WO2022058685A1 - Vitrage feuillete a cristaux liquides et son procede de fabrication - Google Patents

Vitrage feuillete a cristaux liquides et son procede de fabrication Download PDF

Info

Publication number
WO2022058685A1
WO2022058685A1 PCT/FR2021/051584 FR2021051584W WO2022058685A1 WO 2022058685 A1 WO2022058685 A1 WO 2022058685A1 FR 2021051584 W FR2021051584 W FR 2021051584W WO 2022058685 A1 WO2022058685 A1 WO 2022058685A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
liquid
crystal cell
glass substrate
oca
Prior art date
Application number
PCT/FR2021/051584
Other languages
English (en)
Inventor
Laurent Maillaud
Michael Labrot
Adil JAAFAR
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to EP21785960.2A priority Critical patent/EP4214051A1/fr
Priority to US18/026,942 priority patent/US20240009970A1/en
Priority to CN202180004888.4A priority patent/CN114585507A/zh
Publication of WO2022058685A1 publication Critical patent/WO2022058685A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • B32B17/10137Chemical strengthening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10504Liquid crystal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10651Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10743Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10752Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polycarbonate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10779Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • B32B17/10825Isostatic pressing, i.e. using non rigid pressure-exerting members against rigid parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10908Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties

Definitions

  • TITLE LAMINATED LIQUID CRYSTAL GLAZING AND METHOD OF MANUFACTURING IT
  • the invention relates to the field of electrically controllable glazing with variable optical properties, and more particularly relates to laminated glazing with variable transmission by liquid crystals.
  • the invention will apply to all uses, in particular for buildings, such as exterior walls or partitions or other interior glazed surfaces, or for vehicles of the motor vehicle, bus, train, aircraft type. .
  • a laminated glazing with variable transmission by liquid crystals comprises at least two main glass substrates, two intermediate films in plastic material for laminating the glass substrates, very often in polyvinyl butyral (PVB), and a liquid crystal cell placed between the two interlayer lamination films.
  • the liquid crystal cell comprises liquid crystals encapsulated between two polymeric encapsulation films which are kept at a constant distance thanks to spacers such as glass beads.
  • Each polymeric encapsulation film is provided with an electrode. When a voltage is applied to the electrodes, the liquid crystals associated with the dyes change orientation and modify the light transmission through the cell, the glazing changing from a clear state to a dark state, or vice versa.
  • Light state, dark state means that the glazing has in its light state a light transmission in the visible greater than the light transmission that it has in its dark state.
  • the liquid crystal cell may comprise in combination with the liquid crystals dichroic dyes, and/or polarizers on the outside of its faces. Depending on the intended application, the equilibrium orientation of the liquid crystals interacting with the dichroic dyes when present, the light and dark states will correspond to a power ON/OFF or OFF/ON state. electrodes.
  • the process for manufacturing laminated glazing due to the high pressure and temperature used during the laminating steps by using a vacuum bag and an autoclave, can cause local deformations polymeric films for encapsulating the liquid crystal cell, in particular an enlargement of the thickness of the cell, causing a local modification of the orientation of the liquid crystals.
  • the cyclic deformation of the cell due to the cycles of temperature variation in the use of the glazing, also affects the transparent electrodes with in particular the risk of propagation of cracks, which leads to a fall, or even a loss electrical conductivity and cell dysfunction.
  • the object of the invention is therefore to overcome the aforementioned drawbacks by proposing a new laminated glazing composition and a new manufacturing process, so as to minimize the risk of deformation of the cell, and to avoid the presence of inhomogeneous zones in light transmission compared to the rest of the glazing, as well as avoiding damage to the electrodes.
  • the laminated glazing with variable transmission by liquid crystals comprises a first glass substrate and a second glass substrate, at least one liquid crystal cell, as well as a first spacer placed between the first glass substrate and the liquid crystal cell, and a second spacer disposed between the second glass substrate and the liquid crystal cell, the laminated glazing being characterized in that said first spacer is a film of polymeric material and in that said second spacer is made of a transparent adhesive material (also called OCA for "Optical Clear Adhesive" in English) which is in liquid form before the manufacture of the glazing and is capable of being crosslinked.
  • a transparent adhesive material also called OCA for "Optical Clear Adhesive" in English
  • film means a monolithic element in the form of a manipulable sheet.
  • the first interlayer is in the form of a polymeric film to be able to be laminated onto a glass substrate.
  • the joining of this polymeric film with the first glass substrate is carried out during the process of laminating the glazing.
  • the second interlayer is presented before constitution in the laminated glazing in the form of a liquid OCA to be deposited in liquid form between the liquid crystal cell and the second glass substrate, this liquid OCA being capable of being crosslinked for once hardened constitute said second spacer.
  • the crosslinking of the OCA takes place after its deposition, for example by means of polymerization such as ultraviolet radiation.
  • the second interlayer is therefore not in the form of a film before it is attached to the second glass substrate.
  • the liquid crystal cell is in the form of a film extending over all or part of the surface of the glazing.
  • the liquid crystal cell has two opposite faces respectively facing the first and second inserts.
  • the liquid crystal cell undergoes the lamination process on only one of its faces to ensure its attachment to the first glass substrate via the first spacer, while its other face is attached to the second glass substrate by an OCA liquid capable of cross-linking/hardening, involving a much less demanding implementation process for the cell.
  • the mechanical stresses of the lamination operation (high temperature and high pressure) are exerted only on one side of the cell, and not on both sides, so that the risk of changing the thickness of the cell is lower , minimizing the risk of the presence of inhomogeneous zones in light transmission on the glazing after manufacture.
  • OCA crosslinkable transparent liquid adhesive
  • the liquid crystals can be in the form of a liquid volume of liquid crystals. The liquid volume is trapped in the cavity delimited by the cell encapsulation substrates and a peripheral sealing gasket.
  • the liquid crystal cell When the liquid crystal cell is without dyes, it comprises two polarizers.
  • the polarizers are then associated with the external faces of the glass encapsulation substrates of the cell (faces opposite to the cavity containing the liquid volume).
  • the liquid volume of liquid crystals may comprise one or more dichroic dyes.
  • the liquid crystal cell comprising a liquid mixture of liquid crystals in which one or more dichroic dyes are dispersed, is called in the remainder of the description "host-guest” liquid crystal cell, or even “guest-host” liquid crystal cell. » using the English expression.
  • the liquid crystal cell comprising a guest-host liquid mixture may further comprise one or more polarizers (on one or the outer faces of the cell).
  • said first spacer is based on at least one polymer chosen from the following polymers: polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), polyurethane (PU), polyethylene terephthalate (PET), polyethylene , polycarbonate, polymethylmethacrylate, polyacrylate, polyvinyl chloride, polyacetate resin, acrylate, fluorinated ethylene propylene, polyvinyl fluoride, ethylene tetrafluoroethylene, cyclic olefin copolymer (COC).
  • said first interlayer is a film of polyvinyl butyral (PVB), or of ethylene vinyl acetate (EVA), or of polyurethane (PU), or of polyethylene terephthalate (PET).
  • the glazing retains its mechanical strength properties in order in particular to meet certain standards, for example in terms of road safety.
  • this type of commercially common film is manufactured most often having one or more other functionalities, such as acoustic, anti-reflective, non-stick, anti-scratch, photocatalytic, anti-fingerprint, anti-fog, coloring properties. , etc., which at the same time confers additional properties on the glazing according to the intended use.
  • the glazing can advantageously comprise one or more ultraviolet filters.
  • said first interlayer constitutes an ultraviolet filter
  • the first interlayer is for example PVB filtering ultraviolet rays.
  • a filter extends the life of the liquid crystal glazing, in particular when the liquid crystal cell is a guest-host cell, because it prevents the degradation of dichroic dyes .
  • said first glass substrate will be intended to face the outside environment if the glazing is intended to be installed in an opening separating an interior from the exterior environment.
  • the OCA will be selected to filter the ultraviolet, the liquid OCA containing for example additives absorbing ultraviolet rays and will be capable of cross-linking other than by ultraviolet radiation.
  • the laminated glazing comprises a superposition of one or more other interlayer films of polymeric material (in addition to the first interlayer), placed between the first glass substrate and the liquid crystal cell, each of the interlayers constituting a film that can be provided with technical functionalities (ultraviolet filter properties or others). These other spacers are secured to the first glass substrate and to the liquid crystal cell by the lamination process.
  • the laminated glazing comprises a frame made of polymeric material which is arranged all around the liquid crystal cell and in contact with said first spacer, said frame preferably constituting an ultraviolet filter.
  • the frame is arranged between the two spacers of the glazing without protruding from the edge of the glazing. Indeed, it happens that the surface of the liquid crystal cell is only associated with a part of the surface of the glazing.
  • the space existing between the two interlayer films and all around the cell is then compensated for, by arranging a frame (therefore running over the entire peripheral edge of the cell), this frame being in a polymeric material to ensure the lamination.
  • the frame can be in one of the materials mentioned above for the constitution of the intermediate film.
  • this polymer frame with an additional ultraviolet filter function.
  • This additional UV filter configuration over the entire periphery of the edge of the liquid crystal cell, maximizes protection of the cell against ultraviolet rays, the liquid crystal cell being not only protected on its main face but also on its edge.
