WO2022057950A1 - 空调室内机 - Google Patents
空调室内机 Download PDFInfo
- Publication number
- WO2022057950A1 WO2022057950A1 PCT/CN2021/124121 CN2021124121W WO2022057950A1 WO 2022057950 A1 WO2022057950 A1 WO 2022057950A1 CN 2021124121 W CN2021124121 W CN 2021124121W WO 2022057950 A1 WO2022057950 A1 WO 2022057950A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- indoor unit
- flow
- guide part
- conditioner indoor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0011—Indoor units, e.g. fan coil units characterised by air outlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0043—Indoor units, e.g. fan coil units characterised by mounting arrangements
- F24F1/0057—Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0063—Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
- F24F13/10—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
Definitions
- the invention relates to the field of air conditioning, in particular to an indoor unit of an air conditioner.
- FIG. 1 is a schematic cross-sectional view of an air conditioner indoor unit according to an embodiment of the prior art.
- the air outlet of the existing wall-mounted air conditioner indoor unit 100 is mostly opened at the bottom of the front side of its casing 110 , and the air outlet is opened and closed by setting an air deflector (or a deflector) 140 and adjusted in the vertical direction The direction of airflow.
- an air deflector or a deflector
- the wind deflector direction when the wind deflector (or the wind deflector) 140 swings down to the limit position is still inclined upward, and it is easy to swing upward.
- the increase in wind resistance results in lower cooling and heating efficiency, and the user's cooling and heating experience is not good.
- an air conditioner indoor unit with a wide adjustable range of air outlet angle is required in design.
- An object of the present invention is to overcome at least one technical defect in the prior art and provide an indoor unit of an air conditioner.
- a further object of the present invention is to improve the cooling and heating experience.
- Another further object of the present invention is to ensure the supply air volume.
- an air conditioner indoor unit comprising:
- the casing is provided with an air inlet and an air outlet;
- a fan arranged in the casing, and urging air to flow from the air inlet to the air outlet;
- the deflector includes a first deflector and a second deflector;
- the deflector is configured to be rotatable in a horizontal direction to adjust the sequence of gas flow through the first and second deflectors, and the first or second downstream deflectors The diversion angle of the diversion part.
- the first air guide portion is arranged to extend linearly;
- the second air guide portion is arranged to extend in an arc.
- the included angle between the connection plane of the end of the second air guide part close to the first air guide part and the end far from the first air guide part and the first air guide part is 25° ⁇ 40°. °.
- the air conditioner indoor unit further includes:
- the guide plate is arranged to rotate so that the gas first flows through the first guide part and then the second guide part when the heat exchanger is in a cooling state, and the second guide part is The guide direction of one end of the guide part away from the first guide part is inclined upward.
- the deflector further includes:
- a third air guide part is arranged to extend from an end of the second air guide part close to the first air guide part to a direction away from the first air guide part;
- the third air guide portion is arranged to extend obliquely downward when the heat exchanger is in a cooling state.
- the size of the third air guide portion in the extending direction of the first air guide portion is equal to the size of the first air guide portion in the extending direction thereof;
- the first air guide portion and the third air guide portion are arranged to extend linearly and are collinear; and/or
- the air guide plate is arranged in the main air duct of the casing, and the minimum distance between the first air guide portion and the third air guide portion and the rear wall of the main air duct is greater than or equal to the first air guide. the size of the flow portion or said third flow guiding portion in the direction of its extension; and/or
- the second air guide portion is arranged to extend in an arc, and its extension plane is not higher than the bottom end of the front panel of the casing when the heat exchanger is in a cooling state.
- the air conditioner indoor unit further includes:
- the guide plate is arranged to rotate so that the gas first flows through the second guide part and then the first guide part when the heat exchanger is in a heating state, and makes the first guide part flow.
- the guide direction of the end of a guide part away from the second guide part is inclined downward.
- the air conditioner indoor unit is a wall-mounted air conditioner indoor unit
- the bottom of the casing is provided with a split air duct, the airflow inlet of the split air duct is set to communicate with the main air duct of the casing, and the airflow outlet is located at the rear side of the air outlet and opens downward.
- a baffle is provided at the airflow inlet, and the baffle is configured to rotatably open and close the airflow outlet, so as to conduct the split air duct or block the split air duct.
- the airflow outlet is a plurality of through holes.
- the guide plate of the present invention includes a first guide part and a second guide part with a guide surface different from the first guide part, which not only increases the effective guide area of the indoor unit, improves the guide effect, but also improves the flow guide effect.
- Rotating the deflector in the horizontal direction can adjust the order of gas flowing through the first and second deflectors, as well as the wind deflecting angle of the first or second deflectors located downstream, thereby achieving The combination of various air supply angles and air supply lifts improves user experience.
- the guide plate in the cooling state, is rotated so that the gas first flows through the first guide part extending in a straight line and then flows through the second guide part extending in an arc, and the second guide part is extended.
- the direction of the deflector is inclined upward, which can make the air above the deflector quickly reach the angle and speed required for lift-off in a very short distance, increase the air supply head of the indoor unit, and prevent the cold air from blowing directly on the human body ;
- the heating state rotate the deflector so that the air first flows through the arc-extending second air-guiding part and then flows through the straight-extending first air-guiding part, and makes the air-guiding direction of the first air-guiding part flow. It is inclined downward to increase the flow rate of the gas and the air supply distance, so that the lower space of the indoor environment can be heated up quickly.
