WO2022057761A1 - 流量转发控制方法及装置、流量转发方法及芯片、交换机、存储介质 - Google Patents

流量转发控制方法及装置、流量转发方法及芯片、交换机、存储介质 Download PDF

Info

Publication number
WO2022057761A1
WO2022057761A1 PCT/CN2021/117952 CN2021117952W WO2022057761A1 WO 2022057761 A1 WO2022057761 A1 WO 2022057761A1 CN 2021117952 W CN2021117952 W CN 2021117952W WO 2022057761 A1 WO2022057761 A1 WO 2022057761A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
sub
instance
forwarding
broadcast domain
Prior art date
Application number
PCT/CN2021/117952
Other languages
English (en)
French (fr)
Inventor
刘居锋
陈华南
唐宏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022057761A1 publication Critical patent/WO2022057761A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/38Flow based routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/10Packet switching elements characterised by the switching fabric construction
    • H04L49/109Integrated on microchip, e.g. switch-on-chip
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding in a switch fabric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/354Switches specially adapted for specific applications for supporting virtual local area networks [VLAN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • H04L63/101Access control lists [ACL]

Definitions

  • the present disclosure relates to the field of switching technologies, and in particular, to a traffic forwarding control method, a traffic forwarding method, a traffic forwarding control device, a traffic forwarding chip, a switch, and a storage medium.
  • the related technology is to set ACL (Access Control Lists, Access Control Lists) isolation on a broadcast domain, such as peerlink (peer link) to the network side direction , peerlink to dual-homing AC (Access Controller, access controller) side direction, etc., need to rely on ACL to discard redundant packets to prevent the receiving end device from appearing multiple packets.
  • ACL Access Control Lists, Access Control Lists
  • an embodiment of the present disclosure provides a traffic forwarding control method, including:
  • the access mode of the traffic configure the instance members of the virtual private local area network service VPLS instance to which the traffic accesses, and the VPLS instance includes multiple instance members;
  • an embodiment of the present disclosure provides a traffic forwarding method, where the traffic forwarding method includes:
  • an embodiment of the present disclosure provides a traffic forwarding control device, including:
  • One or more first processors can call the first executable program to implement the aforementioned traffic forwarding control method.
  • an embodiment of the present disclosure provides a switch, including:
  • the traffic forwarding control device as aforesaid;
  • At least one traffic forwarding chip includes:
  • One or more second processors capable of invoking the traffic forwarding method provided by the present disclosure. .
  • embodiments of the present disclosure further provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the aforementioned traffic forwarding control method or traffic forwarding method.
  • FIG. 1 is a schematic flowchart of a traffic forwarding control method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of sub-broadcast domain division provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for controlling traffic forwarding when a link is updated according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for controlling traffic forwarding when a dual-homed AC interface fails according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of sending a first state notification message to a peer VTEP node according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of obtaining a special field according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a flow forwarding control method when a first state notification message is received according to an embodiment of the present disclosure
  • FIG. 8 is a schematic flowchart of processing on a traffic forwarding control device of a dual-active VTEP node after a dual-homing AC interface is down according to an embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart of a flow forwarding control method when a locally failed dual-homing AC interface is restored according to an embodiment of the present disclosure
  • FIG. 10 is a schematic flowchart of a flow forwarding control method when receiving a second status notification message according to an embodiment of the present disclosure
  • FIG. 11 is a schematic flowchart of a flow forwarding control method when a synchronization channel interface fails according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a processing flow on a dual-active VTEP node after a synchronization channel interface is down according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a processing flow on a dual-active VTEP node after a remote VXLAN tunnel-side interface is down, according to an embodiment of the present disclosure
  • FIG. 14 is a schematic flowchart of implementing load sharing and forwarding by a control plane device according to an embodiment of the present disclosure
  • FIG. 15 is a schematic flowchart of configuring preset conditions according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic flowchart of configuring preset conditions according to an embodiment of the present disclosure.
  • 17 is a schematic flowchart of a traffic forwarding method provided by an embodiment of the present disclosure.
  • FIG. 18 is a schematic flowchart of implementing load sharing and forwarding by a forwarding plane device according to an embodiment of the present disclosure
  • FIG. 19 is a schematic structural diagram of a traffic forwarding control apparatus provided by an embodiment of the present disclosure.
  • 20 is a schematic flowchart of state notification between dual-active VTEP nodes according to an embodiment of the present disclosure
  • FIG. 21 is a schematic structural diagram of a switch provided by an embodiment of the present disclosure.
  • FIG. 22 is another schematic structural diagram of a switch provided by an embodiment of the present disclosure.
  • Embodiments described herein may be described with reference to plan and/or cross-sectional views with the aid of idealized schematic representations of the present disclosure. Accordingly, example illustrations may be modified according to manufacturing techniques and/or tolerances. Therefore, the embodiments are not limited to the embodiments shown in the drawings, but include modifications of configurations formed based on manufacturing processes. Accordingly, the regions illustrated in the figures are of schematic nature and the shapes of the regions illustrated in the figures are illustrative of the specific shapes of the regions of the elements, and are not limiting.
  • a traffic forwarding control method is provided. As shown in FIG. 1 , the traffic forwarding control method includes steps S110 and S120.
  • step S110 according to the access mode of the traffic, configure the instance members of the virtual private local area network service VPLS instance accessed by the traffic, and the VPLS instance includes multiple instance members.
  • step S120 the sub-broadcast domains corresponding to each instance member of the VPLS instance are configured to obtain the correspondence between the access mode of the traffic, the instance members, and the sub-broadcast domains, and the correspondence is used to control the flow
  • the forwarding chip performs traffic forwarding according to the corresponding relationship.
  • different instance members correspond to different sub-broadcast domains.
  • the traffic forwarding control method provided by the present disclosure is executed by the control plane device of the VTEP (hereinafter referred to as the traffic forwarding control device). It should be noted that the traffic forwarding control device issues the corresponding relationship to the traffic forwarding through the control channel chip, and configure the traffic forwarding chip, so that the traffic forwarding chip can forward the accessed traffic according to the access mode of the access traffic and the corresponding relationship.
  • the traffic forwarding control method multiple instance members of the same VPLS instance are divided into different sub-broadcast domains respectively. Therefore, when the traffic forwarding chip performs traffic forwarding, the traffic accessed by different access modes Forwarding paths (including BUM packets) can be mapped to different sub-broadcast domains.
  • the traffic forwarding chip configured by the traffic forwarding control method performs traffic forwarding, the forwarding between different sub-broadcast domains is isolated from each other, so that multiple packets can be avoided on the receiving end device.
  • the flow forwarding control method provided by the present disclosure is easier to configure the flow forwarding chip.
  • the traffic forwarding control method provided by the present disclosure is also more flexible, and the traffic forwarding control method provided by the present disclosure is also easier to achieve network side stability.
  • the VPLS instance includes a first instance member corresponding to traffic whose access mode is AC access, a second instance member corresponding to traffic whose access mode is remote VXLAN tunnel access, and an access mode The third instance member corresponding to the traffic accessed by the synchronization channel.
  • the AC side is mainly used to attach virtual machines and tenants; the role of the remote VXLAN tunnel is to advertise the virtual network (overlay) routing entries between the local active-active VTEP and the remote VTEP, and to communicate between virtual machines at Layer 2 and Layer 3. ; The function of the synchronization channel is to synchronize the overlay routing entries learned on the AC side between the two local VTEPs.
  • the sub-broadcast domain corresponding to the first instance member includes a single-homed AC access-side egress, a dual-homed AC access-side egress, a remote VXLAN tunnel-side egress, and a synchronization channel egress.
  • the sub-broadcast domain corresponding to the first instance member may be referred to as a full-broadcast domain, denoted by mcid0.
  • the sub-broadcast domain corresponding to the second instance member includes a local VXLAN tunnel-side egress, a single-homed AC access-side egress, and a dual-homed AC access-side egress.
  • the sub-broadcast domain of the second instance member may be referred to as a VXLAN tunnel-side broadcast domain, which is represented by mcid1.
  • the sub-broadcast domain corresponding to the third instance member includes a synchronization channel egress and a single-homed AC access-side egress.
  • the sub-broadcast domain of the third instance member may be referred to as a synchronous channel broadcast domain, denoted by mcid2.
  • FIG. 2 is a schematic diagram of sub-broadcast domain division provided by the present disclosure
  • port 1 is a single-homed AC access-side egress
  • port 2 is a dual-homed AC access-side egress
  • port 3 is a synchronization channel egress
  • port 4 is a VXLAN tunnel side exit.
  • the packets in the traffic are BUM (Broadcast, Unknown-uc, Multicast) packets, and the forwarding paths of three different types of packets can be mapped in the sub-broadcast domains respectively.
  • BUM Broadcast, Unknown-uc, Multicast
  • sub-broadcast domains corresponding to different instance members are specified above, the present disclosure is not limited thereto. Users can customize the division rules of sub-broadcast domains. For example, the forwarding paths of Broadcast packets in the AC access direction may be mapped to a certain sub-broadcast domain, and the forwarding paths of other types of packets may be mapped to other sub-broadcast domains.
  • the flow forwarding control method may further include step S130.
  • step S130 when the forwarding link is updated, the sub-broadcast domain corresponding to each instance member of the VPLS instance is re-determined in the forwarding entry.
  • step S120 the sub-broadcast domain is the most recently determined sub-broadcast domain. That is, every time a link update occurs, step S120 is executed once.
  • the member links can be ensured to be valid, the link convergence during path switching can be accelerated, and the reliable and stable operation of the network topology can be ensured.
