WO2022050074A1 - Molding mold - Google Patents

Molding mold Download PDF

Info

Publication number
WO2022050074A1
WO2022050074A1 PCT/JP2021/030453 JP2021030453W WO2022050074A1 WO 2022050074 A1 WO2022050074 A1 WO 2022050074A1 JP 2021030453 W JP2021030453 W JP 2021030453W WO 2022050074 A1 WO2022050074 A1 WO 2022050074A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
region
metal pipe
thermal conductivity
molding die
Prior art date
Application number
PCT/JP2021/030453
Other languages
French (fr)
Japanese (ja)
Inventor
啓 山内
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2022050074A1 publication Critical patent/WO2022050074A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/047Mould construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/02Die constructions enabling assembly of the die parts in different ways

Definitions

  • the present invention relates to a molding die.
  • the molding apparatus provided with this molding has a fluid supply unit for supplying a fluid to the heated metal pipe material, and a molding mold for molding the molded product by bringing the expanded metal pipe material into contact with the molding surface. In this way, the heated metal material can be brought into contact with the molding die to perform molding and quenching at the same time.
  • the molding die described in Patent Document 1 described above when used, the molded product is quenched in the entire portion in contact with the molding die to have high strength. However, depending on the application, it may be required to partially reduce the strength of a part of the molded product. Therefore, it is required to easily adjust the strength in the molded product.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a molding die capable of easily adjusting the strength in a molded product.
  • the molding die according to one aspect of the present invention is a molding die for molding a heated metal material, and has a molding surface that comes into contact with the metal material during molding, and the molding surface is a first type that cools the metal material. It has a region of 1 and a second region formed of a low thermal conductivity material formed in a part of the molding surface and having a lower thermal conductivity than the first region.
  • the molding die has a molding surface that comes into contact with the metal material during molding.
  • This molded surface has a first region for cooling the metal material.
  • the first region can be quenched by cooling the metal material during molding.
  • the strength of the portion of the molded product molded by the first region is increased.
  • the molding surface has a second region formed of a part of the molding surface and made of a low thermal conductivity material having a lower thermal conductivity than the first region.
  • the second region can have a lower heat removal rate for the metallic material than the first region. Therefore, in the second region, a portion having a low strength can be formed in the molded product because the quenching is not performed (or the quenching is weak). From the above, it is possible to easily adjust the strength in the molded product.
  • the thermal conductivity of the low thermal conductivity material may be 30% or less in ratio to the thermal conductivity of the material constituting the first region. In this case, the heat removal rate for the metal material can be sufficiently delayed, and it becomes easy to form a portion that is not quenched.
  • the Young's modulus of the low thermal conductivity material may have a deviation of 10% or less from the Young's modulus of the material constituting the first region. In this case, when the molded surface is stressed, the difference between the amount of deformation in the first region and the amount of deformation in the second region can be reduced.
  • the expansion rate of the low thermal conductivity material may have a deviation of 30% or less from the expansion rate of the material constituting the first region. In this case, when the molded surface receives heat, the difference between the amount of deformation in the first region and the amount of deformation in the second region can be reduced.
  • the metal material is a metal pipe material, and the molding surface may have a second region at a portion where the pipe portion is molded. As a result, a portion having a low strength can be formed in the pipe portion.
  • the metal material is a metal pipe material with a flange, and the molded surface may have a second region at a portion where the flange portion is molded. As a result, a portion having a low strength can be formed on the flange portion.
  • FIG. 1 It is a schematic diagram of the molding apparatus to which the molding die which concerns on embodiment of this invention is applied. It is a perspective view of the metal pipe after molding. It is sectional drawing which shows the state of molding by a molding die. It is sectional drawing which shows the state of molding by a molding die. It is a plan view of the lower mold. It is a graph which shows the thermal conductivity of each substance. It is a graph which shows Young's modulus of each substance. It is a graph which shows the expansion rate of each substance. It is a graph which shows the thermal shock resistance of each substance. It is a conceptual graph of the temperature transition of the metal pipe material for realizing quenching. It is sectional drawing of the molding mold which concerns on the modification.
  • FIG. 1 is a schematic view of a molding apparatus 1 to which the molding die 2 according to the present embodiment is applied.
  • the molding apparatus 1 is an apparatus for forming a metal pipe having a hollow shape by blow molding.
  • the molding apparatus 1 is installed on a horizontal plane.
  • the molding apparatus 1 includes a molding die 2, a drive mechanism 3, a holding unit 4, a heating unit 5, a fluid supply unit 6, a cooling unit 7, and a control unit 8.
  • the metal pipe material 40 (metal material) refers to a hollow article before the completion of molding by the molding apparatus 1.
  • the metal pipe material 40 is a pipe material of a steel grade that can be hardened. Further, among the horizontal directions, the direction in which the metal pipe material 40 extends at the time of molding may be referred to as "longitudinal direction", and the direction orthogonal to the longitudinal direction may be referred to as "width direction”.
  • the mold 2 is a mold for molding a metal pipe 41 (molded product) from a metal pipe material 40, and includes a lower mold 11 and an upper mold 12 facing each other in the vertical direction.
  • the lower mold 11 and the upper mold 12 are made of steel blocks.
  • Each of the lower mold 11 and the upper mold 12 is provided with a recess for accommodating the metal pipe material 40.
  • the lower mold 11 and the upper mold 12 are in close contact with each other (mold closed state), and each recess forms a space having a target shape in which the metal pipe material is to be formed. Therefore, the surface of each concave portion becomes the molding surface of the molding die 2.
  • the lower mold 11 is fixed to the base 13 via a die holder or the like.
  • the upper mold 12 is fixed to the slide of the drive mechanism 3 via a die holder or the like.
  • the drive mechanism 3 is a mechanism for moving at least one of the lower mold 11 and the upper mold 12.
  • the drive mechanism 3 has a configuration in which only the upper mold 12 is moved.
  • the drive mechanism 3 includes a slide 21 that moves the upper mold 12 so that the lower mold 11 and the upper mold 12 meet each other, and a pull-back cylinder as an actuator that generates a force for pulling the slide 21 upward.
  • a 22 is provided, a main cylinder 23 as a drive source for downwardly pressurizing the slide 21, and a drive source 24 for applying a driving force to the main cylinder 23.
  • the holding portion 4 is a mechanism for holding the metal pipe material 40 arranged between the lower mold 11 and the upper mold 12.
  • the holding portion 4 holds the lower electrode 26 and the upper electrode 27 that hold the metal pipe material 40 on one end side in the longitudinal direction of the molding die 2, and the metal pipe material 40 on the other end side in the longitudinal direction of the molding die 2.
  • a lower electrode 26 and an upper electrode 27 for holding are provided.
  • the lower electrodes 26 and the upper electrodes 27 on both sides in the longitudinal direction hold the metal pipe material 40 by sandwiching the vicinity of the end portion of the metal pipe material 40 from the vertical direction.
  • Grooves having a shape corresponding to the outer peripheral surface of the metal pipe material 40 are formed on the upper surface of the lower electrode 26 and the lower surface of the upper electrode 27.
  • the lower electrode 26 and the upper electrode 27 are provided with a drive mechanism (not shown), and can move independently in the vertical direction.
  • the heating unit 5 is a mechanism for heating the metal pipe material 40 by energizing the metal pipe material 40.
  • the heating unit 5 is the metal pipe material in a state where the metal pipe material 40 is separated from the lower mold 11 and the upper mold 12 between the lower mold 11 and the upper mold 12. 40 is heated by energization.
  • the heating unit 5 includes the lower electrodes 26 and the upper electrodes 27 on both sides in the longitudinal direction described above, and a power supply 28 for passing a current through the electrodes 26 and 27 to the metal pipe material 40.
  • the heating unit may be arranged at a place where the pre-process of the molding apparatus 1 is performed and may be heated outside the molding die 2.
  • the fluid supply unit 6 is a mechanism for supplying a high-pressure fluid into the metal pipe material 40 held between the lower mold 11 and the upper mold 12.
  • the fluid supply unit 6 supplies a high-pressure fluid to the metal pipe material 40 that has been softened at a high temperature by being heated by the heating unit 5, and expands the metal pipe material 40.
  • the fluid supply unit 6 is provided on both ends of the molding die 2 in the longitudinal direction.
  • the fluid supply unit 6 is a nozzle 31 that supplies fluid from the opening at the end of the metal pipe material 40 to the inside of the metal pipe material 40, and a drive that moves the nozzle 31 forward and backward with respect to the opening of the metal pipe material 40.
  • a mechanism 32 and a supply source 33 for supplying a high-pressure fluid into the metal pipe material 40 via the nozzle 31 are provided.
  • the drive mechanism 32 brings the nozzle 31 into close contact with the end of the metal pipe material 40 while ensuring the sealing property during fluid supply and exhaust, and separates the nozzle 31 from the end of the metal pipe material 40 at other times.
  • the fluid supply unit 6 may supply a gas such as high-pressure air or an inert gas as the fluid. Further, the fluid supply unit 6 may be the same device including the heating unit 5 together with the holding unit 4 having a mechanism for moving the metal pipe material 40 in the vertical direction.
  • the cooling unit 7 is a mechanism for cooling the molding die 2. By cooling the molding die 2, the cooling unit 7 can rapidly cool the metal pipe material 40 when the expanded metal pipe material 40 comes into contact with the molding surface of the molding die 2.
  • the cooling unit 7 includes a flow path 36 formed inside the lower mold 11 and the upper mold 12, and a water circulation mechanism 37 that supplies and circulates cooling water to the flow path 36.
  • the control unit 8 is a device that controls the entire molding device 1.
  • the control unit 8 controls the drive mechanism 3, the holding unit 4, the heating unit 5, the fluid supply unit 6, and the cooling unit 7.
  • the control unit 8 repeatedly performs an operation of molding the metal pipe material 40 with the molding die 2.
  • control unit 8 controls, for example, the transfer timing from a transfer device such as a robot arm, and puts the metal pipe material 40 between the lower mold 11 and the upper mold 12 in the open state. Deploy. Alternatively, the control unit 8 may manually arrange the metal pipe material 40 between the lower mold 11 and the upper mold 12. Further, the control unit 8 supports the metal pipe material 40 with the lower electrodes 26 on both sides in the longitudinal direction, and then lowers the upper electrode 27 to sandwich the metal pipe material 40, such as an actuator of the holding unit 4. Control. Further, the control unit 8 controls the heating unit 5 to energize and heat the metal pipe material 40. As a result, an axial current flows through the metal pipe material 40, and the electric resistance of the metal pipe material 40 itself causes the metal pipe material 40 itself to generate heat due to Joule heat.
  • a transfer device such as a robot arm
  • the control unit 8 controls the drive mechanism 3 to lower the upper mold 12 and bring it closer to the lower mold 11 to close the mold 2.
  • the control unit 8 controls the fluid supply unit 6 to seal the openings at both ends of the metal pipe material 40 with the nozzle 31 and supply the fluid.
  • the metal pipe material 40 softened by heating expands and comes into contact with the molding surface of the molding die 2.
  • the metal pipe material 40 is molded so as to follow the shape of the molding surface of the molding die 2.
  • a part of the metal pipe material 40 is inserted into the gap between the lower mold 11 and the upper mold 12, and then the mold is further closed. The entrance portion is crushed to form a flange portion.
  • the metal pipe material 40 comes into contact with the molding surface, the metal pipe material 40 is quenched by quenching with the molding mold 2 cooled by the cooling unit 7.
  • a case where a high-strength metal pipe 41 is formed by quenching a metal pipe material 40 of a certain manganese boron steel will be described as an example.
  • 200 ° C. is set as the cooling end temperature (obtained from a generally known CCM curve) as a temperature that does not enter the B transformation range regardless of time.
  • the cooling end temperature obtained from a generally known CCM curve
  • FIG. 10 is a conceptual graph of the temperature transition of the metal pipe material 40 for realizing such quenching.
