WO2022057726A1 - 一种太赫兹近场成像系统及方法 - Google Patents

一种太赫兹近场成像系统及方法 Download PDF

Info

Publication number
WO2022057726A1
WO2022057726A1 PCT/CN2021/117578 CN2021117578W WO2022057726A1 WO 2022057726 A1 WO2022057726 A1 WO 2022057726A1 CN 2021117578 W CN2021117578 W CN 2021117578W WO 2022057726 A1 WO2022057726 A1 WO 2022057726A1
Authority
WO
WIPO (PCT)
Prior art keywords
incident
signal
field
metal probe
current
Prior art date
Application number
PCT/CN2021/117578
Other languages
English (en)
French (fr)
Inventor
胡旻
王月莹
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to EP21868551.9A priority Critical patent/EP4202448A4/en
Publication of WO2022057726A1 publication Critical patent/WO2022057726A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders

Definitions

  • the invention relates to the field of terahertz imaging, in particular to a terahertz near-field imaging system and method.
  • Terahertz (Terahertz, THz) waves usually refer to electromagnetic waves with a frequency of 100 GHz to 10 THz and a wavelength of 30 to 3000 ⁇ m. They are located between millimeter waves and far-infrared rays in the electromagnetic spectrum. The optical properties of biological and semiconductor materials are prone to resonance. These characteristics make terahertz near-field imaging technology widely used in security inspection, chemical identification, medical imaging, quality control and other fields. In recent years, with the gradual maturity of technologies such as signal sources and detection methods in the terahertz band, near-field high-resolution imaging technology in the terahertz band has also been gradually developed.
  • the scanning near-field optical microscope used in the terahertz frequency band is a scattering-type scanning near-field optical microscope, which mainly uses solid-state microwave signal sources, gas lasers, and terahertz time-domain spectrometers as signal sources.
  • the optical path module is incident on the probe, and through the focusing and scattering of the probe, the near-field information on the sample surface is converted into scattered waves, which are collected and propagated to the detector through optical elements.
  • the near-field signal is propagated to the far-field by the scattering effect of the probe, so a very complex and precise signal collection optical path system is required.
  • the terahertz pulse beam extraction mechanism of the terahertz near-field microscope provided by the patent CN111060719A propagates the near-field signal generated by the sample to the far-field through a complex and precise optical path system.
  • Patent CN106442394B discloses a terahertz near-field imaging system, which uses the self-mixing effect to replace the near-field detector, and the near-field terahertz signal reflected by the near-field probe shares the optical path with the incident signal, which effectively simplifies the optical path system.
  • the part containing near field information is usually very small, and most of them are useless background scattering signals, so the signal-to-noise ratio is very low;
  • the accuracy of the optical path system is very required. If it is high, fine adjustment of the stage with nanometer-level resolution is required. If there is a slight deviation, the signal intensity and signal-to-noise ratio will decrease significantly.
  • One object of the present invention is to provide a terahertz near-field imaging system, which utilizes a metal probe of a scanning near-field optical microscope to couple the near-field signal generated on the sample surface into a current, and directly transmits the current to the back-end processing through a transmission line
  • the near-field information of the sample surface is obtained, and the metal probe can directly extract the near-field signal from the sample surface, which not only saves the precise and complex optical path system for extracting the near-field signal, but also significantly reduces the manufacturing cost.
  • the metal probe can directly extract high-quality near-field signals to the surface of the sample, avoiding the mixing of far-field signals during transmission in the optical path system, and significantly improving the near-field signal.
  • the extraction efficiency improves the signal-to-noise ratio of the signal and simplifies the difficulty of subsequent signal processing.
  • the laser is used to generate a femtosecond laser.
  • the femtosecond laser is divided into incident light and detection light through a beam splitter.
  • the incident light is transmitted to the incident unit, and the detection light is transmitted to the delay unit and transmitted to the delay unit after a delay.
  • the photoconductive switch is triggered and the photoconductive switch is turned on;
  • the incident unit is used to generate an incident signal under the excitation of incident light, the incident signal is used to excite the metal probe to generate a local field, and the local field is used to excite the sample in the detection direction of the metal probe to generate a near-field signal ;
  • a metal probe used for coupling the near-field signal into a current signal, and the current signal is transmitted to the back-end processing unit through the metal probe, the transmission line, and the photoconductive switch;
  • the back-end processing unit is used to receive and process the current signal to obtain the near-field information of the sample surface.
  • the femtosecond laser generated by the laser is divided into two beams, namely incident light and detection light, after passing through the beam splitter.
  • the incident light is transmitted to the incident unit, and the detection light is transmitted to the delay unit.
  • the incident unit converts the incident light into an incident signal
  • the incident signal is focused on the metal probe of the scanning near-field optical microscope through a parabolic mirror, and a local field is generated at the tip of the metal probe, so The above-mentioned local field is a highly localized electromagnetic field, and under the excitation of the local field, the sample under the metal probe generates a near-field signal.
  • the incident signal is fed to the metal probe in the form of a current through a transmission line, and a localized field is formed on the tip of the metal probe to excite the underlying sample to generate a near-field signal.
  • Metal probes are conical structures with nanometer-level resolution at their tips.
  • the bottom end of the metal probe is connected to the photoconductive switch through a transmission line.
  • the metal probe is equivalent to a single-wire waveguide, which can conduct electromagnetic waves and currents, and its conduction efficiency is much higher than the scattering efficiency.
  • the near-field signals are directly extracted from the surface of the sample using metal probes. Specifically, the near-field signal on the surface of the sample is coupled by the metal probe into a current signal, and the current signal is the current signal on the surface of the metal probe.
