WO2022059191A1 - 予測方法、予測装置、及び予測プログラム - Google Patents

予測方法、予測装置、及び予測プログラム Download PDF

Info

Publication number
WO2022059191A1
WO2022059191A1 PCT/JP2020/035554 JP2020035554W WO2022059191A1 WO 2022059191 A1 WO2022059191 A1 WO 2022059191A1 JP 2020035554 W JP2020035554 W JP 2020035554W WO 2022059191 A1 WO2022059191 A1 WO 2022059191A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
conditioning control
air conditioning
control area
data
Prior art date
Application number
PCT/JP2020/035554
Other languages
English (en)
French (fr)
Inventor
直樹 荒井
和昭 尾花
啓介 角田
綜太朗 前島
翠 児玉
伸彦 松浦
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/026,341 priority Critical patent/US20230349579A1/en
Priority to JP2022550309A priority patent/JPWO2022059191A1/ja
Priority to PCT/JP2020/035554 priority patent/WO2022059191A1/ja
Publication of WO2022059191A1 publication Critical patent/WO2022059191A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the disclosed technology relates to prediction methods, prediction devices, and prediction programs.
  • Air conditioning equipment in large-scale facilities such as buildings regulates the temperature of the building based on the operation scenario.
  • a heat source machine generates hot or cold water as the amount of heat, and the generated hot or cold water is sent to each air conditioning control area (air conditioning utilization unit), and each air conditioning control area uses hot or cold water to make an air conditioner. Generates hot or cold air.
  • the air conditioning control area is a part of the building and consumes the amount of heat obtained by the heat source machine. In calculating the operation scenario of the heat source machine to satisfy the set temperature set for the entire large-scale facility, it is necessary to predict the heat source demand used in the heat source in advance.
  • the operation scenario of the heat source unit is planned to reduce the power consumption in consideration of the start-up power and the operation power while satisfying the predicted heat source demand.
  • Non-Patent Document 1 describes a technique for predicting heat source demand using machine learning.
  • Non-Patent Document 1 uses only parameters outside the building such as outside air temperature or outside humidity, and the surrounding environment in the air conditioning control area, such as the setting of an air conditioner and the heat source of a moving body represented by a human being, etc. Is not considered. Therefore, if there is a pattern in which the surrounding environment of the air conditioning control area is different even on the same day outside the building, the accuracy of the heat source demand forecast is lowered. As a result, if a large amount of heat source demand is predicted, energy saving will be reduced due to unnecessary heat, and if a small amount of heat is predicted, comfort will be reduced due to insufficient heat. That is, there is a problem that the set temperature cannot be reached, the indoor air temperature becomes close to the outside air temperature, and the humidity becomes close to the outside air temperature.
  • the disclosed technology is made in view of the above points, and provides a prediction method, a prediction device, and a prediction program that enable appropriate heat source control by predicting heat source demand for each air conditioning control area.
  • the purpose is.
  • the first aspect of the present disclosure is a prediction method for predicting a heat source demand in a space having a predetermined air conditioning control region, in which predetermined parameters related to the surrounding environment of the air conditioning control region and the air conditioning control region are used.
  • the technology of the present disclosure is a technique for estimating heat demand by predicting the demand of a heat source for each air conditioning control area based on the surrounding environment for each air conditioning control area and summing the predicted heat source demand for each air conditioning control area.
  • the heat source demand for the entire building which summarizes all air conditioning control areas, was predicted.
  • the heat source demand of the entire building is predicted by predicting the required heat amount for each air conditioning control area from the parameters related to the surrounding environment for each air conditioning control area and the set values of the air conditioning equipment. Examples of the parameters related to the surrounding environment include meteorological data and human flow data, which will be described later, but data having thermal energy that affects the target air conditioning control region may be further used.
  • FIG. 1 is a block diagram showing a hardware configuration of the prediction device 100.
  • the prediction device 100 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input unit 15, a display unit 16, and a communication interface (). It has I / F) 17.
  • the configurations are connected to each other via a bus 19 so as to be communicable with each other.
  • the CPU 11 is a central arithmetic processing unit that executes various programs and controls each part. That is, the CPU 11 reads the program from the ROM 12 or the storage 14, and executes the program using the RAM 13 as a work area. The CPU 11 controls each of the above configurations and performs various arithmetic processes according to the program stored in the ROM 12 or the storage 14. In the present embodiment, the learning processing program and the prediction processing program are stored in the ROM 12 or the storage 14.
  • the ROM 12 stores various programs and various data.
  • the RAM 13 temporarily stores a program or data as a work area.
  • the storage 14 is composed of a storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive), and stores various programs including an operating system and various data.
  • the input unit 15 includes a pointing device such as a mouse and a keyboard, and is used for performing various inputs.
  • the display unit 16 is, for example, a liquid crystal display and displays various information.
  • the display unit 16 may adopt a touch panel method and function as an input unit 15.
  • the communication interface 17 is an interface for communicating with other devices such as terminals.
  • a wired communication standard such as Ethernet (registered trademark) or FDDI
  • a wireless communication standard such as 4G, 5G, or Wi-Fi (registered trademark) is used.
  • FIG. 2 is a block diagram showing the configuration of the prediction device of the present embodiment.
  • Each functional configuration is realized by the CPU 11 reading the learning program and the prediction program stored in the ROM 12 or the storage 14, deploying them in the RAM 13, and executing them.
  • the prediction device 100 includes a learning data acquisition unit 110, a learning data storage unit 112, a parameter determination unit 114, a parameter storage unit 116, and a learning model creation unit 118. , The learning model storage unit 120 and the like. Further, the forecasting device 100 includes a forecasting data collecting unit 130, a forecasting data storage unit 132, a demand forecasting unit 134, and a forecasting result storage unit 136 with respect to the forecasting process.
  • the processing unit related to the learning process and the processing unit related to the prediction process may be divided into separate devices and configured as a learning device and a prediction device, respectively.
  • the parameter determination unit 114 includes a first variable creation unit 210 and a first model creation unit 212.
  • the learning model creation unit 118 includes a second variable creation unit 220 and a second model creation unit 222.
  • the demand forecast unit 134 includes a third variable creation unit 230.
  • FIG. 3 is a diagram showing an example of each part of the building 50 and an external service related to the input data of the prediction device 100.
  • the building 50 includes a BEMS (Building and Energy Management System) 52 and each air conditioning control area 54, and has a person flow detection sensor 56 for each air conditioning control area 54 (reference numeral of the air conditioning control area 54). Is used only in the description of FIG. 3, and the reference numerals are omitted thereafter).
  • the BEMS 52 manages the amount of energy used for each energy used for each air conditioning control area 54.
  • the energy used is a type of energy generated by a heat source (for example, an air conditioner), and in the present embodiment, the BEMS 52 manages the amount of energy used for hot water and cold water. By energy used means that data is managed separately for hot water and cold water. Further, the BEMS 52 measures the meteorological data for each air conditioning control area 54. The person flow detection sensor 56 in each air conditioning control area 54 detects the person flow in the air conditioning control area 54 and measures the person flow data. In the learning data collection unit 110, meteorological data for each air conditioning control area 54, set values of the air conditioner for each air conditioning control area 54, and energy consumption for each energy used for each air conditioning control area 54 are input.
  • the predicted meteorological data which is the predicted value of the meteorological data, the predicted human flow data which is the predicted value of the human flow data, and the set scheduled value of the air conditioner are input for each air conditioning control area 54.
  • the predicted person flow data is predicted by the person flow predictor 60 based on the person flow data of the person flow detection sensor 56.
  • the predicted meteorological data is predicted using the external meteorological service 62.
  • the learning data collection unit 110 collects learning data necessary for determining a time delay parameter and creating a learning model, and stores it in the learning data storage unit 112.
  • the training data is collected as time-series data of measured values that serve as explanatory variables and objective variables.
  • the learning data exists for each air conditioning control area.
  • a description of the learning data to be collected is shown in Table 1 below, and an example of the storage format of the learning data storage unit 112 is shown in Table 2.
  • the learning data is classified into meteorological data, human flow data, air conditioner set values, and energy consumption.
  • the uses of these training data are divided into explanatory variables and objective variables.
  • the use of meteorological data, human flow data, and air conditioner settings is an explanatory variable
  • the use of energy usage is an objective variable.
  • the meteorological data and the human flow data are the targets for determining the time delay parameter for considering the influence of the change in time, and the average value per unit time is obtained using the time delay parameter. The average value thus obtained is used as an explanatory variable in consideration of the time delay.
  • the meteorological data and the human flow data for which the explanatory variables for considering the time delay are created are examples of the time-considered data of the technique of the present disclosure. It should be noted that the data does not necessarily have to be human flow data, and sensor data that can obtain the total number of existing humans (the number of existing humans) and the total amount of heat radiated by the existing humans per unit time may be used. ..
  • Table 2 is an example of learning data stored in the learning data storage unit 112. Although omitted in Table 2, it is assumed that learning data is collected for each unit time as time-series data for January from January 1st to 31st, 2020. The unit time is every 10 minutes.
  • the weather data shows the outside air temperature
  • the person flow data shows the number of people
  • the set value shows an example when the room temperature set value is collected. Further, for cold water and hot water used as energy, the amount of cold water energy used and the amount of hot water energy used are set.
  • meteorological data are meteorological data groups of outside air temperature, outside humidity, amount of solar radiation, and wind speed corresponding to the air conditioning control area. It is assumed that the BEMS 52 collects meteorological data groups corresponding to each of the air conditioning control areas. For example, in the case of outside air information, the sensor data acquired by the weather sensor closest to the air conditioning control area can be used. If the outside air information is acquired for each air conditioning control area by BEMS 52, the sensor data can be used. However, since it may be difficult to collect the meteorological data group for each air conditioning control area, for example, the meteorological data group for the building 50 (BEMS52) of the meteorological service 62 can be uniformly collected for each air conditioning control area. It may be treated as a group.
  • the staying time of a person for example, the average value of each "person x staying time (seconds)" of each person who existed in the air conditioning control area during the unit time may be measured by the person flow detection sensor 56.
  • Specific examples of the set values of the air conditioner include the room temperature setting value of the air conditioner in the air conditioning control area, the air volume setting value of the air conditioner in the air conditioning control area, the supply air temperature setting value of the air conditioner in the air conditioning control area, and the air conditioning in the air conditioning control area. It is the operation status of the aircraft.
  • the data used for the explanatory variables related to the meteorological information may be only the outside air temperature, or may be a combination of the outside air temperature and the outside humidity. Needless to say, explanatory variables may be defined using specific examples other than those listed. If it is meteorological data, other meteorological data that are external parameters of the building and affect the amount of heat used in the air conditioning control area may be used. Further, as for the human flow data, data of other objects that are heat sources that affect the air conditioning control area existing in the building may be used.
  • the parameter determination unit 114 determines the time delay parameter for each of the time consideration data, that is, the meteorological data and the human flow data for each air conditioning control region.
  • the time delay parameters are the maximum time t max to be considered before the prediction target time, and the time width ⁇ t indicating the time interval for which the average value from the maximum time t max to the prediction target time is to be obtained.