  • the control unit 8 heats the metal pipe material 40 to 850 ° C. or higher (T1). After heating, the metal pipe material 40 is exposed to the atmosphere until it comes into contact with the mold 2, so that it is cooled by natural heat dissipation (T2). Here, control is performed so that the temperature does not fall below 850 ° C. by the start of molding. By bringing the molding die 2 into contact with the metal pipe material 40, molding is performed and cooling is performed (T3). At this time, while the molding die 2 is used to remove heat at a cooling rate of ⁇ 30 ° C./s or less, the control unit 8 controls to continue cooling until the cooling completion temperature becomes 200 ° C. or lower. After that, when the molding die 2 is opened and the metal pipe 41 is taken out, it switches to natural heat dissipation (T4).
  • T4 natural heat dissipation
  • the molding apparatus 1 can perform quenching of the metal pipe material 40 by quenching with the molding die 2, the metal pipe 41 that has been quenched as a whole is molded. Can be done. However, in the present embodiment, the molding apparatus 1 may form a portion of the metal pipe 41 that is not intentionally hardened (hereinafter, may be referred to as a “non-quenched portion 50”). can. Hereinafter, the non-quenched portion 50 will be described with reference to FIGS. 2 to 5.
  • FIG. 2 is a perspective view of the metal pipe 41 after molding.
  • 3 and 4 are cross-sectional views showing a state of molding by the molding die 2.
  • FIG. 3A shows a cross-sectional view of the molding die 2 at a position (see FIG. 5) where the second region E2 exists in the longitudinal direction of the molding die 2.
  • FIG. 3B shows a cross-sectional view of the mold 2 at a position (see FIG. 5) where the second region E2 does not exist in the longitudinal direction of the mold 2.
  • 4 (a) is a cross-sectional view showing a state when the portion of FIG. 3 (a) is molded
  • FIG. 4 (b) shows a state when the portion of FIG. 3 (b) is molded. It is sectional drawing which shows.
  • FIG. 5 is a plan view of the lower mold 11.
  • the metal pipe 41 which is a molded product, will be described with reference to FIG.
  • the metal pipe 41 includes a molded main body portion 45 having a pipe portion 43 and a flange portion 44, a held portion 46 on both ends in the longitudinal direction, and a gradual change portion 47 between the molded main body portion 45 and the held portion 46.
  • the molding main body portion 45 is a portion that becomes a final product by being laser-processed or the like.
  • the pipe portion 43 is a hollow portion.
  • the flange portion 44 is a multi-layered plate-shaped portion that protrudes from the pipe portion 43 by crushing a part of the metal pipe material 40.
  • the held portion 46 is a cylindrical portion held by the electrodes 26 and 27.
  • the nozzle 31 is inserted into the held portion 46.
  • the gradual change portion 47 is a transition portion that changes from the shape of the held portion 46 to the shape of the molding main body portion 45.
  • a non-quenched portion 50 that is not hardened is formed in a part of one of the flange portions 44 in the width direction.
  • the entire area of the metal pipe 41 other than the non-quenched portion 50 is the hardened portion 51.
  • the portion with the gray scale is the non-quenched portion 50, and the portion without the gray scale is the hardened portion 51.
  • the non-quenched portion 50 is formed in the vicinity of the central position in the longitudinal direction of one of the flange portions 44.
  • the non-quenched portion 50 is formed on both sides of the flange portion 44 in the thickness direction.
  • the molds 11 and 12 have a molding surface 60 that comes into contact with the metal pipe material 40 during molding.
  • the molding surface 60 has a pipe portion forming surface 61 for forming the pipe portion 43 and a flange portion forming surface 62 for forming the flange portion 44.
  • the control unit 8 closes the molding die 2 and supplies a fluid to the metal pipe material 40 by the fluid supply unit 6 to perform blow molding (primary). blow).
  • the control unit 8 forms the pipe portion 43 with the main cavity portion MC formed by the pipe portion forming surface 61, and causes the portion corresponding to the flange portion 44 to enter the sub-cavity portion SC formed by the flange portion forming surface 62.
  • the control unit 8 forms the flange portion 44 by further closing the molding die 2 and further crushing the portion that has entered the subcavity portion SC. do.
  • the control unit 8 raises the upper mold 12 and separates it from the metal pipe material 40 to open the mold. As a result, the metal pipe 41 is formed.
  • the molding surface 60 has a first region E1 and a second region E2.
  • the first region E1 is a region for cooling the metal pipe material 40.
  • the hardened portion 51 of the metal pipe 41 is formed by quenching the metal pipe material 40.
  • the second region E2 is a region formed in a part of the molding surface 60 and composed of the low thermal conductivity material 64 having a lower thermal conductivity than the first region E1.
  • the second region E2 forms the non-quenched portion 50 of the metal pipe 41 by preventing the metal pipe material 40 from being hardened.
  • a second region E2 is formed on the flange portion molding surface 62 on one side of the molds 11 and 12. .. Further, as shown in FIG. 2, the non-quenched portion 50 is formed only in a part of the central position in the longitudinal direction of the flange portion 44. Therefore, as shown in FIG. 5, the second region E2 is also formed only in a part of the central position in the longitudinal direction of the flange portion forming surface 62. As shown in FIG. 2, since the portion of the metal pipe 41 other than the non-quenched portion 50 is the hardened portion 51, the molded surface 60 is also the first region E1 except for the second region E2.
  • the second region E2 is configured by replacing the materials of the molds 11 and 12 in the corresponding portions with the low thermal conductivity material 64. Specifically, a recess is formed in the flange portion forming surface 62, and the low thermal conductivity material 64 is arranged in the recess. At this time, of the low thermal conductivity material 64, the surface exposed to the outside becomes the second region E2 of the molded surface 60. In the flange portion forming surface 62, the low thermal conductivity material 64 is arranged so that a step does not occur at the boundary portion between the portion corresponding to the first region E1 and the portion corresponding to the second region E2. ..
  • the low thermal conductivity material 64 will be described. Further, in the following description, zirconia ceramic is exemplified as an example of the low thermal conductivity material 64, and carbon steel is exemplified as the material of the molds 11 and 12, that is, the material constituting the first region E1. There is. However, the material is not limited to these.
  • the thermal conductivity of the low thermal conductivity material 64 is preferably 30% or less in proportion to the thermal conductivity of the material constituting the first region E1.
  • the thermal conductivity of carbon steel that can be used as a material for the dies 11 and 12 is equivalent to 40 ⁇ 10 [W / (m / K)].
  • the thermal conductivity of the zirconia ceramic that can be used as the low thermal conductivity material 64 is equivalent to 4 ⁇ 10 [W / (m / K)]. Therefore, the heat flux on the surface of the metal pipe material 40 in contact with the second region E2 can be limited to about 10% as compared with the first region E1, and the heat extraction rate can be locally delayed. can.
  • the Young's modulus of the low thermal conductivity material 64 preferably has a deviation of 10% or less from the Young's modulus of the material constituting the first region E1.
  • the Young's modulus of carbon steel that can be used as the material of the dies 11 and 12 and the Young's modulus of the zirconia ceramic that can be used as the low thermal conductivity material 64 are almost the same value. Therefore, when the first region E1 and the second region E2 are stressed during molding, the amount of deformation of both is continuous, so that the amount of deformation is not large, such as damage to the parts of the low thermal conductivity material 64. It is possible to avoid damage caused by the uniformity.
  • the expansion rate of the low thermal conductivity material 64 preferably has a deviation of 30% or less from the expansion rate of the material constituting the first region E1.
  • the coefficient of thermal expansion of carbon steel that can be used as the material of the dies 11 and 12 and the coefficient of thermal expansion of the zirconia ceramic that can be used as the low thermal conductivity material 64 are almost the same value. Therefore, when the first region E1 and the second region E2 receive heat during molding, the amount of deformation of both is continuous. Therefore, it is possible to avoid damage caused by the non-uniform deformation amount, such as damage to the parts of the low thermal conductivity material 64.
  • zirconia ceramic has a characteristic that it is difficult to transfer heat, an average temperature deviation can occur between the molds 11 and 12 and the low thermal conductivity material 64. Therefore, when the second region E2 is wide, it is preferable to take measures such as providing a gap by appropriately dividing the second region E2 so as not to cause damage due to the deviation of the average temperature.
  • the heat impact resistance of the low thermal conductivity material 64 is preferably high.
  • alumina-based ceramics which are known as the most common industrial ceramics, are prone to cracking and breakage due to a sudden temperature difference.
  • the zirconia ceramic that can be used as the low thermal conductivity material 64 has a larger thermal shock temperature difference than the alumina-based ceramic.
  • the zirconia ceramic has good crack resistance due to contact with a high-temperature material when the average temperature of the low thermal conductivity material 64 is low, such as at the start of operation of the molding apparatus 1.
  • the molding die 2 has a molding surface 60 that comes into contact with the metal pipe material 40 during molding.
  • the molded surface 60 has a first region E1 for cooling the metal pipe material 40.
  • the first region E1 can be quenched by cooling the metal pipe material 40 at the time of molding.
  • the strength of the hardened portion 51 formed by the first region E1 of the metal pipe 41 is increased.
  • the molding surface 60 has a second region E2 formed of a part of the molding surface 60 and composed of a low thermal conductivity material 64 having a lower thermal conductivity than the first region E1.
  • the second region E2 can have a lower heat extraction rate with respect to the metal pipe material 40 than the first region E1. Therefore, in the second region E2, a non-quenched portion 51 having a low strength can be formed in the metal pipe 41 by not quenching (or weakly quenching). From the above, the strength in the metal pipe 41 can be easily adjusted.
  • Rail parts are high-strength parts
  • B-pillars are also high-strength parts in general.
  • the high-strength parts are joined by spot welding or the like, so that the welding quality may deteriorate. That is, in the body assembly process by spot welding, in a high-strength portion, the applied pressure of the spot welder may not be sufficient to obtain a sufficient load for plastically deforming the spot portion of the part to be welded.
  • the current-carrying portion may not be sufficiently brought into close contact with the electrode pressing force (several hundred kilometers) of the spot welder.
  • the non-quenched portion 50 can be formed at the welded portion of the roof part and the B pillar. Therefore, spot welding can be easily performed, and the welding quality can be improved.
  • the use of the metal pipe 41 on which the non-quenched portion 50 is formed is not limited to such a skeleton member of an automobile, and can be applied to various uses.
  • the thermal conductivity of the low thermal conductivity material 64 may have a ratio of 30% or less to the thermal conductivity of the material constituting the first region E1. In this case, the heat removal rate for the metal pipe material 40 can be sufficiently delayed, and it becomes easy to form a portion that is not quenched.
  • the Young's modulus of the low thermal conductivity material 64 may have a deviation of 10% or less from the Young's modulus of the material constituting the first region E1. In this case, when the molded surface 60 is stressed, the difference between the amount of deformation of the first region E1 and the amount of deformation of the second region E2 can be reduced.
  • the expansion rate of the low thermal conductivity material 64 may have a deviation of 30% or less from the expansion rate of the material constituting the first region E1. In this case, when the molding surface 60 receives heat, the difference between the amount of deformation of the first region E1 and the amount of deformation of the second region E2 can be reduced.
  • the metal material is a metal pipe material 40 with a flange, and the molding surface 60 may have a second region E2 at a position where the flange portion 44 is molded. As a result, a portion having a low strength can be formed on the flange portion 44.
  • the present invention is not limited to the above-described embodiment.
  • a molding apparatus that supplies a high-pressure fluid to a heated metal pipe material to expand it and bring it into contact with a molding die to perform molding is exemplified.
  • the molding apparatus to which the molding die of the present invention is applied is not particularly limited as long as it molds a heated metal material, and may be applied to a molding apparatus such as hot stamping.
  • the second region E2 is not limited to the form provided on the flange portion molding surface 62 of the molding die 2, and as shown in FIG. 11, the second region E2 may be provided on the pipe portion molding surface 61. That is, the metal material is the metal pipe material 40, and the molding surface 60 may have a second region E2 at a position where the pipe portion 43 is molded. As a result, a portion having a low strength can be formed in the pipe portion 43. Although the flange portion 44 is easy to weld, it requires a space corresponding to the width of the flange portion 44. On the other hand, by providing the second region E2 on the pipe portion 43 itself, it is possible to directly weld to the pipe portion 43 without limiting the width of the flange portion 44. When the non-quenched portion is provided in the pipe portion 43, the non-quenched portion may be formed in the vicinity of the end portion of the metal pipe material 40 in order to facilitate spot welding with other members.
  • Molding mold 40 ... Metal pipe material (metal material), 60 ... Molding surface, 64 ... Low thermal conductivity material, E1 ... First region, E2 ... Second region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

