WO2022059424A1 - Heating device and metal material - Google Patents

Heating device and metal material Download PDF

Info

Publication number
WO2022059424A1
WO2022059424A1 PCT/JP2021/030640 JP2021030640W WO2022059424A1 WO 2022059424 A1 WO2022059424 A1 WO 2022059424A1 JP 2021030640 W JP2021030640 W JP 2021030640W WO 2022059424 A1 WO2022059424 A1 WO 2022059424A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
zinc
metal pipe
temperature
pipe material
Prior art date
Application number
PCT/JP2021/030640
Other languages
French (fr)
Japanese (ja)
Inventor
公宏 野際
章博 井手
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2022059424A1 publication Critical patent/WO2022059424A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/047Mould construction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes

Definitions

  • the present invention relates to a heating device and a metal material.
  • Patent Document 1 includes a molding die having a lower die and an upper die paired with each other, and a fluid supply unit for supplying a fluid into a metal pipe material held between the molding dies.
  • the molding apparatus is disclosed. In such a molding apparatus, a heating apparatus for heating the metal material to be molded is used.
  • a heating device such as the above-mentioned conventional technique heats a metal material to be molded by energization heating.
  • the heating device heats the metal material so as to have a high temperature, oxidation scale may be generated on the surface of the metal material due to the oxidation of the metal material. Therefore, by forming a plating layer on the surface of the metal material, the generation of oxide scale may be suppressed.
  • zinc contained in the plating layer may evaporate and ignite, resulting in the generation of zinc oxide. Therefore, it has been required to suppress the generation of oxidizing compounds such as oxide scale and zinc oxide.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a heating device capable of suppressing the generation of an oxidizing compound on the surface of a metal material, and a metal material. be.
  • the heating device is a heating device for heating a metal material to be molded, and includes a heating unit for heating the metal material by energization heating, and a plating layer containing zinc in the metal material. Is formed, and the heating part is subjected to an alloying treatment for advancing the alloying of zinc in the plating layer, and after the alloying treatment, after the zinc is alloyed, the temperature becomes higher than the boiling point of zinc. Heat the metal material to.
  • the heating unit performs an alloying treatment for advancing the alloying of zinc in the plating layer.
  • the boiling point of the alloy layer that has been sufficiently alloyed by the alloying treatment is higher than the boiling point of zinc. Therefore, after the alloying treatment, the heating unit heats the metal material so that the temperature becomes higher than the boiling point of zinc. Therefore, even if the temperature of the metal material becomes higher than the boiling point of zinc, the alloying of zinc is sufficiently advanced and the boiling point is high, so that the ignition of zinc can be suppressed. From the above, it is possible to suppress the generation of the oxidized compound on the surface of the metal material by suppressing the generation of zinc oxide while suppressing the generation of the oxide scale by the plating layer.
  • the heating unit may be heated so that the temperature of the metal material draws a temperature profile in multiple stages.
  • the heating unit can heat the metal material so as to have an appropriate temperature profile depending on the progress of zinc alloying.
  • the heating unit may be heated so as to draw a temperature profile of the primary heating step, the holding step of holding the temperature, and the secondary heating step.
  • the heating unit rapidly raises the temperature to the target temperature for the alloying treatment in the primary heating step, and keeps the temperature at the target temperature in the holding step to proceed with the alloying of zinc. Then, the heating unit can raise the temperature of the metal material to the final target temperature in the secondary heating step after the alloying treatment.
  • the heating unit may set the target temperature in the primary heating stage to 700 ° C or higher and 800 ° C or lower. In this case, it is possible to suppress the ignition of zinc while advancing the alloying of zinc while avoiding requiring an excessive heating time.
  • the metal material according to one aspect of the present invention contains alloyed zinc and has a plating layer having a boiling point higher than that of zinc.
  • the metal material according to one aspect of the present invention contains alloyed zinc and has a plating layer having a boiling point higher than that of zinc. Therefore, even if the temperature of the metal material becomes higher than the boiling point of zinc during heating, the zinc is sufficiently alloyed in the plating layer and the boiling point is high, so that zinc is ignited. It can be suppressed. From the above, it is possible to suppress the generation of the oxidized compound on the surface of the metal material by suppressing the generation of zinc oxide while suppressing the generation of the oxide scale by the plating layer.
  • a heating device capable of suppressing the generation of an oxidized compound on the surface of a metal material, and a metal material.
  • FIG. 1 It is a schematic diagram of the molding apparatus which adopted the heating apparatus which concerns on embodiment of this invention. It is sectional drawing which shows the state when a nozzle seals a metal pipe material. It is an enlarged sectional view of the plating layer. It is a graph which shows the temperature profile of a metal pipe material. It is a table which shows the value of various parameters set in the heating of a heating part, and the generation state of zinc oxide when these values are set. It is a table which shows the value of various parameters at the time of raising a temperature with a one-step temperature profile in the heating of a heating part, and the generation state of zinc oxide at the time of setting these values. It is a figure which shows the structure of the heating part of the heating device which concerns on a modification.
  • FIG. 1 is a schematic view of a molding apparatus 1 that employs the heating apparatus 100 according to the present embodiment.
  • the molding apparatus 1 is an apparatus for forming a metal pipe having a hollow shape by blow molding.
  • the molding apparatus 1 is installed on a horizontal plane.
  • the molding apparatus 1 includes a molding die 2, a drive mechanism 3, a holding unit 4, a heating unit 5, a fluid supply unit 6, a cooling unit 7, and a control unit 8.
  • the metal pipe refers to a hollow article after the molding in the molding apparatus 1 is completed
  • the metal pipe material 40 refers to a hollow article before the molding in the molding apparatus 1 is completed.
  • the metal pipe material 40 is a pipe material of a steel grade that can be hardened. Further, among the horizontal directions, the direction in which the metal pipe material 40 extends at the time of molding may be referred to as "longitudinal direction", and the direction orthogonal to the longitudinal direction may be referred to as "width direction”.
  • the molding die 2 is a mold for molding a metal pipe material 40 into a metal pipe, and includes a lower mold 11 and an upper mold 12 facing each other in the vertical direction (first direction).
  • the lower mold 11 and the upper mold 12 are made of steel blocks.
  • the lower mold 11 is fixed to the base 13 via a die holder or the like.
  • the upper mold 12 is fixed to the slide of the drive mechanism 3 via a die holder or the like.
  • the drive mechanism 3 is a mechanism for moving at least one of the lower mold 11 and the upper mold 12.
  • the drive mechanism 3 has a configuration in which only the upper mold 12 is moved.
  • the drive mechanism 3 includes a slide 21 that moves the upper mold 12 so that the lower mold 11 and the upper mold 12 meet each other, and a pull-back cylinder as an actuator that generates a force for pulling the slide 21 upward.
  • a 22 is provided, a main cylinder 23 as a drive source for downwardly pressurizing the slide 21, and a drive source 24 for applying a driving force to the main cylinder 23.
  • the holding portion 4 is a mechanism for holding the metal pipe material 40 arranged between the lower mold 11 and the upper mold 12.
  • the holding portion 4 includes a lower electrode 26 and an upper electrode 27 that hold the metal pipe material 40 on one end side in the longitudinal direction of the molding die 2, and a metal pipe material on the other end side in the longitudinal direction of the molding die 2.
  • a lower electrode 26 and an upper electrode 27 holding the 40 are provided.
  • the lower electrodes 26 and the upper electrodes 27 on both sides in the longitudinal direction hold the metal pipe material 40 by sandwiching the vicinity of the end portion of the metal pipe material 40 from the vertical direction.
  • Grooves having a shape corresponding to the outer peripheral surface of the metal pipe material 40 are formed on the upper surface of the lower electrode 26 and the lower surface of the upper electrode 27.
  • the lower electrode 26 and the upper electrode 27 are provided with a drive mechanism (not shown), and can move independently in the vertical direction.
  • the heating unit 5 heats the metal pipe material 40.
  • the heating unit 5 is a mechanism for heating the metal pipe material 40 by energizing the metal pipe material 40.
  • the heating unit 5 is the metal pipe material in a state where the metal pipe material 40 is separated from the lower mold 11 and the upper mold 12 between the lower mold 11 and the upper mold 12. 40 is heated.
  • the heating unit 5 includes the lower electrodes 26 and the upper electrodes 27 on both sides in the longitudinal direction described above, and a power supply 28 for passing an electric current through the electrodes 26 and 27 to the metal pipe material.
  • the heating unit 5 may be arranged in the pre-process of the molding apparatus 1 and heated externally.
  • the fluid supply unit 6 is a mechanism for supplying a high-pressure fluid into the metal pipe material 40 held between the lower mold 11 and the upper mold 12.
  • the fluid supply unit 6 supplies a high-pressure fluid to the metal pipe material 40 which has become hot due to being heated by the heating unit 5, and expands the metal pipe material 40.
  • the fluid supply unit 6 is provided on both ends of the molding die 2 in the longitudinal direction.
  • the fluid supply unit 6 is a nozzle 31 that supplies fluid from the opening at the end of the metal pipe material 40 to the inside of the metal pipe material 40, and a drive that moves the nozzle 31 forward and backward with respect to the opening of the metal pipe material 40.
  • a mechanism 32 and a supply source 33 for supplying a high-pressure fluid into the metal pipe material 40 via the nozzle 31 are provided.
  • the nozzle 31 is brought into close contact with the end of the metal pipe material 40 in a state where the sealing property is ensured during fluid supply and exhaust (see FIG. 2), and at other times, the nozzle 31 is brought into close contact with the end of the metal pipe material 40.
  • the fluid supply unit 6 may supply a gas such as high-pressure air or an inert gas as the fluid. Further, the fluid supply unit 6 may be the same device including the heating unit 5 together with the holding unit 4 having a mechanism for moving the metal pipe material 40 in the vertical direction.
  • FIG. 2 is a cross-sectional view showing a state when the nozzle 31 seals the metal pipe material 40.
  • the nozzle 31 is a cylindrical member into which the end portion of the metal pipe material 40 can be inserted.
  • the nozzle 31 is supported by the drive mechanism 32 so that the center line of the nozzle 31 coincides with the reference line SL1.
  • the inner diameter of the supply port 31a at the end of the nozzle 31 on the metal pipe material 40 side substantially coincides with the outer diameter of the metal pipe material 40 after expansion molding.
  • the nozzle 31 supplies a high-pressure fluid to the metal pipe material 40 from the internal flow path 36.
  • An example of a high-pressure fluid is gas or the like.
  • the cooling unit 7 is a mechanism for cooling the molding die 2. By cooling the molding die 2, the cooling unit 7 can rapidly cool the metal pipe material 40 when the expanded metal pipe material 40 comes into contact with the molding surface of the molding die 2.
  • the cooling unit 7 includes a flow path 36 formed inside the lower mold 11 and the upper mold 12, and a water circulation mechanism 37 that supplies and circulates cooling water to the flow path 36.
  • the control unit 8 is a device that controls the entire molding device 1.
  • the control unit 8 controls the drive mechanism 3, the holding unit 4, the heating unit 5, the fluid supply unit 6, and the cooling unit 7.
  • the control unit 8 repeatedly performs an operation of molding the metal pipe material 40 with the molding die 2.
  • control unit 8 controls, for example, the transfer timing from a transfer device such as a robot arm, and puts the metal pipe material 40 between the lower mold 11 and the upper mold 12 in the open state. Deploy. Alternatively, the control unit 8 may wait for the operator to manually arrange the metal pipe material 40 between the lower mold 11 and the upper mold 12. Further, the control unit 8 supports the metal pipe material 40 with the lower electrodes 26 on both sides in the longitudinal direction, and then lowers the upper electrode 27 to sandwich the metal pipe material 40, such as an actuator of the holding unit 4. Control. Further, the control unit 8 controls the heating unit 5 to energize and heat the metal pipe material 40. As a result, an axial current flows through the metal pipe material 40, and the electric resistance of the metal pipe material 40 itself causes the metal pipe material 40 itself to generate heat due to Joule heat.
  • a transfer device such as a robot arm
  • the control unit 8 controls the drive mechanism 3 to lower the upper mold 12 and bring it closer to the lower mold 11 to close the mold 2.
  • the control unit 8 controls the fluid supply unit 6 to seal the openings at both ends of the metal pipe material 40 with the nozzle 31 and supply the fluid.
  • the metal pipe material 40 softened by heating expands and comes into contact with the molding surface of the molding die 2.
  • the metal pipe material 40 is molded so as to follow the shape of the molding surface of the molding die 2.
  • the metal pipe material 40 is quenched by quenching with the molding die 2 cooled by the cooling unit 7.
