WO2022059720A1 - Structure diagnosis system, structure diagnosis method, and structure diagnosis program - Google Patents

Structure diagnosis system, structure diagnosis method, and structure diagnosis program Download PDF

Info

Publication number
WO2022059720A1
WO2022059720A1 PCT/JP2021/033999 JP2021033999W WO2022059720A1 WO 2022059720 A1 WO2022059720 A1 WO 2022059720A1 JP 2021033999 W JP2021033999 W JP 2021033999W WO 2022059720 A1 WO2022059720 A1 WO 2022059720A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature amount
state
evaluation index
diagnostic
bridge
Prior art date
Application number
PCT/JP2021/033999
Other languages
French (fr)
Japanese (ja)
Inventor
哲佑 金
良直 五井
大剛 河邊
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2022550593A priority Critical patent/JP7469828B2/en
Publication of WO2022059720A1 publication Critical patent/WO2022059720A1/en
Priority to JP2024019508A priority patent/JP2024045515A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a structure diagnosis system, a structure diagnosis method, and a structure diagnosis program.
  • Patent Document 1 discloses the following technology. That is, independent component analysis (ICA) is performed on the sensor signals indicating vibrations acquired from accelerometers installed at multiple locations on the bridge, and spectral analysis is performed on the independent vibration components obtained by independent component analysis on the bridge. Find the natural frequency of. Then, based on the comparison between the natural frequency of the bridge in a healthy state acquired in advance and the natural frequency of the current bridge, the abnormality diagnosis of the entire bridge and the identification of the abnormality location are performed.
  • ICA independent component analysis
  • the sensitivity of change to damage varies depending on the location where vibration measurement is performed and the vibration mode. Furthermore, in the preceding technology, the estimation varies depending on the environmental conditions (external force, temperature, etc.) at the time of vibration measurement. However, it is difficult even for an expert to properly preset the installation location of the accelerometer and the vibration mode. For this reason, in, for example, in bridge abnormality diagnosis based on the natural frequency, if the vibration mode is set incorrectly, for example, changes in vibration characteristics due to bridge abnormalities and accidental changes in vibration characteristics due to other than bridge abnormalities are detected. There is a problem that quantitative abnormality diagnosis cannot be performed with high accuracy, such as being unable to discriminate.
  • the present invention has a structure diagnostic system of the present invention in which the structure is in a sound state with respect to a feature quantity indicating the state of the structure generated from a time series of information about the structure.
  • FIG. The figure which shows the schematic structure of the diagnostic system of Embodiment 1.
  • FIG. The block diagram which shows the structure of the sensor node of Embodiment 1.
  • FIG. The block diagram which shows the structure of the diagnostic apparatus of Embodiment 1.
  • FIG. The sequence diagram which shows the reference time processing in the diagnostic system of Embodiment 1.
  • FIG. The sequence diagram which shows the process at the time of diagnosis in the diagnosis system of Embodiment 1.
  • FIG. The explanatory view of the process at the time of diagnosis in the diagnosis system of Embodiment 1.
  • FIG. The figure which compares and shows the data amount of the coefficient matrix and the principal component matrix in Embodiment 1 and the prior art by the number of sensors.
  • the flowchart which shows the diagnostic process in the diagnostic system of Embodiment 2.
  • FIG. 1 The figure for demonstrating the calculation method of the threshold value of abnormality determination of Embodiment 2.
  • a bridge will be described as an example of a structure to be diagnosed for the presence or absence of abnormalities such as damage or deterioration such as cracks.
  • the present invention is applied not only to bridges but also to all civil engineering structures or building structures that support social infrastructure such as tunnels, road structures, river structures, harbor structures, water and sewage, and buildings, and whether or not there are any abnormalities thereof. Can be diagnosed.
  • the expression in which the second symbol is continuously described in the first symbol for example, “A ⁇ ”, is the expression in which the second symbol is described immediately above the first symbol. Is the same as.
  • the system matrix of the state equation in the state space model of the structure is represented by the matrix of the regression coefficients of the autoregressive model that expresses the observation signal at a certain time as a time series linear connection of the observation signals before a certain time. It uses what can be approximated.
  • the matrix of regression coefficients contains various information about the state of the structure included in the system matrix
  • the matrix of regression coefficients is used to represent the state of the structure, and the matrix of the regression coefficients is represented.
  • the state of the structure is evaluated by analyzing.
  • the sensor information acquired by the sensor will be described as acceleration, but it is not limited to acceleration and may be another physical quantity.
  • Equation (1) the equation of motion of a structure is expressed as the following equation (1). It is assumed that n sensors (n is a natural number of 1 or more) are installed in the structure at each position, and the time series of the nth-order observation vector is acquired with the installation position as the observation point.
  • equation of motion of equation (1) above can be converted as an equation of state as in equations (2-1) and (2-2) below.
  • y in the above equation (2-2) is an observation vector
  • z in the above equation (2-3) is a state variable vector
  • As in the above equation ( 2-5 ) is a system in a state space (diagnosis target). Represents each system matrix representing the state of the structure).
  • C in the above equation (2-2) is a matrix that associates the observation vector y with the state of the system, and is an identity matrix when the measurement information at the observation point is regarded as the state of the system as it is.
  • k is a time index
  • y (k) is a sensor information vector at time k
  • p is the order of the autoregressive model
  • a i is a matrix of regression coefficients
  • e (k) is autoregressive at time k. This is the error term of the model.
  • the matrix Ai is a regression coefficient multiplied by each of the time series of the linearly combined sensor information vector y (ki) in the autoregressive model.
  • Each element of the matrix Ai which is the regression coefficient in the self-return model of the above equation (3), is associated with the physical quantity of the structure included in the system matrix As of the above equation (2-1), and a sensor is installed. It contains at least one of the information of displacement, velocity, acceleration, mass matrix m, damping coefficient matrix c, and rigidity matrix k at the observation point. Therefore, by using the matrix A i , the state of the structure can be expressed so as to include various information regarding vibration. That is, by capturing the change in the matrix Ai , it becomes possible to capture the change in the state of the structure.
  • the matrix Ai in the autoregressive model is a scalar.
  • the matrix A i is an nth-order square matrix as shown in the following equation (4).
  • n is the number of sensors installed at each position of the structure.
  • Y f on the left side is the predicted state
  • Y p in the first term on the right side is the past acceleration of the pth order
  • E in the second term on the right side is the uncertainty of state observation of the structure. Represents the error caused by.
  • the coefficient matrix A of the first term on the right side in the above equation (5) is an n ⁇ (n ⁇ p) matrix in which the matrices A i for i from 1 to p are combined, and is as shown in the following equation (6). It is represented by.
  • the coefficient matrix A inherits the information of the system matrix As.
  • the poles z k , z k of the system at time k expressed by using the natural frequency ⁇ k of the system at time k and the attenuation coefficient h k . * Can be obtained from the above equation (5) as in the following equation (7).
  • the posterior distribution of the coefficient matrix A is converted into the posterior distribution of the poles, and the natural frequency ⁇ k and the damping coefficient h k obtained as in the above equation (7) can also be used for the diagnosis of the structure.
  • the natural frequency ⁇ k and the damping coefficient h k obtained in this way have an advantage that the vibration characteristics such as the natural frequency and the damping coefficient can be identified in consideration of the variation as compared with the prior art.
  • the selection of the model order p can be automated based on the BIC (Bayesian information criterion).
  • the diagnostic device By transmitting the coefficient matrix A obtained as described above to the diagnostic device as a feature quantity representing the state of the structure, the time series having the vibration characteristics of the structure is reproduced in the diagnostic device, and the state of the structure is reproduced. Diagnosis is possible.
  • the coefficient matrix A contains a component of inferior information that is not related to the diagnosis result.
  • the amount of data transmitted / received can be reduced. Since this matrix A ⁇ is obtained by the principal component analysis of the coefficient matrix A, it is called a principal component matrix.
  • the coefficient matrix A estimated at the reference time (for example, sound time) of the structure is decomposed into singular values as shown in the following equation (8).
  • the matrix U and the matrix P T (where PT is the transposed matrix of the matrix P) in the above equation (8) are orthogonal matrices, and the matrix ⁇ is an eigenvalue of the coefficient matrix A. Then, on the right side of the above equation (8), as shown in the following equation (9), the matrix U is an n ⁇ N matrix U 1 (N ⁇ n) and an n ⁇ (np ⁇ N) matrix U 2 by principal component analysis. It is decomposed into.
  • the matrix U 1 at the reference time (for example, at the healthy time) is a matrix that projects the coefficient matrix A in the probability space onto the principal component space.
  • the principal component matrix A ⁇ which is the N ⁇ np matrix, is generated.
  • the coefficient matrix A that inherits the information of the system matrix As is estimated, the principal component matrix A ⁇ is generated from the coefficient matrix A, and the change in the principal component matrix A ⁇ is captured to detect the abnormality of the structure. can do.
  • the probability distribution of the elements of the principal component matrix A ⁇ is estimated by Bayesian estimation. Then, by using the estimated probability distribution for the state diagnosis of the structure, it is possible to detect the abnormality of the structure while considering the uncertainty included in the above equation (5).
  • the probability distribution having the mean value and the variance is used as an evaluation index for evaluating the state of the structure, it is possible to capture a minute change in the mean value of the evaluation index at the time of damage to the sound state of the structure. Instead, the variance can show the probability of the evaluation index.
  • the state diagnosis of the structure can be performed by using the coefficient matrix A as the feature quantity instead of the principal component matrix A ⁇ , but in that case, in the above equation (11), A ⁇ is replaced with A. It becomes an expression.
  • FIG. 1 is a diagram showing a schematic configuration of the diagnostic system S of the first embodiment.
  • the diagnostic system S has a sensor node 1 and a diagnostic device 2.
  • the sensor node 1 generates a feature amount indicating the state of the bridge 4 based on the sensor information acquired from the sensor 3 installed on the bridge 4 via wireless communication (or wired communication).
  • the diagnostic device 2 acquires a feature amount indicating the state of the bridge 4 generated in the sensor node 1 via wireless communication (or wired communication), and diagnoses the presence or absence of an abnormality in the bridge 4 using this feature amount.
  • the sensor 3 is, for example, an acceleration sensor, and is installed at each part of the bridge 4.
  • the sensor 3 is a plurality of sensors installed at a plurality of parts of the bridge 4, but the sensor 3 is not limited to this and may be one sensor installed at one part.
  • the sensor 3 is assumed to be an acceleration sensor that detects acceleration, but the sensor 3 is not limited to this, and may be a sensor that can measure other physical quantities (for example, strain, displacement, velocity, etc.).
  • a configuration in which the result of processing the sensor information acquired from the sensor 3 by the sensor node 1 is transmitted to the diagnostic device 2 will be described as an example.
  • the present invention is not limited to this, and a distributed coordination system may be configured in which the sensor 3 forms a sensor network and performs distributed coordination processing to realize a function equivalent to that of the sensor node 1.
  • a distributed coordination system may be configured in which the sensor 3 forms a sensor network and performs distributed coordination processing to realize a function equivalent to that of the sensor node 1.
  • one sensor 3 realizes the same function as the sensor node 1.
  • FIG. 2 is a block diagram showing the configuration of the sensor node 1 of the first embodiment.
  • the sensor node 1 performs edge processing for generating a coefficient matrix A (or a principal component matrix A ⁇ ) as a feature amount representing the state of the bridge 4 from the sensor information acquired from the sensor 3.
  • the sensor node 1 has a processor 11, a memory 12, a storage 13, and a communication I / F (Inter / Face) unit 14.
  • the processor 11 is an arithmetic processing unit such as a CPU (Central Processing Unit), a PLD (Programmable Logic Device), or a microprocessor.
  • the memory 12 is the main storage device.
  • the storage 13 is an auxiliary storage device.
  • the communication I / F unit 14 is a communication interface for the sensor node 1 to perform wireless communication (or wired communication) with the sensor 3 and the diagnostic device 2.
  • the processor 11 executes a program in cooperation with the memory 12, and is a functional unit of the sensor information acquisition unit 111, the autoregressive model generation unit 112, the feature amount generation unit 113, and the feature amount transmission unit 114. To realize.
  • the sensor information acquisition unit 111 acquires observation signals observed at each installation position of the bridge 4 by the sensor 3 in chronological order via the communication I / F unit 14, and stores them in the storage 13 as sensor information 131.
  • the sensor information 131 acquired by the sensor information acquisition unit 111 is assumed to be continuous time time series information, but may be discrete time time series information. Further, the sensor information 131 may be constantly acquired or may be acquired for a certain period of time triggered by an acquisition instruction.
  • the feature quantity generation unit 113 is the state of the bridge 4 at a certain time k from the coefficient matrix A (the above equation (6)) in which the regression coefficients of the linear combination of the autoregressive model generated by the autoregressive model generation unit 112 are combined. Generates a feature quantity that represents.
  • the feature amount may be the coefficient matrix A itself or the principal component matrix A ⁇ (the above equation (10)) obtained by projecting the coefficient matrix A onto the principal component space based on the principal component analysis.
  • the state of the surface and the inside of the bridge 4 can be expressed as a probability distribution based on such features. The details of the processing of the feature amount generation unit 113 will be described later with reference to the flowchart.
  • the feature amount transmission unit 114 transmits the feature amount generated by the feature amount generation unit 113 to the diagnostic device 2 via the communication I / F unit 14.
  • FIG. 3 is a block diagram showing the configuration of the diagnostic device 2 of the first embodiment.
  • the diagnostic device 2 includes a processor 21, a memory 22, a storage 23, a communication I / F unit 24, and an output unit 25.
  • the processor 21 realizes each functional unit of the feature amount receiving unit 211 and the diagnostic unit 212 by executing the program in cooperation with the memory 22.
  • the processor 21 is an arithmetic processing unit such as a CPU, PLD, or microprocessor.
  • the memory 22 is the main storage device.
  • the storage 23 is an auxiliary storage device.
  • the communication I / F unit 24 is a communication interface for the diagnostic device 2 to perform wireless communication (or wired communication) with the sensor node 1.
  • the output unit 25 is a monitor, a display, or the like, and outputs various information.
  • the feature amount receiving unit 211 receives the feature amount 231 indicating the state of the bridge 4 at each time k from the sensor node 1 via the communication I / F unit 24.
  • the feature amount receiving unit 211 stores the received feature amount 231 in the storage 23.
  • the diagnostic unit 212 obtains the probability distribution of the feature amount at each time k (the above equation (11)) from the feature amount 231 stored in the storage 23 using Bayesian estimation as an evaluation index. Then, the diagnostic unit 212 calculates the Mahalanobis distance MD of the probability distribution obtained as an evaluation index at each time k, as shown in the following equation (12).
  • the matrix X is the coefficient matrix A (or the principal component matrix A ⁇ )
  • the matrix S is the covariance matrix of the matrix X.
  • the diagnostic unit 212 obtains the Mahalanobis distance MD of the coefficient matrix A (or the principal component matrix A ⁇ ) of the bridge 4 at the reference time (for example, when it is healthy) as the reference evaluation index 232 in advance and stores it in the storage 23. Further, the diagnosis unit 212 calculates the Mahalanobis distance MD of the coefficient matrix A (or the principal component matrix A ⁇ ) of the bridge 4 at the time of diagnosis when the presence or absence of damage and the degree of damage are unknown.
  • the diagnosis unit 212 compares the Mahalanobis distance MD at the time of diagnosis with the reference evaluation index 232, and when the statistical distance such as the difference or ratio between them is a certain value or more, the bridge 4 is damaged as compared with the reference time. Diagnose that the abnormality is occurring or progressing.
  • the diagnosis unit 212 outputs the diagnosis result to an output unit 25 such as a display.
  • the diagnostic unit 212 uses the Z value and other statistical indexes instead of the Mahalanobis distance MD to determine the statistical distance between the respective statistical indexes at the reference time and the diagnosis as a threshold value, whereby the abnormality of the bridge 4 is determined. Or the progress of deterioration may be diagnosed.
  • FIG. 4 is a sequence diagram showing reference time processing in the diagnostic system S of the first embodiment.
  • the coefficient matrix A and the principal component matrix A ⁇ are generated from the time series of the sensor information acquired from the sensor 3 at the reference time (for example, when the bridge 4 is sound), and the principal component matrix A ⁇ is generated. Based on this, the process of calculating the reference evaluation index 232 is performed.
  • step S101 the sensor information acquisition unit 111 of the sensor node 1 acquires the sensor information 131 from the sensor 3 and stores it in the storage 13.
  • step S102 the autoregressive model generation unit 112 is the pth order of the sensor information vector y (k) at a certain time k in which the sensor information 131 acquired in step S101 is discretized based on the above equation (3).
  • step S102 the autoregressive model generation unit 112 is the pth order of the sensor information vector y (k) at a certain time k in which the sensor information 131 acquired in step S101 is discretized based on the above equation (3).
  • Generate an autoregressive model of The order p of the autoregressive model is appropriately determined, but may be automatically determined from the above equation (5) based on the BIC, for example, as described above.
  • the feature amount generation unit 113 is a coefficient matrix A in which a matrix A i representing the regression coefficient of the p-th order autoregressive model of the sensor information vector y (k) is combined as in the above equation (6). To generate.
  • the feature amount generation unit 113 mainly projects the coefficient matrix A in the probability space representing the state of the bridge 4 at the reference time onto the main component space based on the above equations (8) to (9). Generate the component space matrix U 1 T.
  • step S106 as shown in the above equation (10), the feature amount generation unit 113 causes the main component space matrix U 1 T generated in step S105 to act on the coefficient matrix A, and causes the feature amount matrix as the feature amount. Generate A ⁇ .
  • the feature amount transmission unit 114 transmits the feature amount generated in step S105 to the diagnostic apparatus 2.
  • step S201 the feature amount receiving unit 211 of the diagnostic device 2 receives the feature amount 231 from the sensor node 1 and stores it in the storage 23.
  • step S202 the diagnostic unit 212 obtains the probability distribution p (A ⁇
  • the Mahalanobis distance MD is calculated as the reference evaluation index 232.
  • step S203 the diagnostic unit 212 stores the reference evaluation index 232 calculated in step S202 in the storage 23.
  • the diagnostic device 2 may execute the step executed by the sensor node 1, or the sensor node 1 may execute the step executed by the diagnostic device 2. .. That is, it is not limited whether the execution subject of each step shown in FIG. 4 is the sensor node 1 or the diagnostic device 2.
  • the diagnostic device 2 may perform the processing after any one of steps S102 to S105 instead of the sensor node 1. Further, for example, the process of step S202 may be performed by the sensor node 1 instead of the diagnostic device 2, and the calculated reference evaluation index is transmitted to the diagnostic device 2 and used in the diagnostic device 2 for the state diagnosis of the bridge 4. ..
  • FIG. 5 is a sequence diagram showing diagnostic processing in the diagnostic system S of the first embodiment.
  • the diagnostic processing of FIG. 5 is different from the reference processing of FIG. 4 only in that it handles the sensor information and the feature amount at the time of diagnosis, not at the reference time, and steps S111 to S116 are the steps S101 of FIG. It is the same as S106.
  • step S114 When the principal component space matrix U 1 T is generated in step S104 of the reference time processing of FIG. 4, in the diagnostic processing of FIG. 5, the step of generating the principal component space matrix U 1 T of step S114 is performed. It can be omitted.
  • step S115 the feature amount generation unit 113 generated the principal component space matrix U1 T generated in step S104 of the reference time processing of FIG. 4 in step S113.
  • the principal component matrix A ⁇ is generated as a feature quantity.
  • step S116 the feature amount transmission unit 114 transmits the feature amount generated in step S115 to the diagnostic apparatus 2.
  • step S21 the feature amount receiving unit 211 of the diagnostic device 2 receives the feature amount from the sensor node 1.
  • step S212 the diagnostic unit 212 uses Bayesian inference to determine the probability distribution p (A ⁇
  • FIG. 5 is not limited to whether the execution subject of each step is the sensor node 1 or the diagnostic device 2.
  • the calculation of the evaluation index may be performed by the sensor node 1 instead of the diagnostic device 2.
  • the evaluation index calculated in this way is transmitted to the diagnostic device 2 and used in the diagnostic device 2 for diagnosing the state of the bridge.
  • the principal component matrix A ⁇ is used as the feature amount in the processes shown in FIGS. 4 and 5, the coefficient matrix A may be used as the feature amount.
  • ⁇ , Y) is calculated by replacing A ⁇ with A in the above equation (11).
  • FIG. 6 is an explanatory diagram of diagnostic processing in the diagnostic system S of the first embodiment.
  • the illustrated portion 601 of FIG. 6 outlines the reference time processing (FIG. 4) in which the feature amount is extracted from the observation data representing the vibration of the bridge 4 at the reference time and the statistical index based on the feature amount is calculated as the reference evaluation index. Shows. Further, the illustrated portion 602 shows an outline of a diagnostic processing (FIG. 5) in which a feature amount is extracted from observation data representing vibration at the time of diagnosis of the bridge 4 and a statistical index based on the feature amount is calculated as a diagnostic evaluation index. ing.
  • the diagnosis processing (FIG. 5) the presence or absence of an abnormality in the bridge 4 and its progress are determined based on the comparison result between the reference evaluation index and the diagnosis evaluation index. That is, as shown in the illustrated portion 603 of FIG. 6, in the probability space, the reference evaluation index based on the probability distribution of the reference feature amount and the diagnosis evaluation index based on the probability distribution of the diagnosis feature amount are compared, and the bridge 4 Abnormality is diagnosed.
  • the comparison between the standard evaluation index and the diagnostic evaluation index the situation of how much the diagnostic evaluation index deviates from the standard evaluation index is evaluated using a statistical index such as the Mahalanobis distance.
  • Judgment of the presence or absence of abnormality of the bridge 4 so that it is judged that the state of the bridge 4 at the time of diagnosis has changed from the reference time when the statistical distance between the evaluation index at the time of diagnosis and the standard evaluation index is a certain value or more. It can be performed.