  • a member port which can be an egress or an access port
  • the corresponding new member port needs to be added to mcid0 and mcid1.
  • Whether to add this member port to mcid2 depends on the single-homing, dual-homing, and network-side Ethernet Virtual Private Network (EVPN, Ethernet Virtual Private Network) VXLAN tunnel establishment method.
  • EVPN Ethernet Virtual Private Network
  • the network-side VXLAN tunnel is a VTEP group (one virtual) tunnel, that is, the network-side VXLAN packet will only be copied on the remote VTEP node to the local active-active VTEP, so whether it is a single-homed AC access
  • Both the member ports of the dual-homed AC and the member ports connected to the dual-homed AC are allowed to be added to mcid0 and mcid1.
  • the VXLAN tunnel on the network side can be based on a full ESI EVPN tunnel, that is, each active-active node supports rt-1 routing (the first type of EVPN routing, that is, Ethernet auto-discovery route, Ethernet auto-discovery route in English) Advertise it to the remote node, and specify the rt-3 route (the third type of EVPN route, that is, inclusive multicast Ethernet tag route, Inclusive multicast Ethernet tag route in English) to establish a tunnel with the local virtual address and the remote end.
  • rt-1 routing the first type of EVPN routing, that is, Ethernet auto-discovery route, Ethernet auto-discovery route in English
  • the rt-3 route the third type of EVPN route, that is, inclusive multicast Ethernet tag route, Inclusive multicast Ethernet tag route in English
  • the mcid1 on the non-designated forwarder (Non-DF, Non-Designated Forwarder) side does not allow member ports of the dual-homed AC to join.
  • the forwarding link update includes that the local VTEP has an interface failure (for example, the interface is shut down), and accordingly, in step S130, the egress corresponding to the failed interface is broadcast from the corresponding sub-broadcast removed from the domain.
  • the member links can be ensured to be valid, the link convergence during path switching can be accelerated, and the reliable and stable operation of the network topology can be ensured.
  • the sub-broadcast domain corresponding to each instance member of the VPLS instance is updated in the forwarding table entry, that is, the sub-interface status notification (including the link switch notification and the switchback notification) between the dual-active VETP nodes can be notified.
  • mechanism sinks to the forwarding-table management (FTM, forwarding-table Management) module, in other words, in the flow forwarding control method provided by the present disclosure, step S130 is performed by the FTM module, no longer relies on the traditional control plane, and enhances the dual reliability of live networks.
  • FTM forwarding-table Management
  • the interfaces of the local VTEP node may include dual-homed AC interfaces.
  • the status of the Multi-Chassis Link Aggregation Group (MCLAG) is based on the negotiation of the parent interface granularity. After the sub-interface fails, the local update action will not be triggered. For example, once the dual-homing AC sub-interface on the local VTEP is shut down, or the dual-homing AC interface tracks an event and the associated interface protocol fails (down), the peer VTEP node cannot sense the sub-interface down. status.
  • MLAG Multi-Chassis Link Aggregation Group
  • the traffic forwarding control method further includes steps S141 and S142 performed after step S130 .
  • step S141 a first state notification message representing the failure of the dual-homing AC interface is generated.
  • step S142 the control traffic forwarding chip sends the first state notification message to the peer VXLAN tunnel endpoint VTEP node, so as to control the peer VTEP node to release the forwarding isolation of the peer link to the dual-homed AC access direction .
  • step S141 and step S142 are also performed by the FTM module.
  • the FTM module quickly senses the failure of the dual-homed AC interface on the local VTEP node, and constructs a special status notification message (that is, the first status notification message).
  • step S142 may include steps S142a and S142b.
  • step S142a the first state announcement message is put into a high-priority message sending queue of the traffic forwarding chip.
  • step S142b the first status notification message is sent by using a predetermined outlet of the traffic forwarding chip.
  • the egress of the status advertisement message is preferentially selected as a direct link. If the link egress corresponding to the synchronization channel on the local VTEP forwards a virtual output queue (VOQ, Virtual Output Queue) or the bandwidth usage rate is high, the egress that bypasses the remote VTEP channel is dynamically selected as the predetermined egress, and the A status notification message is forwarded.
  • VOQ Virtual Output Queue
  • the FTM module can directly sense the interface status by registering the channel with the configuration management module (that is, receiving notifications from the control and management module). Therefore, the first state notification message can be quickly sent to the opposite end.
  • the first status advertisement message is a keepalive message carrying a special field, and the special field is used to identify the failure of the dual-homing AC interface.
  • the special field is an invalid sys-id field.
  • the keepalive packet has the sys-id attribute.
  • the value of the sys-id attribute is changed to an invalid value, both parties of the VTEP (ie, the sender and the receiver of the packet) agree that the keepalive packet is the first state notification packet.
  • step S142 may further include steps S142c to S142e.
  • step S142c the peerlink is used as the egress to search for the peerlink sub-interface bound to the failed dual-homing AC interface in the inter-chassis backup group (Inter-Chassis Backup Group, ICBG group).
  • Inter-Chassis Backup Group ICBG group
  • step S142d the first state advertisement message is made to carry the same VLAN tag as the VLAN tag on the found peerlink sub-interface.
  • step S142e the first state announcement message carrying the VLAN tag is forwarded.
  • the VTEP node of the opposite end after receiving the first state announcement message sent by the local VTEP node, the VTEP node of the opposite end performs the following steps:
  • the local ICBG group is reversely checked to determine the locally bound dual-homing AC interface
  • the VTEP node After the VTEP node parses the packet of the first state notification type, it will update the dual-homing AC egress in the corresponding VPLS instance to mcid2, which is equivalent to unlocking the forwarding isolation of the synchronization channel to the dual-homing direction.
  • the VTEP node at the opposite end After the VTEP node at the opposite end receives the first state advertisement message sent by the VTEP node at the local end, the VTEP node at the opposite end releases the "anti-loop isolation" to speed up the switching of single-homing and dual-homing forwarding paths between the active-active VTEP nodes.
  • the local VTEP node also has the ability to process the first state advertisement message sent by other VTEP nodes, as shown in FIG. 7 , that is, the flow forwarding control method further includes steps S151 and S152.
  • step S151 in response to the first state advertisement message sent by other VTEP nodes, the local ICBG group is reversely searched according to the receiving source port and VLAN tag of the advertisement message to determine the locally bound dual-homed AC interface.
  • step S152 the bound egress of the dual-homed AC interface is added to the sub-broadcast domain of the corresponding VPLS instance member.
  • Leaf nodes Spine nodes, VTEP A nodes, VTEP B nodes, VTEP C nodes, EVPN tunnels, and a link aggregation group LAG that simultaneously accesses two dual-active VTEP A nodes and VTEP B nodes.
  • the FTM module on the VTEP A node quickly senses it, constructs a first state notification message with special fields and sends it to the peer VTEP B node, and the VTEP B node parses the first state notification message.
  • the dual-homing AC outlet is added to mcid2, thereby releasing the forwarding isolation from the synchronization channel to the dual-homing direction.
  • the notification of the traditional control platform is not flexible enough, and requires more software scheduling in the middle, which also means a large time overhead.
  • the FTM module quickly notifies the peer VTEP node, and the peer node quickly releases the forwarding isolation from the peerlink to the dual-homing AC access direction. Avoid excessive software scheduling and save time overhead.
  • the traffic forwarding control method further includes steps S161 and S162.
  • step S161 a second state advertisement message representing the restoration of the local dual-homing AC interface is generated.
  • step S162 a second state announcement message is sent to the opposite VTEP node.
  • the FTM module reconstructs the keepalive message carrying the special field to identify the local dual-homing AC side to take effect again.
  • the keepalive message constructed at this time has the sys-id attribute.
  • the sys-id attribute value is changed to the default value, both parties of the VTEP (that is, the sender and the receiver of the message) agree on the keepalive message.
  • a notification message for the second state is possible.
  • the VTEP node of the opposite end restores the forwarding isolation of the previous forwarding path, that is, the traffic forwarding method further includes:
  • the local dual-homed AC exit is removed from the sub-broadcast domain of the corresponding VPLS instance member.
  • the VTEP node removes the local dual-homing AC exit from VPLS.mcid2 (the symbol represents the third sub-broadcast domain mcid2 corresponding to the VPLS instance), and resets the forwarding isolation between the synchronization channel and the local dual-homing access.
  • the local VTEP node should also have the ability to process the second state announcement message. That is, after receiving the second status advertisement message sent by other VTEP nodes, as shown in FIG. 10 , the flow forwarding control method further includes step S170.
  • step S170 in response to the second status advertisement message sent by the other VTEP node, the local dual-homed AC exit is removed from the sub-broadcast domain of the corresponding VPLS instance member.
  • the VTEP node removes the local dual-homing AC egress from VPLS.mcid2, which is equivalent to resetting the forwarding isolation between the synchronization channel and the local dual-homing access.
  • the traffic forwarding control method also includes: Steps S181 and S182 are performed after the step of removing in the corresponding sub-broadcast domain (ie, step S130).
  • step S181 the sub-broadcast domain corresponding to the third instance member is deleted.
  • step S182 the sub-broadcast domain of the first instance member and the sub-broadcast domain of the second instance member are updated.
  • the synchronization channel is a peerlink link configured based on LAG; or, the synchronization channel is a VXLAN EVPN dynamic tunnel.
  • the synchronization channel can be a peerlink link based on LAG configuration or a VXLAN EVPN dynamic tunnel.
  • the advantage of the latter is that the underlay backup link of the synchronization channel can be set in advance, so as to avoid the problem that after the synchronization channel is down, the peer VTEP cannot receive the traffic after the VTEP at one end receives the traffic from the network side.
  • the synchronization channel can be based on the label distribution (LDP, Label Distribution Protocol) protocol bound on the peerlink aggregated link, or it can be an EVPN VXLAN dynamic tunnel, that is, a specially marked VXLAN dynamic tunnel, and the optimal path of the underlay is a direct link between active and active. road. If the link goes down, the optimal underlay path is updated to the remote VTEP, and then bypasses the local active-active path. Since the exit of the synchronization channel has also changed accordingly, the member exit also needs to be updated in mcid0 and mcid1.
  • LDP Label Distribution Protocol
