JP2020123229A - Abnormality sign detection system and abnormality sign detection method - Google Patents

Abnormality sign detection system and abnormality sign detection method Download PDF

Info

Publication number
JP2020123229A
JP2020123229A JP2019015789A JP2019015789A JP2020123229A JP 2020123229 A JP2020123229 A JP 2020123229A JP 2019015789 A JP2019015789 A JP 2019015789A JP 2019015789 A JP2019015789 A JP 2019015789A JP 2020123229 A JP2020123229 A JP 2020123229A
Authority
JP
Japan
Prior art keywords
abnormality
data
normal
error
diagnostic data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019015789A
Other languages
Japanese (ja)
Other versions
JP7188143B2 (en
Inventor
中尾 浩二
Koji Nakao
浩二 中尾
孝則 林
Takanori Hayashi
孝則 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2019015789A priority Critical patent/JP7188143B2/en
Publication of JP2020123229A publication Critical patent/JP2020123229A/en
Application granted granted Critical
Publication of JP7188143B2 publication Critical patent/JP7188143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To detect a facility abnormality sign and to identify an abnormality factor.SOLUTION: A frequency calculation unit 5 of an abnormality sign detection system 1 calculates a power spectrum from oscillatory waveform data of a rotary machine 2 recorded in a data recording unit. A normal model creation unit 7 generates a normal model by Non-negative Matrix Factorization (NMF) on the basis of the power spectrum of the normal time collected in advance by a normal data recording unit 6. A comprehensive reconstruction error calculation unit 8 calculates an input-output error distribution when diagnostic data is input to the normal model, the oscillatory waveform data of the rotary machine 2 recorded in a diagnostic data recording unit 9 being used as the diagnostic data. When an error distribution of the diagnostic data deviates from the error distribution of the normal data, the abnormality determination unit 10 determines whether an abnormality sign occurred. A variable error output unit 1 identifies an oscillation frequency of the determined abnormality sign, and estimates an abnormality factor of the rotary machine 2 according to the identified oscillation frequency.SELECTED DRAWING: Figure 1

Description

本発明は、対象設備のセンシングデータに基づき異常の予兆を検出する技術に関する。 The present invention relates to a technique for detecting a sign of abnormality based on sensing data of target equipment.

現在、人口減少により技術者が不足する一方、高度経済成長期に製造された大量の電気設備が設計寿命を迎え、「ICT/loT」を活用した設備診断システムの構築が求められている。 At present, while the number of engineers is insufficient due to population decline, a large amount of electrical equipment manufactured during the high economic growth period has reached the design life, and construction of an equipment diagnostic system utilizing "ICT/loT" is required.

このとき電気設備などのインフラ設備の故障は極めて稀なため、データ駆動型の診断を行う際に正常時のデータのみを学習データとする教師なし学習が用いられていることが多い。 At this time, failure of infrastructure equipment such as electric equipment is extremely rare, and therefore unsupervised learning in which only normal data is used as learning data is often used when performing data-driven diagnosis.

例えば特許文献1には、教師なし学習のアプローチに「One−class Support Vector Machine(OCSVM)」を用いた診断手法が提案されている。 For example, Patent Document 1 proposes a diagnostic method using “One-class Support Vector Machine (OCSVM)” for an unsupervised learning approach.

特開2018−28845JP, 2018-28845, A

Lee,D.D.,Seung,H.S.,“Algorithms for nonnegative matrix factorization”,Advances in Neural Information Processing Systeme 13,pp.556-562,(2000)Lee, D.D., Seung, H.S., “Algorithms for nonnegative matrix factorization”, Advances in Neural Information Processing Systeme 13,pp.556-562,(2000) Prognostics Center of Excellence of NASA:The prgnosticsdata repository.<URL:https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/,> (2016)Prognostics Center of Excellence of NASA:The prgnosticsdata repository.<URL:https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/,> (2016)

特許文献1は、回転機の機械系の異常を検出するため、振動の周波数成分から「One−class Support Vector Machine(OCSVM)」により正常時のデータのみを学習し、異常予兆を検出する。 In Patent Document 1, in order to detect an abnormality in a mechanical system of a rotating machine, only a data in a normal state is learned from a frequency component of vibration by "One-class Support Vector Machine (OCSVM)" to detect an abnormality sign.

しかしながら、「OCSVM」は、カーネル法により特徴空間上で分類を行うため、入力次元と直接対応付けができず、どの周波数分が異常かを判断できず、対象設備の異常要因を把握できないおそれがある。 However, since "OCSVM" performs classification in the feature space by the kernel method, it cannot be directly associated with the input dimension, it cannot be determined which frequency is abnormal, and it may not be possible to grasp the cause of abnormality of the target equipment. is there.

本発明は、このような従来の問題を解決するためになされ、設備異常の予兆検出と併せて異常要因の特定を図ることを解決課題としている。 The present invention has been made in order to solve such a conventional problem, and an object of the invention is to identify an abnormality factor together with detection of a sign of equipment abnormality.

(1)本発明の一態様は、対象設備の振動波形データに基づき異常予兆を検出する異常予兆検出システムであって、
事前に前記対象設備の正常時に収集された前記振動波形データに基づき非負値行列因数分解(NMF)で正常モデルを生成する正常モデル作成部と、
前記対象設備の振動波形データを診断データとし、該診断データを前記正常モデルに入力したときの入出力の誤差分布を求める再構築誤差算出部と、
前記診断データの誤差分布が前記正常データの誤差分布を逸脱していれば、前記異常予兆の発生を判定する異常判定部と、
前記診断データの周波数毎の誤差を算出し、算出された誤差の評価に応じて前記対象設備の異常要因を推定する異常要因推定部と、を備える。
(1) One aspect of the present invention is an abnormality sign detection system for detecting an abnormality sign based on vibration waveform data of target equipment,
A normal model creation unit that creates a normal model by non-negative matrix factorization (NMF) based on the vibration waveform data collected in advance when the target facility is normal;
A vibration error data of the target facility is used as diagnostic data, and a reconstruction error calculation unit that obtains an input/output error distribution when the diagnostic data is input to the normal model,
If the error distribution of the diagnostic data deviates from the error distribution of the normal data, an abnormality determination unit that determines the occurrence of the abnormality sign,
An abnormality factor estimation unit that calculates an error for each frequency of the diagnostic data and estimates an abnormality factor of the target equipment according to the evaluation of the calculated error.