This molding mold is for molding a heated metal material, wherein the molding mold includes: a first region which has a molding surface that comes into contact with the metal material when molding is performed, the molding surface being for cooling the metal material; and a second region which is formed on a section of the molding surface, and which is constituted by a low thermal-conductivity material having a lower thermal conductivity as compared to the first region.

Description

成形型Molding mold
 本発明は、成形型に関する。 The present invention relates to a molding die.
 従来、成形型として、特許文献1に記載されたものが知られている。この成形型を備える成形装置は、加熱された金属パイプ材料に流体を供給する流体供給部と、膨張した金属パイプ材料を成形面に接触させることで成形品を成形する成形型と、を有する。このように、加熱された金属材料を成形型と接触させて成形を行うと同時に焼き入れを行うことができる。 Conventionally, as a molding die, the one described in Patent Document 1 is known. The molding apparatus provided with this molding has a fluid supply unit for supplying a fluid to the heated metal pipe material, and a molding mold for molding the molded product by bringing the expanded metal pipe material into contact with the molding surface. In this way, the heated metal material can be brought into contact with the molding die to perform molding and quenching at the same time.
特開2009-220141号公報Japanese Unexamined Patent Publication No. 2009-220141
 ここで、上述の特許文献1に記載の成形型を用いた場合、成形品は、成形型と接触した部分の全体に焼き入れがなされ、高強度となる。しかしながら、用途などによっては成形品の一部の強度を部分的に低くすることが求められる場合がある。従って、成形品内での強度の調整を容易に行うことが求められる。 Here, when the molding die described in Patent Document 1 described above is used, the molded product is quenched in the entire portion in contact with the molding die to have high strength. However, depending on the application, it may be required to partially reduce the strength of a part of the molded product. Therefore, it is required to easily adjust the strength in the molded product.
 本発明は、このような課題を解決するためになされたものであり、成形品内での強度の調整を容易に行うことができる成形型を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a molding die capable of easily adjusting the strength in a molded product.
 本発明の一態様に係る成形型は、加熱された金属材料の成形を行う成形型であって、成形時に金属材料と接触する成形面を有し、成形面は、金属材料を冷却する第1の領域と、成形面の一部に形成され、第1の領域に比して熱伝導率が低い低熱伝導率材料によって構成される第2の領域と、を有する。 The molding die according to one aspect of the present invention is a molding die for molding a heated metal material, and has a molding surface that comes into contact with the metal material during molding, and the molding surface is a first type that cools the metal material. It has a region of 1 and a second region formed of a low thermal conductivity material formed in a part of the molding surface and having a lower thermal conductivity than the first region.
 成形型は、成形時に金属材料と接触する成形面を有する。この成形面は、金属材料を冷却する第1の領域を有する。第1の領域は、成形時に金属材料を冷却することで焼き入れを行うことができる。これにより、成形品のうち、第1の領域によって成形された部分の強度は高くなる。その一方、成形面は、成形面の一部に形成され、第1の領域に比して熱伝導率が低い低熱伝導率材料によって構成される第2の領域を有する。第2の領域は、第1の領域に比して金属材料に対する抜熱速度を低くすることができる。そのため、第2の領域は、成形品内に、焼き入れがなされない(あるいは焼き入れが弱い)ことにより、強度が低くなる部分を形成することができる。以上より、成形品内での強度の調整を容易に行うことができる。 The molding die has a molding surface that comes into contact with the metal material during molding. This molded surface has a first region for cooling the metal material. The first region can be quenched by cooling the metal material during molding. As a result, the strength of the portion of the molded product molded by the first region is increased. On the other hand, the molding surface has a second region formed of a part of the molding surface and made of a low thermal conductivity material having a lower thermal conductivity than the first region. The second region can have a lower heat removal rate for the metallic material than the first region. Therefore, in the second region, a portion having a low strength can be formed in the molded product because the quenching is not performed (or the quenching is weak). From the above, it is possible to easily adjust the strength in the molded product.
 低熱伝導率材料の熱伝導率は、第1の領域を構成する材料の熱伝導率に対する比が30%以下であってよい。この場合、金属材料に対する抜熱速度を十分に遅らせることができ、焼き入れがなされない部分を形成し易くなる。 The thermal conductivity of the low thermal conductivity material may be 30% or less in ratio to the thermal conductivity of the material constituting the first region. In this case, the heat removal rate for the metal material can be sufficiently delayed, and it becomes easy to form a portion that is not quenched.
 低熱伝導率材料のヤング率は、第1の領域を構成する材料のヤング率に対する偏差が10%以下であってよい。この場合、成形面が応力を受けた場合に、第1の領域の変形量と第2の領域の変形量との差と小さくすることができる。 The Young's modulus of the low thermal conductivity material may have a deviation of 10% or less from the Young's modulus of the material constituting the first region. In this case, when the molded surface is stressed, the difference between the amount of deformation in the first region and the amount of deformation in the second region can be reduced.
 低熱伝導率材料の膨張率は、第1の領域を構成する材料の膨張率に対する偏差が30%以下であってよい。この場合、成形面が熱を受けた場合に、第1の領域の変形量と第2の領域の変形量との差を小さくすることができる。 The expansion rate of the low thermal conductivity material may have a deviation of 30% or less from the expansion rate of the material constituting the first region. In this case, when the molded surface receives heat, the difference between the amount of deformation in the first region and the amount of deformation in the second region can be reduced.
 金属材料は、金属パイプ材料であり、成形面は、パイプ部を成形する箇所に第2の領域を有してよい。これにより、パイプ部に強度が低くなる部分を形成できる。 The metal material is a metal pipe material, and the molding surface may have a second region at a portion where the pipe portion is molded. As a result, a portion having a low strength can be formed in the pipe portion.
 金属材料は、フランジ付きの金属パイプ材料であり、成形面は、フランジ部を成形する箇所に第2の領域を有してよい。これにより、フランジ部に強度が低くなる部分を形成できる。 The metal material is a metal pipe material with a flange, and the molded surface may have a second region at a portion where the flange portion is molded. As a result, a portion having a low strength can be formed on the flange portion.
 本発明によれば、成形品内での強度の調整を容易に行うことができる成形型を提供することができる。 According to the present invention, it is possible to provide a molding die capable of easily adjusting the strength in the molded product.
本発明の実施形態に係る成形型が適用される成形装置の概略図である。It is a schematic diagram of the molding apparatus to which the molding die which concerns on embodiment of this invention is applied. 成形後の金属パイプの斜視図である。It is a perspective view of the metal pipe after molding. 成形型による成形の様子を示す断面図である。It is sectional drawing which shows the state of molding by a molding die. 成形型による成形の様子を示す断面図である。It is sectional drawing which shows the state of molding by a molding die. 下側の金型の平面図である。It is a plan view of the lower mold. 各物質の熱伝導率を示すグラフである。It is a graph which shows the thermal conductivity of each substance. 各物質のヤング率を示すグラフである。It is a graph which shows Young's modulus of each substance. 各物質の膨張率を示すグラフである。It is a graph which shows the expansion rate of each substance. 各物質の耐熱衝撃性を示すグラフである。It is a graph which shows the thermal shock resistance of each substance. 焼き入れを実現するための金属パイプ材料の温度遷移の概念グラフである。It is a conceptual graph of the temperature transition of the metal pipe material for realizing quenching. 変形例に係る成形型の断面図である。It is sectional drawing of the molding mold which concerns on the modification.
 以下、本発明の好適な実施形態について図面を参照しながら説明する。なお、各図において同一部分又は相当部分には同一符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, the same parts or corresponding parts are designated by the same reference numerals, and duplicate description will be omitted.
 図1は、本実施形態に係る成形型2が適用される成形装置1の概略図である。図1に示すように、成形装置1は、ブロー成形によって中空形状を有する金属パイプを成形する装置である。本実施形態では、成形装置1は、水平面上に設置される。成形装置1は、成形型2と、駆動機構3と、保持部4と、加熱部5と、流体供給部6と、冷却部7と、制御部8と、を備える。なお、本明細書において、金属パイプ材料40(金属材料)は、成形装置1での成形完了前の中空物品を指す。金属パイプ材料40は、焼入れ可能な鋼種のパイプ材料である。また、水平方向のうち、成形時において金属パイプ材料40が延びる方向を「長手方向」と称し、長手方向と直交する方向を「幅方向」と称する場合がある。 FIG. 1 is a schematic view of a molding apparatus 1 to which the molding die 2 according to the present embodiment is applied. As shown in FIG. 1, the molding apparatus 1 is an apparatus for forming a metal pipe having a hollow shape by blow molding. In this embodiment, the molding apparatus 1 is installed on a horizontal plane. The molding apparatus 1 includes a molding die 2, a drive mechanism 3, a holding unit 4, a heating unit 5, a fluid supply unit 6, a cooling unit 7, and a control unit 8. In the present specification, the metal pipe material 40 (metal material) refers to a hollow article before the completion of molding by the molding apparatus 1. The metal pipe material 40 is a pipe material of a steel grade that can be hardened. Further, among the horizontal directions, the direction in which the metal pipe material 40 extends at the time of molding may be referred to as "longitudinal direction", and the direction orthogonal to the longitudinal direction may be referred to as "width direction".
 成形型2は、金属パイプ材料40から金属パイプ41(成形品)を成形する型であり、上下方向に互いに対向する下側の金型11及び上側の金型12を備える。下側の金型11及び上側の金型12は、鋼鉄製ブロックで構成される。下側の金型11及び上側の金型12のそれぞれには、金属パイプ材料40が収容される凹部が設けられる。下側の金型11と上側の金型12は、互いに密接した状態(型閉状態)で、各々の凹部が金属パイプ材料を成形すべき目標形状の空間を形成する。従って、各々の凹部の表面が成形型2の成形面となる。下側の金型11は、ダイホルダ等を介して基台13に固定される。上側の金型12は、ダイホルダ等を介して駆動機構3のスライドに固定される。 The mold 2 is a mold for molding a metal pipe 41 (molded product) from a metal pipe material 40, and includes a lower mold 11 and an upper mold 12 facing each other in the vertical direction. The lower mold 11 and the upper mold 12 are made of steel blocks. Each of the lower mold 11 and the upper mold 12 is provided with a recess for accommodating the metal pipe material 40. The lower mold 11 and the upper mold 12 are in close contact with each other (mold closed state), and each recess forms a space having a target shape in which the metal pipe material is to be formed. Therefore, the surface of each concave portion becomes the molding surface of the molding die 2. The lower mold 11 is fixed to the base 13 via a die holder or the like. The upper mold 12 is fixed to the slide of the drive mechanism 3 via a die holder or the like.
 駆動機構3は、下側の金型11及び上側の金型12の少なくとも一方を移動させる機構である。図1では、駆動機構3は、上側の金型12のみを移動させる構成を有する。駆動機構3は、下側の金型11及び上側の金型12同士が合わさるように上側の金型12を移動させるスライド21と、上記スライド21を上側へ引き上げる力を発生させるアクチュエータとしての引き戻しシリンダ22と、スライド21を下降加圧する駆動源としてのメインシリンダ23と、メインシリンダ23に駆動力を付与する駆動源24と、を備えている。 The drive mechanism 3 is a mechanism for moving at least one of the lower mold 11 and the upper mold 12. In FIG. 1, the drive mechanism 3 has a configuration in which only the upper mold 12 is moved. The drive mechanism 3 includes a slide 21 that moves the upper mold 12 so that the lower mold 11 and the upper mold 12 meet each other, and a pull-back cylinder as an actuator that generates a force for pulling the slide 21 upward. A 22 is provided, a main cylinder 23 as a drive source for downwardly pressurizing the slide 21, and a drive source 24 for applying a driving force to the main cylinder 23.