- the guide plate of the present invention is further provided with a third guide part extending from the end of the second guide part close to the first guide part to the direction away from the first guide part, and the third guide part is In the cooling state, it extends downward obliquely, and while part of the air is guided up by the second air guide part, the other part of the air flows out from the bottom of the third air guide part that is basically matched with the rear wall of the air duct of the main air duct, This can increase the air supply range of the main air duct in the cooling state, and ensure the air supply air volume and airflow velocity of the main air duct.
- FIG. 1 is a schematic cross-sectional view of an air conditioner indoor unit according to an embodiment of the prior art
- FIG. 2 is a schematic cross-sectional view of an air conditioner indoor unit according to an embodiment of the present invention
- FIG. 3 is a schematic cross-sectional view of an air conditioner indoor unit according to another embodiment of the present invention, wherein the air conditioner indoor unit is in a cooling mode;
- Fig. 4 is a schematic enlarged view of area A in Fig. 3;
- Fig. 5 is another schematic cross-sectional view of the air conditioner indoor unit shown in Fig. 3, wherein the air conditioner indoor unit is in a heating mode;
- Fig. 6 is another schematic cross-sectional view of the air conditioner indoor unit shown in Fig. 3, wherein the air conditioner indoor unit is in a non-blowing mode;
- Fig. 7 is a flow field diagram obtained by testing the indoor unit of the air conditioner shown in Fig. 1 , wherein the deflector is basically the same as the direction of the air flow of the main air duct;
- FIG. 8 is a flow field diagram obtained by testing the indoor unit of the air conditioner shown in FIG. 3 , wherein the flow deflector is basically the same as the flow direction of the main air duct;
- Fig. 9 is a flow field diagram obtained by testing the indoor unit of the air conditioner shown in Fig. 1, wherein the deflector is at the limit position of upward rotation;
- Fig. 10 is a flow field diagram obtained by testing the indoor unit of the air conditioner shown in Fig. 3, wherein the deflector is at the limit position of upward rotation;
- Fig. 11 is a flow field diagram obtained by testing the indoor unit of the air conditioner shown in Fig. 1, wherein the deflector is at the limit position of downward rotation;
- Fig. 12 is a flow field diagram obtained by testing the indoor unit of the air conditioner shown in Fig. 3, wherein the deflector is at the limit position of downward rotation.
- FIG. 2 is a schematic cross-sectional view of an air conditioner indoor unit 200 according to an embodiment of the present invention.
- the air conditioner indoor unit 200 may include a casing 210 , a fan 220 and a heat exchanger 230 disposed in the casing 210 .
- the air conditioner indoor unit 200 may be a wall-mounted air conditioner indoor unit.
- the casing 210 may include a frame for supporting the fan 220 and the heat exchanger 230, a casing covering the frame, a panel connected to the front side of the casing to constitute the front of the casing 210, and a panel respectively disposed on the casing 210. Left and right end caps on both sides of the shell 210 .
- the enclosure may have an air inlet 211 at its top and an air outlet 212 at its bottom.
- An air inlet grille may be provided at the air inlet 211, and the indoor air enters the interior of the indoor unit 200 through the air inlet grille.
- the main air duct 213 connecting the air inlet 211 and the air outlet 212 may be partially formed by a frame.
- the fan 220 can promote air to flow from the air inlet 211 to the air outlet 212 .
- the heat exchanger 230 may be disposed on the gas flow path between the air inlet 211 and the air outlet 212 to perform heat exchange with the indoor air flowing between the air inlet 211 and the air outlet 212 .
- the heat exchanger 230 may be disposed upstream of the fan 220 to reduce wind resistance.
- the cover may be configured to be arched forward to increase the distance from the heat exchanger 230 on the front side, thereby increasing the air supply volume of the air conditioner indoor unit 200 .
- the air outlet 212 may be provided with an air guide plate 240 that can be rotated around the horizontal direction to adjust the flow direction of the air flow in the vertical direction.
- the air outlet 212 may be provided with a swing vane 245 that can swing laterally, so as to adjust the flow direction of the airflow in the lateral direction.
- FIG. 3 is a schematic cross-sectional view of an air conditioner indoor unit 200 according to another embodiment of the present invention, wherein the air conditioner indoor unit 200 is in a cooling mode;
- FIG. 4 is a schematic enlarged view of the area A in FIG. 3 .
- a difference between this embodiment and the previous embodiment is that a deflector 250 is added on the air supply flow path of the fan 220 .
- the air guide plate 250 may include a first air guide part 251 and a second air guide part 252 .
- the deflector 250 is configured to be rotatable in a horizontal direction to adjust the sequence of gas flowing through the first and second air guides 251 and 252, and the first or second air guides 251 and 252 located downstream diversion angle.
- the guide plate 250 of the present invention includes a first guide portion 251 and a second guide portion 252 with a guide surface different from the first guide portion 251, which not only increases the effective guide area of the indoor unit 200, but also improves the guide surface.
- the air guide angle of the flow part 252 can be further combined with various air supply angles and air supply lifts, thereby improving user experience.