  • the parameter determination unit 114 determines the time delay parameter by processing the first variable creation unit 210 and the first model creation unit 212 as internal processing, and stores the time delay parameter in the parameter storage unit 116. Details of the parameter determination process of the parameter determination unit 114 and the processes of the first variable creation unit 210 and the first model creation unit 212 related to the parameter determination process will be described later in the description of the operation.
  • the effect of time changes in each space of the air conditioning control area that is, how long the space of a certain air conditioning control area is delayed from the effect of the explanatory variables. It is necessary to consider whether to receive it. For example, in a space adjacent to the outside, it is easily affected by the outside air temperature, that is, the time delay is considered to be short. On the contrary, it is considered that the time delay becomes long in the space where there is a passage between the room and the outside.
  • a plurality of mean values before the predicted time is used as an explanatory variable. For example, when making a prediction at 12 o'clock, the average value from 9 o'clock to 10 o'clock, the average value from 10 o'clock to 11 o'clock, and the average value from 11 o'clock to 12 o'clock are used. Since a parameter for determining which time the average value is to be obtained is required, the maximum time t max and the time width ⁇ t are determined as the time delay parameters.
  • the learning model creation unit 118 learns a prediction model for energy consumption using the learning data and the time delay parameter stored in the parameter storage unit 116 for each air conditioning control area, and the learning model storage unit 120 receives it. Store.
  • the prediction model learned here is a model for predicting the required heat quantity in the air conditioning control region.
  • the learning model creation unit 118 performs the processing of the second variable creation unit 220 and the second model creation unit 222 as internal processing to learn the prediction model. The details of the model learning process of the learning model creation unit 118 and the processing of the second variable creation unit 220 and the second model creation unit 222 related to the model learning process will be described later in the description of the operation.
  • FIG. 4 is a flowchart showing the flow of learning processing by the prediction device 100.
  • the learning process is performed by the CPU 11 reading the learning process program from the ROM 12 or the storage 14, expanding it into the RAM 13, and executing the program.
  • step S100 the CPU 11 collects the learning data as the learning data collecting unit 110 and stores it in the learning data storage unit 112.
  • step S102 the CPU 11 determines the time delay parameters of the meteorological data and the human flow data for the energy used for each air conditioning control area as the parameter determination unit 114, and stores them in the parameter storage unit 116.
  • step S104 the CPU 11 learns the prediction model for the energy used for each air conditioning control region by the learning model creation unit 118 using the learning data and the time delay parameter, and stores the prediction model in the learning model storage unit 120. do.
  • FIG. 4 is a flowchart showing the parameter determination process.
  • the time delay parameter for the energy used for each air conditioning control region may be determined.
  • the energy used for each air conditioning control area may be appropriately determined from the data of the objective variable for the purpose of the learning data.
  • the parameter determination process for hot water (or cold water) is omitted, and if there is an input value other than 0, the parameter determination process is performed. Just do it. That is, the parameter determination process may be performed when the energy used is used in the air conditioning control region.
  • step S1100 the CPU 11 acquires the learning data stored in the learning data storage unit 112 as the parameter determination unit 114.
  • step S1102 the CPU 11 selects the air conditioning control area to be processed as the parameter determination unit 114.
  • step S1104 the CPU 11 selects a combination of time-delayed parameters corresponding to the air-conditioning control region to be processed as the parameter determination unit 114, and outputs the selected combination to the first variable creation unit 210.
  • a sample combination will be described.
  • meteorological data the outside temperature and the number of people flow data are used.
  • Maximum time t max [60 minutes, 120 minutes, 180 minutes, 240 minutes]
  • time width ⁇ t [10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 60 minutes] for each of meteorological data and human flow data. Suppose you try a combination at a set time.
  • Table 3 shows an example in which the maximum time t max and the time width ⁇ t, which are the time delay parameters, are determined for each of the cold water and the hot water of the energy used. These time delay parameters are used in the cold water prediction model and the hot water prediction model. Although the description of the corresponding air conditioning control area is omitted in Table 3, the time delay parameter in Table 3 is determined for each air conditioning control area.
  • step S1106 the CPU 11 obtains the average value of the time-considered data using the time delay parameter of the combination selected in step S1104 as the first variable creation unit 210, and obtains the time-series data of the explanatory variables including this average value. create.
  • the average value of the time-considered data of the selected combination obtained by the first variable creation unit 210 is an example of a predetermined calculated value of the technique of the present disclosure.
  • a weighted average value, a median value, etc. obtained by weighting each set time may be used.
  • Table 4 shows the inputs and outputs of the first variable creation unit 210.
  • the inputs and outputs shown in Table 4 are also common to the second variable creation unit 220 and the third variable creation unit 230.
  • the time-series data of the explanatory variables in the output shown in Table 4 includes an explanatory variable that considers the time delay, an explanatory variable that does not consider the time delay, and a time label.
  • the time label indicates the time to be predicted, and is set for each time interval of the time width.
  • the first variable creation unit 210 outputs the values created as a plurality of average values before a certain time for the explanatory variables that consider the time delay among the time series data of the explanatory variables, and the explanatory variables that do not consider the time delay. For, the original value is output.
  • a method of calculating an explanatory variable that takes time delay into consideration will be described.
  • the value of the date and time t ⁇ (i-1) ⁇ t is not included, but the value of the date and time t—i ⁇ t is included in the calculation.
  • Table 5 shows an example of time-series data (learning data) used for creating explanatory variables to be input by the first variable creation unit 210.
  • Table 6 shows an example of the time delay parameter of the combination selected in step S1104, which is the input of the first variable creation unit 210.
  • the maximum time t max is an example of a combination in which the outside air temperature is 120 minutes and the number of people is 60 minutes
  • the time width ⁇ t is an example of a combination in which the outside air temperature is 60 minutes and the number of people is 30 minutes.
  • Table 7 shows an example of the time-series data of the explanatory variables that is the output of the first variable creation unit 210.
  • January 1 is set as the verification date, and the outside temperature and the number of people considering the time, the explanatory variables of the room temperature set value not considering the time, and the time label are shown.
  • step S1108 the CPU 11 sets the verification date and the training date as the parameter determination unit 114.
  • any one day is separated from the verification day, and the other days are separated from the training day.
  • each day of the learning data is selected once as a verification date, and all the days are repeated until the verification date is selected (determination process in step S1116 described later).
  • step S1110 the CPU 11 outputs the time-series data of the explanatory variable and the objective variable for the set training day to the first model creation unit 212 as the parameter determination unit 114.
  • the time-series data of the explanatory variable for the training date may be included in the output from the time-series data of the explanatory variable created in step S1106, and the time-series data for the verification date may be excluded. The same applies to the objective variable.
  • step S1112 the CPU 11 creates a verification model as the first model creation unit 212 using the time-series data of the explanatory variables and the objective variables for the training day.
  • the verification model created by the first model creation unit 212 is a model used for cross-validation.
  • the model for parameter determination created by the first model creation unit 212 will be described as a verification model model, and will be described separately from the prediction model created by the second prediction model.
  • Table 8 shows the inputs and outputs of the first model creation unit 212. The inputs and outputs shown in Table 8 are also common to the second model creation unit 222.
  • the time-series data of the explanatory variables and the objective variables of the inputs shown in Table 8 are the time-series data for the training day for the first model creation unit 212. That is, the output is a verification model learned from the time series data of the training day.
  • the first model creation unit 212 creates a model learned by using the time series data of the explanatory variables and the objective variables.
  • a regression model that can predict continuous values from a plurality of explanatory variables may be selected, and for example, Random Forest described in Reference 1 can be used. [Reference 1] Breiman, L. (2001). Random Forest. Machine Learning, 45 (1), 5-32.
  • the verification model learned from the input data in Table 8 is created as a verification model in which the input is an explanatory variable and the output is an objective variable.
  • the objective variable in Table 9 is the prediction result of the energy used for hot water, and shows the output of the model for verifying hot water. If the energy used for cold water is also predicted, a model for verifying cold water is also created.
  • step S1114 the CPU 11 calculates the predicted value of the objective variable on the verification date by using the verification model created in step S112 as the parameter determination unit 114.
  • step S1116 the CPU 11 calculates the absolute error between the predicted value and the measured value on the verification date as the parameter determination unit 114.
  • step S1118 the CPU 11 determines whether or not all the days of the learning data have been used as the verification days as the parameter determination unit 114. If it is determined that all days have been used as verification dates, the process proceeds to step S1120, and if it is determined that all days have not been used as verification dates, the process returns to step S1108 and another verification date is set. Select and repeat the process.
  • step S1120 the CPU 11, as the parameter determination unit 114, calculates the score for the combination selected in step S1104, using the average value of the absolute errors obtained for each of the verification dates in step S116 as the score.
  • step S1122 the CPU 11 determines whether or not the score has been calculated for all the combinations as the parameter determination unit 114. If it is determined that the score has been calculated for all combinations, the process proceeds to step S1124, and if it is determined that the score has not been calculated for all combinations, the process returns to step S1104 to select and process the next combination. repeat.
  • step S1124 the CPU 11 determines the optimum time delay parameter for the energy used as the parameter determination unit 114, and stores it in the parameter storage unit 116.
  • the optimum time delay parameter may be the time delay parameter of the combination having the best score among the scores calculated for each combination.
  • the time delay parameter of the air conditioning control region to be processed selected in step S1102 is determined.
  • the optimum time delay parameter determined is the optimum maximum time and time width of the techniques of the present disclosure.
  • step S1126 the CPU 11 determines whether or not the time delay parameter has been determined for all the air conditioning control regions as the parameter determination unit 114. If it is determined that the time delay parameters have been determined for all the air conditioning control areas, the process is terminated, and if it is determined that the time delay parameters have not been determined for all the air conditioning control areas, the process returns to step S1102 and the next step is performed. Select the air conditioning control area of and repeat the process.
  • the model learning process in step S104 will be described with reference to the flowchart of FIG.
  • the prediction model is trained using the determined time delay parameters.
  • a prediction model for the energy used for each air conditioning control area may be created.
  • step S1200 the CPU 11 acquires learning data and a time delay parameter as the learning model creation unit 118.
  • the learning data is acquired from the learning data storage unit 112, and the time delay parameter is acquired from the parameter storage unit 116.
  • step S1202 the CPU 11 selects the air conditioning control area to be processed as the learning model creation unit 118.
  • step S1204 the CPU 11 obtains the average value of the time-considered data of the learning data by using the acquired time delay parameter as the second variable creation unit 220, and creates the time-series data of the explanatory variables including the average value. do. Then, the time series data of the explanatory variables and the objective variables are output to the second model creation unit 222.
  • the input of the time-series data of the explanatory variables created by the second variable creation unit 220 is different from that of the first variable creation unit 210.
  • the second variable creation unit 220 targets all the time-series data of the learning data, and the first variable creation unit 210 targets the time-series data of the training day. Since the method of creating the time series data of the explanatory variables is the same as the processing of the first variable creating unit 210 in step S1106, the description thereof will be omitted.