 保持部4は、下側の金型11及び上側の金型12の間に配置される金属パイプ材料40を保持する機構である。保持部4は、成形型2の長手方向における一端側にて金属パイプ材料40を保持する下側電極26及び上側電極27と、成形型2の長手方向における他端側にて金属パイプ材料40を保持する下側電極26及び上側電極27と、を備える。長手方向の両側の下側電極26及び上側電極27は、金属パイプ材料40の端部付近を上下方向から挟み込むことによって、当該金属パイプ材料40を保持する。なお、下側電極26の上面及び上側電極27の下面には、金属パイプ材料40の外周面に対応する形状を有する溝部が形成される。下側電極26及び上側電極27には、図示されない駆動機構が設けられており、それぞれ独立して上下方向へ移動することができる。 The holding portion 4 is a mechanism for holding the metal pipe material 40 arranged between the lower mold 11 and the upper mold 12. The holding portion 4 holds the lower electrode 26 and the upper electrode 27 that hold the metal pipe material 40 on one end side in the longitudinal direction of the molding die 2, and the metal pipe material 40 on the other end side in the longitudinal direction of the molding die 2. A lower electrode 26 and an upper electrode 27 for holding are provided. The lower electrodes 26 and the upper electrodes 27 on both sides in the longitudinal direction hold the metal pipe material 40 by sandwiching the vicinity of the end portion of the metal pipe material 40 from the vertical direction. Grooves having a shape corresponding to the outer peripheral surface of the metal pipe material 40 are formed on the upper surface of the lower electrode 26 and the lower surface of the upper electrode 27. The lower electrode 26 and the upper electrode 27 are provided with a drive mechanism (not shown), and can move independently in the vertical direction.
 加熱部5は、金属パイプ材料40へ通電することで当該金属パイプ材料40を加熱する機構である。加熱部5は、下側の金型11及び上側の金型12の間にて、下側の金型11及び上側の金型12から金属パイプ材料40が離間した状態にて、当該金属パイプ材料40を通電により加熱する。加熱部5は、上述の長手方向の両側の下側電極26及び上側電極27と、これらの電極26,27を介して金属パイプ材料40へ電流を流す電源28と、を備える。なお、加熱部は、成形装置1の前工程を行う場所に配置され、成形型2の外部で加熱をするものであっても良い。 The heating unit 5 is a mechanism for heating the metal pipe material 40 by energizing the metal pipe material 40. The heating unit 5 is the metal pipe material in a state where the metal pipe material 40 is separated from the lower mold 11 and the upper mold 12 between the lower mold 11 and the upper mold 12. 40 is heated by energization. The heating unit 5 includes the lower electrodes 26 and the upper electrodes 27 on both sides in the longitudinal direction described above, and a power supply 28 for passing a current through the electrodes 26 and 27 to the metal pipe material 40. The heating unit may be arranged at a place where the pre-process of the molding apparatus 1 is performed and may be heated outside the molding die 2.
 流体供給部6は、下側の金型11及び上側の金型12の間に保持された金属パイプ材料40内に高圧の流体を供給するための機構である。流体供給部6は、加熱部5で加熱されることで高温軟化状態となった金属パイプ材料40に高圧の流体を供給して、金属パイプ材料40を膨張させる。流体供給部6は、成形型2の長手方向の両端側に設けられる。流体供給部6は、金属パイプ材料40の端部の開口部から当該金属パイプ材料40の内部へ流体を供給するノズル31と、ノズル31を金属パイプ材料40の開口部に対して進退移動させる駆動機構32と、ノズル31を介して金属パイプ材料40内へ高圧の流体を供給する供給源33と、を備える。駆動機構32は、流体供給時及び排気時にはノズル31を金属パイプ材料40の端部にシール性を確保した状態で密着させ、その他の時にはノズル31を金属パイプ材料40の端部から離間させる。なお、流体供給部6は、流体として、高圧の空気や不活性ガスなどの気体を供給してよい。また、流体供給部6は、金属パイプ材料40を上下方向へ移動する機構を有する保持部4とともに、加熱部5を含めて同一装置としても良い。 The fluid supply unit 6 is a mechanism for supplying a high-pressure fluid into the metal pipe material 40 held between the lower mold 11 and the upper mold 12. The fluid supply unit 6 supplies a high-pressure fluid to the metal pipe material 40 that has been softened at a high temperature by being heated by the heating unit 5, and expands the metal pipe material 40. The fluid supply unit 6 is provided on both ends of the molding die 2 in the longitudinal direction. The fluid supply unit 6 is a nozzle 31 that supplies fluid from the opening at the end of the metal pipe material 40 to the inside of the metal pipe material 40, and a drive that moves the nozzle 31 forward and backward with respect to the opening of the metal pipe material 40. A mechanism 32 and a supply source 33 for supplying a high-pressure fluid into the metal pipe material 40 via the nozzle 31 are provided. The drive mechanism 32 brings the nozzle 31 into close contact with the end of the metal pipe material 40 while ensuring the sealing property during fluid supply and exhaust, and separates the nozzle 31 from the end of the metal pipe material 40 at other times. The fluid supply unit 6 may supply a gas such as high-pressure air or an inert gas as the fluid. Further, the fluid supply unit 6 may be the same device including the heating unit 5 together with the holding unit 4 having a mechanism for moving the metal pipe material 40 in the vertical direction.
 冷却部7は、成形型2を冷却する機構である。冷却部7は、成形型2を冷却することで、膨張した金属パイプ材料40が成形型2の成形面と接触したときに、金属パイプ材料40を急速に冷却することができる。冷却部7は、下側の金型11及び上側の金型12の内部に形成された流路36と、流路36へ冷却水を供給して循環させる水循環機構37と、を備える。 The cooling unit 7 is a mechanism for cooling the molding die 2. By cooling the molding die 2, the cooling unit 7 can rapidly cool the metal pipe material 40 when the expanded metal pipe material 40 comes into contact with the molding surface of the molding die 2. The cooling unit 7 includes a flow path 36 formed inside the lower mold 11 and the upper mold 12, and a water circulation mechanism 37 that supplies and circulates cooling water to the flow path 36.
 制御部8は、成形装置1全体を制御する装置である。制御部8は、駆動機構3、保持部4、加熱部5、流体供給部6、及び冷却部7を制御する。制御部8は、金属パイプ材料40を成形型2で成形する動作を繰り返し行う。 The control unit 8 is a device that controls the entire molding device 1. The control unit 8 controls the drive mechanism 3, the holding unit 4, the heating unit 5, the fluid supply unit 6, and the cooling unit 7. The control unit 8 repeatedly performs an operation of molding the metal pipe material 40 with the molding die 2.
 具体的に、制御部8は、例えば、ロボットアーム等の搬送装置からの搬送タイミングを制御して、開いた状態の下側の金型11及び上側の金型12の間に金属パイプ材料40を配置する。あるいは、制御部8は、作業者が手動で下側の金型11及び上側の金型12の間に金属パイプ材料40を配置してよい。また、制御部8は、長手方向の両側の下側電極26で金属パイプ材料40を支持し、その後に上側電極27を降ろして当該金属パイプ材料40を挟むように、保持部4のアクチュエータ等を制御する。また、制御部8は、加熱部5を制御して、金属パイプ材料40を通電加熱する。これにより、金属パイプ材料40に軸方向の電流が流れ、金属パイプ材料40自身の電気抵抗により、金属パイプ材料40自体がジュール熱によって発熱する。 Specifically, the control unit 8 controls, for example, the transfer timing from a transfer device such as a robot arm, and puts the metal pipe material 40 between the lower mold 11 and the upper mold 12 in the open state. Deploy. Alternatively, the control unit 8 may manually arrange the metal pipe material 40 between the lower mold 11 and the upper mold 12. Further, the control unit 8 supports the metal pipe material 40 with the lower electrodes 26 on both sides in the longitudinal direction, and then lowers the upper electrode 27 to sandwich the metal pipe material 40, such as an actuator of the holding unit 4. Control. Further, the control unit 8 controls the heating unit 5 to energize and heat the metal pipe material 40. As a result, an axial current flows through the metal pipe material 40, and the electric resistance of the metal pipe material 40 itself causes the metal pipe material 40 itself to generate heat due to Joule heat.
 制御部8は、駆動機構3を制御して上側の金型12を降ろして下側の金型11に近接させ、成形型2の型閉を行う。その一方、制御部8は、流体供給部6を制御して、ノズル31で金属パイプ材料40の両端の開口部をシールすると共に、流体を供給する。これにより、加熱により軟化した金属パイプ材料40が膨張して成形型2の成形面と接触する。そして、金属パイプ材料40は、成形型2の成形面の形状に沿うように成形される。なお、フランジ付きの金属パイプを形成する場合、下側の金型11と上側の金型12との間の隙間に金属パイプ材料40の一部を進入させた後、更に型閉を行って、当該進入部を押しつぶしてフランジ部とする。金属パイプ材料40が成形面に接触すると、冷却部7で冷却された成形型2で急冷されることによって、金属パイプ材料40の焼き入れが実施される。 The control unit 8 controls the drive mechanism 3 to lower the upper mold 12 and bring it closer to the lower mold 11 to close the mold 2. On the other hand, the control unit 8 controls the fluid supply unit 6 to seal the openings at both ends of the metal pipe material 40 with the nozzle 31 and supply the fluid. As a result, the metal pipe material 40 softened by heating expands and comes into contact with the molding surface of the molding die 2. Then, the metal pipe material 40 is molded so as to follow the shape of the molding surface of the molding die 2. When forming a metal pipe with a flange, a part of the metal pipe material 40 is inserted into the gap between the lower mold 11 and the upper mold 12, and then the mold is further closed. The entrance portion is crushed to form a flange portion. When the metal pipe material 40 comes into contact with the molding surface, the metal pipe material 40 is quenched by quenching with the molding mold 2 cooled by the cooling unit 7.
 例えば、あるマンガンボロン鋼の金属パイプ材料40を焼き入れによって高強度の金属パイプ41を成形する場合を例として説明する。850℃の材料を冷却する場合、時間によらずB変態範囲に進入しない温度として200℃を冷却終了温度とする(一般的に知られるCCM曲線から得られる)。このとき、冷却速度によって硬度が変化することが知られているため、例えば、-30℃/sの冷却速度で材料を冷却することで、Hv450相当の硬度の金属パイプ41を得られる。図10は、このような焼き入れを実現するための金属パイプ材料40の温度遷移の概念グラフである。制御部8は、金属パイプ材料40を850℃以上まで加熱する(T1)。加熱後、金属パイプ材料40が成形型2と接触するまでの間は大気にさらされるため自然放熱による冷却がなされる(T2)。ここでは、成形開始までに850℃を下回らないような管理がなされる。成形型2を金属パイプ材料40に接触させることで成形を行うと共に、冷却を行う(T3)。このとき、成形型2にて冷却速度が-30℃/s以下の抜熱を行いながら、制御部8は冷却完了温度が200℃以下となるまで冷却を持続する制御を行う。その後、成形型2を型開して、金属パイプ41を取り出すと自然放熱に切り替わる(T4)。 For example, a case where a high-strength metal pipe 41 is formed by quenching a metal pipe material 40 of a certain manganese boron steel will be described as an example. When cooling the material at 850 ° C., 200 ° C. is set as the cooling end temperature (obtained from a generally known CCM curve) as a temperature that does not enter the B transformation range regardless of time. At this time, since it is known that the hardness changes depending on the cooling rate, for example, by cooling the material at a cooling rate of −30 ° C./s, a metal pipe 41 having a hardness equivalent to Hv450 can be obtained. FIG. 10 is a conceptual graph of the temperature transition of the metal pipe material 40 for realizing such quenching. The control unit 8 heats the metal pipe material 40 to 850 ° C. or higher (T1). After heating, the metal pipe material 40 is exposed to the atmosphere until it comes into contact with the mold 2, so that it is cooled by natural heat dissipation (T2). Here, control is performed so that the temperature does not fall below 850 ° C. by the start of molding. By bringing the molding die 2 into contact with the metal pipe material 40, molding is performed and cooling is performed (T3). At this time, while the molding die 2 is used to remove heat at a cooling rate of −30 ° C./s or less, the control unit 8 controls to continue cooling until the cooling completion temperature becomes 200 ° C. or lower. After that, when the molding die 2 is opened and the metal pipe 41 is taken out, it switches to natural heat dissipation (T4).