- the “horizontal direction” may be parallel to the lateral extension direction of the cabinet 210 .
- the deflector 250 is rotatable about a rotating shaft extending in a horizontal direction.
- the deflector 250 is fixedly connected with the rotating shaft, and the rotating shaft may be connected to the output shaft of the driving motor.
- the above-mentioned rotating shaft can be driven by another driving mechanism to move, so as to adjust the working position of the rotating shaft, so as to realize various combinations of air supply angles and air supply lifts.
- the drive mechanism may be a combination of motor, gear and/or rack.
- the first air guide portion 251 may be configured to extend straight.
- the second air guide portion 252 can be configured to extend in an arc, so as to achieve more possible angle adjustment. That is, the first air guide portion 251 is in the shape of a flat plate, and the second air guide portion 252 is in the shape of an arc plate. "Extending along a straight line" and “extending along an arc” are respectively described with respect to the extending directions of the cross-sections of the first and second air guiding parts 251 and 252 and the third air guiding part 253 described below.
- the angle ⁇ between the connection plane between the end of the second air guide portion 252 close to the first air guide portion 251 and the end far from the first air guide portion 251 and the first air guide portion 251 may be 25° ⁇ 40°, so that the The flow of the gas is smoother, and the structural strength of the deflector 250 is improved.
- the second air guide portion 252 extends along an arc from one end of the first air guide portion 251 and toward a direction away from the first air guide portion 251 to form an arc-shaped plate connected to the first air guide portion 251 .
- the included angle ⁇ may be 25°, 36°, or 40°.
- the guide plate 250 can be set to rotate so that the gas first flows through the first guide part 251 and then the second guide part 252 when the heat exchanger 230 is in a cooling state, and makes the air flow of the second guide part 252 .
- the direction of the air guide at the end away from the first air guide part 251 is inclined upward, so that the air above the air guide plate 250 can quickly reach the angle and speed required for lift-off within a very short distance, and the air supply of the indoor unit 200 is increased. Lift to avoid cold air blowing directly on the human body.
- the air guide plate 250 may further include a third air guide portion 253 .
- the third guide portion 253 may be configured to extend from the end of the second guide portion 252 close to the first guide portion 251 to a direction away from the first guide portion 251 , and downward when the heat exchanger 230 is in a cooling state It extends obliquely to improve the structural strength of the deflector 250, avoid the vibration of the second deflector 252 itself when the air flows, and while part of the air is guided up by the second deflector 252, the other part of the air flows from The bottom of the third air guide portion 253 that is basically matched with the air duct rear wall of the main air duct 213 flows out, and in the cooling state, the air supply range of the main air duct 213 is increased to ensure the air supply air volume and airflow velocity of the main air duct 213. .
- the dimension of the second air guide portion 252 in the extending direction of the first air guide portion 251 may be substantially equal to the dimension L1 of the first air guide portion 251 in the extending direction thereof.
- the dimension L 3 of the third air guide portion 253 in the extending direction of the first air guide portion 251 may be substantially equal to the dimension L 1 of the first air guide portion 251 in the extending direction thereof, so as to further improve the performance of the air guide plate 250
- the structural strength increases the flow velocity of the airflow flowing out from below the third air guide portion 253 .
- the first air guide portion 251 and the third air guide portion 253 may be arranged to extend straight and be collinear, so as to improve the smoothness of the flow of the air flowing out from below the third air guide portion 253 .
- the above-mentioned “collinearity” means that the cross-section of the first air guide portion 251 and the cross-section of the third air guide portion 253 are collinear, and the entirety of the first air guide portion 251 and the third air guide portion 253 may be in the shape of a flat plate.
- the deflector 250 may be disposed in the main air duct 213 of the casing 210 .
- the minimum distance D between the first air guide portion 251 and the third air guide portion 253 and the rear wall of the main air duct 213 may be greater than or equal to the dimension L 1 of the first air guide portion 251 or the third air guide portion 253 in the extending direction thereof or L 3 , to increase the rotatable angle range of the deflector 250 .
- the extension plane of the second air guide portion 252 when the heat exchanger 230 is in the cooling state may not be higher than the bottom end of the front panel of the casing 210 to avoid condensation on the front panel.
- FIG. 5 is another schematic cross-sectional view of the air conditioner indoor unit 200 shown in FIG. 3 , wherein the air conditioner indoor unit 200 is in a heating mode.
- the guide plate 250 may be configured to rotate so that the gas first flows through the second guide part 252 and then the first guide part 251 when the heat exchanger 230 is in a heating state, and makes the first guide part 251 flow.
- the guide direction of the end of the flow part 251 away from the second guide part 252 is inclined downward to increase the flow rate of the gas and the air supply distance, so as to rapidly increase the temperature of the lower space of the indoor environment.
- Fig. 6 is still another schematic cross-sectional view of the air conditioner indoor unit 200 shown in Fig. 3, wherein the air conditioner indoor unit 200 is in a no-blowing mode.
- a split air duct 214 may be opened at the bottom of the casing 210 .
- the airflow inlet of the split air duct 214 can be set to communicate with the main air duct 213 of the casing 210, and the airflow outlet can be located on the rear side of the air outlet 212 and open downwards, so as to divide the airflow in the main air duct 213 to the main air duct 213 in whole or in part.