  • the heating device 100 includes a heating unit 5 and a control unit 8 (heating control unit).
  • the heating device 100 is a device that heats the metal pipe material (metal material) to be molded. Further, as described above, the heating unit 5 heats the metal pipe material 40 by energization heating.
  • the control unit 8 controls the heating unit 5.
  • the metal pipe material 40 has a plating layer 43 formed on the surface (outer peripheral surface and inner peripheral surface).
  • the plating layer 43 contains at least zinc as a component.
  • the plating layer 43 can suppress the generation of oxidation scale due to the oxidation of iron, which is the base material of the metal pipe material 40, during heating.
  • region E2 a region in which the boiling point is sufficiently high due to sufficient alloying
  • region E1 a region in a state before sufficient alloying
  • the area E2 is grayscaled.
  • region E1 contains pure zinc before alloying.
  • the region E1 may contain an alloy layer of zinc and iron in a state where the iron content is low.
  • Examples of the alloy contained in the region E1 include a ⁇ layer alloy having an iron content of about 6%, a ⁇ 1 layer alloy having an iron content of about 7 to 11%, and a ⁇ layer alloy having an iron content of 11% or more.
  • the iron content of region E1 is less than 30%.
  • the region E2 is a region in which a FeZn solid solution phase having a high iron concentration is generated by heating.
  • the iron content of the alloy in region E2 is 30% or more.
  • expanding the region of region E2 by advancing the alloying of zinc in region E1 is referred to as "alloying treatment".
  • the content of the mating metal for alloying with zinc is 30% or more.
  • the zinc contained in the region E1 of the plating layer 43 is alloyed by the alloying reaction with the iron which is the base material of the metal pipe material 40. It becomes an alloy of iron and zinc.
  • the alloy layer having a low iron content in the region E1 of the plating layer 43 has a high iron content due to further promotion of zinc alloying.
  • the region E1 and the region E2 are mixed in the plating layer 43.
  • the heated metal pipe material 40 contains the alloyed zinc and has a plating layer 43 having a boiling point higher than the boiling point of zinc.
  • the plating layer 43 in this state is a region E2 having a boiling point higher than that of zinc in the entire area.
  • the heating unit 5 heats the metal pipe material 40 so as to have a temperature of Ac 3 points or more in order to cause austenite transformation during heating.
  • the target temperature of the heating unit 5 (the temperature reached by the metal pipe material 40) is about 900 ° C. to 1000 ° C. of Ac 3 points or more.
  • the boiling point of unalloyed zinc is 907 ° C. That is, the final target temperature of the heating unit 5 is higher than the boiling point of zinc.
  • the boiling point of fully alloyed zinc (an alloy of iron and zinc) in the region E2 after the alloying treatment is higher than the boiling point of zinc.
  • the boiling point of the alloyed zinc after the alloying treatment is higher than the final target temperature of the heating unit 5. Therefore, in the state where the region E2 of the entire area of the plating layer 43 is reached (the state shown in FIG. 3C), even if the heating unit 5 heats the metal pipe material 40 to the target temperature, the components of the plating layer 43 are formed. Can be suppressed from evaporating and igniting.
  • the control unit 8 controls the heating unit 5 to perform an alloying process for advancing the alloying of zinc in the plating layer 43, and after the alloying process, the metal pipe is set to a temperature higher than the boiling point of zinc.
  • the material 40 is heated.
  • the control unit 8 starts heating the metal pipe material 40, the plating layer 43 is in the state shown in FIG. 3A, and as the heating time advances, it is sufficient as shown in FIG. 3B.
  • the state shown in FIG. 3C is obtained.
  • the control unit 8 controls the heating unit 5 so that the temperature of the metal pipe material 40 is equal to or lower than the boiling point of zinc before the alloying treatment of the plating layer 43 is completed. Then, it is preferable that the control unit 8 is in a state where the zinc alloying treatment is completed (the state shown in FIG. 3C) before the temperature of the metal pipe material 40 reaches the boiling point of zinc.
  • the control unit 8 controls the heating unit 5 so that the temperature of the metal pipe material 40 draws a temperature profile in a plurality of stages.
  • the temperature profile indicates a graph formed by plotting the relationship between the time from the start of heating and the temperature of the metal pipe material 40.
  • FIG. 4A is a graph showing an example of a temperature profile.
  • the horizontal axis shows the elapsed time from the start of heating of the heating unit 5.
  • the vertical axis shows the temperature of the metal pipe material 40.
  • the control unit 8 controls the heating unit 5 so as to draw a temperature profile of the primary heating step, the temperature holding step, and the secondary heating step.
  • the primary heating step is performed between the start of heating (0 seconds) and the time t1, and the temperature of the metal pipe material 40 rises at a predetermined heating rate.
  • the control unit 8 controls the heating unit 5 so that the metal pipe material 40 reaches a predetermined target temperature T1 when the primary heating step is completed.
  • the holding step is performed between time t1 and time t2, and keeps the temperature of the metal pipe material 40 constant for a predetermined holding time.
  • the secondary heating step is performed between the time t2 and the time t3, and is a step in which the temperature of the metal pipe material 40 rises at a predetermined heating rate.
  • the control unit 8 controls the heating unit 5 so that the temperature of the metal pipe material 40 rises at a predetermined temperature rise rate and reaches the final target temperature T2. When the final target temperature T2 is reached, molding is performed, so that the temperature of the metal pipe material 40 drops rapidly.
  • the control unit 8 may set the heating rate in the primary heating step to 50 to 150 ° C./sec. By setting the temperature within this range, the target temperature can be reached at an early stage.
  • the heating rate in the primary heating step may be set to a value higher than the heating rate in the secondary heating step.
  • the control unit 8 may set the target temperature in the primary heating stage to 700 ° C. or higher and 800 ° C.
  • the control unit 8 may set the holding time of the holding step in the range of 10 to 30 seconds.
  • the control unit 8 may set the heating rate in the secondary heating step to 5 to 150 ° C./sec.
  • the control unit 8 may set the target temperature of the secondary heating step to about 900 ° C. to 1000 ° C., which is a temperature of 3 points or more of Ac.
  • a high-strength molded product is molded by quenching at the same time as molding.
  • the metal pipe material 40 is heated at a high temperature, the base material of the metal pipe material 40 is oxidized, which may generate an oxidation scale on the surface.
  • a plating layer 43 is formed on the surface of the metal pipe material 40.
  • the boiling point of zinc contained in the plating layer 43 is relatively low at 907 ° C., and it easily ignites when vaporized during heating.
  • the temperature rise rate is set to a constant value, for example, the temperature profile as shown in FIG. 4 (b) is obtained. Then, the conditions as shown in FIG. 6 are set as the temperature rising rate and the target temperature. In addition, FIG. 6 also shows the result of whether or not zinc oxide was generated. As shown in FIG. 6, when the temperature rising rate is set high, it is confirmed that zinc oxide is generated.
  • the control unit 8 controls the heating unit 5 to perform an alloying process for advancing the alloying of the plating layer 43.
  • the heating unit 5 performs an alloying process for advancing the alloying of the plating layer 43.
  • the boiling point of the alloy layer that has been sufficiently alloyed by the alloying treatment is higher than the boiling point of zinc. Therefore, after the alloying treatment, the heating unit 5 heats the metal pipe material 40 so that the temperature becomes higher than the boiling point of zinc. Therefore, even if the temperature of the metal pipe material 40 is higher than the boiling point of zinc, the alloying of zinc is sufficiently advanced and the boiling point is high, so that the ignition of zinc can be suppressed. From the above, it is possible to suppress the generation of the oxidized compound on the surface of the metal pipe material 40 by suppressing the generation of zinc oxide while suppressing the generation of the oxide scale by the plating layer.
  • control unit 8 controls the heating unit 5 so that the temperature of the metal pipe material 40 draws a temperature profile in a plurality of stages.
  • the heating unit 5 heats the metal pipe material 40 so that the temperature of the metal pipe material 40 draws a temperature profile in a plurality of stages.
  • the heating unit 5 can heat the metal pipe material 40 so as to have an appropriate temperature profile according to the progress of zinc alloying. This makes it possible to raise the temperature to the final target temperature after the alloying of zinc is completed, while keeping the total heating time short.
  • the control unit 8 controls the heating unit 5 so as to draw a temperature profile of the primary heating stage, the holding stage for maintaining the temperature, and the secondary heating stage.
  • the heating unit 5 heats so as to draw a temperature profile of the primary heating step, the holding step of holding the temperature, and the secondary heating step.
  • the heating unit 5 promptly raises the temperature to the target temperature of the alloying treatment in the primary heating step, and keeps the temperature at the target temperature in the holding step to proceed with the alloying of zinc.
  • the heating unit 5 can raise the temperature of the metal pipe material 40 to the final target temperature in the secondary heating step after the alloying treatment. As a result, it is possible to improve the certainty of suppressing the generation of zinc oxide while keeping the total heating time short.
  • the control unit 8 sets the target temperature in the primary heating stage to 700 ° C or higher and 800 ° C or lower.
  • the heating unit 5 sets the target temperature in the primary heating stage to 700 ° C. or higher and 800 ° C. or lower. In this case, it is possible to suppress the ignition of zinc while advancing the alloying of zinc while avoiding requiring an excessive heating time.
  • various parameters were set to the values shown in FIG. 5, and the state of zinc oxide generation was confirmed.
  • the target temperature in the primary heating step is 500 ° C. or lower, the generation of zinc oxide is suppressed, but the total heating time tends to be long.
  • the target temperature in the primary heating stage is 600 ° C. or higher and 700 ° C. or lower, zinc oxide is generated by vaporizing and burning zinc before alloying proceeds. Therefore, in these temperature ranges, it is necessary to lengthen the total heating time by, for example, keeping the temperature rise rate low.
  • the target temperature is set and maintained at a temperature higher than the above range and lower than the boiling point of zinc, the high temperature promotes the alloying of zinc, and the subsequent heating also causes the vaporization of zinc. It is suppressed and the generation of zinc oxide can be prevented. This makes it possible to shorten the total heating time.
  • the metal pipe material 40 contains alloyed zinc and has a plating layer 43 (see FIG. 3C) having a boiling point higher than the boiling point of zinc. Therefore, even if the temperature of the metal pipe material 40 becomes higher than the boiling point of zinc during heating, zinc is sufficiently alloyed in the plating layer 43 and the boiling point is high. Ignition can be suppressed. From the above, it is possible to suppress the generation of the oxidized compound on the surface of the metal pipe material 40 by suppressing the generation of zinc oxide while suppressing the generation of the oxide scale by the plating layer 43.
  • the present invention is not limited to the above-described embodiment.
  • what kind of temperature profile the control unit 8 controls the heating unit 5 is not particularly limited.
  • the control unit 8 may omit the holding step. For example, as soon as the target temperature of the primary heating step is reached, the process may shift to the secondary heating step. Further, the control unit 8 may control the heating unit 5 so as to draw a multi-stage temperature profile. For example, in the holding stage, the temperature does not have to be completely constant, and the temperature may be gradually increased. As a result, the temperature profile may be such that it has three heating stages.
  • control unit 8 heats the metal pipe material 40 so that the temperature becomes higher than the boiling point of zinc after the zinc is alloyed, the control unit 8 is as shown in FIG. 4 (b).
  • the heating unit 5 may be controlled to draw a step temperature profile.
  • the mold used in the molding apparatus for STAF has been described as an example.
  • the type of the molding apparatus in which the mold according to the present invention is adopted is not particularly limited, and any molding apparatus may be used as long as it is a type for molding a heated metal material.
  • the shape of the metal material is not limited to the pipe, and may be a plate-shaped metal material or the like.
  • the heating unit 5 heats the metal pipe material 40 inside the mold.
  • a heating unit 5 that heats outside the mold may be adopted.
  • the holding portion 4 may have a robot arm 130 that moves the metal pipe material 40 from the outside of the molding die 2 between the lower die 11 and the upper die 12.
  • the robot arm 130 may have a heating unit 5 for heating the metal pipe material 40 while holding the metal pipe material 40.
  • the robot arm 130 is provided with an upper electrode 131 and a lower electrode 132 at the tip thereof. The robot arm 130 sandwiches and holds the metal pipe material 40 between the electrodes 131 and 132, and can energize and heat the metal pipe material 40 by the electric power from the power supply cable 133.
  • heating unit 5 ... heating unit, 8 ... control unit (heating control unit), 40 ... metal pipe material, 43 ... plating layer, 100 ... heating device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