  • step S1206 as the second model creation unit 222, the CPU 11 creates a prediction model for the energy used for the air conditioning control area to be processed by using the time series data of the explanatory variables and the objective variables, and saves the learning model. It is stored in the unit 120. Since the method for creating the prediction model is the same as that for the first model creation unit 212, the description thereof will be omitted.
  • step S1208 the CPU 11 determines whether or not a prediction model has been created for all the air conditioning control regions as the learning model creation unit 118. If it is determined that the prediction model has been created for all the air conditioning control areas, the process is terminated, and if it is determined that the prediction model has not been created for all the air conditioning control areas, the process returns to step S1202 and the next air conditioning is performed. Select the control area and repeat the process.
  • the learning process of the prediction device 100 of the present embodiment it is possible to predict the required heat amount for each air conditioning control region and learn the time delay parameter and the prediction model for enabling appropriate heat source control.
  • t max and ⁇ t are time delay parameters. Any method may be used as long as an appropriate time difference in which the influence of the environment outside the building propagates can be obtained for each air conditioning control area.
  • a range of set time may be set in advance for t max and ⁇ t, and a parameter search may be performed within the range by Bayesian optimization or the like. For example, if t max , a range of 60 to 240 is set, and if ⁇ t, a range of 10 to 60 is set as the set time.
  • the following can be considered in addition to the above-mentioned "multiple average values before the predicted target time".
  • It is a value of one point before the prediction target time.
  • the value at 11 o'clock is used when making a prediction at 12 o'clock.
  • (2) Set the values of multiple points before the prediction target time.
  • the value at 10 o'clock and the value at 11 o'clock are used when making a prediction at 12 o'clock.
  • a plurality of average values before the predicted target time having the best accuracy are used. The verification results will be described later.
  • Prediction processing Next, the configuration of the processing unit related to the prediction processing will be described.
  • the prediction data collection unit 130 collects prediction data and stores it in the prediction data storage unit 132.
  • the prediction data are the predicted weather data which is the predicted value of the meteorological data, the predicted human flow data which is the predicted value of the human flow data, and the planned setting value of the air conditioner for each air conditioning control area.
  • a description of the forecast data to be collected is shown in Table 10 below, and an example of the storage format of the prediction data storage unit 132 is shown in Table 11.
  • the forecast data in Table 10 is classified into forecast (forecast) weather data, forecast person flow data, and planned setting values of the air conditioner. Each corresponds to the learning data in Table 1.
  • Table 11 is an example of the prediction data stored in the prediction data storage unit 132. Since February 1, 2020, forecast data has been stored as time-series data. In the example of Table 11, the case where the outside air temperature forecast value is collected as the predicted weather data, the number of people predicted value is collected as the predicted person flow data, and the room temperature set planned value is collected as the set planned value is shown. In the prediction process, the predicted meteorological data and the predicted person flow data are time-considered data.
  • the demand forecasting unit 134 predicts the required heat amount for the energy used for each air conditioning control area by using the forecasting data stored in the forecasting data storage unit 132 and the stored time delay parameter.
  • the predicted amount of heat required for each air conditioning control area is stored in the prediction result storage unit 136.
  • the sum of the required heat quantities predicted for each air conditioning control area can be obtained as the prediction result of the heat source demand of the entire building.
  • the prediction data and the time delay parameter are examples of predetermined parameters related to the surrounding environment of the air conditioning control area of the technique of the present disclosure.
  • FIG. 7 is a flowchart showing the flow of the prediction process by the prediction device 100.
  • the prediction process is performed by the CPU 11 reading the prediction processing program from the ROM 12 or the storage 14, expanding it into the RAM 13, and executing the prediction processing program.
  • step S200 the CPU 11 collects the prediction data as the prediction data collection unit 130 and stores it in the prediction data storage unit 132.
  • step S202 the CPU 11 selects the air conditioning control area to be forecast as the demand forecast unit 134.
  • step S204 the CPU 11 acquires the time delay parameter and the forecast model corresponding to the air conditioning control region to be forecast as the demand forecast unit 134.
  • the time delay parameter is acquired from the parameter storage unit 116, and the prediction model is acquired from the learning model storage unit 120.
  • step S206 the CPU 11 obtains the average value of the time-considered data of the prediction data using the acquired time delay parameter as the third variable creation unit 230, and when it is an explanatory variable in the prediction process including this average value. Create series data.
  • Table 12 shows an example of time-series data of explanatory variables in the prediction process that is the output of the third variable creation unit 230.
  • the time series data for one day of 2020/2/2 of the prediction data and the time delay parameter for predicting the hot water energy usage create the time series data of the explanatory variables as shown in Table 12.
  • the example in Table 12 is the time series data of the explanatory variables for one minute of the day of 2020/2/2.
  • the time-series data of the explanatory variables created in this way is input to the prediction model for predicting the amount of hot water energy used, and the predicted value is obtained as an output. The same applies when you want to obtain a predicted value of cold water energy usage.
  • step S208 the CPU 11 uses the demand forecasting unit 134 as an input to the forecasting model that has acquired the time-series data of the explanatory variables for the air-conditioning control region to be forecasted, and the output from the forecasting model is required for the energy used. Predict the amount of heat. Then, the prediction result for the air conditioning control area to be predicted is stored in the prediction result storage unit 136.
  • step S210 the CPU 11 determines whether or not the required heat amount is predicted for all the air conditioning control regions as the demand forecast unit 134. If it is determined that the required heat quantity is predicted for all the air conditioning control regions, the process is terminated, and if it is determined that the required heat quantity is not predicted for all the air conditioning control regions, the process returns to step S202 and the next air conditioning is performed. Select the control area and repeat the process.
  • the required heat amount is predicted for each of the cold water and the hot water used as energy.
  • explanatory variables may be created for each of the used energies for each air conditioning control area.
  • the time delay parameter is used to obtain the average value of the time-considered data for each set time.
  • the time delay parameters (maximum time t max and time width ⁇ t) are learned for each of the energy used.
  • the explanatory variables for each of the energy used are input to the prediction model, the required heat quantity is predicted, and the heat source demand of the entire building is predicted.
  • Predictive models are also trained to predict the amount of heat required for each of the energies used.
  • Verification A and verification B will be described for the effects actually verified using the data in the air conditioning control area of the building.
  • explanatory variables shown in Table 7 were created as explanatory variables including the set values of the air conditioner. Subsequently, as an explanatory variable that does not include the set value of the air conditioner, an explanatory variable excluding the "air conditioner set value (room temperature)" was created. The values in Table 3 were used for the time delay parameters.
  • the absolute error of the predicted value was obtained by the following methods 1 to 6. The results are shown in Table 13 and FIG. 1. 1. Of the time-series data, any one day is separated from the verification day, and the other days are separated from the training day. 2. 2. Create a model learned from the training day data. 3. 3. Calculate the predicted value of the verification date from the created model. 4. Calculate the absolute error between the predicted value and the measured value on the verification date. Repeat 5.1 to 4 until all days in the data are verification dates. 6. The average value of the absolute errors obtained in 4 on all verification days is used as the absolute error of the model.
  • A is a pattern of a plurality of average values before the prediction target time. This is the pattern of the above embodiment.
  • the outside air temperature is a plurality of average values before the prediction target time
  • the number of people is a plurality of average values before the prediction target time.
  • the values in Table 3 were used for the time delay parameters.
  • B is a pattern that does not consider the time lag.
  • the outside air temperature is the value of the prediction target time
  • the number of people is the value of the prediction target time.
  • C is a pattern of values at a certain point before the prediction target time.
  • the outside temperature was the value before the prediction target time, and the number of people was the value before the prediction target time.
  • the optimum value is adopted as in the cross-validation method shown in the parameter determination unit 114.
  • D is a pattern of values of a plurality of points before the prediction target time. For the outside temperature, the values of multiple points before the predicted target time were used, and for the number of people, the values of multiple points before the predicted target time were used. As for how many minutes ago the value is used, the optimum value is adopted as in the cross-validation method shown in the parameter determination unit 114.
  • the human flow and the set value of the air conditioner are included in the explanatory variables for the prediction of the required heat quantity in the air conditioning control area.
  • the value past the predicted time is treated as time-considered data including the influence of the time delay on the space.
  • the accuracy of heat demand forecasting can be improved by taking into account the effects of the time delay that the outside air temperature and the flow of people, which differ in each air-conditioning control area, have on the space.
  • the time delay parameter various time delay patterns are verified using a machine learning method to obtain the time delay parameter with the smallest prediction error.
  • the problem of the physical model is a method of obtaining a time delay from a physical model based on spatial parameters such as the specific heat and air density of the space and the amount of heat of the human body, and it is difficult to determine the parameters and the parameters are actual. It is a problem that the accuracy decreases when it is separated from the world.
  • various processors other than the CPU may execute the learning processing program or the prediction processing program executed by the CPU by reading the software (program) in the above embodiment.
  • the processor includes a PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing an FPGA (Field-Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), and the like for specifying an ASIC.
  • An example is a dedicated electric circuit or the like, which is a processor having a circuit configuration designed exclusively for it.
  • the learning processing program or the prediction processing program may be executed by one of these various processors, or with a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs and a CPU). It may be executed in combination with FPGA, etc.).
  • the hardware-like structure of these various processors is, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined.
  • the learning processing program or the prediction processing program is stored (installed) in the storage 14 in advance has been described, but the present invention is not limited to this.
  • the program is stored in a non-temporary medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versaille Disk Online Memory), and a USB (Universal Serial Bus) memory. It may be provided in the form. Further, the program may be downloaded from an external device via a network.
  • Appendix 1 With memory With at least one processor connected to the memory Including The processor
  • a forecasting device that forecasts heat source demand in a space having a predetermined air conditioning control area. By inputting predetermined parameters related to the surrounding environment of the air conditioning control area and the set value of the air conditioner set in the air conditioning control area, the required heat amount in the air conditioning control area is predicted. The heat source demand of the entire space is predicted from the required heat amount for each of the predicted air conditioning control regions.
  • a predictor configured to.
  • a non-temporary storage medium that can be executed by a computer to perform prediction processing and stores a prediction program that predicts heat source demand in a space having a predetermined air conditioning control area. By inputting predetermined parameters related to the surrounding environment of the air conditioning control area and the set value of the air conditioner set in the air conditioning control area, the required heat amount in the air conditioning control area is predicted. The heat source demand of the entire space is predicted from the required heat amount for each of the predicted air conditioning control regions.
  • Non-temporary storage medium is