 ここで、上述のように、成形装置1は、成形型2による急冷により、金属パイプ材料40の焼き入れを実施することができるため、全体的に焼き入れがなされた金属パイプ41を成形することができる。しかし、本実施形態においては、成形装置1は、金属パイプ41の一部に意図的に焼き入れがなされない部分(以降、「非焼き入れ部分50」と称する場合がある)を形成することができる。以降、非焼き入れ部分50について、図2~図5を参照して説明を行う。 Here, as described above, since the molding apparatus 1 can perform quenching of the metal pipe material 40 by quenching with the molding die 2, the metal pipe 41 that has been quenched as a whole is molded. Can be done. However, in the present embodiment, the molding apparatus 1 may form a portion of the metal pipe 41 that is not intentionally hardened (hereinafter, may be referred to as a “non-quenched portion 50”). can. Hereinafter, the non-quenched portion 50 will be described with reference to FIGS. 2 to 5.
 図2は、成形後の金属パイプ41の斜視図である。図3及び図4は、成形型2による成形の様子を示す断面図である。なお、図3(a)は、成形型2の長手方向において第2の領域E2が存在する位置(図5参照)における成形型2の断面図を示す。図3(b)は、成形型2の長手方向において第2の領域E2が存在していない位置(図5参照)における成形型2の断面図を示す。図4(a)は、図3(a)の部分を型閉したときの様子を示す断面図であり、図4(b)は、図3(b)の部分を型閉したときの様子を示す断面図である。図5は、下側の金型11の平面図である。 FIG. 2 is a perspective view of the metal pipe 41 after molding. 3 and 4 are cross-sectional views showing a state of molding by the molding die 2. Note that FIG. 3A shows a cross-sectional view of the molding die 2 at a position (see FIG. 5) where the second region E2 exists in the longitudinal direction of the molding die 2. FIG. 3B shows a cross-sectional view of the mold 2 at a position (see FIG. 5) where the second region E2 does not exist in the longitudinal direction of the mold 2. 4 (a) is a cross-sectional view showing a state when the portion of FIG. 3 (a) is molded, and FIG. 4 (b) shows a state when the portion of FIG. 3 (b) is molded. It is sectional drawing which shows. FIG. 5 is a plan view of the lower mold 11.
 図2を参照して、成形品である金属パイプ41について説明する。金属パイプ41は、パイプ部43及びフランジ部44を有する成形本体部45と、長手方向の両端側の被保持部46と、成形本体部45と被保持部46との間の徐変部47と、を備える。成形本体部45は、レーザー加工などがなされることによって最終的な製品となる部分である。パイプ部43は中空の部分である。フランジ部44は、金属パイプ材料40の一部を押しつぶすことによってパイプ部43から突出する、複層の板状部分である。被保持部46は、電極26,27に保持される円筒状の部分である。被保持部46には、ノズル31が挿入される。徐変部47は、被保持部46の形状から、成形本体部45の形状へ変化する移行部分である。 The metal pipe 41, which is a molded product, will be described with reference to FIG. The metal pipe 41 includes a molded main body portion 45 having a pipe portion 43 and a flange portion 44, a held portion 46 on both ends in the longitudinal direction, and a gradual change portion 47 between the molded main body portion 45 and the held portion 46. , Equipped with. The molding main body portion 45 is a portion that becomes a final product by being laser-processed or the like. The pipe portion 43 is a hollow portion. The flange portion 44 is a multi-layered plate-shaped portion that protrudes from the pipe portion 43 by crushing a part of the metal pipe material 40. The held portion 46 is a cylindrical portion held by the electrodes 26 and 27. The nozzle 31 is inserted into the held portion 46. The gradual change portion 47 is a transition portion that changes from the shape of the held portion 46 to the shape of the molding main body portion 45.
 このうち、幅方向における一方のフランジ部44の一部には、焼き入れがなされない非焼き入れ部分50が形成される。金属パイプ41のうち、非焼き入れ部分50以外の全域は、焼き入れがなされた焼き入れ部分51となる。図2においては、グレースケールが付された部分が非焼き入れ部分50となり、グレースケールが付されていない部分が焼き入れ部分51となる。なお、図2においては、一方のフランジ部44における長手方向の中央位置付近に非焼き入れ部分50が形成される。なお、フランジ部44の厚さ方向における両面側に非焼き入れ部分50が形成される。 Of these, a non-quenched portion 50 that is not hardened is formed in a part of one of the flange portions 44 in the width direction. The entire area of the metal pipe 41 other than the non-quenched portion 50 is the hardened portion 51. In FIG. 2, the portion with the gray scale is the non-quenched portion 50, and the portion without the gray scale is the hardened portion 51. In FIG. 2, the non-quenched portion 50 is formed in the vicinity of the central position in the longitudinal direction of one of the flange portions 44. The non-quenched portion 50 is formed on both sides of the flange portion 44 in the thickness direction.
 図3に示すように、金型11,12は、成形時に金属パイプ材料40と接触する成形面60を有する。成形面60は、パイプ部43を成形するためのパイプ部成形面61と、フランジ部44を成形するためのフランジ部成形面62と、を有する。 As shown in FIG. 3, the molds 11 and 12 have a molding surface 60 that comes into contact with the metal pipe material 40 during molding. The molding surface 60 has a pipe portion forming surface 61 for forming the pipe portion 43 and a flange portion forming surface 62 for forming the flange portion 44.
 このような成形型2を用いた成形の手順について説明する。図3(a)(b)に示すように、制御部8は、成形型2を型閉すると共に、流体供給部6で金属パイプ材料40に流体を供給することで、ブロー成形を行う(一次ブロー)。一次ブローでは、制御部8は、パイプ部成形面61によるメインキャビティ部MCでパイプ部43を成形すると共に、フランジ部44に対応する部分をフランジ部成形面62によるサブキャビティ部SCへ進入させる。そして、図4(a)(b)に示すように、制御部8は、成形型2を更に型閉することで、サブキャビティ部SCに進入した部分を更に潰すことで、フランジ部44を成形する。次に、制御部8は、上側の金型12を上昇させて金属パイプ材料40から離間させることで、型開を行う。これにより、金属パイプ41が成形される。 The procedure of molding using such a molding mold 2 will be described. As shown in FIGS. 3A and 3B, the control unit 8 closes the molding die 2 and supplies a fluid to the metal pipe material 40 by the fluid supply unit 6 to perform blow molding (primary). blow). In the primary blow, the control unit 8 forms the pipe portion 43 with the main cavity portion MC formed by the pipe portion forming surface 61, and causes the portion corresponding to the flange portion 44 to enter the sub-cavity portion SC formed by the flange portion forming surface 62. Then, as shown in FIGS. 4A and 4B, the control unit 8 forms the flange portion 44 by further closing the molding die 2 and further crushing the portion that has entered the subcavity portion SC. do. Next, the control unit 8 raises the upper mold 12 and separates it from the metal pipe material 40 to open the mold. As a result, the metal pipe 41 is formed.
 図3及び図4に示すように、成形面60は、第1の領域E1と、第2の領域E2と、を有する。第1の領域E1は、金属パイプ材料40を冷却する領域である。第1の領域E1は、金属パイプ材料40に対して焼き入れを行うことで、金属パイプ41のうちの、焼き入れ部分51を成形する。第2の領域E2は、成形面60の一部に形成され、第1の領域E1に比して熱伝導率が低い低熱伝導率材料64によって構成される領域である。第2の領域E2は、金属パイプ材料40に焼き入れが行われないようにすることで、金属パイプ41のうちの、非焼き入れ部分50を成形する。 As shown in FIGS. 3 and 4, the molding surface 60 has a first region E1 and a second region E2. The first region E1 is a region for cooling the metal pipe material 40. In the first region E1, the hardened portion 51 of the metal pipe 41 is formed by quenching the metal pipe material 40. The second region E2 is a region formed in a part of the molding surface 60 and composed of the low thermal conductivity material 64 having a lower thermal conductivity than the first region E1. The second region E2 forms the non-quenched portion 50 of the metal pipe 41 by preventing the metal pipe material 40 from being hardened.
 成形型2の成形面60のうち、図3(a)及び図4(a)に示すように、金型11,12の一方側のフランジ部成形面62に第2の領域E2が形成される。また、図2に示すように、非焼き入れ部分50は、フランジ部44の長手方向における中央位置の一部だけに形成される。従って、図5に示すように、第2の領域E2もフランジ部成形面62の長手方向における中央位置の一部だけに形成される。図2に示すように、金属パイプ41は非焼き入れ部分50以外の部分は焼き入れ部分51であるため、成形面60も第2の領域E2以外は、第1の領域E1となる。 As shown in FIGS. 3A and 4A of the molding surface 60 of the molding die 2, a second region E2 is formed on the flange portion molding surface 62 on one side of the molds 11 and 12. .. Further, as shown in FIG. 2, the non-quenched portion 50 is formed only in a part of the central position in the longitudinal direction of the flange portion 44. Therefore, as shown in FIG. 5, the second region E2 is also formed only in a part of the central position in the longitudinal direction of the flange portion forming surface 62. As shown in FIG. 2, since the portion of the metal pipe 41 other than the non-quenched portion 50 is the hardened portion 51, the molded surface 60 is also the first region E1 except for the second region E2.
 第2の領域E2は、該当箇所における金型11,12の材料を低熱伝導率材料64に置き換えることによって構成される。具体的には、フランジ部成形面62に凹部を形成し、当該凹部内に低熱伝導率材料64を配置する。このとき、低熱伝導率材料64のうち、外部に露出している面が成形面60の第2の領域E2となる。なお、フランジ部成形面62では、第1の領域E1に該当する部分と第2の領域E2に該当する部分との境界部分において、段差が生じないように、低熱伝導率材料64が配置される。 The second region E2 is configured by replacing the materials of the molds 11 and 12 in the corresponding portions with the low thermal conductivity material 64. Specifically, a recess is formed in the flange portion forming surface 62, and the low thermal conductivity material 64 is arranged in the recess. At this time, of the low thermal conductivity material 64, the surface exposed to the outside becomes the second region E2 of the molded surface 60. In the flange portion forming surface 62, the low thermal conductivity material 64 is arranged so that a step does not occur at the boundary portion between the portion corresponding to the first region E1 and the portion corresponding to the second region E2. ..
 次に、低熱伝導率材料64について説明を行う。また、以降の説明では、低熱伝導率材料64の一例としてジルコニアセラミックを例示し、金型11,12の材料、すなわち第1の領域E1を構成する材料として炭素鋼を例示して説明を行う場合がある。しかしながら、材料はこれらのものに限定されない。 Next, the low thermal conductivity material 64 will be described. Further, in the following description, zirconia ceramic is exemplified as an example of the low thermal conductivity material 64, and carbon steel is exemplified as the material of the molds 11 and 12, that is, the material constituting the first region E1. There is. However, the material is not limited to these.
 低熱伝導率材料64の熱伝導率は、第1の領域E1を構成する材料の熱伝導率に対する比が30%以下であることが好ましい。低熱伝導率材料64をこれらの値のものとすることで、第2の領域E2における抜熱速度を十分に遅らせることで、HV値を小さくして、部分的に焼き入れが行われない箇所を形成することが可能となる。例えば、図6に示すように、金型11,12の材料として使用可能な炭素鋼の熱伝導率は40±10[W/(m/K)]相当である。その一方、低熱伝導率材料64として使用可能なジルコニアセラミックの熱伝導率は4±10[W/(m/K)]相当である。そのため、第2の領域E2に接触している金属パイプ材料40の表面の熱流束は、第1の領域E1よりも10%程度に制限することができ、抜熱速度を局所的に遅らせることができる。 The thermal conductivity of the low thermal conductivity material 64 is preferably 30% or less in proportion to the thermal conductivity of the material constituting the first region E1. By setting the low thermal conductivity material 64 to these values, the heat removal rate in the second region E2 is sufficiently delayed, the HV value is reduced, and the portion where quenching is not performed is partially performed. It becomes possible to form. For example, as shown in FIG. 6, the thermal conductivity of carbon steel that can be used as a material for the dies 11 and 12 is equivalent to 40 ± 10 [W / (m / K)]. On the other hand, the thermal conductivity of the zirconia ceramic that can be used as the low thermal conductivity material 64 is equivalent to 4 ± 10 [W / (m / K)]. Therefore, the heat flux on the surface of the metal pipe material 40 in contact with the second region E2 can be limited to about 10% as compared with the first region E1, and the heat extraction rate can be locally delayed. can.