(2)本発明の他の態様は、コンピュータが対象設備の振動波形データに基づき異常予兆を検出する方法であって、
事前に前記対象設備の正常時に収集された前記振動波形データに基づき非負値行列因数分解(NMF)で正常モデルを生成する正常モデル作成ステップと、
前記対象設備の振動波形データを診断データとし、該診断データを前記正常モデルに入力したときの入出力の誤差分布を求める再構築誤差算出ステップと、
前記診断データの誤差分布が前記正常データの誤差分布を逸脱していれば、前記異常予兆の発生を判定する異常判定ステップと、
前記判定された異常予兆の振動周波数を特定し、該特定された振動周波数に応じて前記対象設備の異常要因を推定する異常要因推定ステップと、を有する。
(2) Another aspect of the present invention is a method in which a computer detects an abnormality sign based on vibration waveform data of target equipment,
A normal model creating step for creating a normal model by non-negative matrix factorization (NMF) based on the vibration waveform data collected in advance when the target facility is normal;
Reconstruction error calculation step for obtaining the error distribution of input and output when the diagnostic equipment is the vibration waveform data of the target equipment and the diagnostic data is input to the normal model,
If the error distribution of the diagnostic data deviates from the error distribution of the normal data, an abnormality determination step of determining the occurrence of the abnormality sign,
An abnormality factor estimating step of identifying the vibration frequency of the determined abnormality sign and estimating the abnormality factor of the target facility according to the specified vibration frequency.

本発明によれば、設備異常の予兆検出と併せて異常要因を特定することができる。 According to the present invention, it is possible to specify an abnormality factor together with detection of a sign of equipment abnormality.

本発明の実施形態に係る異常予兆検出システムのシステム構成図。1 is a system configuration diagram of an abnormality sign detection system according to an embodiment of the present invention. NMFの概略図。Schematic of NMF. 振動周波数と異常要因との関係の一例を示す図。The figure which shows an example of the relationship between a vibration frequency and an abnormal factor. (a)は実施例の基底行列(H)を示すグラフ、(b)は同係数行列(W)を示すグラフ。(A) is a graph showing the basis matrix (H) of the embodiment, and (b) is a graph showing the same coefficient matrix (W). (a)は実施例の再構築誤差の分布を示すグラフ、(b)は(a)の部分拡大図。(A) is a graph which shows the distribution of the reconstruction error of an Example, (b) is the elements on larger scale of (a). (a)は実施例の正常時の再構築差分を示すグラフ、(b)は同サンプル番号705の再構築差分を示すグラフ、(c)は故障停止直前の再構築差分を示すグラフ。(A) is a graph showing a reconstruction difference in a normal state of the embodiment, (b) is a graph showing a reconstruction difference of the sample number 705, and (c) is a graph showing a reconstruction difference immediately before a failure stop.

以下、本発明の実施形態に係る異常予兆検出システム(異常予兆検出方法)を説明する。この異常検出システムは、電気設備などの対象設備に設置したセンサ(加速度センサ・音響センサなど)から継続的にセンシングデータとして振動波形データを収集し、収集された振動波形データに基づき対象設備の異常予兆を検出・検知する。 Hereinafter, an abnormality sign detection system (abnormal sign detection method) according to an embodiment of the present invention will be described. This abnormality detection system continuously collects vibration waveform data as sensing data from sensors (acceleration sensor, acoustic sensor, etc.) installed in target equipment such as electrical equipment, and detects abnormality of the target equipment based on the collected vibration waveform data. Detect and detect signs.

この異常予兆を捉えることで対象設備の故障前に対策を講ずることが可能となり、インフラシステムなどのダウンタイムを低減することができる。このときインフラ設備の故障は稀であるため、異常データを事前に入手することが困難であって、正常時のデータのみを学習データとする教師なし学習を主軸とする。 By catching this sign of abnormality, it is possible to take measures before the target equipment fails, and it is possible to reduce downtime of the infrastructure system and the like. At this time, since failure of infrastructure equipment is rare, it is difficult to obtain abnormal data in advance, and the main axis is unsupervised learning in which only normal data is used as learning data.

また、異常予兆検出システムとしては、単に異常度を出力するだけでなく、異常要因を特定するための情報などを出力することが好ましく、学習モデルには線形モデルを採用する。 Further, as the abnormality sign detection system, it is preferable to output not only the abnormality degree but also information for specifying an abnormality factor, and a linear model is adopted as the learning model.

線形モデルによる教師なし異常検知の従来技術では、統計的プロセス管理の分野で実績のある主成分分析(PCA)が用いられることが多い。しかし、振動波形データの振幅スペクトルは非負の値であるため、負の値をとりうるための主成分分析とは物理事象と直接整合がとれず、モデルの可読性の点で不向きといえる。 Prior art techniques for unsupervised anomaly detection with linear models often use Principal Component Analysis (PCA), which has a proven record in the field of statistical process management. However, since the amplitude spectrum of the vibration waveform data has a non-negative value, it cannot be directly matched with the physical event with the principal component analysis for taking a negative value, and it can be said that it is unsuitable in terms of model readability.

そこで、前記異常検出システムでは、非特許文献1の非負値行列因子分解(Non−negative Matrix Factorization:以下、NMFとする。)を用いることで異常検出力を維持しつつ、学習した正常モデルの可読性の異常判定結果の説明させた診断手法を提案する。 Therefore, the anomaly detection system uses the non-negative matrix factorization (hereinafter, referred to as NMF) of Non-Patent Document 1 to maintain the anomaly detection power and readability of the learned normal model. We propose a diagnostic method that explained the abnormality judgment result of.