  • the presence or absence of abnormality in the bridge 4 is determined based on the statistical distance of each evaluation index at the time of reference and at the time of diagnosis, but the present invention is not limited to this.
  • the coefficient matrix A or the principal component matrix A ⁇
  • the feature amount of the coefficient matrix A It may be determined that an abnormality has occurred in the bridge 4 on the assumption that the pattern of the above has changed.
  • the state evaluation based on the feature quantity representing the state of the structure is a probability distribution including various physical quantities of the structure, and the sensitivity of the change of the measured value to the damage different depending on the measurement point. It is performed using an evaluation index based on a probability distribution that can consider the estimation error of the measured value while absorbing the difference. Therefore, according to the first embodiment, it is not necessary to set a damage-sensitive vibration mode that requires a high degree of expertise in setting, and a probability distribution having an average and a variance based on a feature amount sensitive to damage of a structure is obtained. By using it, the state of the structure can be evaluated with low cost and high accuracy without performing numerical analysis. In addition, the validity of the evaluation can be expressed by the variance.
  • the evaluation index of the probability distribution used in the first embodiment captures minute changes that are easily buried due to noise during measurement or forced vibration such as live load, and slowly progress with damage to the structure.
  • the state of the structure can be diagnosed with high accuracy.
  • the coefficient matrix A representing the state of the structure is projected onto the main component space in order to remove the inferior information, and the main component matrix A ⁇ whose order is reduced is generated. Therefore, since the feature quantity representing the state of the structure is compressed into the feature quantity that can reproduce the state of the structure without degrading the quality of information, the edge processing is performed at a low cost such as a specific low power radio (Low Power Wide Area). It is possible to transfer features by a method using advanced technology, and it is expected that the sensor and transfer system will be configured at low cost and the management cost will be significantly reduced.
  • a specific low power radio Low Power Wide Area
  • FIG. 7 is a diagram showing a comparison between the data amounts of the coefficient matrix A and the principal component matrix A ⁇ in the first embodiment and the prior art for each number of sensors.
  • FIG. 7 shows a case where data measured for 60 s with a period of 5 ms is transmitted. According to FIG. 7, it can be seen that the amount of data transferred from the sensor node 1 can be significantly reduced by the principal component matrix A ⁇ regardless of the number of sensors of 8, 4, or 1.
  • the abnormality diagnosis of the bridge 4 is performed using a statistical index such as the Mahalanobis distance of the probability distribution based on the feature amount of the bridge 4 at the reference time and the diagnosis time, whereas in the second embodiment, the bridge 4 is diagnosed.
  • An abnormality diagnosis of the bridge 4 is performed using the Bayes factor based on the feature amount as an evaluation index.
  • the configuration of the diagnostic system S of the second embodiment is the same as the configuration of the diagnostic system of the first embodiment, except that a part of the processing of the diagnostic unit 212 of the diagnostic apparatus 2 is different.
  • FIG. 8 is a flowchart showing a diagnostic process in the diagnostic system S of the second embodiment.
  • the flowchart shown in FIG. 8 is another example of the process of step S212 of the process at the time of diagnosis of the first embodiment shown in FIG. That is, in the second embodiment, the diagnostic apparatus 2 executes the diagnostic process shown in FIG. 8 following step S211.
  • the diagnostic apparatus 2 can execute the diagnostic time processing of FIG. 5 without performing the reference time processing of FIG.
  • the diagnostic unit 212 of the diagnostic apparatus 2 is defined by the following equation (13) as an evaluation index based on the coefficient matrix A (or the principal component matrix A ⁇ ) which is the feature amount received in step S211.
  • Bayes factor B is calculated. When distinguishing from the local Bayes factor B j described later, the Bayes factor B is called a global Bayes factor.
  • H 0 is the null hypothesis (healthy state of the bridge 4 in this embodiment)
  • H 1 is the alternative hypothesis (abnormal / damaged state of the bridge 4 in this embodiment)
  • Y t is the hypothesis test.
  • Target feature amount in this embodiment, coefficient matrix A or principal component matrix A ⁇
  • ⁇ t is a parameter under the hypothesis of H 0 or H 1 (for example, the mean value or standard deviation of the probability distribution of the feature amount).
  • ⁇ t , H 0 ) has the same feature amount Y t at the time of diagnosis as the state (healthy state) at the reference time of the bridge 4.
  • the marginal likelihood is shown, and the molecule p (Y t
  • Bayes factor B which is the ratio of p (Y t
  • step S2122 the diagnostic unit 212 determines whether or not the Bayes factor B calculated in step S2121 is larger than the threshold value.
  • This threshold value is set as a classification determined by the inspection engineer of the bridge 4 to be abnormal from the past inspection data and the like.
  • the diagnostic unit 212 determines that there is an abnormality in the bridge 4 when the Bayes factor B is larger than the threshold value (step S2122Yes) (step S2123), and when the Bayes factor B is equal to or less than the threshold value (step S2122No), the bridge 4 Is normal (step S2124).
  • the diagnostic process shown in FIG. 8 may be performed by the sensor node 1 instead of the diagnostic device 2.
  • FIG. 9A is a diagram for explaining a method of calculating a threshold value for determining an abnormality according to the second embodiment.
  • the horizontal axis is time and the vertical axis is the logarithm of Bayes factor B, and the value of Bayes factor B at each time is plotted.
  • the horizontal axis is the frequency and the vertical axis is the logarithm of the Bayes factor B, and the frequency distribution of each value of the Bayes factor B is shown.
  • the calculation of the threshold value for abnormality determination may be performed by the diagnostic device 2 or another information processing device.
  • Bayes factor B is a variable value including specific data under various circumstances.
  • calculating the threshold value of Bayes factor B by including it in the basis of threshold value calculation instead of excluding specific data of multiple measurement data in the past predetermined period and data variation, in an actual bridge It is possible to calculate the threshold value considering various situations that occur.
  • the measurement data (see graph (a) of FIG. 9A) for a predetermined period (for example, one year) as a reference is applied to the above equation (13) to obtain the distribution of the value of Bayes factor B.
  • any value such as ⁇ , ⁇ + ⁇ , ⁇ + 2 ⁇ can be determined as a threshold value.
  • the threshold value of Bayes factor B can be quantitatively determined using the average ⁇ and the variance ⁇ based on the characteristics of the bridge 4 and index values such as usage conditions, geographical conditions, and meteorological conditions. In this way, it is possible to improve the accuracy of abnormality determination by using the threshold value considering various situations that occur in an actual bridge.
  • FIG. 9B is a diagram for explaining another example of the abnormality determination method using the plurality of threshold values of the second embodiment.
  • the horizontal axis is the frequency distribution and the vertical axis is the logarithm of the Bayes factor B, and the frequency distribution of each value of the Bayes factor B is shown.
  • the horizontal axis is the day and the vertical axis is the logarithm of the Bayes factor B, and each value of the Bayes factor B on each day is plotted.
  • the value of Bayes factor B is determined to be abnormal when it exceeds the threshold value. From this, in the distribution of the values of Bayes factor B based on the above-mentioned measurement data with reference to FIG. 9A, for values larger than the average ⁇ , a plurality of thresholds are set using the average ⁇ and the standard deviation ⁇ , and an abnormality is obtained. Can be determined step by step. Based on a plurality of thresholds, a range indicating the diagnostic level may be defined, for example, a range of "normal", a range of "need attention", and a range of "abnormality".
  • a plurality of values based on the mean value ⁇ of the distribution of the values of Bayes factor B and the variance ⁇ ( ⁇ , ⁇ + ⁇ , ⁇ + 2 ⁇ , etc. in (graph a) of FIG. 9B) are used for the abnormality diagnosis of the bridge 4 based on the Bayes factor B. Determine with multiple gradual thresholds. As shown in FIG. 14 (graph a), if the Bayes factor B is B ⁇ ⁇ + ⁇ , it is diagnosed as “normal”, if ⁇ + ⁇ ⁇ B ⁇ ⁇ + 2 ⁇ , it is diagnosed as “need attention”, and if ⁇ + 2 ⁇ ⁇ B. If so, it can be diagnosed as "abnormal". In the example of FIG.
  • the number of the plurality of thresholds for diagnosing abnormalities is set to “2”, but the number is not limited to this.
  • the stepwise threshold value of Bayes factor B and its number shall be quantitatively determined using the average ⁇ and the variance ⁇ based on the characteristics of the bridge 4 and the index values such as usage conditions, geographical conditions, and meteorological conditions. Can be done.
  • the manager of the bridge 4 can grasp the abnormality of the bridge 4 gradually progressing with the passage of time, and plans.
  • the bridge 4 can be maintained.
  • the Bayes factor B is an evaluation index for detecting an abnormality in the bridge 4 as a whole.
  • Individual Bayes factors are called local Bayes factors.
  • the local Bayes factor Bj can also be used as follows.
  • the type of sensor information that can sensitively detect an abnormality using the Bayes factor may differ depending on the type of the structure such as the bridge 4 and the abnormality or damage that occurs in the structure. Therefore, sensors 3 of a plurality of sensor types are installed in a structure such as a bridge 4, and diagnosis is performed based on the local Bayes factor Bj based on the feature amount generated for each sensor type.
  • sensors 3 having different physical quantities to be detected are installed on the bridge 4, and the local Bayes factor Bj is calculated based on the time-series feature quantities of the sensor information for each sensor type.
  • an abnormality is determined based on the local Bayes factor B j of the jth sensor type, an abnormality or damage occurs based on the sensor information of the sensor 3 of the jth sensor type from the index j of the local Bayes factor B j . It can be identified as being.
  • the local Bayes factor B j in this way, any one of the plurality of physical quantities can be made to detect an abnormality, so that the sensitivity of abnormality detection can be increased.
  • FIG. 10 is a diagram for explaining the experimental results of abnormality determination performed using the diagnostic system S of the second embodiment.
  • FIG. 10 shows the time transition of the binary logarithm of 10 types of local Bayes factor B j of A1 to A10, with the horizontal axis representing time and the vertical axis representing the binary logarithm axis of local Bayes factor B j .
  • A1 to A10 show the installation position of the sensor 3 as an example.
  • INT (initial), DMG1, and DMG2 in FIG. 10 represent each period.
  • the local Bayes factor B j based on the sensor information of the sensor 3 at any installation position is also approximately 0 and does not exceed the threshold value. On the contrary, if the local Bayes factor B j has a value as shown in FIG. 10, it can be estimated that the bridge 4 is in a healthy state without any abnormality or damage.
  • the local Bayes factor Bj based on the sensor information of the sensor 3 of the A6 is further larger than that of the DMG1 .
  • the local Bayes factor B j has a value similar to that of DMG2 as compared with DMG1, it can be estimated that the damage generated in the vicinity of A6 of the bridge 4 has further progressed.
  • the degree of progress of damage from DMG1 to DMG2 can be evaluated.
  • Bayes factor B or local Bayes factor Bj in this way, it is possible to detect that the bridge 4 has changed from a healthy state to an abnormal state, and to evaluate the progress of damage that has already been found by inspection or the like. can.
  • FIG. 11 is a diagram showing execution conditions of an experiment performed using the diagnostic system S of the second embodiment.
  • FIG. 12 is a diagram showing the results of experiments performed using the diagnostic system S of the second embodiment.
  • FIG. 11 shows the pattern of the load applied to the bridge over time, with the horizontal axis representing the time and the vertical axis representing the load.
  • FIG. 11 shows the pattern of the load applied to the bridge over time, with the horizontal axis representing the time and the vertical axis representing the load.
  • times t0 to t1 (Stage1), t2 to t3 (Stage2), t4 to t5 (Stage3), t6 to t7 (Stage4), t7 to t8 (Stage5), t9 to t10 (Stage6), At t10 to t11 (Stage7) and t12 to (Stage8) vibration was applied to the bridge.
  • t1 to t2 Loading 1
  • a crack load was applied to the bridge.
  • FIG. 13 is a diagram showing changes in the natural frequencies of bridges that differ depending on the vibration mode measured under the same conditions as the experiment conducted using the diagnostic system S of the second embodiment shown in FIG. ..
  • Graph 1101 in FIG. 13 shows changes in the natural frequency of the primary bending mode in Stages 1 to 8. Further, graph 1102 in FIG. 13 shows changes in the natural frequency of the secondary bending mode in Stages 1 to 8. As shown in graphs 1101 and 1102, the natural frequency increases or decreases due to a change in the state of the bridge. Theoretically, the natural frequency decreases due to the decrease in rigidity due to damage, but the natural frequency may increase, for example, when the state of the bearing of the bridge changes. Further, as shown in the graphs 1101 and 1102, the change in the natural frequency differs depending on the mode.
  • the abnormality diagnosis using the Bayes factor according to the present embodiment does not require the setting of the vibration mode, and the abnormality or damage generated in the bridge can be quantitatively detected.
  • FIG. 14 is a diagram showing changes over time in the values of the outside air temperature and the Bayes factor in a certain period of a certain girder of the bridge 4.
  • FIG. 14 (graph a) is a graph showing the time course of the outside air temperature for a certain period
  • (graph b) is a graph showing the time course of the Bayes factor B of the outside air temperature.
  • the solid line in FIG. 14 (graph b) indicates the threshold value for determining the abnormality of Bayes factor B, and when this threshold value is exceeded, it is determined to be abnormal.
  • FIG. 14 exemplifies the data of the change in the outside air temperature of the girder of the bridge 4 in which it is confirmed that there is no abnormality in the structure itself.
  • the outside air temperature fluctuates in a one-year cycle, it is determined that the change in the outside air temperature during the target period for determining the abnormality is not an abnormal change in the abnormality determination when the present embodiment is applied to the outside air temperature. That is, from FIG. 14, it can be seen that in the present embodiment, it is possible to determine the abnormality of the structure in consideration of the presence or absence of the influence of periodic fluctuations occurring in the natural world such as temperature changes.
  • FIG. 15 is a diagram showing changes over time in the values of deflection and Bayes factor of a bridge over a certain period of time. Deflection is detected using a communication pipe.
  • FIG. 15 one year from April to March of the following year is set as a yearly unit, (graph a) shows the change over time of the deflection for a certain period, and (graph b) shows the change over time of the Bayes factor B of the deflection. show.
  • the solid line in FIG. 15 (graph b) indicates the threshold value for determining the abnormality of Bayes factor B, and when this threshold value is exceeded, it is determined to be abnormal.
  • the threshold value for abnormality judgment is set based on the measurement data for one year of the base year.
  • FIG. 16 is a diagram showing a comparison of changes over time in the values of Bayes factor between two spans of a bridge.
  • one year from May to April of the following year is set as the annual unit.
  • the bridge 4 whose data is shown in FIG. 16 is the same as the bridge 4 whose data is shown in FIG.
  • abnormality determination is made based on the measurement results of acceleration at two different points (damaged first span and second span with relatively little damage) of the same bridge 4. The result of is calculated.
  • the threshold value is set based on the measurement data for one year of the base year. However, since the base year, the first year, the second year, and the third year of FIG. 16 are different from those of FIG. 15, they are distinguished by notation such as the first year of FIG. 15 and the first year of FIG. ..
  • the damaged abnormality between the first spans was detected in September of the first year of FIG. 16, and the deterioration over time can be grasped thereafter.
  • the second span where the damage is relatively small even in the year when the abnormality is detected in the first span in FIG. 16, it is judged to be normal except for the temporary abnormal value. Since the result of this first span is the same as the time when the fluctuation of the deflection amount shown in FIG. 15 becomes large (the fourth and fifth years and thereafter in FIG. 15), an appropriate abnormal value can be determined. it is conceivable that.
  • the diagnostic apparatus 2 uses the coefficient matrix A or the principal component matrix A ⁇ of the bridge 4 as a feature quantity representing the state of the bridge 4, and uses the Bayes factor B or the local Bayes factor B j based on the feature quantity to bridge the bridge. It was decided to make an abnormality diagnosis.
  • feature quantities are extracted from time-series data obtained by continuously measuring one or more physical quantities of each part of the structure, and an abnormality diagnosis of the structure is performed using the Bayes factor based on these feature quantities.
  • Physical quantities are displacement, velocity, acceleration, external force, strain, temperature, and the like.
  • an abnormality diagnosis of a structure may be performed using a Bayes factor based on a feature amount extracted from data for a predetermined period in time-series data obtained by observing the temperature of the bridge 4 at a fixed point.
  • the diagnostic unit may correct the Bayes factor using the result of the on-site inspection by the inspection worker for the bridge 4, and diagnose the state of the bridge 4 based on the corrected Bayes factor. For example, if an abnormality is determined based on the Bayes factor of a certain feature, but there is no abnormality as a result of on-site inspection, the Bayes factor is corrected so that the same feature is not determined to be abnormal thereafter. To. Alternatively, if there is an abnormality as a result of the on-site inspection, the threshold value may be set or corrected by referring to the Bayes factor based on the sensor installed in the vicinity of the site where the abnormality is detected.
  • the Bayes factor which is the ratio of the probability of the healthy state and the abnormal state calculated from the time series of the observation data of the structure in each time domain, and the inspection engineer with a high degree of expertise are abnormal in the past.
  • the state of the structure is diagnosed based on the threshold set from the damaged state. Therefore, even a person who does not have a high degree of specialized knowledge does not require high-cost processing such as numerical analysis, and uses a quantitative evaluation index to form a structure equivalent to that of an inspection engineer who has a high degree of specialized knowledge. It is possible to evaluate the soundness of an object with high accuracy.
  • the coefficient matrix A which is a feature quantity representing the state of the bridge 4
  • the coefficient matrix A is sequentially learned by using Bayesian estimation to improve the abnormality detection accuracy of the bridge 4.
  • the sequential learning of the coefficient matrix A may be performed by the sensor node 1 (for example, the feature amount generation unit 113) or the diagnostic device 2 (for example, the diagnostic unit 212).
  • the same effect can be obtained by performing the same processing on the principal component matrix A ⁇ instead of the coefficient matrix A.
  • FIG. 17 is an explanatory diagram of sequential update of the coefficient matrix A in the diagnostic system S of the third embodiment.
  • the acceleration detected by the sensor 3 is shown on the vertical axis, and the time is shown on the horizontal axis.
  • Y) i of the coefficient matrix A at the time i shown in FIG. 17 is obtained by using Bayesian estimation as shown in the following equation (15-1).
  • the prior probability p (A, ⁇ ) i at time i is the posterior probability p (A, ⁇
  • Y) i + 1 of the coefficient matrix A in the time (i + 1) can be obtained in the same manner. ..
  • FIG. 18 is a diagram showing the convergence of the probability distribution of the coefficient matrix by sequentially updating the coefficient matrix in the diagnostic system of the third embodiment.
  • the horizontal axis is a value that can be taken by an element of a feature amount (for example, a coefficient matrix A), and the vertical axis is a posterior probability at each value of the element.
  • the average value of the probability distribution approaches the true value and converges in the direction in which the variance becomes smaller (the probability distribution shown in FIG. 18 is).
  • the coefficient matrix A can represent the state of the structure with higher accuracy. Then, the diagnosis unit 212 diagnoses the state of the structure using the coefficient matrix A or the principal component matrix A ⁇ after the sequential learning as the feature quantity. Therefore, it is possible to improve the accuracy of the abnormality estimation of the state of the structure. Since the coefficient matrix A is a feature quantity that includes various features of the vibration data of the structure, it captures finer state changes of the structure than the conventional technique for determining an abnormality using the natural frequency or the like. It becomes possible to perform abnormality judgment.
  • the diagnostic system S has been described as having the sensor node 1 and the diagnostic device 2, but the embodiment is not limited thereto.
  • the diagnostic system S may be configured without the diagnostic device 2.
  • the diagnostic system S includes a sensor node 1 having an acquisition unit, an autoregressive model generation unit, a feature amount generation unit, and a diagnostic unit. That is, the sensor node 1 has an acquisition unit that acquires sensor information from a sensor attached to the structure in time series, and a sensor that acquires sensor information acquired by the acquisition unit at a certain time before a certain time.
  • the first periphery representing the probability distribution of the feature quantity when the structure is assumed to be in a healthy state.
  • An evaluation index which is a ratio of the likelihood and the second peripheral likelihood representing the probability distribution of the feature amount when the structure is not in a healthy state, is calculated, and the state of the structure is calculated based on the evaluation index. It has a diagnostic unit for diagnosing.
  • a feature amount indicating the state of the structure at a certain time is generated based on the regression coefficient of the autoregressive model
  • the embodiment is not limited to this.
  • a feature quantity indicating the state of the structure may be generated from other than the regression coefficient of the autoregressive model.
  • FIG. 19 is a block diagram showing a configuration of a sensor node terminal 1B used as the sensor node 1 of the embodiment.
  • the sensor node terminal 1B mounted as the sensor node 1 further includes an acceleration sensor 15 as compared with the configuration of the sensor node 1 (FIG. 2).
  • Such a sensor node terminal 1B exhibits the same functions as the sensor node 1 and the sensor 3 by executing a predetermined application. That is, the sensor node terminal 1B is installed on the bridge 4 in the same manner as the sensor 3, generates a feature amount of the bridge 4 from the acquired acceleration data, and transmits it to the diagnostic device 2.
  • the diagnostic device 2 is built on a cloud server, for example, and provides diagnostic results based on feature quantities as a cloud service.
  • the diagnostic device 2 transmits the diagnostic result to the sensor node terminal 1B or another terminal device.
  • the user confirms the diagnosis result by looking at the screen output of the sensor node terminal 1B or other terminal device.
  • a plurality of sensor node terminals 1B may be mounted as a plurality of sensor nodes 1 and installed at a plurality of locations on the bridge 4 in the same manner as the sensor 3.
  • the bridge 4 is obtained from the acceleration data acquired by all of the plurality of sensor node terminals 1B by the independent processing of one sensor node terminal 1B representing the plurality of sensor node terminals 1B or the cooperative processing of a predetermined number of sensor nodes 1.
  • the feature amount of is generated and transmitted to the diagnostic apparatus 2.
  • the present invention is not limited to the above-described embodiment, and the configuration of each embodiment can be added, deleted, replaced, integrated, or dispersed. Further, the configurations and processes shown in the embodiments can be appropriately distributed, integrated, or replaced based on the efficiency of the processes or implementations.
  • the program that executes each process of the diagnostic system described in the above-described embodiment is installed in one or more computers via a recording medium or a transmission medium, or is provided as an embedded program.