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空調制御領域ごとに必要熱量を予測することにより、適切な熱源制御を可能とすることができる。 所定の空調制御領域を有する空間内における熱源需要予測を行う予測方法であって、前記空調制御領域の周辺環境に係るあらかじめ定められたパラメータと、前記空調制御領域に設定する空調機の設定値と、を入力とし、前記空調制御領域における必要熱量を予測し、予測された前記空調制御領域ごとの前記必要熱量から前記空間全体の熱源需要を予測する。

Description

予測方法、予測装置、及び予測プログラム
 開示の技術は、予測方法、予測装置、及び予測プログラムに関する。
 ビルなどの大規模施設における空調設備は、運転シナリオに基づいて建物の温度を調節している。空調設備の運転では、熱源機で熱量として温水又は冷水を生成し、生成された温水又は冷水を各空調制御領域(空調利用部)に送り、各空調制御領域は温水又は冷水を用いて空調機により温風又は冷風を生成する。空調制御領域は、建物の一部領域であり熱源機で得た熱量を消費する。大規模施設全体として設定される設定温度を満たすための熱源機の運転シナリオを算出するにあたって、あらかじめ熱源で使用する熱源需要を予測する必要がある。熱源機の運転シナリオは予測された熱源需要を満たしつつ、起動時電力及び運転時電力を考慮して消費電力が少なくなるように計画される。熱源需要予測の手法は、シミュレータを用いる物理モデル、又は機械学習等により何らかの数理モデルを構築する学習モデルの2種類が存在する。
 物理モデルを用いる場合は、建物の構成に基づいた特有のパラメータを多量に設定する必要があり、その設定値の決定には高度に専門的な知識を要するとともに、設定値に誤差があると予測値の誤差も大きくなってしまうという課題がある。学習モデルを用いる場合は、建物ごとの過去の熱消費量を元に予測を行うので、物理モデルのようなパラメータチューニングが不要である。非特許文献1には機械学習を用いて熱源需要を予測する技術が記載されている。
Matsunaga, K., Kaminaga, M., Nagata, K., Kawamura, T., Nakamura, R., Kunitomo, O., & Sasajima, K.スマートエネルギーネットワークによる省co2まちづくり(第14報)Senems(セネムス)による空調・熱源機連携制御について. 空気調和・衛生工学会大会学術講演論文集, B-7, 29-32. (2016).
 しかしながら非特許文献1の技術は外気温又は外湿度などの建物外部のパラメータのみを利用しており、空調制御領域の周辺環境、例えば空調機の設定及び、人間に代表される移動体の熱源等を考慮していない。そのため、建物外部のパラメータが同じ日でも空調制御領域の周辺環境が異なるパターンが存在する場合、熱源需要予測の精度が低下する。結果的に熱源需要が多く予測された場合は不要な熱量を得たことによる省エネ性の低下、少なく予測された場合は熱量不足により快適性の低下が発生する。すなわち設定温度にできず、屋内の気温が外気温に、湿度が外湿度に近くなるという課題を有する。
 開示の技術は、上記の点に鑑みてなされたものであり、空調制御領域ごとに熱源需要を予測することにより、適切な熱源制御を可能とする予測方法、予測装置、及び予測プログラムを提供することを目的とする。
 本開示の第1態様は、所定の空調制御領域を有する空間内における熱源需要予測を行う予測方法であって、前記空調制御領域の周辺環境に係るあらかじめ定められたパラメータと、前記空調制御領域に設定する空調機の設定値と、を入力とし、前記空調制御領域における必要熱量を予測し、予測された前記空調制御領域ごとの前記必要熱量から前記空間全体の熱源需要を予測する。
 開示の技術によれば、空調制御領域ごとに必要熱量を予測することにより、適切な熱源制御を可能とすることができる。
予測装置のハードウェア構成を示すブロック図である。 本実施形態の予測装置の構成を示すブロック図である。 予測装置の入力データに係る建物の各部及び外部サービスの一例を示す図である。 本実施形態の予測装置による学習処理の流れを示すフローチャートである。 パラメータ決定処理の詳細な流れを示すフローチャートである。 モデル学習処理の詳細な流れを示すフローチャートである。 本実施形態の予測装置による予測処理の流れを示すフローチャートである。 検証Aによる検証結果を示す図である。 検証Bによる検証結果を示す図である。
 以下、開示の技術の実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一又は等価な構成要素及び部分には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 まず、本開示の概要について説明する。本開示の技術は、空調制御領域ごとの周辺環境に基づき空調制御領域ごとの熱源の需要を予測し、空調制御領域ごとに予測された熱源の需要の和を取ることで熱需要を推定する技術を提案する。既存技術では全ての空調制御領域をまとめた建物全体の熱源需要を予測していた。これに対して本開示の技術では、空調制御領域ごとの周辺環境に係るパラメータ及び空調設備の設定値から、空調制御領域ごとの必要熱量を予測することにより、建物全体の熱源需要を予測する。周辺環境に係るパラメータとは、後述する気象データ、及び人流データを例として挙げることができるが、対象の空調制御領域に影響を及ぼす熱エネルギーを有するデータであればさらに用いてもよい。
 以下、本実施形態の構成について説明する。
 図1は、予測装置100のハードウェア構成を示すブロック図である。
 図1に示すように、予測装置100は、CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、ストレージ14、入力部15、表示部16及び通信インタフェース(I/F)17を有する。各構成は、バス19を介して相互に通信可能に接続されている。
 CPU11は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU11は、ROM12又はストレージ14からプログラムを読み出し、RAM13を作業領域としてプログラムを実行する。CPU11は、ROM12又はストレージ14に記憶されているプログラムに従って、上記各構成の制御及び各種の演算処理を行う。本実施形態では、ROM12又はストレージ14には、学習処理プログラム及び予測処理プログラムが格納されている。
 ROM12は、各種プログラム及び各種データを格納する。RAM13は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ14は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等の記憶装置により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを格納する。
 入力部15は、マウス等のポインティングデバイス、及びキーボードを含み、各種の入力を行うために使用される。
 表示部16は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示部16は、タッチパネル方式を採用して、入力部15として機能してもよい。
 通信インタフェース17は、端末等の他の機器と通信するためのインタフェースである。当該通信には、たとえば、イーサネット(登録商標)若しくはFDDI等の有線通信の規格、又は、4G、5G、若しくはWi-Fi(登録商標)等の無線通信の規格が用いられる。
 次に、予測装置100の各機能構成について説明する。図2は、本実施形態の予測装置の構成を示すブロック図である。各機能構成は、CPU11がROM12又はストレージ14に記憶された学習プログラム及び予測プログラムを読み出し、RAM13に展開して実行することにより実現される。
 図2に示すように、予測装置100は、学習処理に関して、学習用データ収集部110と、学習用データ保存部112と、パラメータ決定部114と、パラメータ保存部116と、学習モデル作成部118と、学習モデル保存部120とを含む。また、予測装置100は、予測処理に関して、予測用データ収集部130と、予測用データ保存部132と、需要予測部134と、予測結果保存部136とを含む。なお、学習処理に関する処理部と、予測処理に関する処理部とを別々の装置に分け、学習装置及び予測装置としてそれぞれ構成してもよい。
 パラメータ決定部114は、第1変数作成部210と、第1モデル作成部212とを含む。学習モデル作成部118は、第2変数作成部220と、第2モデル作成部222とを含む。需要予測部134は、第3変数作成部230を含む。
 ここで、予測装置100の学習用データ収集部110及び予測用データ収集部130のそれぞれに入力される入力データについての態様を説明する。図3は、予測装置100の入力データに係る建物50の各部及び外部サービスの一例を示す図である。図3に示す例では、建物50は、BEMS(Building and Energy Management System)52と、各空調制御領域54とを含み、空調制御領域54ごとに人流検知センサ56を有する(空調制御領域54の符号は図3の説明においてのみ使用し、以降は符号を省略する)。BEMS52は、空調制御領域54ごとの使用エネルギー別のエネルギー使用量を管理している。使用エネルギーとは熱源(例えば空調機)によって発生させるエネルギーの種別であり、本実施形態ではBEMS52は温水及び冷水のエネルギー使用量を管理する。使用エネルギー別とは、温水及び冷水で別々にデータを管理するということである。また、BEMS52は空調制御領域54ごとの気象データを計測する。各空調制御領域54の人流検知センサ56は、当該空調制御領域54の人流を検知し、人流データを計測する。学習用データ収集部110には、空調制御領域54ごとの気象データ、空調制御領域54ごとの空調機の設定値、及び空調制御領域54ごとの使用エネルギー別のエネルギー使用量が入力される。予測用データ収集部130には、空調制御領域54ごとの、気象データの予測値である予測気象データ、人流データの予測値である予測人流データ、及び空調機の設定予定値が入力される。予測人流データは、人流検知センサ56の人流データをもとに人流予測器60が予測する。予測気象データは、外部の気象サービス62を利用して予測する。以上が予測装置100に入力されるデータの一例についての説明である。なお、本開示の技術は、建物50内の空調制御領域54の必要熱量を予測対象とする場合を例に説明するがこれに限定されるものではなく、予測対象の空間を拡張し、地域熱源の需要の予測に摘要することも想定している。地域熱源を扱うケースでは、地域内に存在する建物の各々に対する熱源の供給を集約して管理することが想定される。地域熱源の需要の予測を行う場合には、建物50を地域に置き換え、各空調制御領域54を建物の各々に置き換えて、本開示の技術を適用する。
 以下では、上記の入力データをもとにした学習処理及び予測処理についてそれぞれ説明する。
(学習処理)
 学習処理に関する処理部の構成について説明する。