このNMFは、非負の行列をより低ランクの二つの非負の行列に分解する非負制約付きの次元圧縮手法であり、もとの行列が持つ潜在的要素を明確に示すことができ、非負値である振動振幅スペクトルの特徴抽出方法として有効な効果が得られる。すなわち、NMFにより観測された振動スペクトログラムを元の信号源の周波数成分に分解する。このとき非負の値のまま分解された基底は、振幅スペクトルと同次元で物理的意味を持つため、モデルの解釈性・説明性のうえで構造上の特徴を分析することができる。 This NMF is a non-negative constrained dimensional compression method that decomposes a non-negative matrix into two non-negative matrices of lower rank. It can clearly show the potential elements of the original matrix and An effective effect is obtained as a feature extraction method of a certain vibration amplitude spectrum. That is, the vibration spectrogram observed by the NMF is decomposed into the frequency components of the original signal source. At this time, the decomposed basis with non-negative values has the same dimension as the amplitude spectrum and has a physical meaning. Therefore, structural features can be analyzed in terms of interpretability and explanation of the model.

≪構成例≫
図1に基づき前記異常予兆検出システムの構成を説明する。図1中の1は、前記異常検出システムを示している。この異常検出システム1は、非負制約をもった最適化手法を用いた異常検出を実行し、振動スペクトルグラムの特徴量抽出と異常検出の手法とにNMFを用いる。
<< configuration example >>
The configuration of the abnormality sign detection system will be described with reference to FIG. Reference numeral 1 in FIG. 1 indicates the abnormality detection system. The anomaly detection system 1 executes anomaly detection using an optimization method having a non-negative constraint, and uses NMF for the feature amount extraction of the vibration spectrumgram and the anomaly detection method.

前記異常検出システム1は、回転設備(回転機)2を診断の対象設備とし、回転機2には振動センサ3が設置されている。この振動センサ3により回転機2の振動周波数が検知され、振動センサ3の検知した振動周波数に基づき回転機2の異常予兆が検出される。 In the abnormality detection system 1, the rotating equipment (rotating machine) 2 is used as a diagnostic target equipment, and the rotating machine 2 is provided with a vibration sensor 3. The vibration frequency of the rotating machine 2 is detected by the vibration sensor 3, and an abnormality sign of the rotating machine 2 is detected based on the vibration frequency detected by the vibration sensor 3.

具体的には前記異常検出システム1は、コンピュータにより構成され、通常のコンピュータのハードウェアリソース(例えばCPU,RAM・ROMなどの主記憶装置,HDD・SSDなどの補助記憶装置など)を備える。 Specifically, the abnormality detection system 1 is configured by a computer, and includes normal computer hardware resources (eg, CPU, main storage device such as RAM/ROM, auxiliary storage device such as HDD/SSD).

このハードウェアリソースとソフトウェアリソース(OS,アプリケーションなど)との協働の結果、前記異常予兆検出システム1は、データ記録部4,周波数算出部5,正常データ記録部6,正常モデル作成部7,総合再構築誤差算出部8,診断データ記録部9,異常判定部10,変数誤差出力部11を実装する。この各記録部4,6,9は、それぞれ前記記憶装置に構築されている。具体的にはデータ記録部4には、振動センサ3が検知・取得した回転機2の振動をA/D変換した振動波形データが蓄積記録される。 As a result of the cooperation between the hardware resource and the software resource (OS, application, etc.), the abnormality sign detection system 1 includes the data recording unit 4, the frequency calculating unit 5, the normal data recording unit 6, the normal model creating unit 7, The total reconstruction error calculation unit 8, the diagnostic data recording unit 9, the abnormality determination unit 10, and the variable error output unit 11 are mounted. The recording units 4, 6 and 9 are respectively built in the storage device. Specifically, in the data recording unit 4, vibration waveform data obtained by A/D converting the vibration of the rotating machine 2 detected and acquired by the vibration sensor 3 is stored and recorded.

また、周波数算出部5は、データ記録部4に記録された振動波形データからパワースペクトルを算出する。すなわち、振動波形データの時間信号のパワーから高速フーリエ変換(FFT)や定Q変換(Constant−Q Transform)などを用いて周波数バンド幅毎のパワーを算出する。 The frequency calculation unit 5 also calculates a power spectrum from the vibration waveform data recorded in the data recording unit 4. That is, the power for each frequency bandwidth is calculated from the power of the time signal of the vibration waveform data by using a fast Fourier transform (FFT), a constant Q transform (Constant-Q Transform), or the like.

ここで算出されたパワースペクトルに基づき前記各部6〜8により学習ステージが実行される一方、前記各部8〜11により診断ステージが実行される。この学習ステージは、診断ステージ前に実行され、回転機2の正常運転時の振動波形データから算出されたパワースペクトルをベースに正常モデルを生成する。 Based on the power spectrum calculated here, the learning stages are executed by the respective units 6 to 8, while the diagnostic stages are executed by the respective units 8 to 11. This learning stage is executed before the diagnosis stage and generates a normal model based on the power spectrum calculated from the vibration waveform data of the rotating machine 2 during normal operation.

また、診断ステージは、診断対象となる回転機2の振動波形データ、即ち診断データから算出されたパワースペクトルをベースに回転機2の異常予兆の有無を診断する。以下、ステージ毎に各部4〜11の処理内容を説明する。 Further, the diagnosis stage diagnoses the presence/absence of an abnormality sign of the rotating machine 2 based on the vibration waveform data of the rotating machine 2 to be diagnosed, that is, the power spectrum calculated from the diagnosis data. The processing contents of the respective units 4 to 11 will be described below for each stage.