  • This ultraviolet filtering frame configuration is particularly useful when the liquid crystal cell is a guest-host liquid crystal cell therefore containing dyes, so as to protect the dyes against ultraviolet rays. Indeed, the inventors have demonstrated that the degradation of dichroic dyes could take place via the edge of the guest-host cell. Although the edge of the liquid crystal cell represents a minimal surface compared to the main faces of the cell, surprisingly, the impact of ultraviolet rays through the edge of the cell is in fact not negligible.
  • the guest-host liquid crystal cell may be affected during transport of the laminated glazing to its various storage locations before being permanently installed, and even after installation of the laminated glazing depending on the type of use.
  • the frame surrounding the liquid crystal cell through its additional function of ultraviolet filter, will provide increased protection to the cell, from its integration into the glazing, until the final installation of said glazing, as well as during the use of glazing.
  • the ultraviolet filter(s) (which may be the first lamination interlayer and/or the polymeric frame and/or the other superimposed interlayer film(s)) are designed so that each filter has a light transmission of at least between 280 nm and 400 nm, in particular has a light transmission at 400 nm which is less than 1%, preferably less than 0.1%, more preferably less than 0.01%. Light transmission is measured according to ISO 13887.
  • an ultraviolet filter While an ultraviolet filter is effective below 400 nm, ultraviolet absorption is not always effective at 400 nm, at the limit of the visible spectrum.
  • the filter(s) are designed to absorb ultraviolet at 400 nm.
  • a filter absorbing ultraviolet rays at 400 nm will necessarily perform well for radiation below 400 nm.
  • the selected ultraviolet filter will preferably be designed so that the ultraviolet absorption particles do not disturb the color of the filter too much, in particular, the filter will be adapted so that its color does not tend towards yellow .
  • the laminated glazing may comprise a single interlayer film having this light transmission property of less than 0.01%, or may comprise the combination of a plurality of superimposed interlayer films, the combination making it possible to provide a light transmission of less than 0.01%.
  • the superposition of the two interlayer films provides a filter whose light transmission at 400 nm manages to be less than 0.01%.
  • the ultraviolet filter therefore has a high performance at 400 nm, and even more so for the range below 400 nm for which the light transmission tends towards zero.
  • said second insert made of a transparent adhesive material is chosen from the following materials, acrylic, polyvinyl acetate (PVA), polyurethane (PU), silicone, and epoxy.
  • OCA transparent adhesive material
  • the second spacer has in the laminated glazing (after manufacture) a thickness of less than 1 mm, or even less than 0.5 mm.
  • the liquid crystal cell is a liquid crystal cell comprising a liquid volume of liquid crystals. It turns out that during the autoclave lamination process of the cell, the cell undergoes less stress than if the matrix containing the liquid crystals were a solid polymer like the cells of the prior art. In addition, this contributes to minimizing the risk of variation in cell thickness during the lamination process when the cell is autoclaved, and makes it possible to greatly minimize visual defects once the glazing is finished and then during its use, especially when the glazing is curved.
  • the laminated glazing may comprise two liquid crystal cells, optionally of different types.
  • the laminated glazing comprises two liquid crystal cells, at least one of them is a cell comprising a liquid volume of liquid crystals mixed with dichroic dyes, the other liquid crystal cell being a liquid crystal system in in which the volume of liquid crystals is not in liquid form, such as a polymer-dispersed liquid crystal system "PDLC” (for Polymer-Dispersed Liquid Crystal, in English where the liquid crystals are dispersed in a polymer matrix), or a crystal system cholesteric liquids “CLC” (for Cholesteric Liquid Crystal in English), or else a polymer network liquid crystal system “PNLC” (for Polymer Network Liquid Crystal in English).
  • PDLC polymer-dispersed liquid crystal system
  • CLC crystal system cholesteric liquids
  • PNLC polymer network liquid crystal system
  • the laminated glazing comprises two liquid crystal cells
  • the two liquid crystal cells are coupled together by an adhesive material. If the two cells are coupled together before lamination, it is the combination of the two which will be laminated with the first glass substrate via the first polymeric interlayer. If the second cell is coupled after the lamination of the first cell, the second cell will be attached by bonding to the first cell, for example by an OCA which may be of the same nature as the bonding OCA used to make the second substrate integral glassmaker. The combination of two cells will notably make it possible to provide a more intense dark state.
  • the laminated glazing additionally comprises a liquid crystal system other than a liquid crystal cell, the volume of liquid crystals of which is in liquid form, in particular a PDLC film, said system will be made integral by the process of lamination or will be attached by gluing.
  • said other liquid crystal system will be arranged and secured by lamination between the liquid crystal cell and the first spacer, or else will be secured to the liquid crystal cell by an adhesive layer on the side opposite the first spacer.
  • the first interlayer and the additional interlayer will be ultraviolet filters, which will further protect the guest-host liquid crystal cell comprising dyes .
  • Said other liquid crystal system in particular the PDLC film, can advantageously provide a function of variation of the light diffusion to the glazing.
  • the glazing is notably dark, the dark aspect will be more intense, associated with a greater variation in light transmission.
  • the laminated glazing may comprise at least one functional infrared protection layer, the functional layer being arranged inside the laminated glazing, for example applied to the internal face of the first glass substrate and/or of the second substrate glass, and/or the first spacer, or consists of the first spacer, and/or consists of another spacer integral with the first spacer.
  • This infrared protection layer will be particularly useful for reflecting infrared so as not to heat the liquid crystal cell.
  • the laminated glazing comprises an infrared protection layer on the internal face of the first glass substrate (face 2 of the glazing, in the installed position of the glazing in contact with the external environment - face 1 of the glazing being by convention the face in contact with the external environment) to protect the cell from infrared radiation coming from the outside, an ultraviolet filter consisting of the first lamination insert with the first glass substrate, preferably the insert being a PVB film and which can be tinted, and a low emissive layer on the external face of the second glass substrate (face 4 of the glazing) which is intended to reflect the long wavelength infrared coming from the interior of a passenger compartment or an interior room.
  • an ultraviolet filter consisting of the first lamination insert with the first glass substrate, preferably the insert being a PVB film and which can be tinted
  • a low emissive layer on the external face of the second glass substrate (face 4 of the glazing) which is intended to reflect the long wavelength infrared coming from the interior of a passenger compartment or an interior room.
  • the laminated glazing may include other functionalities, which are added via coatings in direct contact with the glass substrates and/or the first interlayer and/an additional interlayer associated with the first interlayer or with one of the first and second glass substrates, and/or consisting of the first spacer and/or consisting of an additional spacer associated with the first spacer or with one of the first and second glass substrates.
  • These various functionalities are, for example, acoustic, anti-reflective, non-adhesive, anti-scratch, photocatalytic, anti-fingerprint, anti-fog, coloring, etc. properties.
  • this spacer can be made integral during lamination when it is between the first glass substrate and liquid crystal cell; when the additional spacer is arranged between the liquid crystal cell and the second glass substrate, it will be attached by gluing or will have been pre-laminated with the second glass substrate.
  • the liquid crystal cell comprises substrates for encapsulating the volume of liquid crystals, said encapsulating substrates being polymeric or glass. If usually, the encapsulation substrates are made of polymeric material, the inventors propose a new form of encapsulation by ultra-thin glass substrates, in particular when the liquid crystal cell presents its volume of liquid crystals in liquid form, in optionally comprising one or more dichroic dyes.
  • the inventors have unexpectedly demonstrated that the use of a liquid crystal cell made from encapsulating glass substrates (in particular when the encapsulated volume of liquid crystals is liquid), is particularly effective in the manufacture of curved laminated glazing; no inhomogeneous zone in terms of light transmission is detected in the curved laminated glazing.
  • each of the glass encapsulation substrates of the liquid crystal cell is made of chemically tempered glass.
  • each of the glass encapsulation substrates of the liquid crystal cell has a thickness such that the liquid crystal cell constitutes a flexible film, that is to say which conforms at room temperature to the shape of the surface on which said flexible film/said cell is deposited.
  • each of the glass encapsulation substrates of the liquid crystal cell has a minimum radius of curvature which is of the order of 600 mm and can even reach 200 mm.
  • Each of the glass encapsulation substrates of the liquid crystal cell has a thickness of less than 1000 ⁇ m, in particular between 25 ⁇ m and 700 ⁇ m, preferably a thickness of less than 300 ⁇ m, or even less than 100 ⁇ m.
  • the laminated glazing of the invention can constitute a building or vehicle glazing, in particular a vehicle chosen from among an automobile, a train, a truck, an aircraft, a bus, a military vehicle.
  • the laminated glazing is in particular chosen from a roof glazing, a rear window, a side window, a windshield, and a gradient strip of the part top of the windshield.
  • the laminated glazing can be flat or curved.
  • Laminated glazing can be used in double glazing or in triple glazing.
  • the invention also relates to a method of manufacturing the aforementioned laminated glazing of the invention, the steps of which are as follows: positioning on a support surface such as a counter-glass, which is covered with a non-stick coating such as PTFE, the liquid crystal cell, preferably the liquid crystal cell consisting of a liquid mixture (volume) of liquid crystals and optionally at least one dichroic dye, and arranging if necessary a frame surrounding the liquid crystal cell, then position the first spacer in the form of a film of polymeric material, possibly other elements to be laminated (such as a PDLC system and an additional spacer film), and lastly the first substrate glassmaker, so as to form a stack; carry out the operation of laminating the stack to form a laminated assembly; the operation is well known per se, preferably with the placement of the entire stack in a vacuum bag (instead of implementing a stack calendering operation to expel the air) and autoclaving; removing the support surface (the back glass) from the laminated assembly which is
  • the method only implements the laminating operation on one side of the cell, minimizing the risk of variation in its thickness.