  • FIG. 12 there are Leaf node, Spine node, VTEP A node, VTEP B node, VTEP C node, and EVPN tunnel. And access the link aggregation group LAG of two active-active VTEP A nodes and VTEP B nodes at the same time.
  • the VTEP A node deletes the mcid2 group, and the corresponding peerlink exits are respectively from mcid0 and mcid2. removed in.
  • FIG. 13 there are Leaf node, Spine node, VTEP A node, VTEP B node, and VTEP C node. , EVPN tunnel, and the link aggregation group LAG that simultaneously accesses two active-active VTEP A nodes and VTEP B nodes.
  • the VTEP A node sends the corresponding down VXLAN tunnel member egress from the Removed from mcid0 and mcid1, and the members in mcid2 remain unchanged.
  • underlay backup links are often configured. Even if the local VXLAN tunnel goes down, the underlay route will still be recalculated, and the converged egress will be re-added to mcid0 and mcid1. VTEP B only acts as an underlay node.
  • the egress corresponding to the failed interface is removed from the full broadcast domain and the synchronization channel broadcast domain, respectively.
  • the above three sub-broadcast domains mcid0, mcid1, and mcid2 are the BUM packet forwarding search results in different access directions in the VPLS instance, and are set to continuous values, and mcid0 ⁇ mcid1 ⁇ mcid2.
  • the mapping relationship can also be set according to different actual scenarios (such as a scenario in which a specific type of unknown Layer 2 packet needs to be discarded).
  • southbound traffic is forwarded to the AC access side in a local-preferred manner. If the local dual-homed AC interface goes down, a status notification is made between the dual-active VTEPs, and BUM packets are detoured. The peerlink link reaches the virtual machine attached to the dual-homing AC interface. This mechanism has been described above and will not be repeated here.
  • Northbound traffic refers to traffic entering from the AC side and replicated to the network side VXLAN tunnel egress. This part of BUM traffic needs to be forwarded locally to the single-homed AC side in this VPLS instance, to the synchronization channel side, and to the VXLAN tunnel side of the network side. Considering that a VXLAN tunnel may have multiple next-hop exits, the unknown traffic forwarding method copied to the network-side VXLAN tunnel needs to be replaced by a load balancing method. Compared with related technologies, the replication based on fixed outgoing port granularity improves network stability and bandwidth. utilization.
  • the role of the spine node is to reflect the routing entries within the data center or between data centers, and the number of spines is important for network reliability. guarantee.
  • the greater the number of spines the more the number of underlay next hops on the local active-active node for the VXLAN tunnel formed by the active-active node and the remote node.
  • packet replication based on port granularity is reliable and bandwidth utilization. not tall.
  • the traffic forwarding control method may include step S190.
  • step S190 a preset condition is configured for the traffic forwarding chip in the forwarding entry.
  • the forwarding chip can be made to perform the following operations when forwarding traffic:
  • Unknown packets that do not meet the preset conditions are discarded.
  • the preset conditions and how to configure the preset conditions are not particularly limited, as long as the load sharing can be implemented on the outlet.
  • step S190 may include steps S190a to S190c.
  • step S190a a virtual LAG is created in the forwarding entry according to all the exits of the next hop of the tunnel.
  • step S190b a globally unique hash interval is generated for each exit in the virtual LAG in the forwarding entry.
  • step S190c it is determined in the forwarding entry that the hash value carried by the header of the unknown packet forwarding header falls within the hash interval of any one of the exits to satisfy the preset condition.
  • Step S190c will be exemplified below.
  • Hash Value ⁇ (m,n) ⁇ , Hash B ⁇ Hash Value
  • Hash Value ⁇ (x,y) ⁇ , Hash C ⁇ Hash Value
  • Hash A represents the hash interval corresponding to export A
  • Hash B represents the hash interval corresponding to export B
  • Hash C represents the hash interval corresponding to export C
  • m, n, x, y, u, v All are binary values, and, m ⁇ n, x ⁇ y, u ⁇ v.
  • the switch chip supports the hashing of the packets according to the quintuple method, and carries the hash value to the outbound direction.
  • the preset interval of each port is compared, and the port is allowed to be copied if the preset conditions are met.
  • the predetermined condition may be: if the hash value (Hash Value) carried by the forwarding header of an unknown packet satisfies the hash value range table of any exit in the virtual LAG group, then the value satisfied by the hash value is used.
  • the egress serves as the outgoing port of the packet.
  • the packet is not copied to the port corresponding to the unsatisfied hash value range table.
  • this mechanism is also equivalent to link pruning.
  • the LAG group "prunes" the member links, only keeps a copy of the packet, and selects the corresponding egress to send. For example, if the hash value carried in the packet satisfies x ⁇ Hash Value ⁇ y, the packet is sent by selecting the corresponding port egress B as the egress port, and the packet is not copied to egress A and egress C.
  • quintuple may refer to source IP, source port, destination IP, destination port and protocol.
  • step S190 may further include S190d.
  • step S190d when the next hop exit of the tunnel is updated, a virtual LAG is created according to the updated exit.
  • a hash interval is configured for each exit in the LAG created last time in the forwarding entry.
  • a traffic forwarding method is provided. As shown in FIG. 17 , the traffic forwarding method includes steps S210 to S240.
  • step S210 the access mode of the access traffic is determined.
  • step S220 the sub-broadcast domain corresponding to the accessed traffic is determined according to the access mode of the access traffic, the corresponding relationship between the access mode of the traffic and the instance members, and the sub-broadcast domain.
  • step S230 the actual forwarding path of the message in the access traffic is mapped to the corresponding sub-broadcast domain.
  • step S240 the packet is forwarded according to the path mapped to the sub-broadcast domain.
  • the traffic forwarding method provided by the present disclosure is executed by the forwarding plane device of the VTEP (referred to as a traffic forwarding chip above).
  • multiple instance members of the same VPLS instance are divided into different sub-broadcast domains respectively.
  • Forwarding paths (including BUM packets) can be mapped to different sub-broadcast domains.
  • the traffic forwarding chip configured through the traffic forwarding control method performs the traffic forwarding method, the traffic can be forwarded in different sub-broadcast domains. Since the forwarding between the different sub-broadcast domains is isolated from each other, the receiving end device can be avoided. Multiple packages appear.
  • the flow forwarding control method provided by the present disclosure is easier to configure the flow forwarding chip. Forwarding isolation is achieved, and the traffic forwarding method provided by the present disclosure is also more flexible.
  • the traffic forwarding chip can implement a pruning mechanism for unknown packets, so as to achieve load balancing of traffic on the underlay link.
  • the traffic forwarding method may further include steps S250 and S260.
  • step S250 the unknown packets in the traffic are forwarded to all the egress of the full broadcast domain.
  • step S260 the unknown packets that do not meet the preset conditions are discarded.
  • the above-mentioned "load balancing of traffic on the underlay link" and forwarding isolation can be implemented only by adding ACL rules to the VPLS instance.
  • the traffic forwarding method provided by the present application can enhance the stability of the network side.
  • the flow forwarding control apparatus includes a configuration control management module 110 .
  • the configuration control management module 110 is configured to perform the following steps:
  • the access mode of the traffic configure the instance members of the virtual private local area network service VPLS instance to which the traffic accesses, and the VPLS instance includes multiple instance members;
  • the traffic forwarding control apparatus provided by the present disclosure is used to execute the above-mentioned traffic forwarding control method provided by the present disclosure.
  • the working principle and beneficial effects of the traffic forwarding control method have been described in detail above, and will not be repeated here.
  • the configuration control management module 110 is further configured to generate a notification signal when the forwarding link is abnormal.
  • the traffic forwarding control apparatus further includes a forwarding entry management FTM module 120, and the FTM module 120 is configured to map out a sub-broadcast domain and update the sub-broadcast domain when receiving the notification signal Member of the broadcast domain.
  • FTM module 120 is configured to map out a sub-broadcast domain and update the sub-broadcast domain when receiving the notification signal Member of the broadcast domain.
  • the traffic forwarding control apparatus may further include a packet sending and receiving module 130, and the packet sending and receiving module 130 is configured to receive and dispatch the first status notification message and the second status notification message.
  • the traffic forwarding control apparatus may further include a network protocol stack module 140 configured to convert data into data conforming to a data exchange protocol between VTEP nodes package for communication.
  • the FTM module will receive a notification message that the dual-homing sub-interface is down, and then query whether there is a keeplive channel.
  • the FTM module will construct a status notification message and specify a priority, and add the status notification message to the packet dispatching queue with the specified priority so that it can be sent to the VTEP B node in time.
  • the transceiver module of the VTEP B node After receiving the status notification message, the transceiver module of the VTEP B node distributes the status notification message to the local FTM module.
  • the local FTM module parses the corresponding VXLAN instance and dual-homing AC sub-interface, and the VTEP B node will be added in VXAN mcid2
  • the local dual-homed AC egress marks the status notification message of the VTEP A node, waiting for the main link to recover.
  • a traffic forwarding control device including:
  • a first storage device on which a first executable program is stored
  • One or more first processors can call the first executable program to implement the traffic forwarding control method provided by any of the foregoing embodiments.
  • the present disclosure also provides a traffic forwarding chip, including:
  • One or more second processors can call the second executable program to implement the traffic forwarding method provided by the foregoing embodiments.
  • a switch including:
  • At least one traffic forwarding chip as provided in the foregoing embodiments.
  • FIG. 21 is a schematic structural diagram of a switch provided by the present disclosure.
  • 22 is another schematic structural diagram of the switch provided by the present disclosure.
  • the traffic forwarding control device may include a configuration control management module, a forwarding entry management FTM module, a packet sending and receiving module, and a network protocol stack module, and the traffic forwarding chip may be a switching chip.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the traffic forwarding control method or the traffic forwarding method provided by the foregoing embodiments .
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提供一种流量转发控制方法,包括:根据流量的接入方式,配置所述流量接入的虚拟专用局域网业务VPLS实例的实例成员,所述VPLS实例包括多个实例成员;配置所述VPLS实例的各个实例成员所对应的子广播域,以获得流量的接入方式与实例成员、以及子广播域之间的对应关系,所述对应关系用于控制流量转发芯片根据所述对应关系进行流量转发,在同一个所述VPLS实例中,不同实例成员对应不同的子广播域。本公开还提供一种流量转发控制装置、一种流量转发方法、一种流量转发芯片及一种交换机。

