutter.
Then, using the dynamic viscoelasticity measuring device "DMS6100" (manufactured by Seiko Instruments Inc.), the cured product cut out in the atmosphere is heated at a temperature of 5 ° C./min from room temperature to 250 ° C. while applying a frequency of 1 Hz. , Tan δ is measured, and the temperature of the peak top of tan δ is defined as Tg of the cured product.
 本実施形態において、Tgが特定の範囲にある封止剤は、たとえば、樹脂組成物に含まれる成分および配合割合を適切に選択するとともに、製造条件を調整することにより得ることができる。 In the present embodiment, the encapsulant having a Tg in a specific range can be obtained, for example, by appropriately selecting the components and the blending ratio contained in the resin composition and adjusting the production conditions.
 封止剤の性状は限定されず、封止材料のフレキシブル性および耐プラズマ性を向上させる観点、および、インクジェット法等の塗布法による硬化材料の形成に好適であるという観点から、封止剤は好ましくは液状である。 The properties of the encapsulant are not limited, and the encapsulant is suitable from the viewpoint of improving the flexibility and plasma resistance of the encapsulating material and being suitable for forming a cured material by a coating method such as an inkjet method. It is preferably liquid.
 また、実施形態において、樹脂膜等の封止材料を安定的に形成する観点から、封止剤は、好ましくは塗布に用いられる封止剤であり、より好ましくはインクジェット法による塗布に用いられる封止剤である。 Further, in the embodiment, from the viewpoint of stably forming a sealing material such as a resin film, the sealing agent is preferably a sealing agent used for coating, and more preferably a sealing used for coating by an inkjet method. It is a stop agent.
 E型粘度計を用いて25℃、20rpmにて測定される封止剤の粘度は、インクジェット吐出性向上の観点から、好ましくは5mPa・s以上であり、より好ましくは8mPa・s以上、さらに好ましくは10mPa・s以上である。
 また、インクジェット吐出性向上の観点から、上記封止剤の粘度は、好ましくは30mPa・s以下であり、より好ましくは28.5mPa・s以下、さらに好ましくは27mPa・s以下である。
The viscosity of the encapsulant measured at 25 ° C. and 20 rpm using an E-type viscometer is preferably 5 mPa · s or more, more preferably 8 mPa · s or more, still more preferably, from the viewpoint of improving the inkjet ejection property. Is 10 mPa · s or more.
Further, from the viewpoint of improving the inkjet ejection property, the viscosity of the encapsulant is preferably 30 mPa · s or less, more preferably 28.5 mPa · s or less, and further preferably 27 mPa · s or less.
 封止剤の硬化物の誘電率は、封止剤の封止特性を向上させる観点から、好ましくは4.0以下であり、より好ましくは3.8以下、さらに好ましくは3.6以下である。
 また、封止剤の硬化物の誘電率は、たとえば1.0以上とすることができる。
 ここで、封止剤の硬化物の誘電率は、波長395nmのUV-LEDで照度1000mW/cm2、積算光量1500mJ/cm2の条件で硬化性組成物を硬化させて得られる硬化物について、周波数100kHzにて測定される誘電率である。
The dielectric constant of the cured product of the sealant is preferably 4.0 or less, more preferably 3.8 or less, still more preferably 3.6 or less, from the viewpoint of improving the sealing characteristics of the sealant. ..
Further, the dielectric constant of the cured product of the encapsulant can be, for example, 1.0 or more.
Here, the dielectric constant of the cured product of the encapsulant is the cured product obtained by curing the curable composition under the conditions of an illuminance of 1000 mW / cm 2 and an integrated light intensity of 1500 mJ / cm 2 with a UV-LED having a wavelength of 395 nm. Permittivity measured at a frequency of 100 kHz.
 次に、封止剤の製造方法を説明する。
 封止剤の製造方法は限定されず、たとえば、成分(A)~(C)、および、適宜その他の成分、たとえば必要に応じて添加する各種添加剤を混合することを含む。各成分を混合する方法として、たとえば、遊星式撹拌装置、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー、2本ロール、3本ロール、押出機等の公知の各種混練機を単独または併用して、常温下または加熱下で、常圧下、減圧下、加圧下または不活性ガス気流下等の条件下で均一に混練する方法が挙げられる。
Next, a method for producing a sealant will be described.
The method for producing the encapsulant is not limited, and includes, for example, mixing the components (A) to (C) and other components as appropriate, for example, various additives to be added as needed. As a method of mixing each component, for example, various known kneaders such as a planetary stirrer, a homodisper, a universal mixer, a Banbury mixer, a kneader, two rolls, three rolls, and an extruder are used alone or in combination. Examples thereof include a method of uniformly kneading under conditions such as normal pressure, reduced pressure, pressure, and an inert gas stream under normal temperature or heating.