  • the liquid crystal cell relaxes and any spots of inhomogeneous light transmission disappear.
  • the deposition on the other face of the cell of a liquid material will avoid deformation in thickness on the side of this face and will confer surface flatness at the interface between this other face of the cell and the second glass substrate .
  • Laminated glazing in the sense of a stack of material) will present less risk of inhomogeneity in light transmission.
  • the frame made of polymeric material can be attached around the liquid crystal cell once the latter has been deposited on the first spacer.
  • the frame may already be integral with the contour of the liquid crystal cell, the cell and the frame forming a one-piece assembly which is deposited on the first spacer.
  • FIG. 1 represents a schematic view in side section of a first embodiment of a laminated glazing according to the invention.
  • FIG.2 or Figure 2 shows a schematic top view of the laminated glazing of Figure 1.
  • FIG. 3 represents a schematic view in side section of a second embodiment of a laminated glazing according to the invention.
  • FIG. 4 or figure 4 is a schematic detail view of the guest-host cell of the example embodiments of figures 1 and 3.
  • FIG. 5 or Figure 5 is a schematic view of the steps of the manufacturing process according to the invention for obtaining the laminated glazing of Figure 1.
  • FIG. 5 is a schematic view of the steps of the manufacturing process according to the invention for obtaining the laminated glazing of Figure 1.
  • the laminated glazing 1 of the invention illustrated in Figure 1 is a laminated glazing with variable transmission by liquid crystals comprising a liquid crystal cell 2.
  • the laminated glazing 1 is intended for a building application or a vehicle application.
  • the laminated glazing 1 sees its light transmission modified when an electric voltage is applied to the electrodes of the liquid crystal cell 2.
  • the glazing 1 can be normally clear (of high light transmission, such as of the order of 70%) in l absence of voltage, and it becomes dark (of low light transmission, such as of the order of 25%), by applying a voltage.
  • the glazing can be designed as normally dark, off; it then becomes clear by applying a voltage.
  • the normally light or normally dark state depends on the use of the glazing. In its clear state, the glazing may or may not have a colored appearance depending on the intended application (glass substrate(s) and/or interlayer film(s), or even the liquid crystal cell, which can be tinted ).
  • the laminated glazing 1 of the first example illustrated in FIG. 1 comprises: a first glass substrate 10; a second glass substrate 11 arranged at a distance and opposite the first substrate 10; the liquid crystal cell 2, arranged at the heart of the glazing and having two opposite main faces 20 and 21; a first interlayer 30 for lamination between the first substrate 10 and one of the main faces 20 of the cell 2; a second spacer 40 which makes it possible to make the second substrate 11 integral with the opposite main face 21 of the cell 2, by a process other than the lamination process.
  • the liquid crystal cell 2 is surrounded by a frame 5.
  • the frame 5 is for example made of PVB or epoxy resin. As visible in Figure 2, when the liquid crystal cell 2 does not extend over the entire surface of the glazing, the frame 5 serves as a spacer of the same thickness as that of the liquid crystal cell 2, to fill the empty space which would otherwise exist between the two spacers 30 and 40.
  • the laminated glazing will be used in a single piece as is, or will be combined with one or other glass substrates in laminated with the first substrate, or to one or more glass substrates spaced from the first substrate and/or from the second substrate.
  • the laminated glazing 1 comprises between the liquid crystal cell 2 and the first glass substrate 10, another liquid crystal system 6, such as a PDLC, laminated between the first spacer 30 and an additional spacer 31, the latter being laminated with the first substrate 10.
  • another liquid crystal system 6 such as a PDLC
  • the second spacer 40 makes it possible to make the second substrate glass 11 of said opposite face 21 of cell 2, without a lamination process.
  • the glass substrates 10 and 11 have a thickness suitable for the use of laminated glazing.
  • the thickness may be between 0.3 mm and 15 mm, preferably between 1 to 5 mm; it is for example 1.6 mm, 1.8 mm or 2.1 mm.
  • the lamination inserts 30 and 31 are films made of polymeric material such as PVB. They have in particular a thickness of between 0.07 mm and 2 mm, in particular is 0.38 mm or 0.76 mm.
  • the lamination inserts 30 and 31 and/or the glass substrates 10 and 11 may have technical features such as ultraviolet cut-off, infrared protection, acoustic properties, anti-reflective, anti-adhesive, anti-scratch, photocatalytic, anti -fingerprints, anti-fog, staining.
  • the liquid crystal cell 2 is preferably a liquid crystal cell comprising a liquid volume of liquid crystals.
  • the liquid crystal cell is a guest-host liquid crystal cell comprising a liquid volume 22 of liquid crystals mixed with at least one dichroic dye.
  • the liquid crystal cell 2 comprises the liquid mixture 22, two alignment layers 23 and 24, two electrodes 25 and 26, two glass encapsulation substrates T1 and 28, and a sealing gasket 29.
  • the two glass encapsulation substrates T1 and 28 are kept spaced apart by glass spacers, not shown, and form with the seal 29 a cavity accommodating the liquid volume 22 with liquid crystals.
  • the tightness of the edge of the cell is made by the peripheral sealing joint 29, for example in epoxy resin or silicone.
  • the spacers are arranged throughout the cavity and preferably also the sealing joint.
  • the inner surface facing the cavity of each of the two encapsulation substrates T1 and 28 is covered with electrode 25, 26 respectively, for example made of ITO, itself covered with alignment layer 23, 24 respectively. , the alignment layers 23 and 24 being in contact with the liquid volume 22.
  • the liquid crystal cell 2 has a total thickness of between 250 and 350 ⁇ m.
  • the height of the cavity corresponds to the height of the spacers, the cavity having a height in particular of the order of 10 ⁇ m.
  • the two encapsulation substrates T1 and 28 of the liquid crystal cell 2 are made of thin glass. Preferably, they are made of chemically tempered glass.
  • Each of the glass encapsulation substrates T1, 28 has a thickness of less than 1000 ⁇ m, in particular between 25 ⁇ m and 700 ⁇ m, preferably a thickness of less than 300 ⁇ m, or even less than 100 ⁇ m.
  • the glass thickness of each encapsulation substrate is sufficiently thin to provide the liquid crystal cell with film-like flexibility when it comes to associating the cell with the glass substrates 10 and 11, especially when they are curved.
  • the glass thickness of each glass encapsulation substrate T1, 28 is such that each glass encapsulation substrate has a minimum radius of curvature which is at least of the order of 600 mm and can even reach 200mm.
  • the second spacer 40 is made of a transparent adhesive material to avoid subjecting the steps of the method of lamination to the other face 21 of the liquid crystal cell to be secured to the second glass substrate 11.
  • the second interlayer is a liquid OCA which is capable of being crosslinked once deposited by a liquid route and covered with the second substrate. OCA becomes hard by means of polymerization such as ultraviolet radiation.
  • the OCA is for example an acrylic resin.
  • the laminated glazing 1 with liquid crystals of the invention is preferably designed to protect the liquid crystal cell 2 from ultraviolet radiation, thanks to one or more ultraviolet filters.
  • the protection will be provided at least on one of the main faces of the cell, face which will correspond to that facing the outside environment when the laminated glazing 1 is used in an opening giving onto the outside.
  • protection against ultraviolet radiation will be established in a complementary manner on the other main face of cell 2 and/or at the edge of cell 2.
  • At least the lamination inserts 30 and 31 are films of polymeric material filtering ultraviolet rays, and this not only below 400 nm but also at 400 nm.
  • the ultraviolet cutoff property is provided for example by particles embedded in the film, which are capable of blocking ultraviolet rays and which do not diffuse in visible radiation.
  • an ultraviolet film has a light transmission at least between 280 nm and 400 nm, in particular a light transmission at 400 nm, which is less than 1%, preferably less than 0.1%, even more preferably less than 0, 01%.
  • the frame 5 also constitutes an ultraviolet filter.
  • Frame 5 also has a light transmission at least between 280 nm and 400 nm, in particular a light transmission at 400 nm, which is less than 1%, preferably less than 0.1%, even more preferably less than 0, 01%.
  • the first step (Step 1) consists in positioning on a support surface 7, such as counter-glass, which is covered with a non-stick coating 70 such as PTFE, for example, the liquid crystal cell 2 and possibly arranging the frame 5 around the liquid crystal cell, then the first spacer 30 made of polymer material such as a PVB film, possibly other elements to laminate (such as the PDLC system 6 and the additional interlayer film 31 of the example of FIG. 3), and finally the first glass substrate 10 so as to form a stack.
  • the stack having been placed in a vacuum bag, it then undergoes the lamination operation to form a laminated assembly 1'.
  • the second step (Step 2) consists in removing the back glass 7 from the laminated assembly which is composed of the first glass substrate 10, the first spacer 30, the liquid crystal cell 2 and possibly the frame 5.
  • the third step (Step 3) consists in arranging the liquid OCA between the second glass substrate 11 and the laminated assembly 1′ on the side of the liquid crystal cell 2, then in cross-linking the liquid OCA to obtain the second interlayer 40 and laminated glazing 1.
  • liquid OCA hardens depends on its nature, certain OCAs crosslinking in particular by means of polymerization such as ultraviolet radiation or another input of energy, for example by heating, and others crosslinking with room temperature with the addition of a hardener.
  • the support surface 7 could be an inflatable membrane.
  • the frame 5 is for example made of PVB and arranged all around the liquid crystal cell 2.
  • the frame 5 can be obtained by depositing a sealing barrier such as a adhesive on and at the edge of the back glass, and by depositing a liquid OCA between the cell and the barrier, then by curing the OCA.
  • the frame 5 can already be integral with the liquid crystal cell 2 when it is supplied.
  • this step consists of depositing liquid OCA on the second glass substrate 11, then depositing the laminated assembly 1′ on the side of the crystal cell liquids 2, and finally cross-linking the OCA to thus form the second spacer 40, and obtain the laminated glazing 1 of the invention.
  • the second glass substrate 11 is kept spaced apart from the laminated assembly 1′ to provide a cavity intended to be filled with the liquid OCA, the crystal cell liquids 2 facing said second glass substrate 11.
  • the spacing and sealing are obtained by a peripheral seal comprising spacers whose height corresponds to the height of liquid OCA to be injected.
  • One or more openings are made in the sealing joint in order to introduce the liquid OCA through them by injection until it occupies the entire cavity between the second glass substrate 11 and the liquid crystal cell 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Liquid Crystal (AREA)