≪学習ステージ≫
(1)正常データ記録部6には、事前に収集された略大多数が正常であることが自明なパワースペクトルが蓄積されている。すなわち、正常データ記録部6には、データ記録部4の記録データのうち、回転機2の正常運転時の振動データから算出されたパワースペクトルが記録されている。この正常データ記録部6のパワースペクトルを正常データと呼ぶものとする。
≪Learning stage≫
(1) The normal data recording unit 6 stores a power spectrum that is obvious that most of the data collected in advance are normal. That is, in the normal data recording unit 6, the power spectrum calculated from the vibration data during normal operation of the rotating machine 2 among the recording data of the data recording unit 4 is recorded. The power spectrum of the normal data recording unit 6 is called normal data.

(2)正常モデル作成部7は、正常データを学習サンプルとしてNMFで正常モデル(NMFモデル)を作成し、必要に応じて入力データの正規化(標準化,01範囲の正規化など)を行う。 (2) The normal model creating unit 7 creates a normal model (NMF model) by NMF using normal data as a learning sample, and normalizes the input data (standardization, normalization of 0 to 1 range, etc.) as necessary. To do.

ここで作成された正常モデルは前記記憶装置に記憶されるものとし、またパワースペクトルは振幅の2乗値相当なので、その平方根をとったものを振幅スペクトルと呼ぶものとする。以下、正常モデル作成の詳細を説明する。 The normal model created here is stored in the storage device, and the power spectrum is equivalent to the squared value of the amplitude. Therefore, the square root of the power spectrum is called the amplitude spectrum. The details of creating a normal model will be described below.

NMFは、図2および式(1)に示すように、観測したパワースペクトルの振動スペクトログラムV「i×μ」を、非負の係数行列W(i×a)と非負の基底行列H(a×μ)の線形和で近似することを考える。 As shown in FIG. 2 and Expression (1), the NMF converts the vibration spectrogram V “i×μ” of the observed power spectrum into a non-negative coefficient matrix W(i×a) and a non-negative basis matrix H(a×μ). ) Consider the approximation with a linear sum of.

Figure 2020123229
Figure 2020123229

振動スペクトログラムVと行列WHとの剥離度基準には、二乗誤差基準を採用する。具体的には式(2−1)で表される目的関数を、非負値を保ったまま最小化するように係数行列Wと基底行列Hとを算出する。この行列WHを振幅スペクトルの特徴量とする。この点でパワースペクトルの同次元で非負の特徴量を求めることができる。 The square error criterion is adopted as the criterion for the degree of separation between the vibration spectrogram V and the matrix WH. Specifically, the coefficient matrix W and the basis matrix H are calculated so as to minimize the objective function represented by the equation (2-1) while keeping a nonnegative value. This matrix WH is used as the feature amount of the amplitude spectrum. At this point, a non-negative feature amount in the same dimension of the power spectrum can be obtained.

Figure 2020123229
Figure 2020123229

ここで式2−1中の「||・||F」はフロベニウスノルムを示している。また、係数行列Wと基底行列Hの各要素は、式(3−1),(3−2)に示す更新式の反復計算により算出される。 Here, "|||| F "in Formula 2-1 has shown the Frobenius norm. Further, each element of the coefficient matrix W and the basis matrix H is calculated by iterative calculation of the update formulas shown in formulas (3-1) and (3-2).

Figure 2020123229
Figure 2020123229

(3)総合再構築誤差算出部8は、正常時の振幅スペクトログラムVnに対する係数行列Wと基底行列Hとから、式(4)に示すように、再構築誤差Enを算出する。これを正常データの誤差分布(連続型の確率分布)とする。なお、式(4)では二乗誤差基準を用いていることから、再構築誤差Enは正規分布に従うことを仮定する。 (3) The total reconstruction error calculation unit 8 calculates the reconstruction error E n from the coefficient matrix W and the basis matrix H for the amplitude spectrogram Vn in the normal state, as shown in Expression (4). This is defined as the error distribution of normal data (continuous probability distribution). Incidentally, since it is using the squared error criterion in equation (4), the reconstruction error E n is assumed to follow a normal distribution.

Figure 2020123229
Figure 2020123229

また、総合再構築誤差算出部8は、正常データの誤差分布を基に適切な値の第1閾値を設定し、設定された第1閾値に基づき診断データの異常を判定する。例えば正常データの誤差分布Enが平均μ分布δ2に従うと仮定し、式(5)に示すように、各学習サンプルの再構築誤差Enの平均μと標準偏差δとから第1閾値「Threshold(以下、S1とする。)」を設定できる。 The total reconstruction error calculation unit 8 also sets an appropriate first threshold value based on the error distribution of normal data, and determines abnormality of diagnostic data based on the set first threshold value. For example, assuming that the error distribution E n of normal data follows the mean μ distribution δ 2 , and as shown in Expression (5), the first threshold “1” is calculated from the mean μ and the standard deviation δ of the reconstruction errors E n of each learning sample. Threshold (hereinafter referred to as S1)" can be set.

Figure 2020123229
Figure 2020123229

≪診断ステージ≫
(1)診断データ記録部9は、データ記録部4の記録データのうち診断対象の診断波形データから算出されたパワースペクトルが記録されている。ここでは診断データ記録部9の記録データ(レコード)を診断データと呼ぶものとする。なお、診断データ記録部9には、例えば回転機2の稼働日毎に診断データを記録することができる。
≪Diagnostic stage≫
(1) The diagnostic data recording unit 9 records the power spectrum calculated from the diagnostic waveform data of the diagnosis target in the recording data of the data recording unit 4. Here, the recording data (record) of the diagnostic data recording unit 9 is referred to as diagnostic data. The diagnostic data recording unit 9 can record diagnostic data for each working day of the rotating machine 2, for example.