This heating device is for heating a metal material to be shaped, and is provided with a heating unit for heating the metal material by means of electric heating. A zinc-containing plating layer is formed on the metal material. The heating unit carries out an alloying process for facilitating alloying of the zinc of the plating layer, and, after the zinc is alloyed as a result of the alloying process, heats the metal material to a temperature higher than the boiling point of the zinc.

Description

加熱装置、及び金属材料Heating equipment and metal materials
 本発明は、加熱装置、及び金属材料に関する。 The present invention relates to a heating device and a metal material.
 従来、金属材料を成形する成形装置が知られている。例えば、下記特許文献1には、互いに対になる下型及び上型を有する成形金型と、成形金型の間に保持された金属パイプ材料内に流体を供給する流体供給部と、を備える成形装置が開示されている。このような成形装置においては、成形される金属材料を加熱する加熱装置が用いられる。 Conventionally, a molding device for molding a metal material is known. For example, Patent Document 1 below includes a molding die having a lower die and an upper die paired with each other, and a fluid supply unit for supplying a fluid into a metal pipe material held between the molding dies. The molding apparatus is disclosed. In such a molding apparatus, a heating apparatus for heating the metal material to be molded is used.
特開2009-220141号公報Japanese Unexamined Patent Publication No. 2009-220141
 上記従来技術のような加熱装置は、成形される金属材料を通電加熱によって加熱する。ここで、加熱装置は金属材料が高温となるように加熱するため、金属材料の表面に、当該金属材料が酸化することで、酸化スケールが発生する可能性がある。そのため、金属材料の表面にめっき層を形成することで、酸化スケールの発生を抑制する場合がある。しかしながら、加熱装置が急速に加熱をおこなった場合、めっき層に含有される亜鉛が気化して発火することで、結果的に酸化亜鉛が発生する場合がある。従って、酸化スケールや酸化亜鉛などの酸化化合物の発生を抑制することが求められていた。 A heating device such as the above-mentioned conventional technique heats a metal material to be molded by energization heating. Here, since the heating device heats the metal material so as to have a high temperature, oxidation scale may be generated on the surface of the metal material due to the oxidation of the metal material. Therefore, by forming a plating layer on the surface of the metal material, the generation of oxide scale may be suppressed. However, when the heating device heats rapidly, zinc contained in the plating layer may evaporate and ignite, resulting in the generation of zinc oxide. Therefore, it has been required to suppress the generation of oxidizing compounds such as oxide scale and zinc oxide.
 本発明は、このような問題を解消するためになされたものであり、本発明の目的は、金属材料の表面に酸化化合物が発生することを抑制できる加熱装置、及び金属材料を提供することである。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a heating device capable of suppressing the generation of an oxidizing compound on the surface of a metal material, and a metal material. be.
 本発明の一態様に係る加熱装置は、成形される金属材料を加熱する加熱装置であって、通電加熱によって金属材料を加熱する加熱部と、を備え、金属材料には亜鉛を含有するめっき層が形成され、加熱部は、めっき層の亜鉛の合金化を進める合金化処理を行い、当該合金化処理の後、当該亜鉛が合金化された後で、亜鉛の沸点よりも高い温度となるように金属材料を加熱する。 The heating device according to one aspect of the present invention is a heating device for heating a metal material to be molded, and includes a heating unit for heating the metal material by energization heating, and a plating layer containing zinc in the metal material. Is formed, and the heating part is subjected to an alloying treatment for advancing the alloying of zinc in the plating layer, and after the alloying treatment, after the zinc is alloyed, the temperature becomes higher than the boiling point of zinc. Heat the metal material to.
 本発明の一態様に係る加熱装置において、加熱部は、めっき層の亜鉛の合金化を進める合金化処理を行う。ここで、合金化処理によって十分な合金化が進められた合金層の沸点は、亜鉛の沸点よりも高い。従って、加熱部は、合金化処理の後、亜鉛の沸点よりも高い温度となるように金属材料を加熱する。そのため、金属材料の温度が亜鉛の沸点よりも高い温度となっても、亜鉛の合金化が十分に進んで沸点の高い状態となっているため、亜鉛の発火を抑制することができる。以上より、めっき層によって酸化スケールの発生を抑制しつつ、酸化亜鉛の発生も抑制することで、金属材料の表面に酸化化合物が発生することを抑制できる。 In the heating apparatus according to one aspect of the present invention, the heating unit performs an alloying treatment for advancing the alloying of zinc in the plating layer. Here, the boiling point of the alloy layer that has been sufficiently alloyed by the alloying treatment is higher than the boiling point of zinc. Therefore, after the alloying treatment, the heating unit heats the metal material so that the temperature becomes higher than the boiling point of zinc. Therefore, even if the temperature of the metal material becomes higher than the boiling point of zinc, the alloying of zinc is sufficiently advanced and the boiling point is high, so that the ignition of zinc can be suppressed. From the above, it is possible to suppress the generation of the oxidized compound on the surface of the metal material by suppressing the generation of zinc oxide while suppressing the generation of the oxide scale by the plating layer.
 加熱部は、金属材料の温度が複数段階の温度プロファイルを描くように、加熱してよい。この場合、加熱部は、亜鉛の合金化の進行度合いに応じて、適切な温度プロファイルとなるように金属材料を加熱することができる。 The heating unit may be heated so that the temperature of the metal material draws a temperature profile in multiple stages. In this case, the heating unit can heat the metal material so as to have an appropriate temperature profile depending on the progress of zinc alloying.
 加熱部は、一次加熱段階、温度を保持する保持段階、及び二次加熱段階の温度プロファイルを描くように、加熱してよい。この場合、加熱部は、一次加熱段階にて速やかに合金化処理のための目標温度まで昇温させ、保持段階にて当該目標温度に保持して亜鉛の合金化を進める。そして、加熱部は、合金化処理の後、二次加熱段階にて、金属材料を最終的な目標温度まで昇温度させることができる。 The heating unit may be heated so as to draw a temperature profile of the primary heating step, the holding step of holding the temperature, and the secondary heating step. In this case, the heating unit rapidly raises the temperature to the target temperature for the alloying treatment in the primary heating step, and keeps the temperature at the target temperature in the holding step to proceed with the alloying of zinc. Then, the heating unit can raise the temperature of the metal material to the final target temperature in the secondary heating step after the alloying treatment.
 加熱部は、一次加熱段階の目標温度を700℃以上、800℃以下に設定してよい。この場合、過剰な加熱時間を要することを回避しながら亜鉛の合金化を進行させつつ、亜鉛が発火することを抑制できる。 The heating unit may set the target temperature in the primary heating stage to 700 ° C or higher and 800 ° C or lower. In this case, it is possible to suppress the ignition of zinc while advancing the alloying of zinc while avoiding requiring an excessive heating time.
 本発明の一態様に係る金属材料は、合金化した亜鉛を含有し、亜鉛の沸点よりも高い沸点を有するめっき層を有する。 The metal material according to one aspect of the present invention contains alloyed zinc and has a plating layer having a boiling point higher than that of zinc.
 本発明の一態様に係る金属材料は、合金化した亜鉛を含有し、亜鉛の沸点よりも高い沸点を有するめっき層を有する。従って、加熱時において、金属材料の温度が亜鉛の沸点よりも高い温度となっても、めっき層では、亜鉛の合金化が十分に進んで沸点の高い状態となっているため、亜鉛の発火を抑制することができる。以上より、めっき層によって酸化スケールの発生を抑制しつつ、酸化亜鉛の発生も抑制することで、金属材料の表面に酸化化合物が発生することを抑制できる。 The metal material according to one aspect of the present invention contains alloyed zinc and has a plating layer having a boiling point higher than that of zinc. Therefore, even if the temperature of the metal material becomes higher than the boiling point of zinc during heating, the zinc is sufficiently alloyed in the plating layer and the boiling point is high, so that zinc is ignited. It can be suppressed. From the above, it is possible to suppress the generation of the oxidized compound on the surface of the metal material by suppressing the generation of zinc oxide while suppressing the generation of the oxide scale by the plating layer.
 本発明によれば、金属材料の表面に酸化化合物が発生することを抑制できる加熱装置、及び金属材料を提供することができる。 According to the present invention, it is possible to provide a heating device capable of suppressing the generation of an oxidized compound on the surface of a metal material, and a metal material.
本発明の実施形態に係る加熱装置を採用した成形装置の概略図である。It is a schematic diagram of the molding apparatus which adopted the heating apparatus which concerns on embodiment of this invention. ノズルが金属パイプ材料をシールした時の様子を示す断面図である。It is sectional drawing which shows the state when a nozzle seals a metal pipe material. めっき層の拡大断面図である。It is an enlarged sectional view of the plating layer. 金属パイプ材料の温度プロファイルを示すグラフである。It is a graph which shows the temperature profile of a metal pipe material. 加熱部の加熱において設定される各種パラメータの値、及びそれらの値を設定したときの酸化亜鉛の発生状況を示す表である。It is a table which shows the value of various parameters set in the heating of a heating part, and the generation state of zinc oxide when these values are set. 加熱部の加熱において一段階の温度プロファイルで昇温するときの各種パラメータの値、及びそれらの値を設定したときの酸化亜鉛の発生状況を示す表である。It is a table which shows the value of various parameters at the time of raising a temperature with a one-step temperature profile in the heating of a heating part, and the generation state of zinc oxide at the time of setting these values. 変形例に係る加熱装置の加熱部の構成を示す図である。It is a figure which shows the structure of the heating part of the heating device which concerns on a modification.
 以下、本発明の好適な実施形態について図面を参照しながら説明する。なお、各図において同一部分又は相当部分には同一符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, the same parts or corresponding parts are designated by the same reference numerals, and duplicate description will be omitted.
 図1は、本実施形態に係る加熱装置100を採用した成形装置1の概略図である。図1に示すように、成形装置1は、ブロー成形によって中空形状を有する金属パイプを成形する装置である。本実施形態では、成形装置1は、水平面上に設置される。成形装置1は、成形金型2と、駆動機構3と、保持部4と、加熱部5と、流体供給部6と、冷却部7と、制御部8と、を備える。なお、本明細書において、金属パイプは、成形装置1での成形完了後の中空物品を指し、金属パイプ材料40は、成形装置1での成形完了前の中空物品を指す。金属パイプ材料40は、焼入れ可能な鋼種のパイプ材料である。また、水平方向のうち、成形時において金属パイプ材料40が延びる方向を「長手方向」と称し、長手方向と直交する方向を「幅方向」と称する場合がある。 FIG. 1 is a schematic view of a molding apparatus 1 that employs the heating apparatus 100 according to the present embodiment. As shown in FIG. 1, the molding apparatus 1 is an apparatus for forming a metal pipe having a hollow shape by blow molding. In this embodiment, the molding apparatus 1 is installed on a horizontal plane. The molding apparatus 1 includes a molding die 2, a drive mechanism 3, a holding unit 4, a heating unit 5, a fluid supply unit 6, a cooling unit 7, and a control unit 8. In the present specification, the metal pipe refers to a hollow article after the molding in the molding apparatus 1 is completed, and the metal pipe material 40 refers to a hollow article before the molding in the molding apparatus 1 is completed. The metal pipe material 40 is a pipe material of a steel grade that can be hardened. Further, among the horizontal directions, the direction in which the metal pipe material 40 extends at the time of molding may be referred to as "longitudinal direction", and the direction orthogonal to the longitudinal direction may be referred to as "width direction".
 成形金型2は、金属パイプ材料40を金属パイプに成形する型であり、上下方向(第1の方向)に互いに対向する下側の金型11及び上側の金型12を備える。下側の金型11及び上側の金型12は、鋼鉄製ブロックで構成される。下側の金型11は、ダイホルダ等を介して基台13に固定される。上側の金型12は、ダイホルダ等を介して駆動機構3のスライドに固定される。 The molding die 2 is a mold for molding a metal pipe material 40 into a metal pipe, and includes a lower mold 11 and an upper mold 12 facing each other in the vertical direction (first direction). The lower mold 11 and the upper mold 12 are made of steel blocks. The lower mold 11 is fixed to the base 13 via a die holder or the like. The upper mold 12 is fixed to the slide of the drive mechanism 3 via a die holder or the like.
 駆動機構3は、下側の金型11及び上側の金型12の少なくとも一方を移動させる機構である。図1では、駆動機構3は、上側の金型12のみを移動させる構成を有する。駆動機構3は、下側の金型11及び上側の金型12同士が合わさるように上側の金型12を移動させるスライド21と、上記スライド21を上側へ引き上げる力を発生させるアクチュエータとしての引き戻しシリンダ22と、スライド21を下降加圧する駆動源としてのメインシリンダ23と、メインシリンダ23に駆動力を付与する駆動源24と、を備えている。 The drive mechanism 3 is a mechanism for moving at least one of the lower mold 11 and the upper mold 12. In FIG. 1, the drive mechanism 3 has a configuration in which only the upper mold 12 is moved. The drive mechanism 3 includes a slide 21 that moves the upper mold 12 so that the lower mold 11 and the upper mold 12 meet each other, and a pull-back cylinder as an actuator that generates a force for pulling the slide 21 upward. A 22 is provided, a main cylinder 23 as a drive source for downwardly pressurizing the slide 21, and a drive source 24 for applying a driving force to the main cylinder 23.