Abstract

This structure diagnosis system includes a diagnosis unit which: for a feature amount indicating the state of a structure and generated from a time series of information relating to the structure, calculates an evaluation index, which is the ratio between a first periphery likelihood representing the feature amount probability distribution in a case where the structure is assumed to be in a sound state, and a second periphery likelihood representing the feature amount probability distribution in a case where the structure is assumed to not be in a sound state; and diagnoses the state of the structure on the basis of the evaluation index.

Description

構造物診断システム、構造物診断方法、および構造物診断プログラムStructure diagnostic system, structure diagnostic method, and structure diagnostic program
 本発明は、構造物診断システム、構造物診断方法、および構造物診断プログラムに関する。 The present invention relates to a structure diagnosis system, a structure diagnosis method, and a structure diagnosis program.
 従来から、橋梁などの構造物の加速度をもとに、振動の固有振動数や、減衰係数、モード形状などの特徴量(振動特性)を推定し、推定した振動特性の変化に基づいて構造物の異常を診断する技術がある。 Conventionally, based on the acceleration of structures such as bridges, the natural frequency of vibration, damping coefficient, feature quantities (vibration characteristics) such as mode shape are estimated, and the structure is based on the estimated changes in vibration characteristics. There is a technique for diagnosing abnormalities in.
 例えば特許文献1には、次の技術が開示されている。すなわち橋梁の複数個所に設置された加速度センサから取得された振動を示すセンサ信号に対して独立成分分析(ICA)を行い、独立成分分析によって得られた独立な振動成分についてスペクトル解析を行って橋梁の固有振動数を求める。そして、予め取得しておいた健全状態時の橋梁の固有振動数と現在の橋梁の固有振動数との比較に基づいて、橋梁全体の異常診断および異常箇所の特定を行う。 For example, Patent Document 1 discloses the following technology. That is, independent component analysis (ICA) is performed on the sensor signals indicating vibrations acquired from accelerometers installed at multiple locations on the bridge, and spectral analysis is performed on the independent vibration components obtained by independent component analysis on the bridge. Find the natural frequency of. Then, based on the comparison between the natural frequency of the bridge in a healthy state acquired in advance and the natural frequency of the current bridge, the abnormality diagnosis of the entire bridge and the identification of the abnormality location are performed.
特開2008-255571号公報Japanese Unexamined Patent Publication No. 2008-25571
 しかしながら、振動計測を行う個所や振動モードに応じて、損傷に対する変化の感度に違いが生じる。さらに,先行の技術は、振動計測時の環境条件(外力、温度など)によっても推定のばらつきが生じる。しかし、加速度センサの設置個所や振動モードを適切に事前設定することは、熟練者であっても難しい。このようなことから、固有振動数に基づく例えば橋梁の異常診断では、例えば振動モードの設定を誤ると、橋梁の異常による振動特性の変化と、橋梁の異常以外による振動特性の偶発的変化とを判別できないといったように、定量的な異常診断を高精度に行い得ないという問題がある。 However, the sensitivity of change to damage varies depending on the location where vibration measurement is performed and the vibration mode. Furthermore, in the preceding technology, the estimation varies depending on the environmental conditions (external force, temperature, etc.) at the time of vibration measurement. However, it is difficult even for an expert to properly preset the installation location of the accelerometer and the vibration mode. For this reason, in, for example, in bridge abnormality diagnosis based on the natural frequency, if the vibration mode is set incorrectly, for example, changes in vibration characteristics due to bridge abnormalities and accidental changes in vibration characteristics due to other than bridge abnormalities are detected. There is a problem that quantitative abnormality diagnosis cannot be performed with high accuracy, such as being unable to discriminate.
 本発明は上述の点を考慮して、構造物の定量的な異常診断を高精度に行い得るようにすることを目的とする。 It is an object of the present invention to be able to perform quantitative abnormality diagnosis of a structure with high accuracy in consideration of the above points.
 本発明は、上記課題を解決するために、本発明の構造物診断システムは、構造物に関する情報の時系列から生成された該構造物の状態を示す特徴量について、前記構造物が健全状態であると仮定した場合における該特徴量の確率分布を表す第1の周辺尤度と、前記構造物が前記健全状態でないと仮定した場合における該特徴量の確率分布を表す第2の周辺尤度と、の比率である評価指標を算出し、前記評価指標に基づいて前記構造物の状態を診断する診断部を有することを特徴とする。 In order to solve the above problems, the present invention has a structure diagnostic system of the present invention in which the structure is in a sound state with respect to a feature quantity indicating the state of the structure generated from a time series of information about the structure. A first marginal likelihood representing the probability distribution of the feature amount in the case of being present, and a second marginal likelihood representing the probability distribution of the feature amount in the case where the structure is assumed to be in the unhealthy state. It is characterized by having a diagnostic unit that calculates an evaluation index, which is a ratio of, and diagnoses the state of the structure based on the evaluation index.
 本発明によれば、構造物の定量的な異常診断を高精度に行うことができる。 According to the present invention, it is possible to perform quantitative abnormality diagnosis of a structure with high accuracy.
実施形態1の診断システムの概略構成を示す図。The figure which shows the schematic structure of the diagnostic system of Embodiment 1. FIG. 実施形態1のセンサノードの構成を示すブロック図。The block diagram which shows the structure of the sensor node of Embodiment 1. FIG. 実施形態1の診断装置の構成を示すブロック図。The block diagram which shows the structure of the diagnostic apparatus of Embodiment 1. FIG. 実施形態1の診断システムにおける基準時処理を示すシーケンス図。The sequence diagram which shows the reference time processing in the diagnostic system of Embodiment 1. FIG. 実施形態1の診断システムにおける診断時処理を示すシーケンス図。The sequence diagram which shows the process at the time of diagnosis in the diagnosis system of Embodiment 1. FIG. 実施形態1の診断システムにおける診断時処理の説明図。The explanatory view of the process at the time of diagnosis in the diagnosis system of Embodiment 1. FIG. 実施形態1と従来技術における係数行列と主成分行列のデータ量をセンサ数ごとに比較して示す図。The figure which compares and shows the data amount of the coefficient matrix and the principal component matrix in Embodiment 1 and the prior art by the number of sensors. 実施形態2の診断システムにおける診断処理を示すフローチャート。The flowchart which shows the diagnostic process in the diagnostic system of Embodiment 2. 実施形態2の異常判定の閾値の算出方法を説明するための図。The figure for demonstrating the calculation method of the threshold value of abnormality determination of Embodiment 2. 実施形態2の複数の閾値を用いた異常判定方法の他例を説明するための図。The figure for demonstrating another example of the abnormality determination method using a plurality of thresholds of Embodiment 2. FIG. 実施形態2の診断システムを用いて行った異常判定の実験結果を説明するための図。The figure for demonstrating the experimental result of abnormality determination performed using the diagnostic system of Embodiment 2. 実施形態2の診断システムを用いて行った実験の実行条件を示す図。The figure which shows the execution condition of the experiment performed using the diagnostic system of Embodiment 2. 実施形態2の診断システムを用いて行った実験結果を示す図。The figure which shows the experimental result which performed using the diagnostic system of Embodiment 2. 実施形態2の診断システムを用いて行った実験と同条件で測定した振動モードに応じて異なる橋梁の固有振動数の変化を示す図。The figure which shows the change of the natural frequency of a bridge which differs according to the vibration mode measured under the same conditions as the experiment which performed using the diagnostic system of Embodiment 2. FIG. 橋梁のある桁のある期間における外気温とベイズファクターの値の経時変化を示す図。The figure which shows the time course of the outside air temperature and the value of Bayes factor in a certain period of a certain girder of a bridge. 橋梁のある期間におけるたわみとベイズファクターの値の経時変化を示す図。The figure which shows the time-dependent change of the value of the deflection and the Bayes factor in a certain period of a bridge. 橋梁の2つの径間のベイズファクターの値の経時変化の比較を示す図。The figure which shows the comparison of the time change of the value of the Bayes factor between two spans of a bridge. 実施形態3の診断システムにおける係数行列の逐次更新の説明図。An explanatory diagram of sequential update of a coefficient matrix in the diagnostic system of the third embodiment. 実施形態3の診断システムにおける係数行列の逐次更新による係数行列の確率分布の収束を示す図。The figure which shows the convergence of the probability distribution of a coefficient matrix by sequential update of a coefficient matrix in the diagnostic system of Embodiment 3. 実施形態のセンサノードとして用いるセンサノード端末の構成を示すブロック図。The block diagram which shows the structure of the sensor node terminal used as the sensor node of an embodiment.
 以下、図面を参照しつつ本発明の実施形態を説明する。以下の実施形態は、本発明を必要十分に説明するための例示であって、適宜省略および簡略化がなされている。以下の実施形態で説明する構成および処理のうち、全てが本発明の実施において必須ではなく、適宜省略可能である。本発明は、以下の実施形態の他、本発明の目的を達成できる様々な他の形態で実施することができる。また、本発明の技術思想の範囲内で整合する限りにおいて、各実施形態および変形例の一部または全部を組合せた形態も、本発明の実施形態に含まれる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are examples for explaining the present invention in a necessary and sufficient manner, and are appropriately omitted and simplified. All of the configurations and processes described in the following embodiments are not essential in the practice of the present invention and may be omitted as appropriate. In addition to the following embodiments, the present invention can be carried out in various other embodiments capable of achieving the object of the present invention. Further, as long as it is consistent within the scope of the technical idea of the present invention, the embodiment of the present invention also includes a form in which some or all of the respective embodiments and modifications are combined.
 以下の実施形態では、既出の構成および処理と同様の後出の構成および処理には、同一の符号を付与して説明を省略し、差分のみを説明する場合がある。 In the following embodiments, the same reference numerals may be given to the later configurations and processes similar to the existing configurations and processes, the description may be omitted, and only the differences may be described.
 以下の実施形態では、亀裂などの損傷や劣化といった異常の有無を診断する対象の構造物として、橋梁を例として説明する。しかし本発明は、橋梁に限らず、トンネル、道路構造物、河川構造物、港湾構造物、上下水道、ビルといった社会基盤を担うあらゆる土木構造物あるいは建築構造物に適用し、その異常の有無を診断することができる。 In the following embodiment, a bridge will be described as an example of a structure to be diagnosed for the presence or absence of abnormalities such as damage or deterioration such as cracks. However, the present invention is applied not only to bridges but also to all civil engineering structures or building structures that support social infrastructure such as tunnels, road structures, river structures, harbor structures, water and sewage, and buildings, and whether or not there are any abnormalities thereof. Can be diagnosed.
 なお、以下の実施形態の説明において、例えば“A^”のように第1の記号に第2の記号を続けて記載した表現は、第1の記号の直上に第2の記号を記載した表現と同一である。 In the description of the following embodiment, the expression in which the second symbol is continuously described in the first symbol, for example, “A ^”, is the expression in which the second symbol is described immediately above the first symbol. Is the same as.
<本発明の数理的背景>
 先ず、実施形態の説明に先立ち、本発明の数理的背景を説明する。本発明では、構造物の状態空間モデルにおける状態方程式のシステム行列が、或る時刻における観測信号を或る時刻以前の観測信号の時系列の線形結合として表現する自己回帰モデルの回帰係数の行列によって近似できることを用いている。本発明では、回帰係数の行列がシステム行列に含まれる構造物の状態に関する様々な情報を含んでいる点に着目し、回帰係数の行列を用いて構造物の状態を表し、この回帰係数の行列を解析することで構造物の状態を評価する。
<Mathematical background of the present invention>
First, the mathematical background of the present invention will be described prior to the description of the embodiments. In the present invention, the system matrix of the state equation in the state space model of the structure is represented by the matrix of the regression coefficients of the autoregressive model that expresses the observation signal at a certain time as a time series linear connection of the observation signals before a certain time. It uses what can be approximated. In the present invention, paying attention to the fact that the matrix of regression coefficients contains various information about the state of the structure included in the system matrix, the matrix of regression coefficients is used to represent the state of the structure, and the matrix of the regression coefficients is represented. The state of the structure is evaluated by analyzing.
 以下では、センサによって取得されたセンサ情報を加速度として説明するが、加速度に限らず、他の物理量であってもよい。 In the following, the sensor information acquired by the sensor will be described as acceleration, but it is not limited to acceleration and may be another physical quantity.
 一般的に、構造物の運動方程式は、下記式(1)のように表される。構造物にはn個(nは1以上の自然数)のセンサが各位置に設置され、設置位置を観測点としてn次の観測ベクトルの時系列が取得されるとする。 Generally, the equation of motion of a structure is expressed as the following equation (1). It is assumed that n sensors (n is a natural number of 1 or more) are installed in the structure at each position, and the time series of the nth-order observation vector is acquired with the installation position as the observation point.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記(1)式の運動方程式は、下記式(2-1)および式(2-2)のように状態方程式として変換できる。 The equation of motion of equation (1) above can be converted as an equation of state as in equations (2-1) and (2-2) below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、上記式(2-2)のyは観測ベクトルを、上記式(2-3)のzは状態変数ベクトルを、上記式(2-5)のAは状態空間におけるシステム(診断対象の構造物)の状態を表すシステム行列をそれぞれ表す。上記式(2-2)におけるCは観測ベクトルyとシステムの状態とを関連付ける行列であり、観測点における計測情報をそのままシステムの状態とみなす場合は単位行列になる。 Here, y in the above equation (2-2) is an observation vector, z in the above equation (2-3) is a state variable vector, and As in the above equation ( 2-5 ) is a system in a state space (diagnosis target). Represents each system matrix representing the state of the structure). C in the above equation (2-2) is a matrix that associates the observation vector y with the state of the system, and is an identity matrix when the measurement information at the observation point is regarded as the state of the system as it is.
 さて、上記式(2-1)および式(2-2)の状態方程式は、下記式(3)のように離散化した観測信号の時系列の線形結合である自己回帰モデルで表現できることが知られている。 By the way, it is known that the equations of state of the above equations (2-1) and (2-2) can be expressed by an autoregressive model which is a linear combination of the discretized observation signals as shown in the following equation (3). Has been done.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記式(3)において、kは時刻インデックス、y(k)は時刻kにおけるセンサ情報ベクトル、pは自己回帰モデルの次数、Aは回帰係数の行列、e(k)は時刻kにおける自己回帰モデルの誤差項である。行列Aは、自己回帰モデルにおいて線形結合されたセンサ情報ベクトルy(k-i)の時系列のそれぞれに乗じられている回帰係数である。 In the above equation (3), k is a time index, y (k) is a sensor information vector at time k, p is the order of the autoregressive model, A i is a matrix of regression coefficients, and e (k) is autoregressive at time k. This is the error term of the model. The matrix Ai is a regression coefficient multiplied by each of the time series of the linearly combined sensor information vector y (ki) in the autoregressive model.
 上記式(3)の自己回帰モデルにおける回帰係数である行列Aの各要素は、上記式(2-1)のシステム行列Aに含まれる構造物の物理量と関連付けられ、センサが設置されている観測点における変位、速度、加速度、質量マトリクスm、減衰係数マトリクスc、および剛性マトリクスkの情報のうちの少なくとも一つを含んでいる。よって、行列Aを用いることで、振動に関する様々な情報を含むように構造物の状態を表現することができる。すなわち行列Aの変化を捉えることで構造物の状態の変化を捉えることが可能になる。 Each element of the matrix Ai , which is the regression coefficient in the self-return model of the above equation (3), is associated with the physical quantity of the structure included in the system matrix As of the above equation (2-1), and a sensor is installed. It contains at least one of the information of displacement, velocity, acceleration, mass matrix m, damping coefficient matrix c, and rigidity matrix k at the observation point. Therefore, by using the matrix A i , the state of the structure can be expressed so as to include various information regarding vibration. That is, by capturing the change in the matrix Ai , it becomes possible to capture the change in the state of the structure.
 ただし、センサが1つ(n=1)の場合では、自己回帰モデルにおける行列Aは、スカラーとなる。 However, when there is one sensor (n = 1), the matrix Ai in the autoregressive model is a scalar.
 ここで行列Aは、下記式(4)のようにn次の正方行列である。下記式(4)におけるnは構造物の各位置に設置されたセンサの数である。 Here, the matrix A i is an nth-order square matrix as shown in the following equation (4). In the following equation (4), n is the number of sensors installed at each position of the structure.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 そしてn個のセンサにより計測されたセンサ情報ベクトルy(k)の時系列から生成した上記式(3)に示すp次の自己回帰モデルを行列式で表すと、下記式(5)のようになる。 Then, when the p-th order autoregressive model shown in the above equation (3) generated from the time series of the sensor information vector y (k) measured by n sensors is expressed by a determinant, it is as shown in the following equation (5). Become.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、上記式(5)における左辺のYは予測状態を、右辺第1項のYはp次の過去の加速度を、右辺第2項のEは構造物の状態観測の不確定性に起因する誤差を表す。また、上記式(5)における右辺第1項の係数行列Aは、1からpまでのiについての行列Aを結合したn×(n×p)行列であり、下記式(6)のように表される。 Here, in the above equation (5), Y f on the left side is the predicted state, Y p in the first term on the right side is the past acceleration of the pth order, and E in the second term on the right side is the uncertainty of state observation of the structure. Represents the error caused by. Further, the coefficient matrix A of the first term on the right side in the above equation (5) is an n × (n × p) matrix in which the matrices A i for i from 1 to p are combined, and is as shown in the following equation (6). It is represented by.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、係数行列Aは、システム行列Aの情報を引き継ぐが、例えば時刻kにおけるシステムの固有振動数ωおよび減衰係数hを用いて表される時刻kにおけるシステムの極z,z は、上記式(5)から、下記式(7)のように求まる。 The coefficient matrix A inherits the information of the system matrix As. For example, the poles z k , z k of the system at time k expressed by using the natural frequency ω k of the system at time k and the attenuation coefficient h k . * Can be obtained from the above equation (5) as in the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 係数行列Aの事後分布を極の事後分布に変換し、上記式(7)のように求まる固有振動数ωおよび減衰係数hも、構造物の診断に用いることができる。このようにして求めた固有振動数ωおよび減衰係数hは、従来技術と比較して、固有振動数や減衰係数といった振動特性を、ばらつきを考慮して同定できるという優位性がある。また、係数行列Aの事後分布を極の事後分布に変換し、分散が小さい極から振動特性を求めることで、物理的に意味がある振動特性の選定を自動化できる。また、BIC(Bayesian information criterion)に基づいてモデル次数pの選定を自動化できる。 The posterior distribution of the coefficient matrix A is converted into the posterior distribution of the poles, and the natural frequency ω k and the damping coefficient h k obtained as in the above equation (7) can also be used for the diagnosis of the structure. The natural frequency ω k and the damping coefficient h k obtained in this way have an advantage that the vibration characteristics such as the natural frequency and the damping coefficient can be identified in consideration of the variation as compared with the prior art. Further, by converting the posterior distribution of the coefficient matrix A into the posterior distribution of the poles and obtaining the vibration characteristics from the poles having a small variance, it is possible to automate the selection of the vibration characteristics that are physically meaningful. Further, the selection of the model order p can be automated based on the BIC (Bayesian information criterion).