- the split air duct 214 reduces the flow rate and air volume of the air blown out from the main air duct 213, and reduces or avoids the problem of the air blowing directly on the human body.
- the airflow outlet can be a plurality of through holes 215 to achieve windless air supply.
- a baffle 260 may be provided at the airflow inlet of the split air duct 214 .
- the baffle 260 is configured to rotatably open and close the airflow outlet, so as to conduct the split air passage 214 or block the split air passage 214 .
- the baffle 260 may be configured to rotate about its middle.
- the air deflector 240 is in a closed state, the baffle 260 is in an open state, and all the heat exchange air flows out through the airflow outlet of the split air duct 214 .
- the deflector 250 can be rotated to guide the air in the upper part of the main air duct 213 to the lower part of the air inlet of the branch air duct 214 , so that the air from the air outlet is uniform.
- FIG. 7 is a flow field diagram obtained by testing the air conditioner indoor unit 100 shown in FIG. 1 , wherein the deflector is basically the same as the direction of the main air duct;
- FIG. 8 is a flow field diagram of the air conditioner indoor unit 200 shown in FIG. The flow field diagram measured by the test, wherein, the guide plate 250 is basically the same as the guide direction of the main air duct 213 . It can be seen from the test results in Figures 7 and 8 that, under other conditions being the same, when the housing is arched forward, compared with the front wall of the housing being close to the heat exchanger, the air supply volume of the air conditioner indoor unit can be significantly improved.
- FIG. 9 is a flow field diagram obtained by testing the air conditioner indoor unit 100 shown in FIG. 1 , wherein the deflector is at the limit position of upward rotation
- FIG. 10 is a flow field diagram obtained by testing the air conditioner indoor unit 200 shown in FIG. 3 .
- Flow field diagram wherein the deflector 250 is in the limit position of the upward rotation. It can be seen from the test results in Fig. 9 and Fig. 10 that under the same other conditions, the use of a flat-shaped deflector can guide the airflow downward at a maximum of about 15° horizontally, while the deflector of the embodiment of the present invention The 250's exported airflow can be blown out almost horizontally, with better cooling effect.
- FIG. 11 is a flow field diagram obtained by testing the air conditioner indoor unit 100 shown in FIG. 1 , wherein the deflector is at the limit position of downward rotation