Abstract

Vitrage feuilleté (1) à transmission variable par cristaux liquides comportant un premier substrat verrier (10) et un deuxième substrat verrier (11), au moins une cellule à cristaux liquides (2), ainsi qu'un premier intercalaire (30) disposé entre le premier substrat verrier (10) et la cellule à cristaux liquides (2), et un deuxième intercalaire (40) disposé entre le deuxième substrat verrier (11) et la cellule à cristaux liquides (2), caractérisé en ce que ledit premier intercalaire (30) est un film en matière polymérique et en ce que ledit deuxième intercalaire (40) est fait d'un matériau adhésif transparent (OCA) se présentant sous forme liquide avant la fabrication du vitrage et étant apte à être réticulé.

Description

DESCRIPTION
TITRE : VITRAGE FEUILLETE A CRISTAUX LIQUIDES ET SON PROCEDE DE FABRICATION
[001] L'invention concerne le domaine des vitrages électro-commandables à propriétés optiques variables, et plus particulièrement concerne un vitrage feuilleté à transmission variable par cristaux liquides.
[002] L'invention s'appliquera à toutes utilisations, notamment pour le bâtiment, telles que des parois d'extérieur ou des cloisons ou autres surfaces vitrées d'intérieur, ou pour des véhicules du type véhicule automobile, bus, train, aéronef.
[003] Un vitrage feuilleté à transmission variable par cristaux liquides, comporte au moins deux substrats verriers principaux, deux films intercalaires en matière plastique de feuilletage des substrats verriers, très souvent en polyvinyle butyrale (PVB), et une cellule à cristaux liquides placée entre les deux films intercalaires de feuilletage. La cellule à cristaux liquides comporte des cristaux liquides encapsulés entre deux films polymériques d'encapsulation qui sont maintenus à distance constante grâce à des espaceurs tels que des billes en verre. Chaque film polymérique d'encapsulation est pourvu d'une électrode. Lorsqu'une tension est appliquée aux électrodes, les cristaux liquides associés aux colorants changent d'orientation et modifient la transmission lumineuse à travers la cellule, le vitrage passant d'un état clair à un état sombre, ou inversement. On entend par « état clair, état sombre » que le vitrage possède dans son état clair une transmission lumineuse dans le visible supérieur à la transmission lumineuse qu'il possède dans son état sombre. La cellule à cristaux liquides peut comprendre en combinaison avec les cristaux liquides des colorants dichroïques, et/ou des polariseurs sur l'extérieur de ses faces. En fonction de l'application visée, de l'orientation d'équilibre des cristaux liquides en interaction avec les colorants dichroïques lorsqu'ils sont présents, les états clair et sombre correspondront à un état ON/OFF ou OFF/ON de mise sous tension des électrodes. On parlera d'un état normalement clair du vitrage lorsque la transmission lumineuse est la plus élevée en l'absence de tension entre les électrodes (état OFF), autorisant donc la vision à travers le vitrage, tandis que l'état sombre dudit vitrage correspondra à la mise sous tension des électrodes (état ON) engendrant une réorientation des cristaux liquides et une modification de la transmission lumineuse (la transmission lumineuse devenant plus faible). Inversement, on parlera d'état normalement sombre d'un vitrage lorsque la transmission lumineuse est la plus faible en l'absence de tension, tandis qu'en appliquant une tension, le vitrage deviendra clair.
[004] La nature polymérique des films d'encapsulation de la cellule, très souvent en polytéréphtalate d'éthylène( PET) ou polycarbonate (PC), permet aisément de feuilleter la cellule aux intercalaires de feuilletage en PVB des substrats verriers.
[005] Cependant, le procédé de fabrication d'un vitrage feuilleté, du fait de fortes pression et température utilisées lors des étapes de feuilletage par la mise en œuvre d'un sac à vide et d'un autoclave, peut entrainer des déformations locales des films polymériques d'encapsulation de la cellule à cristaux liquides, en particulier un élargissement de l'épaisseur de la cellule, engendrant une modification locale de l'orientation des cristaux liquides. Il en résulte une inhomogénéité de transmission lumineuse pour le vitrage, se traduisant en outre de manière visible, par la présence de zones sombres sur un vitrage qui est normalement clair, ou inversement la présence de zones claires sur un vitrage qui est normalement sombre. On cherche à éviter cette inhomogénéité de transmission lumineuse.
[006] Par ailleurs, la déformation cyclique de la cellule, due aux cycles de variation de température dans l'utilisation du vitrage, affecte également les électrodes transparentes avec notamment le risque de propagation de fissures, ce qui entraîne une chute, voire une perte de la conductivité électrique et le dysfonctionnement de la cellule.
[007] L'invention a donc pour but de pallier les inconvénients précités en proposant une nouvelle composition de vitrage feuilleté et un nouveau procédé de fabrication, de sorte à minimiser le risque de déformation de la cellule, et éviter la présence de zones inhomogènes en transmission lumineuse par rapport au reste du vitrage, ainsi qu'éviter d'endommager les électrodes.
[008] Selon l'invention, le vitrage feuilleté à transmission variable par cristaux liquides comporte un premier substrat verrier et un deuxième substrat verrier, au moins une cellule à cristaux liquides, ainsi qu'un premier intercalaire disposé entre le premier substrat verrier et la cellule à cristaux liquides, et un deuxième intercalaire disposé entre le deuxième substrat verrier et la cellule à cristaux liquides, le vitrage feuilleté étant caractérisé en ce que ledit premier intercalaire est un film en matière polymérique et en ce que ledit deuxième intercalaire est fait d'un matériau adhésif transparent (nommé encore OCA pour « Optical Clear Adhesive » en anglais) se présentant sous forme liquide avant la fabrication du vitrage et étant apte à être réticulé.
[009] L'expression « avant le procédé de fabrication du vitrage feuilleté » s'entend par avant assemblage de tous les éléments constitutifs du vitrage.
[010] On entend dans la suite de la description par « film», un élément monolithique se présentant sous la forme d'une feuille manipulable.
[011] Le premier intercalaire se présente sous la forme d'un film polymérique pour être apte à être laminé sur un substrat verrier. La solidarisation de ce film polymérique avec le premier substrat verrier est réalisée lors du procédé de feuilletage du vitrage.
[012] Le deuxième intercalaire se présente avant constitution dans le vitrage feuilleté sous forme d'un OCA liquide pour être déposé sous forme liquide entre la cellule à cristaux liquides et le deuxième substrat verrier, cet OCA liquide étant apte à être réticulé pour une fois durci constituer ledit deuxième intercalaire. La réticulation de l'OCA se fait après son dépôt, par exemple par des moyens de polymérisation tels qu'un rayonnement ultraviolet. A la différence du premier intercalaire, le deuxième intercalaire ne se présente donc pas sous forme de film avant sa solidarisation avec le second substrat verrier.
[013] La cellule à cristaux liquides se présente à la manière d'un film s'étendant sur toute ou partie de la surface du vitrage. La cellule à cristaux liquides présente deux faces opposées en regard respectivement des premier et deuxième intercalaires.
[014] Ainsi, la cellule à cristaux liquides ne subit le procédé de feuilletage que sur une seule de ses faces pour assurer sa solidarisation au premier substrat verrier via le premier intercalaire, tandis que son autre face est solidarisée au deuxième substrat verrier par un OCA liquide apte à réticuler/durcir, impliquant un procédé de mise en œuvre bien moins éprouvant pour la cellule. Les contraintes mécaniques de l'opération de feuilletage (haute température et haute pression) ne sont exercées que sur une seule face de la cellule, et non sur ses deux faces, de sorte que le risque de modification d'épaisseur de la cellule est moindre, minimisant le risque de présence de zones inhomogènes en transmission lumineuse sur le vitrage en sortie de fabrication. De plus, l'utilisation d'un adhésif transparent liquide (OCA) réticulable lui procure une stabilité dimensionnelle et diminue sa déformation à la compression lorsqu'est ajouté le deuxième substrat verrier. [015] Avantageusement, les cristaux liquides peuvent se présenter sous la forme d'un volume liquide de cristaux liquides. Le volume liquide est emprisonné dans la cavité délimitée par les substrats d'encapsulation de la cellule et un joint périphérique de scellement.
[016] Lorsque la cellule à cristaux liquides est sans colorants, elle comprend deux polariseurs. Les polariseurs sont alors associés aux faces externes des substrats d'encapsulation en verre de la cellule (faces opposées à la cavité contenant le volume liquide).
[017] Le volume liquide de cristaux liquides peut comprendre un ou des colorants dichroïques. La cellule à cristaux liquides comprenant un mélange liquide de cristaux liquides dans lequel sont dispersés un ou des colorants dichroïques, est nommée dans la suite de la description cellule à cristaux liquides « hôte-invités », ou encore cellule à cristaux liquides « guest-host » en utilisant l'expression anglaise.
[018] La cellule à cristaux liquides comprenant un mélange liquide guest-host peut comprendre en outre un ou des polariseurs (sur l'un ou les faces externes de la cellule).
[019] Selon une caractéristique, ledit premier intercalaire est à base d'au moins un polymère choisi parmi les polymères suivants : polyvinyle butyrale (PVB), éthylène vinyle acétate (EVA), polyuréthane (PU), polyéthylène téréphtalate (PET), polyéthylène, polycarbonate, polyméthylméthacrylate, polyacrylate, polychlorure de vinyle, résine de polyacétate, acrylate, éthylène propylène fluoré, polyfluorure de vinyle, éthylène tétrafluoroéthylène, copolymère d'oléfine cyclique (COC). De préférence, ledit premier intercalaire est un film en polyvinyle butyrale (PVB), ou en éthylène vinyle acétate (EVA), ou en polyuréthane (PU), ou en polyéthylène téréphtalate (PET).
[020] En utilisant en tant que premier intercalaire une feuille ou un film en matière polymérique telle qu'en PVB, le vitrage conserve ses propriétés de résistance mécanique pour notamment répondre à certaines normes, par exemple en matière de sécurité routière. En outre, ce type de film courant dans le commerce est fabriqué en présentant le plus souvent une ou plusieurs autres fonctionnalités, telles que des propriétés acoustiques, antireflets, antiadhésifs, anti-rayures, photocatalytiques, anti-traces de doigts, antibuée, de coloration, etc., ce qui confère du même coup des propriétés supplémentaires au vitrage en fonction de l'utilisation visée.