 上述のようにして求められた係数行列Aを構造物の状態を表す特徴量として診断装置へ送信することで、診断装置において構造物の振動特性を有する時系列を再現し、構造物の状態の診断が可能となる。 By transmitting the coefficient matrix A obtained as described above to the diagnostic device as a feature quantity representing the state of the structure, the time series having the vibration characteristics of the structure is reproduced in the diagnostic device, and the state of the structure is reproduced. Diagnosis is possible.
 しかし、係数行列Aには診断結果に関わらない質が劣る情報の成分が含まれている。この質が劣る情報の成分を除去して再構築された行列A^を診断装置へ送信することで、データの送受信量を減らすことができる。この行列A^は、係数行列Aの主成分分析によって求められるので、主成分行列という。 However, the coefficient matrix A contains a component of inferior information that is not related to the diagnosis result. By removing the component of this inferior information and transmitting the reconstructed matrix A ^ to the diagnostic apparatus, the amount of data transmitted / received can be reduced. Since this matrix A ^ is obtained by the principal component analysis of the coefficient matrix A, it is called a principal component matrix.
 例えば構造物の基準時(例えば健全時)において推定された係数行列Aを、下記式(8)のように特異値分解する。 For example, the coefficient matrix A estimated at the reference time (for example, sound time) of the structure is decomposed into singular values as shown in the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記式(8)における行列Uおよび行列P(ただしPは行列Pの転置行列)は直交行列であり、行列Λは係数行列Aの固有値である。そして上記式(8)の右辺は、下記式(9)のように、主成分分析によって、行列Uがn×N行列U(N<n)と、n×(np-N)行列Uとに分解される。 The matrix U and the matrix P T (where PT is the transposed matrix of the matrix P) in the above equation (8) are orthogonal matrices, and the matrix Λ is an eigenvalue of the coefficient matrix A. Then, on the right side of the above equation (8), as shown in the following equation (9), the matrix U is an n × N matrix U 1 (N <n) and an n × (np−N) matrix U 2 by principal component analysis. It is decomposed into.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 この基準時(例えば健全時)における行列Uが、確率空間における係数行列Aを主成分空間へ射影する行列である。下記式(10)に示すように、基準時以降の各時刻において推定された係数行列Aに対して、行列Uの転置行列U を作用させることで、質が劣る情報の成分を除去したN×np行列である主成分行列A^が生成される。 The matrix U 1 at the reference time (for example, at the healthy time) is a matrix that projects the coefficient matrix A in the probability space onto the principal component space. As shown in the following equation (10), by applying the transposed matrix U 1 T of the matrix U 1 to the coefficient matrix A estimated at each time after the reference time, the component of the inferior information is removed. The principal component matrix A ^, which is the N × np matrix, is generated.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 以上のようにシステム行列Aの情報を受け継ぐ係数行列Aを推定し、係数行列Aから主成分行列A^を生成し、主成分行列A^の変化を捉えることで、構造物の異常を検知することができる。本発明では、下記式(11)に示すように、ベイズ推定によって、主成分行列A^の要素の確率分布を推定する。そして、推定した確率分布を構造物の状態診断に用いることで、上記式(5)に含まれる不確定性を考慮しつつ構造物の異常検知を行うことができる。 As described above, the coefficient matrix A that inherits the information of the system matrix As is estimated, the principal component matrix A ^ is generated from the coefficient matrix A, and the change in the principal component matrix A ^ is captured to detect the abnormality of the structure. can do. In the present invention, as shown in the following equation (11), the probability distribution of the elements of the principal component matrix A ^ is estimated by Bayesian estimation. Then, by using the estimated probability distribution for the state diagnosis of the structure, it is possible to detect the abnormality of the structure while considering the uncertainty included in the above equation (5).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 本発明では、平均値と分散を持つ確率分布を、構造物の状態を評価する評価指標としているため、構造物の健全時に対する損傷時の評価指標の平均値の微小な変化を捉えることができるだけでなく、分散で評価指標の確からしさを示すことができる。 In the present invention, since the probability distribution having the mean value and the variance is used as an evaluation index for evaluating the state of the structure, it is possible to capture a minute change in the mean value of the evaluation index at the time of damage to the sound state of the structure. Instead, the variance can show the probability of the evaluation index.
 なお、主成分行列A^ではなく、係数行列Aを特徴量として用いても構造物の状態診断を行うことができるが、その場合は、上記式(11)は、A^をAに置き換えた式になる。 It should be noted that the state diagnosis of the structure can be performed by using the coefficient matrix A as the feature quantity instead of the principal component matrix A ^, but in that case, in the above equation (11), A ^ is replaced with A. It becomes an expression.
<実施形態1>
 以下、図1~図7を参照して実施形態1を説明する。
<Embodiment 1>
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 7.
(実施形態1の診断システムSの構成)
 図1は、実施形態1の診断システムSの概略構成を示す図である。診断システムSは、センサノード1と、診断装置2とを有する。センサノード1は、橋梁4に設置されたセンサ3から無線通信(または有線通信)を介して取得したセンサ情報に基づいて橋梁4の状態を示す特徴量を生成する。診断装置2は、センサノード1において生成された橋梁4の状態を示す特徴量を無線通信(または有線通信)を介して取得し、この特徴量を用いて橋梁4の異常の有無を診断する。
(Configuration of Diagnostic System S of Embodiment 1)
FIG. 1 is a diagram showing a schematic configuration of the diagnostic system S of the first embodiment. The diagnostic system S has a sensor node 1 and a diagnostic device 2. The sensor node 1 generates a feature amount indicating the state of the bridge 4 based on the sensor information acquired from the sensor 3 installed on the bridge 4 via wireless communication (or wired communication). The diagnostic device 2 acquires a feature amount indicating the state of the bridge 4 generated in the sensor node 1 via wireless communication (or wired communication), and diagnoses the presence or absence of an abnormality in the bridge 4 using this feature amount.
 センサ3は、例えば加速度センサであり、橋梁4の各部位に設置されている。本実施形態では、センサ3は橋梁4の複数の部位に設置された複数のセンサであるとするが、これに限らず1つの部位に設置された1つのセンサでもよい。また本実施形態では、センサ3は加速度を検知する加速度センサであるとするが、これに限らず、その他の物理量(例えば歪み、変位、速度等)を測定できるセンサでもよい。 The sensor 3 is, for example, an acceleration sensor, and is installed at each part of the bridge 4. In the present embodiment, the sensor 3 is a plurality of sensors installed at a plurality of parts of the bridge 4, but the sensor 3 is not limited to this and may be one sensor installed at one part. Further, in the present embodiment, the sensor 3 is assumed to be an acceleration sensor that detects acceleration, but the sensor 3 is not limited to this, and may be a sensor that can measure other physical quantities (for example, strain, displacement, velocity, etc.).
 なお本実施形態では、説明の分かりやすさのため、図1に示すように、センサ3から取得されたセンサ情報をセンサノード1が処理した結果を診断装置2へ送信する構成を例として説明している。しかし、これに限らず、センサ3がセンサネットワークを形成し、分散協調処理を行うことでセンサノード1と同等の機能を実現する分散協調システムの構成であってもよい。なおセンサ3が1つの場合は、1つのセンサ3がセンサノード1と同等の機能を実現する。 In this embodiment, for the sake of clarity of explanation, as shown in FIG. 1, a configuration in which the result of processing the sensor information acquired from the sensor 3 by the sensor node 1 is transmitted to the diagnostic device 2 will be described as an example. ing. However, the present invention is not limited to this, and a distributed coordination system may be configured in which the sensor 3 forms a sensor network and performs distributed coordination processing to realize a function equivalent to that of the sensor node 1. When there is one sensor 3, one sensor 3 realizes the same function as the sensor node 1.
(実施形態1のセンサノード1の構成)
 図2は、実施形態1のセンサノード1の構成を示すブロック図である。センサノード1は、センサ3から取得したセンサ情報から、橋梁4の状態を表す特徴量として係数行列A(または主成分行列A^)を生成するエッジ処理を行う。センサノード1は、プロセッサ11と、メモリ12と、ストレージ13と、通信I/F(Inter/Face)部14とを有する。
(Configuration of Sensor Node 1 of Embodiment 1)
FIG. 2 is a block diagram showing the configuration of the sensor node 1 of the first embodiment. The sensor node 1 performs edge processing for generating a coefficient matrix A (or a principal component matrix A ^) as a feature amount representing the state of the bridge 4 from the sensor information acquired from the sensor 3. The sensor node 1 has a processor 11, a memory 12, a storage 13, and a communication I / F (Inter / Face) unit 14.
 プロセッサ11は、CPU(Central Processing Unit)やPLD(Programmable Logic Device)、マイクロプロセッサなどの演算処理装置である。メモリ12は主記憶装置である。ストレージ13は補助記憶装置である。通信I/F部14は、センサノード1がセンサ3および診断装置2と無線通信(または有線通信)を行うための通信インターフェースである。 The processor 11 is an arithmetic processing unit such as a CPU (Central Processing Unit), a PLD (Programmable Logic Device), or a microprocessor. The memory 12 is the main storage device. The storage 13 is an auxiliary storage device. The communication I / F unit 14 is a communication interface for the sensor node 1 to perform wireless communication (or wired communication) with the sensor 3 and the diagnostic device 2.
 プロセッサ11は、メモリ12と協働してプログラムを実行することで、センサ情報取得部111と、自己回帰モデル生成部112と、特徴量生成部113と、特徴量送信部114との各機能部を実現する。 The processor 11 executes a program in cooperation with the memory 12, and is a functional unit of the sensor information acquisition unit 111, the autoregressive model generation unit 112, the feature amount generation unit 113, and the feature amount transmission unit 114. To realize.
 センサ情報取得部111は、通信I/F部14を介して、センサ3によって橋梁4の各設置位置において観測された観測信号を時系列で取得し、センサ情報131としてストレージ13に格納する。本実施形態では、センサ情報取得部111によって取得されるセンサ情報131は、連続時刻の時系列情報であるとするが、離散時刻の時系列情報であってもよい。またセンサ情報131は、常時取得されるものでも、取得指示を契機として一定時間取得されるものでもよい。 The sensor information acquisition unit 111 acquires observation signals observed at each installation position of the bridge 4 by the sensor 3 in chronological order via the communication I / F unit 14, and stores them in the storage 13 as sensor information 131. In the present embodiment, the sensor information 131 acquired by the sensor information acquisition unit 111 is assumed to be continuous time time series information, but may be discrete time time series information. Further, the sensor information 131 may be constantly acquired or may be acquired for a certain period of time triggered by an acquisition instruction.
 自己回帰モデル生成部112は、ストレージ13に格納されたセンサ情報131を時刻で離散化する。そして自己回帰モデル生成部112は、上記式(3)に示すように、或る時刻kにおけるセンサ情報131を、或る時刻k以前のp個の時刻k-i(i=1,・・・,p)におけるセンサ情報131の時系列の線形結合で表現する自己回帰モデルを生成する。自己回帰モデル生成部112の処理の詳細は、フローチャートを参照して後述する。 The autoregressive model generation unit 112 discretizes the sensor information 131 stored in the storage 13 in time. Then, as shown in the above equation (3), the autoregressive model generation unit 112 converts the sensor information 131 at a certain time k into p time ki (i = 1, ... , P) Generates an autoregressive model expressed by a linear combination of the sensor information 131 in time series. The details of the processing of the autoregressive model generation unit 112 will be described later with reference to the flowchart.
 特徴量生成部113は、自己回帰モデル生成部112によって生成された自己回帰モデルの線形結合の回帰係数を結合した係数行列A(上記式(6))から、或る時刻kにおける橋梁4の状態を表す特徴量を生成する。特徴量は、係数行列Aそのものでもよいし、係数行列Aを主成分分析に基づく主成分空間へ射影した主成分行列A^(上記式(10))でもよい。後述のように、このような特徴量に基づいて、橋梁4の表面や内部の状態を確率分布として表すことができる。特徴量生成部113の処理の詳細は、フローチャートを参照して後述する。 The feature quantity generation unit 113 is the state of the bridge 4 at a certain time k from the coefficient matrix A (the above equation (6)) in which the regression coefficients of the linear combination of the autoregressive model generated by the autoregressive model generation unit 112 are combined. Generates a feature quantity that represents. The feature amount may be the coefficient matrix A itself or the principal component matrix A ^ (the above equation (10)) obtained by projecting the coefficient matrix A onto the principal component space based on the principal component analysis. As will be described later, the state of the surface and the inside of the bridge 4 can be expressed as a probability distribution based on such features. The details of the processing of the feature amount generation unit 113 will be described later with reference to the flowchart.
 特徴量送信部114は、特徴量生成部113によって生成された特徴量を、通信I/F部14を介して診断装置2へ送信する。 The feature amount transmission unit 114 transmits the feature amount generated by the feature amount generation unit 113 to the diagnostic device 2 via the communication I / F unit 14.
(実施形態1の診断装置2の構成)
 図3は、実施形態1の診断装置2の構成を示すブロック図である。診断装置2は、プロセッサ21と、メモリ22と、ストレージ23と、通信I/F部24と、出力部25とを有する。プロセッサ21は、メモリ22と協働してプログラムを実行することで、特徴量受信部211と、診断部212との各機能部を実現する。
(Configuration of Diagnostic Device 2 of Embodiment 1)
FIG. 3 is a block diagram showing the configuration of the diagnostic device 2 of the first embodiment. The diagnostic device 2 includes a processor 21, a memory 22, a storage 23, a communication I / F unit 24, and an output unit 25. The processor 21 realizes each functional unit of the feature amount receiving unit 211 and the diagnostic unit 212 by executing the program in cooperation with the memory 22.
 プロセッサ21は、CPUやPLD、マイクロプロセッサなどの演算処理装置である。メモリ22は主記憶装置である。ストレージ23は補助記憶装置である。通信I/F部24は、診断装置2がセンサノード1と無線通信(または有線通信)を行うための通信インターフェースである。出力部25は、モニタやディスプレイ等であり、各種情報を出力する。 The processor 21 is an arithmetic processing unit such as a CPU, PLD, or microprocessor. The memory 22 is the main storage device. The storage 23 is an auxiliary storage device. The communication I / F unit 24 is a communication interface for the diagnostic device 2 to perform wireless communication (or wired communication) with the sensor node 1. The output unit 25 is a monitor, a display, or the like, and outputs various information.
 特徴量受信部211は、通信I/F部24を介して、センサノード1から各時刻kにおける橋梁4の状態を示す特徴量231を受信する。特徴量受信部211は、受信した特徴量231を、ストレージ23に格納する。 The feature amount receiving unit 211 receives the feature amount 231 indicating the state of the bridge 4 at each time k from the sensor node 1 via the communication I / F unit 24. The feature amount receiving unit 211 stores the received feature amount 231 in the storage 23.
 診断部212は、評価指標として、ベイズ推定を用いて、ストレージ23に格納されている特徴量231から各時刻kにおける特徴量の確率分布(上記式(11))を求める。そして診断部212は、下記式(12)に示すように、各時刻kにおける評価指標として求めた確率分布のマハラノビス距離MDを算出する。 The diagnostic unit 212 obtains the probability distribution of the feature amount at each time k (the above equation (11)) from the feature amount 231 stored in the storage 23 using Bayesian estimation as an evaluation index. Then, the diagnostic unit 212 calculates the Mahalanobis distance MD of the probability distribution obtained as an evaluation index at each time k, as shown in the following equation (12).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 上記式(12)において、行列Xは係数行列A(または主成分行列A^)、行列Sは行列Xの共分散行列である。診断部212は、基準時(例えば健全時)の橋梁4の係数行列A(または主成分行列A^)のマハラノビス距離MDを基準評価指標232として予め求めておきストレージ23に保存しておく。また診断部212は、損傷の有無や程度が不明な診断時の橋梁4の係数行列A(または主成分行列A^)のマハラノビス距離MDを算出する。 In the above equation (12), the matrix X is the coefficient matrix A (or the principal component matrix A ^), and the matrix S is the covariance matrix of the matrix X. The diagnostic unit 212 obtains the Mahalanobis distance MD of the coefficient matrix A (or the principal component matrix A ^) of the bridge 4 at the reference time (for example, when it is healthy) as the reference evaluation index 232 in advance and stores it in the storage 23. Further, the diagnosis unit 212 calculates the Mahalanobis distance MD of the coefficient matrix A (or the principal component matrix A ^) of the bridge 4 at the time of diagnosis when the presence or absence of damage and the degree of damage are unknown.
 そして診断部212は、診断時のマハラノビス距離MDと基準評価指標232とを比較し、それらの差や比といった統計的距離が一定値以上の場合に、基準時と比較して橋梁4に損傷などの異常が発生または進行していると診断する。診断部212は、診断結果をディスプレイ等の出力部25に出力する。 Then, the diagnosis unit 212 compares the Mahalanobis distance MD at the time of diagnosis with the reference evaluation index 232, and when the statistical distance such as the difference or ratio between them is a certain value or more, the bridge 4 is damaged as compared with the reference time. Diagnose that the abnormality is occurring or progressing. The diagnosis unit 212 outputs the diagnosis result to an output unit 25 such as a display.
 なお診断部212は、マハラノビス距離MDに代えて、Z値やその他の統計指標を用いて、基準時と診断時のそれぞれの統計指標間の統計的距離を閾値判定することで、橋梁4の異常や劣化の進行を診断してもよい。 The diagnostic unit 212 uses the Z value and other statistical indexes instead of the Mahalanobis distance MD to determine the statistical distance between the respective statistical indexes at the reference time and the diagnosis as a threshold value, whereby the abnormality of the bridge 4 is determined. Or the progress of deterioration may be diagnosed.
(実施形態1の診断システムSにおける基準時処理)
 図4は、実施形態1の診断システムSにおける基準時処理を示すシーケンス図である。診断システムSにおける基準時処理では、センサ3から基準時(例えば橋梁4の健全時)取得されたセンサ情報の時系列から係数行列Aおよび主成分行列A^を生成し、主成分行列A^をもとに基準評価指標232を算出する処理を行う。
(Reference time processing in the diagnostic system S of the first embodiment)
FIG. 4 is a sequence diagram showing reference time processing in the diagnostic system S of the first embodiment. In the reference time processing in the diagnostic system S, the coefficient matrix A and the principal component matrix A ^ are generated from the time series of the sensor information acquired from the sensor 3 at the reference time (for example, when the bridge 4 is sound), and the principal component matrix A ^ is generated. Based on this, the process of calculating the reference evaluation index 232 is performed.
 先ずステップS101では、センサノード1のセンサ情報取得部111は、センサ3からセンサ情報131を取得し、ストレージ13に格納する。次にステップS102では、自己回帰モデル生成部112は、上記式(3)に基づいて、ステップS101で取得したセンサ情報131を離散化した或る時刻kにおけるセンサ情報ベクトルy(k)のp次の自己回帰モデルを生成する。自己回帰モデルの次数pは、適宜定められるものであるが、例えば上述したように、BICに基づいて上記式(5)から自動決定してもよい。 First, in step S101, the sensor information acquisition unit 111 of the sensor node 1 acquires the sensor information 131 from the sensor 3 and stores it in the storage 13. Next, in step S102, the autoregressive model generation unit 112 is the pth order of the sensor information vector y (k) at a certain time k in which the sensor information 131 acquired in step S101 is discretized based on the above equation (3). Generate an autoregressive model of. The order p of the autoregressive model is appropriately determined, but may be automatically determined from the above equation (5) based on the BIC, for example, as described above.
 次にステップS103では、特徴量生成部113は、上記式(6)のように、センサ情報ベクトルy(k)のp次の自己回帰モデルの回帰係数を表す行列Aを結合した係数行列Aを生成する。次にステップS104では、特徴量生成部113は、上記式(8)~式(9)に基づいて、基準時における橋梁4の状態を表す確率空間における係数行列Aを主成分空間へ射影する主成分空間行列U を生成する。 Next, in step S103, the feature amount generation unit 113 is a coefficient matrix A in which a matrix A i representing the regression coefficient of the p-th order autoregressive model of the sensor information vector y (k) is combined as in the above equation (6). To generate. Next, in step S104, the feature amount generation unit 113 mainly projects the coefficient matrix A in the probability space representing the state of the bridge 4 at the reference time onto the main component space based on the above equations (8) to (9). Generate the component space matrix U 1 T.