- FIG. 12 is a flow field diagram obtained by testing the air conditioner indoor unit 200 shown in FIG. 3 . , in which the deflector 250 is in the limit position of downward rotation. It can be seen from the test results in Fig. 11 and Fig. 12 that under the same other conditions, the use of a flat-shaped deflector can guide the airflow downward at a minimum of about 60° horizontally, while the deflector of the embodiment of the present invention is used. The 250 can guide the airflow down to about 65° horizontally at a minimum, and the gas flow rate is faster, which has better heating effect.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air-Flow Control Members (AREA)
Abstract
提供了一种空调室内机(200),包括机壳(210)、风机(220)和导流板(250)。机壳(210)开设有进风口(211)和出风口(212)。风机(220)设置于机壳(210)内,并促使空气自进风口(211)流向出风口(212)。导流板(250)设置于风机(220)的送风流路上,导流板(250)包括第一导流部(251)和第二导流部(252)。导流板(250)配置为可绕水平方向转动,以调节气体流过第一导流部(251)和第二导流部(252)的顺序。通过第一导流部(251)和第二导流部(252)的设置,不仅增大了室内机的有效导流面积,提高了导流效果,而且实现了多种送风角度和送风扬程的组合,提高了用户体验。
Description
本发明涉及空气调节领域,特别是涉及一种空调室内机。
图1是现有技术中一个实施例的空调室内机的示意性剖视图。参见图1,现有壁挂式空调室内机100的出风口大多开设在其机壳110的前侧底部,通过设置导风板(或导流板)140开闭出风口并在竖直方向上调节气流的流动方向。然而,受导风板140的固定结构和主风道113的延伸方向的影响,置导风板(或导流板)140向下摆动到极限位置时的导风方向仍倾斜向上,向上摆动容易增大风阻、导致制冷制热效率变低,用户的制冷制热体验欠佳。综合考虑,在设计上需要一种出风角度可调范围较大的空调室内机。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种空调室内机。
本发明一个进一步的目的是要提高制冷制热体验。
本发明另一个进一步的目的是要保证送风风量。
特别地,本发明提供了一种空调室内机,包括:
机壳,开设有进风口和出风口;
风机,设置于所述机壳内,并促使空气自所述进风口流向所述出风口;和
导流板,设置于所述风机的送风流路上,所述导流板包括第一导流部和第二导流部;其中
所述导流板配置为可绕水平方向转动,以调节气体流过所述第一导流部和第二导流部的顺序、以及位于下游的所述第一导流部或所述第二导流部的导流角度。
可选地,所述第一导流部设置为直线延伸;且
所述第二导流部设置为弧线延伸。
可选地,所述第二导流部的靠近所述第一导流部的一端与远离所述第一导流部的一端的连接平面与第一导流部的夹角为25°~40°。
可选地,所述空调室内机,还包括:
换热器,设置于所述进风口和所述导流板之间的气体流路上;其中
所述导流板设置为在所述换热器处于制冷状态下,转动至使气体先流过所述第一导流部并后流过所述第二导流部,并使所述第二导流部的远离所述第一导流部的一端的导流方向倾斜向上。
可选地,所述导流板还包括:
第三导流部,设置为自所述第二导流部的靠近所述第一导流部的一端向远离所述第一导流部的方向延伸;且
所述第三导流部设置为在所述换热器处于制冷状态下向下倾斜延伸。
可选地,所述第三导流部在所述第一导流部的延伸方向上的尺寸与所述第一导流部在其延伸方向上的尺寸相等;和/或
所述第一导流部和所述第三导流部设置为直线延伸并且共线;和/或
所述导流板设置在所述机壳的主风道内,所述第一导流部和所述第三导流部与所述主风道的后壁的最小间距大于等于所述第一导流部或所述第三导流部在其延伸方向上的尺寸;和/或
所述第二导流部设置为弧线延伸,且其在所述换热器处于制冷状态下时的延伸平面不高于所述机壳的前面板的底端。
可选地,所述空调室内机,还包括:
换热器,设置于所述进风口和所述导流板之间的气体流路上;其中
所述导流板设置为在所述换热器处于制热状态下,转动至使气体先流过所述第二导流部并后流过所述第一导流部,并使所述第一导流部的远离所述第二导流部的一端的导流方向倾斜向下。
可选地,所述空调室内机为壁挂式空调室内机;且
所述机壳的底部开设有分流风道,所述分流风道的气流入口设置为与所述机壳的主风道连通、气流出口位于所述出风口的后侧并开口向下。
可选地,所述气流入口处设置有挡板,所述挡板设置为可旋转开闭所述气流出口,以导通所述分流风道或阻断所述分流风道。
可选地,所述气流出口为多个贯穿孔。
本发明的导流板包括第一导流部和导流面不同于第一导流部的第二导流部,不仅增大了室内机的有效导流面积,提高了导流效果,而且通过使导流板绕水平方向转动,可调节气体流过第一导流部和第二导流部的顺序、以 及位于下游的第一导流部或第二导流部的导风角度,进而实现多种送风角度和送风扬程的组合,提高了用户体验。
进一步地,采用本发明的方案,在制冷状态下,使导流板转动至使气体先流过直线延伸的第一导流部后流过弧线延伸的第二导流部,并使第二导流部的导流方向倾斜向上,可使导流板上方的空气在极短的距离内迅速达到升空所需的角度和速度,增大室内机的送风扬程,避免冷空气直吹人体;在制热状态下,使导流板转动至使空气先流过弧线延伸的第二导流部后流过直线延伸的第一导流部,并使第一导流部的导流方向倾斜向下,提高气体的流速和送风距离,使室内环境的下层空间快速升温。
进一步地,本发明的导流板还设置有自第二导流部靠近第一导流部的一端向远离第一导流部的方向延伸的第三导流部,并使第三导流部在制冷状态下向下倾斜延伸,在部分空气被第二导流部导流上扬的同时,使另一部分空气从与主风道的风道后壁基本相配的第三导流部的下方流出,这可在制冷状态时增大主风道的送风范围,保证主风道的送风风量和气流流速。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是现有技术中一个实施例的空调室内机的示意性剖视图;
图2是根据本发明一个实施例的空调室内机的示意性剖视图;
图3是根据本发明另一个实施例的空调室内机的示意性剖视图,其中,空调室内机处于制冷模式;
图4是图3中区域A的示意性放大视图;