  • the current signal is transmitted to the photoconductive switch along the metal probe and the transmission line, and the photoconductive switch is turned on when triggered by the detection light, so that the current signal is transmitted to the back-end processing unit for processing, thereby obtaining the near-field information of the sample surface.
  • a photoconductive switch is loaded on the transmission line connected to the probe, the synchronous laser is used as the trigger of the photoconductive switch, and the pulse current of the order of picoseconds is electro-optically sampled by the movement of the delay line in the delay unit, so as to obtain an effective near-field signal.
  • the signal extraction method based on the optical path system in the traditional terahertz near-field imaging system is replaced by the use of metal probes to convert the near-field signals on the sample surface into currents on the probe and extract them, which not only saves the need for
  • the optical path system that propagates the near-field signal to the far-field significantly reduces the manufacturing cost and simplifies the structure of the scanning near-field optical microscope.
  • the current signal coupled by the metal probe is a near-field signal, which is transmitted to the rear through the transmission line.
  • the far-field signal will not be mixed in the process of the terminal processing unit, so the extraction efficiency and signal-to-noise ratio of the near-field signal can be greatly improved, and the method of using a high-order demodulation algorithm to distinguish the near-field and far-field signals in the prior art is avoided. Simplifies the processing difficulty of subsequent signals.
  • the incident unit of the terahertz near-field imaging system includes an incident photoconductive antenna, a parabolic mirror and at least one reflector, and the incident photoconductive antenna is used for receiving
  • the incident light in the optical path is adjusted by the mirror, and the incident signal incident on the parabolic mirror is generated.
  • the parabolic mirror is used to focus the incident signal on the metal probe, and the incident signal generates a local field at the tip of the metal probe.
  • the incident signal is focused on the metal probe in the form of a free-space wave to excite the local field.
  • the incident light split by the beam splitter is incident on the incident photoconductive antenna externally connected with a bias voltage through the adjustment of a mirror group formed by at least one mirror, thereby generating a terahertz incident wave.
  • the incident wave is focused on the metal probe by a parabolic mirror, and a highly localized electromagnetic field is generated at the tip of the metal probe, thereby exciting the sample below to generate a near-field signal.
  • Another object of the present invention is to provide a terahertz near-field imaging system, which uses a terahertz transmission line to connect a photoconductive antenna for incident and a metal probe, so that the generated incident wave is directly conducted to the metal probe in the form of current Needle, which forms a local field at the tip of the metal probe to excite the sample under the probe, not only removes the parabolic mirror used to focus the incident light, but also improves the excitation efficiency of the signal and further improves the extraction of the near-field signal effectiveness.
  • the incident unit of the terahertz near-field imaging system includes an incident photoconductive antenna, the incident photoconductive antenna is connected with a metal probe through a transmission line, and the incident photoconductive antenna is used to generate an incident signal under the excitation of incident light, so The incident signal is conducted to the metal probe in the form of current through the transmission line, and a localized field is generated at the tip of the metal probe.
  • the incident signal is fed into the metal probe in the form of current through the transmission line, and a local field is generated at the tip of the probe to excite the sample.
  • the incident light split by the beam splitter can be incident on the incident photoconductive antenna after adjusting the optical path through the mirror group, or directly incident on the incident photoconductive antenna.
  • the incident photoconductive antenna is externally connected with a bias voltage.
  • the incident photoconductive antenna can generate a pulsed current signal in the order of picoseconds, which is conducted to the tip of the probe to excite the near-field signal on the sample surface.
  • the excitation process of the near-field signal also replaces the form of current, which further simplifies the design and construction of the near-field optical path system, reduces the difficulty of excitation and acquisition of the near-field signal, and greatly improves the signal-to-noise ratio of the near-field signal. and signal strength.
  • the terahertz near-field imaging system further includes a printed circuit board, the printed circuit board is provided with incident photoconductive antennas and microstrip lines connected to each other, and a ceramic support plate is also provided on the printed circuit board , the ceramic support plate is used to fix the metal cantilever and the metal probe connected to the metal cantilever, and the metal cantilever is connected to the microstrip line through a jumper.
  • the conical probe is connected with the strip-shaped metal cantilever, and is fixed on the ceramic support plate.
  • the ceramic support plate is fixed on the PCB carrying the photoconductive antenna and the microstrip line, and the microstrip line is connected to the metal cantilever through the jumper, so as to realize the connection between the photoconductive antenna and the probe.
  • the length of the metal probe is of the same order of magnitude as the wavelength of the incident signal.
  • the probe length and the incident signal have a proportional relationship of about half wavelength, a better signal extraction effect can be achieved.
  • the back-end processing unit includes a current amplifier and a computer, the current amplifier is used to amplify the current signal and transmit the amplified current signal to the computer, and the computer is used to process the amplified current signal to obtain the sample surface. near field information.
  • the photoconductive switch is a detection photoconductive antenna.
  • the delay unit includes a time delay optical path formed by a plurality of mirrors, so as to adjust the transmission time of the detection light to match the transmission time of the current signal to the photoconductive switch.
  • Another object of the present invention is to provide a terahertz near-field imaging method based on the above-mentioned terahertz near-field imaging system, which utilizes a photoconductive antenna to generate picosecond-level incident pulses, which are fed into the metal detector in the form of current from a transmission line connected thereto. Needle, the incident wave generates an electric field at the tip to excite the sample to achieve sample excitation.