 次にステップS106では、特徴量生成部113は、上記式(10)に示すように、ステップS105で生成した主成分空間行列U を係数行列Aに作用させて、特徴量として主成分行列A^を生成する。次にステップS106では、特徴量送信部114は、ステップS105で生成された特徴量を診断装置2へ送信する。 Next, in step S106, as shown in the above equation (10), the feature amount generation unit 113 causes the main component space matrix U 1 T generated in step S105 to act on the coefficient matrix A, and causes the feature amount matrix as the feature amount. Generate A ^. Next, in step S106, the feature amount transmission unit 114 transmits the feature amount generated in step S105 to the diagnostic apparatus 2.
 次にステップS201では、診断装置2の特徴量受信部211は、センサノード1から特徴量231を受信し、ストレージ23に格納する。次にステップS202では、診断部212は、上記式(11)のように、特徴量231の確率分布p(A^|Σ,Y)を求め、確率分布p(A^|Σ,Y)のマハラノビス距離MDを基準評価指標232として算出する。次にステップS203では、診断部212は、ステップS202で算出された基準評価指標232をストレージ23に格納する。 Next, in step S201, the feature amount receiving unit 211 of the diagnostic device 2 receives the feature amount 231 from the sensor node 1 and stores it in the storage 23. Next, in step S202, the diagnostic unit 212 obtains the probability distribution p (A ^ | Σ, Y) of the feature amount 231 as in the above equation (11), and the probability distribution p (A ^ | Σ, Y). The Mahalanobis distance MD is calculated as the reference evaluation index 232. Next, in step S203, the diagnostic unit 212 stores the reference evaluation index 232 calculated in step S202 in the storage 23.
 なお図4の図示に限らず、基準時処理において、センサノード1が実行するステップを診断装置2が実行してもよいし、診断装置2が実行するステップをセンサノード1が実行してもよい。すなわち、図4に示す各ステップの実行主体が、センサノード1および診断装置2の何れであるかは、限定されない。 Not limited to the illustration in FIG. 4, in the reference time processing, the diagnostic device 2 may execute the step executed by the sensor node 1, or the sensor node 1 may execute the step executed by the diagnostic device 2. .. That is, it is not limited whether the execution subject of each step shown in FIG. 4 is the sensor node 1 or the diagnostic device 2.
 例えば、ステップS102~S105のうちの何れかのステップ以降の処理を、センサノード1ではなく診断装置2が行ってもよい。また例えば、ステップS202の処理を、診断装置2ではなくセンサノード1が行ってもよく、算出された基準評価指標は、診断装置2へ送信され、診断装置2において橋梁4の状態診断に用いられる。 For example, the diagnostic device 2 may perform the processing after any one of steps S102 to S105 instead of the sensor node 1. Further, for example, the process of step S202 may be performed by the sensor node 1 instead of the diagnostic device 2, and the calculated reference evaluation index is transmitted to the diagnostic device 2 and used in the diagnostic device 2 for the state diagnosis of the bridge 4. ..
(実施形態1の診断システムSにおける診断時処理)
 図5は、実施形態1の診断システムSにおける診断時処理を示すシーケンス図である。図5の診断時処理は、図4の基準時処理と比較して、基準時ではなく診断時のセンサ情報および特徴量を取り扱う点が異なるのみで、ステップS111~S116は、図4のステップS101~S106と同様である。
(Processing at the time of diagnosis in the diagnostic system S of the first embodiment)
FIG. 5 is a sequence diagram showing diagnostic processing in the diagnostic system S of the first embodiment. The diagnostic processing of FIG. 5 is different from the reference processing of FIG. 4 only in that it handles the sensor information and the feature amount at the time of diagnosis, not at the reference time, and steps S111 to S116 are the steps S101 of FIG. It is the same as S106.
 なお、図4の基準時処理のステップS104で主成分空間行列U が生成された場合には、図5の診断時処理では、ステップS114の主成分空間行列U を生成するステップを省略可能である。ステップS114が省略された場合、ステップS113に続くステップS115では、特徴量生成部113は、図4の基準時処理のステップS104で生成された主成分空間行列U をステップS113で生成された係数行列Aに作用させて、特徴量として主成分行列A^を生成する。次にステップS116では、特徴量送信部114は、ステップS115で生成された特徴量を診断装置2へ送信する。 When the principal component space matrix U 1 T is generated in step S104 of the reference time processing of FIG. 4, in the diagnostic processing of FIG. 5, the step of generating the principal component space matrix U 1 T of step S114 is performed. It can be omitted. When step S114 is omitted, in step S115 following step S113, the feature amount generation unit 113 generated the principal component space matrix U1 T generated in step S104 of the reference time processing of FIG. 4 in step S113. By acting on the coefficient matrix A, the principal component matrix A ^ is generated as a feature quantity. Next, in step S116, the feature amount transmission unit 114 transmits the feature amount generated in step S115 to the diagnostic apparatus 2.
 次にステップS211では、診断装置2の特徴量受信部211は、センサノード1から特徴量を受信する。次にステップS212では、診断部212は、ステップS211で受信した特徴量に基づいて、上記式(11)のように、ベイズ推定を用いて特徴量の確率分布p(A^|Σ,Y)を算出する。そして診断部212は、上記式(12)に基づいて診断時のマハラノビス距離MDを評価指標として算出し、評価指標と基準評価指標232を比較し、それらの差または比が一定値以上の場合に、基準時と比較して橋梁4に損傷などの異常が発生または進行していると診断する。 Next, in step S21, the feature amount receiving unit 211 of the diagnostic device 2 receives the feature amount from the sensor node 1. Next, in step S212, the diagnostic unit 212 uses Bayesian inference to determine the probability distribution p (A ^ | Σ, Y) of the feature amount based on the feature amount received in step S211, as in the above equation (11). Is calculated. Then, the diagnosis unit 212 calculates the Mahalanobis distance MD at the time of diagnosis as an evaluation index based on the above formula (12), compares the evaluation index with the reference evaluation index 232, and when the difference or ratio between them is a certain value or more. , It is diagnosed that an abnormality such as damage has occurred or progressed in the bridge 4 as compared with the reference time.
 なお図5も図4と同様に、各ステップの実行主体がセンサノード1および診断装置2の何れであるかは、限定されない。例えば評価指標の算出は、診断装置2ではなくセンサノード1が行ってもよい。このようにして算出された評価指標は、診断装置2へ送信され、診断装置2において橋梁の状態診断に用いられる。 As in FIG. 4, FIG. 5 is not limited to whether the execution subject of each step is the sensor node 1 or the diagnostic device 2. For example, the calculation of the evaluation index may be performed by the sensor node 1 instead of the diagnostic device 2. The evaluation index calculated in this way is transmitted to the diagnostic device 2 and used in the diagnostic device 2 for diagnosing the state of the bridge.
 なお、図4および図5に示す処理では、主成分行列A^を特徴量としているが、係数行列Aを特徴量としてもよい。この場合、上記式(11)においてA^をAに置き換えて確率分布p(A|Σ,Y)が算出される。 Although the principal component matrix A ^ is used as the feature amount in the processes shown in FIGS. 4 and 5, the coefficient matrix A may be used as the feature amount. In this case, the probability distribution p (A | Σ, Y) is calculated by replacing A ^ with A in the above equation (11).
 図6は、実施形態1の診断システムSにおける診断時処理の説明図である。図6の図示部分601は、橋梁4の基準時の振動を表す観測データから特徴量を抽出し、この特徴量に基づく統計指標を基準評価指標として算出する基準時処理(図4)の概略を示している。また図示部分602は、橋梁4の診断時の振動を表す観測データから特徴量を抽出し、この特徴量に基づく統計指標を診断時評価指標として算出する診断時処理(図5)の概略を示している。 FIG. 6 is an explanatory diagram of diagnostic processing in the diagnostic system S of the first embodiment. The illustrated portion 601 of FIG. 6 outlines the reference time processing (FIG. 4) in which the feature amount is extracted from the observation data representing the vibration of the bridge 4 at the reference time and the statistical index based on the feature amount is calculated as the reference evaluation index. Shows. Further, the illustrated portion 602 shows an outline of a diagnostic processing (FIG. 5) in which a feature amount is extracted from observation data representing vibration at the time of diagnosis of the bridge 4 and a statistical index based on the feature amount is calculated as a diagnostic evaluation index. ing.
 そして、診断時処理(図5)において、基準評価指標と診断時評価指標の比較結果に基づいて、橋梁4の異常の有無やその進行が判別される。すなわち、図6の図示部分603に示すように、確率空間において、基準特徴量の確率分布に基づく基準評価指標と、診断時特徴量の確率分布に基づく診断時評価指標の比較により、橋梁4の異常が診断される。基準評価指標と診断時評価指標の比較では、診断時評価指標が基準評価指標からどれだけ乖離しているかの状況をマハラノビス距離などの統計指標を用いて評価する。診断時評価指標と基準評価指標間の統計的距離が一定値以上の場合に、診断時の橋梁4の状態が基準時から変化していると判断するように、橋梁4の異常の有無の判定を行うことができる。 Then, in the diagnosis processing (FIG. 5), the presence or absence of an abnormality in the bridge 4 and its progress are determined based on the comparison result between the reference evaluation index and the diagnosis evaluation index. That is, as shown in the illustrated portion 603 of FIG. 6, in the probability space, the reference evaluation index based on the probability distribution of the reference feature amount and the diagnosis evaluation index based on the probability distribution of the diagnosis feature amount are compared, and the bridge 4 Abnormality is diagnosed. In the comparison between the standard evaluation index and the diagnostic evaluation index, the situation of how much the diagnostic evaluation index deviates from the standard evaluation index is evaluated using a statistical index such as the Mahalanobis distance. Judgment of the presence or absence of abnormality of the bridge 4 so that it is judged that the state of the bridge 4 at the time of diagnosis has changed from the reference time when the statistical distance between the evaluation index at the time of diagnosis and the standard evaluation index is a certain value or more. It can be performed.
 なお本実施形態では、橋梁4の異常の有無の判別を、基準時と診断時のそれぞれの評価指標の統計的距離に基づいて行うとしたが、これに限らない。例えば各時刻における係数行列A(または主成分行列A^)をクラスタリングし、新規の観測データに基づく係数行列Aが既存クラスタに分類されず新規クラスタに分類される場合に、係数行列Aの特徴量のパターンが変化したとして、橋梁4に異常が生じたと判断してもよい。 In the present embodiment, the presence or absence of abnormality in the bridge 4 is determined based on the statistical distance of each evaluation index at the time of reference and at the time of diagnosis, but the present invention is not limited to this. For example, when the coefficient matrix A (or the principal component matrix A ^) at each time is clustered and the coefficient matrix A based on the new observation data is not classified into the existing cluster but is classified into the new cluster, the feature amount of the coefficient matrix A It may be determined that an abnormality has occurred in the bridge 4 on the assumption that the pattern of the above has changed.
(実施形態1の効果)
 上述の実施形態1では、構造物の状態を表す特徴量に基づく状態評価を、構造物の種々の物理量を含んだ確率分布であって、計測個所によって異なる損傷に対する計測値の変化の敏感さの違いを吸収しつつ、計測値の推定誤差を考慮できる確率分布に基づく評価指標を用いて行う。よって実施形態1によれば、設定に高度な専門知識を要する損傷に敏感な振動モードの設定を必要とせず、構造物の損傷に対して敏感な特徴量に基づく平均と分散を持つ確率分布を用いて、数値解析を行わず低コストかつ高い精度で構造物の状態を評価できる。また、評価の妥当性を分散で表すことができる。
(Effect of Embodiment 1)
In the above-described first embodiment, the state evaluation based on the feature quantity representing the state of the structure is a probability distribution including various physical quantities of the structure, and the sensitivity of the change of the measured value to the damage different depending on the measurement point. It is performed using an evaluation index based on a probability distribution that can consider the estimation error of the measured value while absorbing the difference. Therefore, according to the first embodiment, it is not necessary to set a damage-sensitive vibration mode that requires a high degree of expertise in setting, and a probability distribution having an average and a variance based on a feature amount sensitive to damage of a structure is obtained. By using it, the state of the structure can be evaluated with low cost and high accuracy without performing numerical analysis. In addition, the validity of the evaluation can be expressed by the variance.
 また、実施形態1で用いる確率分布の評価指標は、計測時のノイズや活荷重などの強制振動などにより埋もれやすい、構造物の損傷に伴ってゆっくりと進行して行く微小な変化を捉えるので、構造物の状態診断を高精度に行うことができる。 Further, the evaluation index of the probability distribution used in the first embodiment captures minute changes that are easily buried due to noise during measurement or forced vibration such as live load, and slowly progress with damage to the structure. The state of the structure can be diagnosed with high accuracy.
 また実施形態1では、構造物の状態を表す係数行列Aを、質が劣る情報を除去するため主成分空間へ射影して次数を落とした主成分行列A^を生成する。よって、構造物の状態を表す特徴量を、構造物の状態を再現可能な特徴量へ情報の質を落とさずデータ圧縮するので、エッジ処理により特定小電力無線(Low Power Wide Area)などの廉価な先端技術による方法で特徴量の転送が可能となり、センサおよび転送システムを安価に構成し、管理費の大幅な削減が期待できる。 Further, in the first embodiment, the coefficient matrix A representing the state of the structure is projected onto the main component space in order to remove the inferior information, and the main component matrix A ^ whose order is reduced is generated. Therefore, since the feature quantity representing the state of the structure is compressed into the feature quantity that can reproduce the state of the structure without degrading the quality of information, the edge processing is performed at a low cost such as a specific low power radio (Low Power Wide Area). It is possible to transfer features by a method using advanced technology, and it is expected that the sensor and transfer system will be configured at low cost and the management cost will be significantly reduced.
 より具体的には、従来、このような振動状態を評価する場合に数分間の加速度データを用いることが必要であったために、大きな通信量が必要であった。しかし、本手法では、必要な情報は主成分行列A^の値だけであるため、計測機内でのエッジ処理により、主成分行列A^を求め、小さなデータにすることにより特定小電力無線などの安価な先端技術の利用が可能となり、図7に示すように管理コストにおいて利点があると考えられる。図7は、実施形態1と従来技術における係数行列Aと主成分行列A^のデータ量をセンサ数ごとに比較して示す図である。図7は、周期5msで60s計測したデータを送信する場合を示す。図7によれば、8個、4個、1個の何れのセンサ数の場合でも、主成分行列A^によって、センサノード1から転送するデータ量を大幅に削減できることが分かる。 More specifically, in the past, it was necessary to use acceleration data for several minutes when evaluating such a vibration state, so a large amount of communication was required. However, in this method, since the necessary information is only the value of the principal component matrix A ^, the principal component matrix A ^ is obtained by edge processing in the measuring instrument, and by making it small data, a specific low power radio or the like can be obtained. It is possible to use inexpensive advanced technology, and as shown in FIG. 7, it is considered that there is an advantage in management cost. FIG. 7 is a diagram showing a comparison between the data amounts of the coefficient matrix A and the principal component matrix A ^ in the first embodiment and the prior art for each number of sensors. FIG. 7 shows a case where data measured for 60 s with a period of 5 ms is transmitted. According to FIG. 7, it can be seen that the amount of data transferred from the sensor node 1 can be significantly reduced by the principal component matrix A ^ regardless of the number of sensors of 8, 4, or 1.
<実施形態2>
 実施形態1では、基準時と診断時の橋梁4の特徴量に基づく確率分布のマハラノビス距離などの統計的指標を用いて橋梁4の異常診断を行うのに対し、実施形態2では、橋梁4の特徴量に基づくベイズファクターを評価指標として用いて橋梁4の異常診断を行う。なお、実施形態2の診断システムSの構成は、診断装置2の診断部212の処理の一部が異なる点を除いて、実施形態1の診断システムの構成と同様である。
<Embodiment 2>
In the first embodiment, the abnormality diagnosis of the bridge 4 is performed using a statistical index such as the Mahalanobis distance of the probability distribution based on the feature amount of the bridge 4 at the reference time and the diagnosis time, whereas in the second embodiment, the bridge 4 is diagnosed. An abnormality diagnosis of the bridge 4 is performed using the Bayes factor based on the feature amount as an evaluation index. The configuration of the diagnostic system S of the second embodiment is the same as the configuration of the diagnostic system of the first embodiment, except that a part of the processing of the diagnostic unit 212 of the diagnostic apparatus 2 is different.
(実施形態2の診断システムSにおける診断処理)
 図8は、実施形態2の診断システムSにおける診断処理を示すフローチャートである。図8に示すフローチャートは、図5に示す実施形態1の診断時処理のステップS212の処理の別例である。すなわち実施形態2では、診断装置2は、ステップS211に引き続いて図8に示す診断処理を実行する。なお、実施形態2では、診断装置2は、図4の基準時処理を行うことなく、図5の診断時処理を実行可能である。
(Diagnosis processing in the diagnostic system S of the second embodiment)
FIG. 8 is a flowchart showing a diagnostic process in the diagnostic system S of the second embodiment. The flowchart shown in FIG. 8 is another example of the process of step S212 of the process at the time of diagnosis of the first embodiment shown in FIG. That is, in the second embodiment, the diagnostic apparatus 2 executes the diagnostic process shown in FIG. 8 following step S211. In the second embodiment, the diagnostic apparatus 2 can execute the diagnostic time processing of FIG. 5 without performing the reference time processing of FIG.
 先ずステップS2121では、診断装置2の診断部212は、ステップS211で受信した特徴量である係数行列A(または主成分行列A^)に基づいて、評価指標として、下記式(13)で定義されるベイズファクターBを算出する。後述のローカルベイズファクターBと区別する場合には、ベイズファクターBをグローバルベイズファクターと呼ぶ。 First, in step S2121, the diagnostic unit 212 of the diagnostic apparatus 2 is defined by the following equation (13) as an evaluation index based on the coefficient matrix A (or the principal component matrix A ^) which is the feature amount received in step S211. Bayes factor B is calculated. When distinguishing from the local Bayes factor B j described later, the Bayes factor B is called a global Bayes factor.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 上記式(13)において、Hは帰無仮説(本実施形態では橋梁4の健全状態)、Hは対立仮説(本実施形態では橋梁4の異常・損傷状態)、Yは仮説検定の対象とする特徴量(本実施形態では係数行列Aまたは主成分行列A^)、ΦはHあるいはHの仮説のもとでのパラメータ(例えば特徴量の確率分布の平均値や標準偏差)である。 In the above equation (13), H 0 is the null hypothesis (healthy state of the bridge 4 in this embodiment), H 1 is the alternative hypothesis (abnormal / damaged state of the bridge 4 in this embodiment), and Y t is the hypothesis test. Target feature amount (in this embodiment, coefficient matrix A or principal component matrix A ^), Φt is a parameter under the hypothesis of H 0 or H 1 (for example, the mean value or standard deviation of the probability distribution of the feature amount). ).
 上記式(13)に示すベイズファクターBにおいて、分母p(Y,H)は診断時の特徴量Yが橋梁4の基準時における状態(健全状態)と同じ特徴量である周辺尤度を示し、分子p(Y,H)は診断時の特徴量Yが橋梁4の基準時における状態と異なる特徴量である周辺尤度を示す。よってp(Y,H)に対するp(Y,H)の比であるベイズファクターBが閾値を超えると、或る特徴量に基づいて橋梁4に異常や損傷が発生していると判断できる。 In the Bayes factor B shown in the above equation (13), the denominator p (Y t | Φ t , H 0 ) has the same feature amount Y t at the time of diagnosis as the state (healthy state) at the reference time of the bridge 4. The marginal likelihood is shown, and the molecule p (Y t | Φ t , H 1 ) shows the marginal likelihood in which the feature amount Y t at the time of diagnosis is different from the state of the bridge 4 at the reference time. Therefore, when Bayes factor B, which is the ratio of p (Y t | Φ t , H 1 ) to p (Y t | Φ t , H 0 ), exceeds the threshold value, the bridge 4 is abnormally damaged or damaged based on a certain feature amount. Can be determined to have occurred.
 次にステップS2122では、診断部212は、ステップS2121で算出したベイズファクターBが閾値より大であるか否かを判定する。この閾値は、過去の点検データなどから、橋梁4の点検技術者が異常と判定した区分が設定されたものである。診断部212は、ベイズファクターBが閾値より大である場合(ステップS2122Yes)に橋梁4に異常があると判定し(ステップS2123)、ベイズファクターBが閾値以下である場合(ステップS2122No)に橋梁4が正常であると判定する(ステップS2124)。 Next, in step S2122, the diagnostic unit 212 determines whether or not the Bayes factor B calculated in step S2121 is larger than the threshold value. This threshold value is set as a classification determined by the inspection engineer of the bridge 4 to be abnormal from the past inspection data and the like. The diagnostic unit 212 determines that there is an abnormality in the bridge 4 when the Bayes factor B is larger than the threshold value (step S2122Yes) (step S2123), and when the Bayes factor B is equal to or less than the threshold value (step S2122No), the bridge 4 Is normal (step S2124).
 なお、図8に示す診断処理は、診断装置2ではなく、センサノード1で行われてもよい。 The diagnostic process shown in FIG. 8 may be performed by the sensor node 1 instead of the diagnostic device 2.