 学習用データ収集部110は、時間遅れパラメータの決定及び学習モデル作成のために必要な学習用データを収集し、学習用データ保存部112に保存する。学習用データは、説明変数及び目的変数となる実測値の時系列データとして収集する。なお、学習用データは空調制御領域ごとに存在する。収集する学習用データの説明を以下の表1に、学習用データ保存部112の保存形式の例を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1の例において、学習用データは、気象データ、人流データ、空調機の設定値、及びエネルギー使用量に区分される。これらの学習用データの用途は、説明変数と目的変数とに分けられる。気象データ、人流データ、及び空調機の設定値の用途は説明変数であり、エネルギー使用量の用途は目的変数である。また、気象データ及び人流データは時間の変化による影響を考慮するための時間遅れパラメータの決定対象とし、時間遅れパラメータを用いて単位時間あたりの平均値を求める。このようにして求めた平均値を、時間遅れを考慮する説明変数として用いる。時間遅れを考慮する説明変数を作成する対象となる気象データ及び人流データが、本開示の技術の時間考慮データの一例である。なお、必ずしも人流データである必要はなく、存在する人間の数(存在した人間の数)、ひいては単位時間当たりに存在した人間が放射した熱量の総和を求めることができるセンサデータを用いてもよい。
 表2は、学習用データ保存部112に格納された学習用データの一例である。表2では省略しているが、2020年1月1日~31日の1月分の時系列データとして単位時間ごとに学習用データを収集しているとする。単位時間は10分ごととしている。また、気象データは外気温、人流データは人数、設定値は室温設定値を収集した場合の例を示している。また、使用エネルギーの冷水及び温水について、冷水エネルギー使用量、及び温水エネルギー使用量が設定されている。
 気象データの具体例は、空調制御領域に対応した、外気温、外湿度、日射量、及び風速の気象データ群である。BEMS52により空調制御領域の各々に対応した気象データ群を収集することを想定する。例えば外気情報であれば空調制御領域に一番近い気象センサにより取得されたセンサデータとすることができる。BEMS52で外気情報を空調制御領域ごとに取得していれば当該センサデータを利用可能である。ただし、空調制御領域ごとに気象データ群を収集することは困難な場合も想定されるため、例えば、気象サービス62の建物50(BEMS52)に対する気象データ群を、一律、空調制御領域ごとの気象データ群として扱うようにしてもよい。
 人流データの具体例は、空調制御領域に存在した単位時間あたりのユニークな人の数(人数)、又は空調制御領域に存在した単位時間あたりの人の滞在時間である。人数であれば、単位時間の間に存在した人数を人流検知センサ56により計測すればよい。ユニークな人の数は、例えば、単位時間内に領域内にいた人の人数をカウントすればよい。どの程度の時間滞在していたかは関係なく、その領域にいた場合にカウントする。例えばある人流検知センサ56で、領域内の人にIDを付与して追跡する場合を想定する。このとき、単位時間内に次のID=1及びID=2が検出されたとする。ID=1については、(1-1)ID=1が検出され、(1-2)ID=1が領域内に数分滞在し、(1-3)ID=1が領域外に移動、したことが検出されたとする。ID=2については、(2-1)ID=2が検出され、(2-2)ID=2は数秒で領域外に移動、したことが検出されたとする。この場合はユニークな人の数は2人とカウントされる。人の滞在時間であれば、例えば、空調制御領域に単位時間の間に存在した人の各々の「人×滞在時間(秒)」の平均値を人流検知センサ56により計測すればよい。
 空調機の設定値の具体例は、空調制御領域の空調機の室温設定値、空調制御領域の空調機の風量設定値、空調制御領域の空調機の給気温度設定値、空調制御領域の空調機運転状況である。
 説明変数に使うことができるデータの具体例を列挙したが、一部の具体例のみを用いてもよい。例えば、気象情報に係る説明変数に使うデータを外気温だけとしてもよいし外気温及び外湿度の組み合わせとしてもよい。また、列挙した以外の具体例を用いて説明変数を定義してもよいのは言うまでもない。気象データであれば建物の外部パラメータであって空調制御領域で用いる熱量に影響を与える他の気象関連のデータを用いてもよい。また、人流データについても、建物内に存在する空調制御領域に影響を与える熱源となる他の対象物のデータを用いてもよい。
 パラメータ決定部114は、空調制御領域ごとに、時間考慮データ、すなわち気象データ及び人流データそれぞれについての時間遅れパラメータを決定する。時間遅れパラメータは、予測対象時間より前の考慮対象とする最大時間tmax、及び当該最大時間tmaxから予測対象時間までの平均値を求めたい時間間隔を示す時間幅Δtである。パラメータ決定部114は、内部の処理として第1変数作成部210及び第1モデル作成部212の処理をすることにより、時間遅れパラメータを決定し、パラメータ保存部116に格納する。パラメータ決定部114のパラメータ決定処理、及びパラメータ決定処理に関わる第1変数作成部210及び第1モデル作成部212の処理の詳細は作用の説明において後述する。
 気象データ及び人流データなどを説明変数とする場合は、空調制御領域の空間ごとに時間の変化によって与える影響、すなわち、ある空調制御領域の空間が、その説明変数の影響をどの程度の時間遅れて受けるのか、を考慮する必要がある。例えば、室外と隣接している空間では外気温の影響を直ぐに受けやすい、つまり時間遅れは短くなると考えられる。反対に、室外との間に通路がある空間では時間遅れは長くなると考えられる。
 本技術ではこのような時間遅れの影響を加味するために、「予測対象時間より前の複数の平均値」を説明変数として用いる。例えば、12時の予測をする際に9時~10時の平均値、10時~11時の平均値、及び11時~12時の平均値を用いる。どの時間の間の平均値を求めるのかを決めるためのパラメータが必要であるため、最大時間tmaxと時間幅Δtとを時間遅れパラメータとして決定する。
 学習モデル作成部118は、空調制御領域ごとに、学習用データと、パラメータ保存部116に格納された時間遅れパラメータとを用いて、使用エネルギーについての予測モデルを学習し、学習モデル保存部120に格納する。ここで学習する当該予測モデルが、空調制御領域の必要熱量を予測するためのモデルである。学習モデル作成部118は、内部の処理として第2変数作成部220及び第2モデル作成部222の処理をして予測モデルを学習する。学習モデル作成部118のモデル学習処理、及びモデル学習処理に関わる第2変数作成部220及び第2モデル作成部222の処理の詳細については作用の説明において後述する。
 次に、予測装置100の学習処理の作用について説明する。
 図4は、予測装置100による学習処理の流れを示すフローチャートである。CPU11がROM12又はストレージ14から学習処理プログラムを読み出して、RAM13に展開して実行することにより、学習処理が行なわれる。
 ステップS100において、CPU11は、学習用データ収集部110として、学習用データを収集し、学習用データ保存部112に格納する。
 ステップS102において、CPU11は、パラメータ決定部114として、空調制御領域ごとに、使用エネルギーについて気象データ及び人流データそれぞれの時間遅れパラメータを決定し、パラメータ保存部116に格納する。
 ステップS104において、CPU11は、学習モデル作成部118は、学習用データと、時間遅れパラメータとを用いて、空調制御領域ごとに、使用エネルギーについての予測モデルを学習し、学習モデル保存部120に格納する。
 次に、図5のフローチャートを参照して、ステップS102のパラメータ決定処理について説明する。本実施形態のパラメータ決定処理では、一例として、学習用データの説明変数を検証日及び訓練日に分けて交差検証を行うことにより、時間遅れパラメータを決定する場合を説明する。図4は、パラメータ決定処理を示すフローチャートである。図4のパラメータ決定処理では、空調制御領域ごとに使用する使用エネルギーについての時間遅れパラメータを決定すればよい。空調制御領域ごとに使用する使用エネルギーは、学習用データの用途が目的変数のデータから適宜定めればよい。例えば、空調制御領域についての温水(又は冷水)のエネルギー使用量が0しかなければ温水(又は冷水)についてのパラメータ決定処理を省略し、0以外の入力値がある場合にはパラメータ決定処理を行えばよい。つまり、空調制御領域でその使用エネルギーが使用されている場合にパラメータ決定処理を行えばよい。
 ステップS1100では、CPU11は、パラメータ決定部114として、学習用データ保存部112に格納されている学習用データを取得する。
 ステップS1102では、CPU11は、パラメータ決定部114として、処理対象とする空調制御領域を選択する。
 ステップS1104では、CPU11は、パラメータ決定部114として、処理対象とした空調制御領域に対応する時間遅れパラメータの組み合わせを選択し、選択した組み合わせを第1変数作成部210に出力する。
 組み合わせのサンプルについて説明する。気象データについては外気温、人流データの人数とする。気象データ及び人流データそれぞれで最大時間tmax=[60分,120分,180分,240分]、時間幅Δt=[10分,20分,30分,40分,50分,60分]の設定時間で組み合わせを試すとする。最大時間tmaxと時間幅Δtとの設定時間の組み合わせは4×6=24通りあり、組み合わせは外気温と人数とはそれぞれで変えるため、試行回数は24×24=576回となる。さらに、冷水のエネルギー使用量の検証用モデルと温水のエネルギー使用量の検証用モデルとでそれぞれ試すため全試行回数は1152回となり、一度の試行で10分かかるとすると8日で全試行が終了するため、実現可能な範囲と言える。これにより、例えば以下の表3のような値が決定される。なお、気象データ及び人流データで同様の最大時間tmaxの設定時間、及び時間幅Δtの設定時間とする場合としたが、それぞれのデータで別々の設定時間としてもよい。上記最大時間tmaxの設定時間、及び時間幅Δtの設定時間が、本開示の技術の最大時間についての設定時間、及び時間幅についての設定時間の一例である。
 表3は、使用エネルギーの冷水及び温水それぞれについて時間遅れパラメータである最大時間tmax及び時間幅Δtを決定した場合の一例を示している。これらの時間遅れパラメータは、冷水の予測モデル及び温水の予測モデルで使用する。なお、表3上では対応する空調制御領域の記載は省略しているが、空調制御領域ごとに表3の時間遅れパラメータが決定される。
Figure JPOXMLDOC01-appb-T000003
 ステップS1106では、CPU11は、第1変数作成部210として、ステップS1104で選択した組み合わせの時間遅れパラメータを用いて時間考慮データの平均値を求め、この平均値を含めた説明変数の時系列データを作成する。
 ここで第1変数作成部210の入力及び出力について説明する。第1変数作成部210で求める選択した組み合わせの時間考慮データの平均値が、本開示の技術の所定の計算値の一例である。なお、平均値以外にも、設定時間ごとに重みづけして求めた加重平均値、中央値等を用いてもよい。
 表4に、第1変数作成部210の入力及び出力を示す。なお、表4に示す入力及び出力は第2変数作成部220及び第3変数作成部230にも共通する。
Figure JPOXMLDOC01-appb-T000004