  • the metal probe is used to directly couple the near-field information on the surface of the sample and extract it in the form of current for signal processing, which can not only significantly improve the signal-to-noise of the near-field signal ratio and signal intensity, and greatly simplifying the design of the near-field optical path, can better use the near-field optical microscope to explore the physical effects of structures and materials, providing a new perspective for understanding various physical phenomena.
  • the terahertz near-field imaging method includes the following steps:
  • the femtosecond laser is divided into incident light and detection light by a beam splitter;
  • the incident light is converted into an incident signal, the incident signal excites the metal probe to generate a local field, and the local field excites the sample in the detection direction of the metal probe to generate a near-field signal.
  • the probe and the transmission line are transmitted to the photoconductive switch;
  • the photoconductive switch After the detection light is delayed, the photoconductive switch is triggered to be turned on, and the corresponding current signal is collected after the photoconductive switch is turned on;
  • the collected current signal is processed to obtain near-field information of the sample surface.
  • the incident signal is conducted to the metal probe in the form of current through the transmission line, and the metal probe generates a local field under the excitation of the incident signal.
  • the present invention has the following advantages and beneficial effects:
  • the present invention replaces the signal extraction method based on the optical path system in the traditional terahertz near-field imaging system by using a metal probe to convert the near-field signal on the sample surface into the current on the probe and extract it, providing a non-scattering method.
  • the type of terahertz scanning near-field current microscope not only saves the optical path system for propagating the near-field signal to the far-field, but also significantly reduces the manufacturing cost and simplifies the structure of the scanning near-field optical microscope.
  • the metal detector The current signal coupled by the needle is a near-field signal, and the far-field signal will not be mixed in the process of being transmitted to the back-end processing unit through the transmission line, so the extraction efficiency and signal-to-noise ratio of the near-field signal can be greatly improved, avoiding the need
  • the applied voltage is used to make the probe vibrate up and down to modulate the signal, and then the near-field and far-field electromagnetic waves are distinguished by the attenuation of the signal intensity with the distance, which simplifies the processing difficulty of subsequent signals;
  • the present invention uses a terahertz transmission line to connect the incident photoconductive antenna and the metal probe, so that the generated incident wave is directly conducted to the metal probe in the form of current, so as to form a local field at the tip of the metal probe
  • the present invention optimizes the length of the metal probe.
  • the length of the metal probe is about 0.5 times the wavelength of the incident signal, the extraction effect of the near-field signal is better.
  • the terahertz near-field imaging method provided by the present invention uses a metal probe to excite and extract the near-field signal on the sample surface in the form of current, which can not only significantly improve the signal-to-noise ratio and signal strength of the near-field signal, but also greatly simplify the near-field signal.
  • the field optical path design can better use the near-field optical microscope to explore the physical effects of structures and materials, providing a new perspective for understanding various physical phenomena.
  • FIG. 1 is a schematic structural diagram of a terahertz near-field imaging system in one or more embodiments of the present invention
  • FIG. 2 is a schematic structural diagram of another terahertz near-field imaging system in one or more embodiments of the present invention.
  • connection used in the present invention may be directly connected or indirectly connected via other components unless otherwise specified.
  • a terahertz near-field imaging system includes a laser, an incident unit, a delay unit, a back-end processing unit and a metal probe; wherein:
  • the laser is used to generate a femtosecond laser.
  • the femtosecond laser is divided into incident light and detection light through a beam splitter.
  • the incident light is transmitted to the incident unit, and the detection light is transmitted to the delay unit and transmitted to the delay unit after a delay.
  • the photoconductive switch is triggered and the photoconductive switch is turned on;
  • the incident unit includes an incident photoconductive antenna, a parabolic mirror and at least one reflecting mirror, the incident photoconductive antenna is used for receiving the incident light whose optical path is adjusted by the reflecting mirror, and generating an incident signal incident on the parabolic mirror, and the parabolic mirror is used for Focusing the incident signal on the metal probe, the incident signal generates a local field at the tip of the metal probe, and the local field is used to excite the sample in the detection direction of the metal probe to generate a near-field signal;
  • a metal probe used for coupling the near-field signal into a current signal, and the current signal is transmitted to the back-end processing unit through the metal probe, the transmission line, and the photoconductive switch;
  • the delay unit includes a time delay optical path formed by a plurality of mirrors, so as to adjust the transmission time of the detection light to match the transmission time of the current signal to the photoconductive switch.
  • the back-end processing unit includes a current amplifier and a computer, the current amplifier is used for amplifying the current signal and transmitting the amplified current signal to the computer, and the computer is used for processing the amplified current signal to obtain near-field information of the sample surface.
  • the incident signal is focused on the metal probe in the form of incident wave to excite the local field.
  • the incident light split by the beam splitter is incident on the incident photoconductive antenna with external bias voltage through the adjustment of the mirror group composed of at least one mirror, and the incident wave generated by the incident photoconductive antenna is focused to the metal probe through the parabolic mirror
  • a local field is generated at the tip of the metal probe, and the local field excites the sample below the metal probe to generate a near-field signal.