(2)総合再構築誤差算出部8と異常判定部10は、診断データ記録部9の診断データに基づき回転機2の異常予兆の有無を判定する。すなわち、総合再構築誤差算出部8は、前記記憶装置に記憶された正常モデルに対して診断データを入力し、再構築誤差Etを求める。 (2) The total reconstruction error calculation unit 8 and the abnormality determination unit 10 determine the presence/absence of a sign of abnormality of the rotating machine 2 based on the diagnostic data of the diagnostic data recording unit 9. That is, the total reconstruction error calculation unit 8 inputs the diagnostic data for the normal model stored in the storage device to obtain the reconstruction error E t .

その際、式(6)に示すように、診断データに基づく評価対象の振幅スペクトログラムVtに対して、正常時の基底行列Hnに固定した状態のまま評価対象の係数行列WtをNMFにより算出し、再構築誤差Etを算出する。これを診断データの誤差分布とする。 At that time, as shown in Expression (6), with respect to the amplitude spectrogram Vt of the evaluation target based on the diagnostic data, the coefficient matrix W t of the evaluation target is calculated by NMF while being fixed to the basis matrix H n in the normal state. Then, the reconstruction error E t is calculated. This is the error distribution of diagnostic data.

Figure 2020123229
Figure 2020123229

(3)異常判定部10は、式(6)の再構築誤差Etと正常時の再構築誤差Enとを比較する。比較の結果、再構築誤差Etが第1閾値S1を越えていれば、正常時の誤差分布Enを逸脱したものと判断され、診断データに対する異常判定、即ち回転機2に異常予兆「有り」が判定される。この異常判定により回転機2の異常予兆が検出され、アラートが通知される。 (3) The abnormality determination unit 10 compares the reconstruction error E t of the equation (6) with the reconstruction error E n under normal conditions. As a result of the comparison, if the reconstruction error E t exceeds the first threshold value S1, it is determined that the error distribution E n in the normal state is deviated, and an abnormality judgment is made on the diagnostic data, that is, the abnormality sign “There is an abnormality sign in the rotating machine 2. Is determined. By this abnormality determination, an abnormality sign of the rotating machine 2 is detected, and an alert is notified.

一方、再構築誤差Etが第1閾値S1を越えていなければ、正常時の誤差分布En内のものと判断され、診断データに対する正常判定、即ち異常予兆「無し」が判定される。 On the other hand, if the reconstruction error E t does not exceed the first threshold value S1, it is determined that the error distribution E n is in the normal state, and it is determined that the diagnostic data is normal, that is, "absent".

(4)変数誤差出力部11は、式(6)における正常時の基底行列Hnとの組み合わせで表現できない箇所、即ちどの周波数成分が異常かを示すため、式(7)に示すように、入力された評価対象(Vt)と再構築した行列(Wtn)との差分を算出し、可視化する。この差分を再構築差分Dtと呼ぶ。 (4) Since the variable error output unit 11 indicates a portion that cannot be expressed by the combination with the basis matrix Hn in the normal state in Expression (6), that is, which frequency component is abnormal, input as shown in Expression (7) The difference between the evaluated object (V t ) and the reconstructed matrix (W t H n ) is calculated and visualized. This difference is called the reconstruction difference D t .

Figure 2020123229
Figure 2020123229

この再構築差分Dtが、正常データの誤差に事前設定された第2閾値S2を越えた場合にその周波数(変数)を異常と評価し、異常と評価された周波数の領域から回転機2の異常要因を推定する。以下、異常要因の推定方法を説明する。 When the reconstruction difference D t exceeds the second threshold value S2 preset for the error of the normal data, the frequency (variable) is evaluated as abnormal, and the frequency of the rotating machine 2 is determined from the frequency range evaluated as abnormal. Estimate the cause of abnormality. Hereinafter, a method of estimating an abnormal factor will be described.

すなわち、回転機2の機械系の故障は、固有の振動として表れることが知られている。図3は、振動周波数と回転機2の異常要因との関係例を示している。ここでは低周波領域の変調は、回転周波数を含むことから、回転体のアンバランスやミスアンバランスなどの可能性が疑われる。一方、高周波領域では、衝撃系の波形が含まれていることが考えられ、軸受傷や回転体の局所異常などが疑われる。 That is, it is known that the failure of the mechanical system of the rotating machine 2 appears as an inherent vibration. FIG. 3 shows an example of the relationship between the vibration frequency and the cause of abnormality of the rotating machine 2. Here, since the modulation in the low frequency region includes the rotation frequency, it is suspected that imbalance or misbalance of the rotating body may occur. On the other hand, in the high frequency region, it is considered that the waveform of the shock system is included, and it is suspected that the scratches on the bearing and the local abnormality of the rotating body are caused.

そうすると回転機2の異常を検出した際、どの周波数が異常を示しているのか判明すれば、回転機2の異常要因を推定することができる。この点につき前記異常予兆検出システム1によれば、再構築差分Dtが正常データの誤差に設定された第2閾値S2を越えた場合に、その周波数異常と評価される。この異常と評価された周波数の領域を図3の関係図などと照合すれば、回転機2の異常要因を推定することが可能となる。 Then, when the abnormality of the rotating machine 2 is detected, it is possible to estimate the cause of abnormality of the rotating machine 2 if it is known which frequency indicates the abnormality. Regarding this point, according to the abnormality sign detection system 1, when the reconstruction difference D t exceeds the second threshold value S2 set to the error of the normal data, it is evaluated as the frequency abnormality. By comparing the frequency range evaluated to be abnormal with the relationship diagram of FIG. 3 or the like, it is possible to estimate the cause of abnormality of the rotating machine 2.

また、推定された異常要因は、異常判定の結果と併せてモニタなどに出力されてユーザに提示される。これによりユーザは回転機2の異常要因を特定把握でき、故障前に回転機2を修理することができる。その結果、事前の故障対策が可能となり、インフラシステムなどのダウンタイムの低減などに貢献することができる。 Further, the estimated abnormality factor is output to a monitor or the like together with the abnormality determination result and presented to the user. As a result, the user can identify and grasp the cause of abnormality of the rotating machine 2, and can repair the rotating machine 2 before the failure. As a result, it is possible to take countermeasures against failures in advance, and it is possible to contribute to reduction of downtime of infrastructure systems and the like.