 保持部4は、下側の金型11及び上側の金型12の間に配置される金属パイプ材料40を保持する機構である。保持部4は、成形金型2の長手方向における一端側にて金属パイプ材料40を保持する下側電極26及び上側電極27と、成形金型2の長手方向における他端側にて金属パイプ材料40を保持する下側電極26及び上側電極27と、を備える。長手方向の両側の下側電極26及び上側電極27は、金属パイプ材料40の端部付近を上下方向から挟み込むことによって、当該金属パイプ材料40を保持する。なお、下側電極26の上面及び上側電極27の下面には、金属パイプ材料40の外周面に対応する形状を有する溝部が形成される。下側電極26及び上側電極27には、図示されない駆動機構が設けられており、それぞれ独立して上下方向へ移動することができる。 The holding portion 4 is a mechanism for holding the metal pipe material 40 arranged between the lower mold 11 and the upper mold 12. The holding portion 4 includes a lower electrode 26 and an upper electrode 27 that hold the metal pipe material 40 on one end side in the longitudinal direction of the molding die 2, and a metal pipe material on the other end side in the longitudinal direction of the molding die 2. A lower electrode 26 and an upper electrode 27 holding the 40 are provided. The lower electrodes 26 and the upper electrodes 27 on both sides in the longitudinal direction hold the metal pipe material 40 by sandwiching the vicinity of the end portion of the metal pipe material 40 from the vertical direction. Grooves having a shape corresponding to the outer peripheral surface of the metal pipe material 40 are formed on the upper surface of the lower electrode 26 and the lower surface of the upper electrode 27. The lower electrode 26 and the upper electrode 27 are provided with a drive mechanism (not shown), and can move independently in the vertical direction.
 加熱部5は、金属パイプ材料40を加熱する。加熱部5は、金属パイプ材料40へ通電することで当該金属パイプ材料40を加熱する機構である。加熱部5は、下側の金型11及び上側の金型12の間にて、下側の金型11及び上側の金型12から金属パイプ材料40が離間した状態にて、当該金属パイプ材料40を加熱する。加熱部5は、上述の長手方向の両側の下側電極26及び上側電極27と、これらの電極26,27を介して金属パイプ材料へ電流を流す電源28と、を備える。なお、加熱部5は、成形装置1の前工程に配置し、外部で加熱をするものであっても良い。 The heating unit 5 heats the metal pipe material 40. The heating unit 5 is a mechanism for heating the metal pipe material 40 by energizing the metal pipe material 40. The heating unit 5 is the metal pipe material in a state where the metal pipe material 40 is separated from the lower mold 11 and the upper mold 12 between the lower mold 11 and the upper mold 12. 40 is heated. The heating unit 5 includes the lower electrodes 26 and the upper electrodes 27 on both sides in the longitudinal direction described above, and a power supply 28 for passing an electric current through the electrodes 26 and 27 to the metal pipe material. The heating unit 5 may be arranged in the pre-process of the molding apparatus 1 and heated externally.
 流体供給部6は、下側の金型11及び上側の金型12の間に保持された金属パイプ材料40内に高圧の流体を供給するための機構である。流体供給部6は、加熱部5で加熱されることで高温状態となった金属パイプ材料40に高圧の流体を供給して、金属パイプ材料40を膨張させる。流体供給部6は、成形金型2の長手方向の両端側に設けられる。流体供給部6は、金属パイプ材料40の端部の開口部から当該金属パイプ材料40の内部へ流体を供給するノズル31と、ノズル31を金属パイプ材料40の開口部に対して進退移動させる駆動機構32と、ノズル31を介して金属パイプ材料40内へ高圧の流体を供給する供給源33と、を備える。駆動機構32は、流体供給時及び排気時にはノズル31を金属パイプ材料40の端部にシール性を確保した状態で密着させ(図2参照)、その他の時にはノズル31を金属パイプ材料40の端部から離間させる。なお、流体供給部6は、流体として、高圧の空気や不活性ガスなどの気体を供給してよい。また、流体供給部6は、金属パイプ材料40を上下方向へ移動する機構を有する保持部4とともに、加熱部5を含めて同一装置としても良い。 The fluid supply unit 6 is a mechanism for supplying a high-pressure fluid into the metal pipe material 40 held between the lower mold 11 and the upper mold 12. The fluid supply unit 6 supplies a high-pressure fluid to the metal pipe material 40 which has become hot due to being heated by the heating unit 5, and expands the metal pipe material 40. The fluid supply unit 6 is provided on both ends of the molding die 2 in the longitudinal direction. The fluid supply unit 6 is a nozzle 31 that supplies fluid from the opening at the end of the metal pipe material 40 to the inside of the metal pipe material 40, and a drive that moves the nozzle 31 forward and backward with respect to the opening of the metal pipe material 40. A mechanism 32 and a supply source 33 for supplying a high-pressure fluid into the metal pipe material 40 via the nozzle 31 are provided. In the drive mechanism 32, the nozzle 31 is brought into close contact with the end of the metal pipe material 40 in a state where the sealing property is ensured during fluid supply and exhaust (see FIG. 2), and at other times, the nozzle 31 is brought into close contact with the end of the metal pipe material 40. Separate from. The fluid supply unit 6 may supply a gas such as high-pressure air or an inert gas as the fluid. Further, the fluid supply unit 6 may be the same device including the heating unit 5 together with the holding unit 4 having a mechanism for moving the metal pipe material 40 in the vertical direction.
 図2は、ノズル31が金属パイプ材料40をシールした時の様子を示す断面図である。図2に示すように、ノズル31は、金属パイプ材料40の端部を挿入可能な円筒部材である。ノズル31は、当該ノズル31の中心線が基準線SL1と一致するように、駆動機構32に支持されている。金属パイプ材料40側のノズル31の端部の供給口31aの内径は、膨張成形後の金属パイプ材料40の外径に略一致している。この状態で、ノズル31は、内部の流路36から高圧の流体を金属パイプ材料40に供給する。なお、高圧流体の一例としては、ガスなどが挙げられる。 FIG. 2 is a cross-sectional view showing a state when the nozzle 31 seals the metal pipe material 40. As shown in FIG. 2, the nozzle 31 is a cylindrical member into which the end portion of the metal pipe material 40 can be inserted. The nozzle 31 is supported by the drive mechanism 32 so that the center line of the nozzle 31 coincides with the reference line SL1. The inner diameter of the supply port 31a at the end of the nozzle 31 on the metal pipe material 40 side substantially coincides with the outer diameter of the metal pipe material 40 after expansion molding. In this state, the nozzle 31 supplies a high-pressure fluid to the metal pipe material 40 from the internal flow path 36. An example of a high-pressure fluid is gas or the like.
 図1に戻り、冷却部7は、成形金型2を冷却する機構である。冷却部7は、成形金型2を冷却することで、膨張した金属パイプ材料40が成形金型2の成形面と接触したときに、金属パイプ材料40を急速に冷却することができる。冷却部7は、下側の金型11及び上側の金型12の内部に形成された流路36と、流路36へ冷却水を供給して循環させる水循環機構37と、を備える。 Returning to FIG. 1, the cooling unit 7 is a mechanism for cooling the molding die 2. By cooling the molding die 2, the cooling unit 7 can rapidly cool the metal pipe material 40 when the expanded metal pipe material 40 comes into contact with the molding surface of the molding die 2. The cooling unit 7 includes a flow path 36 formed inside the lower mold 11 and the upper mold 12, and a water circulation mechanism 37 that supplies and circulates cooling water to the flow path 36.
 制御部8は、成形装置1全体を制御する装置である。制御部8は、駆動機構3、保持部4、加熱部5、流体供給部6、及び冷却部7を制御する。制御部8は、金属パイプ材料40を成形金型2で成形する動作を繰り返し行う。 The control unit 8 is a device that controls the entire molding device 1. The control unit 8 controls the drive mechanism 3, the holding unit 4, the heating unit 5, the fluid supply unit 6, and the cooling unit 7. The control unit 8 repeatedly performs an operation of molding the metal pipe material 40 with the molding die 2.
 具体的に、制御部8は、例えば、ロボットアーム等の搬送装置からの搬送タイミングを制御して、開いた状態の下側の金型11及び上側の金型12の間に金属パイプ材料40を配置する。あるいは、制御部8は、作業者が手動で下側の金型11及び上側の金型12の間に金属パイプ材料40を配置することを待機してよい。また、制御部8は、長手方向の両側の下側電極26で金属パイプ材料40を支持し、その後に上側電極27を降ろして当該金属パイプ材料40を挟むように、保持部4のアクチュエータ等を制御する。また、制御部8は、加熱部5を制御して、金属パイプ材料40を通電加熱する。これにより、金属パイプ材料40に軸方向の電流が流れ、金属パイプ材料40自身の電気抵抗により、金属パイプ材料40自体がジュール熱によって発熱する。 Specifically, the control unit 8 controls, for example, the transfer timing from a transfer device such as a robot arm, and puts the metal pipe material 40 between the lower mold 11 and the upper mold 12 in the open state. Deploy. Alternatively, the control unit 8 may wait for the operator to manually arrange the metal pipe material 40 between the lower mold 11 and the upper mold 12. Further, the control unit 8 supports the metal pipe material 40 with the lower electrodes 26 on both sides in the longitudinal direction, and then lowers the upper electrode 27 to sandwich the metal pipe material 40, such as an actuator of the holding unit 4. Control. Further, the control unit 8 controls the heating unit 5 to energize and heat the metal pipe material 40. As a result, an axial current flows through the metal pipe material 40, and the electric resistance of the metal pipe material 40 itself causes the metal pipe material 40 itself to generate heat due to Joule heat.
 制御部8は、駆動機構3を制御して上側の金型12を降ろして下側の金型11に近接させ、成形金型2の型閉を行う。その一方、制御部8は、流体供給部6を制御して、ノズル31で金属パイプ材料40の両端の開口部をシールすると共に、流体を供給する。これにより、加熱により軟化した金属パイプ材料40が膨張して成形金型2の成形面と接触する。そして、金属パイプ材料40は、成形金型2の成形面の形状に沿うように成形される。金属パイプ材料40が成形面に接触すると、冷却部7で冷却された成形金型2で急冷されることによって、金属パイプ材料40の焼き入れが実施される。 The control unit 8 controls the drive mechanism 3 to lower the upper mold 12 and bring it closer to the lower mold 11 to close the mold 2. On the other hand, the control unit 8 controls the fluid supply unit 6 to seal the openings at both ends of the metal pipe material 40 with the nozzle 31 and supply the fluid. As a result, the metal pipe material 40 softened by heating expands and comes into contact with the molding surface of the molding die 2. Then, the metal pipe material 40 is molded so as to follow the shape of the molding surface of the molding die 2. When the metal pipe material 40 comes into contact with the molding surface, the metal pipe material 40 is quenched by quenching with the molding die 2 cooled by the cooling unit 7.
 上述の成形装置1の構成要素のうち、加熱装置100は、加熱部5と、制御部8(加熱制御部)と、を備えて構成される。加熱装置100は、成形される金属パイプ材料(金属材料)を加熱する装置である。また、前述のように、加熱部5は、通電加熱によって金属パイプ材料40を加熱する。制御部8は、加熱部5を制御する。 Among the components of the molding device 1 described above, the heating device 100 includes a heating unit 5 and a control unit 8 (heating control unit). The heating device 100 is a device that heats the metal pipe material (metal material) to be molded. Further, as described above, the heating unit 5 heats the metal pipe material 40 by energization heating. The control unit 8 controls the heating unit 5.
 図3(a)に示すように、本実施形態に係る金属パイプ材料40には、表面(外周面及び内周面)にめっき層43が形成されている。このめっき層43は、成分として、亜鉛を少なくとも含有している。めっき層43は、加熱時において、金属パイプ材料40の母材である鉄が酸化することによる酸化スケールの発生を抑制することができる。 As shown in FIG. 3A, the metal pipe material 40 according to the present embodiment has a plating layer 43 formed on the surface (outer peripheral surface and inner peripheral surface). The plating layer 43 contains at least zinc as a component. The plating layer 43 can suppress the generation of oxidation scale due to the oxidation of iron, which is the base material of the metal pipe material 40, during heating.
 ここで、めっき層43のうち、十分な合金化がなされることで沸点が十分に高くなった領域を「領域E2」と称し、十分な合金化がなされる前の状態の領域を「領域E1」とする。図3においては、領域E2にグレースケールが付されている。加熱を開始する前の状態においては、図3(a)に示すように、めっき層43の全域が、領域E1となる。領域E1には、合金化される前の純亜鉛が含まれる。更には、めっき層43を形成するためのめっき処理においては、めっき層の温度が440~460℃であるため、亜鉛に対して鉄分がある程度拡散することがある。従って、領域E1には、鉄含有率が低い状態にて、亜鉛と鉄の合金層が含まれる場合がある。領域E1に含まれる合金として、鉄含有率6%程度のζ層の合金、鉄含有率7~11%程度のδ1層の合金、鉄含有率11%以上のΓ層の合金が挙げられる。領域E1の鉄含有率は30%未満である。領域E2は、加熱によって、鉄濃度が高いFeZn固溶相が生成された領域である。領域E2における合金の鉄含有率は30%以上である。本明細書では、領域E1の亜鉛の合金化を進めることで、領域E2の領域を広げることを「合金化処理」と称する。領域E2のめっき層において、亜鉛との合金化の相手金属の含有率は、30%以上である。 Here, in the plating layer 43, a region in which the boiling point is sufficiently high due to sufficient alloying is referred to as "region E2", and a region in a state before sufficient alloying is referred to as "region E1". ". In FIG. 3, the area E2 is grayscaled. In the state before the start of heating, as shown in FIG. 3A, the entire area of the plating layer 43 becomes the region E1. Region E1 contains pure zinc before alloying. Furthermore, in the plating process for forming the plating layer 43, since the temperature of the plating layer is 440 to 460 ° C., iron may diffuse to some extent with respect to zinc. Therefore, the region E1 may contain an alloy layer of zinc and iron in a state where the iron content is low. Examples of the alloy contained in the region E1 include a ζ layer alloy having an iron content of about 6%, a δ1 layer alloy having an iron content of about 7 to 11%, and a Γ layer alloy having an iron content of 11% or more. The iron content of region E1 is less than 30%. The region E2 is a region in which a FeZn solid solution phase having a high iron concentration is generated by heating. The iron content of the alloy in region E2 is 30% or more. In the present specification, expanding the region of region E2 by advancing the alloying of zinc in region E1 is referred to as "alloying treatment". In the plating layer of region E2, the content of the mating metal for alloying with zinc is 30% or more.