[021] Le vitrage peut avantageusement comprendre un ou plusieurs filtres ultraviolets. Dans un exemple préféré, ledit premier intercalaire constitue un filtre ultraviolet, Le premier intercalaire est par exemple du PVB filtrant les ultraviolets. Outre les avantages connus de la coupure UV d'un vitrage, un tel filtre allonge la durée de vie du vitrage à cristaux liquides, en particulier lorsque la cellule à cristaux liquides est une cellule guest-host, car il empêche la dégradation des colorants dichroïques. Lors de la présence d'au moins un film filtrant les ultraviolets disposé entre la cellule à cristaux liquides et le premier substrat verrier, ledit premier substrat verrier sera destiné à être en regard de l'environnement extérieur si le vitrage est destiné à être installé dans une ouverture séparant un intérieur de l'environnement extérieur.
[022] S'il était vraiment besoin d'un filtre ultraviolet pour la cellule à cristaux liquides du côté de la face associée à l'OCA, l'OCA sera sélectionné pour filtrer les ultraviolets, l'OCA liquide contenant par exemple des additifs absorbant les ultraviolets et sera apte à réticuler autrement que par rayonnement ultraviolets.
[023] Selon une autre caractéristique, le vitrage feuilleté comporte une superposition d'un ou de plusieurs autres films intercalaires en matériau polymérique (en sus du premier intercalaire), disposée entre le premier substrat verrier et la cellule à cristaux liquides, chacun des intercalaires constituant un film pouvant être doté de fonctionnalités techniques (propriétés de filtre ultraviolet ou autres). Ces autres intercalaires sont rendus solidaires du premier substrat verrier et de la cellule à cristaux liquides par le procédé de feuilletage.
[024] Avantageusement, le vitrage feuilleté comporte un cadre en matériau polymérique qui est agencé tout autour de la cellule à cristaux liquides et en contact avec ledit premier intercalaire, ledit cadre constituant de préférence un filtre ultraviolet. Le cadre est agencé entre les deux intercalaires du vitrage sans faire saillie par rapport au chant du vitrage. En effet, il arrive que la surface de la cellule à cristaux liquides ne soit associée qu'à une partie de la surface du vitrage., On compense alors l'espace existant entre les deux films intercalaires et tout autour de la cellule, en y agençant un cadre (courant donc sur la totalité de la tranche périphérique de la cellule), ce cadre étant dans un matériau polymérique pour assurer le feuilletage. Le cadre peut être dans l'une des matières citées ci-dessus pour la constitution du film intercalaire.
[025] Il est avantageusement proposé de doter ce cadre polymérique d'une fonction supplémentaire de filtre aux ultraviolets. Cette configuration supplémentaire de filtre aux ultraviolets sur l'ensemble de la périphérie du chant de la cellule à cristaux liquides, maximise la protection de la cellule aux ultraviolets, la cellule à cristaux liquides étant non seulement protégée sur sa face principale mais également sur sa tranche.
[026] Cette configuration de cadre filtrant les ultraviolets est particulièrement utile lorsque la cellule à cristaux liquides est une cellule à cristaux liquides guest-host donc contenant des colorants, de façon à protéger les colorants contre les ultraviolets. En effet, les inventeurs ont mis en évidence que la dégradation des colorants dichroïques pouvait se faire par la tranche de la cellule guest-host. Bien que la tranche de la cellule à cristaux liquides représente une surface minime par rapport aux faces principales de la cellule, de manière étonnante, l'impact des ultraviolets à travers la tranche de la cellule n'est en réalité pas négligeable. La cellule à cristaux liquides guest-host peut être affectée durant le transport du vitrage feuilleté dans ses différents lieux de stockage avant d'être définitivement installé, et même après installation du vitrage feuilleté selon le type de d'utilisation.
[027] Par conséquent, le cadre entourant la cellule à cristaux liquides, par sa fonction supplémentaire de filtre ultraviolet, fournira une protection accrue à la cellule, dès son intégration au vitrage, jusqu'à l'installation finale dudit vitrage, ainsi que durant l'utilisation du vitrage.
[028] Le ou les filtres aux ultraviolets (qui peut être le premier intercalaire de feuilletage et/ou le cadre polymérique et/ou le ou les autres films intercalaires superposés) sont conçus de sorte que chaque filtre présente une transmission lumineuse au moins entre 280 nm et 400 nm, en particulier présente une transmission lumineuse à 400 nm, qui est inférieure à 1%, de préférence inférieure à 0,1 %, de préférence encore inférieure à 0,01%. La transmission lumineuse est mesurée selon la norme ISO 13887.
[029] Si un filtre ultraviolet est efficace en-dessous de 400nm, l'absorption des ultraviolets ne l'est pas toujours à 400 nm, à la limite du spectre du visible. Ici, le ou les filtres sont conçus pour absorber les ultraviolets à 400 nm. Un filtre absorbant les ultraviolets à 400 nm sera nécessairement performant pour les rayonnements inférieurs à 400 nm.
[030] De plus, le filtre ultraviolet sélectionné sera de préférence conçu de sorte que les particules d'absorption des ultraviolets ne perturbent pas trop la couleur du filtre, en particulier, le filtre sera adapté afin que sa couleur ne tende pas vers le jaune.
[031] Pour parvenir à une transmission lumineuse inférieure à 0,01% pour un filtre ultraviolet sous la forme d'au moins un film intercalaire, le vitrage feuilleté pourra comprendre un unique film intercalaire présentant cette propriété de transmission lumineuse inférieure à 0,01%, ou pourra comprendre la combinaison d'une pluralité de films intercalaires superposés, la combinaison permettant de procurer une transmission lumineuse inférieure à 0,01%.
[032] Par exemple, en superposant deux films du commerce de PVB filtrant les ultraviolets qui présente chacun une transmission lumineuse à 400 nm inférieure à 1%, le premier film constituant le premier intercalaire et le second film constituant un intercalaire supplémentaire, la superposition des deux films intercalaires procure un filtre dont la transmission lumineuse à 400 nm parvient à être inférieure à 0,01%. Le filtre ultraviolet possède donc une performance élevée à 400 nm, et encore davantage pour la plage en- dessous de 400 nm pour laquelle la transmission lumineuse tend vers zéro.
[033] Selon une autre caractéristique, ledit deuxième intercalaire fait d'un matériau adhésif transparent (OCA) est choisi parmi les matériaux suivants, acrylique, acétate de polyvinyle (PVA), polyuréthane (PU), silicone, et époxy. Le deuxième intercalaire présente dans le vitrage feuilleté (après fabrication) une épaisseur inférieure à 1 mm, voire inférieure à 0,5 mm.
[034] Selon une caractéristique préférentielle, la cellule à cristaux liquides est une cellule à cristaux liquides comprenant un volume liquide de cristaux liquides. Il s'avère que durant le procédé de feuilletage en autoclave de la cellule, la cellule subit moins de contraintes que si la matrice contenant les cristaux liquides était un polymère solide comme les cellules de l'art antérieur. En outre, cela participe à minimiser le risque de variation d'épaisseur de la cellule durant le procédé de feuilletage lors du passage en autoclave de la cellule, et permet de minimiser grandement les défauts visuels une fois le vitrage terminé et durant ensuite son utilisation, d'autant plus lorsque le vitrage est bombé.
[035] Selon encore une autre caractéristique, le vitrage feuilleté peut comporter deux cellules à cristaux liquides, éventuellement de type différent. Lorsque le vitrage feuilleté comprend deux cellules à cristaux liquides, au moins l'une d'entre elles est une cellule comprenant un volume liquide de cristaux liquides mélangés à des colorants dichroïques, l'autre cellule à cristaux liquides étant un système à cristaux liquides dans lequel le volume de cristaux liquides ne se présente pas sous la forme liquide, tel qu'un système à cristaux liquides polymériques dispersés « PDLC » (pour Polymer-Dispersed Liquid Crystal, en anglais où les cristaux liquides sont dispersés dans une matrice polymérique), ou un système à cristaux liquides cholestériques « CLC » (pour Cholesteric Liquid Crystal en anglais), ou encore un système à cristaux liquides en réseau polymérique « PNLC » (pour Polymer Network Liquid Crystal en anglais).
[036] Lorsque le vitrage feuilleté comprend deux cellules à cristaux liquides, les deux cellules à cristaux liquides sont couplées l'une à l'autre par un matériau adhésif. Si les deux cellules sont couplées l'une à l'autre avant le feuilletage, c'est la combinaison des deux qui sera feuilletée avec le premier substrat verrier via le premier intercalaire polymérique. Si la deuxième cellule est couplée après le feuilletage de la première cellule, la deuxième cellule sera rapportée par collage à la première cellule par exemple par un OCA qui pourra être de la même nature que l'OCA de collage servant à rendre solidaire le deuxième substrat verrier. La combinaison de deux cellules permettra notamment de fournir un état sombre plus intense.
[037] Lorsque le vitrage feuilleté comprend en supplément un système à cristaux liquides autre qu'une cellule à cristaux liquides dont le volume de cristaux liquides se présente sous la forme liquide, en particulier un film PDLC, ledit système sera rendu solidaire par le procédé de feuilletage ou sera rapporté par collage. Ainsi, ledit autre système à cristaux liquides sera agencé et solidarisé parfeuilletage entre la cellule à cristaux liquides et le premier intercalaire, ou bien sera solidarisé à la cellule à cristaux liquides par une couche adhésive du côté opposé au premier intercalaire.
[038] Lorsque ledit autre système à cristaux liquides sera feuilleté entre le premier intercalaire et un intercalaire supplémentaire, le premier intercalaire et l'intercalaire supplémentaire seront des filtres ultraviolets, ce qui protégera encore mieux la cellule à cristaux liquides guest-host comprenant des colorants.
[039] Ledit autre système à cristaux liquides, en particulier le film PDLC, peut avantageusement fournir une fonction de variation de la diffusion lumineuse au vitrage. Lorsque le vitrage sera notamment sombre, l'aspect sombre sera plus intense, associé à une variation de transmission lumineuse plus importante.
[040] Ledit autre système à cristaux liquides, en particulier le film PDLC, pourra être mis sous tension de manière concomitante ou non avec la mise sous tension de la cellule à cristaux liquides. La commande dudit autre système à cristaux liquides pourra être indépendante de celle de la cellule à cristaux liquides. [041] Par ailleurs, le vitrage feuilleté peut comporter au moins une couche fonctionnelle de protection infrarouge, la couche fonctionnelle étant agencée à l'intérieur du vitrage feuilleté, par exemple appliquée sur la face interne du premier substrat verrier et/ou du deuxième substrat verrier, et/ou du premier intercalaire, ou est constituée du premier intercalaire, et/ou constitué d'un autre intercalaire solidaire du premier intercalaire. Cette couche de protection infrarouge sera particulièrement utile pour réfléchir les infrarouges afin de ne pas chauffer la cellule à cristaux liquides. En effet, une température trop importante affecterait le bon fonctionnement des cristaux liquides avec le risque de transition de phase. En outre, le risque de propagation de fissures (lié aux cycles de déformation du fait des cycles de variation de température en position d'utilisation du vitrage) au niveau des électrodes de la cellule à cristaux liquides est également minimisé.