 表4に示した出力における説明変数の時系列データには、時間遅れを考慮する説明変数、時間遅れを考慮しない説明変数、時刻ラベルが含まれる。時刻ラベルは予測対象時間を表しており、時間幅の時間間隔ごとに設定される。第1変数作成部210は、説明変数の時系列データのうち、時間遅れを考慮する説明変数についてはある時刻より前の複数の平均値として作成した値を出力し、時間遅れを考慮しない説明変数についてはもとの値を出力する。ここで、時間遅れを考慮する説明変数の計算方法について説明する。説明変数の外気温及び人数のそれぞれに対し、設定時間をi=1,2,…,n(nΔt≦tmax<(n+1)Δt)とし、日時tの説明変数に日時t-(i-1)Δtから日時t-iΔtの平均値を、時間遅れを考慮した説明変数として作成する。これを全てのiに対して行うことにより設定時間iごとの平均値が求められる。なお、平均値の計算では日時t-(i-1)Δtの値は含めず、日時t-iΔtの値は含めるように計算する。
 表5に、第1変数作成部210の入力となる説明変数の作成に用いる時系列データ(学習用データ)の一例を示す。
Figure JPOXMLDOC01-appb-T000005
 表6に、第1変数作成部210の入力となるステップS1104で選択した組み合わせの時間遅れパラメータの一例を示す。最大時間tmaxは外気温を120分、人数を60分とし、時間幅Δtは外気温を60分、人数を30分とした組み合わせの例である。
Figure JPOXMLDOC01-appb-T000006
表7に、第1変数作成部210の出力となる説明変数の時系列データの一例を示す。表7の例では1月1日を検証日として、時間を考慮する外気温及び人数、及び時間を考慮しない室温設定値の説明変数、並びに時刻ラベルを表した場合の例である。
Figure JPOXMLDOC01-appb-T000007
 以上が第1変数作成部210の処理の説明である。
 ステップS1108では、CPU11は、パラメータ決定部114として、検証日及び訓練日を設定する。ここでは、学習用データの各日について、任意の1日を検証日、それ以外の日を訓練日と分ける。繰り返し処理においては、学習用データの各日は、検証日として一度選び、全ての日を検証日に選ぶまで繰り返すようにする(後述のステップS1116の判定処理)。
 ステップS1110では、CPU11は、パラメータ決定部114として、設定した訓練日についての説明変数と目的変数の時系列データを第1モデル作成部212に出力する。訓練日についての説明変数は、ステップS1106で作成された説明変数の時系列データのうち訓練日についての説明変数の時系列データを出力に含め、検証日の時系列データを除外すればよい。目的変数についても同様である。
 ステップS1112では、CPU11は、第1モデル作成部212として、訓練日についての説明変数と目的変数の時系列データを用いて検証用モデルを作成する。
 ここで第1モデル作成部212の入力及び出力について説明する。第1モデル作成部212で作成する検証用モデルは、交差検証をするために用いられるモデルである。以下では、第1モデル作成部212で作成するパラメータ決定用のモデルは検証用モデルモデルと記載し、第2予測モデルで作成する予測モデルと区別して記載する。
 表8に、第1モデル作成部212の入力及び出力を示す。なお、表8に示す入力及び出力は第2モデル作成部222にも共通する。
Figure JPOXMLDOC01-appb-T000008
 表8に示した入力の説明変数と目的変数の時系列データは、第1モデル作成部212に関しては、訓練日についての時系列データである。つまり、出力は訓練日の時系列データにより学習した検証用モデルが出力される。第1モデル作成部212では、説明変数、及び目的変数の時系列データを用いて学習したモデルを作成する。アルゴリズムには複数の説明変数から連続値が予測できるような回帰モデルを選択すればよく、例えば参考文献1に記載のRandom Forestを用いることができる。
[参考文献1]Breiman, L. (2001). Random Forest. Machine Learning, 45(1), 5-32.
 表8の入力のデータにより学習した検証用モデルは、表9に示すように、入力が説明変数、出力が目的変数となる検証用モデルとして作成される。表9の目的変数は温水使用エネルギーの予測結果であり、温水の検証用モデルの出力を示している。冷水使用エネルギーも予測する場合は、冷水の検証用モデルも作成する。
Figure JPOXMLDOC01-appb-T000009
 以上が第1モデル作成部212の処理の説明である。
 ステップS1114では、CPU11は、パラメータ決定部114として、ステップS112で作成した検証用モデルを用いて、検証日の目的変数の予測値を算出する。
 ステップS1116では、CPU11は、パラメータ決定部114として、検証日の予測値と実測値との絶対誤差を算出する。
 ステップS1118では、CPU11は、パラメータ決定部114として、学習用データの全ての日を検証日として利用したか否かを判定する。全ての日を検証日として利用したと判定した場合にはステップS1120へ移行し、全ての日を検証日として利用していないと判定した場合には、ステップS1108に戻って、別の検証日を選んで、処理を繰り返す。
 ステップS1120では、CPU11は、パラメータ決定部114として、ステップS116で検証日の各々について求めた絶対誤差の平均値をスコアとして、ステップS1104で選択した組み合わせについてのスコアを算出する。
 ステップS1122では、CPU11は、パラメータ決定部114として、全ての組み合わせについてスコアを算出したか否かを判定する。全ての組み合わせについてスコアを算出したと判定した場合にはステップS1124へ移行し、全ての組み合わせについてスコアを算出していないと判定した場合には、ステップS1104に戻って次の組み合わせを選択して処理を繰り返す。
  ステップS1124では、CPU11は、パラメータ決定部114として、使用エネルギーについての最適な時間遅れパラメータを決定し、パラメータ保存部116に格納する。最適な時間遅れパラメータは、組み合わせの各々について算出したスコアのうち、最も良いスコアだった組み合わせの時間遅れパラメータとすればよい。これにより、ステップS1102で選択した処理対象とする空調制御領域の時間遅れパラメータが決定される。決定した最適な時間遅れパラメータが、本開示の技術の最適な最大時間及び時間幅である。
 ステップS1126では、CPU11は、パラメータ決定部114として、全ての空調制御領域について時間遅れパラメータを決定したか否かを判定する。全ての空調制御領域について時間遅れパラメータを決定したと判定した場合には処理を終了し、全ての空調制御領域について時間遅れパラメータを決定していないと判定した場合には、ステップS1102に戻って次の空調制御領域を選択して処理を繰り返す。
 以上がステップS102のパラメータ決定処理についての説明である。
 次に、図6のフローチャートを参照して、ステップS104のモデル学習処理について説明する。モデル学習処理では、決定した時間遅れパラメータを用いて予測モデルの学習を行う。なお、モデル学習処理でもパラメータ決定処理と同様に空調制御領域ごとに使用する使用エネルギーについての予測モデルを作成すればよい。
 ステップS1200では、CPU11は、学習モデル作成部118として、学習用データ、及び時間遅れパラメータを取得する。学習用データは学習用データ保存部112から、時間遅れパラメータはパラメータ保存部116から取得する。
 ステップS1202では、CPU11は、学習モデル作成部118として、処理対象とする空調制御領域を選択する。
 ステップS1204では、CPU11は、第2変数作成部220として、取得した時間遅れパラメータを用いて学習用データの時間考慮データの平均値を求め、この平均値を含めた説明変数の時系列データを作成する。そして、説明変数と目的変数の時系列データを第2モデル作成部222に出力する。第2変数作成部220で作成する説明変数の時系列データは、第1変数作成部210の場合と入力が異なっている。第2変数作成部220では、学習用データの全ての時系列データを対象としており、第1変数作成部210は訓練日の時系列データを対象にしている。説明変数の時系列データの作成手法はステップS1106の第1変数作成部210の処理と同様であるため説明は省略する。
 ステップS1206では、CPU11は、第2モデル作成部222として、処理対象とする空調制御領域について、説明変数と目的変数の時系列データを用いて、使用エネルギーについての予測モデルを作成し、学習モデル保存部120に格納する。予測モデルの作成手法は第1モデル作成部212と同様であるため説明は省略する。
 ステップS1208では、CPU11は、学習モデル作成部118として、全ての空調制御領域について予測モデルを作成したか否かを判定する。全ての空調制御領域について予測モデルを作成したと判定した場合には処理を終了し、全ての空調制御領域について予測モデルを作成していないと判定した場合には、ステップS1202に戻って次の空調制御領域を選択して処理を繰り返す。
 以上、本実施形態の予測装置100の学習処理によれば、空調制御領域ごとに必要熱量を予測し、適切な熱源制御を可能とするための時間遅れパラメータ及び予測モデルを学習することができる。
 なお、パラメータ決定処理において、時間遅れパラメータであるtmaxとΔtの全ての組み合わせを試行するのは一例に過ぎない。空調制御領域ごとに建物外部の環境の影響が伝搬する適切な時間差を得ることができれば、どのような手法を用いてもよい。一例として、tmaxとΔtに対してあらかじめ設定時間の範囲を設定し、その範囲内でベイズ最適化などによりパラメータ探索を行ってもよい。例えば、tmaxであれば60~240の範囲、Δtであれば10~60の範囲を設定時間として設定する等である。
 また、時間遅れを考慮する方法は上述した「予測対象時間より前の複数の平均値」の他にも以下が考えられる。(1)予測対象時間より前のある一点の値とする。例えば、12時の予測をする際に11時の値を用いる等である。(2)予測対象時間より前の複数点の値とする。例えば、12時の予測をする際に10時の値、及び11時の値を用いる等である。本実施形態の技術では、これらを検証した結果、精度が最良だった「予測対象時間より前の複数の平均値」を用いるとしている。検証結果については後述する。
(予測処理)
 次に、予測処理に関する処理部の構成について説明する。
 予測用データ収集部130は、予測用データを収集し、予測用データ保存部132に保存する。予測用データは上述したように、空調制御領域ごとの、気象データの予測値である予測気象データ、人流データの予測値である予測人流データ、及び空調機の設定予定値である。収集する予測用データの説明を以下の表10に、予測用データ保存部132の保存形式の例を表11に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表10の予測用データは、予測(予報)気象データ、予測人流データ、及び空調機の設定予定値に区分される。それぞれ表1の学習用データに対応する。表11は、予測用データ保存部132に格納された予測用データの一例である。2020年2月1日から時系列データとして予測用データを格納している。表11の例では、予測気象データとして外気温予報値、予測人流データとして人数予測値、設定予定値として室温設定予定値を収集した場合を示している。予測処理においては、予測気象データ及び予測人流データが時間考慮データとなる。