Description

流量转发控制方法及装置、流量转发方法及芯片、交换机、存储介质
相关申请的交叉引用
本申请要求于2020年9月17日提交的中国专利申请NO.202010980524.7的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本公开涉及交换技术领域,具体地,涉及流量转发控制方法、流量转发方法、流量转发控制装置、流量转发芯片、交换机、存储介质。
背景技术
在双活VTEP(VXLAN Tunnel Endpoints,VXLAN隧道端点)组网场景中,相关技术是在一个广播域上设置ACL(Access Control Lists,访问控制列表)隔离,比如peerlink(对等链接)到网络侧方向,peerlink到双归AC(Access Controller,接入控制器)侧方向等都需要依赖ACL丢弃冗余报文,防止接收端设备出现多包。考虑新增AC侧成员接入或网络侧VXLAN隧道成员链路时,不可避免地要设置很多ACL条目,实现上不够灵活,这种“复制-丢弃”策略也浪费了交换芯片的复制能力。
公开内容
第一方面,本公开实施例提供一种流量转发控制方法,包括:
根据流量的接入方式,配置所述流量接入的虚拟专用局域网业务VPLS实例的实例成员,所述VPLS实例包括多个实例成员;以及
配置所述VPLS实例的各个实例成员所对应的子广播域,以获得流量的接入方式与实例成员、以及子广播域之间的对应关系,所述对 应关系用于控制流量转发芯片根据所述对应关系进行流量转发,在同一个所述VPLS实例中,不同实例成员对应不同的子广播域。
第二方面,本公开实施例提供一种流量转发方法,所述流量转发方法包括:
确定接入流量的接入方式;
根据接入流量的接入方式、流量的接入方式与实例成员以及子广播域之间的对应关系确定接入的流量所对应的子广播域;
将所述接入流量中报文的实际转发路径映射至相应的子广播域中;以及
根据映射至子广播域中的路径转发报文。
第三方面,本公开实施例提供一种流量转发控制装置,包括:
第一存储装置,其上存储有第一可执行程序;以及
一个或多个第一处理器,所述一个或多个第一处理器能够调用所述第一可执行程序,以实现如前所述的流量转发控制方法。
第四方面,本公开实施例提供一种交换机,包括:
如前所述的流量转发控制装置;以及
至少一个流量转发芯片,该流量转发芯片包括:
第二存储装置,其上存储有第二可执行程序;以及
一个或多个第二处理器,所述一个或多个第二处理器能够调用本公开所提供的流量转发方法。。
第五方面,本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如前所述的流量转发控制方法或流量转发方法。
附图说明
图1为本公开实施例提供的流量转发控制方法的流程示意图;
图2为本公开实施例提供的子广播域划分示意图;
图3为本公开实施例提供的当链路更新时流量转发控制方法的流程示意图;
图4为本公开实施例提供的当双归AC接口失效时流量转发控制 方法的流程示意图;
图5为本公开实施例提供的向对端VTEP节点发送第一状态通告报文的流程示意图;
图6为本公开实施例提供的获取特殊字段的流程示意图;
图7为本公开实施例提供的当接收到第一状态通告报文时流量转发控制方法的流程示意图;
图8为本公开实施例提供的双归AC接口down后双活VTEP节点的流量转发控制装置上的处理流程示意图;
图9为本公开实施例提供的当本地失效的双归AC接口恢复时流量转发控制方法的流程示意图;
图10为本公开实施例提供的当接收到第二状态通告报文时流量转发控制方法的流程示意图;
图11为本公开实施例提供的当同步通道接口失效时流量转发控制方法的流程示意图;
图12为本公开实施例提供的同步通道接口down后双活VTEP节点上的处理流程示意图;
图13为本公开实施例提供的远端VXLAN隧道侧接口down后双活VTEP节点上的处理流程示意图;
图14为本公开实施例提供的控制面装置实现负载分担转发的流程示意图;
图15为本公开实施例提供的配置预设条件的流程示意图;
图16为本公开实施例提供的配置预设条件的流程示意图;
图17为本公开实施例提供的流量转发方法的流程示意图;
图18为本公开实施例提供的转发面装置实现负载分担转发的流程示意图;
图19为本公开实施例提供的流量转发控制装置的结构示意图;
图20为本公开实施例提供的双活VTEP节点之间的状态通告流程示意图;
图21为本公开实施例提供的交换机的一种结构示意图;以及
图22为本公开实施例提供的交换机的另一种结构示意图。
具体实施方式
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现且不应当被解释为限于本文阐述的实施例。提供这些实施例的目的在于使本公开更加透彻和完整,并使本领域技术人员更充分地理解本公开的范围。
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在特定特征、整体、步骤、操作、元件和/或组件,但不排除存在或可添加一个或多个其他特征、整体、步骤、操作、元件、组件和/或其群组。
本文所述实施例可借助本公开的理想示意图而参考平面图和/或截面图进行描述。因此,可根据制造技术和/或容限来修改示例图示。因此,实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不是限制性的。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
作为本公开的一个方面,提供一种流量转发控制方法,如图1所示,所述流量转发控制方法包括步骤S110和S120。
在步骤S110中,根据流量的接入方式,配置所述流量接入的虚 拟专用局域网业务VPLS实例的实例成员,所述VPLS实例包括多个实例成员。
在步骤S120中,配置所述VPLS实例的各个实例成员所对应的子广播域,以获得流量的接入方式与实例成员、以及子广播域之间的对应关系,所述对应关系用于控制流量转发芯片根据所述对应关系进行流量转发,在同一个所述VPLS实例中,不同实例成员对应不同的子广播域。
本公开所提供的流量转发控制方法由VTEP的控制面装置(下文中称为流量转发控制装置)所执行,需要指出的是,流量转发控制装置通过控制通道将所述对应关系下发给流量转发芯片,并对流量转发芯片进行配置,以使得流量转发芯片能够根据接入流量的接入方式以及所述对应关系对接入的流量进行转发。
在所述流量转发控制方法中,将同一个VPLS实例的多个实例成员分别划分到不同的子广播域中,因此,在所述流量转发芯片进行流量转发时,不同接入方式接入的流量(包括BUM报文)的转发路径可以被映射至不同的子广播域中。在通过所述流量转发控制方法配置结束的流量转发芯片在进行流量转发时,不同的子广播域之间转发互相隔离,从而可以避免接收端设备出现多包。
与相关技术中通过在一个广播域上设置多个ACL条目、实现ACL隔离、以避免接收端设备出现多包的方式相比,本公开所提供的流量转发控制方法对流量转发芯片进行配置更容易实现转发隔离,本公开所提供的流量转发控制方法也更加灵活,并且,本公开所提供的流量转发控制方法也更容易实现网络侧的稳定。
在一些实施方式中,所述VPLS实例包括接入方式为AC接入的流量对应的第一实例成员、接入方式为远端VXLAN隧道接入的流量对应的第二实例成员、以及接入方式为同步通道接入的流量对应的第三实例成员。
AC侧主要用于下挂虚拟机和租户;远端VXLAN隧道的作用是本地双活VTEP和远端VTEP之间的虚拟网络(overlay)路由条目相互通告、以及虚拟机间的二、三层通信;同步通道的作用是本地两个 VTEP之间在AC侧学到的overlay路由条目同步。
所述第一实例成员对应的子广播域包括单归AC接入侧出口、双归AC接入侧出口、远端VXLAN隧道侧出口、同步通道出口。为了便于描述,可以将第一实例成员对应的子广播域称为全广播域,用mcid0表示。
所述第二实例成员对应的子广播域包括本地的VXLAN隧道侧出口、单归AC接入侧出口以及双归AC接入侧出口。为了便于描述,可以将第二实例成员的子广播域称为VXLAN隧道侧广播域,用mcid1表示。
所述第三实例成员对应的子广播域包括同步通道出口和单归AC接入侧出口。为了便于描述,可以将第三实例成员的子广播域称为同步通道广播域,用mcid2表示。
图2为本公开提供的子广播域划分示意图,端口(port)1为单归AC接入侧出口,端口2为双归AC接入侧出口,端口3为同步通道出口,端口4为VXLAN隧道侧出口。
流量中的报文为BUM(Broadcast、Unknown-uc、Multicast)报文,可以将三种不同类型的报文的转发路径分别在子广播域中建立映射关系。
虽然上文中规定了不同的实例成员所对应的子广播域,但是,本公开并不限于此。用户可以自定义子广播域的划分规则。例如,可以将AC接入方向的Broadcast报文的转发路径映射到某子广播域中、而将其他类型的报文的转发路径映射到其他子广播域中。
对于通信网络而言,会出现新增设备或端口、或者减少设备或端口等现象。这种现象可以被统称为链路更新。相应地,如图3所示,所述流量转发控制方法还可以包括步骤S130。
在步骤S130中,当转发链路更新时,在转发表项中重新确定所述VPLS实例的各个实例成员对应的子广播域。
相应地,在步骤S120中,所述子广播域为最近一次确定的子广播域。也就是说,每发生一次链路更新、则执行一次步骤S120。
对于多路径转发而言,一旦某个成员链路失效,只需将该链路 上的流量重新hash到其他链路上,可以加快链路收敛。需要指出的是,如果某一台设备的链路发生故障时可以迅速切换到备用链路,从而保证网络拓扑的可靠稳定运行,就是链路收敛。在本公开所提供的流量转发控制方法中,经过步骤S130后,可以确保成员链路有效,加快路径切换时的链路收敛,保证网络拓扑可靠稳定运行。
例如,当AC侧新增成员端口(可以为出口或接入口)时,需要将对应的新增成员端口添加至mcid0和mcid1中。是否将这个成员端口加入到mcid2,取决于这个AC接入的单归、双归属性、和网络侧以太网虚拟专用网(EVPN,Ethernet Virtual Private Network)VXLAN隧道的建立方式。
本公开主要针对网络侧VXLAN隧道是VTEP group(一虚)隧道,也就是网络侧VXLAN报文只会在远端VTEP节点上复制一份到本地双活VTEP,所以,无论是单归AC接入的成员端口、还是双归AC接入的成员端口,均被允许加入到mcid0和mcid1。
对于以太段落标识(ESI,Ethernet Segment Identifier)EVPN隧道,仅双活VTEP节点的一端(例如,指定转发器(DF,Designated Forwarder)侧)的mcid1允许双归AC的成员端口加入。新增网络侧隧道底层(underlay)成员链路时,需同步加入mcid0和mcid1,无需加入mcid2。同理,新增同步通道出口时,需同步加入mcid0和mcid2,无需加入mcid1。
需要指出的是,网络侧VXLAN隧道可以基于全ESI EVPN隧道,即每个双活节点支持rt-1路由(第一类型EVPN路由,即,以太网自动发现路由,英文为Ethernet auto-discovery route)向远端节点发布,并指定rt-3路由(第三类型EVPN路由,即,包含性组播以太网标签路由,英文为Inclusive multicast Ethernet tag route)用本地虚地址和远端建立隧道。这种建立两实隧道的方式,会出现双活VTEP节点都能收到来自远端VTEP的BUM流量。为了防止双归虚拟机上出现多包,需要约定其中一个双活节点允许接收网络侧报文,并向双归发送BUM报文,而在另一个双活节点上做过滤处理。在本公开中,非指定转发器(Non-DF,Non-Designated Forwarder)侧的mcid1 不允许双归AC的成员端口加入。