  • the near-field signal is coupled by the metal probe into a current signal, and the current signal is a current signal on the surface of the metal probe.
  • the current signal is transmitted to the photoconductive switch along the metal probe and the transmission line, and the photoconductive switch is turned on when triggered by the detection light, so that the current signal is transmitted to the back-end processing unit for processing, thereby obtaining the near-field information of the sample surface.
  • a photoconductive switch is loaded on the transmission line connected to the probe, the synchronous laser is used as the trigger of the photoconductive switch, and the pulse current of the order of picoseconds is electro-optically sampled by the movement of the delay line in the delay unit, so as to obtain an effective near-field signal.
  • the length of the metal probe is 0.5 times the wavelength of the incident signal. In one embodiment, the probe length is proportional to the incident signal by about half a wavelength.
  • the laser is a laser of a terahertz time-domain spectrometer, and the wavelength of the ultrafast pulse wave generated by the terahertz time-domain spectrometer is in the order of 10-12 , and the frequency band covers 0.1 to 10 terahertz.
  • a terahertz near-field imaging system includes a laser, an incident unit, a delay unit, a back-end processing unit and a metal probe; wherein:
  • the laser is used to generate a femtosecond laser.
  • the femtosecond laser is divided into incident light and detection light through a beam splitter.
  • the incident light is transmitted to the incident unit, and the detection light is transmitted to the delay unit and transmitted to the delay unit after a delay.
  • the photoconductive switch is triggered and the photoconductive switch is turned on;
  • the incident unit includes an incident photoconductive antenna, the incident photoconductive antenna is connected with the metal probe through a transmission line, and the incident photoconductive antenna is used to generate an incident signal under the excitation of incident light, and the incident signal is conducted to the transmission line in the form of current.
  • a metal probe generating a local field at the tip of the metal probe, and the local field is used to excite the sample in the detection direction of the metal probe to generate a near-field signal;
  • the metal probe is used to couple the generated near-field signal into a current signal, and the current signal is transmitted to the back-end processing unit through the metal probe, the transmission line, and the photoconductive switch, and the photoconductive switch is subjected to the detection light delayed by the delay unit.
  • the trigger is turned on;
  • the delay unit includes a time delay optical path formed by a plurality of mirrors, so as to adjust the transmission time of the detection light to match the transmission time of the current signal to the photoconductive switch.
  • the back-end processing unit includes a current amplifier and a computer, the current amplifier is used for amplifying the current signal and transmitting the amplified current signal to the computer, and the computer is used for processing the amplified current signal to obtain near-field information of the sample surface.
  • the incident signal is fed into the metal probe in the form of current through the transmission line, and an electric field is generated at the tip of the probe to excite the sample.
  • the incident light split by the beam splitter can be incident on the incident photoconductive antenna after adjusting the optical path by the group, or directly incident on the incident photoconductive antenna.
  • the incident photoconductive antenna is externally connected with a bias voltage and an optical fiber. Through the control of the bias voltage and laser, the incident photoconductive antenna can generate a pulsed current signal in the order of picoseconds, which is conducted to the tip of the probe to excite the near field on the sample surface. Signal.
  • the excitation process of the near-field signal also replaces the form of current, which further simplifies the design and construction of the near-field optical path system, reduces the difficulty of excitation and acquisition of the near-field signal, and greatly improves the signal-to-noise ratio of the near-field signal. and signal strength.
  • the photoconductive switch adopts a detection photoconductive antenna to realize electro-optical sampling of the pulsed current signal.
  • the detection photoconductive antenna is externally connected with an optical fiber and a coaxial line, and outputs the current signal to a signal processing module such as a back-end amplifier.
  • it further comprises a printed circuit board, the printed circuit board is provided with the incident photoconductive antenna and the microstrip line connected to each other, the printed circuit board is further provided with a ceramic support plate, The ceramic support plate is used to fix the metal cantilever and the metal probe connected to the metal cantilever, and the metal cantilever is connected to the microstrip line through a jumper.
  • the femtosecond laser is divided into incident light and detection light by a beam splitter;
  • the incident light is converted into an incident signal, the incident signal excites the metal probe to generate a local field, and the local field excites the sample in the detection direction of the metal probe to generate a near-field signal.
  • the probe and the transmission line are transmitted to the photoconductive switch;
  • the photoconductive switch After the detection light is delayed, the photoconductive switch is triggered to be turned on, and the corresponding current signal is collected after the photoconductive switch is turned on;
  • the collected current signal is processed to obtain near-field information of the sample surface.
  • the incident signal is conducted in the form of an electrical current through a transmission line to a metal probe, which generates a localized field upon excitation by the incident signal.
  • a metal probe to excite and extract the near-field signal on the sample surface in the form of current can not only significantly improve the signal-to-noise ratio and signal intensity of the near-field signal, but also greatly simplify the design of the near-field optical path, which can make better use of the near-field optical microscope Exploring the physical effects of structures and materials provides new perspectives for understanding various physical phenomena.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种太赫兹近场成像系统及方法,系统包括激光器,用于产生飞秒激光,飞秒激光经过分束镜分为入射光和检测光,入射光传输至入射单元,检测光传输至延时单元经延时后传输至光导开关并触发光导开关导通;入射单元,用于在入射光的激励下产生入射信号,入射信号激励金属探针产生局域场,局域场激励金属探针探测方向上的样品产生近场信号;金属探针,用于将近场信号耦合成电流信号,电流信号经金属探针、传输线、光导开关传输至后端处理单元;后端处理单元,用于接收和处理电流信号,得到样品表面的近场信息。本发明利用金属探针以电流的形式激发和提取样品表面的近场信号,不仅能够显著提高近场信号的信噪比和信号强度,并且大幅简化近场光路设计。