[042] Dans un exemple particulier d'application, le vitrage feuilleté comporte une couche de protection infrarouge sur la face interne du premier substrat verrier (face 2 du vitrage, en position installée du vitrage en contact avec l'environnement extérieur - la face 1 du vitrage étant par convention la face en contact avec l'environnement extérieur) pour protéger la cellule du rayonnement infrarouge en provenance de l'extérieur, un filtre ultraviolet constitué par le premier intercalaire de feuilletage avec le premier substrat verrier, de préférence l'intercalaire étant un film PVB et pouvant être teinté, et une couche basse émissive sur la face externe du deuxième substrat verrier (face 4 du vitrage) qui a pour but de réfléchir les infrarouges de grandes longueur d'onde en provenance de l'intérieur d'un habitacle ou d'une pièce intérieure.
[043] Le vitrage feuilleté peut comporter d'autres fonctionnalités, qui sont ajoutées via des revêtements en contact direct avec les substrats verriers et/ou le premier intercalaire et/ un intercalaire supplémentaire associé au premier intercalaire ou à l'un des premier et deuxième substrats verriers, et/ou constitué par le premier intercalaire et/ou constitué par un intercalaire supplémentaire associé au premier intercalaire ou à l'un des premier et deuxième substrats verriers. Ces fonctionnalités diverses sont par exemple des propriétés acoustiques, antireflets, antiadhésifs, anti-rayures, photocatalytiques, anti-traces de doigts, antibuée, de coloration, etc.
[044] Lorsqu'un intercalaire supplémentaire est ajouté dans le vitrage feuilleté, cet intercalaire pourra être rendu solidaire lors du feuilletage lorsqu'il sera entre le premier substrat verrier et la cellule à cristaux liquides ; lorsque l'intercalaire supplémentaire sera agencé entre la cellule à cristaux liquides et le deuxième substrat verrier, il sera rapporté par collage ou bien aura été pré-feuilleté avec le deuxième substrat verrier.
[045] Concernant la cellule à cristaux liquides, celle-ci comporte des substrats d'encapsulation du volume de cristaux liquides, lesdits substrats d'encapsulation étant polymériques ou verriers. Si usuellement, les substrats d'encapsulation sont en matière polymérique, les inventeurs proposent une nouvelle forme d'encapsulation par des substrats en verre ultra-mince, en particulier lorsque la cellule à cristaux liquides présente son volume de cristaux liquides sous forme liquide, en comprenant éventuellement un ou des colorants dichroïques.
[046] Dans le cas de substrats d'encapsulation en verre, ceux-ci sont ultra-minces rendant la cellule flexible comme un film pour aisément la manipuler et la feuilleter en particulier avec les substrats verriers principaux du vitrage lorsque ceux-ci sont bombés. Les inventeurs ont mis en évidence de manière inattendue que la cellule à cristaux liquides fabriquée à partir de substrats d'encapsulation en verre plutôt que de films d'encapsulation en matière plastique, est beaucoup moins sujette à une variation locale d'épaisseur lors du procédé de feuilletage, d'autant plus lorsque le volume de cristaux liquides est liquide. Le vitrage reste homogène en teinte, aucune tache colorée n'apparaissant.
[047] De plus, les inventeurs ont mis en évidence de manière inattendue que l'utilisation d'une cellule à cristaux liquides faite à partir de substrats verriers d'encapsulation (notamment lorsque le volume encapsulé de cristaux liquides est liquide), est particulièrement efficace dans la fabrication d'un vitrage feuilleté bombé ; aucune zone inhomogène en transmission lumineuse n'est détectée dans le vitrage feuilleté bombé.
[048] Encore plus particulièrement, les inventeurs ont mis en évidence de manière inattendue que l'utilisation des substrats d'encapsulation en verre trempé chimiquement, évite encore mieux le risque de variation d'épaisseur de la cellule lors du procédé de feuilletage. Ainsi, de préférence, chacun des substrats d'encapsulation en verre de la cellule à cristaux liquides est en verre trempé chimiquement.
[049] Selon une caractéristique, chacun des substrats d'encapsulation en verre de la cellule à cristaux liquides possède une épaisseur telle que la cellule à cristaux liquides constitue un film flexible, c'est-à-dire qui épouse à température ambiante la forme de la surface sur laquelle est déposé ledit film flexible/ladite cellule.
[050] En particulier, chacun des substrats d'encapsulation en verre de la cellule à cristaux liquides possède un rayon de courbure minimal qui est de l'ordre de 600 mm et peut même atteindre 200 mm.
[051] Chacun des substrats d'encapsulation en verre de la cellule à cristaux liquides présente une épaisseur inférieure à 1000 pm, en particulier comprise entre 25 pm et 700 pm, de préférence une épaisseur inférieure à 300 pm, voire inférieure à 100 pm.
[052] Le vitrage feuilleté de l'invention peut constituer un vitrage de bâtiment ou de véhicule, notamment de véhicule choisi parmi une automobile, un train, un camion, un aéronef, un bus, un véhicule militaire.
[053] S'il s'agit d'un vitrage de véhicule, le vitrage feuilleté est en particulier choisi parmi un vitrage de toit, une lunette arrière, une vitre latérale, un pare-brise, et une bande en dégradé de la partie supérieure du pare-brise.
[054] Le vitrage feuilleté peut être plat ou bombé.
[055] Le vitrage feuilleté peut être utilisé dans un double vitrage ou dans un triple vitrage.
[056] L'invention concerne également un procédé de fabrication du vitrage feuilleté précité de l'invention, dont les étapes sont les suivantes : positionner sur une surface de support telle qu'un contre-verre, qui est recouverte d'un revêtement antiadhésif comme par exemple en PTFE, la cellule à cristaux liquides, de préférence la cellule à cristaux liquides étant constituée d'un mélange (volume) liquide de cristaux liquides et éventuellement d'au moins un colorant dichroïque, et agencer si besoin un cadre entourant la cellule à cristaux liquides, puis positionner le premier intercalaire se présentant sous la forme d'un film en matériau polymérique, éventuellement d'autres éléments à feuilleter (tels qu'un système PDLC et un film intercalaire supplémentaire), et en dernier le premier substrat verrier, de sorte à constituer un empilement ; procéder à l'opération de feuilletage de l'empilement pour constituer un ensemble feuilleté ; l'opération est bien connue en soi, avec de préférence la mise en place de l'ensemble de l'empilement dans un sac à vide (au lieu de mettre en œuvre une opération de calendrage de l'empilement pour chasser l'air) et passage en autoclave ; retirer la surface de support (le contre-verre) de l'ensemble feuilleté qui est composé du premier substrat verrier, du premier intercalaire, de la cellule à cristaux liquides et éventuellement du cadre ; agencer l'OCA liquide entre le deuxième substrat verrier et l'ensemble feuilleté du côté de la cellule à cristaux liquides ; faire réticuler l'OCA liquide pour obtenir le vitrage feuilleté.
[057] Par conséquent, le procédé ne met en œuvre l'opération de feuilletage que sur une seule face de la cellule, minimisant le risque de variation de son épaisseur. Une fois le contre- verre retiré, la cellule à cristaux liquides relaxe et les éventuelles taches de transmission lumineuse inhomogène disparaissent. En outre, le dépôt sur l'autre face de la cellule d'un matériau liquide évitera une déformation en épaisseur du côté de cette face et conférera une planéité de surface à l'interface entre cette autre face de la cellule et le deuxième substrat verrier. Le vitrage feuilleté (au sens d'un empilement de matériau) présentera des risques moindres d'inhomogénéité de transmission lumineuse.
[058] Le cadre en matériau polymérique peut être rapporté autour de la cellule à cristaux liquides une fois celle-ci déposée sur le premier intercalaire. En variante, le cadre peut déjà être solidaire du contour de la cellule à cristaux liquides, la cellule et le cadre formant un ensemble monobloc qui est déposé sur le premier intercalaire.
[059] La présente invention est maintenant décrite à l'aide d'exemples uniquement illustratifs et nullement limitatifs de la portée de l'invention, et à partir des illustrations jointes, dans lesquelles :
[060] [Fig. 1] ou figure 1 représente une vue schématique en coupe latérale d'un premier exemple de réalisation d'un vitrage feuilleté selon l'invention.
[061] [Fig.2] ou figure 2 représente une vue schématique de dessus du vitrage feuilleté de la figure 1.
[062] [Fig. 3] ou figure 3 représente une vue schématique en coupe latérale d'un second exemple de réalisation d'un vitrage feuilleté selon l'invention.
[063] [Fig. 4] ou figure 4 est une vue schématique de détail de la cellule guest-host des exemples de réalisation des figures 1 et 3.
[064] [Fig. 5] ou figure 5 est une vue schématique des étapes du procédé de fabrication selon l'invention pour l'obtention du vitrage feuilleté de la figure 1. [065] Par souci de clarté, les différents éléments représentés sur les figures ne sont pas nécessairement reproduits à l'échelle.
[066] Le vitrage feuilleté 1 de l'invention illustré sur la figure 1 est un vitrage feuilleté à transmission variable par cristaux liquides comportant une cellule à cristaux liquides 2.
[067] Le vitrage feuilleté 1 est destiné à une application bâtiment ou une application de véhicule. Le vitrage feuilleté 1 voit sa transmission lumineuse modifiée lorsqu'une tension électrique est appliquée aux électrodes de la cellule à cristaux liquides 2. Le vitrage 1 peut être normalement clair (de transmission lumineuse élevée, comme de l'ordre de 70%) en l'absence de tension, et il devient sombre (de transmission lumineuse faible, comme de l'ordre de 25%), en appliquant une tension. Inversement, on peut concevoir le vitrage comme normalement sombre, hors tension ; il devient alors clair par application d'une tension. L'état normalement clair ou normalement sombre est fonction de l'utilisation du vitrage. Dans son état clair, le vitrage peut présenter un aspect coloré ou non selon l'application visée (substrat(s) verrier(s) et/ou film(s) intercalaire(s), voire la cellule à cristaux liquides, pouvant être teintés).
[068] Le vitrage feuilleté 1 du premier exemple illustré sur la figure 1 comporte : un premier substrat verrier 10 ; un deuxième substrat verrier 11 agencé à distance et à l'opposé du premier substrat 10 ; la cellule à cristaux liquides 2, agencée au cœur du vitrage et présentant deux faces principales opposées 20 et 21 ; un premier intercalaire 30 de feuilletage entre le premier substrat 10 et l'une des faces principales 20 de la cellule 2 ; un deuxième intercalaire 40 qui permet de rendre solidaire le deuxième substrat 11 et de la face principale opposée 21 de la cellule 2, par un autre procédé que le procédé de feuilletage.