 金属パイプ材料40の加熱を行うことで合金化処理を開始すると、めっき層43の領域E1に含有される亜鉛は、金属パイプ材料40の母材である鉄と合金化反応することによって、合金化して鉄と亜鉛の合金となる。あるいは、めっき層43の領域E1の鉄含有率の低い合金層は、亜鉛の合金化が更に促進されることで鉄含有率が高くなる。これにより、合金化処理の途中の状態においては、図3(b)に示すように、めっき層43には、領域E1と領域E2とが混在した状態となっている。めっき層43の合金化処理が完了すると、図3(c)に示すように、めっき層43の全域が、領域E2となる。このように、加熱後の金属パイプ材料40は、合金化した亜鉛を含有し、亜鉛の沸点よりも高い沸点を有するめっき層43を有する。当該状態におけるめっき層43は、全域において、亜鉛の沸点よりも高い沸点を有する領域E2となっている。 When the alloying treatment is started by heating the metal pipe material 40, the zinc contained in the region E1 of the plating layer 43 is alloyed by the alloying reaction with the iron which is the base material of the metal pipe material 40. It becomes an alloy of iron and zinc. Alternatively, the alloy layer having a low iron content in the region E1 of the plating layer 43 has a high iron content due to further promotion of zinc alloying. As a result, in the middle of the alloying process, as shown in FIG. 3 (b), the region E1 and the region E2 are mixed in the plating layer 43. When the alloying treatment of the plating layer 43 is completed, the entire area of the plating layer 43 becomes the region E2 as shown in FIG. 3C. As described above, the heated metal pipe material 40 contains the alloyed zinc and has a plating layer 43 having a boiling point higher than the boiling point of zinc. The plating layer 43 in this state is a region E2 having a boiling point higher than that of zinc in the entire area.
 ここで、成形後の金属パイプに対して十分な焼き入れを行うためには、加熱部5は、加熱時にオーステナイト変態をさせるために、Ac3点以上の温度となるように金属パイプ材料40を加熱する必要がある。すなわち、加熱部5の目標温度(金属パイプ材料40が到達する温度)は、Ac3点以上の900℃~1000℃程度となる。その一方、合金化されていない亜鉛の沸点は907℃である。すなわち、加熱部5の最終的な目標温度は、亜鉛の沸点よりも高い。これに対し、合金化処理後の領域E2の十分に合金化された亜鉛(鉄と亜鉛の合金)の沸点は、亜鉛の沸点よりも高い。すなわち、合金化処理後の合金化された亜鉛の沸点は、加熱部5の最終的な目標温度よりも高い。従って、めっき層43の全域の領域E2となった状態(図3(c)に示す状態)であれば、加熱部5が目標温度まで金属パイプ材料40を加熱しても、めっき層43の成分が気化して発火することを抑制できる。 Here, in order to sufficiently quench the metal pipe after molding, the heating unit 5 heats the metal pipe material 40 so as to have a temperature of Ac 3 points or more in order to cause austenite transformation during heating. There is a need to. That is, the target temperature of the heating unit 5 (the temperature reached by the metal pipe material 40) is about 900 ° C. to 1000 ° C. of Ac 3 points or more. On the other hand, the boiling point of unalloyed zinc is 907 ° C. That is, the final target temperature of the heating unit 5 is higher than the boiling point of zinc. On the other hand, the boiling point of fully alloyed zinc (an alloy of iron and zinc) in the region E2 after the alloying treatment is higher than the boiling point of zinc. That is, the boiling point of the alloyed zinc after the alloying treatment is higher than the final target temperature of the heating unit 5. Therefore, in the state where the region E2 of the entire area of the plating layer 43 is reached (the state shown in FIG. 3C), even if the heating unit 5 heats the metal pipe material 40 to the target temperature, the components of the plating layer 43 are formed. Can be suppressed from evaporating and igniting.
 上述の点を踏まえ、制御部8による加熱部5の制御内容について説明する。制御部8は、加熱部5を制御することによって、めっき層43の亜鉛の合金化を進める合金化処理を行い、当該合金化処理の後、亜鉛の沸点よりも高い温度となるように金属パイプ材料40を加熱する。制御部8が金属パイプ材料40の加熱を開始した時点では、めっき層43は、図3(a)に示す状態となっており、加熱時間が進むに従って、図3(b)に示すように十分に合金化された亜鉛の量が増えてゆき、合金化処理が完了すると、図3(c)に示す状態となる。制御部8は、めっき層43の合金化処理が完了する前段階においては、金属パイプ材料40の温度が亜鉛の沸点以下となるように、加熱部5を制御する。そして、制御部8は、金属パイプ材料40の温度が亜鉛の沸点に到達する前段階において、亜鉛の合金化処理が完了した状態(図3(c)に示す状態)としておくことが好ましい。 Based on the above points, the control contents of the heating unit 5 by the control unit 8 will be described. The control unit 8 controls the heating unit 5 to perform an alloying process for advancing the alloying of zinc in the plating layer 43, and after the alloying process, the metal pipe is set to a temperature higher than the boiling point of zinc. The material 40 is heated. When the control unit 8 starts heating the metal pipe material 40, the plating layer 43 is in the state shown in FIG. 3A, and as the heating time advances, it is sufficient as shown in FIG. 3B. When the amount of zinc alloyed with the above increases and the alloying process is completed, the state shown in FIG. 3C is obtained. The control unit 8 controls the heating unit 5 so that the temperature of the metal pipe material 40 is equal to or lower than the boiling point of zinc before the alloying treatment of the plating layer 43 is completed. Then, it is preferable that the control unit 8 is in a state where the zinc alloying treatment is completed (the state shown in FIG. 3C) before the temperature of the metal pipe material 40 reaches the boiling point of zinc.
 制御部8は、金属パイプ材料40の温度が複数段階の温度プロファイルを描くように、加熱部5を制御する。なお、温度プロファイルとは、加熱開始からの時間と金属パイプ材料40の温度との関係をプロットすることによって形成されるグラフを示す。 The control unit 8 controls the heating unit 5 so that the temperature of the metal pipe material 40 draws a temperature profile in a plurality of stages. The temperature profile indicates a graph formed by plotting the relationship between the time from the start of heating and the temperature of the metal pipe material 40.
 図4(a)を参照して、制御部8の制御によって描かれる温度プロファイルの具体例について説明する。図4(a)は、温度プロファイルの一例を示すグラフである。横軸は、加熱部5の加熱開始からの経過時間を示す。縦軸は、金属パイプ材料40の温度を示す。図4(a)に示すように、制御部8は、一次加熱段階、温度を保持する保持段階、及び二次加熱段階の温度プロファイルを描くように、加熱部5を制御する。図4(a)に示すように、一次加熱段階は、加熱開始(0秒)から時間t1の間に行われ、所定の昇温速度にて金属パイプ材料40の温度が上昇する段階である。制御部8は、一次加熱段階が完了するときに、金属パイプ材料40が予め定めた目標温度T1に到達するように、加熱部5を制御する。保持段階は、時間t1から時間t2の間に行われ、予め定めた保持時間だけ、金属パイプ材料40の温度を一定に保持する。次に、二次加熱段階は、時間t2から時間t3の間に行われ、所定の昇温速度にて金属パイプ材料40の温度が上昇する段階である。制御部8は、所定の昇温速度にて金属パイプ材料40の温度が上昇して最終的な目標温度T2に到達するように加熱部5を制御する。なお、最終的な目標温度T2まで到達すると、成形が行われるため、金属パイプ材料40の温度は急速に低下する。 A specific example of the temperature profile drawn by the control of the control unit 8 will be described with reference to FIG. 4 (a). FIG. 4A is a graph showing an example of a temperature profile. The horizontal axis shows the elapsed time from the start of heating of the heating unit 5. The vertical axis shows the temperature of the metal pipe material 40. As shown in FIG. 4A, the control unit 8 controls the heating unit 5 so as to draw a temperature profile of the primary heating step, the temperature holding step, and the secondary heating step. As shown in FIG. 4A, the primary heating step is performed between the start of heating (0 seconds) and the time t1, and the temperature of the metal pipe material 40 rises at a predetermined heating rate. The control unit 8 controls the heating unit 5 so that the metal pipe material 40 reaches a predetermined target temperature T1 when the primary heating step is completed. The holding step is performed between time t1 and time t2, and keeps the temperature of the metal pipe material 40 constant for a predetermined holding time. Next, the secondary heating step is performed between the time t2 and the time t3, and is a step in which the temperature of the metal pipe material 40 rises at a predetermined heating rate. The control unit 8 controls the heating unit 5 so that the temperature of the metal pipe material 40 rises at a predetermined temperature rise rate and reaches the final target temperature T2. When the final target temperature T2 is reached, molding is performed, so that the temperature of the metal pipe material 40 drops rapidly.
 制御部8の制御に対して設定されるパラメータとして、一次加熱段階の昇温速度、一次加熱段階の目標温度、保持段階の保持時間、二次加熱段階の昇速度、及び二次加熱段階の目標温度(最終的な目標温度)が挙げられる。これらのパラメータの具体的な値は、加熱の条件やトータル加熱時間を考慮して、適宜調整可能である。例えば、制御部8は、一次加熱段階の昇温速度を50~150℃/secに設定してよい。当該範囲に設定することで、目標温度へ早期に到達させることができる。一次加熱段階の昇温速度は、二次加熱段階の昇温速度よりも高い値に設定してよい。制御部8は、一次加熱段階の目標温度を700℃以上、800℃以下に設定してよい。当該範囲に設定することで、過剰な加熱時間を要することを回避しながら亜鉛の合金化を進行させつつ、亜鉛が発火することを抑制できる。制御部8は、保持段階の保持時間を10~30秒の範囲に設定してよい。制御部8は、二次加熱段階の昇温速度を5~150℃/secに設定してよい。制御部8は、二次加熱段階の目標温度を、前述のように、Ac3点以上の温度である900℃~1000℃程度に設定してよい。 As parameters set for the control of the control unit 8, the temperature rise rate in the primary heating stage, the target temperature in the primary heating stage, the holding time in the holding stage, the rising speed in the secondary heating stage, and the target in the secondary heating stage. The temperature (final target temperature) can be mentioned. The specific values of these parameters can be appropriately adjusted in consideration of the heating conditions and the total heating time. For example, the control unit 8 may set the heating rate in the primary heating step to 50 to 150 ° C./sec. By setting the temperature within this range, the target temperature can be reached at an early stage. The heating rate in the primary heating step may be set to a value higher than the heating rate in the secondary heating step. The control unit 8 may set the target temperature in the primary heating stage to 700 ° C. or higher and 800 ° C. or lower. By setting it in this range, it is possible to suppress the ignition of zinc while advancing the alloying of zinc while avoiding requiring an excessive heating time. The control unit 8 may set the holding time of the holding step in the range of 10 to 30 seconds. The control unit 8 may set the heating rate in the secondary heating step to 5 to 150 ° C./sec. As described above, the control unit 8 may set the target temperature of the secondary heating step to about 900 ° C. to 1000 ° C., which is a temperature of 3 points or more of Ac.
 次に、本実施形態に係る加熱装置100の作用・効果について説明する。 Next, the operation / effect of the heating device 100 according to the present embodiment will be described.
 図1に示すような成形装置1においては、成形と同時に焼き入れを行うことにより、高強度の成形品を成形している。ここで、十分な焼き入れを行うためには、加熱時にオーステナイト変態をさせるため、Ac3点以上の温度に加熱する必要がある。しかし、金属パイプ材料40を高温で加熱すると、当該金属パイプ材料40の母材が酸化することで、表面に酸化スケールが発生する可能性がある。このような酸化スケールの発生を抑制するために、金属パイプ材料40の表面にめっき層43が形成される。しかしながら、めっき層43に含有される亜鉛の沸点は907℃と比較的低く、加熱の途中で気化すると容易に発火する。このように亜鉛が気化して発火すると、結局、酸化亜鉛が発生してしまう。特に、金属パイプ材料40の内周側の空間では、外側に比して気化した亜鉛の濃度が高くなるため、より低い温度で発火し易くなり、且つ、発生する酸化亜鉛の量も多くなる傾向がある。このようにして発生した酸化亜鉛が成形品に付着すると、塗装などの後工程に支障があるため、当該酸化亜鉛を除去する工程が必要となり、コストが増加するという問題がある。また、粉末状態で周辺大気中に酸化亜鉛が散布されると、作業環境上の問題が発生するため、装置側の除去装置が必要となるため、この点においてもコストアップとなる。 In the molding apparatus 1 as shown in FIG. 1, a high-strength molded product is molded by quenching at the same time as molding. Here, in order to perform sufficient quenching, it is necessary to heat to a temperature of Ac 3 points or more in order to cause austenite transformation at the time of heating. However, when the metal pipe material 40 is heated at a high temperature, the base material of the metal pipe material 40 is oxidized, which may generate an oxidation scale on the surface. In order to suppress the generation of such an oxidation scale, a plating layer 43 is formed on the surface of the metal pipe material 40. However, the boiling point of zinc contained in the plating layer 43 is relatively low at 907 ° C., and it easily ignites when vaporized during heating. When zinc evaporates and ignites in this way, zinc oxide is eventually generated. In particular, in the space on the inner peripheral side of the metal pipe material 40, the concentration of vaporized zinc is higher than that on the outer side, so that it is easy to ignite at a lower temperature and the amount of zinc oxide generated tends to be large. There is. If the zinc oxide generated in this way adheres to the molded product, there is a problem that the post-process such as painting is hindered, so that a step of removing the zinc oxide is required and the cost increases. Further, if zinc oxide is sprayed in the surrounding atmosphere in a powder state, a problem in the working environment occurs, and a removal device on the device side is required, which also increases the cost.