在一些实施方式中,所述转发链路更新包括本地VTEP出现接口失效(例如,接口被关闭(shut down)),相应地,在步骤S130中,将失效的接口对应的出口从相应的子广播域中移除。同样地,经过步骤S130后,可以确保成员链路有效,加快路径切换时的链路收敛,保证网络拓扑可靠稳定运行。
在本公开中,在转发表表项中更新VPLS实例的各个实例成员所对应的子广播域,也就是说,可以将双活VETP节点间子接口状态通知(包括链路切换通知和回切通知)机制下沉到转发表项管理(FTM,forwarding-table Management)模块,换言之,在本公开所提供的流量转发控制方法中,步骤S130由FTM模块执行,不再依赖传统控制平面,增强了双活网络的可靠性。
本地VTEP节点的接口可以包括双归AC接口。多设备间链路聚合组(MCLAG,Multi-Chassis Link Aggregation Group)的状态基于父接口粒度的协商,子接口失效后并不会触发本地更新动作。例如,一旦本地VTEP上的双归AC子接口被关闭,或者双归AC接口追踪(track)某个事件后联动出现的接口协议失效(down),对端的VTEP节点是无法感知子接口down这一状态的。将失效的AC子接口对应的出口从mcid0、mcid1中移除后,本地VPLS实例A中,单归AC下挂的虚拟机VM和对端VPLS实例B中双归AC下挂的虚拟机无法通信,绕行链路不会生效。有鉴于此,当失效的接口为双归AC接口时,如图4所示,所述流量转发控制方法还包括在步骤S130之后进行的步骤S141和S142。
在步骤S141中,生成表征双归AC接口失效的第一状态通告报文。
在步骤S142中,控制流量转发芯片将所述第一状态通告报文发送至对端VXLAN隧道端点VTEP节点,以控制对端VTEP节点放开对等链接peerlink到双归AC接入方向的转发隔离。
在本公开中,步骤S141和步骤S142也均由FTM模块执行。具体地,FTM模块快速感知到本地VTEP节点上双归AC接口失效,并构 造特殊的状态通告报文(即,所述第一状态通告报文)。
在本公开中,对如何执行步骤S142不做特殊的限定,在一些实施方式中,如图5所示,步骤S142可以包括步骤S142a和S142b。
在步骤S142a中,将所述第一状态通告报文放入所述流量转发芯片的高优先级报文发送队列。
在步骤S142b中,利用所述流量转发芯片的预定出口发送所述第一状态通告报文。
在一些实施方式中,状态通告报文的出口优先选择为直连链路。如果本地VTEP上同步通道对应的链路出口转发虚拟输出队列(VOQ,Virtual Output Queue)或者带宽使用率较高,则动态选择绕行远端VTEP通道的出口作为所述预定出口,对所述第一状态通告报文进行转发。
换言之,在控制平面无法感知接口down(例如,无法感知单归AC接口down掉)时,FTM模块通过向配置管理模块注册通道(即,接收来自控制管理模块的通知),可以直接感知接口状态,从而可以快速地向对端发送所述第一状态通知报文。
在一些实施方式中,所述第一状态通告报文为携带特殊字段的保活keepalive报文,所述特殊字段用于标识所述双归AC接口失效。
在一些实施方式中,所述特殊字段为无效sys-id字段。
keepalive报文具备sys-id属性,当将sys-id属性值修改为无效值时,VTEP双方(即,报文的发端和收端)约定该keepalive报文为第一状态通知报文。
在本公开中,对如何执行步骤S142不做特殊的限定,在一些实施方式中,如图6所示,步骤S142还可以包括步骤S142c至S142e。
在步骤S142c中,以peerlink作为出口,查找跨机架备份组(Inter-Chassis BackupGroup,ICBG组)中和失效的双归AC接口绑定的peerlink子接口。
在步骤S142d中,使所述第一状态通告报文携带查找到的peerlink子接口上的VLAN标签相同的VLAN标签。
在步骤S142e中,转发携带有所述VLAN标签的第一状态通告报 文。
相应地,对端的VTEP节点接收到本地VTEP节点发送的第一状态通告报文后,执行以下步骤:
根据所述通告报文接收源端口和VLAN标签反查本地ICBG组,以确定本地绑定的双归AC接口;以及
将绑定的双归AC接口的出口加入相应的VPLS实例成员的子广播域中。
VTEP节点解析到第一状态通知类型的报文后,会更新对应VPLS实例中的双归AC出口到mcid2,相当于解开同步通道到双归方向的转发隔离。
对端的VTEP节点接收到本端VTEP节点发送的第一状态通告报文后,对端的VTEP节点将放开“防环隔离”,加速双活VTEP节点之间的单归、双归转发路径切换。
需要指出的是,本地VTEP节点也具有处理其他VTEP节点发送的第一状态通告报文的能力,如图7所示,即所述流量转发控制方法还包括步骤S151和S152。
在步骤S151中,响应于其他VTEP节点发送的第一状态通告报文,根据所述通告报文接收源端口和VLAN标签反查本地ICBG组,以确定本地绑定的双归AC接口。
在步骤S152中,将绑定的双归AC接口的出口加入相应的VPLS实例成员的子广播域中。
下面结合图8对双归AC接口down后双活VTEP节点的流量转发控制装置上的处理流程进行简单描述。
如图8所示,示有Leaf节点、Spine节点、VTEP A节点、VTEP B节点、VTEP C节点、EVPN隧道以及同时接入两个双活VTEP A节点与VTEP B节点的链路聚合组LAG,VTEP A节点上双归AC子接口2失效(down)后,VTEP A节点上的FTM模块快速感知,构造具备特殊字段的第一状态通告报文发送至对端VTEP B节点,VTEP B节点解析第一状态通知报文后,将双归AC出口加入mcid2,从而放开同步通道到双归方向的转发隔离。
传统控制平台的通告不够灵活,中间需要经过较多的软件调度,也意味着较大的时间开销。双活VETP节点间子接口状态通知机制下沉到转发表项管理FTM模块后,FTM模块快速地通知对端VTEP节点,对端节点快速地放开peerlink到双归AC接入方向的转发隔离,避免过多的软件调度,并且节省时间开销。
在转发流量时,也会遇到本地VTEP的接口生效(例如,被开启(shut up))的场景,此时需要通知对端节点将之前的转发路径恢复成隔离状态。即,当本地失效的双归AC接口恢复后,如图9所示,所述流量转发控制方法还包括步骤S161和S162。
在步骤S161中,生成表征本地双归AC接口恢复的第二状态通告报文。
在步骤S162中,向对端VTEP节点发送第二状态通告报文。
本地VTEP上双归子接口up后,FTM模块重新构造携带特殊字段的keepalive报文,标识本地双归AC侧重新生效。
需要说明的是,此时构造的keepalive报文具备sys-id属性,当将sys-id属性值修改为缺省值时,VTEP双方(即,报文的发端和收端)约定该keepalive报文为第二状态通知报文。
对端的VTEP节点接收到第二状态通告报文后,将恢复之前转发路径的转发隔离,即所述流量转发方法还包括:
响应于其他VTEP节点发送的第二状态通告报文,将本地的双归AC出口从相应的VPLS实例成员的子广播域中移除。
VTEP节点将本地的双归AC出口从VPLS.mcid2(该符号表示VPLS实例对应的第三子广播域mcid2)中移除,重新设置同步通道和本地双归接入之间的转发隔离。
需要指出的是,本地VTEP节点也应当具有处理第二状态通告报文的能力。即,接收到其他VTEP节点发送的第二状态通告报文后,如图10所示,所述流量转发控制方法还包括步骤S170。
在步骤S170中,响应于其他VTEP节点发送的第二状态通告报文,将本地的双归AC出口从相应的VPLS实例成员的子广播域中移除。
VTEP节点将本地的双归AC出口从VPLS.mcid2中移除,相当于 重新设置同步通道和本地双归接入之间的转发隔离。
如果是peerlink同步通道接口,双活节点间的BUM转发存在缺陷,仅作子广播域更新的说明,如图11所示,即所述流量转发控制方法还包括在将失效的接口对应的出口从相应的子广播域中移除的步骤(即步骤S130)之后进行的步骤S181和S182。
在步骤S181中,删除所述第三实例成员对应的子广播域。
在步骤S182中,对第一实例成员的子广播域和第二实例成员的子广播域进行更新。
peerlink同步通道接口down后,删除本地VTEP节点的mcid2组,并且将peerlink对应出口分别从mcid0和mcid1中移除;而如果EVPN同步通道存在备份、冗余链路,则需要把mcid0和mcid1中旧同步通道出口更新为新出口。
在本公开所提供的流量转发方法中,所述同步通道为基于LAG配置的peerlink链路;或者,所述同步通道为VXLAN EVPN动态隧道。
同步通道可以是基于LAG配置的peerlink链路,也可以是VXLAN EVPN动态隧道。后者的优势是可以提前设定同步通道的underlay备份链路,尽量避免出现同步通道down后,出现一端VTEP上收到网络侧的流量后,对端VTEP无法接收流量的问题。
同步通道可以基于peerlink聚合链路上绑定标签分发(LDP,Label Distribution Protocol)协议,也可以是EVPN VXLAN动态隧道,即特殊标记的VXLAN动态隧道,underlay最优路径是双活间的直连链路。如果此链路down了,underlay最优路径更新到远端VTEP上,之后绕行本地双活的路径上。由于此时同步通道的出口也相应发生了变化,mcid0、mcid1中也需要更新该成员出口。
下面结合图12对同步通道接口down后双活VTEP节点上的处理流程进行简单描述,如图12所示,示有Leaf节点、Spine节点、VTEP A节点、VTEP B节点、VTEP C节点、EVPN隧道以及同时接入两个双活VTEP A节点与VTEP B节点的链路聚合组LAG,VTEP A节点上同步通道接口3 down后,VTEP A节点删除mcid2组,并且将peerlink对应出口分别从mcid0和mcid2中移除。
下面结合图13对远端VXLAN隧道侧接口down后双活VTEP节点上的处理流程进行简单描述,如图13所示,示有Leaf节点、Spine节点、VTEP A节点、VTEP B节点、VTEP C节点、EVPN隧道以及同时接入两个双活VTEP A节点与VTEP B节点的链路聚合组LAG,VTEP A节点上远端VXLAN隧道侧接口4down后,VTEP A节点将对应down的VXLAN隧道成员出口从mcid0、mcid1中移出,mcid2中成员保持不变。考虑实际场景中,往往配置underlay备份链路,即使本地VXLAN隧道down后,underlay路由仍然会重新计算,收敛后的出口再重新加到mcid0、mcid1中。VTEP B仅作为underlay节点。
当失效的接口为同步通道接入端口时,所述失效的接口对应的出口从所述全广播域和所述同步通道广播域中分别移除。