(異常判定の閾値の算出方法)
 ここで、診断処理(図8)のステップS2122で用いた異常判定の閾値の算出方法について説明する。図9Aは、実施形態2の異常判定の閾値の算出方法を説明するための図である。図9Aの左側のグラフ(a)では、横軸を時間、縦軸をベイズファクターBの対数とし、各時刻におけるベイズファクターBの値がプロットされている。また図9Aの右側のグラフ(b)では、横軸を度数、縦軸をベイズファクターBの対数とし、ベイズファクターBの各値の度数分布が表されている。異常判定の閾値の算出は、診断装置2が行ってもよいし、その他の情報処理装置が行ってもよい。
(Calculation method of threshold value for abnormality judgment)
Here, a method of calculating the threshold value for abnormality determination used in step S2122 of the diagnostic process (FIG. 8) will be described. FIG. 9A is a diagram for explaining a method of calculating a threshold value for determining an abnormality according to the second embodiment. In the graph (a) on the left side of FIG. 9A, the horizontal axis is time and the vertical axis is the logarithm of Bayes factor B, and the value of Bayes factor B at each time is plotted. Further, in the graph (b) on the right side of FIG. 9A, the horizontal axis is the frequency and the vertical axis is the logarithm of the Bayes factor B, and the frequency distribution of each value of the Bayes factor B is shown. The calculation of the threshold value for abnormality determination may be performed by the diagnostic device 2 or another information processing device.
 実際の橋梁においては、例えば大きな荷重のトラックが通過したり橋梁上でブレーキをかけたりするといった、異常判定に影響を与える様々な状況が発生する。ベイズファクターBは、様々な状況下で、特異的なデータを含むバラつきを持った値となる。ベイズファクターBの閾値を算出する際に、過去の所定期間の複数の計測データの特異的なデータや、データのバラつきを排除するのではなく、閾値算出の基礎に含めることで、実際の橋梁で生起する様々な状況を考慮した閾値を算出することができる。 In an actual bridge, various situations that affect the abnormality judgment occur, such as a truck with a large load passing through or braking on the bridge. Bayes factor B is a variable value including specific data under various circumstances. When calculating the threshold value of Bayes factor B, by including it in the basis of threshold value calculation instead of excluding specific data of multiple measurement data in the past predetermined period and data variation, in an actual bridge It is possible to calculate the threshold value considering various situations that occur.
 橋梁4の過去の計測データのうち、基準となる所定期間(例えば1年間)の計測データ(図9Aのグラフ(a)参照)を上記式(13)にあてはめてベイズファクターBの値の分布を作成する(図9Aのグラフ(b)参照)。ベイズファクターBの値の分布の平均値μ、分散σを基に、例えばμ、μ+σ、μ+2σと等の何れかの値を閾値として決定することができる。図9Aのグラフ(b)では、ベイズファクターBの値を正規化しているので、平均μ=0の正規分布となっており、閾値を平均μとした場合を示している。ベイズファクターBの閾値は、橋梁4の特性や、使用条件、地理的条件、気象条件等の指標値に基づいて、平均μ及び分散σを用いて定量的に定めることができる。このように実際の橋梁で生起する様々な状況を考慮した閾値を用いて異常判定の精度を高めることができる。 Of the past measurement data of the bridge 4, the measurement data (see graph (a) of FIG. 9A) for a predetermined period (for example, one year) as a reference is applied to the above equation (13) to obtain the distribution of the value of Bayes factor B. Create (see graph (b) in FIG. 9A). Based on the mean value μ and the variance σ of the distribution of the values of Bayes factor B, for example, any value such as μ, μ + σ, μ + 2σ can be determined as a threshold value. In the graph (b) of FIG. 9A, since the value of Bayes factor B is normalized, the normal distribution has an average μ = 0, and the case where the threshold value is the average μ is shown. The threshold value of Bayes factor B can be quantitatively determined using the average μ and the variance σ based on the characteristics of the bridge 4 and index values such as usage conditions, geographical conditions, and meteorological conditions. In this way, it is possible to improve the accuracy of abnormality determination by using the threshold value considering various situations that occur in an actual bridge.
(異常診断の閾値の他例)
 異常診断の閾値の他例を説明する。図9Bは、実施形態2の複数の閾値を用いた異常判定方法の他例を説明するための図である。図9Bの(グラフa)では、横軸を度数分布、縦軸をベイズファクターBの対数とし、ベイズファクターBの各値の度数分布が表されている。図9Bの(グラフb)では、横軸を日、縦軸をベイズファクターBの対数とし、各日におけるベイズファクターBの各値がプロットされている。
(Other examples of abnormal diagnosis threshold)
Another example of the threshold value for abnormality diagnosis will be described. FIG. 9B is a diagram for explaining another example of the abnormality determination method using the plurality of threshold values of the second embodiment. In FIG. 9B (graph a), the horizontal axis is the frequency distribution and the vertical axis is the logarithm of the Bayes factor B, and the frequency distribution of each value of the Bayes factor B is shown. In (graph b) of FIG. 9B, the horizontal axis is the day and the vertical axis is the logarithm of the Bayes factor B, and each value of the Bayes factor B on each day is plotted.
 ベイズファクターBの値は、閾値を超えると異常と判定されるものである。このことから、図9Aを参照して上述した計測データに基づくベイズファクターBの値の分布の中で、平均μより大きい値について、平均μ及び標準偏差σを用いて複数の閾値を定め、異常を段階的に判定することができる。複数の閾値に基づいて、例えば「正常」の範囲、「要注意」の範囲、及び「異常」の範囲のように、診断レベルを表す範囲を定めてもよい。 The value of Bayes factor B is determined to be abnormal when it exceeds the threshold value. From this, in the distribution of the values of Bayes factor B based on the above-mentioned measurement data with reference to FIG. 9A, for values larger than the average μ, a plurality of thresholds are set using the average μ and the standard deviation σ, and an abnormality is obtained. Can be determined step by step. Based on a plurality of thresholds, a range indicating the diagnostic level may be defined, for example, a range of "normal", a range of "need attention", and a range of "abnormality".
 例えば、ベイズファクターBの値の分布の平均値μ及び分散σに基づく複数の値(図9Bの(グラフa)のμ、μ+σ、μ+2σ等)を、ベイズファクターBに基づく橋梁4の異常診断の段階的な複数の閾値と決定する。図14の(グラフa)に示すように、ベイズファクターBがB≦μ+σであれば「正常」と診断し、μ+σ<B≦μ+2σであれば「要注意」と診断し、μ+2σ<Bであれば「異常」と診断することができる。図9Bの例では、異常診断の段階的な複数の閾値の数は“2”としているがこれに限定されない。ベイズファクターBの段階的な閾値及びその数は、橋梁4の特性や、使用条件、地理的条件、気象条件等の指標値に基づいて、平均μ及び分散σを用いて定量的に決定することができる。 For example, a plurality of values based on the mean value μ of the distribution of the values of Bayes factor B and the variance σ (μ, μ + σ, μ + 2σ, etc. in (graph a) of FIG. 9B) are used for the abnormality diagnosis of the bridge 4 based on the Bayes factor B. Determine with multiple gradual thresholds. As shown in FIG. 14 (graph a), if the Bayes factor B is B ≦ μ + σ, it is diagnosed as “normal”, if μ + σ <B ≦ μ + 2σ, it is diagnosed as “need attention”, and if μ + 2σ <B. If so, it can be diagnosed as "abnormal". In the example of FIG. 9B, the number of the plurality of thresholds for diagnosing abnormalities is set to “2”, but the number is not limited to this. The stepwise threshold value of Bayes factor B and its number shall be quantitatively determined using the average μ and the variance σ based on the characteristics of the bridge 4 and the index values such as usage conditions, geographical conditions, and meteorological conditions. Can be done.
 このように実際の橋梁で生起する様々な状況を考慮した複数の閾値を用いて異常判定の精度を高めることができる。またベイズファクターBに基づく橋梁4の異常診断の閾値を段階的に決定することで、橋梁4の管理者は、時間経過と共に徐々に進行する橋梁4の異常を段階的に捉えることができ、計画的に橋梁4の保守を行うことができる。 In this way, it is possible to improve the accuracy of abnormality determination by using multiple threshold values that take into consideration various situations that occur in actual bridges. Further, by determining the threshold value of the abnormality diagnosis of the bridge 4 based on the Bayes factor B step by step, the manager of the bridge 4 can grasp the abnormality of the bridge 4 gradually progressing with the passage of time, and plans. The bridge 4 can be maintained.
(ローカルベイズファクターB)
 さて、上記式(13)に基づくベイズファクターBは、橋梁4を全体的に見て異常を検知するための評価指標である。一方、橋梁4に設置されている個々のセンサ3のセンサ情報の時系列から得られる特徴量に基づいて個別のベイズファクターを算出することもできる。個別のベイズファクターをローカルベイズファクターと呼ぶ。例えば橋梁4に設置されている複数のセンサ3のうちのj番目(j=1,・・・,n)のセンサ3のセンサ情報の時系列の特徴量に基づくローカルベイズファクターBは、下記式(14)で定義される。
(Local Bayes Factor B)
By the way, the Bayes factor B based on the above equation (13) is an evaluation index for detecting an abnormality in the bridge 4 as a whole. On the other hand, it is also possible to calculate an individual Bayes factor based on the feature amount obtained from the time series of the sensor information of each sensor 3 installed on the bridge 4. Individual Bayes factors are called local Bayes factors. For example, the local Bayes factor Bj based on the time-series features of the sensor information of the jth ( j = 1, ..., N) sensor 3 among the plurality of sensors 3 installed on the bridge 4 is as follows. It is defined by the equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ローカルベイズファクターBをベイズファクターBに代えて、図8に示す診断処理を行うことで、異常を示すローカルベイズファクターBのインデックスjから、j番目のセンサ3の設置個所において橋梁4の異常や損傷が発生していると識別できる。 By substituting the local Bayes factor B j for the Bayes factor B and performing the diagnostic processing shown in FIG. 8, the abnormality of the bridge 4 at the location where the sensor 3 is installed at the jth position from the index j of the local Bayes factor B j indicating an abnormality. And can be identified as having damage.
 また、ローカルベイズファクターBは、次のような使い方もできる。橋梁4などの構造物や、構造物において発生する異常や損傷の種別によって、ベイズファクターを用いて異常を敏感に検出できるセンサ情報の種別が異なる場合がある。そこで、橋梁4などの構造物に複数のセンサ種別のセンサ3を設置し、センサ種別ごとに生成した特徴量に基づくローカルベイズファクターBに基づいて診断を行う。 The local Bayes factor Bj can also be used as follows. The type of sensor information that can sensitively detect an abnormality using the Bayes factor may differ depending on the type of the structure such as the bridge 4 and the abnormality or damage that occurs in the structure. Therefore, sensors 3 of a plurality of sensor types are installed in a structure such as a bridge 4, and diagnosis is performed based on the local Bayes factor Bj based on the feature amount generated for each sensor type.
 すなわち検知する物理量が異なる(センサ種別が異なる)センサ3が橋梁4に設置されており、センサ種別ごとのセンサ情報の時系列の特徴量に基づいてローカルベイズファクターBを算出する。j番目のセンサ種別のローカルベイズファクターBに基づいて異常が判断される場合、ローカルベイズファクターBのインデックスjから、j番目のセンサ種別のセンサ3のセンサ情報に基づいて異常や損傷が発生していると識別できる。このようにローカルベイズファクターBを用いることで、複数の物理量のうち何れかの物理量が異常を感知するようにできることから、異常検出の感度を高めることができる。 That is, sensors 3 having different physical quantities to be detected (different sensor types) are installed on the bridge 4, and the local Bayes factor Bj is calculated based on the time-series feature quantities of the sensor information for each sensor type. When an abnormality is determined based on the local Bayes factor B j of the jth sensor type, an abnormality or damage occurs based on the sensor information of the sensor 3 of the jth sensor type from the index j of the local Bayes factor B j . It can be identified as being. By using the local Bayes factor B j in this way, any one of the plurality of physical quantities can be made to detect an abnormality, so that the sensitivity of abnormality detection can be increased.
(実施形態2の橋梁診断システムSにおける異常判定)
 図10は、実施形態2の診断システムSを用いて行った異常判定の実験結果を説明するための図である。図10は、横軸を時刻、縦軸をローカルベイズファクターBの二進対数軸として、A1~A10の10種類のローカルベイズファクターBの二進対数の時間推移を示す。図10では、A1~A10は、一例としてセンサ3の設置位置を示す。図10のINT(初期)、DMG1、DMG2は、各期間を表す。
(Abnormality determination in the bridge diagnosis system S of the second embodiment)
FIG. 10 is a diagram for explaining the experimental results of abnormality determination performed using the diagnostic system S of the second embodiment. FIG. 10 shows the time transition of the binary logarithm of 10 types of local Bayes factor B j of A1 to A10, with the horizontal axis representing time and the vertical axis representing the binary logarithm axis of local Bayes factor B j . In FIG. 10, A1 to A10 show the installation position of the sensor 3 as an example. INT (initial), DMG1, and DMG2 in FIG. 10 represent each period.
 INTにおいては、橋梁4に損傷を加えていないので、何れの設置位置のセンサ3のセンサ情報に基づくローカルベイズファクターBも、概ね0であり閾値を超えていない。逆に、ローカルベイズファクターBが図10に示すINTのような値であれば、橋梁4は異常や損傷が発生していない健全状態であると推定できる。 In INT, since the bridge 4 is not damaged, the local Bayes factor B j based on the sensor information of the sensor 3 at any installation position is also approximately 0 and does not exceed the threshold value. On the contrary, if the local Bayes factor B j has a value as shown in FIG. 10, it can be estimated that the bridge 4 is in a healthy state without any abnormality or damage.
 INTに続く、橋梁4のA6付近の部位に損傷を加えたDMG1においては、A1~A10の中でも特にA6のセンサ3のセンサ情報に基づくローカルベイズファクターの値がINTと比較して閾値を超えて大きくなっている。逆に、ローカルベイズファクターBがINTと比較してDMG1のような値であれば、橋梁4のA6付近の部位に損傷が発生したと推定できる。 In DMG1 where the part near A6 of the bridge 4 was damaged following INT, the value of the local Bayes factor based on the sensor information of sensor 3 of A6 in particular among A1 to A10 exceeded the threshold value compared with INT. It's getting bigger. On the contrary, if the local Bayes factor B j is a value like DMG1 as compared with INT, it can be estimated that damage has occurred in the portion of the bridge 4 near A6.
 またDMG1に続く、橋梁4のA6付近の部位にさらに損傷を加えたDMG2においては、A6のセンサ3のセンサ情報に基づくローカルベイズファクターBがDMG1と比較してさらに大きくなっている。逆に、ローカルベイズファクターBがDMG1と比較してDMG2のような値であれば、橋梁4のA6付近の部位に発生した損傷がさらに進行したと推定できる。また、DMG1のローカルベイズファクターBの和や平均と、DMG2のローカルベイズファクターBの和や平均とを比較することで、DMG1からDMG2への損傷の進行程度を評価することができる。 Further, in the DMG2 in which the portion of the bridge 4 near A6 following the DMG1 is further damaged, the local Bayes factor Bj based on the sensor information of the sensor 3 of the A6 is further larger than that of the DMG1 . On the contrary, if the local Bayes factor B j has a value similar to that of DMG2 as compared with DMG1, it can be estimated that the damage generated in the vicinity of A6 of the bridge 4 has further progressed. Further, by comparing the sum or average of the local Bayes factor B j of DMG1 with the sum or average of the local Bayes factor Bj of DMG2, the degree of progress of damage from DMG1 to DMG2 can be evaluated.
 なおグローバルベイズファクターを用いても、図10と同様の評価を行うことができる。 Even if the Global Bayes factor is used, the same evaluation as in FIG. 10 can be performed.
 このようにベイズファクターBまたはローカルベイズファクターBを用いることで、橋梁4が健全状態から異常状態へ変化したことを検出し、また点検などで既に判明している損傷の進行を評価することができる。 By using Bayes factor B or local Bayes factor Bj in this way, it is possible to detect that the bridge 4 has changed from a healthy state to an abnormal state, and to evaluate the progress of damage that has already been found by inspection or the like. can.
(実施形態2の実験結果)
 図11は、実施形態2の診断システムSを用いて行った実験の実行条件を示す図である。図12は、実施形態2の診断システムSを用いて行った実験結果を示す図である。
(Experimental result of Embodiment 2)
FIG. 11 is a diagram showing execution conditions of an experiment performed using the diagnostic system S of the second embodiment. FIG. 12 is a diagram showing the results of experiments performed using the diagnostic system S of the second embodiment.
 図11は、横軸を時刻、縦軸を負荷とし、時間経過に応じて橋梁に対して加える負荷のパターンを示す。図11に示すように、時刻t0~t1(Stage1)、t2~t3(Stage2)、t4~t5(Stage3)、t6~t7(Stage4)、t7~t8(Stage5)、t9~t10(Stage6)、t10~t11(Stage7)、t12~(Stage8)では、橋梁に対して振動を加えた。時刻t1~t2(Loading1)では、橋梁に対してひび割れ荷重を加えた。時刻t3~t4(Loading2)では、橋梁に対して降伏荷重を加えた。時刻t5~t6(Loading3)は、橋梁に対する荷重継続期間である。時刻t8~t9(Loading4)では、橋梁に対して設計荷重を加えた。時刻t11~t12(Loading5)では、橋梁に対して最大荷重を加えた。 FIG. 11 shows the pattern of the load applied to the bridge over time, with the horizontal axis representing the time and the vertical axis representing the load. As shown in FIG. 11, times t0 to t1 (Stage1), t2 to t3 (Stage2), t4 to t5 (Stage3), t6 to t7 (Stage4), t7 to t8 (Stage5), t9 to t10 (Stage6), At t10 to t11 (Stage7) and t12 to (Stage8), vibration was applied to the bridge. At times t1 to t2 (Loading 1), a crack load was applied to the bridge. At times t3 to t4 (Loading 2), a yield load was applied to the bridge. Times t5 to t6 (Loading 3) are load continuation periods for the bridge. At times t8 to t9 (Loading 4), a design load was applied to the bridge. At times t11 to t12 (Loading 5), the maximum load was applied to the bridge.
 このような実行条件で実験を行った結果、図12に示すように、ベイズファクターは、加負荷(Loading)を伴うStageの進行につれて概ね増加傾向にあると言える。よって、ベイズファクターの変化の観察結果に対して明確な解釈を与えることができるため、橋梁に発生した異常や損傷の検出を容易に行うことができる。 As a result of conducting an experiment under such execution conditions, as shown in FIG. 12, it can be said that the Bayes factor tends to increase with the progress of Stage accompanied by loading. Therefore, since a clear interpretation can be given to the observation result of the change of Bayes factor, it is possible to easily detect the abnormality or damage generated in the bridge.
 このように、橋梁の固有振動数の増加および低下に関係なく、橋梁に発生した異常や損傷の検出を簡易に行い得るという本実施形態の利点は、図13からも分かる。図13は、比較例として、図12に示した実施形態2の診断システムSを用いて行った実験と同条件で測定した振動モードに応じて異なる橋梁の固有振動数の変化を示す図である。 As described above, the advantage of this embodiment that the abnormality or damage generated in the bridge can be easily detected regardless of the increase or decrease of the natural frequency of the bridge can be seen from FIG. As a comparative example, FIG. 13 is a diagram showing changes in the natural frequencies of bridges that differ depending on the vibration mode measured under the same conditions as the experiment conducted using the diagnostic system S of the second embodiment shown in FIG. ..
 図13のグラフ1101は、Stage1~Stage8における一次曲げモードの固有振動数の変化を示す。また図13のグラフ1102は、Stage1~Stage8における二次曲げモードの固有振動数の変化を示す。グラフ1101,1102に示すように、橋梁の状態変化により、固有振動数は増加または低下する。理論的には、損傷による剛性低下により固有振動数は低下するが、例えば橋梁の支承部の状態変化を伴う場合は固有振動数が増加することがある。またグラフ1101,1102に示すように、モードによっても固有振動数の変化が異なる。 Graph 1101 in FIG. 13 shows changes in the natural frequency of the primary bending mode in Stages 1 to 8. Further, graph 1102 in FIG. 13 shows changes in the natural frequency of the secondary bending mode in Stages 1 to 8. As shown in graphs 1101 and 1102, the natural frequency increases or decreases due to a change in the state of the bridge. Theoretically, the natural frequency decreases due to the decrease in rigidity due to damage, but the natural frequency may increase, for example, when the state of the bearing of the bridge changes. Further, as shown in the graphs 1101 and 1102, the change in the natural frequency differs depending on the mode.
 このように固有振動数に基づく異常診断は、損傷の部位や振動モードによって固有振動数の変化の態様が異なることから、適切な振動モードを設定し、損傷の有無および部位を判定することが難しい。この点、本実施形態によるベイズファクターを用いた異常診断は、振動モードの設定を必要とせず、橋梁に発生した異常や損傷の検出を定量的に行うことができる。 In this way, in the abnormality diagnosis based on the natural frequency, it is difficult to set an appropriate vibration mode and determine the presence or absence of damage and the part because the mode of change of the natural frequency differs depending on the damaged part and the vibration mode. .. In this respect, the abnormality diagnosis using the Bayes factor according to the present embodiment does not require the setting of the vibration mode, and the abnormality or damage generated in the bridge can be quantitatively detected.
(温度とベイズファクターの値の経時変化)
 図14は、橋梁4のある桁のある期間における外気温とベイズファクターの値の経時変化を示す図である。図14の(グラフa)はある期間の外気温の経時変化を示すグラフであり、(グラフb)は外気温のベイズファクターBの経時変化を示すグラフである。図14の(グラフb)における実線はベイズファクターBの異常判定の閾値を示し、この閾値を超えた場合に異常と判定される。
(Changes in temperature and Bayes factor values over time)