图5是图3所示空调室内机的另一示意性剖视图,其中,空调室内机处于制热模式;
图6是图3所示空调室内机的又一示意性剖视图,其中,空调室内机处于不吹人模式;
图7是对图1所示空调室内机进行测试测得的流场图,其中,导流板基 本与主风道的导流方向相同;
图8是对图3所示空调室内机进行测试测得的流场图,其中,导流板基本与主风道的导流方向相同;
图9是对图1所示空调室内机进行测试测得的流场图,其中,导流板处于向上转动的极限位置;
图10是对图3所示空调室内机进行测试测得的流场图,其中,导流板处于向上转动的极限位置;
图11是对图1所示空调室内机进行测试测得的流场图,其中,导流板处于向下转动的极限位置;
图12是对图3所示空调室内机进行测试测得的流场图,其中,导流板处于向下转动的极限位置。
图2是根据本发明一个实施例的空调室内机200的示意性剖视图。参见图2,空调室内机200可包括机壳210、设置于机壳210内的风机220和换热器230。空调室内机200可为壁挂式空调室内机。
机壳210可包括用于支撑风机220和换热器230的骨架、罩设在骨架上的罩壳、连接在罩壳的前侧以用于构成机壳210前部的面板以及分别设置于机壳210两侧的左端盖和右端盖。
罩壳可具有位于其顶部的进风口211和位于其底部的出风口212。进风口211处可设置有进风格栅,室内空气由进风格栅进入室内机200内部。连通进风口211和出风口212的主风道213可部分由骨架形成。
风机220可促使空气自进风口211流向出风口212。换热器230可设置于进风口211与出风口212之间的气体流路上,以与流经进风口211和出风口212之间的室内空气进行热交换。换热器230可设置于风机220的上游,以降低风阻。
在一些实施例中,罩壳可设置为向前拱起,以在前侧增大与换热器230的间隔,进而提高空调室内机200的送风量。
出风口212处可设置有可绕水平方向转动的导风板240,以在竖直方向上调整气流的流动方向。出风口212处可设置有可横向摆动的摆叶245,以在横向方向上调整气流的流动方向。
图3是根据本发明另一个实施例的空调室内机200的示意性剖视图,其中,空调室内机200处于制冷模式;图4是图3中区域A的示意性放大视图。参见图3和图4,本实施例与前述实施例(图2)的一个区别为在风机220的送风流路上增设导流板250。
特别地,导流板250可包括第一导流部251和第二导流部252。导流板250配置为可绕水平方向转动,以调节气体流过第一导流部251和第二导流部252的顺序、以及位于下游的第一导流部251或第二导流部252的导流角度。
本发明的导流板250包括第一导流部251和导流面不同于第一导流部251的第二导流部252,不仅增大了室内机200的有效导流面积,提高了导流效果,而且通过使导流板250绕水平方向转动,可调节气体流过第一导流部251和第二导流部252的顺序、以及位于下游的第一导流部251或第二导流部252的导风角度,进而实现多种送风角度和送风扬程的组合,提高了用户体验。“水平方向”可平行于机壳210的横向延伸方向。在一些实施例中,导流板250可绕沿水平方向延伸的转轴转动。例如,导流板250与转轴固定连接,并且转轴可以连接至驱动电机的输出轴。
在一些进一步的实施例中,上述转轴可由另外的驱动机构带动进行移动,以调整转轴的工作位置,从而实现多种送风角度和送风扬程的组合。该驱动机构可为电机、齿轮和/或齿条的组合。
在一些实施例中,第一导流部251可设置为直线延伸。第二导流部252可设置为弧线延伸,以实现更多种可能的角度调节。即,第一导流部251为平板状,第二导流部252为弧形板状。“沿直线延伸”以及“沿弧线延伸”分别是针对第一导流部251和第二导流部252以及下述第三导流部253的横截面的延伸方向进行描述。
第二导流部252的靠近第一导流部251的一端与远离第一导流部251的一端的连接平面与第一导流部251的夹角α可为25°~40°,以使气体的流动更加顺畅,并提高导流板250的结构强度。第二导流部252自第一导流部251的一端沿弧线、且朝向远离第一导流部251的方向延伸,以形成与第一导流部251相接的弧形板。例如,夹角α可为25°、36°、或40°。
导流板250可设置为在换热器230处于制冷状态下,转动至使气体先流过第一导流部251并后流过第二导流部252,并使第二导流部252的远离第 一导流部251的一端的导流方向倾斜向上,以使导流板250上方的空气在极短的距离内迅速达到升空所需的角度和速度,增大室内机200的送风扬程,避免冷空气直吹人体。
在一些进一步地实施例中,导流板250还可包括第三导流部253。第三导流部253可设置为自第二导流部252的靠近第一导流部251的一端向远离第一导流部251的方向延伸,并在换热器230处于制冷状态下向下倾斜延伸,以提高导流板250的结构强度,避免第二导流部252本身在气流流过时产生振动,并在部分空气被第二导流部252导流上扬的同时,使另一部分空气从与主风道213的风道后壁基本相配的第三导流部253的下方流出,在制冷状态时增大主风道213的送风范围,保证主风道213的送风风量和气流流速。
第二导流部252在第一导流部251的延伸方向上的尺寸可与第一导流部251在其延伸方向上的尺寸L
1基本相等。第三导流部253在第一导流部251的延伸方向上的尺寸L
3可与第一导流部251在其延伸方向上的尺寸L
1基本相等,以进一步地提高导流板250的结构强度,提高从第三导流部253的下方流出的气流的流速。
第一导流部251和第三导流部253可设置为直线延伸并且共线,以提高从第三导流部253的下方流出气流的流动顺畅性。上述“共线”是指第一导流部251的横截面和第三导流部253的横截面共线,第一导流部251和第三导流部253的整体可呈平板状。
导流板250可设置在机壳210的主风道213内。第一导流部251和第三导流部253与主风道213的后壁的最小间距D可大于等于第一导流部251或第三导流部253在其延伸方向上的尺寸L
1或L
3,以提高导流板250的可转动角度范围。
第二导流部252在换热器230处于制冷状态下时的延伸平面可不高于机壳210的前面板的底端,以避免前面板凝露。
图5是图3所示空调室内机200的另一示意性剖视图,其中,空调室内机200处于制热模式。参见图5,导流板250可设置为在换热器230处于制热状态下,转动至使气体先流过第二导流部252而后流过第一导流部251,并使第一导流部251的远离第二导流部252的一端的导流方向倾斜向下,以提高气体的流速和送风距离,使室内环境的下层空间快速升温。