若将上述VPLS实例中成员标记为LIF,则映射方法可以为mcid offset=LIFx+PktType,x={0,1,2},LIF={AC,Tunnel,Peerlink},UnkownType={Broadcast,Unknown-unicast,Multicast}。
上述三个子广播域mcid0、mcid1、mcid2为VPLS实例中不同接入方向的BUM报文转发查找结果,设定为连续取值,且mcid0<mcid1<mcid2。当然,也可以根据不同的实际场景(如需要丢弃特定类型的二层未知报文的场景)设置映射关系。
在本公开所提供的流量转发方法中,南向流量按照本地优先的方式转发至AC接入侧,如果本地双归AC接口down了之后,双活VTEP间做状态通告,BUM报文走绕行peerlink链路到达双归AC接口下挂的虚拟机。这个机制在前文已作描述,这里不再赘述。
北向流量指从AC侧进入,向网络侧VXLAN隧道出口复制的流量。这部分BUM流量既要在本地向本VPLS实例中单归AC侧转发一份,也要向同步通道侧转发一份,还要向网络侧VXLAN隧道侧转发一份。考虑到VXLAN隧道可能存在多个下一跳出口,向网络侧VXLAN隧道复制的未知流量转发方式需替换为负载分担的方式,对比相关技术基于固定出端口粒度的复制,提高了网络稳定性和带宽利用率。
目前主流的Leaf节点-Spine节点-路径(Leaf-Spine-Gateway)层次的EVPN VXLAN网络中,Spine节点的作用是反射数据中心内部 或者数据中心间的路由条目,spine的数量是网络可靠性的重要保证。Spine数目越多,对于双活节点和由远端节点形成的VXLAN隧道,本地双活节点上的underlay下一跳数越多,基于端口粒度的报文复制在这个场景中可靠性和带宽利用率不高。
BUM报文只能向固定的隧道出口复制报文,不能直接按照已知报文转发流程在隧道侧所有出口上负载分担。相应地,如图14所示,所述流量转发控制方法可以包括步骤S190。
在步骤S190中,在转发表项中为流量转发芯片配置预设条件。
配置所述预设条件后,可以使得转发芯片在转发流量时执行以下操作:
将所述流量中的未知报文转发至全广播域的所有出口;以及
丢弃不满足所述预设条件的未知报文。
在本公开中,对所述预设条件、以及如何配置所述预设条件均不做特殊的限定,只要能够实现在出口上实现负载分担即可。
在一些实施方式中,如图15所示,步骤S190可以包括步骤S190a至S190c。
在步骤S190a中,根据隧道的下一跳所有出口在转发表项中创建虚拟LAG。
在步骤S190b中,在所述转发表项中为所述虚拟LAG中的每一个出口生成全局唯一的哈希区间。
需要说明的是,为所述虚拟LAG中的每一个出口生成的哈希区间,两两之间均不存在交集。
在步骤S190c中,在所述转发表项中将未知报文转发头header携带的哈希值落入任意一个所述出口的哈希区间内确定为满足所述预设条件。
下面对步骤S190c进行举例说明。
假设隧道下一跳出口有三个,分别记为出口A、出口B、出口C,步骤S190实现的方法如下:在步骤S190a中,创建一个虚拟链路聚合组LAG,下一跳出口A、B、C都加入该虚拟LAG组;在步骤S190b中,预设Hash A={Hash Value|Hash Value∈(m,n)},Hash B={Hash  Value|Hash Value∈(x,y)},Hash C={Hash Value|Hash Value∈(u,v)}。Hash A表示的是出口A对应的哈希区间,Hash B表示的是出口B对应的哈希区间,Hash C表示的是出口C对应的哈希区间,m、n、x、y、u、v均为二进制值,并且,m<n,x<y,u<v。需要指出的是,虚拟LAG组和传统LAG组的不同点在于,前者主要是FTM模块负责建立一个全局预留LAG组,对控制平面并不可见。在本公开中不区分下一跳出口(包括出口A、出口B、出口C)是LAG还是普通物理口,如果下一跳出口为是LAG,只需把该LAG的有效成员均加入虚拟LAG组。
在流量的入向,交换芯片支持报文按照五元组的方式hash,并携带hash值到达出方向,在出方向比对每个端口的预设区间,满足预设条件则允许向该端口复制待转发的报文。所述预定条件可以为:如果一个未知报文的转发头header携带的哈希值(Hash Value)满足虚拟LAG组中任意一个出口的哈希值范围表,则将所述哈希值所满足的出口作为所述报文的出端口。不向不满足的哈希值范围表对应的端口复制所述报文。在本公开中,这种机制也相当于链路剪枝。
在对于同一个LAG组中的出口,LAG组会对成员链路“剪枝”,只保留一份复制的报文,且选择相应出口发送。例如,所述报文携带的哈希值满足x<Hash Value<y,这样报文就选择对应的端口出口B作为出端口进行发送,不向出口A和出口C复制所述报文。
实际网络中BUM流量中往往存在多种未知报文,不同的报文五元组特征计算得到不同的hash值,这样在出口A、出口B、出口C三个出口上最终会形成负载分担的转发方式。
需要指出的是,五元组可以指源IP、源端口、目的IP、目的端口和协议。
如果隧道出口出现链路故障,只需相应从LAG组中移除相应的出口,同理隧道出口新增成员链路,只需将该链路出口加入相应LAG组。也就是说,如图16所示,步骤S190还可以包括S190d。
在步骤S190d中,当所述隧道的下一跳出口出现更新时,根据更新的出口创建虚拟LAG。
相应地,在步骤S190b中,在所述转发表项中为最后一次创建的LAG中的每一个出口配置哈希区间。
不同于已知报文的hash选路方法,未知报文是通过先复制,然后按照hash结果对比交换芯片出方向预设条件,满足预设条件即可从出端口发出,不满足预设条件则不向该端口复制。该实现方法简单,易于推广,也不会浪费芯片的复制能力。这种BUM报文负载分担方式转发不局限于双活场景,也适用于传统EVPN VXLAN隧道转发场景。
作为本公开的第二个方面,提供一种流量转发方法,如图17所示,所述流量转发方法包括步骤S210至S240。
在步骤S210中,确定接入流量的接入方式。
在步骤S220中,根据接入流量的接入方式、流量的接入方式与实例成员、以及子广播域之间的对应关系确定接入的流量所对应的子广播域。
在步骤S230中,将所述接入流量中报文的实际转发路径映射至相应的子广播域中。
在步骤S240中,根据映射至子广播域中的路径转发报文。
本公开提供的流量转发方法由VTEP的转发面装置(上文中称为流量转发芯片)所执行。
如上文中所述,在本公开第一方面所提供的流量转发控制方法中,将同一个VPLS实例的多个实例成员分别划分到不同的子广播域中,因此,不同接入方式接入的流量(包括BUM报文)的转发路径可以被映射至不同的子广播域中。在通过所述流量转发控制方法配置结束的流量转发芯片在进行流量转发方法时,可以在不同的子广播域中转发流量,由于不同的子广播域之间转发互相隔离,从而可以避免接收端设备出现多包。
与相关技术中通过在一个广播域上设置多个ACL条目、实现ACL隔离、以避免接收端设备出现多包的方式相比,本公开所提供的流量转发控制方法对流量转发芯片进行配置更容易实现转发隔离,并且本公开所提供的流量转发方法也更加灵活。
如上文中所述,在所述流量转发方法的配置下,所述流量转发 芯片可以实现对未知报文的剪枝机制,实现流量在underlay链路上的负载均衡。具体地,如图18所示,所述流量转发方法还可以包括步骤S250和S260。
在步骤S250中,将所述流量中的未知报文转发至全广播域的所有出口。
在步骤S260中,丢弃不满足所述预设条件的未知报文。
在相关技术中,通过在VPLS实例中增加ACL规则才能实现上述“流量在underlay链路上的负载均衡”以及转发隔离。与之相比,本申请所提供的流量转发方法可以增强网络侧的稳定性。
图19中所示的是一种流量转发控制装置,如图19所示,所述流量转发控制装置包括配置控制管理模块110。
配置控制管理模块110被配置为执行以下步骤:
根据流量的接入方式,配置所述流量接入的虚拟专用局域网业务VPLS实例的实例成员,所述VPLS实例包括多个实例成员;以及
确定所述VPLS实例的各个实例成员所对应的子广播域,以获得流量的接入方式与实例成员、以及子广播域之间的对应关系,在同一个所述VPLS实例中,不同实例成员对应不同的子广播域。
本公开所提供的流量转发控制装置用于执行本公开所提供的上述流量转发控制方法。上文中已经对所述流量转发控制方法的工作原理以及有益效果进行了详细的描述,这里不再赘述。
在一些实施方式中,配置控制管理模块110还配置为在转发链路异常时,生成通知信号。
相应地,如图19所示,所述流量转发控制装置还包括转发表项管理FTM模块120,FTM模块120配置为在接收到所述通知信号时,映射出子广播域,并更新所述子广播域的成员。
在一些实施方式中,如图19所示,所述流量转发控制装置还可以包括收发包模块130,该收发包模块130配置为接收和派发第一状态通告报文和第二状态通告报文。
在一些实施方式中,如图19所示,所述流量转发控制装置还可以包括网络协议栈模块140,该网络协议栈模块140配置为将数据转 换成符合VTEP节点之间的数据交换协议的数据包,以便进行通信。
下面结合图20对双活VTEP节点之间的状态通告流程进行简单描述。如图20所示,当VTEP A节点上出现双归AC子接口down掉的情况时,FTM模块将接收到关于双归子接口down掉的通知消息,进而查询是否存在保活keeplive通道,当存在保活通道或者备份保活通道时,FTM模块将构造状态通告报文并指定优先级,将状态通告报文添加到该指定优先级的发包调度队列中,以便及时发送给VTEP B节点。
VTEP B节点的收发包模块接收该状态通告报文后将状态通告报文派发到本地FTM模块,本地FTM模块解析出对应的VXLAN实例和双归AC子接口,VTEP B节点将在VXAN mcid2中添加本地双归AC出口,并标记VTEP A节点的状态通告报文,等待主链路恢复。
作为本公开的第三个方面,提供一种流量转发控制装置,包括:
第一存储装置,其上存储有第一可执行程序;
一个或多个第一处理器,所述一个或多个第一处理器能够调用所述第一可执行程序,以实现如前述任一实施例所提供的流量转发控制方法。
本公开还提供一种流量转发芯片,包括:
第二存储装置,其上存储有第二可执行程序;
一个或多个第二处理器,所述一个或多个第二处理器能够调用所述第二可执行程序,以实现如前述各实施例所提供的流量转发方法。
作为本公开的第四个方面,提供一种交换机,包括:
如前述各实施例所提供的流量转发控制装置;以及
至少一个如前述实施例所提供的流量转发芯片。
图21为本公开提供的交换机的一种结构示意图。图22为本公开提供的交换机的另一种结构示意图,流量转发控制装置可以包括配置控制管理模块、转发表项管理FTM模块、收发包模块和网络协议栈模块,流量转发芯片可以为交换芯片。
作为本公开的第五个方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如前述实 施例所提供的流量转发控制方法或流量转发方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器(如中央处理器、数字信号处理器或微处理器)执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则与特定实施例相结合描述的特征、特性和/或元素可单独使用,或可与结合其他实施例述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (19)