 また、得られた封止剤を用いて封止材料を形成することもできる。たとえば、封止剤を基材上に塗布し、乾燥してもよい。塗布には、インクジェット法、スクリーン印刷、ディスペンサー塗布等の公知の手法を用いることができる。また、乾燥は、たとえば成分(A)が重合しない温度に加熱すること等によりおこなうことができる。得られる封止材料の形状に制限はなく、たとえば膜状または層状とすることができる。 Further, a sealing material can be formed by using the obtained sealing agent. For example, a sealant may be applied onto the substrate and dried. For coating, a known method such as an inkjet method, screen printing, or dispenser coating can be used. Further, the drying can be performed, for example, by heating to a temperature at which the component (A) does not polymerize. The shape of the obtained encapsulating material is not limited and may be, for example, a film or a layer.
 封止材料は、たとえば本実施形態における封止剤を硬化してなる硬化物であり、さらに具体的には封止剤の光硬化物である。
 封止剤を光硬化する方法としては、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、エキシマレーザ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ、ナトリウムランプ、ハロゲンランプ、キセノンランプ、LEDランプ、蛍光灯、太陽光、電子線照射装置等の光源を使用して光照射して硬化する方法が挙げられる。
The encapsulating material is, for example, a cured product obtained by curing the encapsulant in the present embodiment, and more specifically, a photocured product of the encapsulant.
Examples of the method of photocuring the encapsulant include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, excima lasers, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, sodium lamps, and halogen lamps. , A method of curing by irradiating light using a light source such as a xenon lamp, an LED lamp, a fluorescent lamp, sunlight, or an electron beam irradiator.
 本実施形態において、封止剤が成分(A)~(C)を組み合わせて含むとともに、Tgが特定の範囲にあるため、かかる封止剤を用いることにより、耐プラズマ性に優れ、フレキシブル性が高い樹脂層を形成できることができる。かかる樹脂層を封止材料として用いることにより、信頼性に優れる表示装置を得ることができる。 In the present embodiment, the encapsulant contains the components (A) to (C) in combination and Tg is in a specific range. Therefore, by using such an encapsulant, plasma resistance is excellent and flexibility is increased. A high resin layer can be formed. By using such a resin layer as a sealing material, a display device having excellent reliability can be obtained.
 また、本実施形態において得られる封止剤は、たとえば表示素子、好ましくは有機EL表示素子の封止用に好適に用いられる。本実施形態によれば、耐プラズマ性に優れ、フレキシブル性が高い樹脂層を形成できる封止剤を得ることができるため、たとえば、表示装置の製造工程における表示素子のダメージを効果的に抑制することができ、表示装置の製造安定性を向上させることも可能となる。
 以下、有機EL表示装置を例に、表示装置の構成例を挙げる。
Further, the encapsulant obtained in the present embodiment is suitably used for encapsulating a display element, preferably an organic EL display element, for example. According to the present embodiment, a sealing agent capable of forming a resin layer having excellent plasma resistance and high flexibility can be obtained. Therefore, for example, damage to a display element in a manufacturing process of a display device can be effectively suppressed. This makes it possible to improve the manufacturing stability of the display device.
Hereinafter, a configuration example of the display device will be given by taking an organic EL display device as an example.
 (有機EL表示装置)
 本実施形態において、有機EL表示装置は、封止剤の硬化物により構成された層を有する。有機EL素子を、本実施形態の封止剤を硬化させて得られる樹脂層で保護することにより、有機EL素子内への水分の浸入を充分に防止して有機EL素子の性能および耐久性を高く維持することができる。
(Organic EL display device)
In the present embodiment, the organic EL display device has a layer made of a cured product of a sealing agent. By protecting the organic EL element with a resin layer obtained by curing the encapsulant of the present embodiment, the infiltration of water into the organic EL element is sufficiently prevented, and the performance and durability of the organic EL element are improved. Can be kept high.
 有機EL表示装置は、トップエミッション構造であっても、ボトムエミッション構造であってもよい。
 有機EL素子は、基板上に配置され、本実施形態における封止剤を硬化させて得られる樹脂層により保護される前に、上記有機EL素子を含む領域を覆うように予め無機材料膜で被覆されていることが好ましい。
The organic EL display device may have a top emission structure or a bottom emission structure.
The organic EL element is arranged on a substrate and is pre-coated with an inorganic material film so as to cover the region containing the organic EL element before being protected by the resin layer obtained by curing the encapsulant in the present embodiment. It is preferable that it is.