Description

一种太赫兹近场成像系统及方法 技术领域
本发明涉及太赫兹成像领域,具体涉及一种太赫兹近场成像系统及方法。
背景技术
太赫兹(Terahertz,THz)波通常是指频率为100GHz~10THz,波长为30~3000μm的电磁波,在电磁波谱中位于毫米波和远红外射线之间,具有低辐射、强穿透性、以及与生物、半导体材料易产生共振的光学属性,这些特点使得太赫兹近场成像技术被广泛地应用于安检安防、化学品鉴定、医学成像、质量控制等领域。近年来,随着太赫兹频段信号源和检测手段等技术的逐渐成熟,太赫兹频段的近场高分辨率成像技术也逐步发展起来。
现有技术中,用于太赫兹频段的扫描近场光学显微镜为散射型扫描近场光学显微镜,其主要以固态微波信号源、气体激光器和太赫兹时域光谱仪等作为信号源,入射波通过复杂的光路模块入射到探针上,通过探针的聚焦和散射作用,将样品表面的近场信息转化为散射波,再通过光学元件收集和传播到探测器。
传统的散射型扫描近场光学显微镜无法直接接收到样品表面的近场信息,通常利用探针的散射效应将近场信号传播到远场,因此需要非常复杂而精密的信号收集光路系统。例如专利CN111060719A所提供的太赫兹近场显微镜的太赫兹脉冲束引出机构即是通过设计复杂且精密的光路系统将样品产生的近场信号传播到远场。专利CN106442394B公开了一种太赫兹近场成像系统,其利用自混频效应代替近场探测器,且近场探针反射的近场太赫兹信号与入射信号共光路,有效地简化了光路系统。
但是,发明人发现,利用光路系统将近场信号传播到远场这种信号提取方式仍然存在两个核心问题。其一,在远场收集到的信号中,含有近场信息的部分通常来说非常少,大部分都是无用的背景散射信号,因此信噪比非常低;其二,光路系统的精度要求非常高,需要纳米级别分辨率的位移台精调,稍有偏差则信号的强度和信噪比将显著下降。
发明内容
本发明的一个目的在于提供一种太赫兹近场成像系统,其利用扫描近场光学显微镜的金属探针将样品表面产生的近场信号耦合成电流,并通过传输线直接将电流传递到后端处理器进行处理,进而得到样品表面的近场信息,实现金属探针直接从样品表面提取近场信号,不仅省去了用于提取传播近场信号的精密且复杂的光路系统,显著降低了制造成本,简化了扫描近场光学显微镜的构造,而且金属探针能够直接提取到样品表面的高质量的近场信号,避免了在光路系统中传输时混入远场信号,显著地提高了近场信号的提取效率,提高了信号的 信噪比,简化了后续信号处理难度。
具体地,上述目的通过下述技术方案实现:
激光器,用于产生飞秒激光,所述飞秒激光经过分束镜分为入射光和检测光,所述入射光传输至入射单元,所述检测光传输至延时单元经延时后传输至光导开关并触发光导开关导通;
入射单元,用于在入射光的激励下产生入射信号,所述入射信号用于激励金属探针产生局域场,所述局域场用于激励金属探针探测方向上的样品产生近场信号;
金属探针,用于将近场信号耦合成电流信号,所述电流信号经金属探针、传输线、光导开关传输至后端处理单元;
后端处理单元,用于接收和处理电流信号,得到样品表面的近场信息。
本技术方案中,激光器产生的飞秒激光经过分束镜后被分为两束,即入射光和检测光。其中,入射光传输至入射单元,检测光传输至延时单元。
在一个或多个实施例中,入射单元将入射光转化为入射信号后,入射信号通过抛物面镜聚焦于扫描近场光学显微镜的金属探针上,在金属探针的尖端产生局域场,所述局域场为高度局域的电磁场,在该局域场的激励下,金属探针下方的样品产生近场信号。在一个或多个实施例中,入射信号以电流的形式经传输线馈入到金属探针上,在金属探针的尖端上形成局域场以激励下方样品产生近场信号。
金属探针为圆锥结构,其尖端可以达到纳米级别的分辨率。金属探针底端通过传输线连出到光导开关。金属探针相当于一根单线波导,可以传导电磁波和电流,其传导效率远高于散射效率。利用金属探针这一特性,采用金属探针直接从样品表面提取近场信号。具体地,样品表面的近场信号被金属探针耦合成电流信号,该电流信号为金属探针表面的电流信号。电流信号沿金属探针、传输线传输至光导开关,光导开关在检测光的触发下导通,使得电流信号传输至后端处理单元进行处理,从而得到样品表面的近场信息。本技术方案中,在与探针相连的传输线上加载光导开关,利用同步激光作为光导开关的触发,通过延时单元中延迟线的移动对皮秒量级的脉冲电流做电光采样,从而获得有效的近场信号。
通过上述设置,将传统的太赫兹近场成像系统中基于光路系统的信号提取方式替代为利用金属探针将样品表面的近场信号转化为探针上的电流并引出,不仅省去了用于将近场信号传播到远场的光路系统,显著降低了制造成本,简化了扫描近场光学显微镜的构造,更重要的是,金属探针耦合的电流信号为近场信号,其通过传输线传输至后端处理单元的过程中不会混入远场信号,因此能够大幅提高近场信号的提取效率和信噪比,避免了现有技术中利用高阶解调算法区分近场和远场信号的方法,简化了后续信号的处理难度。
作为太赫兹近场成像系统中入射单元的一种优选实施方式,该太赫兹近场成像系统的入射单元包括入射光电导天线、抛物面镜和至少一个反射镜,所述入射光电导天线用于接收经反射镜调整光路的入射光,并产生入射到抛物面镜的入射信号,所述抛物面镜用于将入射信号聚焦于金属探针上,入射信号在金属探针的尖端产生局域场。本技术方案中入射信号以自由空间的波的形式聚焦于金属探针上以激发局域场。经分束镜分束的入射光通过至少一个反射镜构成的反射镜组的调整入射至外接有偏置电压的入射光电导天线,从而产生太赫兹入射波。该入射波通过抛物面镜聚焦到金属探针上,在金属探针的尖端产生高度局域的电磁场,从而激励下方的样品产生近场信号。
本发明的另一个目的在于提供一种太赫兹近场成像系统,其利用太赫兹传输线将用于入射的光电导天线和金属探针连接,使得产生的入射波直接以电流的形式传导到金属探针,在金属探针的尖端形成局域场以激励探针下方的样品,不但移除了用于聚焦入射光的抛物面镜,而且提高了信号的激发效率,并进一步提高了近场信号的提取效率。
具体地,该太赫兹近场成像系统的入射单元包括入射光电导天线,所述入射光电导天线通过传输线与金属探针连接,入射光电导天线用于在入射光的激励下产生入射信号,所述入射信号以电流的形式经传输线传导到金属探针,在金属探针的尖端产生局域场。本技术方案中入射信号以电流的形式经传输线馈入到金属探针,在探针的尖端产生局域场激励样品。经分束镜分束的入射光可以通过反射镜组调整光路后入射至入射光电导天线,也可以直接入射至入射光电导天线。入射光电导天线外接有偏置电压,通过偏置电压和激光的控制,入射光电导天线可以产生皮秒量级的脉冲电流信号,传导到探针尖端,用以激发样品表面的近场信号。通过上述设置,将近场信号的激发过程也替换电流的形式,进一步简化了近场光路系统的设计和搭建,降低了近场信号激发和采集的难度,极大地提高了近场信号的信噪比和信号强度。