  1. 一种流量转发控制方法,包括:
    根据流量的接入方式,配置所述流量接入的虚拟专用局域网业务VPLS实例的实例成员,其中,所述VPLS实例包括多个实例成员;以及
    配置所述VPLS实例的各个实例成员所对应的子广播域,以获得流量的接入方式与实例成员、以及子广播域之间的对应关系,所述对应关系用于控制流量转发芯片根据所述对应关系进行流量转发,其中,在同一个所述VPLS实例中,不同实例成员对应不同的子广播域。
  2. 根据权利要求1所述的流量转发控制方法,其中,所述VPLS实例包括:接入方式为接入控制AC接入的流量对应的第一实例成员,接入方式为远端虚拟扩展局域网VXLAN隧道接入的流量对应的第二实例成员,接入方式为同步通道接入的流量对应的第三实例成员;
    所述第一实例成员对应的子广播域包括单归AC接入侧出口、双归AC接入侧出口、远端VXLAN隧道侧出口、同步通道出口;
    所述第二实例成员对应的子广播域包括本地的VXLAN隧道侧出口、单归AC接入侧出口以及双归AC接入侧出口;以及
    所述第三实例成员对应的子广播域包括同步通道出口和单归AC接入侧出口。
  3. 根据权利要求2所述的流量转发控制方法,还包括:
    当转发链路更新时,在转发表项中重新确定所述VPLS实例的各个实例成员所对应的子广播域,其中,
    在流量的接入方式与实例成员、以及子广播域之间的对应关系中,所述子广播域为最近一次确定的子广播域。
  4. 根据权利要求3所述的流量转发控制方法,其中,所述转发链路更新包括本地出现接口失效,在重新确定所述VPLS实例的各个 实例成员对应的子广播域的步骤中,在转发表项中将失效的接口对应的出口从相应的子广播域中移除。
  5. 根据权利要求4所述的流量转发控制方法,其中,所述本地出现接口失效包括双归AC接口失效,所述流量转发控制方法还包括在将失效的接口对应的出口从相应的子广播域中移除的步骤之后进行的:
    生成表征双归AC接口失效的第一状态通告报文;以及
    控制流量转发芯片将所述第一状态通告报文发送至对端VXLAN隧道端点VTEP节点,以控制对端VTEP节点放开对等链接peerlink到双归AC接入方向的转发隔离。
  6. 根据权利要求5所述的流量转发控制方法,其中,控制流量转发芯片将所述第一状态通告报文发送至对端VXLAN隧道端点VTEP节点的步骤包括:
    将所述第一状态通告报文放入所述流量转发芯片的高优先级报文发送队列;以及
    利用所述流量转发芯片的预定出口发送所述第一状态通告报文。
  7. 根据权利要求5所述的流量转发控制方法,其中,控制流量转发芯片将所述第一状态通告报文发送至对端VXLAN隧道端点VTEP节点的步骤包括:
    以peerlink作为出口,查找跨机架备份ICBG组中和失效的双归AC接口绑定的peerlink子接口;
    使所述第一状态通告报文携带查找到的peerlink子接口上的虚拟局域网VLAN标签相同的VLAN标签;以及
    转发携带有所述VLAN标签的第一状态通告报文。
  8. 根据权利要求7所述的流量转发控制方法,还包括:
    响应于其他VTEP节点发送的第一状态通告报文,根据所述通告 报文接收源端口和VLAN标签反查本地ICBG组,以确定本地绑定的双归AC接口;以及
    在重新确定VPLS实例的各个实例成员对应的子广播域的步骤中,将绑定的双归AC接口的出口加入相应的VPLS实例成员的子广播域中。
  9. 根据权利要求5所述的流量转发控制方法,其中,当本地失效的双归AC接口恢复后,所述流量转发控制方法还包括:
    生成表征本地双归AC接口恢复的第二状态通告报文;以及
    向对端VTEP节点发送第二状态通告报文。
  10. 根据权利要求9所述的流量转发控制方法,还包括:
    响应于其他VTEP节点发送的第二状态通告报文,将本地的双归AC出口从相应的VPLS实例成员的子广播域中移除。
  11. 根据权利要求4所述的流量转发控制方法,其中,所述本地出现接口失效包括同步通道接口失效,所述流量转发控制方法还包括在将失效的接口对应的出口从相应的子广播域中移除的步骤之后进行的:
    删除所述第三实例成员对应的子广播域;以及
    对第一实例成员的子广播域和第二实例成员的子广播域进行更新。
  12. 根据权利要求4所述的流量转发控制方法,其中,所述本地出现接口失效包括同步通道接入端口失效,在重新确定所述VPLS实例的各个实例成员所对应的子广播域的步骤中,所述失效的接口对应的出口从所述第一实例成员对应的子广播域和所述第三实例成员对应的子广播域中分别移除。
  13. 根据权利要求3所述的流量转发控制方法,其中,所述转发链路更新包括新增AC侧出口,新增的AC侧出口为单归AC侧出口 或者多归AC侧出口,在重新确定所述VPLS实例的各个实例成员对应的子广播域的步骤中,将新增的AC侧出口添加至所述VPLS实例的各个子广播域。
  14. 根据权利要求3所述的流量转发控制方法,其中,所述转发链路更新包括全以太段落标识ESI网络侧以太网虚拟专用网EVPN隧道中发生转发链路更新,且LAG口上为指定转发器DF属性时,将新增的出口添加至所述第二实例成员对应的子广播域中;
    当新增的出口为网络侧隧道底层underlay成员链路时,将新增的出口添加至所述第一实例成员对应的子广播域和所述第二实例成员对应的子广播域;以及
    当新增的出口为同步通道出口时,将新增的出口添加至所述第三实例成员对应的子广播域。
  15. 根据权利要求1至14中任意一项所述的流量转发控制方法,还包括在转发表项中为流量转发芯片配置预设条件,以使得转发芯片在转发流量时执行以下操作:
    将所述流量中的未知报文转发至全广播域的所有出口;以及
    丢弃不满足所述预设条件的未知报文。
  16. 一种流量转发方法,包括:
    确定接入流量的接入方式;
    根据接入流量的接入方式、流量的接入方式与实例成员、以及子广播域之间的对应关系确定接入的流量所对应的子广播域;
    将所述接入流量中报文的实际转发路径映射至相应的子广播域中;以及
    根据映射至子广播域中的路径转发报文。
  17. 一种流量转发控制装置,包括:
    第一存储装置,其上存储有第一可执行程序;以及
    一个或多个第一处理器,所述一个或多个第一处理器能够调用所述第一可执行程序,以实现权利要求1至15中任意一项所述的流量转发控制方法。
  18. 一种交换机,包括:
    如权利要求17所述的流量转发控制装置;以及
    至少一个流量转发芯片,所述流量转发芯片包括:
    第二存储装置,其上存储有第二可执行程序;以及
    一个或多个第二处理器,所述一个或多个第二处理器能够调用所述第二可执行程序,以实现如权利要求16所述的流量转发方法。
  19. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至16中任一项所述的方法。
PCT/CN2021/117952 2020-09-17 2021-09-13 流量转发控制方法及装置、流量转发方法及芯片、交换机、存储介质 WO2022057761A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010980524.7A CN111935013B (zh) 2020-09-17 2020-09-17 流量转发控制方法及装置、流量转发方法及芯片、交换机
CN202010980524.7 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022057761A1 true WO2022057761A1 (zh) 2022-03-24