 需要予測部134は、空調制御領域ごとに、予測用データ保存部132に格納されている予測用データと、格納されている時間遅れパラメータとを用いて、使用エネルギーについての必要熱量を予測する。予測した空調制御領域ごとの必要熱量を予測結果保存部136に格納する。これにより、空調制御領域ごとに予測された必要熱量の総和が、建物全体の熱源需要の予測結果として得られる。なお、予測用データ、及び時間遅れパラメータが、本開示の技術の空調制御領域の周辺環境に係るあらかじめ定められたパラメータの一例である。
 次に、予測装置100の予測処理の作用について説明する。
 図7は、予測装置100による予測処理の流れを示すフローチャートである。CPU11がROM12又はストレージ14から予測処理プログラムを読み出して、RAM13に展開して実行することにより、予測処理が行なわれる。
 ステップS200において、CPU11は、予測用データ収集部130として、予測用データを収集し、予測用データ保存部132に格納する。
 ステップS202において、CPU11は、需要予測部134として、予測対象とする空調制御領域を選択する。
 ステップS204において、CPU11は、需要予測部134として、予測対象の空調制御領域に対応する時間遅れパラメータ及び予測モデルを取得する。時間遅れパラメータはパラメータ保存部116から、予測モデルは学習モデル保存部120から取得する。
 ステップS206において、CPU11は、第3変数作成部230として、取得した時間遅れパラメータを用いて予測用データの時間考慮データの平均値を求め、この平均値を含めた、予測処理における説明変数の時系列データを作成する。
 表12に第3変数作成部230の出力となる予測処理における説明変数の時系列データの例を示す。
Figure JPOXMLDOC01-appb-T000012
 例えば2020/2/2の温水エネルギー使用量の予測値を得たい場合は、予測用データの2020/2/2の1日分の時系列データと、温水エネルギー使用量の予測用の時間遅れパラメータとから表12のような説明変数の時系列データを作成する。表12の例は2020/2/2の日1分の説明変数の時系列データである。このように作成した説明変数の時系列データを、温水エネルギー使用量を予測するための予測モデルに入力して、出力として予測値を得る。冷水エネルギー使用量予測値を得たい場合も同様になる。
 ステップS208において、CPU11は、需要予測部134として、予測対象の空調制御領域について、説明変数の時系列データを取得した予測モデルのへの入力とし、予測モデルからの出力により、使用エネルギーについての必要熱量を予測する。そして、予測対象の空調制御領域についての予測結果を予測結果保存部136に格納する。
 ステップS210では、CPU11は、需要予測部134として、全ての空調制御領域について必要熱量を予測したか否かを判定する。全ての空調制御領域について必要熱量を予測したと判定した場合には処理を終了し、全ての空調制御領域について必要熱量を予測していないと判定した場合には、ステップS202に戻って次の空調制御領域を選択して処理を繰り返す。
 なお、必要熱量は使用エネルギーが冷水及び温水、それぞれについて必要熱量を予測する。この場合、空調制御領域ごとに、使用エネルギーの各々について説明変数を作成すればよい。説明変数は、時間遅れパラメータを用いて時間考慮データの設定時間ごとの平均値を求める。時間遅れパラメータ(最大時間tmax及び時間幅Δt)は、使用エネルギーの各々に対して学習されている。そして、空調制御領域ごとに、使用エネルギーの各々についての説明変数を予測モデルへの入力とし、必要熱量を予測し、建物全体の熱源需要を予測する。予測モデルも使用エネルギーの各々についての必要熱量を予測するように学習されている。
 以上、本実施形態の予測装置100の学習処理によれば、空調制御領域ごとに必要熱量を予測することにより、適切な熱源制御を可能とする。
(検証結果)
 実際にビルの空調制御領域のデータを用いて検証された効果について、検証A及び検証Bについて説明する。
 検証Aでは、空調機の設定値を説明変数に含める効果について確認した。空調機の設定値を説明変数に含める効果を、空調機設定値を説明変数に含めない場合の結果と比較して検証した。
 まず、空調機の設定値を含める説明変数として表7に示したような説明変数を作成した。続いて、空調機の設定値を含めない説明変数として、そこから「空調機設定値(室温)」を除外した説明変数を作成した。時間遅れパラメータは表3の値を用いた。
 作成した2通りの説明変数に対して、以下1~6の手法にて予測値の絶対誤差を求めた。結果を表13及び図8に示す。
1.時系列データの内、任意の1日を検証日、それ以外の日を訓練日と分ける。
2.訓練日のデータで学習したモデルを作成する。
3.作成したモデルから検証日の予測値を算出する。
4.検証日の予測値と実測値の絶対誤差を算出する。
5.1~4をデータ内の全ての日が検証日となるまでくり返す。
6.全ての検証日の4で求めた絶対誤差の平均値をモデルの絶対誤差とする。
Figure JPOXMLDOC01-appb-T000013
 どちらのモデルでも空調機の設定値を説明変数に含めることで絶対誤差の減少となり、精度の向上となった。
 検証Bでは、気象データの外気温と人流データの人数の時間遅れを考慮した説明変数を含める効果について確認した。時間遅れを考慮した説明変数を含める効果を、時間後れを考慮しない場合の結果と比較して検証した。合わせて、「予測対象時間より前の複数の平均値」以外の他の時間遅れを考慮した説明変数の結果も比較した。他の時間遅れは、予測対象時間より前のある一点の値、及び予測対象時間より前の複数点の値とした。
 比較のために、気象データの外気温と人流データの人数の説明変数として以下A~Dの4つのパターンを作成した。それ以外の「空調機設定値(室温)」及び「時刻ラベル」は共通である。
 Aは、予測対象時間より前の複数の平均値のパターンとする。上記実施形態のパターンである。入力は、外気温は予測対象時間より前の複数の平均値、人数は予測対象時間より前の複数の平均値とする。時間遅れパラメータは表3の値を用いた。
 Bは、時間後れを考慮しないパターンとする。入力は、外気温は予測対象時間の値、人数は予測対象時間の値とする。
 Cは、予測対象時間より前のある一点の値のパターンとする。外気温は予測対象時間より前の値、人数は予測対象時間より前の値を用いた。なお、何分前の値を使うかはパラメータ決定部114に示した交差検証法と同様に最適な値を採用するようにした。
 Dは、予測対象時間より前の複数点の値のパターンとする。外気温は予測対象時間より前の複数点の値、人数は予測対象時間より前の複数点の値を用いた。なお、何分前の値を使うかはパラメータ決定部114に示した交差検証法と同様に最適な値を採用するようにした。
 作成した4通りの説明変数に対して、検証Aと同様の手法にて絶対誤差を求めた。結果を表14および図9に示す。
Figure JPOXMLDOC01-appb-T000014
 時間後れを考慮しないBのパターンのモデルが最も精度が低くなり、外気温と人流において時間後れを考慮することで精度が向上することが確認された。中でも、「予測対象時間より前の複数の平均値」としたAのパターンが最も精度が良いことが確認された。
 以上、本実施形態の手法では、空調制御領域の必要熱量の予測の説明変数には人流と空調機の設定値を含めている。これにより建物の周辺環境に係る外気温及び外湿度等の環境データが同じ日でも、空調制御領域にて人の滞在及び移動のパターンが複数あるケース、及び空調機の設定値が変化する頻度が高い場合において、熱源需要の予測の精度を向上させることができる。
 また、気象データの外気温及び人流データの人数等については、空間へ与える時間遅れの影響も加味して、予測時間より過去の値を説明変数へ含める時間考慮データとして扱う。これにより空調制御領域ごとに異なる外気温や人流が空間に与える時間遅れの影響を加味することで、熱需要予測の精度を向上させることができる。
 また、時間遅れパラメータは機械学習的手法を用いて、様々な時間遅れパターンを検証して最も予測誤差が少なくなる時間遅れパラメータを求めている。物理モデルの問題を回避しつつ、機械学習モデルを用いることにより、パラメータの決定が不要なため適用先の拡大と精度向上が可能となる。なお、物理モデルの問題とは、空間の比熱や空気密度などの空間のパラメータ及び人体の熱量などに基づいた物理的なモデルから時間遅れを求める方法であり、パラメータの決定が困難かつパラメータが実世界と乖離している場合に精度が低下する問題である。
 なお、上記実施形態でCPUがソフトウェア(プログラム)を読み込んで実行した学習処理プログラム又は予測処理プログラムを、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、学習処理プログラム又は予測処理プログラムを、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
 また、上記実施形態では、学習処理プログラム又は予測処理プログラムがストレージ14にあらかじめ記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的(non-transitory)記憶媒体に記憶された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
 以上の実施形態に関し、更に以下の付記を開示する。
 (付記項1)
 メモリと、
 前記メモリに接続された少なくとも1つのプロセッサと、
 を含み、
 前記プロセッサは、
 所定の空調制御領域を有する空間内における熱源需要予測を行う予測装置であって、
 前記空調制御領域の周辺環境に係るあらかじめ定められたパラメータと、前記空調制御領域に設定する空調機の設定値と、を入力とし、前記空調制御領域における必要熱量を予測し、
 予測された前記空調制御領域ごとの前記必要熱量から前記空間全体の熱源需要を予測する、
 ように構成されている予測装置。
 (付記項2)
 予測処理を実行するようにコンピュータによって実行可能であり、所定の空調制御領域を有する空間内における熱源需要予測を行う予測プログラムを記憶した非一時的記憶媒体であって、
 前記空調制御領域の周辺環境に係るあらかじめ定められたパラメータと、前記空調制御領域に設定する空調機の設定値と、を入力とし、前記空調制御領域における必要熱量を予測し、
 予測された前記空調制御領域ごとの前記必要熱量から前記空間全体の熱源需要を予測する、
 非一時的記憶媒体。
50   建物
54   空調制御領域
56   人流検知センサ
60   人流予測器
62   気象サービス
100 予測装置
110 学習用データ収集部
112 学習用データ保存部
114 パラメータ決定部
116 パラメータ保存部
118 学習モデル作成部
120 学習モデル保存部
130 予測用データ収集部
132 予測用データ保存部
134 需要予測部
136 予測結果保存部
210 第1変数作成部
212 第1モデル作成部
220 第2変数作成部
222 第2モデル作成部
230 第3変数作成部