 図1は、本実施形態における有機EL表示装置の構成例を示す断面図である。図1に示した表示装置100は、有機EL表示装置であって、基板(基材層50)と、基材層50上に配置された有機EL素子(発光素子10)と、発光素子10を被覆する封止層22(オーバーコート層22またはバリア性層22であってもよい)と、を含む。そして、たとえば封止層22が、本実施形態における封止剤の硬化物により構成されている。
 また、図1においては、表示装置100が、発光素子10よりも観察側に位置する層として、バリア性層21(タッチパネル層21または表面保護層21であってもよい)、封止層22(オーバーコート層22またはバリア性層22であってもよい)、平坦化層23(封止層23であってもよい)、バリア性層24を有している。平坦化層23は、発光素子10を覆うように基材層50上に設けられており、バリア性層24は、平坦化層23の表面に設けられている。封止層22は、平坦化層23およびバリア性層24を覆うように基材層50上に設けられている。また、封止層22上にバリア性層21が設けられている。
FIG. 1 is a cross-sectional view showing a configuration example of an organic EL display device according to the present embodiment. The display device 100 shown in FIG. 1 is an organic EL display device, which comprises a substrate (base material layer 50), an organic EL element (light emitting element 10) arranged on the base material layer 50, and a light emitting element 10. A sealing layer 22 (which may be an overcoat layer 22 or a barrier layer 22) to be coated is included. Then, for example, the sealing layer 22 is composed of a cured product of the sealing agent in the present embodiment.
Further, in FIG. 1, the display device 100 has a barrier layer 21 (may be a touch panel layer 21 or a surface protection layer 21) and a sealing layer 22 (which may be a touch panel layer 21 or a surface protection layer 21) as layers located on the observation side of the light emitting element 10. It has an overcoat layer 22 or a barrier layer 22), a flattening layer 23 (may be a sealing layer 23), and a barrier layer 24. The flattening layer 23 is provided on the base material layer 50 so as to cover the light emitting element 10, and the barrier layer 24 is provided on the surface of the flattening layer 23. The sealing layer 22 is provided on the base material layer 50 so as to cover the flattening layer 23 and the barrier layer 24. Further, a barrier layer 21 is provided on the sealing layer 22.
 基材層50の材料は限定されず、たとえば、ガラス基板、シリコン基板、プラスチック基板等種々のものを用いることができる。基板上に複数のTFT(薄膜トランジスタ)および平坦化層を備えたTFT基板を用いることもできる。 The material of the base material layer 50 is not limited, and various materials such as a glass substrate, a silicon substrate, and a plastic substrate can be used. A TFT substrate having a plurality of TFTs (thin film transistors) and a flattening layer on the substrate can also be used.
 バリア性層24すなわち前述の無機材料膜を構成する無機材料としては、たとえば、窒化珪素(SiNx)、酸化珪素(SiOx)、酸化アルミニウム(Al23)等が挙げられる。無機材料膜は、1層でもよく、複数種の層の積層体でもよい。
 無機材料膜によって発光素子10を被覆する方法は、たとえば上記無機材料膜が窒化珪素や酸化珪素からなる場合には、スパッタリング法や電子サイクロトロン共鳴(ECR)プラズマCVD法等が挙げられる。
Examples of the inorganic material constituting the barrier layer 24, that is, the above-mentioned inorganic material film, include silicon nitride (SiN x ), silicon oxide (SiO x ), aluminum oxide (Al 2 O 3 ), and the like. The inorganic material film may be a single layer or a laminated body of a plurality of types of layers.
Examples of the method of covering the light emitting element 10 with the inorganic material film include a sputtering method and an electron cyclotron resonance (ECR) plasma CVD method when the inorganic material film is made of silicon nitride or silicon oxide.
 このうち、スパッタリング法は、たとえば、キャリアガスとしてアルゴンや窒素等の単独または混合ガスを用い、室温、電力50~1000W、圧力0.001~0.1Torrの条件でおこなうことができる。
 また、ECRプラズマCVD法は、たとえば、SiH4とO2との混合ガス又はSiH4とN2との混合ガスを用い、温度30℃~100℃、圧力10mTorr~1Torr、周波数2.45GHz、電力10~1000Wの条件でおこなうことができる。
Of these, the sputtering method can be carried out under the conditions of room temperature, electric power of 50 to 1000 W, and pressure of 0.001 to 0.1 Torr, for example, using a single gas such as argon or nitrogen as a carrier gas or a mixed gas.
Further, in the ECR plasma CVD method, for example, a mixed gas of SiH 4 and O 2 or a mixed gas of SiH 4 and N 2 is used, and the temperature is 30 ° C to 100 ° C, the pressure is 10 mTorr to 1Torr, the frequency is 2.45 GHz, and the power is increased. It can be performed under the condition of 10 to 1000 W.
 発光素子10を、本実施形態の封止剤を硬化させて得られる樹脂層、たとえば封止層22により保護する方法としては、たとえば、発光素子10上に封止剤を塗工し硬化する方法等が挙げられる。塗工する方法としては、インクジェット法を用いることが好ましい。
 樹脂層の厚さは限定されないが、封止性能とフレキシブル性能を向上させる観点から、たとえば0.1~50μmであり、好ましくは1~20μmである。
As a method of protecting the light emitting element 10 with a resin layer obtained by curing the sealing agent of the present embodiment, for example, a sealing layer 22, for example, a method of applying a sealing agent on the light emitting element 10 and curing the light emitting element 10. And so on. As a coating method, it is preferable to use an inkjet method.