Family

ID=73335298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117952 WO2022057761A1 (zh) 2020-09-17 2021-09-13 流量转发控制方法及装置、流量转发方法及芯片、交换机、存储介质

Country Status (2)

Country Link
CN (1) CN111935013B (zh)
WO (1) WO2022057761A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826872A (zh) * 2022-04-02 2022-07-29 烽火通信科技股份有限公司 一种节点保护告警联动优化方法及装置
CN115150308A (zh) * 2022-07-19 2022-10-04 天翼云科技有限公司 一种流量统计方法和装置
CN115955396A (zh) * 2022-12-07 2023-04-11 篆芯半导体(南京)有限公司 以太交换网络流量产生方法、系统、设备及存储介质
CN117041140A (zh) * 2023-10-10 2023-11-10 腾讯科技(深圳)有限公司 一种数据报文的传输方法、相关装置、设备以及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111935013B (zh) * 2020-09-17 2021-01-08 南京中兴软件有限责任公司 流量转发控制方法及装置、流量转发方法及芯片、交换机
CN114697263A (zh) * 2020-12-15 2022-07-01 中兴通讯股份有限公司 信息处理方法、节点及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789875A (zh) * 2010-02-10 2010-07-28 华为技术有限公司 一种数据流转发的方法和装置、路由器
US20170331720A1 (en) * 2016-05-16 2017-11-16 Cisco Technology, Inc. Individual Virtual Private Local Area Network Service Conversion to a Different Virtual Private Network Service
CN108322338A (zh) * 2018-01-23 2018-07-24 新华三技术有限公司 一种广播抑制方法和vtep设备
US10666459B1 (en) * 2017-04-07 2020-05-26 Cisco Technology, Inc. System and method to facilitate interoperability between virtual private LAN service (VPLS) and ethernet virtual private network (EVPN) with all-active multi-homing
CN111935013A (zh) * 2020-09-17 2020-11-13 南京中兴软件有限责任公司 流量转发控制方法及装置、流量转发方法及芯片、交换机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100499584C (zh) * 2005-12-02 2009-06-10 中兴通讯股份有限公司 一种虚拟专用局域网服务广播的实现方法
CN102255785B (zh) * 2011-08-11 2014-05-07 杭州华三通信技术有限公司 一种vpls中的网络隔离方法及其装置
CN102801625B (zh) * 2012-08-17 2016-06-08 杭州华三通信技术有限公司 一种异构网络二层互通的方法及设备
WO2017221050A1 (en) * 2016-06-23 2017-12-28 Telefonaktiebolaget Lm Ericsson (Publ) Efficient handling of multi-destination traffic in multi-homed ethernet virtual private networks (evpn)
CN109768908B (zh) * 2017-11-09 2020-10-09 华为技术有限公司 一种vxlan的配置方法、设备及系统
CN109450767B (zh) * 2018-10-26 2020-06-12 新华三技术有限公司 一种报文处理方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789875A (zh) * 2010-02-10 2010-07-28 华为技术有限公司 一种数据流转发的方法和装置、路由器
US20170331720A1 (en) * 2016-05-16 2017-11-16 Cisco Technology, Inc. Individual Virtual Private Local Area Network Service Conversion to a Different Virtual Private Network Service
US10666459B1 (en) * 2017-04-07 2020-05-26 Cisco Technology, Inc. System and method to facilitate interoperability between virtual private LAN service (VPLS) and ethernet virtual private network (EVPN) with all-active multi-homing
CN108322338A (zh) * 2018-01-23 2018-07-24 新华三技术有限公司 一种广播抑制方法和vtep设备
CN111935013A (zh) * 2020-09-17 2020-11-13 南京中兴软件有限责任公司 流量转发控制方法及装置、流量转发方法及芯片、交换机

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826872A (zh) * 2022-04-02 2022-07-29 烽火通信科技股份有限公司 一种节点保护告警联动优化方法及装置
CN114826872B (zh) * 2022-04-02 2023-05-26 烽火通信科技股份有限公司 一种节点保护告警联动优化方法及装置
CN115150308A (zh) * 2022-07-19 2022-10-04 天翼云科技有限公司 一种流量统计方法和装置
CN115150308B (zh) * 2022-07-19 2023-10-10 天翼云科技有限公司 一种流量统计方法和装置
CN115955396A (zh) * 2022-12-07 2023-04-11 篆芯半导体(南京)有限公司 以太交换网络流量产生方法、系统、设备及存储介质
CN117041140A (zh) * 2023-10-10 2023-11-10 腾讯科技(深圳)有限公司 一种数据报文的传输方法、相关装置、设备以及存储介质
CN117041140B (zh) * 2023-10-10 2024-01-30 腾讯科技(深圳)有限公司 一种数据报文的传输方法、相关装置、设备以及存储介质

Also Published As

Publication number Publication date
CN111935013A (zh) 2020-11-13
CN111935013B (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2022057761A1 (zh) 流量转发控制方法及装置、流量转发方法及芯片、交换机、存储介质
US9781032B1 (en) MPLS label usage in ethernet virtual private networks
US10230535B2 (en) Communicating IGMP leave requests between load-balanced, multi-homed provider-edge routers in an ethernet virtual private network
US9628375B2 (en) N-node link aggregation group (LAG) systems that can support various topologies
CN106992874B (zh) 用于通信的方法和网络设备
JP6234440B2 (ja) Ietfevpn上での802.1aqのサポート
US9258211B1 (en) Extending VPLS support for CE lag multi-homing
US9794180B2 (en) Reducing transient packet duplication and improving split-horizon filtering
US7593400B2 (en) MAC address learning in a distributed bridge
US7751329B2 (en) Providing an abstraction layer in a cluster switch that includes plural switches
US9397931B1 (en) Fast convergence in singly-homed ethernet virtual private networks
US9178816B1 (en) Control plane messaging in all-active multi-homed ethernet virtual private networks
WO2021031648A1 (zh) Evpn和vpls共存双活的方法、设备及系统
US20130315255A1 (en) Signaling of attachment circuit status and automatic discovery of inter-chassis communication peers
US11057317B2 (en) Synchronizing multicast router capability towards ethernet virtual private network (EVPN) multi-homed protocol independent multicast (PIM) device
US8650286B1 (en) Prevention of looping and duplicate frame delivery in a network environment
US20130272114A1 (en) Pseudo wire switching method and device
CN102970231B (zh) 组播流转发实现方法和路由网桥(rb)
US11985002B2 (en) Protocol independent multicast (PIM) designated router (DR) election
US20160182358A1 (en) Enhanced protocol independent multicast source registration over a reliable transport
EP3276895B1 (en) Communicating igmp leave requests between load-balanced, multi-homed provider-edge routers in an ethernet virtual private network
US11575541B1 (en) Mapping of virtual routing and forwarding (VRF) instances using ethernet virtual private network (EVPN) instances
US8976659B2 (en) Intelligent layer-2 forwarding
WO2021022945A1 (zh) 一种内部网关协议泛洪优化方法及装置、存储介质
WO2021042674A1 (zh) 一种端口状态的配置方法及网络设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.08.2023).

122 Ep: pct application non-entry in european phase

Ref document number: 21868585

Country of ref document: EP

Kind code of ref document: A1