≪実施例≫
本実施例では、非特許文献2のデータセットを使用して異常予兆の検出試験を行った。このデータセットは、「NASA(National Aeronautics and Space Administration)」の提供するベアリング劣化試験に関する。
<<Example>>
In this example, a detection test of a sign of abnormality was performed using the data set of Non-Patent Document 2. This data set relates to a bearing deterioration test provided by "National Aeronautics and Space Administration (NASA)".

この試験対象の装置は、シャフトがACモータに連結され、回転数が「2000(rpm)」であり、シャフトには4つのベアリング取り付けられ、該ベアリングを劣化させるため、6000ポンドの偏負荷が加えられている。また、前記ベアリングのそれぞれに加速度センサがチャンネル1〜4として設置されている。ここでは振動のサンプリング周波数は、「20kHz」であって10分毎に1秒間の計測を行っている。 This device under test had a shaft connected to an AC motor, a rotation speed of "2000 (rpm)", and four bearings attached to the shaft. Has been. Further, acceleration sensors are installed as channels 1 to 4 on each of the bearings. Here, the sampling frequency of vibration is "20 kHz", and measurement is performed for 1 second every 10 minutes.

本実施例では、非特許文献2のデータセットNo.2のセンサーチャンネル1のデータについて評価を行った。その際、周波数算出部5により高速フーリエ変換(FFT)を実行し、学習データとして計測開始から100サンプルのデータを使用した。 In this embodiment, the data set No. of Non-Patent Document 2 is set. Two sensor channel 1 data were evaluated. At that time, the frequency calculation unit 5 performed a fast Fourier transform (FFT), and 100 samples of data from the start of measurement were used as learning data.

図4(a)は前記学習データをNMFにより分解した係数行列Wnを示し、図4(b)は同分解した基底行列Hnを示している。ここでは基底行列Hnで1000Hzおよび4000Hz付近での周期的ピークの特徴抽出が確認できる。 FIG. 4A shows a coefficient matrix W n obtained by decomposing the learning data by NMF, and FIG. 4B shows a basis matrix H n obtained by decomposing the learning data. Here, feature extraction of periodic peaks near 1000 Hz and 4000 Hz can be confirmed with the basis matrix H n .

図5(a)は前記データセットの再構築誤差を示し、横軸は学習データ中のサンプル番号(Sample)を示し、縦軸は再構築誤差(Reconstruction error)を示し、図5(b)は図5(a)の「再構築誤差=0.0000〜0.0007の範囲」を拡大した部分拡大図を示している。 5A shows the reconstruction error of the data set, the horizontal axis shows the sample number (Sample) in the training data, the vertical axis shows the reconstruction error (Reconstruction error), and FIG. FIG. 6 shows a partially enlarged view in which “reconstruction error=0.0000 to 0.0007” in FIG. 5A is enlarged.

図5(a)(b)の縦軸「サンプル番号1〜100」は再構築誤差Enを示し、縦軸「サンプル番号101以降」は再構築誤差Etを示している。ここで図5(a)(b)によれば、故障発生時(サンプル番号1000)付近で再構築誤差Etが急激に大きくなっている。 In FIGS. 5A and 5B, the vertical axis “sample numbers 1 to 100” represents the reconstruction error E n , and the vertical axis “sample numbers 101 and later” represents the reconstruction error E t . Here, according to FIGS. 5A and 5B, the reconstruction error E t rapidly increases near the time of failure (sample number 1000).

もっとも、図5(b)のP部に示すように、サンプル番号512ではじめて第1閾値「Threshold」を越えている。また、サンプル番号531から再構築誤差Etが上昇を開始し、その後は常に第1閾値「Threshold」を越えていることが確認でき、この点で故障前に予兆が検出されている。 However, as shown in part P of FIG. 5B, the first threshold “Threshold” is exceeded for the first time at sample number 512. Further, it can be confirmed that the reconstruction error E t starts to increase from the sample number 531 and always exceeds the first threshold “Threshold” after that, and at this point, the sign is detected before the failure.

また、再構築差分Dtを評価すれば、学習データの範囲(サンプル番号1〜100)と、再構築誤差Etがはじめてピークを取るサンプル番号705と、故障時(サンプル番号1000)との3つで比較する。 In addition, if the reconstruction difference D t is evaluated, the range of the learning data (sample numbers 1 to 100), the sample number 705 at which the reconstruction error E t peaks for the first time, and the time of failure (sample number 1000) are 3 Compare with one.

図6(a)〜(c)は、前記比較されるそれぞれの再構築差分を色で表し、横軸は時間[second]を示し、縦軸は周波数[Hz]を示している。このとき図6(b)に示すサンプル番号705は、4kHz付近で色の変化が大きく、マイナスの差分が増加しているのに加え、高調波成分プラスの差分も確認でき、軸の自励系異常や軸受異常などを疑うことができる。 6A to 6C, the respective reconstruction differences to be compared are represented by colors, the horizontal axis represents time [second], and the vertical axis represents frequency [Hz]. At this time, in the sample number 705 shown in FIG. 6B, the color change is large near 4 kHz, and the minus difference increases, and in addition, the harmonic component plus difference can be confirmed. It is possible to suspect abnormalities and bearing abnormalities.

なお、本発明は、上記実施形態に限定されるものではなく、システム構成などは各請求項に記載された範囲内で変形して実施することができる。例えば診断の対象設備は、回転設備(回転機)2には限定されず、振動波形データが収集できれば異常予兆の検出が可能である。 The present invention is not limited to the above embodiment, and the system configuration and the like can be modified and implemented within the scope described in each claim. For example, the equipment to be diagnosed is not limited to the rotating equipment (rotating machine) 2, and if the vibration waveform data can be collected, the abnormality sign can be detected.