 最終的な目標温度T2を設定し、昇温速度を一定の値に設定すると、例えば、図4(b)に示すような温度プロファイルとなる。そして、昇温速度及び目標温度として、図6に示すような条件を設定する。また、図6では、酸化亜鉛が発生したか否かの結果も示されている。図6に示すように、昇温速度を大きく設定すると、酸化亜鉛が発生したことが確認される。 When the final target temperature T2 is set and the temperature rise rate is set to a constant value, for example, the temperature profile as shown in FIG. 4 (b) is obtained. Then, the conditions as shown in FIG. 6 are set as the temperature rising rate and the target temperature. In addition, FIG. 6 also shows the result of whether or not zinc oxide was generated. As shown in FIG. 6, when the temperature rising rate is set high, it is confirmed that zinc oxide is generated.
 これに対し、本実施形態に係る加熱装置100において、制御部8は、加熱部5を制御することによって、めっき層43の合金化を進める合金化処理を行う。これにより、加熱部5は、めっき層43の合金化を進める合金化処理を行う。ここで、合金化処理によって十分な合金化が進められた合金層の沸点は、亜鉛の沸点よりも高い。従って、加熱部5は、合金化処理の後、亜鉛の沸点よりも高い温度となるように金属パイプ材料40を加熱する。そのため、金属パイプ材料40の温度が亜鉛の沸点よりも高い温度となっても、亜鉛の合金化が十分に進んで沸点の高い状態となっているため、亜鉛の発火を抑制することができる。以上より、めっき層によって酸化スケールの発生を抑制しつつ、酸化亜鉛の発生も抑制することで、金属パイプ材料40の表面に酸化化合物が発生することを抑制できる。 On the other hand, in the heating device 100 according to the present embodiment, the control unit 8 controls the heating unit 5 to perform an alloying process for advancing the alloying of the plating layer 43. As a result, the heating unit 5 performs an alloying process for advancing the alloying of the plating layer 43. Here, the boiling point of the alloy layer that has been sufficiently alloyed by the alloying treatment is higher than the boiling point of zinc. Therefore, after the alloying treatment, the heating unit 5 heats the metal pipe material 40 so that the temperature becomes higher than the boiling point of zinc. Therefore, even if the temperature of the metal pipe material 40 is higher than the boiling point of zinc, the alloying of zinc is sufficiently advanced and the boiling point is high, so that the ignition of zinc can be suppressed. From the above, it is possible to suppress the generation of the oxidized compound on the surface of the metal pipe material 40 by suppressing the generation of zinc oxide while suppressing the generation of the oxide scale by the plating layer.
 ここで、図6に示すように、目標温度を低く設定し、昇温速度を小さく設定すれば、酸化亜鉛の発生を回避出来ていることが確認される。すなわち、昇温速度を低く抑えれば、温度が上昇している間に合金化が進み、亜鉛の沸点まで昇温されるころには、亜鉛の合金化が完了することで、亜鉛の発火が防止される。しかしながら、昇温速度を低く抑えると、通電加熱の加熱時間(図4に示す「トータル加熱時間」)が長くなってしまう。また、最終的な目標温度の上限も制限されてしまい、許容される加熱温度の管理幅が小さくなってしまう。 Here, as shown in FIG. 6, it is confirmed that the generation of zinc oxide can be avoided by setting the target temperature low and setting the temperature rise rate low. In other words, if the temperature rise rate is kept low, alloying will proceed while the temperature is rising, and by the time the temperature rises to the boiling point of zinc, zinc alloying will be completed and zinc will ignite. Be prevented. However, if the heating rate is kept low, the heating time for energization heating (“total heating time” shown in FIG. 4) becomes long. In addition, the upper limit of the final target temperature is also limited, and the control range of the allowable heating temperature becomes small.
 これに対し、制御部8は、金属パイプ材料40の温度が複数段階の温度プロファイルを描くように、加熱部5を制御する。これにより、加熱部5は、金属パイプ材料40の温度が複数段階の温度プロファイルを描くように、加熱する。この場合、加熱部5は、亜鉛の合金化の進行度合いに応じて、適切な温度プロファイルとなるように金属パイプ材料40を加熱することができる。これにより、トータル加熱時間を短く抑えつつも、亜鉛の合金化を完了させた後で、最終的な目標温度まで昇温させることが可能となる。 On the other hand, the control unit 8 controls the heating unit 5 so that the temperature of the metal pipe material 40 draws a temperature profile in a plurality of stages. As a result, the heating unit 5 heats the metal pipe material 40 so that the temperature of the metal pipe material 40 draws a temperature profile in a plurality of stages. In this case, the heating unit 5 can heat the metal pipe material 40 so as to have an appropriate temperature profile according to the progress of zinc alloying. This makes it possible to raise the temperature to the final target temperature after the alloying of zinc is completed, while keeping the total heating time short.
 制御部8は、一次加熱段階、温度を保持する保持段階、及び二次加熱段階の温度プロファイルを描くように、加熱部5を制御する。これにより、加熱部5は、一次加熱段階、温度を保持する保持段階、及び二次加熱段階の温度プロファイルを描くように、加熱する。この場合、加熱部5は、一次加熱段階にて速やかに合金化処理の目標温度まで昇温させ、保持段階にて当該目標温度に保持して亜鉛の合金化を進める。そして、加熱部5は、合金化処理の後、二次加熱段階にて、金属パイプ材料40を最終的な目標温度まで昇温度させることができる。これにより、トータル加熱時間を短く抑えつつ、酸化亜鉛発生抑制の確実性を向上できる。 The control unit 8 controls the heating unit 5 so as to draw a temperature profile of the primary heating stage, the holding stage for maintaining the temperature, and the secondary heating stage. As a result, the heating unit 5 heats so as to draw a temperature profile of the primary heating step, the holding step of holding the temperature, and the secondary heating step. In this case, the heating unit 5 promptly raises the temperature to the target temperature of the alloying treatment in the primary heating step, and keeps the temperature at the target temperature in the holding step to proceed with the alloying of zinc. Then, the heating unit 5 can raise the temperature of the metal pipe material 40 to the final target temperature in the secondary heating step after the alloying treatment. As a result, it is possible to improve the certainty of suppressing the generation of zinc oxide while keeping the total heating time short.
 制御部8は、一次加熱段階の目標温度を700℃以上、800℃以下に設定する。これにより、加熱部5は、一次加熱段階の目標温度を700℃以上、800℃以下に設定する。この場合、過剰な加熱時間を要することを回避しながら亜鉛の合金化を進行させつつ、亜鉛が発火することを抑制できる。 The control unit 8 sets the target temperature in the primary heating stage to 700 ° C or higher and 800 ° C or lower. As a result, the heating unit 5 sets the target temperature in the primary heating stage to 700 ° C. or higher and 800 ° C. or lower. In this case, it is possible to suppress the ignition of zinc while advancing the alloying of zinc while avoiding requiring an excessive heating time.
 例えば、各種パラメータを図5に示す様な値に設定し、酸化亜鉛の発生状況について確認した。図5に示すように、一次加熱段階の目標温度が500℃以下の場合は、酸化亜鉛の発生が抑制されているが、トータル加熱時間が長くなる傾向にある。これに対し、一次加熱段階の目標温度が600℃以上、700℃以下の場合は、合金化が進む前に亜鉛が気化して燃焼することで、酸化亜鉛が発生している。そのため、これらの温度範囲においては、昇温速度を低く抑えたりするなどして、トータル加熱時間を長くする必要が生じる。一方、当該範囲以上の温度であって、亜鉛の沸点より低い温度に目標温度を設定して保持すれば、温度が高いことにより、亜鉛の合金化が進み、その後の加熱においても亜鉛の気化が抑えられ、酸化亜鉛の発生が防止できている。これにより、トータル加熱時間も短くすることが可能となっている。 For example, various parameters were set to the values shown in FIG. 5, and the state of zinc oxide generation was confirmed. As shown in FIG. 5, when the target temperature in the primary heating step is 500 ° C. or lower, the generation of zinc oxide is suppressed, but the total heating time tends to be long. On the other hand, when the target temperature in the primary heating stage is 600 ° C. or higher and 700 ° C. or lower, zinc oxide is generated by vaporizing and burning zinc before alloying proceeds. Therefore, in these temperature ranges, it is necessary to lengthen the total heating time by, for example, keeping the temperature rise rate low. On the other hand, if the target temperature is set and maintained at a temperature higher than the above range and lower than the boiling point of zinc, the high temperature promotes the alloying of zinc, and the subsequent heating also causes the vaporization of zinc. It is suppressed and the generation of zinc oxide can be prevented. This makes it possible to shorten the total heating time.
 金属パイプ材料40は、合金化した亜鉛を含有し、亜鉛の沸点よりも高い沸点を有するめっき層43(図3(c)参照)を有する。従って、加熱時において、金属パイプ材料40の温度が亜鉛の沸点よりも高い温度となっても、めっき層43では、亜鉛の合金化が十分に進んで沸点の高い状態となっているため、亜鉛の発火を抑制することができる。以上より、めっき層43によって酸化スケールの発生を抑制しつつ、酸化亜鉛の発生も抑制することで、金属パイプ材料40の表面に酸化化合物が発生することを抑制できる。 The metal pipe material 40 contains alloyed zinc and has a plating layer 43 (see FIG. 3C) having a boiling point higher than the boiling point of zinc. Therefore, even if the temperature of the metal pipe material 40 becomes higher than the boiling point of zinc during heating, zinc is sufficiently alloyed in the plating layer 43 and the boiling point is high. Ignition can be suppressed. From the above, it is possible to suppress the generation of the oxidized compound on the surface of the metal pipe material 40 by suppressing the generation of zinc oxide while suppressing the generation of the oxide scale by the plating layer 43.
 本発明は、上述の実施形態に限定されるものではない。 The present invention is not limited to the above-described embodiment.
 例えば、制御部8がどのような温度プロファイルが描かれるように加熱部5を制御するかは、特に限定されるものではない。例えば、制御部8は、保持段階を省略してもよい。例えば、一次加熱段階の目標温度に到達したら、ただちに二次加熱段階へ移行してもよい。また、制御部8は、更に多段の温度プロファイルを描くように加熱部5を制御してもよい。例えば、保持段階においては、完全に温度を一定にしなくともよく、徐々に昇温させてもよい。その結果、三段階の加熱段階を有するような温度プロファイルにしてもよい。 For example, what kind of temperature profile the control unit 8 controls the heating unit 5 is not particularly limited. For example, the control unit 8 may omit the holding step. For example, as soon as the target temperature of the primary heating step is reached, the process may shift to the secondary heating step. Further, the control unit 8 may control the heating unit 5 so as to draw a multi-stage temperature profile. For example, in the holding stage, the temperature does not have to be completely constant, and the temperature may be gradually increased. As a result, the temperature profile may be such that it has three heating stages.
 また、制御部8は、亜鉛が合金化された後で、亜鉛の沸点よりも高い温度となるように金属パイプ材料40を加熱するものであれば、図4(b)に示すような、一段階の温度プロファイルを描くように加熱部5を制御してもよい。 Further, if the control unit 8 heats the metal pipe material 40 so that the temperature becomes higher than the boiling point of zinc after the zinc is alloyed, the control unit 8 is as shown in FIG. 4 (b). The heating unit 5 may be controlled to draw a step temperature profile.
 なお、上述の実施形態では、STAF用の成形装置において採用される金型を例にして説明を行った。しかし、本発明に係る金型が採用される成形装置の種類は特に限定されず、加熱された金属材料を成形するタイプの成形装置であればよい。また、金属材料の形状もパイプに限定されるものではなく、板状の金属材料などであってもよい。 In the above-described embodiment, the mold used in the molding apparatus for STAF has been described as an example. However, the type of the molding apparatus in which the mold according to the present invention is adopted is not particularly limited, and any molding apparatus may be used as long as it is a type for molding a heated metal material. Further, the shape of the metal material is not limited to the pipe, and may be a plate-shaped metal material or the like.
 上述の実施形態では、加熱部5は、金型の内部で金属パイプ材料40を加熱していた。これに代えて、金型の外部で加熱を行う加熱部5が採用されてもよい。例えば、図7に示すように、保持部4は、成形金型2の外部から下型11及び上型12の間へ金属パイプ材料40を移動させるロボットアーム130を有してよい。また、ロボットアーム130は金属パイプ材料40を保持した状態にて当該金属パイプ材料40を加熱する加熱部5を有してよい。ロボットアーム130は、先端に上側電極131及び下側電極132を備えている。ロボットアーム130は、電極131,132で金属パイプ材料40を挟んで保持すると共に、電力供給ケーブル133からの電力によって金属パイプ材料40を通電加熱することができる。 In the above-described embodiment, the heating unit 5 heats the metal pipe material 40 inside the mold. Instead of this, a heating unit 5 that heats outside the mold may be adopted. For example, as shown in FIG. 7, the holding portion 4 may have a robot arm 130 that moves the metal pipe material 40 from the outside of the molding die 2 between the lower die 11 and the upper die 12. Further, the robot arm 130 may have a heating unit 5 for heating the metal pipe material 40 while holding the metal pipe material 40. The robot arm 130 is provided with an upper electrode 131 and a lower electrode 132 at the tip thereof. The robot arm 130 sandwiches and holds the metal pipe material 40 between the electrodes 131 and 132, and can energize and heat the metal pipe material 40 by the electric power from the power supply cable 133.
 5…加熱部、8…制御部(加熱制御部)、40…金属パイプ材料、43…めっき層、100…加熱装置。 5 ... heating unit, 8 ... control unit (heating control unit), 40 ... metal pipe material, 43 ... plating layer, 100 ... heating device.