[069] La cellule à cristaux liquides 2 est entourée d'un cadre 5. Le cadre 5 est par exemple en PVB ou en résine époxy. Comme visible sur la figure 2, lorsque la cellule à cristaux liquides 2 ne s'étend pas sur toute la surface du vitrage, le cadre 5 sert d'entretoise de même épaisseur que celle de la cellule à cristaux liquides 2, pour combler l'espace vide qui existerait sinon entre les deux intercalaires 30 et 40. [070] Selon les utilisations faites du vitrage feuilleté 1 décrit ci-après en regard des figures ou dans des variantes envisagées non illustrées, le vitrage feuilleté sera employé de manière monobloc tel quel, ou sera combiné à un ou d'autres substrats verriers en feuilleté avec le premier substrat, ou à un ou d'autres substrats verriers espacés du premier substrat et/ou du deuxième substrat.
[071] Dans le second exemple de réalisation illustré sur la figure 3, le vitrage feuilleté 1 comporte entre la cellule à cristaux liquides 2 et le premier substrat verrier 10, un autre système à cristaux liquides 6, tel qu'un PDLC, feuilleté entre le premier intercalaire 30 et un intercalaire supplémentaire 31, ce dernier étant feuilleté avec le premier substrat 10. Sur la face opposée 21 de la cellule à cristaux liquides 2, comme pour la figure 1, le deuxième intercalaire 40 permet de rendre solidaire le deuxième substrat verrier 11 de ladite face opposée 21 de la cellule 2, sans procédé de feuilletage.
[072] Les substrats verriers 10 et 11 possèdent une épaisseur adaptée à l'utilisation du vitrage feuilleté. L'épaisseur peut être comprise entre 0,3 mm et 15 mm, de préférence entre 1 à 5 mm ; elle est par exemple de 1,6 mm, 1,8 mm ou 2,1 mm.
[073] Les intercalaires de feuilletage 30 et 31 sont des films en matière polymérique telle qu'en PVB. Ils présentent notamment une épaisseur comprise entre 0,07 mm et 2 mm, en particulier est de 0,38 mm ou 0,76 mm.
[074] Les intercalaires de feuilletage 30 et 31 et/ou les substrats verriers 10 et 11 peuvent présenter des fonctionnalités techniques telles que de coupure aux ultraviolets, de protection infrarouge, des propriétés acoustiques, antireflets, antiadhésifs, anti-rayures, photocatalytiques, anti-traces de doigts, antibuée, de coloration.
[075] La cellule à cristaux liquides 2 est de préférence une cellule à cristaux liquides comprenant un volume liquide de cristaux liquides. Dans le présent exemple, la cellule à cristaux liquides est une cellule à cristaux liquides guest-host comprenant un volume liquide 22 de cristaux liquides mélangés à au moins un colorant dichroïque. Comme illustré sur la figure 4, la cellule à cristaux liquides 2 comporte le mélange liquide 22, deux couches d'alignement 23 et 24, deux électrodes 25 et 26, deux substrats d'encapsulation en verre Tl et 28, et un joint de scellement 29. Les deux substrats d'encapsulation en verre Tl et 28 sont maintenus espacés par des espaceurs en verre non illustrés, et ménagent avec le joint de scellement 29 une cavité accueillant le volume liquide 22 à cristaux liquides. L'étanchéité de la tranche de la cellule est réalisée par le joint périphérique de scellement 29, par exemple en résine époxy ou en silicone. Les espaceurs sont agencés dans l'ensemble de la cavité et préférentiellement également le joint de scellement. La surface interne en regard de la cavité de chacun des deux substrats d'encapsulation Tl et 28, est recouverte de l'électrode 25, respectivement 26, par exemple en ITO, elle-même recouverte de la couche d'alignement 23, respectivement 24, les couches d'alignement 23 et 24 étant en contact avec le volume liquide 22. La cellule à cristaux liquides 2 présente une épaisseur totale comprise entre 250 et 350 pm. La hauteur de la cavité correspond à la hauteur des espaceurs, la cavité ayant une hauteur en particulier de l'ordre de 10 pm.
[076] Les deux substrats d'encapsulation Tl et 28 de la cellule à cristaux liquides 2 sont en verre mince. De préférence, ils sont en verre trempé chimiquement. Chacun des substrats d'encapsulation en verre Tl , 28 présente une épaisseur inférieure à 1000 pm, en particulier comprise entre 25 pm et 700 pm, de préférence une épaisseur inférieure à 300 pm, voire inférieure à 100 pm. L'épaisseur de verre de chaque substrat d'encapsulation est suffisamment mince pour procurer à la cellule à cristaux liquides de la flexibilité à la manière d'un film lorsqu'il s'agit d'associer la cellule aux substrats verriers 10 et 11, d'autant plus lorsque ces derniers sont bombés. En particulier, l'épaisseur de verre de chaque substrat d'encapsulation en verre Tl , 28 est telle que chaque substrat d'encapsulation en verre possède un rayon de courbure minimal qui est au moins de l'ordre de 600 mm et peut même atteindre 200 mm.
[077] Les inventeurs ont mis en évidence que lorsque le procédé de feuilletage de la cellule 2, et du premier substrat verrier 10 par le film intercalaire en matière polymérique 30 ou 31, est mis en œuvre en utilisant une cellule à cristaux liquides dont les substrats d'encapsulation Tl et 28 sont en verre mince (et non en matière plastique), cela minimise le risque de déformation en augmentation d'épaisseur de la cellule, évitant un endommagement des électrodes et un aspect inhomogène de transmission lumineuse une fois le vitrage totalement terminé d'assembler.
[078] Si le premier intercalaire 30 est un film polymérique permettant de rendre la cellule à cristaux liquides 2 solidaire du premier substrat par feuilletage, le deuxième intercalaire 40 est fait d'une matière transparente adhésive pour éviter de faire subir les étapes du procédé de feuilletage à l'autre face 21 de la cellule à cristaux liquides devant être rendue solidaire du deuxième substrat verrier 11. Le deuxième intercalaire est un OCA liquide qui est apte à être réticulé une fois déposé par voie liquide et recouvert du deuxième substrat. L'OCA devient dur par des moyens de polymérisation tels qu'un rayonnement ultraviolet. L'OCA est par exemple une résine acrylique.
[079] Par ailleurs, le vitrage feuilleté 1 à cristaux liquides de l'invention est de préférence conçu pour protéger la cellule à cristaux liquides 2 des rayonnements ultraviolets, grâce à un ou des filtres ultraviolets. La protection sera au moins assurée sur l'une des faces principales de la cellule, face qui correspondra à celle en regard de l'environnement extérieur lorsque le vitrage feuilleté 1 sera utilisé dans une ouverture donnant sur l'extérieur. De préférence, la protection contre les rayonnements ultraviolets sera établie de manière complémentaire sur l'autre face principale de la cellule 2 et/ou au niveau de la tranche de la cellule 2.
[080] Dans les exemples des figures 1 et 2, au moins les intercalaires de feuilletage 30 et 31 sont des films en matière polymérique filtrant les ultraviolets, et cela non seulement en dessous de 400 nm mais également à 400 nm. La propriété de coupure dans l'ultraviolet est fournie par exemple par des particules noyées dans le film, qui sont aptes à bloquer les ultraviolets et qui ne diffusent pas dans le rayonnement visible. Avantageusement, un film ultraviolets présente une transmission lumineuse au moins entre 280 nm et 400 nm, en particulier une transmission lumineuse à 400 nm, qui est inférieure à 1%, de préférence inférieure à 0,1 %, de préférence encore inférieure à 0,01%.
[081] De plus, pour assurer une protection de la cellule à cristaux liquides 2 contre les ultraviolets au niveau de sa tranche, le cadre 5 constitue également un filtre ultraviolet. Le cadre 5 présente lui aussi une transmission lumineuse au moins entre 280 nm et 400 nm, en particulier une transmission lumineuse à 400 nm, qui est inférieure à 1%, de préférence inférieure à 0,1 %, de préférence encore inférieure à 0,01%.
[082] Le procédé de fabrication du vitrage feuilleté 1 de la figure 1 est à présent décrit en regard de la figure 5 :
La première étape (Etape 1) consiste à positionner sur une surface de support 7, telle qu'un contre-verre, qui est recouverte d'un revêtement antiadhésif 70 comme par exemple en PTFE, la cellule à cristaux liquides 2 et éventuellement agencer le cadre 5 autour de la cellule à cristaux liquides, puis le premier intercalaire 30 en matériau polymère tel qu'un film PVB, éventuellement d'autres éléments à feuilleter (tels que le système PDLC 6 et le film intercalaire supplémentaire 31 de l'exemple de la figure 3), et en dernier le premier substrat verrier 10 de sorte à constituer un empilement. L'empilement ayant été mis dans un sac à vide, il subit alors l'opération de feuilletage pour constituer un ensemble feuilleté l'.
La deuxième étape (Etape 2) consiste à retirer le contre-verre 7 de l'ensemble feuilleté qui est composé du premier substrat verrier 10, du premier intercalaire 30, de la cellule à cristaux liquides 2 et éventuellement du cadre 5.
La troisième étape (Etape 3) consiste à agencer l'OCA liquide entre le deuxième substrat verrier 11 et l'ensemble feuilleté l' du côté de la cellule à cristaux liquides 2, puis à faire réticuler l'OCA liquide pour obtenir le deuxième intercalaire 40 et le vitrage feuilleté 1.
[083] La manière dont l'OCA liquide durcit dépend de sa nature, certains OCA réticulant notamment par des moyens de polymérisation tels que 'un rayonnement ultraviolet ou un autre apport d'énergie, par exemple par chauffage, et d'autres réticulant à température ambiante avec l'ajout d'un durcisseur.
[084] La surface de support 7 pourrait être une membrane gonflable.
[085] Lorsqu'un cadre 5 est nécessaire, le cadre 5 est par exemple en PVB et agencé tout autour de la cellule à cristaux liquides 2. En variante le cadre 5 peut être obtenu en déposant une barrière d'étanchéité tel qu'un adhésif sur et en bordure du contre-verre, et en déposant un OCA liquide entre la cellule et la barrière, puis en faisant durcir l'OCA. Encore en variante, le cadre 5 peut déjà être solidaire de la cellule à cristaux liquides 2 lorsqu'elle est fournie.
[086] Dans un premier exemple nullement limitatif de l'étape 3, cette étape consiste à déposer sur le deuxième substrat verrier 11, de l'OCA liquide, puis à déposer dessus l'ensemble feuilleté l' du côté de la cellule à cristaux liquides 2, et enfin faire réticuler l'OCA pour former ainsi le deuxième intercalaire 40, et obtenir le vitrage feuilleté 1 de l'invention.
[087] Dans un second exemple nullement limitatif de l'étape 3, le deuxième substrat verrier 11 est maintenu espacé par rapport à l'ensemble feuilleté l' pour ménager une cavité destinée à être remplie par l'OCA liquide, la cellule à cristaux liquides 2 étant en regard dudit deuxième substrat verrier 11. L'écartement et l'étanchéité sont obtenus par un joint de scellement périphérique comprenant des espaceurs dont la hauteur correspond à la hauteur d'OCA liquide à injecter. On aménage une ou plusieurs ouvertures dans le joint de scellement afin d'introduire par injection à travers celles-ci l'OCA liquide jusqu'à ce qu'il occupe toute la cavité entre le deuxième substrat verrier 11 et la cellule à cristaux liquides 2. Pour accélérer le processus de remplissage, on peut prévoir un tirage au vide par une ouverture opposée à celle(s) d'injection. Puis, l'OCA est durci pour obtenir le vitrage feuilleté 1 de l'invention.