Claims (8)

  1.  所定の空調制御領域を有する空間内における熱源需要予測を行う予測方法であって、
     前記空調制御領域の周辺環境に係るあらかじめ定められたパラメータと、前記空調制御領域に設定する空調機の設定値と、を入力とし、前記空調制御領域における必要熱量を予測し、
     予測された前記空調制御領域ごとの前記必要熱量から前記空間全体の熱源需要を予測する、
     処理をコンピュータに実行させる予測方法。
  2.  前記あらかじめ定められたパラメータには、時間の変化による影響を考慮する時間考慮データとして、前記空調制御領域の周辺に係る気象データ、及び前記空調制御領域に存在した人に関する人流データの少なくとも一方を用いて、前記必要熱量を予測する請求項1に記載の予測方法。
  3.  前記時間考慮データについてあらかじめ学習された、予測対象時間より前の考慮対象とする最大時間、及び前記最大時間から前記予測対象時間までの間に設定した時間幅を用いて、前記空調制御領域ごとの前記時間考慮データの所定の計算値を求め、
     当該所定の計算値と、前記設定値とを入力とし、前記必要熱量を予測する請求項2に記載の予測方法。
  4.  前記最大時間及び前記時間幅は、前記時間考慮データごとに定められた、前記最大時間についての設定時間、及び前記時間幅についての設定時間を用いた所定の推定手法により学習されている請求項3に記載の予測方法。
  5.  前記最大時間及び前記時間幅は、前記推定手法として、前記最大時間についての設定時間、及び前記時間幅についての設定時間の組み合わせごとに交差検証を行い、組み合わせのうちの最適な前記最大時間及び前記時間幅を推定することにより学習されている請求項4に記載の予測方法。
  6.  前記必要熱量は、二以上の使用エネルギーの各々についての必要熱量であり、
     前記空調制御領域ごとに、前記使用エネルギーの各々について、当該使用エネルギーに対して求められている前記最大時間及び前記時間幅を用いて、前記時間考慮データの所定の計算値を求め、
     前記空調制御領域ごとに、前記使用エネルギーの各々についての前記所定の計算値と、前記設定値とを入力とし、前記必要熱量を予測することにより、前記空間全体の熱源需要を予測する請求項3~請求項5の何れか1項に記載の予測方法。
  7.  所定の空調制御領域を有する空間内における熱源需要予測を行う予測装置であって、
     前記空調制御領域の周辺環境に係るあらかじめ定められたパラメータと、前記空調制御領域に設定する空調機の設定値と、を入力とし、前記空調制御領域における必要熱量を予測し、
     予測された前記空調制御領域ごとの前記必要熱量から前記空間全体の熱源需要を予測する需要予測部、
     を含む予測装置。
  8.  所定の空調制御領域を有する空間内における熱源需要予測を行う予測プログラムであって、
     前記空調制御領域の周辺環境に係るあらかじめ定められたパラメータと、前記空調制御領域に設定する空調機の設定値と、を入力とし、前記空調制御領域における必要熱量を予測し、
     予測された前記空調制御領域ごとの前記必要熱量から前記空間全体の熱源需要を予測する、
     処理をコンピュータに実行させる予測プログラム。
PCT/JP2020/035554 2020-09-18 2020-09-18 予測方法、予測装置、及び予測プログラム WO2022059191A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/026,341 US20230349579A1 (en) 2020-09-18 2020-09-18 Prediction method, prediction device, and prediction program
JP2022550309A JPWO2022059191A1 (ja) 2020-09-18 2020-09-18
PCT/JP2020/035554 WO2022059191A1 (ja) 2020-09-18 2020-09-18 予測方法、予測装置、及び予測プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035554 WO2022059191A1 (ja) 2020-09-18 2020-09-18 予測方法、予測装置、及び予測プログラム

Publications (1)

Publication Number Publication Date
WO2022059191A1 true WO2022059191A1 (ja) 2022-03-24

Family

ID=80776034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035554 WO2022059191A1 (ja) 2020-09-18 2020-09-18 予測方法、予測装置、及び予測プログラム

Country Status (3)

Country Link
US (1) US20230349579A1 (ja)
JP (1) JPWO2022059191A1 (ja)
WO (1) WO2022059191A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151369A (ja) * 1993-11-30 1995-06-13 Toshiba Corp 熱負荷予測装置およびプラント熱負荷予測装置
JP2003139372A (ja) * 2001-11-02 2003-05-14 Ohbayashi Corp 空調・熱源設備最適抑制制御システム
JP2006038334A (ja) * 2004-07-27 2006-02-09 Shimizu Corp マルチエアコンの省エネ制御システム
WO2016121107A1 (ja) * 2015-01-30 2016-08-04 三菱電機株式会社 空調管理システム
JP2018073214A (ja) * 2016-10-31 2018-05-10 株式会社東芝 需要予測装置及び需要予測方法
JP2019143849A (ja) * 2018-02-19 2019-08-29 株式会社東芝 需要予測装置、需要予測方法及びコンピュータプログラム
CN110986289A (zh) * 2019-12-19 2020-04-10 江苏联宏智慧能源股份有限公司 一种空调风机盘管与模块化变频空调主机联动控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151369A (ja) * 1993-11-30 1995-06-13 Toshiba Corp 熱負荷予測装置およびプラント熱負荷予測装置
JP2003139372A (ja) * 2001-11-02 2003-05-14 Ohbayashi Corp 空調・熱源設備最適抑制制御システム
JP2006038334A (ja) * 2004-07-27 2006-02-09 Shimizu Corp マルチエアコンの省エネ制御システム
WO2016121107A1 (ja) * 2015-01-30 2016-08-04 三菱電機株式会社 空調管理システム
JP2018073214A (ja) * 2016-10-31 2018-05-10 株式会社東芝 需要予測装置及び需要予測方法
JP2019143849A (ja) * 2018-02-19 2019-08-29 株式会社東芝 需要予測装置、需要予測方法及びコンピュータプログラム
CN110986289A (zh) * 2019-12-19 2020-04-10 江苏联宏智慧能源股份有限公司 一种空调风机盘管与模块化变频空调主机联动控制方法

Also Published As

Publication number Publication date
US20230349579A1 (en) 2023-11-02
JPWO2022059191A1 (ja) 2022-03-24

Similar Documents

Publication Publication Date Title
Roy et al. Forecasting heating and cooling loads of buildings: A comparative performance analysis
Wang et al. A novel ensemble learning approach to support building energy use prediction
Rahman et al. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks
Wang et al. Adaptive learning based data-driven models for predicting hourly building energy use
Melo et al. Development of surrogate models using artificial neural network for building shell energy labelling
Siddique et al. Simulated annealing, its variants and engineering applications
D’Oca et al. Occupancy schedules learning process through a data mining framework
US10077915B2 (en) On-line optimization scheme for HVAC demand response
Kim et al. Decision making of HVAC system using Bayesian Markov chain Monte Carlo method
JP7338704B2 (ja) 人流予測装置、人流予測方法、及び人流予測プログラム
Bazjanac et al. An assessment of the use of building energy performance simulation in early design
Chen et al. Comparing occupancy models and data mining approaches for regular occupancy prediction in commercial buildings
Tian et al. Relationship between built form and energy performance of office buildings in a severe cold Chinese region
Noh et al. Data-driven forecasting algorithms for building energy consumption
Wei et al. Effects of building form on energy use for buildings in cold climate regions
Shamsi et al. Feature assessment frameworks to evaluate reduced-order grey-box building energy models
CN112513896A (zh) 一种大气污染预测的方法
Wijayasekara et al. Data-fusion for increasing temporal resolution of building energy management system data
Amasyali et al. Hybrid approach for energy consumption prediction: Coupling data-driven and physical approaches
Bellagarda et al. Effectiveness of neural networks and transfer learning for indoor air-temperature forecasting
Zhang et al. Virtual dynamic coupling of computational fluid dynamics-building energy simulation-artificial intelligence: Case study of urban neighbourhood effect on buildings’ energy demand
Ding et al. Ultra-short-term building cooling load prediction model based on feature set construction and ensemble machine learning
Egwim et al. Comparison of machine learning algorithms for evaluating building energy efficiency using big data analytics
WO2022059191A1 (ja) 予測方法、予測装置、及び予測プログラム
Zhang et al. Estimating the outdoor environment of workers’ villages in East China using machine learning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954176

Country of ref document: EP

Kind code of ref document: A1