The thickness of the resin layer is not limited, but is, for example, 0.1 to 50 μm, preferably 1 to 20 μm from the viewpoint of improving the sealing performance and the flexible performance.
 また、表示装置100においては、発光素子10を大気中の水分や酸素から保護する効果を高くするため、上述の樹脂層上にさらに無機材料膜(バリア性層24)を積層することが好ましい。樹脂層上に積層される無機材料膜を構成する無機材料や形成方法としては、上述した発光素子10を被覆する無機材料膜と同様である。
 上記樹脂層上に形成される無機材料膜の厚さは限定されないが、封止性能を向上させる観点から、たとえば0.01~10μmであり、好ましくは0.1~5μmである。
Further, in the display device 100, in order to enhance the effect of protecting the light emitting element 10 from moisture and oxygen in the atmosphere, it is preferable to further laminate an inorganic material film (barrier layer 24) on the above-mentioned resin layer. The inorganic material and the forming method for forming the inorganic material film laminated on the resin layer are the same as those for the inorganic material film covering the light emitting element 10 described above.
The thickness of the inorganic material film formed on the resin layer is not limited, but is, for example, 0.01 to 10 μm, preferably 0.1 to 5 μm from the viewpoint of improving the sealing performance.
 表示装置100においては、発光素子10上に、バリア性層24および封止層22が設けられており、封止層22が本実施形態における封止剤を硬化させて得られる樹脂層により構成されているため、信頼性に優れた表示装置100を得ることができる。具体的には、封止層22の上部にバリア性層24を形成する際にプラズマ処理工程をおこなう際にも、バリア性層24へのダメージを抑制することができ、また、たとえばSiNx膜であるバリア性層24へのピンホールの発生を抑制することができる。このため、たとえば85℃程度の温度帯で保存した際にアウトガスを発生しにくいため、発光素子10へのダメージを抑制することができる。また、封止層22を構成する樹脂層自体がプラズマ処理で劣化しにくいため、発光素子10へのダメージを抑制することができる。 In the display device 100, the barrier layer 24 and the sealing layer 22 are provided on the light emitting element 10, and the sealing layer 22 is composed of a resin layer obtained by curing the sealing agent in the present embodiment. Therefore, it is possible to obtain a display device 100 having excellent reliability. Specifically, damage to the barrier layer 24 can be suppressed even when the plasma treatment step is performed when the barrier layer 24 is formed on the sealing layer 22, and for example, a SiN x film. It is possible to suppress the generation of pinholes in the barrier layer 24. Therefore, for example, when the product is stored in a temperature range of about 85 ° C., outgas is less likely to be generated, so that damage to the light emitting element 10 can be suppressed. Further, since the resin layer itself constituting the sealing layer 22 is not easily deteriorated by the plasma treatment, damage to the light emitting element 10 can be suppressed.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 はじめに、以下の例において用いた材料を示す。
(A)UV硬化樹脂1:ジメチロール-トリシクロデカンジアクリレート、ライトアクリレートDCP-A、共栄社化学社製
(A)UV硬化樹脂2:トリメチロールプロパントリアクリレート、ライトアクリレートTMP-A、共栄社化学社製
(A)UV硬化樹脂3:ネオペンチルグリコールジアクリレート、ライトアクリレートNP-A、共栄社化学社製
(A)UV硬化樹脂4:1.9-ノナンジオールジアクリレート、ライトアクリレート1,9ND-A、共栄社化学社製
(A)UV硬化樹脂5:ラウリルアクリレート、ライトアクリレートL-A、共栄社化学社製
(B)UVラジカル開始剤1:2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、Omnirad TPO H、IGM Resins社製
(C)酸化防止剤1:ジブチルヒドロキシトルエン、BHT、東京化成工業社製
(C)酸化防止剤2:ペンタエリスリトール テトラキス[3-(3,5-ジ-tブチル-4-ヒドロキシフェニル)プロピオネート、AO-60、ADEKA社製
(D)重合禁止剤:4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-Oxyl Free Radical、東京化成工業社製
First, the materials used in the following examples are shown.
(A) UV curable resin 1: dimethylol-tricyclodecanediacrylate, light acrylate DCP-A, manufactured by Kyoeisha Chemical Co., Ltd. (A) UV curable resin 2: trimethylol propantriacrylate, light acrylate TMP-A, manufactured by Kyoeisha Chemical Co., Ltd. (A) UV curable resin 3: neopentyl glycol diacrylate, light acrylate NP-A, manufactured by Kyoeisha Chemical Co., Ltd. (A) UV curable resin 4: 1.9-nonanediol diacrylate, light acrylate 1,9ND-A, Kyoeisha Chemical Co., Ltd. (A) UV curable resin 5: lauryl acrylate, light acrylate LA, Kyoeisha Chemical Co., Ltd. (B) UV radical initiator 1: 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, Omnirad TPO H, IGM Resins (C) Antioxidant 1: Dibutylhydroxytoluene, BHT, Tokyo Kasei Kogyo Co., Ltd. (C) Antioxidant 2: Pentaerythritol Tetrakiss [3- (3,5-di-tbutyl-4-hydroxy) Phenyl) propionate, AO-60, manufactured by ADEKA (D) Polymeric initiator: 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-Oxyl Free Radical, manufactured by Tokyo Kasei Kogyo Co., Ltd.
 (実施例1~10、比較例1~11)
 表1または表2に示した配合組成となるように各成分を配合して、封止剤として液状の硬化性組成物を得た。
 各例で得られた封止剤またはその硬化物の物性を以下の方法で測定した。測定結果を表1および表2にあわせて示す。
(Examples 1 to 10, Comparative Examples 1 to 11)
Each component was blended so as to have the blending composition shown in Table 1 or Table 2, and a liquid curable composition was obtained as a sealing agent.
The physical characteristics of the encapsulant or the cured product thereof obtained in each example were measured by the following methods. The measurement results are also shown in Tables 1 and 2.
 (ガラス転移温度)
 各例で得られた封止剤の硬化物を以下の手順で得た。すなわち、100μm厚のテフロン(登録商標)シートを型枠として、PETフィルム間に未硬化の封止剤を挟みこみ、波長395nmのUV-LEDで照度1000mW/cm2、積算光量1500mJ/cm2の条件で硬化させ、硬化物を得た。
 得られた硬化物をカッターで幅10mm×長さ40mmの大きさに切りだした。
 そして、動的粘弾性測定装置「DMS6100」(セイコーインスツルメンツ社製)により、大気中にて切りだした硬化物に1Hzの周波数をかけながら、室温から250℃まで5℃/分で昇温しながら、tanδを測定して、tanδのピークトップの温度を硬化物のTgとした。
 Tgが90℃以上200℃未満のものを合格(○)とし、90℃未満または200℃以上のものを不合格(×)とした。
(Glass-transition temperature)
The cured product of the encapsulant obtained in each example was obtained by the following procedure. That is, using a 100 μm thick Teflon (registered trademark) sheet as a mold, an uncured encapsulant is sandwiched between PET films, and a UV-LED with a wavelength of 395 nm has an illuminance of 1000 mW / cm 2 and an integrated light intensity of 1500 mJ / cm 2 . It was cured under the conditions to obtain a cured product.
The obtained cured product was cut into a size of 10 mm in width × 40 mm in length with a cutter.
Then, using the dynamic viscoelasticity measuring device "DMS6100" (manufactured by Seiko Instruments Inc.), the cured product cut out in the atmosphere is heated at a temperature of 5 ° C./min from room temperature to 250 ° C. while applying a frequency of 1 Hz. , Tan δ was measured, and the temperature of the peak top of tan δ was taken as Tg of the cured product.
Those having a Tg of 90 ° C. or higher and lower than 200 ° C. were evaluated as acceptable (◯), and those having a Tg of less than 90 ° C. or 200 ° C. or higher were evaluated as rejected (×).
(粘度)
 各例で得られた硬化性組成物の粘度を、E型粘度計(LV DV-II+ Pro、BROOKFIELD社製)を用いて25℃、20rpmにて測定した。
(viscosity)
The viscosity of the curable composition obtained in each example was measured at 25 ° C. and 20 rpm using an E-type viscometer (LV DV-II + Pro, manufactured by BROOKFIELD).
(誘電率)
 誘電率測定のための硬化物を得るための塗膜を以下の方法により作製した。すなわち、得られた封止剤を、インクジェットカートリッジDMC-11610(富士フイルムDimatix社製)に導入した。そのインクジェットカートリッジをインクジェット装置DMP-2831(富士フイルムDimatix社製)にセットし、吐出状態の調整を行った後、無アルカリガラス上にアルミニウムを100nmの厚みで蒸着した基板に、硬化後の厚みが10μmとなるように、5cm×5cmのサイズで塗布した。
 得られた塗膜を5分間、室温(25℃)でボックスに入れて窒素をフローさせた後、波長395nmの紫外線を照度1000mW/cm2、積算光量1500mJ/cm2の条件で照射し、硬化膜を形成した。
 その後、インクジェット塗布面にアルミニウムを100nmの厚みで蒸着し、LCRメーターHP4284A(アジレント・テクノロジー社製)にて、自動平衡ブリッジ法により条件100kHzにて誘電率を測定した。
(Dielectric constant)
A coating film for obtaining a cured product for measuring the dielectric constant was prepared by the following method. That is, the obtained encapsulant was introduced into an inkjet cartridge DMC-11610 (manufactured by FUJIFILM Dimension). The inkjet cartridge was set in an inkjet device DMP-2831 (manufactured by Fujifilm Dimatix), and after adjusting the ejection state, the thickness after curing was increased on a substrate on which aluminum was vapor-deposited to a thickness of 100 nm on non-alkali glass. It was applied in a size of 5 cm × 5 cm so as to be 10 μm.