Claims

REVENDICATIONS Vitrage feuilleté (1) à transmission variable par cristaux liquides comportant un premier substrat verrier (10) et un deuxième substrat verrier (11), au moins une cellule à cristaux liquides (2), ainsi qu'un premier intercalaire (30) disposé entre le premier substrat verrier (10) et la cellule à cristaux liquides (2), et un deuxième intercalaire (40) disposé entre le deuxième substrat verrier (11) et la cellule à cristaux liquides (2), caractérisé en ce que ledit premier intercalaire (30) est un film en matière polymérique et en ce que ledit deuxième intercalaire (40) est fait d'un matériau adhésif transparent (OCA) se présentant sous forme liquide avant la fabrication du vitrage et étant apte à être réticulé. Vitrage feuilleté selon la revendication 1, caractérisé en ce que ledit premier intercalaire (30) est à base d'au moins un polymère choisi parmi les polymères suivants : polyvinyle butyrale (PVB), éthylène vinyle acétate (EVA), polyuréthane (PU), polyéthylène téréphtalate (PET), polyéthylène, polycarbonate, polyméthylméthacrylate, polyacrylate, polychlorure de vinyle, résine de polyacétate, acrylate, éthylène propylène fluoré, polyfluorure de vinyle, éthylène tétrafluoroéthylène, copolymère d'oléfine cyclique (COC), de préférence ledit premier intercalaire est un film en polyvinyle butyrale (PVB), ou en éthylène vinyle acétate (EVA), ou en polyuréthane (PU), ou en polyéthylène téréphtalate (PET). Vitrage feuilleté selon la revendication 1 ou 2, caractérisé en ce ledit premier intercalaire (30) constitue un filtre ultraviolet. Vitrage feuilleté selon la revendication 1 ou 2, caractérisé en ce qu'il comporte une superposition d'un ou de plusieurs autres films intercalaires en matériau polymérique, disposée entre le premier substrat verrier et la cellule à cristaux liquides, chacun des intercalaires constituant un film pouvant être doté de fonctionnalités techniques. Vitrage feuilleté selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un cadre (5) en matériau polymérique qui est agencé tout autour de la cellule à cristaux liquides (2) et en contact avec ledit premier intercalaire (30), ledit cadre (5) constituant de préférence un filtre ultraviolet. Vitrage feuilleté selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit deuxième intercalaire (40) fait d'un OCA est choisi parmi les matériaux suivants, acrylique, acétate de polyvinyle, polyuréthane, silicone, et époxy. Vitrage feuilleté selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend deux cellules à cristaux liquides, au moins l'une d'entre elles étant une cellule comprenant un volume liquide de cristaux liquides mélangés à des colorants dichroïques, l'autre cellule à cristaux liquides étant un système à cristaux liquides dans lequel le volume de cristaux liquides ne se présente pas sous la forme liquide, tel qu'un système à cristaux liquides polymériques dispersés « PDLC » ou un système à cristaux liquides cholestériques « CLC » ou encore un système à cristaux liquides en réseau polymérique « PNLC ». Vitrage feuilleté selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte au moins une couche fonctionnelle de protection infrarouge, la couche fonctionnelle étant agencée à l'intérieur du vitrage feuilleté. Vitrage feuilleté selon l'une quelconque des revendications précédentes, caractérisé en ce que la cellule à cristaux liquides (2) comporte des substrats d'encapsulation (27, 28) du volume de cristaux liquides, lesdits substrats d'encapsulation (27, 28) étant polymériques ou verriers. Procédé de fabrication d'un vitrage feuilleté selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte les étapes suivantes : positionner sur une surface de support (7) recouverte d'un revêtement antiadhésif (70), la cellule à cristaux liquides (2) et agencer si besoin un cadre (5) entourant la cellule à cristaux liquides (2), puis positionner le premier intercalaire (30) en matériau polymérique, éventuellement d'autres éléments à feuilleter, et en dernier le premier substrat verrier (10); procéder à l'opération de feuilletage pour constituer un ensemble feuilleté (1') ; retirer la surface de support (7) de l'ensemble feuilleté (1') ; agencer l'OCA liquide entre le deuxième substrat verrier (11) et l'ensemble feuilleté (1') du côté de la cellule à cristaux liquides (2); faire réticuler l'OCA liquide pour obtenir le vitrage feuilleté (1). Procédé de fabrication selon la revendication précédente, caractérisé en ce que les étapes d'agencement de l'OCA liquide et de réticulation, consistent à déposer sur le deuxième substrat verrier (11), de l'OCA liquide, puis à déposer dessus l'ensemble feuilleté (1') du côté de la cellule à cristaux liquides (2), et enfin faire réticuler l'OCA pour former ainsi le deuxième intercalaire (40). Procédé de fabrication selon la revendication 10, caractérisé en ce que les étapes d'agencement de l'OCA liquide et de réticulation consistent, à maintenir le deuxième substrat verrier (11) espacé par rapport à l'ensemble feuilleté (1') pour ménager une cavité destinée à être remplie par l'OCA liquide, la cellule à cristaux liquides (2) étant en regard dudit deuxième substrat verrier (11), l'écartement et l'étanchéité étant obtenus par un joint de scellement périphérique comprenant des espaceurs, à aménager une ou plusieurs ouvertures dans le joint de scellement afin d'introduire par injection à travers celles-ci l'OCA liquide jusqu'à ce qu'il occupe toute la cavité entre le deuxième substrat verrier (11) et la cellule à cristaux liquides (2), et enfin à faire réticuler l'OCA pour former ainsi le deuxième intercalaire (40).
PCT/FR2021/051584 2020-09-18 2021-09-15 Vitrage feuillete a cristaux liquides et son procede de fabrication WO2022058685A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21785960.2A EP4214051A1 (fr) 2020-09-18 2021-09-15 Vitrage feuillete a cristaux liquides et son procede de fabrication
US18/026,942 US20240009970A1 (en) 2020-09-18 2021-09-15 Laminated liquid crystal glazing and method for producing same
CN202180004888.4A CN114585507A (zh) 2020-09-18 2021-09-15 液晶层压窗玻璃及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2009467A FR3114267B1 (fr) 2020-09-18 2020-09-18 Vitrage feuillete a cristaux liquides et son procede de fabrication
FRFR2009467 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022058685A1 true WO2022058685A1 (fr) 2022-03-24

Family

ID=74758847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051584 WO2022058685A1 (fr) 2020-09-18 2021-09-15 Vitrage feuillete a cristaux liquides et son procede de fabrication

Country Status (5)

Country Link
US (1) US20240009970A1 (fr)
EP (1) EP4214051A1 (fr)
CN (1) CN114585507A (fr)
FR (1) FR3114267B1 (fr)
WO (1) WO2022058685A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115755453A (zh) * 2022-11-14 2023-03-07 福耀玻璃工业集团股份有限公司 具有偏光片的液晶夹层玻璃、制备方法及包含其的车辆

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540353A2 (fr) * 1991-10-30 1993-05-05 Sharp Kabushiki Kaisha Afficheur à cristal liquide
WO2020003252A1 (fr) * 2018-06-29 2020-01-02 Agp America S.A. Vitrage feuilleté à couche de cristaux liquides commutable

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078071A1 (fr) * 2008-12-30 2010-07-08 3M Innovative Properties Company Articles antireflet et leurs procédés de fabrication
DE102017113987A1 (de) * 2017-06-23 2018-12-27 Webasto SE Fahrzeugscheibe mit Flüssigkristallanordnung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540353A2 (fr) * 1991-10-30 1993-05-05 Sharp Kabushiki Kaisha Afficheur à cristal liquide
WO2020003252A1 (fr) * 2018-06-29 2020-01-02 Agp America S.A. Vitrage feuilleté à couche de cristaux liquides commutable

Also Published As

Publication number Publication date
FR3114267A1 (fr) 2022-03-25
CN114585507A (zh) 2022-06-03
US20240009970A1 (en) 2024-01-11
FR3114267B1 (fr) 2023-01-20
EP4214051A1 (fr) 2023-07-26

Similar Documents

Publication Publication Date Title
EP1425124B1 (fr) Vitrage de securite fonctionnalise
EP2625563B1 (fr) Vitrage multiple à diffusion variable par cristaux liquides, son procédé de fabrication
CA2425764C (fr) Vitrage feuillete et ses moyens d'etancheification peripherique
BE1008795A3 (fr) Vitrage et procede de fabrication d'un tel vitrage.
WO2007116184A1 (fr) Vitrage feuilleté et ses moyens d'étanchéification et de renforcement périphérique
FR2909921A1 (fr) Vitrage fonctionnalise
EP3383645B1 (fr) Vitrage feuillete a base d'adhesif sensible a la pression
EP3436260B1 (fr) Vitrage feuillete comprenant une diode electroluminescente
EP3662322A1 (fr) Dispositif electrocommandable a diffusion variable par cristaux liquides
WO2022058685A1 (fr) Vitrage feuillete a cristaux liquides et son procede de fabrication
WO2022058683A1 (fr) Vitrage feuillete a cristaux liquides
WO2022058684A1 (fr) VITRAGE FEUILLETE A CRISTAUX LIQUIDES ET A COUPURE DANS l'UV
EP3383646B1 (fr) Vitrage feuillete a base d'adhesif sensible a la pression associe a sa face externe
EP4373670A1 (fr) Vitrage feuillete avec film fonctionnel
BE1013037A3 (fr) Vitrage feuillete de securite.
WO2022214746A1 (fr) Vitrage multiple d'enceinte pressurisée ayant un film de matériau polymère adhésif et antisolaire
EP2054224A1 (fr) Element feuillete de construction en verre et pierre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785960

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18026942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021785960

Country of ref document: EP

Effective date: 20230418