Claims (5)

  1.  成形される金属材料を加熱する加熱装置であって、
     通電加熱によって前記金属材料を加熱する加熱部と、
     前記金属材料には亜鉛を含有するめっき層が形成され、
     前記加熱部は、前記めっき層の亜鉛の合金化を進める合金化処理を行い、当該合金化処理の後、亜鉛の沸点よりも高い温度となるように前記金属材料を加熱する、加熱装置。
    A heating device that heats the metal material to be molded.
    A heating unit that heats the metal material by energization heating,
    A plating layer containing zinc is formed on the metal material, and a plating layer is formed.
    The heating unit is a heating device that performs an alloying treatment for advancing the alloying of zinc in the plating layer, and after the alloying treatment, heats the metal material so that the temperature becomes higher than the boiling point of zinc.
  2.  前記加熱部は、前記金属材料の温度が複数段階の温度プロファイルを描くように、加熱する、請求項1に記載の加熱装置。 The heating device according to claim 1, wherein the heating unit heats the metal material so that the temperature of the metal material draws a temperature profile in a plurality of stages.
  3.  前記加熱は、一次加熱段階、温度を保持する保持段階、及び二次加熱段階の温度プロファイルを描くように、加熱する、請求項2に記載の加熱装置。 The heating device according to claim 2, wherein the heating is performed so as to draw a temperature profile of a primary heating step, a holding step for holding a temperature, and a secondary heating step.
  4.  前記加熱部は、一次加熱段階の目標温度を700℃以上、800℃以下に設定する、請求項3に記載の加熱装置。 The heating device according to claim 3, wherein the heating unit sets the target temperature of the primary heating stage to 700 ° C. or higher and 800 ° C. or lower.
  5.  合金化した亜鉛を含有し、亜鉛の沸点よりも高い沸点を有するめっき層を有する、金属材料。
     