The obtained coating film was placed in a box at room temperature (25 ° C.) for 5 minutes to allow nitrogen to flow, and then irradiated with ultraviolet rays having a wavelength of 395 nm under the conditions of an illuminance of 1000 mW / cm 2 and an integrated light intensity of 1500 mJ / cm 2 , and cured. A film was formed.
Then, aluminum was deposited on the inkjet coated surface to a thickness of 100 nm, and the dielectric constant was measured with an LCR meter HP4284A (manufactured by Agilent Technologies) under the condition of 100 kHz by an automatic balanced bridge method.
(評価方法)
 プラズマ処理工程における有機EL素子ダメージを以下の方法で評価した。
 各例で得られた封止剤を、インクジェットカートリッジDMC-11610(富士フイルムDimatix社製)に導入した。そのインクジェットカートリッジをインクジェット装置DMP-2831(富士フイルムDimatix社製)にセットし、吐出状態の調整を行った後、ガラス基板に、硬化後の厚みが10μmとなるように、15mm×15mmのサイズで塗布した。
 得られた塗膜を5分間、室温(25℃)でボックスに入れて窒素をフローさせた後、波長395nmの紫外線を1500mW/cm2で1秒間照射し、硬化膜を形成した。
(Evaluation methods)
The damage of the organic EL element in the plasma processing step was evaluated by the following method.
The encapsulant obtained in each example was introduced into an inkjet cartridge DMC-11610 (manufactured by FUJIFILM Dimension). The inkjet cartridge is set in the inkjet device DMP-2831 (manufactured by Fujifilm Dimatic), and after adjusting the ejection state, the glass substrate has a size of 15 mm × 15 mm so that the cured thickness is 10 μm. Applied.
The obtained coating film was placed in a box at room temperature (25 ° C.) for 5 minutes to allow nitrogen to flow, and then irradiated with ultraviolet rays having a wavelength of 395 nm at 1500 mW / cm 2 for 1 second to form a cured film.
 硬化膜が形成されたサンプルに、2500W ICP電源、300W RF電源、DCバイアス200V、アルゴン(Ar)流量50sccm、10mtorrの圧力条件で1分間プラズマ処理した。
 その後、SiNxターゲットを用いてRFスパッタリング法により、膜厚100nmの無機封止層(SiNx膜)を形成した。
 一方、対向基板にOLED素子を蒸着して、無機封止層が形成された基板と貼り合わせて評価用試料を得た。
The sample on which the cured film was formed was plasma-treated for 1 minute under a pressure condition of 2500 W ICP power supply, 300 W RF power supply, DC bias 200 V, argon (Ar) flow rate 50 sccm, and 10 mtorr.
Then, an inorganic sealing layer (SiN x film) having a film thickness of 100 nm was formed by an RF sputtering method using a SiN x target.
On the other hand, an OLED element was vapor-deposited on a facing substrate and bonded to a substrate on which an inorganic sealing layer was formed to obtain an evaluation sample.
 各例で得られた試料の信頼性試験を85℃の条件で実施した。具体的には、各例で得られた試料を85℃にて100時間保存した後の発光面積率(%)を以下の方法で求めた。すなわち、Motic Images Plusソフト(島津理化社製)を用いて初期状態と100時間保存後の発光面積を算出し、発光面積率を求め、以下の基準で評価した。◎および○のものを合格とした。
◎:85%以上
○:75%以上85%未満
△:50超~75%未満
×:50%以下
The reliability test of the sample obtained in each example was carried out under the condition of 85 ° C. Specifically, the emission area ratio (%) after storing the samples obtained in each example at 85 ° C. for 100 hours was determined by the following method. That is, the light emitting area was calculated in the initial state and after storage for 100 hours using Motic Images Plus software (manufactured by Shimadzu Rika Co., Ltd.), the light emitting area ratio was obtained, and the evaluation was made according to the following criteria. Those with ◎ and ○ were accepted.