FIG. 14 is a diagram showing changes over time in the values of the outside air temperature and the Bayes factor in a certain period of a certain girder of the bridge 4. FIG. 14 (graph a) is a graph showing the time course of the outside air temperature for a certain period, and (graph b) is a graph showing the time course of the Bayes factor B of the outside air temperature. The solid line in FIG. 14 (graph b) indicates the threshold value for determining the abnormality of Bayes factor B, and when this threshold value is exceeded, it is determined to be abnormal.
 図14では、構造物自体に異常がないことを確認した橋梁4の桁の外気温の変化のデータを例示している。外気温は1年周期で変動するが、本実施形態を外気温に適用した場合の異常判定では異常を判定する対象期間の外気温の変化は異常な変化ではないと判定する。すなわち図14から、本実施形態では、温度変化等の自然界に起こる定期的な変動の影響の有無を考慮して構造物の異常判定が可能であることが分かる。 FIG. 14 exemplifies the data of the change in the outside air temperature of the girder of the bridge 4 in which it is confirmed that there is no abnormality in the structure itself. Although the outside air temperature fluctuates in a one-year cycle, it is determined that the change in the outside air temperature during the target period for determining the abnormality is not an abnormal change in the abnormality determination when the present embodiment is applied to the outside air temperature. That is, from FIG. 14, it can be seen that in the present embodiment, it is possible to determine the abnormality of the structure in consideration of the presence or absence of the influence of periodic fluctuations occurring in the natural world such as temperature changes.
(橋梁4のたわみとベイズファクターの値の経時変化)
 図15は、橋梁のある期間におけるたわみとベイズファクターの値の経時変化を示す図である。たわみは連通管を用いて検出している。図15は、4月から翌年3月までの1年を年度単位とし、(グラフa)にはある期間のたわみの経時変化を示し、(グラフb)にはたわみのベイズファクターBの経時変化を示す。図15の(グラフb)における実線はベイズファクターBの異常判定の閾値を示し、この閾値を超えた場合に異常と判定される。基準年度の1年間の測定データを基に異常判定の閾値を定めている。
(Bridge 4 deflection and Bayes factor value change over time)
FIG. 15 is a diagram showing changes over time in the values of deflection and Bayes factor of a bridge over a certain period of time. Deflection is detected using a communication pipe. In FIG. 15, one year from April to March of the following year is set as a yearly unit, (graph a) shows the change over time of the deflection for a certain period, and (graph b) shows the change over time of the Bayes factor B of the deflection. show. The solid line in FIG. 15 (graph b) indicates the threshold value for determining the abnormality of Bayes factor B, and when this threshold value is exceeded, it is determined to be abnormal. The threshold value for abnormality judgment is set based on the measurement data for one year of the base year.
 年間を通じて気温が変動するが、図15の(グラフa)に示すように、本実施形態による判定結果ではたわみ量が大きくなる時期(例えば第4年度の9月から翌年1月まで)に異常と判定されていることが分かる。また、第5年度以降は、明確に異常と判定されていることが分かる。 The temperature fluctuates throughout the year, but as shown in (Graph a) of FIG. 15, the determination result by this embodiment shows that it is abnormal at the time when the amount of deflection becomes large (for example, from September of the fourth year to January of the following year). It can be seen that it has been judged. In addition, it can be seen that after the 5th year, it is clearly determined to be abnormal.
(橋梁の2つの径間のベイズファクターの値の経時変化の比較)
 図16は、橋梁の2つの径間のベイズファクターの値の経時変化の比較を示す図である。図16では、5月から翌年4月までの1年を年度単位としている。図16にデータを示す橋梁4は、図15にデータを示した橋梁4と同一である。
(Comparison of changes over time in Bayes factor values between two spans of a bridge)
FIG. 16 is a diagram showing a comparison of changes over time in the values of Bayes factor between two spans of a bridge. In FIG. 16, one year from May to April of the following year is set as the annual unit. The bridge 4 whose data is shown in FIG. 16 is the same as the bridge 4 whose data is shown in FIG.
 図16の(グラフa)及び(グラフb)では、同一の橋梁4の異なる2地点(損傷した第1径間と損傷が比較的少ない第2径間)における加速度の計測結果を基に異常判定の結果を算出している。図16では、基準年度の1年分の計測データを基に閾値を設定している。但し、図16の基準年度、第1年度、第2年度、第3年度は、図15とは異なるため、例えば図15の第1年度、図16の第1年度のように表記して区別する。 In (Graph a) and (Graph b) of FIG. 16, abnormality determination is made based on the measurement results of acceleration at two different points (damaged first span and second span with relatively little damage) of the same bridge 4. The result of is calculated. In FIG. 16, the threshold value is set based on the measurement data for one year of the base year. However, since the base year, the first year, the second year, and the third year of FIG. 16 are different from those of FIG. 15, they are distinguished by notation such as the first year of FIG. 15 and the first year of FIG. ..
 本実施形態による異常判定では、損傷した第1径間の異常を図16の第1年度の9月に検知しており、以後経年的な劣化を捉えることができている。一方、損傷が比較的少ない第2径間では、図16の第1径間に異常が検出された年度でも、一時的な異常値を除いて正常と判断されている。この第1径間の結果は、図15に示したたわみ量の変動が大きくなった時期(図15の第4年度、第5年度以降)と同じであることから、適切な異常値を判断できると考えられる。 In the abnormality determination according to the present embodiment, the damaged abnormality between the first spans was detected in September of the first year of FIG. 16, and the deterioration over time can be grasped thereafter. On the other hand, in the second span where the damage is relatively small, even in the year when the abnormality is detected in the first span in FIG. 16, it is judged to be normal except for the temporary abnormal value. Since the result of this first span is the same as the time when the fluctuation of the deflection amount shown in FIG. 15 becomes large (the fourth and fifth years and thereafter in FIG. 15), an appropriate abnormal value can be determined. it is conceivable that.
(実施形態2の変形例)
 本実施形態では、診断装置2は、橋梁4の係数行列Aまたは主成分行列A^を橋梁4の状態を表す特徴量とし、特徴量に基づくベイズファクターBまたはローカルベイズファクターBを用いて橋梁の異常診断を行うとした。しかしこれに限らず、構造物の各部位の1または複数の物理量を継続的に測定した時系列データから特徴量を抽出し、この特徴量に基づくベイズファクターを用いて構造物の異常診断を行ってもよい。物理量は、変位、速度、加速度、外力、歪み、温度などである。例えば橋梁4の温度を定点観測した時系列データのうちの所定期間のデータから抽出した特徴量に基づくベイズファクターを用いて構造物の異常診断を行ってもよい。
(Modified Example of Embodiment 2)
In the present embodiment, the diagnostic apparatus 2 uses the coefficient matrix A or the principal component matrix A ^ of the bridge 4 as a feature quantity representing the state of the bridge 4, and uses the Bayes factor B or the local Bayes factor B j based on the feature quantity to bridge the bridge. It was decided to make an abnormality diagnosis. However, not limited to this, feature quantities are extracted from time-series data obtained by continuously measuring one or more physical quantities of each part of the structure, and an abnormality diagnosis of the structure is performed using the Bayes factor based on these feature quantities. You may. Physical quantities are displacement, velocity, acceleration, external force, strain, temperature, and the like. For example, an abnormality diagnosis of a structure may be performed using a Bayes factor based on a feature amount extracted from data for a predetermined period in time-series data obtained by observing the temperature of the bridge 4 at a fixed point.
 また、診断部は、橋梁4に対する点検作業者による実地点検の結果を用いてベイズファクターを補正し、補正したベイズファクターに基づいて橋梁4の状態の診断を行ってもよい。例えば、ある特徴量のベイズファクターに基づいて異常と判断されたが、実地点検を行った結果、異常なしであった場合に、以後、同じ特徴量で異常と判断されないようにベイズファクターが補正される。あるいは、実地点検を行った結果、異常があった場合に、この異常が検出された部位の近傍に設置されたセンサに基づくベイズファクターを参照して、閾値が設定または補正されてもよい。 Further, the diagnostic unit may correct the Bayes factor using the result of the on-site inspection by the inspection worker for the bridge 4, and diagnose the state of the bridge 4 based on the corrected Bayes factor. For example, if an abnormality is determined based on the Bayes factor of a certain feature, but there is no abnormality as a result of on-site inspection, the Bayes factor is corrected so that the same feature is not determined to be abnormal thereafter. To. Alternatively, if there is an abnormality as a result of the on-site inspection, the threshold value may be set or corrected by referring to the Bayes factor based on the sensor installed in the vicinity of the site where the abnormality is detected.
(実施形態2の効果)
 実施形態2では、各時間領域での構造物の観測データの時系列から算出される健全状態と異常状態の確率の比であるベイズファクターと、高度な専門知識を持つ点検技術者が過去に異常とした損傷状態から設定された閾値とに基づいて、構造物の状態診断を行う。よって、高度な専門知識を持たない者であっても、数値解析などの高コスト処理を必要とせず、定量的な評価指標を用いて、高度な専門知識を持つ点検技術者と同等に、構造物の健全性評価を高精度に行うことができる。
(Effect of Embodiment 2)
In the second embodiment, the Bayes factor, which is the ratio of the probability of the healthy state and the abnormal state calculated from the time series of the observation data of the structure in each time domain, and the inspection engineer with a high degree of expertise are abnormal in the past. The state of the structure is diagnosed based on the threshold set from the damaged state. Therefore, even a person who does not have a high degree of specialized knowledge does not require high-cost processing such as numerical analysis, and uses a quantitative evaluation index to form a structure equivalent to that of an inspection engineer who has a high degree of specialized knowledge. It is possible to evaluate the soundness of an object with high accuracy.
<実施形態3>
 実施形態3では、実施形態1または2において、橋梁4の状態を表す特徴量である係数行列Aをベイズ推定を用いて逐次学習することで、橋梁4の異常検知精度の向上を図る。係数行列Aの逐次学習は、センサノード1(例えば特徴量生成部113)が行っても、診断装置2(例えば診断部212)が行ってもよい。なお、係数行列Aに代え、主成分行列A^でも同様の処理を行っても、同様の効果が得られる。
<Embodiment 3>
In the third embodiment, in the first or second embodiment, the coefficient matrix A, which is a feature quantity representing the state of the bridge 4, is sequentially learned by using Bayesian estimation to improve the abnormality detection accuracy of the bridge 4. The sequential learning of the coefficient matrix A may be performed by the sensor node 1 (for example, the feature amount generation unit 113) or the diagnostic device 2 (for example, the diagnostic unit 212). The same effect can be obtained by performing the same processing on the principal component matrix A ^ instead of the coefficient matrix A.
 図17は、実施形態3の診断システムSにおける係数行列Aの逐次更新の説明図である。図17では、センサ3で検知した加速度を縦軸に示し、時刻を横軸としている。図17に示す時間iにおける係数行列Aの事後確率p(A,Σ|Y)は、下記式(15-1)のように、ベイズ推定を用いて求められる。ただし、時間iにおける事前確率p(A,Σ)は、下記式(15-2)に示すように、時間(i-1)における事後確率p(A,Σ|Y)i-1である。下記式(15-1)および式(15-2)のiをi+1に置き換えることで、同様にして、時間(i+1)における係数行列Aの事後確率p(A,Σ|Y)i+1が求められる。 FIG. 17 is an explanatory diagram of sequential update of the coefficient matrix A in the diagnostic system S of the third embodiment. In FIG. 17, the acceleration detected by the sensor 3 is shown on the vertical axis, and the time is shown on the horizontal axis. The posterior probability p (A, Σ | Y) i of the coefficient matrix A at the time i shown in FIG. 17 is obtained by using Bayesian estimation as shown in the following equation (15-1). However, the prior probability p (A, Σ) i at time i is the posterior probability p (A, Σ | Y) i-1 at time (i-1) as shown in the following equation (15-2). .. By replacing i in the following equations (15-1) and (15-2) with i + 1, the posterior probabilities p (A, Σ | Y) i + 1 of the coefficient matrix A in the time (i + 1) can be obtained in the same manner. ..
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
(実施形態3の効果)
 図18は、実施形態3の診断システムにおける係数行列の逐次更新による係数行列の確率分布の収束を示す図である。図18では、横軸を特徴量(例えば係数行列A)の要素が取りうる値とし、縦軸を要素の各値における事後確率としている。実施形態3では、係数行列Aの確率分布を逐次学習することで、図18に示すように、確率分布の平均値が真値へ近づき分散が小さくなる方向へ収束(図18に示す確率分布が細線から破線そして太線へと収束)していくので、係数行列Aが構造物の状態をより高精度に表すようになる。そして、診断部212は、逐次学習後の係数行列Aまたは主成分行列A^を特徴量として用いて構造物の状態を診断する。よって、構造物の状態の異常推定の高精度化を図ることができる。係数行列Aは、構造物の振動データの種々の特徴を含んだ特徴量であるため、固有振動数などを用いて異常判定を行う従来技術よりも、より微細な構造物の状態変化を捉えて異常判定を行うことが可能になる。
(Effect of Embodiment 3)
FIG. 18 is a diagram showing the convergence of the probability distribution of the coefficient matrix by sequentially updating the coefficient matrix in the diagnostic system of the third embodiment. In FIG. 18, the horizontal axis is a value that can be taken by an element of a feature amount (for example, a coefficient matrix A), and the vertical axis is a posterior probability at each value of the element. In the third embodiment, by sequentially learning the probability distribution of the coefficient matrix A, as shown in FIG. 18, the average value of the probability distribution approaches the true value and converges in the direction in which the variance becomes smaller (the probability distribution shown in FIG. 18 is). As it converges from a thin line to a broken line and then to a thick line), the coefficient matrix A can represent the state of the structure with higher accuracy. Then, the diagnosis unit 212 diagnoses the state of the structure using the coefficient matrix A or the principal component matrix A ^ after the sequential learning as the feature quantity. Therefore, it is possible to improve the accuracy of the abnormality estimation of the state of the structure. Since the coefficient matrix A is a feature quantity that includes various features of the vibration data of the structure, it captures finer state changes of the structure than the conventional technique for determining an abnormality using the natural frequency or the like. It becomes possible to perform abnormality judgment.
(その他の実施形態)
 上述した実施形態では、診断システムSは、センサノード1と、診断装置2とを有するものとして説明したが、実施形態はこれに限定されるものではない。例えば、診断システムSは、診断装置2を有さずに構成されてもよい。かかる場合、診断システムSは、取得部と、自己回帰モデル生成部と、特徴量生成部と、診断部とを有するセンサノード1を含んで構成される。すなわち、センサノード1は、構造物に取り付けられたセンサからセンサ情報を時系列で取得する取得部と、取得部によって或る時刻において取得されたセンサ情報を、或る時刻以前において取得されたセンサ情報の時系列の線形結合で表現する自己回帰モデルを生成する自己回帰モデル生成部と、自己回帰モデルの回帰係数に基づいて、或る時刻における構造物の状態を示す特徴量を生成する特徴量生成部と、構造物に関する情報の時系列から生成された該構造物の状態を示す特徴量について、構造物が健全状態であると仮定した場合における該特徴量の確率分布を表す第1の周辺尤度と、構造物が健全状態でないと仮定した場合における該特徴量の確率分布を表す第2の周辺尤度と、の比率である評価指標を算出し、評価指標に基づいて構造物の状態を診断する診断部とを有する。
(Other embodiments)
In the above-described embodiment, the diagnostic system S has been described as having the sensor node 1 and the diagnostic device 2, but the embodiment is not limited thereto. For example, the diagnostic system S may be configured without the diagnostic device 2. In such a case, the diagnostic system S includes a sensor node 1 having an acquisition unit, an autoregressive model generation unit, a feature amount generation unit, and a diagnostic unit. That is, the sensor node 1 has an acquisition unit that acquires sensor information from a sensor attached to the structure in time series, and a sensor that acquires sensor information acquired by the acquisition unit at a certain time before a certain time. A feature quantity that generates a feature quantity that indicates the state of a structure at a certain time based on a self-regression model generator that generates a self-regression model expressed by a linear combination of information in a time series and a regression coefficient of the self-regression model. With respect to the generation part and the feature quantity indicating the state of the structure generated from the time series of information about the structure, the first periphery representing the probability distribution of the feature quantity when the structure is assumed to be in a healthy state. An evaluation index, which is a ratio of the likelihood and the second peripheral likelihood representing the probability distribution of the feature amount when the structure is not in a healthy state, is calculated, and the state of the structure is calculated based on the evaluation index. It has a diagnostic unit for diagnosing.
 上述した実施形態では、自己回帰モデルの回帰係数に基づいて、或る時刻における構造物の状態を示す特徴量を生成する場合について説明したが実施形態はこれに限定されるものではない。例えば、自己回帰モデルの回帰係数以外から、構造物の状態を示す特徴量を生成してもよい。 In the above-described embodiment, a case where a feature amount indicating the state of the structure at a certain time is generated based on the regression coefficient of the autoregressive model has been described, but the embodiment is not limited to this. For example, a feature quantity indicating the state of the structure may be generated from other than the regression coefficient of the autoregressive model.
(センサノード1の実装例)
 図19は、実施形態のセンサノード1として用いるセンサノード端末1Bの構成を示すブロック図である。センサノード1として実装するセンサノード端末1Bは、センサノード1(図2)の構成と比較して、加速度センサ15をさらに有する。このようなセンサノード端末1Bでは、所定のアプリケーションを実行することでセンサノード1及びセンサ3と同様の機能を発揮する。すなわちセンサノード端末1Bは、センサ3と同様に橋梁4に設置され、取得した加速度データから橋梁4の特徴量を生成し、診断装置2へ送信する。
(Implementation example of sensor node 1)
FIG. 19 is a block diagram showing a configuration of a sensor node terminal 1B used as the sensor node 1 of the embodiment. The sensor node terminal 1B mounted as the sensor node 1 further includes an acceleration sensor 15 as compared with the configuration of the sensor node 1 (FIG. 2). Such a sensor node terminal 1B exhibits the same functions as the sensor node 1 and the sensor 3 by executing a predetermined application. That is, the sensor node terminal 1B is installed on the bridge 4 in the same manner as the sensor 3, generates a feature amount of the bridge 4 from the acquired acceleration data, and transmits it to the diagnostic device 2.
 診断装置2は、例えばクラウドサーバ上に構築されて、クラウドサービスとして、特徴量に基づく診断結果を提供する。診断装置2は、センサノード端末1Bまたはその他の端末装置へ診断結果を送信する。ユーザは、センサノード端末1Bまたはその他の端末装置の画面出力を見て診断結果を確認する。 The diagnostic device 2 is built on a cloud server, for example, and provides diagnostic results based on feature quantities as a cloud service. The diagnostic device 2 transmits the diagnostic result to the sensor node terminal 1B or another terminal device. The user confirms the diagnosis result by looking at the screen output of the sensor node terminal 1B or other terminal device.
 また複数のセンサノード端末1Bが、複数のセンサノード1として実装され、センサ3と同様に橋梁4の複数箇所に設置されてもよい。この場合、複数のセンサノード端末1Bを代表する1つのセンサノード端末1Bの単独処理または所定数のセンサノード1の協調処理によって、複数のセンサノード端末1Bの全てによって取得された加速度データから橋梁4の特徴量が生成され、診断装置2へ送信される。 Further, a plurality of sensor node terminals 1B may be mounted as a plurality of sensor nodes 1 and installed at a plurality of locations on the bridge 4 in the same manner as the sensor 3. In this case, the bridge 4 is obtained from the acceleration data acquired by all of the plurality of sensor node terminals 1B by the independent processing of one sensor node terminal 1B representing the plurality of sensor node terminals 1B or the cooperative processing of a predetermined number of sensor nodes 1. The feature amount of is generated and transmitted to the diagnostic apparatus 2.
 本発明は上述の実施形態に限定されるものではなく、各実施形態の構成について、追加、削除、置換、統合、または分散をすることが可能である。また実施形態で示した構成および処理は、処理または実装の効率に基づいて適宜分散、統合、または入れ替えることが可能である。上述の実施形態で説明した診断システムの各処理を実行するプログラムは、記録媒体あるいは伝送媒体を介して1または複数のコンピュータにインストールされる、もしくは組み込みプログラムとして提供される。 The present invention is not limited to the above-described embodiment, and the configuration of each embodiment can be added, deleted, replaced, integrated, or dispersed. Further, the configurations and processes shown in the embodiments can be appropriately distributed, integrated, or replaced based on the efficiency of the processes or implementations. The program that executes each process of the diagnostic system described in the above-described embodiment is installed in one or more computers via a recording medium or a transmission medium, or is provided as an embedded program.
S:診断システム、1:センサノード、2:診断装置、3:センサ、4:橋梁、111:センサ情報取得部、112:自己回帰モデル生成部、113:特徴量生成部、114:特徴量送信部、131:センサ情報、211:特徴量受信部:212:診断部、231:特徴量、232:基準評価指標
 