    A metallic material containing alloyed zinc and having a plating layer having a boiling point higher than that of zinc.
     
PCT/JP2021/030640 2020-09-18 2021-08-20 Heating device and metal material WO2022059424A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-157284 2020-09-18
JP2020157284A JP2023162459A (en) 2020-09-18 2020-09-18 Heating apparatus

Publications (1)

Publication Number Publication Date
WO2022059424A1 true WO2022059424A1 (en) 2022-03-24

Family

ID=80777312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030640 WO2022059424A1 (en) 2020-09-18 2021-08-20 Heating device and metal material

Country Status (2)

Country Link
JP (1) JP2023162459A (en)
WO (1) WO2022059424A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126920A (en) * 2001-10-23 2003-05-08 Sumitomo Metal Ind Ltd Hot press processing method
JP2003147499A (en) * 2001-11-07 2003-05-21 Sumitomo Metal Ind Ltd Steel sheet for hot press, and production method therefor
JP2013515618A (en) * 2009-12-29 2013-05-09 ポスコ Hot press forming method of plated steel material and hot press formed product using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126920A (en) * 2001-10-23 2003-05-08 Sumitomo Metal Ind Ltd Hot press processing method
JP2003147499A (en) * 2001-11-07 2003-05-21 Sumitomo Metal Ind Ltd Steel sheet for hot press, and production method therefor
JP2013515618A (en) * 2009-12-29 2013-05-09 ポスコ Hot press forming method of plated steel material and hot press formed product using the same

Also Published As

Publication number Publication date
JP2023162459A (en) 2023-11-09

Similar Documents

Publication Publication Date Title
US20090242613A1 (en) Method and apparatus of friction welding
US10882139B2 (en) Method for the additive manufacture of metallic components
JPH04224087A (en) Friction welding method and machine for practicing the same
US20190314927A1 (en) Friction stir spot welding method and friction stir spot welding device
CA2851920A1 (en) System and method for hot-forming blanks
CA2955279A1 (en) Method for heating steel sheets and device for carrying out the method
WO2022059424A1 (en) Heating device and metal material
US6932879B2 (en) Method of weldbonding
JP5026175B2 (en) Workpiece manufacturing method
RU2639078C2 (en) Method for melting metal material in melting unit and melting plant
US2337072A (en) Melting furnace
WO2019131446A1 (en) Workpiece heat treatment method and heat treatment device
EP1598440B1 (en) Method of gas carburizing
EP3763457A1 (en) Molding device, molding method, and metal pipe
US3506251A (en) Apparatus for the integrated welding and heat treating of hardenable parts
US7416614B2 (en) Method of gas carburizing
Savytsky et al. The Influence of Electric Arc Activation on the Speed of heating and the structure of metal in welds
JPH0576977A (en) Method and apparatus for high temperature die forging
JP2021154338A (en) Laser processing device
US20050115648A1 (en) Method of heat treatment of stainless steel
JP2009161785A (en) Heat treatment equipment for sizing press
JP3667934B2 (en) Method and apparatus for heat treatment of metal by vacuum arc
EP4302896A1 (en) Molding system
WO2022050074A1 (en) Molding mold
JPS609543A (en) Cooling method in thickening work

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP