WO2022057395A1 - 悬吊盘摆位机构及手术机器人 - Google Patents

悬吊盘摆位机构及手术机器人 Download PDF

Info

Publication number
WO2022057395A1
WO2022057395A1 PCT/CN2021/104608 CN2021104608W WO2022057395A1 WO 2022057395 A1 WO2022057395 A1 WO 2022057395A1 CN 2021104608 W CN2021104608 W CN 2021104608W WO 2022057395 A1 WO2022057395 A1 WO 2022057395A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
main
sub
suspension plate
plates
Prior art date
Application number
PCT/CN2021/104608
Other languages
English (en)
French (fr)
Inventor
李明
袁帅
陈功
何超
何裕源
Original Assignee
上海微创医疗机器人(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗机器人(集团)股份有限公司 filed Critical 上海微创医疗机器人(集团)股份有限公司
Priority to BR112023004169A priority Critical patent/BR112023004169A2/pt
Priority to EP21868224.3A priority patent/EP4215146A4/en
Publication of WO2022057395A1 publication Critical patent/WO2022057395A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • B25J9/0018Bases fixed on ceiling, i.e. upside down manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • B25J9/0087Dual arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms

Definitions

  • the invention relates to the technical field of medical instruments, in particular to a suspension plate setting mechanism and a surgical robot.
  • the current minimally invasive surgical robots mostly use a master-slave operation mode, that is, the doctor is located on the main console for control, while the robot terminal contains multiple robotic arms, which hold corresponding surgical instruments and enter the patient's lesions to perform corresponding operations. Therefore, the position and posture of the robotic arm will directly affect the smooth operation of the operation. Therefore, before the robotic surgery begins, the surgical robot will be adjusted accordingly to make it suitable for the required surgery.
  • the posture adjustment process of the robotic arm is complicated, and the adjustment takes a long time, which prolongs the operation time.
  • the purpose of the present invention is to provide a suspension plate positioning mechanism and a surgical robot, so as to solve the problems in the existing surgical robot that the posture adjustment process of the mechanical arm is complicated and the adjustment takes a long time.
  • the present invention provides a suspension plate setting mechanism, which includes: at least two main suspension plates, the two main suspension plates are respectively rotatably connected to a suspension end around the same main rotation axis; Each of the main suspension plates is respectively used for connecting at least one robot arm.
  • the suspension plate setting mechanism further includes: at least one first sub-suspension plate; the first sub-suspension plate is rotatably connected to the main suspension around a sub-rotation axis parallel to the main axis of rotation.
  • the suspension trays are connected, and each of the main suspension trays is connected with at least one of the first sub suspension trays; each of the first sub suspension trays is respectively used for connecting at least one robotic arm.
  • each of the main suspension plates is connected to one of the first sub-suspension plates, and each of the main suspension plates is used for a robotic arm to be rotatably connected around the sub-rotation shaft.
  • the main suspension plate extends in a direction perpendicular to the main rotation axis;
  • the suspension plate setting mechanism further includes: at least one second sub suspension plate, the second sub suspension plate is along the The extension direction of the main suspension plate is movably connected with the main suspension plate, and each of the second sub suspension plates is used for connecting at least one robot arm.
  • each of the main suspension pans is connected to at least two of the second sub-suspension pans, and the second sub-suspension pans connected to the same main suspension pan are located along the main suspension pan.
  • the extension directions of the hanging pans are arranged at intervals.
  • the suspension plate setting mechanism includes two main suspension plates and four second sub suspension plates, and each of the main suspension plates is connected to the two second sub suspension plates.
  • the second sub-suspension pan extends in a direction perpendicular to the main rotation axis, and the extension direction of the second sub-suspension pan and the extension direction of the main suspension pan are arranged at an angle;
  • Each of the second sub-suspension trays is used for movably connecting at least one robotic arm along the extending direction of the second sub-suspension tray.
  • the main suspension plate includes a first sliding rail provided along the extension direction of the main suspension plate, and a first sliding block movably arranged along the first sliding rail;
  • the second sub suspension plate includes a second sliding rail arranged along its own extension direction, and a second sliding block movably arranged along the second sliding rail;
  • the second sub-suspension plate is connected with the first sliding block, the first sliding block Two sliders are used to connect with the mechanical arm.
  • the relative angle between any two of the main suspension plates is not less than 60°.
  • a limit mechanism is set between any two of the main suspension plates, and the limit mechanism is used to limit the relative angle between the two main suspension plates to not be less than 60°; the limit The mechanism is configured such that when the first one of the main suspension plates rotates and the angle relative to the second main suspension plate reaches 60°, the limit mechanism drives the second main suspension plate to follow The first of said main suspension discs rotates.
  • the suspension plate positioning mechanism includes three main suspension plates, the three main suspension plates are respectively rotatably arranged independently around the main rotation axis, and each of the main suspension plates is associated with a first sub-plate.
  • the suspension plates are connected, and each of the first sub suspension plates is respectively used for connecting at least one robotic arm.
  • the present invention also provides a surgical robot, which includes the above-mentioned suspension plate swing mechanism, a plurality of mechanical arms and a suspension arm;
  • One main suspension plate of the suspension plate swing mechanism is rotatably connected to the suspension arm around the main axis of rotation, and the other main suspension plates of the suspension plate swing mechanism are respectively connected to the same axis around the main axis of rotation.
  • the main suspension plates connected to the suspension arms are rotatably connected, each of the main suspension plates is respectively connected with at least one of the mechanical arms, and each of the mechanical arms is rotatably connected to the corresponding main suspension plate Hanging plate connection.
  • the suspension plate positioning mechanism includes at least two main suspension plates, and the two main suspension plates respectively surround the same main rotation axis and are connected to each other.
  • a suspension end is rotatably connected; each of the main suspension plates is respectively used for connecting at least one robotic arm.
  • each main suspension plate is rotatably connected to the suspension ends around the same main rotation axis, and each main suspension plate is respectively mounted with at least one mechanical arm, so that multiple robot arms can follow the main suspension plate. It is quickly adjusted to the corresponding position at one time, which satisfies the rapid surgical layout of the robotic arm.
  • each robotic arm on the main suspension tray can obtain more adjustment space and operation space.
  • FIG. 1 is a schematic diagram of a surgical scene of a surgical robot according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a lateral surgical layout according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the layout of a zero-position technique according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a surgical robot according to Embodiment 1 of the present invention.
  • 5a and 5b are schematic diagrams of axial cross-sections of the main suspension plate and the main rotating shaft according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of the limiting mechanism according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the suspension plate positioning mechanism according to the first embodiment of the present invention.
  • 9a-9c are schematic diagrams of swing position conversion of the suspension plate swing mechanism according to the first embodiment of the present invention.
  • 10a and 10b are schematic diagrams of another preferred example of the suspension plate setting mechanism of the first embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a surgical robot according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic diagram of the suspension plate setting mechanism according to the second embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the suspension plate swing mechanism and the mechanical arm connected to the second embodiment of the present invention.
  • 14a to 14c are schematic diagrams of the swing position conversion of the suspension plate swing mechanism according to the second embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a surgical robot according to Embodiment 3 of the present invention.
  • 16 is a schematic diagram of the suspension plate swing mechanism and the mechanical arm connected to the third embodiment of the present invention.
  • 17a to 17c are schematic diagrams of the swing position conversion of the suspension plate swing mechanism according to the third embodiment of the present invention.
  • 1-surgical robot 2-doctor console; 3-patient bed; 4-image trolley; 5-instrument table; 6-ventilator and anesthesia machine;
  • 10-suspension plate setting mechanism 11-robot arm; 12-suspension arm; 100-main suspension plate; 110-slewing bearing; 120-first slider; 130-limit slot; 140-limit block ; 200- the first sub-suspension plate; 300- the second sub-suspension plate; 320- the second slider; A1-the main shaft; A2-the sub-spindle.
  • the singular forms “a,” “an,” and “the” include plural referents; the term “or” is generally employed in its sense including “and/or”; the term “a number” It is generally used in a sense including “at least one”; the term “at least two” is generally used in a sense including “two or more.”
  • the terms “first”, “second” and “third” are used for descriptive purposes only, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second”, “third” may expressly or implicitly include one or at least two of those features.
  • One end and “the other end” and “proximal end” and “distal end” generally refer to corresponding two parts, which not only include the end points.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated; it may be a mechanical connection or an electrical connection; it may be a direct connection , it can also be indirectly connected through an intermediate medium, which can be the internal communication between two elements or the interaction relationship between the two elements.
  • the arrangement of one element on another element generally only means that there is a connection, coupling, cooperation or transmission relationship between the two elements, and the relationship between the two elements may be direct or indirect through intermediate elements connection, coupling, cooperation or transmission, and should not be construed as indicating or implying the spatial positional relationship between two elements, that is, one element can be in any position inside, outside, above, below or on one side of the other element, unless the content Also clearly stated.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the core idea of the present invention is to provide a suspension plate positioning mechanism and a surgical robot, so as to solve the problems that the posture adjustment process of the mechanical arm is complicated and the adjustment takes a long time in the existing surgical robot.
  • FIG. 1 is a schematic diagram of a surgical scene of a surgical robot according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a lateral surgical layout according to an embodiment of the present invention
  • Figure 4 is a schematic diagram of the surgical robot according to the first embodiment of the present invention
  • Figure 5a and Figure 5b are the schematic diagrams of the axial cross-section of the main suspension plate and the main rotating shaft of the first embodiment of the present invention
  • Figure 7 is a schematic diagram of the position-limiting mechanism of the first embodiment of the present invention
  • Figure 7 is a schematic diagram of the suspension plate swing mechanism of the first embodiment of the present invention
  • 9a to 9c are schematic diagrams of the position conversion of the suspension plate setting mechanism of the first embodiment of the present invention
  • FIGS. 10a and 10b are the suspension plate position of another preferred example of the first embodiment of the present invention.
  • Schematic diagram of the institution is a schematic diagram of a lateral surgical layout according to an embodiment of the present invention
  • Figure 4 is a schematic diagram of the
  • FIG. 1 shows an application scenario of using the surgical robot to perform abdominal surgery in an exemplary embodiment.
  • the surgical robot of the present invention has no particular limitation on the application environment, and can also be applied to other operations.
  • the surgical robot is described by taking the minimally invasive abdominal surgery as an example, but this should not be taken as a limitation of the present invention.
  • the surgical system includes a surgical robot 1 , a doctor console 2 and a hospital bed 3 .
  • the surgical robot 1 includes a suspension plate swing mechanism 10 , a plurality of mechanical arms 11 and a suspension arm 12 .
  • the suspension plate setting mechanism 10 includes at least two main suspension plates 100, and the two main suspension plates 100 are respectively rotatably connected to a suspension end around the same main rotation axis A1; each The main suspension plates 100 are respectively used for connecting at least one robot arm 11 . Different surgical instruments and endoscopes are mounted on different mechanical arms 11 respectively.
  • the doctor console 2 is provided with a main operator.
  • the main operation process of the surgical robot is that an operator (eg, a surgeon) performs a micro-invasive surgical treatment on a patient on the hospital bed 3 through remote operation by the doctor console 2 and the main operator.
  • the master operator forms a master-slave control relationship with the robotic arm 11 and the surgical instrument.
  • the robotic arm 11 and the surgical instrument move according to the movement of the main operator during the operation, that is, according to the operation of the operator's hand.
  • the suspension arm 12 of the surgical robot 1 is used as the suspension end.
  • the suspension end is not limited to the suspension arm 12 of the surgical robot 1 , for example, the suspension end may also be a ceiling, a fixing mechanism on a hospital bed 3 , and the like.
  • the suspension plate positioning mechanism 10 can also be connected to other fixable devices such as the ceiling, the hospital bed 3, etc., to realize the operation, which is not limited in the present invention.
  • each main suspension plate 100 is rotatably connected to the suspension arms 12 around the same main rotation axis A1, and each main suspension plate 100 is respectively mounted with at least one robotic arm 11, so that a plurality of robotic arms 11 It can be quickly adjusted to the corresponding position along with the main suspension plate 100 at one time, so that the mechanical arm 11 can achieve rapid surgical layout.
  • each robotic arm 11 on the main suspension tray 100 can obtain a larger adjustment space and an operation space.
  • each main suspension plate 100 may be directly connected to the main rotating shaft A1.
  • the main rotating shaft A1 may be a cylindrical shape with two radially protruding snap rings along its own axis, and the two main suspension plates 100 pass through the respective main suspension plates 100 .
  • the slewing bearings 110 are respectively connected with two snap rings.
  • at least one main suspension plate 100 is directly connected to the main rotation axis A1, and the other at least one main suspension plate 100 is suspended on the aforementioned main suspension plate 100 directly connected to the main rotation axis A1. As shown in Fig.
  • the main rotating shaft A1 has a radially protruding snap ring along its axial direction.
  • the upper main suspension plate 100 is connected with the snap ring through its corresponding slewing bearing 110, and the lower main suspension plate 100 is connected to the snap ring.
  • the hanging plate 100 is connected to the upper main suspension plate 100 through its corresponding slewing bearing 110 and is suspended on the upper main suspension plate 100 .
  • the relative angle between any two main suspension plates 100 is not less than 60°.
  • two or more main suspension disks 100 can be configured to rotate around the main rotation axis A1 synchronously and in the same direction. It should be noted that the two or more main suspension plates 100 rotate synchronously and in the same direction here, which means that each main suspension plate 100 revolves around the main rotation axis A1 at the same time and rotates in the same rotation direction, but does not limit each main suspension plate 100 The rotating speed of the hanging pan 100 is the same.
  • the angles rotated by the main suspension pans 100 in the same period of time are not necessarily the same.
  • all the main suspension plates 100 can be quickly turned to the required surgical layout in the same direction, thereby simplifying the posture adjustment process of the robotic arm 11.
  • the time-consuming adjustment of the robotic arm 11 is reduced, and the operation time is reduced.
  • the difference in rotational speed of the two causes a relative rotation angle between the two.
  • the relative rotation angle makes the relative angle between the main suspension plates 100 change, as long as the relative angle between any two main suspension plates 100 is not less than 60° during the rotation process, it can be adapted to different surgical procedures Positioning needs.
  • the posture of the robot arm 11 can be compensated and adjusted by driving a main suspension plate 100 to rotate separately, or by driving the robot arm 11 to rotate for detailed adjustment, so as to realize a rapid surgical layout.
  • more than two main suspension plates 100 may be configured to rotate at a constant speed, so that when the main suspension plates 100 rotate together, a relative rotation angle will not be generated.
  • a limit mechanism is provided between any two of the main suspension plates 100 , and the limit mechanism is used to limit the relative angle between the two main suspension plates 100 to be no less than 60°.
  • the limiting mechanism is configured such that when the first one of the main suspension plates 100 rotates and the angle relative to the second main suspension plate 100 reaches 60°, the limiting mechanism drives the second one.
  • Each of the main suspension discs 100 rotates following the first main suspension disc.
  • FIG. 6 shows a limiting mechanism between two main suspension pans 100 , the limiting mechanism includes a limiting groove 130 opened on the first main pan
  • the limit block 140 abuts against the side wall of the limit groove 130 , so that the first main suspension plate 100 drives the second main suspension plate 100 .
  • the two main suspension discs 100 follow the rotation.
  • the two main suspension plates 100 can rotate independently around the main rotation axis A1 without interfering with each other.
  • the actively driven main suspension pan 100 moves at a certain angle (for example, the relative angle between the two main suspension pans 100 reaches 60°)
  • the other main suspension plate 100 can be pushed by the limit mechanism to follow the actively driven main suspension plate 100 to move synchronously and in the same direction.
  • the limiting mechanism is not limited to the structure shown in FIG. 6 , and those skilled in the art can configure it as other mechanical limiting structures according to the actual situation.
  • the surgical system further includes auxiliary components such as an image trolley 4, an instrument table 5, a ventilator and an anesthesia machine 6 for use in the operation.
  • auxiliary components such as an image trolley 4, an instrument table 5, a ventilator and an anesthesia machine 6 for use in the operation.
  • the surgical puncture hole is located on one side of the patient's abdomen, and each suspension plate of the suspension plate setting mechanism 10 is arranged toward the side of the patient's body.
  • the column of the robot is located on the side next to the hospital bed 3, the surgical instruments corresponding to the upper and lower sides of the patient are held by the robotic arms 11 on both sides of the surgical robot, and the endoscope or surgical instruments corresponding to the middle hole are held by the robotic arms in the middle of the surgical robot. 11 held.
  • the surgical puncture hole is located in the middle of the patient's abdomen, and is vertically symmetrically distributed with respect to the patient's sagittal plane.
  • the sagittal plane is arranged in a parallel direction, the surgical instruments corresponding to the holes on the left and right sides of the patient are held by the robotic arms 11 on both sides of the surgical robot, and the endoscope or surgical instruments corresponding to the central hole are held by the robotic arms in the middle of the surgical robot. 11 held.
  • the reachable range of the endoscope or surgical instrument held by each robotic arm 11 should cover the puncture hole position corresponding to the robotic arm 11 , and a certain space margin should be guaranteed.
  • the suspension plate positioning mechanism 10 provided in the first embodiment includes at least one first sub suspension plate 200 ; the two main suspension plates 100 respectively surround the same main rotation axis A1 and a suspension end It is rotatably connected; each of the first sub-suspension plates 200 is respectively used for connecting at least one robotic arm 11 .
  • the main suspension plate 100 can be rotated around the main rotation axis A1 to an appropriate angle in a clockwise or counterclockwise direction according to the arrangement of the hospital bed 3 .
  • the first sub-suspension disc 200 connected to the main suspension disc 100 can follow the main suspension disc 100 to rotate at a large angle (ie, follow the rotation passively), and then when the main suspension disc 100 rotates in place , the first sub-suspension plate 200 can be rotated around the sub-rotation axis A2, and detailed adjustments can be made to move the robotic arm 11 mounted on it to a more appropriate position.
  • the rotation of the first sub-suspension plate 200 around the sub-rotation axis A2 may also be performed simultaneously with the rotation of the main suspension plate 100 around the main axis of rotation A1.
  • each of the main suspension plates 100 is connected with one of the first sub-suspension plates 200, and each of the main suspension plates 100 is used for a robotic arm 11 to be rotatable around the sub-rotation axis A2 ground connection.
  • each main suspension pan 100 may be connected to one robotic arm 11 .
  • the mechanical arm 11 is rotatably connected to the main suspension plate 100 around the sub-rotation axis A2.
  • the first sub-suspension pan 200 is also rotatably connected to the main suspension pan 100 around the sub-rotation axis A2.
  • the robot arms 11 mounted on the first sub-suspension pan 200 and the main suspension pan 100 are respectively connected to the main suspension pan 100 around the sub-rotation axis A2.
  • the rotation of the first sub suspension plate 200 is decoupled from the rotation of the mechanical arm 11 mounted on the main suspension plate 100, and each rotates independently, which is beneficial to adjust each mechanical arm 11 to the required position. .
  • the suspension plate setting mechanism 10 includes two main suspension plates 100 and two first sub suspension plates 200 , each main suspension plate 100 is connected to a first sub-suspension pan 200 .
  • One robot arm 11 is mounted on each of the main suspension tray 100 and the first sub suspension tray 200 respectively.
  • each robotic arm 11 is independently rotatable relative to the corresponding suspension tray (main suspension tray 100 or sub suspension tray 200).
  • the robotic arms 11 mounted on the two main suspension plates 100 are mainly aimed at the middle part in the layout of the puncture hole, and generally can mount an endoscope and a surgical instrument.
  • each suspension plate can also be connected with other numbers of mechanical arms 11 respectively, and those skilled in the art can adjust the mechanical arms 11 connected to each suspension plate according to the actual needs of the operation. quantity to configure.
  • Fig. 9a shows the swing state of the suspension plate swing mechanism 10 corresponding to the left position
  • Fig. 9b shows the swing state of the suspension plate swing mechanism 10 corresponding to the zero position
  • Fig. 9c shows The setting state of the suspension plate setting mechanism 10 corresponding to the right side position is obtained.
  • the puncture hole on the left is generally located in the surgical
  • the left side of the suspension arm 12 of the robot 1 corresponds to the left position.
  • the suspension plates are rotated to be arranged in a direction roughly as shown in Figure 9a, and the suspension plates are mainly arranged on the suspension plate.
  • the right side of the arm 12 avoids interference and influence on the left surgical area of the patient, and the robotic arms 11 can be arranged in sequence toward the left abdominal position of the patient at the same time, so that the robotic arms 11 are arranged in sequence according to the expected surgical layout .
  • Fig. 9b and Fig. 9c respectively show the setting states corresponding to the zero position setting and the right side position.
  • the suspension plate setting mechanism 10 can be quickly switched between the various positions. It should be noted that during the operation preparation process, the initial state of the suspension plate setting mechanism 10 can be in any state between FIGS. 9 a to 9 c , and is not limited to the states shown in FIGS. 9 a to 9 c . According to the needs of the operation, the suspension plate setting mechanism 10 can be quickly set up and converted to the required surgical layout.
  • a part of the main suspension pans 100 are connected with more than two first sub-suspension pans 200 .
  • the suspension plate setting mechanism 10 includes two main suspension plates 100 and four first sub suspension plates 200, and each main suspension plate 100 is respectively connected with the two first sub suspension plates Disk 200 is connected.
  • the robotic arm 11 may only be mounted on the first sub-suspension tray 200 , and may not be directly mounted on the main suspension tray 100 .
  • the suspension plate setting mechanism 10 of this configuration can also be applied to the situation when the surgical instrument needs to enter the patient from both sides of the patient respectively. Specifically, for clinical application scenarios such as hepatobiliary surgery, prostate surgery, etc.
  • the two Further rotational adjustment of the first sub-suspension trays 200 can realize that the surgical instruments carried by the two main suspension trays 100 are located on both sides of the patient.
  • the scope of application of the surgical robot 1 is further improved.
  • the suspension plate setting mechanism 10 also includes two main suspension plates 100 and four first sub suspension plates 200 .
  • one main suspension pan 100 is connected with three first sub-suspension pans 200
  • the other main suspension pan 100 is connected with one first sub-suspension pan 200 .
  • This configuration can also be applied to some specific surgeries, improving the applicable scope of the surgical robot 1 .
  • the main suspension plate 100 connected with the three first sub-suspension plates 200 can drive the three attached first sub-suspension plates 200 to be quickly placed to the required angle, and then the three The first sub-suspension trays 200 are individually adjusted in detail, which effectively improves the speed of positioning.
  • FIG. 11 is a schematic diagram of the surgical robot according to the second embodiment of the present invention
  • FIG. 12 is a schematic diagram of the suspension plate setting mechanism of the second embodiment of the present invention
  • FIG. 13 is the second embodiment of the present invention.
  • Figure 14a to Figure 14c are schematic diagrams of the position conversion of the suspension plate positioning mechanism according to the second embodiment of the present invention.
  • the suspension plate positioning mechanism and the surgical robot provided in the second embodiment of the present invention are basically the same as the suspension plate positioning mechanism and the surgical robot provided in the first embodiment.
  • the main suspension plate 100 extends in a direction perpendicular to the main rotation axis A1;
  • the mechanism 10 further includes: at least one second sub-suspension pan 300, the second sub-suspension pan 300 is movably connected to the main suspension pan 100 along the extension direction of the main suspension pan 100, each The second sub-suspension plate 300 is used for connecting at least one robotic arm 11 .
  • the extension direction of the main suspension plate 100 is not limited to being a straight line as shown in FIG. 9 to FIG.
  • the extension direction may also be a curve perpendicular to the main rotation axis A1, such as an arc,
  • the second sub-suspension pan 300 can move in an arc shape following the arc-shaped extending direction of the main suspension pan 100 .