 低熱伝導率材料64のヤング率は、第1の領域E1を構成する材料のヤング率に対する偏差が10%以下であることが好ましい。例えば、図7に示すように、金型11,12の材料として使用可能な炭素鋼のヤング率と、低熱伝導率材料64として使用可能なジルコニアセラミックのヤング率はほぼ同じ値である。従って、成形中に第1の領域E1及び第2の領域E2が応力を受けた場合、両者の変形量が連続的であるため、低熱伝導率材料64の部品が破損するなど、変形量が不均一であることに起因する破損を回避することができる。 The Young's modulus of the low thermal conductivity material 64 preferably has a deviation of 10% or less from the Young's modulus of the material constituting the first region E1. For example, as shown in FIG. 7, the Young's modulus of carbon steel that can be used as the material of the dies 11 and 12 and the Young's modulus of the zirconia ceramic that can be used as the low thermal conductivity material 64 are almost the same value. Therefore, when the first region E1 and the second region E2 are stressed during molding, the amount of deformation of both is continuous, so that the amount of deformation is not large, such as damage to the parts of the low thermal conductivity material 64. It is possible to avoid damage caused by the uniformity.
 低熱伝導率材料64の膨張率は、第1の領域E1を構成する材料の膨張率に対する偏差が30%以下であることが好ましい。例えば、図8に示すように、金型11,12の材料として使用可能な炭素鋼の熱膨張率と、低熱伝導率材料64として使用可能なジルコニアセラミックの熱膨張率はほぼ同じ値である。従って、成形中に第1の領域E1及び第2の領域E2が熱を受けた場合、両者の変形量が連続的である。従って、低熱伝導率材料64の部品が破損するなど、変形量が不均一であることに起因する破損を回避することができる。なお、ジルコニアセラミックは熱を伝えにくい特性があるため、金型11,12と低熱伝導率材料64との間に平均温度の偏差ができる。このため、平均温度の偏差による破損が起こらないように、第2の領域E2が広い場合には、適度に分割して隙間を設けるなどの対応をとることが好ましい。 The expansion rate of the low thermal conductivity material 64 preferably has a deviation of 30% or less from the expansion rate of the material constituting the first region E1. For example, as shown in FIG. 8, the coefficient of thermal expansion of carbon steel that can be used as the material of the dies 11 and 12 and the coefficient of thermal expansion of the zirconia ceramic that can be used as the low thermal conductivity material 64 are almost the same value. Therefore, when the first region E1 and the second region E2 receive heat during molding, the amount of deformation of both is continuous. Therefore, it is possible to avoid damage caused by the non-uniform deformation amount, such as damage to the parts of the low thermal conductivity material 64. Since zirconia ceramic has a characteristic that it is difficult to transfer heat, an average temperature deviation can occur between the molds 11 and 12 and the low thermal conductivity material 64. Therefore, when the second region E2 is wide, it is preferable to take measures such as providing a gap by appropriately dividing the second region E2 so as not to cause damage due to the deviation of the average temperature.
 低熱伝導率材料64の耐熱衝撃性は、高いことが好ましい。例えば、最も一般的な工業用セラミックとして知られるアルミナ系セラミック等では、急激な温度差により割れ破損が起こりやすいことが知られている。それに対し、図9に示すように、低熱伝導率材料64として使用可能なジルコニアセラミックは、アルミナ系セラミックに比べ、熱衝撃温度差が大きい。特に、ジルコニアセラミックは、成形装置1の操業開始時など、低熱伝導率材料64の平均温度が低いときの、高温材料接触による割れ耐性が良い。 The heat impact resistance of the low thermal conductivity material 64 is preferably high. For example, it is known that alumina-based ceramics, which are known as the most common industrial ceramics, are prone to cracking and breakage due to a sudden temperature difference. On the other hand, as shown in FIG. 9, the zirconia ceramic that can be used as the low thermal conductivity material 64 has a larger thermal shock temperature difference than the alumina-based ceramic. In particular, the zirconia ceramic has good crack resistance due to contact with a high-temperature material when the average temperature of the low thermal conductivity material 64 is low, such as at the start of operation of the molding apparatus 1.
 次に、本実施形態に係る成形型2の作用・効果について説明する。 Next, the action / effect of the molding die 2 according to the present embodiment will be described.
 成形型2は、成形時に金属パイプ材料40と接触する成形面60を有する。この成形面60は、金属パイプ材料40を冷却する第1の領域E1を有する。第1の領域E1は、成形時に金属パイプ材料40を冷却することで焼き入れを行うことができる。これにより、金属パイプ41のうち、第1の領域E1によって成形された焼き入れ部分51の強度は高くなる。その一方、成形面60は、成形面60の一部に形成され、第1の領域E1に比して熱伝導率が低い低熱伝導率材料64によって構成される第2の領域E2を有する。第2の領域E2は、第1の領域E1に比して金属パイプ材料40に対する抜熱速度を低くすることができる。そのため、第2の領域E2は、金属パイプ41内に、焼き入れがなされない(あるいは焼き入れが弱い)ことにより、強度が低くなる非焼き入れ部分51を形成することができる。以上より、金属パイプ41内での強度の調整を容易に行うことができる。 The molding die 2 has a molding surface 60 that comes into contact with the metal pipe material 40 during molding. The molded surface 60 has a first region E1 for cooling the metal pipe material 40. The first region E1 can be quenched by cooling the metal pipe material 40 at the time of molding. As a result, the strength of the hardened portion 51 formed by the first region E1 of the metal pipe 41 is increased. On the other hand, the molding surface 60 has a second region E2 formed of a part of the molding surface 60 and composed of a low thermal conductivity material 64 having a lower thermal conductivity than the first region E1. The second region E2 can have a lower heat extraction rate with respect to the metal pipe material 40 than the first region E1. Therefore, in the second region E2, a non-quenched portion 51 having a low strength can be formed in the metal pipe 41 by not quenching (or weakly quenching). From the above, the strength in the metal pipe 41 can be easily adjusted.
 例えば、自動車の骨格部材のうち、AピラーとBピラーをルーフ側で連結するレール部品について説明する。レール部品は高強度部品であり、一般的にBピラーも高強度部品である。ここで、両方の部材のフランジ部が非焼き入れ部分50を有さない場合、高強度部品同士をスポット溶接などで接合することとなるため、溶接品質が低下する場合がある。すなわち、スポット溶接によるボディーアセンブリ工程において、高強度な部分では、スポット溶接機の加圧力が被溶接部品のスポット部を塑性変形させるのに十分な荷重を得られない場合がある。すなわち、重ね合わせる合計板厚によっては、スポット溶接機の電極加圧力(数百キロ)で通電部を十分に密着させることができない場合がある。これに対し、本実施形態に係る成形型2を用いた場合、ルーフ部品及びBピラーの溶接箇所に非焼き入れ部分50を形成することができる。従って、スポット溶接が行い易くなるため、溶接品質を向上することができる。なお、非焼き入れ部分50が形成される金属パイプ41の用途は、このような自動車の骨格部材に限定さらず、各種用途に適用可能である。 For example, among the skeleton members of an automobile, a rail part that connects the A pillar and the B pillar on the roof side will be described. Rail parts are high-strength parts, and B-pillars are also high-strength parts in general. Here, when the flange portions of both members do not have the non-quenched portion 50, the high-strength parts are joined by spot welding or the like, so that the welding quality may deteriorate. That is, in the body assembly process by spot welding, in a high-strength portion, the applied pressure of the spot welder may not be sufficient to obtain a sufficient load for plastically deforming the spot portion of the part to be welded. That is, depending on the total plate thickness to be overlapped, the current-carrying portion may not be sufficiently brought into close contact with the electrode pressing force (several hundred kilometers) of the spot welder. On the other hand, when the molding die 2 according to the present embodiment is used, the non-quenched portion 50 can be formed at the welded portion of the roof part and the B pillar. Therefore, spot welding can be easily performed, and the welding quality can be improved. The use of the metal pipe 41 on which the non-quenched portion 50 is formed is not limited to such a skeleton member of an automobile, and can be applied to various uses.
 低熱伝導率材料64の熱伝導率は、第1の領域E1を構成する材料の熱伝導率に対する比が30%以下であってよい。この場合、金属パイプ材料40に対する抜熱速度を十分に遅らせることができ、焼き入れがなされない部分を形成し易くなる。 The thermal conductivity of the low thermal conductivity material 64 may have a ratio of 30% or less to the thermal conductivity of the material constituting the first region E1. In this case, the heat removal rate for the metal pipe material 40 can be sufficiently delayed, and it becomes easy to form a portion that is not quenched.
 低熱伝導率材料64のヤング率は、第1の領域E1を構成する材料のヤング率に対する偏差が10%以下であってよい。この場合、成形面60が応力を受けた場合に、第1の領域E1の変形量と第2の領域E2の変形量との差と小さくすることができる。 The Young's modulus of the low thermal conductivity material 64 may have a deviation of 10% or less from the Young's modulus of the material constituting the first region E1. In this case, when the molded surface 60 is stressed, the difference between the amount of deformation of the first region E1 and the amount of deformation of the second region E2 can be reduced.
 低熱伝導率材料64の膨張率は、第1の領域E1を構成する材料の膨張率に対する偏差が30%以下であってよい。この場合、成形面60が熱を受けた場合に、第1の領域E1の変形量と第2の領域E2の変形量との差を小さくすることができる。 The expansion rate of the low thermal conductivity material 64 may have a deviation of 30% or less from the expansion rate of the material constituting the first region E1. In this case, when the molding surface 60 receives heat, the difference between the amount of deformation of the first region E1 and the amount of deformation of the second region E2 can be reduced.
 金属材料は、フランジ付きの金属パイプ材料40であり、成形面60は、フランジ部44を成形する箇所に第2の領域E2を有してよい。これにより、フランジ部44に強度が低くなる部分を形成できる。 The metal material is a metal pipe material 40 with a flange, and the molding surface 60 may have a second region E2 at a position where the flange portion 44 is molded. As a result, a portion having a low strength can be formed on the flange portion 44.
 本発明は、上述の実施形態に限定されるものではない。 The present invention is not limited to the above-described embodiment.
 上述の実施形態では、加熱された金属パイプ材料に高圧の流体を供給して膨張させて成形型に接触させて成形を行う成形装置を例示した。しかし、本発明の成形型が適用される成形装置は、加熱された金属材料の成形を行うものであれば特に限定されず、ホットスタンピングなどの成形装置に適用されてもよい。 In the above-described embodiment, a molding apparatus that supplies a high-pressure fluid to a heated metal pipe material to expand it and bring it into contact with a molding die to perform molding is exemplified. However, the molding apparatus to which the molding die of the present invention is applied is not particularly limited as long as it molds a heated metal material, and may be applied to a molding apparatus such as hot stamping.
 第2の領域E2を成形型2のフランジ部成形面62に設ける形態に限定されず、図11に示すように、パイプ部成形面61に第2の領域E2を設けてもよい。すなわち、金属材料は、金属パイプ材料40であり、成形面60は、パイプ部43を成形する箇所に第2の領域E2を有してよい。これにより、パイプ部43に強度が低くなる部分を形成できる。フランジ部44は溶接しやすい反面、フランジ部44の幅分のスペースを必要とする。それに対し、パイプ部43そのものに、第2の領域E2を設けることで、フランジ部44の幅の制約なしでパイプ部43に直接溶接できる。なお、パイプ部43に非焼き入れ部を設ける場合、他の部材とのスポット溶接等をやりやすくするために、金属パイプ材料40の端部付近に非焼き入れ部を形成してよい。 The second region E2 is not limited to the form provided on the flange portion molding surface 62 of the molding die 2, and as shown in FIG. 11, the second region E2 may be provided on the pipe portion molding surface 61. That is, the metal material is the metal pipe material 40, and the molding surface 60 may have a second region E2 at a position where the pipe portion 43 is molded. As a result, a portion having a low strength can be formed in the pipe portion 43. Although the flange portion 44 is easy to weld, it requires a space corresponding to the width of the flange portion 44. On the other hand, by providing the second region E2 on the pipe portion 43 itself, it is possible to directly weld to the pipe portion 43 without limiting the width of the flange portion 44. When the non-quenched portion is provided in the pipe portion 43, the non-quenched portion may be formed in the vicinity of the end portion of the metal pipe material 40 in order to facilitate spot welding with other members.
 2…成形型、40…金属パイプ材料(金属材料)、60…成形面、64…低熱伝導率材料、E1…第1の領域、E2…第2の領域。 2 ... Molding mold, 40 ... Metal pipe material (metal material), 60 ... Molding surface, 64 ... Low thermal conductivity material, E1 ... First region, E2 ... Second region.