图6是图3所示空调室内机200的又一示意性剖视图,其中,空调室内 机200处于不吹人模式。参见图6,机壳210的底部可开设有分流风道214。分流风道214的气流入口可设置为与机壳210的主风道213连通、气流出口可位于出风口212的后侧并开口向下,以将主风道213内的气流全部或部分分流至分流风道214,减小由主风道213吹出气流的流速和风量,减小或避免气流直吹人体的问题。气流出口可为多个贯穿孔215,以实现无风感送风。
分流风道214的气流入口处可设置有挡板260。挡板260设置为可旋转开闭气流出口,以导通分流风道214或阻断分流风道214。挡板260可设置为绕其中部转动。
在图6实施例中,导风板240处于关闭状态,挡板260处于打开状态,换热空气全部经由分流风道214的气流出口流出。导流板250可转动至将主风道213内上部的空气导流至分流风道214的气流入口的下部,以使气流出口出风均匀。
图7是对图1所示空调室内机100进行测试测得的流场图,其中,导流板基本与主风道的导流方向相同;图8是对图3所示空调室内机200进行测试测得的流场图,其中,导流板250基本与主风道213的导流方向相同。从图7和图8的测试结果可以看出,在其他条件相同的情况下,罩壳向前拱起相比于罩壳前壁贴近换热器可显著地提高空调室内机的送风量。
图9是对图1所示空调室内机100进行测试测得的流场图,其中,导流板处于向上转动的极限位置;图10是对图3所示空调室内机200进行测试测得的流场图,其中,导流板250处于向上转动的极限位置。从图9和图10的测试结果可以看出,在其他条件相同的情况下,采用平板状的导流板最高可将气流导向水平向下15°左右,而采用本发明实施例的导流板250导出的气流可实现几乎水平吹出,具有更好的制冷效果。
图11是对图1所示空调室内机100进行测试测得的流场图,其中,导流板处于向下转动的极限位置;图12是对图3所示空调室内机200进行测试测得的流场图,其中,导流板250处于向下转动的极限位置。从图11和图12的测试结果可以看出,在其他条件相同的情况下,采用平板状的导流板最低可将气流导向水平向下60°左右,而采用本发明实施例的导流板250最低可将气流导向水平向下65°左右且气体流速更快,具有更好的制热效果。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根 据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Claims (10)
- 一种空调室内机,包括:机壳,开设有进风口和出风口;风机,设置于所述机壳内,并促使空气自所述进风口流向所述出风口;和导流板,设置于所述风机的送风流路上,所述导流板包括第一导流部和第二导流部;其中所述导流板配置为可绕水平方向转动,以调节气体流过所述第一导流部和第二导流部的顺序、以及位于下游的所述第一导流部或所述第二导流部的导流角度。
- 根据权利要求1所述的空调室内机,其中,所述第一导流部设置为直线延伸;且所述第二导流部设置为弧线延伸。
- 根据权利要求2所述的空调室内机,其中,所述第二导流部的靠近所述第一导流部的一端与远离所述第一导流部的一端的连接平面与第一导流部的夹角为25°~40°。
- 根据权利要求1所述的空调室内机,还包括:换热器,设置于所述进风口和所述导流板之间的气体流路上;其中所述导流板设置为在所述换热器处于制冷状态下,转动至使气体先流过所述第一导流部并后流过所述第二导流部,并使所述第二导流部的远离所述第一导流部的一端的导流方向倾斜向上。
- 根据权利要求4所述的空调室内机,其中,所述导流板还包括:第三导流部,设置为自所述第二导流部的靠近所述第一导流部的一端向远离所述第一导流部的方向延伸;且所述第三导流部设置为在所述换热器处于制冷状态下向下倾斜延伸。
- 根据权利要求5所述的空调室内机,其中,所述第三导流部在所述第一导流部的延伸方向上的尺寸与所述第一导流部在其延伸方向上的尺寸相等;和/或所述第一导流部和所述第三导流部设置为直线延伸并且共线;和/或所述导流板设置在所述机壳的主风道内,所述第一导流部和所述第三导流部与所述主风道的后壁的最小间距大于等于所述第一导流部或所述第三导流部在其延伸方向上的尺寸;和/或所述第二导流部设置为弧线延伸,且其在所述换热器处于制冷状态下时的延伸平面不高于所述机壳的前面板的底端。
- 根据权利要求1所述的空调室内机,还包括:换热器,设置于所述进风口和所述导流板之间的气体流路上;其中所述导流板设置为在所述换热器处于制热状态下,转动至使气体先流过所述第二导流部并后流过所述第一导流部,并使所述第一导流部的远离所述第二导流部的一端的导流方向倾斜向下。
- 根据权利要求1所述的空调室内机,其中,所述空调室内机为壁挂式空调室内机;且所述机壳的底部开设有分流风道,所述分流风道的气流入口设置为与所述机壳的主风道连通、气流出口位于所述出风口的后侧并开口向下。
- 根据权利要求8所述的空调室内机,其中,所述气流入口处设置有挡板,所述挡板设置为可旋转开闭所述气流出口,以导通所述分流风道或阻断所述分流风道。
- 根据权利要求8所述的空调室内机,其中,所述气流出口为多个贯穿孔。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010996539.2 | 2020-09-21 | ||
CN202010996539.2A CN112178768B (zh) | 2020-09-21 | 2020-09-21 | 空调室内机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022057950A1 true WO2022057950A1 (zh) | 2022-03-24 |
Family
ID=73956691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/124121 WO2022057950A1 (zh) | 2020-09-21 | 2021-10-15 | 空调室内机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112178768B (zh) |
WO (1) | WO2022057950A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112178768B (zh) * | 2020-09-21 | 2022-09-06 | 青岛海尔空调器有限总公司 | 空调室内机 |
CN113048565A (zh) * | 2021-03-25 | 2021-06-29 | 珠海格力电器股份有限公司 | 一种空调室内机、控制方法和空调器 |