⊚: 85% or more ○: 75% or more and less than 85% Δ: More than 50 to less than 75% ×: 50% or less
(耐屈曲性)
 各例で得られた硬化性組成物を、インクジェットカートリッジDMC-11610(富士フイルムDimatix社製)に導入した。そのインクジェットカートリッジをインクジェット装置DMP-2831(富士フイルムDimatix社製)にセットし、吐出状態の調整を行った後、6cm×6cmのPETフィルム(25μm、A31)に、硬化後の厚みが10μmとなるように、5cm×5cmのサイズで塗布した。得られた塗膜を5分間、室温(25℃)でボックスに入れて窒素をフローさせた後、波長395nmの紫外線を1500mW/cm2で1秒間照射し、硬化膜を形成した。
 得られた硬化膜を測定試料として耐屈曲性を評価した。屈曲試験機(DML HP、ユアサシステム社製)にて、屈曲半径を1mmに設定し、測定試料を両面テープ(ナイスタックNW-15、ニチバン社製)にて固定し、1分間に30回の屈曲速度で30万回屈曲試験を行った。30万回屈曲終了後、10分以内に外観を目視にて確認を行い、白濁の有無を評価した。
 評価基準を以下に示す。◎および〇のものを合格とした。
◎:白濁なし
〇:破断しないが、白濁あり
×:破断あり
(Bending resistance)
The curable composition obtained in each example was introduced into an inkjet cartridge DMC-11610 (manufactured by FUJIFILM Dimatix). The inkjet cartridge is set in an inkjet device DMP-2831 (manufactured by Fujifilm Dimatix), and after adjusting the ejection state, the thickness after curing becomes 10 μm on a 6 cm × 6 cm PET film (25 μm, A31). As described above, it was applied in a size of 5 cm × 5 cm. The obtained coating film was placed in a box at room temperature (25 ° C.) for 5 minutes to allow nitrogen to flow, and then irradiated with ultraviolet rays having a wavelength of 395 nm at 1500 mW / cm 2 for 1 second to form a cured film.
The obtained cured film was used as a measurement sample to evaluate the bending resistance. With a bending tester (DML HP, manufactured by Yuasa System), set the bending radius to 1 mm, fix the measurement sample with double-sided tape (Nystack NW-15, manufactured by Nichiban), and 30 times per minute. A bending test was performed 300,000 times at a bending speed. The appearance was visually confirmed within 10 minutes after the completion of the bending 300,000 times, and the presence or absence of cloudiness was evaluated.
The evaluation criteria are shown below. Those with ◎ and 〇 were accepted.
◎: No white turbidity 〇: No breakage, but white turbidity ×: Breakage
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2より、各実施例で得られた封止剤は、プラズマ照射に対する有機EL素子ダメージの抑制効果に優れるとともに、耐屈曲性に優れるものであった。 From Tables 1 and 2, the encapsulants obtained in each example were excellent in the effect of suppressing damage to the organic EL element against plasma irradiation and also in excellent bending resistance.
 この出願は、2020年9月18日に出願された日本出願特願2020-157659号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2020-1576559 filed on September 18, 2020, and incorporates all of its disclosures herein.
10 発光素子
21 バリア性層、タッチパネル層または表面保護層
22 封止層、オーバーコート層、またはバリア性層
23 平坦化層または封止層
24 バリア性層
50 基材層
100 表示装置
10 Light emitting element 21 Barrier layer, touch panel layer or surface protection layer 22 Sealing layer, overcoat layer, or barrier layer 23 Flattening layer or sealing layer 24 Barrier layer 50 Base material layer 100 Display device

Claims (7)

  1.  以下の成分(A)~(C):
    (A)重合性化合物
    (B)重合開始剤
    (C)酸化防止剤
     を含有する表示素子用封止剤であって、
     当該表示素子用封止剤の硬化物のガラス転移温度が90℃以上200℃未満である、表示素子用封止剤。
    The following components (A) to (C):
    A sealant for a display device containing (A) a polymerizable compound (B) a polymerization initiator (C) an antioxidant.
    A sealant for a display element, wherein the glass transition temperature of the cured product of the sealant for the display element is 90 ° C. or higher and lower than 200 ° C.
  2.  前記成分(C)がヒンダードフェノール化合物である、請求項1に記載の表示素子用封止剤。 The sealant for a display element according to claim 1, wherein the component (C) is a hindered phenol compound.
  3.  前記成分(C)が、ジブチルヒドロキシトルエンおよびペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]の少なくとも1つである、請求項1または2に記載の表示素子用封止剤。 The first or second claim, wherein the component (C) is at least one of dibutylhydroxytoluene and pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]. Sealant for display elements.
  4.  前記成分(A)が(メタ)アクリロイル基を含む化合物である、請求項1乃至3いずれか1項に記載の表示素子用封止剤。 The sealant for a display element according to any one of claims 1 to 3, wherein the component (A) is a compound containing a (meth) acryloyl group.
  5.  有機EL表示素子の封止用である、請求項1乃至4いずれか1項に記載の表示素子用封止剤。 The sealing agent for a display element according to any one of claims 1 to 4, which is used for sealing an organic EL display element.
  6.  請求項1乃至5いずれか1項に記載の表示素子用封止剤を硬化してなる硬化物。 A cured product obtained by curing the sealant for a display element according to any one of claims 1 to 5.
  7.  基板と、
     前記基板上に配置された表示素子と、
     前記表示素子を被覆する封止層と、
     を含み、
     前記封止層が、請求項1乃至5いずれか1項に記載の表示素子用封止剤の硬化物により構成されている、表示装置。
    With the board
    Display elements arranged on the substrate and
    The sealing layer that covers the display element and
    Including
    A display device in which the sealing layer is made of a cured product of the sealing agent for a display element according to any one of claims 1 to 5.