Claims (6)

  1.  加熱された金属材料の成形を行う成形型であって、
     成形時に前記金属材料と接触する成形面を有し、
     前記成形面は、
      前記金属材料を冷却する第1の領域と、
      前記成形面の一部に形成され、前記第1の領域に比して熱伝導率が低い低熱伝導率材料によって構成される第2の領域と、を有する、成形型。
    A molding die that molds heated metal materials.
    It has a molding surface that comes into contact with the metal material during molding, and has a molding surface.
    The molded surface is
    The first region for cooling the metal material and
    A molding die having a second region formed on a part of the molding surface and made of a low thermal conductivity material having a lower thermal conductivity than the first region.
  2.  前記低熱伝導率材料の熱伝導率は、前記第1の領域を構成する材料の熱伝導率に対する比が30%以下である、請求項1に記載の成形型。 The molding die according to claim 1, wherein the thermal conductivity of the low thermal conductivity material has a ratio of 30% or less to the thermal conductivity of the material constituting the first region.
  3.  前記低熱伝導率材料のヤング率は、前記第1の領域を構成する材料のヤング率に対する偏差が10%以下である、請求項1又は2に記載の成形型。 The molding die according to claim 1 or 2, wherein the Young's modulus of the low thermal conductivity material has a deviation of 10% or less from the Young's modulus of the material constituting the first region.
  4.  前記低熱伝導率材料の膨張率は、前記第1の領域を構成する材料の膨張率に対する偏差が30%以下である、請求項1~3の何れか一項に記載の成形型。 The molding die according to any one of claims 1 to 3, wherein the expansion rate of the low thermal conductivity material has a deviation of 30% or less from the expansion rate of the material constituting the first region.
  5.  前記金属材料は、金属パイプ材料であり、
     前記成形面は、パイプ部を成形する箇所に前記第2の領域を有する、請求項1~4の何れか一項に記載の成形型。
    The metal material is a metal pipe material.
    The molding die according to any one of claims 1 to 4, wherein the molding surface has the second region at a portion where the pipe portion is molded.
  6.  前記金属材料は、フランジ付きの金属パイプ材料であり、
     前記成形面は、フランジ部を成形する箇所に前記第2の領域を有する、請求項1~4の何れか一項に記載の成形型。
    The metal material is a metal pipe material with a flange.
    The molding die according to any one of claims 1 to 4, wherein the molding surface has the second region at a portion where the flange portion is molded.
PCT/JP2021/030453 2020-09-04 2021-08-19 Molding mold WO2022050074A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020149127A JP2022043699A (en) 2020-09-04 2020-09-04 Molding die
JP2020-149127 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022050074A1 true WO2022050074A1 (en) 2022-03-10