S: Diagnostic system, 1: Sensor node, 2: Diagnostic device, 3: Sensor, 4: Bridge, 111: Sensor information acquisition unit, 112: Self-return model generation unit, 113: Feature amount generation unit, 114: Feature amount transmission Unit, 131: Sensor information, 211: Feature amount receiving part: 212: Diagnosis part, 231: Feature amount, 232: Reference evaluation index

Claims (14)

  1.  構造物に関する情報の時系列から生成された該構造物の状態を示す特徴量について、前記構造物が健全状態であると仮定した場合における該特徴量の確率分布を表す第1の周辺尤度と、前記構造物が前記健全状態でないと仮定した場合における該特徴量の確率分布を表す第2の周辺尤度と、の比率である評価指標を算出し、前記評価指標に基づいて前記構造物の状態を診断する診断部
     を有することを特徴とする構造物診断システム。
    With respect to the feature quantity indicating the state of the structure generated from the time series of information about the structure, the first marginal likelihood representing the probability distribution of the feature quantity when the structure is assumed to be in a healthy state. , Calculate an evaluation index which is a ratio of the second marginal likelihood representing the probability distribution of the feature amount when it is assumed that the structure is not in the healthy state, and based on the evaluation index, the structure. A structure diagnostic system characterized by having a diagnostic unit for diagnosing a condition.
  2.  前記情報の時系列は、前記構造物における位置毎に取得されたものであり、
     前記診断部は、前記構造物における位置毎の前記時系列に基づいて位置毎の前記評価指標を算出し、位置毎の前記評価指標に基づいて、前記構造物の位置毎に状態を診断する
     ことを特徴とする請求項1に記載の構造物診断システム。
    The time series of the information is acquired for each position in the structure.
    The diagnostic unit calculates the evaluation index for each position based on the time series for each position in the structure, and diagnoses the state for each position of the structure based on the evaluation index for each position. The structure diagnostic system according to claim 1.
  3.  前記情報の時系列は、複数種類の前記情報の種類毎に取得されたものであり、
     前記診断部は、種類毎の前記時系列に基づいて種類毎の前記評価指標を算出し、種類毎の前記評価指標に基づいて前記構造物の状態を診断する
     ことを特徴とする請求項1に記載の構造物診断システム。
    The time series of the information is acquired for each of a plurality of types of the information.
    The first aspect of claim 1 is characterized in that the diagnostic unit calculates the evaluation index for each type based on the time series for each type and diagnoses the state of the structure based on the evaluation index for each type. The described structure diagnostic system.
  4.  前記構造物に取り付けられたセンサからセンサ情報を時系列で取得する取得部と、
     前記取得部によって或る時刻において取得された前記センサ情報を、該或る時刻以前において取得された前記センサ情報の時系列の線形結合で表現する自己回帰モデルを生成する自己回帰モデル生成部と、
     前記自己回帰モデルの回帰係数に基づいて、前記或る時刻における前記構造物の状態を示す前記特徴量を生成する特徴量生成部と、をさらに有する
     ことを特徴とする請求項1~3の何れか1項に記載の構造物診断システム。
    An acquisition unit that acquires sensor information in chronological order from sensors attached to the structure, and
    An autoregressive model generation unit that generates an autoregressive model that expresses the sensor information acquired at a certain time by the acquisition unit by a linear combination of the sensor information acquired before the certain time.
    Any of claims 1 to 3, further comprising a feature amount generation unit that generates the feature amount indicating the state of the structure at a certain time based on the regression coefficient of the autoregressive model. Or the structure diagnostic system according to item 1.
  5.  前記構造物診断システムは、
     前記取得部と、前記自己回帰モデル生成部と、前記特徴量生成部と、前記特徴量生成部によって生成された前記特徴量を前記診断部へ送信する送信部と、を含んで構成されるセンサノードを有することを特徴とする請求項4に記載の構造物診断システム。
    The structure diagnostic system is
    A sensor including the acquisition unit, the autoregressive model generation unit, the feature amount generation unit, and a transmission unit that transmits the feature amount generated by the feature amount generation unit to the diagnosis unit. The structure diagnostic system according to claim 4, wherein the structure diagnostic system has a node.
  6.  前記センサの数は複数であり、
     時系列の各時刻において複数の前記センサから取得された前記センサ情報は、前記センサの数を次数とする各時刻におけるセンサ情報ベクトルであり、
     前記自己回帰モデルは、前記取得部によって前記或る時刻において取得された前記センサ情報ベクトルを、該或る時刻以前において取得された前記センサ情報ベクトルの時系列の線形結合で表現するものであり、
     前記回帰係数は、前記自己回帰モデルにおいて線形結合された前記センサ情報ベクトルの時系列のそれぞれに乗じられている行列であり、
     前記特徴量は、前記行列を結合した係数行列に基づく情報である
     ことを特徴とする請求項4に記載の構造物診断システム。
    The number of the sensors is plural,
    The sensor information acquired from the plurality of sensors at each time in the time series is a sensor information vector at each time having the number of the sensors as the order.
    In the autoregressive model, the sensor information vector acquired by the acquisition unit at a certain time is represented by a time-series linear combination of the sensor information vectors acquired before the certain time.
    The regression coefficient is a matrix multiplied by each of the time series of the sensor information vectors linearly combined in the autoregressive model.
    The structure diagnostic system according to claim 4, wherein the feature amount is information based on a coefficient matrix obtained by combining the matrices.
  7.  前記特徴量生成部は、前記特徴量として、前記係数行列の特異値分解に基づいて前記係数行列の主成分行列を生成する
     ことを特徴とする請求項6に記載の構造物診断システム。
    The structure diagnosis system according to claim 6, wherein the feature amount generation unit generates a principal component matrix of the coefficient matrix based on the singular value decomposition of the coefficient matrix as the feature amount.
  8.  前記特徴量生成部は、
     前回生成の前記特徴量の確率分布を事前分布とするベイズ推定によって求まる事後分布を今回生成の前記特徴量の確率分布とする処理を繰り返す逐次学習によって前記特徴量を生成する
     ことを特徴とする請求項4~7の何れか1項に記載の構造物診断システム。
    The feature amount generation unit is
    A claim characterized in that the feature amount is generated by sequential learning that repeats the process of making the posterior distribution obtained by Bayesian estimation using the probability distribution of the feature amount generated previously as the prior distribution the probability distribution of the feature amount generated this time. Item 6. The structure diagnosis system according to any one of Items 4 to 7.
  9.  前記特徴量は、該特徴量の観測点における前記構造物の変位、速度、加速度、質量、剛性、および減衰係数の情報のうちの少なくとも一つを含んだことを特徴とする請求項1~8の何れか1項に記載の構造物診断システム。 Claims 1 to 8 include the feature amount including at least one of information on displacement, velocity, acceleration, mass, rigidity, and damping coefficient of the structure at the observation point of the feature amount. The structure diagnostic system according to any one of the above items.
  10.  前記診断部は、前記構造物に対する実地点検による点検結果を用いて前記評価指標を補正し、該補正した前記評価指標に基づいて前記構造物の状態を診断する
     ことを特徴とする請求項1~9の何れか1項に記載の構造物診断システム。
    The diagnostic unit is characterized in that the evaluation index is corrected by using the inspection result of the on-site inspection of the structure, and the state of the structure is diagnosed based on the corrected evaluation index. 9. The structure diagnostic system according to any one of 9.
  11.  前記診断部は、前記評価指標と閾値との比較に基づいて前記構造物の状態を診断し、
     前記閾値は、前記構造物の過去の所定期間の複数の計測データの平均及び分散に基づいて決定されたものである
     ことを特徴とする請求項1~10の何れか1項に記載の構造物診断システム。
    The diagnostic unit diagnoses the state of the structure based on the comparison between the evaluation index and the threshold value.
    The structure according to any one of claims 1 to 10, wherein the threshold value is determined based on the average and variance of a plurality of measurement data of the structure in the past predetermined period. Diagnostic system.
  12.  前記閾値は、前記平均及び前記分散に基づいて複数決定され、
     前記診断部は、前記評価指標と複数の前記閾値に基づく範囲との比較に基づいて前記構造物の状態を診断する
     ことを特徴とする請求項11に記載の構造物診断システム。
    A plurality of the threshold values are determined based on the mean and the variance.
    The structure diagnostic system according to claim 11, wherein the diagnostic unit diagnoses the state of the structure based on a comparison between the evaluation index and a range based on the plurality of threshold values.
  13.  構造物の状態を診断する構造物診断システムが行う構造物診断方法であって、
     前記構造物に関する情報の時系列から生成された該構造物の状態を示す特徴量について、前記構造物が健全状態であると仮定した場合における該特徴量の確率分布を表す第1の周辺尤度と、前記構造物が前記健全状態でないと仮定した場合における該特徴量の確率分布を表す第2の周辺尤度と、の比率である評価指標を算出し、
     前記評価指標に基づいて前記構造物の状態を診断する
     各処理を含んだことを特徴とする構造物診断方法。
    It is a structure diagnosis method performed by a structure diagnosis system that diagnoses the state of a structure.
    With respect to the feature quantity indicating the state of the structure generated from the time series of the information about the structure, the first marginal likelihood representing the probability distribution of the feature quantity when the structure is assumed to be in a healthy state. And a second marginal likelihood representing the probability distribution of the feature amount when it is assumed that the structure is not in the healthy state, an evaluation index which is a ratio is calculated.
    A structure diagnosis method comprising each process for diagnosing the state of the structure based on the evaluation index.
  14.  コンピュータを、
     構造物に関する情報の時系列から生成された該構造物の状態を示す特徴量について、前記構造物が健全状態であると仮定した場合における該特徴量の確率分布を表す第1の周辺尤度と、前記構造物が前記健全状態でないと仮定した場合における該特徴量の確率分布を表す第2の周辺尤度と、の比率である評価指標を算出し、前記評価指標に基づいて前記構造物の状態を診断する診断部
     として機能させるための構造物診断プログラム。
     
    Computer,
    With respect to the feature quantity indicating the state of the structure generated from the time series of information about the structure, the first marginal likelihood representing the probability distribution of the feature quantity when the structure is assumed to be in a healthy state. , Calculate an evaluation index which is a ratio of the second marginal likelihood representing the probability distribution of the feature amount when it is assumed that the structure is not in the healthy state, and based on the evaluation index, the structure. A structure diagnosis program to function as a diagnostic unit for diagnosing a condition.
PCT/JP2021/033999 2020-09-15 2021-09-15 Structure diagnosis system, structure diagnosis method, and structure diagnosis program WO2022059720A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022550593A JP7469828B2 (en) 2020-09-15 2021-09-15 Structure diagnosis system, structure diagnosis method, and structure diagnosis program
JP2024019508A JP2024045515A (en) 2020-09-15 2024-02-13 Structure diagnosis system, structure diagnosis method, and structure diagnosis program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020154971 2020-09-15
JP2020-154971 2020-09-15

Publications (1)

Publication Number Publication Date
WO2022059720A1 true WO2022059720A1 (en) 2022-03-24

Family

ID=80776738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033999 WO2022059720A1 (en) 2020-09-15 2021-09-15 Structure diagnosis system, structure diagnosis method, and structure diagnosis program

Country Status (2)

Country Link
JP (2) JP7469828B2 (en)
WO (1) WO2022059720A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116465577A (en) * 2023-03-13 2023-07-21 哈尔滨工业大学 Hollow slab beam bridge cluster hinge joint damage diagnosis method based on high-density measuring point strain

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026980A1 (en) * 2017-08-04 2019-02-07 新日鐵住金株式会社 Information processing device, information processing method, and program
JP2019070965A (en) * 2017-10-10 2019-05-09 日本電信電話株式会社 Learning device, learning method, and program
WO2019098226A1 (en) * 2017-11-16 2019-05-23 日本電気株式会社 Damage diagnosing device, damage diagnosing method, and recording medium having damage diagnosing program stored thereon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026980A1 (en) * 2017-08-04 2019-02-07 新日鐵住金株式会社 Information processing device, information processing method, and program
JP2019070965A (en) * 2017-10-10 2019-05-09 日本電信電話株式会社 Learning device, learning method, and program
WO2019098226A1 (en) * 2017-11-16 2019-05-23 日本電気株式会社 Damage diagnosing device, damage diagnosing method, and recording medium having damage diagnosing program stored thereon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116465577A (en) * 2023-03-13 2023-07-21 哈尔滨工业大学 Hollow slab beam bridge cluster hinge joint damage diagnosis method based on high-density measuring point strain
CN116465577B (en) * 2023-03-13 2024-01-30 哈尔滨工业大学 Hollow slab beam bridge cluster hinge joint damage diagnosis method based on high-density measuring point strain

Also Published As

Publication number Publication date
JP2024045515A (en) 2024-04-02
JP7469828B2 (en) 2024-04-17
JPWO2022059720A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
US9122273B2 (en) Failure cause diagnosis system and method
Li et al. Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems
Niu et al. Intelligent condition monitoring and prognostics system based on data-fusion strategy
US7873581B2 (en) Method and system for determining the reliability of a DC motor system
Wang et al. Bayesian dynamic forecasting of structural strain response using structural health monitoring data
KR101872342B1 (en) Method and device for intelligent fault diagnosis using improved rtc(real-time contrasts) method
Das et al. Structural health monitoring techniques implemented on IASC–ASCE benchmark problem: a review
Hou et al. Sparse Bayesian learning for structural damage detection using expectation–maximization technique
JP2019502195A (en) Anomalous fusion in temporal causal graphs
Yu Machine health prognostics using the Bayesian-inference-based probabilistic indication and high-order particle filtering framework
JP6835251B2 (en) Damage diagnostic equipment, damage diagnostic methods, and damage diagnostic programs
JP2024045515A (en) Structure diagnosis system, structure diagnosis method, and structure diagnosis program
Huang et al. Damage identification of a steel frame based on integration of time series and neural network under varying temperatures
JP2021144054A (en) Abnormality sign detection method
Jayawardhana et al. Statistical damage sensitive feature for structural damage detection using AR model coefficients
Lakshmi et al. Structural damage detection using ARMAX time series models and cepstral distances
Tufan et al. Modal plot—System identification and fault detection
Reda Taha A neural-wavelet technique for damage identification in the ASCE benchmark structure using phase II experimental data
Mollineaux et al. Structural health monitoring of progressive damage
Prakash et al. Bayesian two-phase gamma process model for damage detection and prognosis
Sun et al. Reliability analysis with multiple dependent features from a vibration-based accelerated degradation test
Dzakowic et al. Advanced Techniques for the verification and validation of prognostics & health management capabilities
WO2022059719A1 (en) Structure diagnosing system, sensor node, structure diagnosing method, and structure diagnosing program
Rigatos et al. Fault diagnosis for a PDE suspended-bridge model with Kalman filter and statistical decision making
KR20230102431A (en) Oil gas plant equipment failure prediction and diagnosis system based on artificial intelligence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869406

Country of ref document: EP

Kind code of ref document: A1