进一步地,该太赫兹近场成像系统还包括印制电路板,所述印制电路板设置有相互连接的入射光电导天线和微带线,所述印制电路板上还设置有陶瓷托板,所述陶瓷托板用于固定金属悬臂以及与金属悬臂连接的金属探针,所述金属悬臂通过跳线连接至微带线。作为探针和入射光电导天线的具体安装方式,圆锥形的探针与带状的金属悬臂相连,被固定在陶瓷托板上。陶瓷托板被固定在承载了光电导天线和微带线的PCB板上,通过跳线将微带线与金属悬臂相连,即可实现光导天线与探针的连接。
进一步地,所述金属探针的长度与入射信号的波长为同一量级。优选地,探针长度与入射信号存在半波长左右的比例关系时,能够达到更好的信号提取效果。
进一步地,所述后端处理单元包括电流放大器和计算机,所述电流放大器用于放大电流 信号并将放大后的电流信号传输至计算机,所述计算机用于处理放大后的电流信号得到样品表面的近场信息。
进一步地,所述光导开关为探测光电导天线。
进一步地,所述延时单元包括若干反射镜构成的时延光路,以将检测光的传输时间调整为与电流信号传输至光导开关的时间匹配。
本发明的又一个目的在于基于上述太赫兹近场成像系统提供太赫兹近场成像方法,利用光电导天线产生皮秒级别的入射脉冲,以电流的形式从与其相连接的传输线馈入到金属探针,入射波在尖端产生电场激励样品,实现样品激发,同时,利用金属探针直接耦合样品表面的近场信息,以电流的形式提取出来进行信号处理,不仅能够显著提高近场信号的信噪比和信号强度,并且大幅简化近场光路设计,可以更好地利用近场光学显微镜探究结构和材料的物理效应,为理解各种物理现象提供了新的视角。
具体地,该太赫兹近场成像方法包括以下步骤:
飞秒激光经分光镜分为入射光和检测光;
入射光转化为入射信号,入射信号激励金属探针产生局域场,局域场激励金属探针探测方向上的样品产生近场信号,近场信号在金属探针上耦合为电流信号后经金属探针、传输线传输至光导开关;
检测光经过延时后触发光导开关导通,光导开关导通后采集相应的电流信号;
处理采集到的电流信号得到样品表面的近场信息。
进一步地,所述入射信号以电流的形式经传输线传导到金属探针,所述金属探针在入射信号的激励下产生局域场。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明将传统的太赫兹近场成像系统中基于光路系统的信号提取方式替代为利用金属探针将样品表面的近场信号转化为探针上的电流并引出,提供了一种非散射型的太赫兹扫描近场电流显微镜,不仅省去了用于将近场信号传播到远场的光路系统,显著降低了制造成本,简化了扫描近场光学显微镜的构造,更重要的是,金属探针耦合的电流信号为近场信号,其通过传输线传输至后端处理单元的过程中不会混入远场信号,因此能够大幅提高近场信号的提取效率和信噪比,避免了现有技术中利用外加电压令探针上下振动对信号作调制,再通过信号强度随着距离的衰减方式的不同来区分近场和远场电磁波,简化了后续信号的处理难度;
2、本发明利用太赫兹传输线将用于入射的光电导天线和金属探针连接,使得产生的入射波直接以电流的形式传导到金属探针,用于在金属探针的尖端形成局域场以激励探针下方的样品,不但移除了用于入射光聚集的抛物面镜,而且提高了信号的激发效率,并进一步提高 了近场信号的提取效率;
3、本发明对金属探针的长度进行优化,当金属探针的长度为入射信号的波长的0.5倍左右时近场信号的提取效果更好,进一步优选地,探针长度与入射信号存在半波长左右的比例关系;
4、本发明提供的太赫兹近场成像方法,利用金属探针以电流的形式激发和提取样品表面的近场信号,不仅能够显著提高近场信号的信噪比和信号强度,并且大幅简化近场光路设计,可以更好地利用近场光学显微镜探究结构和材料的物理效应,为理解各种物理现象提供了新的视角。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明一个或多个实施例中一种太赫兹近场成像系统的结构示意图;
图2为本发明一个或多个实施例中另一种太赫兹近场成像系统的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
在本发明的描述中,需要理解的是,术语“前”、“后”、“左”、“右”、“上”、“下”、“竖直”、“水平”、“高”、“低”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
在本发明中使用的术语“连接”在不进行特别说明的情况下,可以是直接相连,也可以使经由其他部件间接相连。
实施例1:
如图1所示的一种太赫兹近场成像系统,包括激光器、入射单元、延时单元、后端处理单元和金属探针;其中:
激光器,用于产生飞秒激光,所述飞秒激光经过分束镜分为入射光和检测光,所述入射光传输至入射单元,所述检测光传输至延时单元经延时后传输至光导开关并触发光导开关导通;
入射单元包括入射光电导天线、抛物面镜和至少一个反射镜,所述入射光电导天线用于 接收经反射镜调整光路的入射光,并产生入射到抛物面镜的入射信号,所述抛物面镜用于将入射信号聚焦于金属探针上,入射信号在金属探针的尖端产生局域场,所述局域场用于激励金属探针探测方向上的样品产生近场信号;
金属探针,用于将近场信号耦合成电流信号,所述电流信号经金属探针、传输线、光导开关传输至后端处理单元;
延时单元包括若干反射镜构成的时延光路,以将检测光的传输时间调整为与电流信号传输至光导开关的时间匹配。
后端处理单元包括电流放大器和计算机,所述电流放大器用于放大电流信号并将放大后的电流信号传输至计算机,所述计算机用于处理放大后的电流信号得到样品表面的近场信息。
本实施例中,入射信号以入射波的形式聚焦于金属探针上以激发局域场。经分束镜分束的入射光通过至少一个反射镜构成的反射镜组的调整入射至外接有偏置电压的入射光电导天线,入射光电导天线产生的入射波通过抛物面镜聚焦到金属探针上,在金属探针的尖端产生局域场,局域场激励金属探针下方的样品产生近场信号。近场信号被金属探针耦合成电流信号,该电流信号为金属探针表面的电流信号。电流信号沿金属探针、传输线传输至光导开关,光导开关在检测光的触发下导通,使得电流信号传输至后端处理单元进行处理,从而得到样品表面的近场信息。本实施例中,在与探针相连的传输线上加载光导开关,利用同步激光作为光导开关的触发,通过延时单元中延迟线的移动对皮秒量级的脉冲电流做电光采样,从而获得有效的近场信号。
在部分实施例中,所述金属探针的长度为入射信号的波长的0.5倍。在一个实施例中,探针长度与入射信号存在半波长左右的比例关系。
在部分实施例中,激光器为太赫兹时域光谱仪的激光器,太赫兹时域光谱仪产生的超快脉冲波的波长在10 -12量级,频段覆盖0.1到10太赫兹。
实施例2:
如图2所示的一种太赫兹近场成像系统,包括激光器、入射单元、延时单元、后端处理单元和金属探针;其中:
激光器,用于产生飞秒激光,所述飞秒激光经过分束镜分为入射光和检测光,所述入射光传输至入射单元,所述检测光传输至延时单元经延时后传输至光导开关并触发光导开关导通;
入射单元包括入射光电导天线,所述入射光电导天线通过传输线与金属探针连接,入射光电导天线用于在入射光的激励下产生入射信号,所述入射信号以电流的形式经传输线传导到金属探针,在金属探针的尖端产生局域场,所述局域场用于激励金属探针探测方向上的样 品产生近场信号;
金属探针用于将产生的近场信号耦合成电流信号,所述电流信号经金属探针、传输线、光导开关传输至后端处理单元,所述光导开关受经延时单元延时的检测光的触发而导通;
延时单元包括若干反射镜构成的时延光路,以将检测光的传输时间调整为与电流信号传输至光导开关的时间匹配。
后端处理单元包括电流放大器和计算机,所述电流放大器用于放大电流信号并将放大后的电流信号传输至计算机,所述计算机用于处理放大后的电流信号得到样品表面的近场信息。
本实施例中,入射信号以电流的形式经传输线馈入到金属探针,在探针的尖端产生电场激励样品。经分束镜分束的入射光可以通过辐射经组调整光路后入射至入射光电导天线,也可以直接入射至入射光电导天线。入射光电导天线外接有偏置电压和光纤,通过偏置电压和激光的控制,入射光电导天线可以产生皮秒量级的脉冲电流信号,传导到探针尖端,用以激发样品表面的近场信号。通过上述设置,将近场信号的激发过程也替换电流的形式,进一步简化了近场光路系统的设计和搭建,降低了近场信号激发和采集的难度,极大地提高了近场信号的信噪比和信号强度。
在一个实施例中,光导开关采用探测光电导天线实现对脉冲电流信号的电光采样,所述探测光电导天线外接有光纤和同轴线,将电流信号输出到后端放大器等信号处理模块。
在一个或多个实施例中,还包括印制电路板,所述印制电路板设置有相互连接的入射光电导天线和微带线,所述印制电路板上还设置有陶瓷托板,所述陶瓷托板用于固定金属悬臂以及与金属悬臂连接的金属探针,所述金属悬臂通过跳线连接至微带线。
实施例3:
基于上述实施例中的成像系统的太赫兹近场成像方法,包括以下步骤:
飞秒激光经分光镜分为入射光和检测光;
入射光转化为入射信号,入射信号激励金属探针产生局域场,局域场激励金属探针探测方向上的样品产生近场信号,近场信号在金属探针上耦合为电流信号后经金属探针、传输线传输至光导开关;
检测光经过延时后触发光导开关导通,光导开关导通后采集相应的电流信号;
处理采集到的电流信号得到样品表面的近场信息。
在部分实施例中,所述入射信号以电流的形式经传输线传导到金属探针,所述金属探针在入射信号的激励下产生局域场。利用金属探针以电流的形式激发和提取样品表面的近场信号,不仅能够显著提高近场信号的信噪比和信号强度,并且大幅简化近场光路设计,可以更好地利用近场光学显微镜探究结构和材料的物理效应,为理解各种物理现象提供了新的视角。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种太赫兹近场成像系统,其特征在于,包括:
    激光器,用于产生飞秒激光,所述飞秒激光经过分束镜分为入射光和检测光,所述入射光传输至入射单元,所述检测光传输至延时单元经延时后传输至光导开关并触发光导开关导通;
    入射单元,用于在入射光的激励下产生入射信号,所述入射信号用于激励金属探针产生局域场,所述局域场用于激励金属探针探测方向上的样品产生近场信号;
    金属探针,用于将近场信号耦合成电流信号,所述电流信号经金属探针、传输线、光导开关传输至后端处理单元;
    后端处理单元,用于接收和处理电流信号,得到样品表面的近场信息。
  2. 根据权利要求1所述的一种太赫兹近场成像系统,其特征在于,所述入射单元包括入射光电导天线、抛物面镜和至少一个反射镜,所述入射光电导天线用于接收经反射镜调整光路的入射光,并产生入射到抛物面镜的入射信号,所述抛物面镜用于将入射信号聚焦于金属探针上,入射信号在金属探针的尖端产生局域场。
  3. 根据权利要求1所述的一种太赫兹近场成像系统,其特征在于,所述入射单元包括入射光电导天线,所述入射光电导天线通过传输线与金属探针连接,入射光电导天线用于在入射光的激励下产生入射信号,所述入射信号以电流的形式经传输线传导到金属探针,在金属探针的尖端产生局域场。
  4. 根据权利要求3所述的一种太赫兹近场成像系统,其特征在于,所述系统还包括印制电路板,所述印制电路板设置有相互连接的入射光电导天线和微带线,所述印制电路板上还设置有陶瓷托板,所述陶瓷托板用于固定金属悬臂以及与金属悬臂连接的金属探针,所述金属悬臂通过跳线连接至微带线。
  5. 根据权利要求2~4中任一项所述的一种太赫兹近场成像系统,其特征在于,所述金属探针的长度与入射信号的波长为同一量级。
  6. 根据权利要求5所述的一种太赫兹近场成像系统,其特征在于,所述后端处理单元包括电流放大器和计算机,所述电流放大器用于放大电流信号并将放大后的电流信号传输至计算机,所述计算机用于处理放大后的电流信号得到样品表面的近场信息。
  7. 根据权利要求5所述的一种太赫兹近场成像系统,其特征在于,所述光导开关为探测光电导天线。
  8. 根据权利要求5所述的一种太赫兹近场成像系统,其特征在于,所述延时单元包括若干反射镜构成的时延光路,以将检测光的传输时间调整为与电流信号传输至光导开关的时间匹配。
  9. 一种太赫兹近场成像方法,其特征在于,包括以下步骤:
    飞秒激光经分光镜分为入射光和检测光;
    入射光转化为入射信号,入射信号激励金属探针产生局域场,局域场激励金属探针探测方向上的样品产生近场信号,近场信号在金属探针上耦合为电流信号后经金属探针、传输线传输至光导开关;
    检测光经过延时后触发光导开关导通,光导开关导通后采集相应的电流信号;
    处理采集到的电流信号得到样品表面的近场信息。
  10. 根据权利要求9所述的一种太赫兹近场成像方法,其特征在于,所述入射信号以电流的形式经传输线传导到金属探针,所述金属探针在入射信号的激励下产生局域场。
PCT/CN2021/117578 2020-09-17 2021-09-10 一种太赫兹近场成像系统及方法 WO2022057726A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21868551.9A EP4202448A4 (en) 2020-09-17 2021-09-10 TERAHERTZ NEAR-FIELD IMAGING SYSTEM AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010980153.2 2020-09-17
CN202010980153.2A CN112083196B (zh) 2020-09-17 2020-09-17 一种太赫兹近场成像系统及方法