CN114110758B (zh) * | 2021-11-29 | 2023-01-20 | Tcl空调器(中山)有限公司 | 一种新风模块、空调室内机及空调器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013139913A (ja) * | 2011-12-28 | 2013-07-18 | Daikin Industries Ltd | 空調室内機 |
JP2017106724A (ja) * | 2017-03-24 | 2017-06-15 | シャープ株式会社 | 空気調和方法及び空気調和機 |
CN107314452A (zh) * | 2017-08-21 | 2017-11-03 | 广东美的制冷设备有限公司 | 壁挂式室内机及空调器 |
CN110056960A (zh) * | 2019-04-30 | 2019-07-26 | 青岛海尔空调器有限总公司 | 壁挂式空调室内机 |
CN110822552A (zh) * | 2018-07-23 | 2020-02-21 | 青岛海尔空调器有限总公司 | 一种室内机及空调器 |
CN111503742A (zh) * | 2020-05-14 | 2020-08-07 | 青岛海尔空调器有限总公司 | 壁挂式空调室内机 |
CN112178768A (zh) * | 2020-09-21 | 2021-01-05 | 青岛海尔空调器有限总公司 | 空调室内机 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3440016B2 (ja) * | 1999-02-25 | 2003-08-25 | シャープ株式会社 | 空気調和機 |
CN106642364B (zh) * | 2017-02-28 | 2022-05-13 | 广东美的制冷设备有限公司 | 空调内机及其导风板结构和空调内机导风控制方法 |
CN208536313U (zh) * | 2018-07-04 | 2019-02-22 | 青岛海尔空调器有限总公司 | 空调室内机 |
-
2020
- 2020-09-21 CN CN202010996539.2A patent/CN112178768B/zh active Active
-
2021
- 2021-10-15 WO PCT/CN2021/124121 patent/WO2022057950A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013139913A (ja) * | 2011-12-28 | 2013-07-18 | Daikin Industries Ltd | 空調室内機 |
JP2017106724A (ja) * | 2017-03-24 | 2017-06-15 | シャープ株式会社 | 空気調和方法及び空気調和機 |
CN107314452A (zh) * | 2017-08-21 | 2017-11-03 | 广东美的制冷设备有限公司 | 壁挂式室内机及空调器 |
CN110822552A (zh) * | 2018-07-23 | 2020-02-21 | 青岛海尔空调器有限总公司 | 一种室内机及空调器 |
CN110056960A (zh) * | 2019-04-30 | 2019-07-26 | 青岛海尔空调器有限总公司 | 壁挂式空调室内机 |
CN111503742A (zh) * | 2020-05-14 | 2020-08-07 | 青岛海尔空调器有限总公司 | 壁挂式空调室内机 |
CN112178768A (zh) * | 2020-09-21 | 2021-01-05 | 青岛海尔空调器有限总公司 | 空调室内机 |
Also Published As
Publication number | Publication date |
---|---|
CN112178768B (zh) | 2022-09-06 |
CN112178768A (zh) | 2021-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022057950A1 (zh) | 空调室内机 | |
WO2021223486A1 (zh) | 壁挂式空调室内机 | |
CN105091083B (zh) | 一种立式空调器室内机及立式空调器 | |
CN206113128U (zh) | 壁挂式空调的室内机 | |
CN216143844U (zh) | 壁挂式空调室内机 | |
CN108180551B (zh) | 壁挂式空调室内机 | |
WO2021169403A1 (zh) | 壁挂式空调室内机及其导风板 | |
CN108180552A (zh) | 壁挂式空调室内机 | |
WO2021169803A1 (zh) | 壁挂式空调室内机及其导风板 | |
CN216080079U (zh) | 壁挂式空调室内机 | |
WO2023159936A1 (zh) | 空调室内机 | |
CN211575291U (zh) | 壁挂式空调室内机及其导风板 | |
WO2019137525A1 (zh) | 壁挂式空调室内机 | |
WO2021169802A1 (zh) | 壁挂式空调室内机及其导风板 | |
CN107559954A (zh) | 壁挂式空调室内机及其导风板安装位置的选择方法 | |
WO2023246706A1 (zh) | 立式空调室内机 | |
WO2023130769A1 (zh) | 壁挂式空调室内机 | |
CN107606698A (zh) | 空调室内机 | |
KR100870626B1 (ko) | 공기조화기 | |
JP2017116146A (ja) | 空気調和装置の室内ユニット | |
CN211822783U (zh) | 壁挂式空调室内机 | |
WO2022151803A1 (zh) | 立式空调室内机 | |
JP6233398B2 (ja) | 空気調和装置の室内ユニット | |
WO2021218292A1 (zh) | 离心风机及具有该离心风机的窗机空调 | |
CN108375108B (zh) | 壁挂式空调室内机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21868772 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21868772 Country of ref document: EP Kind code of ref document: A1 |