PCT/JP2021/034147 2020-09-18 2021-09-16 Sealing material for display element, cured object obtained therefrom, and display device WO2022059738A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022550605A JP7451740B2 (en) 2020-09-18 2021-09-16 Encapsulant for display elements, cured products thereof, and display devices
KR1020237000655A KR20230022966A (en) 2020-09-18 2021-09-16 Encapsulant for display element, cured product thereof and display device
CN202180049165.6A CN115867959A (en) 2020-09-18 2021-09-16 Sealing agent for display element, cured product thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-157659 2020-09-18
JP2020157659 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022059738A1 true WO2022059738A1 (en) 2022-03-24

Family

ID=80776679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034147 WO2022059738A1 (en) 2020-09-18 2021-09-16 Sealing material for display element, cured object obtained therefrom, and display device

Country Status (5)

Country Link
JP (1) JP7451740B2 (en)
KR (1) KR20230022966A (en)
CN (1) CN115867959A (en)
TW (1) TW202223057A (en)
WO (1) WO2022059738A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092273A (en) * 2010-10-28 2012-05-17 Bridgestone Corp Photocurable resin composition and light-emitting element sealing material
JP2016222840A (en) * 2015-06-02 2016-12-28 三菱レイヨン株式会社 Encapsulation material for organic el element
WO2019082996A1 (en) * 2017-10-26 2019-05-02 デンカ株式会社 Sealing agent for organic electroluminescent display elements

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101861893B1 (en) 2014-04-23 2018-05-29 삼성에스디아이 주식회사 Composition for encapsulating organic light emitting diode device and organic light emitting diode display using prepared the same
KR101882559B1 (en) * 2015-06-19 2018-08-27 삼성에스디아이 주식회사 Organic light emmiting diode display apparatus
WO2018070488A1 (en) 2016-10-14 2018-04-19 デンカ株式会社 Composition
CN107936906B (en) * 2017-12-04 2021-02-19 东莞市贝特利新材料有限公司 OLED (organic light emitting diode) protective adhesive and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092273A (en) * 2010-10-28 2012-05-17 Bridgestone Corp Photocurable resin composition and light-emitting element sealing material
JP2016222840A (en) * 2015-06-02 2016-12-28 三菱レイヨン株式会社 Encapsulation material for organic el element
WO2019082996A1 (en) * 2017-10-26 2019-05-02 デンカ株式会社 Sealing agent for organic electroluminescent display elements

Also Published As

Publication number Publication date
TW202223057A (en) 2022-06-16
JPWO2022059738A1 (en) 2022-03-24
CN115867959A (en) 2023-03-28
KR20230022966A (en) 2023-02-16
JP7451740B2 (en) 2024-03-18

Similar Documents

Publication Publication Date Title
WO2016199424A1 (en) Wavelength conversion member, backlight unit, liquid crystal display, and polymerizable composition containing quantum dots
JP6231209B2 (en) Plastic film and manufacturing method thereof
WO2015119245A1 (en) Ultraviolet-curable adhesive composition for touch panel, optical member production method using same, cured product, and touch panel
WO2015046422A1 (en) Photocurable resin composition, image display device and method for manufacturing image display device
JP5895757B2 (en) Photosensitive composition, method for producing molded product, molded product, and semiconductor device
KR20150139900A (en) Solvent-free photocurable resin composition
WO2014192880A1 (en) Sealing agent for display elements
JP2016066605A (en) Sealing agent for display element
JP5957148B1 (en) Sealant for display element
WO2015087714A1 (en) Sealant for display element
JP2017054084A (en) Display element sealing agent
WO2022059738A1 (en) Sealing material for display element, cured object obtained therefrom, and display device
WO2022059740A1 (en) Sealing material for display element, cured object obtained therefrom, and display device
WO2016021531A1 (en) Sealant for display element
WO2016103901A1 (en) Photocurable resin composition, image display device, and method for producing image display device
JP2017103154A (en) Sealing agent for display element
JP2023044825A (en) Ultraviolet ray-curable resin composition
JP6496214B2 (en) Sealant for display element
JP2016169298A (en) Sealant for display elements
WO2015076632A1 (en) Plastic film and method for manufacturing same
WO2022059741A1 (en) Ultraviolet-curable resin composition
JP7327411B2 (en) Photocurable composition
WO2022050421A1 (en) Curable composition for inkjet coating and led protection, led module, method for manufacturing led module, and led display device
WO2024075528A1 (en) Curable composition, cured product thereof, led element, electronic device, and optical element
JPWO2016063825A1 (en) Sealant for display element and hardened body for sealant for display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237000655

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022550605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869421

Country of ref document: EP

Kind code of ref document: A1