Publications (1)

Publication Number Publication Date
WO2022057726A1 true WO2022057726A1 (zh) 2022-03-24

Family

ID=73738064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117578 WO2022057726A1 (zh) 2020-09-17 2021-09-10 一种太赫兹近场成像系统及方法

Country Status (3)

Country Link
EP (1) EP4202448A4 (zh)
CN (1) CN112083196B (zh)
WO (1) WO2022057726A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236038A (zh) * 2022-07-26 2022-10-25 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种精子顶体空泡太赫兹成像方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083196B (zh) * 2020-09-17 2021-09-28 电子科技大学 一种太赫兹近场成像系统及方法
CN112730315B (zh) * 2020-12-25 2022-06-24 中国科学院上海微系统与信息技术研究所 一种高分辨率太赫兹近场光谱测试系统
CN117706216B (zh) * 2024-02-06 2024-04-12 广东大湾区空天信息研究院 基于扫描隧道显微镜的太赫兹近场波形采样方法、装置、存储介质及计算机设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894125A (en) * 1997-08-18 1999-04-13 Lucent Technologies Inc. Near field terahertz imaging
CN105092514A (zh) * 2015-08-20 2015-11-25 中国科学院重庆绿色智能技术研究院 一种散射式的扫描近场太赫兹显微镜
CN106442394A (zh) 2016-09-28 2017-02-22 中国科学院上海微系统与信息技术研究所 一种太赫兹近场成像系统及方法
CN107860742A (zh) * 2017-11-03 2018-03-30 中国科学院重庆绿色智能技术研究院 一种反射式太赫兹时域近场扫描显微镜
CN108844914A (zh) * 2018-05-28 2018-11-20 南开大学 一种基于金属探针的太赫兹超分辨成像装置及成像方法
CN109696422A (zh) * 2018-12-27 2019-04-30 雄安华讯方舟科技有限公司 太赫兹近场成像装置和方法
CN111060719A (zh) 2019-12-30 2020-04-24 仪晟科学仪器(嘉兴)有限公司 太赫兹近场显微镜的太赫兹脉冲束引出机构
CN112083196A (zh) * 2020-09-17 2020-12-15 电子科技大学 一种太赫兹近场成像系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230245B2 (en) * 2004-05-04 2007-06-12 Rensselaer Polytechnic Institute Field induced THz wave emission microscope
JPWO2008026523A1 (ja) * 2006-08-28 2010-01-21 国立大学法人東北大学 近接場光計測法および近接場光計測装置
US9214987B2 (en) * 2014-05-18 2015-12-15 Auden Techno Corp. Near field antenna for object detecting device
US10330610B2 (en) * 2015-09-16 2019-06-25 Massachusetts Institute Of Technology Methods and apparatus for imaging of near-field objects with microwave or terahertz radiation
CN105628641A (zh) * 2015-12-28 2016-06-01 中国科学院重庆绿色智能技术研究院 一种实时散射型太赫兹准时域近场偏振光谱仪
CN106872800B (zh) * 2017-02-15 2019-04-30 上海理工大学 石墨烯量子点荧光增强的太赫兹时域电场检测系统
JP6875957B2 (ja) * 2017-08-23 2021-05-26 浜松ホトニクス株式会社 トンネル電流制御装置およびトンネル電流制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894125A (en) * 1997-08-18 1999-04-13 Lucent Technologies Inc. Near field terahertz imaging
CN105092514A (zh) * 2015-08-20 2015-11-25 中国科学院重庆绿色智能技术研究院 一种散射式的扫描近场太赫兹显微镜
CN106442394A (zh) 2016-09-28 2017-02-22 中国科学院上海微系统与信息技术研究所 一种太赫兹近场成像系统及方法
CN107860742A (zh) * 2017-11-03 2018-03-30 中国科学院重庆绿色智能技术研究院 一种反射式太赫兹时域近场扫描显微镜
CN108844914A (zh) * 2018-05-28 2018-11-20 南开大学 一种基于金属探针的太赫兹超分辨成像装置及成像方法
CN109696422A (zh) * 2018-12-27 2019-04-30 雄安华讯方舟科技有限公司 太赫兹近场成像装置和方法
CN111060719A (zh) 2019-12-30 2020-04-24 仪晟科学仪器(嘉兴)有限公司 太赫兹近场显微镜的太赫兹脉冲束引出机构
CN112083196A (zh) * 2020-09-17 2020-12-15 电子科技大学 一种太赫兹近场成像系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4202448A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236038A (zh) * 2022-07-26 2022-10-25 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种精子顶体空泡太赫兹成像方法
CN115236038B (zh) * 2022-07-26 2024-03-22 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种精子顶体空泡太赫兹成像方法

Also Published As

Publication number Publication date
CN112083196A (zh) 2020-12-15
EP4202448A4 (en) 2024-03-06
CN112083196B (zh) 2021-09-28
EP4202448A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2022057726A1 (zh) 一种太赫兹近场成像系统及方法
Wächter et al. Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution
Hunsche et al. THz near-field imaging
Van Exter et al. High‐brightness terahertz beams characterized with an ultrafast detector
Mitrofanov et al. Terahertz near-field microscopy based on a collection mode detector
Fattinger et al. Point source terahertz optics
US5696372A (en) High efficiency near-field electromagnetic probe having a bowtie antenna structure
Ruffin et al. Direct observation of the Gouy phase shift with single-cycle terahertz pulses
US5952818A (en) Electro-optical sensing apparatus and method for characterizing free-space electromagnetic radiation
Macfaden et al. 3 μm aperture probes for near-field terahertz transmission microscopy
WO2015014129A1 (zh) 太赫兹超分辨率二维成像方法和系统
US20180275064A1 (en) Raman spectrum plane imaging device
Hunsche et al. New dimensions in T-ray imaging
CN107860742B (zh) 一种反射式太赫兹时域近场扫描显微镜
US10113959B2 (en) Terahertz wave generating device and spectroscopic device using same
EP2537021A1 (en) Device for analyzing a sample using radiation in the terahertz frequency range
WO2018205759A1 (zh) 太赫兹近场成像探头和太赫兹近场成像系统
EP1606856A2 (en) Terahertz radiation sources and methods
JP2010048721A (ja) テラヘルツ計測装置
JP2013190311A (ja) センサ装置
CN110376156A (zh) 异步光学采样和双光梳集成的太赫兹波谱系统
CN108287132B (zh) 一种太赫兹异步高速扫描系统触发信号产生装置及方法
Walther et al. Emission and detection of terahertz pulses from a metal-tip antenna
Bitzer et al. Beam-profiling and wavefront-sensing of THz pulses at the focus of a substrate-lens
CN116879219A (zh) 一种太赫兹自相关近场成像成谱系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021868551

Country of ref document: EP

Effective date: 20230324

NENP Non-entry into the national phase

Ref country code: DE