Family

ID=80490768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030453 WO2022050074A1 (en) 2020-09-04 2021-08-19 Molding mold

Country Status (2)

Country Link
JP (1) JP2022043699A (en)
WO (1) WO2022050074A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916389A (en) * 1996-06-07 1999-06-29 Ssab Hardtech Ab Method of producing a sheet steel product such as a reinforcement element in a larger structure
JP2009220141A (en) * 2008-03-14 2009-10-01 Marujun Co Ltd Method and apparatus for manufacturing pipe product
JP2012000654A (en) * 2010-06-18 2012-01-05 Linz Research Engineering Co Ltd Apparatus for manufacturing metallic pipe with flange, method for manufacturing the same, and blow-molding die
JP2014533608A (en) * 2011-11-23 2014-12-15 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method and forming tool for hot forming and press-hardening a thin steel plate workpiece, particularly a galvanized thin steel plate workpiece

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916389A (en) * 1996-06-07 1999-06-29 Ssab Hardtech Ab Method of producing a sheet steel product such as a reinforcement element in a larger structure
JP2009220141A (en) * 2008-03-14 2009-10-01 Marujun Co Ltd Method and apparatus for manufacturing pipe product
JP2012000654A (en) * 2010-06-18 2012-01-05 Linz Research Engineering Co Ltd Apparatus for manufacturing metallic pipe with flange, method for manufacturing the same, and blow-molding die
JP2014533608A (en) * 2011-11-23 2014-12-15 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method and forming tool for hot forming and press-hardening a thin steel plate workpiece, particularly a galvanized thin steel plate workpiece

Also Published As

Publication number Publication date
JP2022043699A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US6914225B2 (en) Apparatus and methods for single sheet forming using induction heating
CA2933110C (en) Molding device
JP6401953B2 (en) Molding apparatus and molding method
JP6240564B2 (en) Molding apparatus and method for replacing parts of molding apparatus
JP2009538738A (en) Method and apparatus for joining metals using self-piercing rivets with preheating
US7823430B2 (en) Open press thermal gap for QPF forming tools
JP2016129891A (en) Blow molding metal mold for manufacturing flanged aluminum pipe, flanged aluminum pipe device with the metal mold, and method for manufacturing flanged aluminum pipe
CN113573824A (en) Molding apparatus and molding method
JP6417138B2 (en) Molding equipment
WO2022050074A1 (en) Molding mold
JP2019069473A (en) Molding device
EP4116005A1 (en) Molding device and molding method
WO2022034843A1 (en) Molding device and metal pipe
CN116801997A (en) Forming device and metal tube
US20240157427A1 (en) Molding device
JP2024064701A (en) Molding device and metal member
WO2024089990A1 (en) Shaping device
US20240253103A1 (en) Forming device and forming method
EP4403278A1 (en) Molding device
WO2024089989A1 (en) Molding device and metal member
WO2022186055A1 (en) Molding system
WO2021182349A1 (en) Molding system and molding method
JP2021154338A (en) Laser processing device
JP2024135338A (en) Method for manufacturing fastening structure
US20210094111A1 (en) Device and method for thermal joining, in particular for thermal joining of a heat exchanger for a motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864132

Country of ref document: EP

Kind code of ref document: A1