また、前記異常予兆検出システム1としてコンピュータを機能させるプログラムとして構成することもできる。このプログラムによれば、コンピュータが前記各部4〜11として機能し、対象設備の異常予兆が検出される。 Further, the abnormality sign detection system 1 may be configured as a program that causes a computer to function. According to this program, the computer functions as each of the units 4 to 11 and detects the abnormality sign of the target equipment.

1…異常予兆検出システム
2…回転設備(対象設備)
3…振動センサ
4…データ記録部
5…周波数算出部
6…正常データ記録部
7…正常モデル作成部
8…総合再構築誤差算出部
9…診断データ記録部
10…異常判定部
11…変数誤差算出部(異常要因推定部)
1…Abnormal sign detection system 2…Rotary equipment (target equipment)
3... Vibration sensor 4... Data recording unit 5... Frequency calculation unit 6... Normal data recording unit 7... Normal model creation unit 8... Total reconstruction error calculation unit 9... Diagnostic data recording unit 10... Abnormality determination unit 11... Variable error calculation Department (abnormality factor estimation department)

Claims (6)

対象設備の振動波形データに基づき異常予兆を検出する異常予兆検出システムであって、
事前に前記対象設備の正常時に収集された前記振動波形データに基づき非負値行列因数分解(NMF)で正常モデルを生成する正常モデル作成部と、
前記対象設備の振動波形データを診断データとし、該診断データを前記正常モデルに入力したときの入出力の誤差分布を求める再構築誤差算出部と、
前記診断データの誤差分布が前記正常データの誤差分布を逸脱していれば、前記異常予兆の発生を判定する異常判定部と、
前記診断データの周波数毎の誤差を算出し、算出された誤差の評価に応じて前記対象設備の異常要因を推定する異常要因推定部と、
を備えることを特徴とする異常予兆検出システム。
An abnormality sign detection system for detecting an abnormality sign based on vibration waveform data of target equipment,
A normal model creation unit that creates a normal model by non-negative matrix factorization (NMF) based on the vibration waveform data collected in advance when the target facility is normal;
A vibration error data of the target facility is used as diagnostic data, and a reconstruction error calculation unit that obtains an input/output error distribution when the diagnostic data is input to the normal model,
If the error distribution of the diagnostic data deviates from the error distribution of the normal data, an abnormality determination unit that determines the occurrence of the abnormality sign,
An error factor estimation unit that calculates an error for each frequency of the diagnostic data and estimates an error factor of the target equipment according to the evaluation of the calculated error,
An abnormality sign detection system comprising:
前記振動波形データからパワースペクトルを算出する周波数算出部をさらに備え、
前記正常モデル作成部は、前記正常モデルとして正常時における前記パワースペクトルの振幅スペクトログラムに対して、
前記非負値行列因子分解を用いて非負の係数行列と非負の基底行列とを特徴量として算出し、
前記算出された非負の特徴量に基づき前記正常データの誤差分布を求めることを特徴とする請求項1記載の異常予兆検出システム。
Further comprising a frequency calculation unit for calculating a power spectrum from the vibration waveform data,
The normal model creation unit, with respect to the amplitude spectrogram of the power spectrum in a normal time as the normal model,
Calculate non-negative coefficient matrix and non-negative basis matrix as the feature amount using the non-negative matrix factorization,
The abnormality sign detection system according to claim 1, wherein an error distribution of the normal data is obtained based on the calculated non-negative feature amount.
前記異常判定部は、
前記周波数算出部で算出された前記診断データにおけるパワースペクトルの振幅スペクトルグラムに対して、
前記正常モデルの基底行列で固定した状態のまま診断データの係数行列を非負値行列因数分解により算出し、算出された係数行列を重みとして前記診断データの誤差分布を求める
ことを特徴とする請求項2記載の異常予兆検出システム。
The abnormality determination unit,
For the amplitude spectrum gram of the power spectrum in the diagnostic data calculated by the frequency calculation unit,
The coefficient matrix of the diagnostic data is calculated by non-negative matrix factorization while being fixed in the basis matrix of the normal model, and the error distribution of the diagnostic data is obtained by using the calculated coefficient matrix as a weight. 2. The abnormality sign detection system described in 2.
前記異常判定部は、前記診断データの誤差分布が事前設定の閾値を越えているときに前記正常データの誤差分布を逸脱していると判定する
ことを特徴とする請求項1〜3のいずれかに記載の異常予兆検出システム。
The abnormality determination unit determines that the error distribution of the diagnostic data deviates from the error distribution of the normal data when the error distribution of the diagnostic data exceeds a preset threshold value. Anomaly sign detection system described in.
前記異常要因推定部は、
前記診断データの前記振幅スペクトルグラムと、前記異常判定部における基底行列および係数行列の乗算値との差分を算出し、
前記算出された差分が事前設定の閾値を越えていれば、前記異常要因として推定することを特徴とする請求項3または4記載の異常予兆検出システム。
The abnormality factor estimation unit,
The difference between the amplitude spectrumgram of the diagnostic data and the multiplication value of the basis matrix and the coefficient matrix in the abnormality determination unit,
The abnormality sign detection system according to claim 3 or 4, wherein if the calculated difference exceeds a preset threshold, it is estimated as the abnormality factor.
コンピュータが対象設備の振動波形データに基づき異常予兆を検出する方法であって、
事前に前記対象設備の正常時に収集された前記振動波形データに基づき非負値行列因数分解(NMF)で正常モデルを生成する正常モデル作成ステップと、
前記対象設備の振動波形データを診断データとし、該診断データを前記正常モデルに入力したときの入出力の誤差分布を求める再構築誤差算出ステップと、
前記診断データの誤差分布が前記正常データの誤差分布を逸脱していれば、前記異常予兆の発生を判定する異常判定ステップと、
前記判定された異常予兆の振動周波数を特定し、該特定された振動周波数に応じて前記対象設備の異常要因を推定する異常要因推定ステップと、
を有することを特徴とする異常予兆検出方法。
A method in which a computer detects an abnormality sign based on vibration waveform data of target equipment,
A normal model creating step of creating a normal model by non-negative matrix factorization (NMF) based on the vibration waveform data collected in advance when the target facility is normal;
Reconstruction error calculation step for obtaining an input/output error distribution when the diagnostic equipment is the vibration waveform data of the target equipment and the diagnostic data is input to the normal model,
If the error distribution of the diagnostic data deviates from the error distribution of the normal data, an abnormality determination step of determining the occurrence of the abnormality sign,
An abnormality factor estimating step of identifying the vibration frequency of the determined abnormality sign and estimating an abnormality factor of the target equipment according to the identified vibration frequency,
An abnormality sign detection method comprising:
JP2019015789A 2019-01-31 2019-01-31 Anomaly sign detection system, anomaly sign detection method Active JP7188143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015789A JP7188143B2 (en) 2019-01-31 2019-01-31 Anomaly sign detection system, anomaly sign detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015789A JP7188143B2 (en) 2019-01-31 2019-01-31 Anomaly sign detection system, anomaly sign detection method

Publications (2)

Publication Number Publication Date
JP2020123229A true JP2020123229A (en) 2020-08-13
JP7188143B2 JP7188143B2 (en) 2022-12-13

Family

ID=71992746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015789A Active JP7188143B2 (en) 2019-01-31 2019-01-31 Anomaly sign detection system, anomaly sign detection method

Country Status (1)

Country Link
JP (1) JP7188143B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126021A (en) * 2019-02-06 2020-08-20 株式会社日立製作所 Abnormal sound detector and abnormal sound detection method
CN112665706A (en) * 2020-11-30 2021-04-16 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Marine platform vibration monitoring and analyzing method and system
JP7166395B1 (en) 2021-06-23 2022-11-07 セイコーソリューションズ株式会社 MONITORING SYSTEM, MONITORING METHOD, AND MONITORING PROGRAM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246458A (en) * 1975-10-13 1977-04-13 Hitachi Ltd Abnormal detector of machinery and apparatuses
JPH0560596A (en) * 1991-09-04 1993-03-09 Hitachi Ltd Abnormality diagnostic unit for rotary equipment
JP2017151872A (en) * 2016-02-26 2017-08-31 沖電気工業株式会社 Classification device, classification method, program and parameter creation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2819300B1 (en) 2012-02-24 2019-04-10 Kabushiki Kaisha Yaskawa Denki Motor control apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246458A (en) * 1975-10-13 1977-04-13 Hitachi Ltd Abnormal detector of machinery and apparatuses
JPH0560596A (en) * 1991-09-04 1993-03-09 Hitachi Ltd Abnormality diagnostic unit for rotary equipment
JP2017151872A (en) * 2016-02-26 2017-08-31 沖電気工業株式会社 Classification device, classification method, program and parameter creation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126021A (en) * 2019-02-06 2020-08-20 株式会社日立製作所 Abnormal sound detector and abnormal sound detection method
JP7149197B2 (en) 2019-02-06 2022-10-06 株式会社日立製作所 ABNORMAL SOUND DETECTION DEVICE AND ABNORMAL SOUND DETECTION METHOD
CN112665706A (en) * 2020-11-30 2021-04-16 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Marine platform vibration monitoring and analyzing method and system
CN112665706B (en) * 2020-11-30 2023-04-11 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Vibration monitoring and analyzing method and system for maritime work platform
JP7166395B1 (en) 2021-06-23 2022-11-07 セイコーソリューションズ株式会社 MONITORING SYSTEM, MONITORING METHOD, AND MONITORING PROGRAM
JP2023003226A (en) * 2021-06-23 2023-01-11 セイコーソリューションズ株式会社 Monitoring system, monitoring method, and monitoring program

Also Published As

Publication number Publication date
JP7188143B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
US10520397B2 (en) Methods and apparatuses for defect diagnosis in a mechanical system
Wang et al. Temporal-spatio graph based spectrum analysis for bearing fault detection and diagnosis
US20150160101A1 (en) Method and System for Testing Operational Integrity of a Drilling Rig
JP7149197B2 (en) ABNORMAL SOUND DETECTION DEVICE AND ABNORMAL SOUND DETECTION METHOD
JP7188143B2 (en) Anomaly sign detection system, anomaly sign detection method
US11782430B2 (en) Abnormality diagnosis method, abnormality diagnosis device and non-transitory computer readable storage medium
JP7196954B2 (en) Anomaly sign detection method
JP5827426B1 (en) Predictive diagnosis system and predictive diagnosis method
JP6714498B2 (en) Equipment diagnosis device and equipment diagnosis method
JP2019067197A (en) Method for detecting trouble sign
EP3712728A1 (en) Apparatus for predicting equipment damage
Schmidt et al. Localised gear anomaly detection without historical data for reference density estimation
JP5771317B1 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
US20220236144A2 (en) Apparatus for equipment monitoring
KR20210006832A (en) Method and apparatus for machine fault diagnosis
Thanagasundram et al. A fault detection tool using analysis from an autoregressive model pole trajectory
TWI780434B (en) Abnormal diagnosis device and method
CN116226719A (en) Bearing fault diagnosis method based on multidimensional steady-state vibration characteristics and related components
JP2018028845A (en) Abnormality sign detection system and abnormality sign detection method
WO2022059720A1 (en) Structure diagnosis system, structure diagnosis method, and structure diagnosis program
JP5771318B1 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
US20220365524A1 (en) Device for fault detection and failure prediction by monitoring vibrations of objects in particular industrial assets
JP7157293B2 (en) Failure detection/prediction device and failure detection/prediction program
WO2024043051A1 (en) Monitoring device and monitoring method
BHANDARI MECHANICAL FAULT ANALYSIS AND DETECTION USING NON STATIONARY DECOMPOSITION FOR VIBRATION SIGNALS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R150 Certificate of patent or registration of utility model

Ref document number: 7188143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150