  • the main suspension plate 100 can be rotated around the main rotation axis A1 to an appropriate angle in a clockwise or counterclockwise direction according to the arrangement of the hospital bed 3 .
  • the second sub-suspension disc 300 connected to the main suspension disc 100 can follow the main suspension disc 100 to rotate at a large angle (ie, follow the rotation passively), and then when the main suspension disc 100 rotates in place , the second sub suspension tray 300 can move along the extension direction of the main suspension tray 100, and make detailed adjustments to move the robotic arm 11 mounted on it to a more appropriate position.
  • the movement of the second sub-suspension plate 300 along the main suspension plate 100 may also be performed simultaneously with the rotation of the main suspension plate 100 around the main rotation axis A1.
  • the robotic arm 11 is rotatably mounted on the second sub-suspension pan 300 and moves along the main suspension pan 100 along with the second sub-suspension pan 300 .
  • the robotic arm 11 may further move along the extending direction of the second sub-suspension plate 300 .
  • the second sub-suspension pan 300 extends in a direction perpendicular to the main rotation axis A1, and the extension direction of the second sub-suspension pan 300 forms an angle with the extension direction of the main suspension pan 100
  • Each of the second sub-suspension trays 300 is used for movably connecting at least one robotic arm 11 along the extending direction of the second sub-suspension tray 300 .
  • the extension direction of the second sub-suspension pan 300 is arranged at an angle with the extension direction of the main suspension pan 100 , and the robotic arm 11 mounted on the second sub-suspension pan 300 can extend along the extension of the second sub-suspension pan 300 while the second sub-suspension pan 300 can move along the extending direction of the main suspension pan 100 .
  • the robot arm 11 can be provided with more degrees of freedom of adjustment.
  • the shape of the extending direction of the second sub-suspension plate 300 is not limited here, such as a straight line as shown in FIG. 11 to FIG. 13 , or other shapes, such as an arc.
  • the main suspension plate 100 includes a first sliding rail provided along its own extending direction, and a first sliding block 120 movably provided along the first sliding rail;
  • the second sub-suspension The tray 300 includes a second sliding rail provided along its own extending direction, and a second sliding block 320 movably provided along the second sliding rail; the second sub-suspension tray 300 and the first sliding block 120 , the second sliding block 320 is used to connect with the robotic arm 11 .
  • the main suspension pan 100 and the second sub-suspension pan 300 are connected by the first slider 120 and the first slide rail, and the robot arm 11 and the second sub-suspension pan 300 are connected
  • the second sliding block 320 With connecting the second sliding block 320 with the second sliding rail, the adjustment of the robotic arm 11 relative to the main suspension plate 100 in two directions along the first sliding rail and the second sliding rail can be realized.
  • the robotic arm 11 is rotatably connected to the second sliding block 320 to further improve the degree of freedom of adjustment of the robotic arm 11 .
  • the connection between the robotic arm 11 , the second sub-suspension plate 300 and the main suspension plate 100 is not limited to the use of sliders and slide rails.
  • the transmission is performed using common connection methods in the art, such as a lever, which is not limited in this embodiment.
  • each of the main suspension pans 100 is connected to at least two of the second sub-suspension pans 300, and the second sub-suspension pans 300 connected to the same main suspension pan 100 are connected along the The extending directions of the main suspension pans 100 are arranged at intervals.
  • the suspension pan setting mechanism 10 includes two main suspension pans 100 and four second sub-suspension pans 300, each of the main suspension pans 100 and two of the second sub-suspension pans 300 The sub-suspension pan 300 is connected.
  • Each of the main suspension plates 100 is indirectly connected to the robot arm 11 through the second sub suspension plate 300 , and the robot arm 11 is not directly disposed on the main suspension plate 100 .
  • a robotic arm 11 is mounted on each of the second sub-suspension trays 300 respectively.
  • the robotic arms 11 mounted on the two second sub-suspension trays 300 close to the main rotation axis A1 are mainly aimed at the middle part of the puncture hole layout, and generally can mount an endoscope and a surgical instrument.
  • the robotic arms 11 mounted on the two second sub-suspension disks 300 away from the main rotation axis A1 are mainly aimed at the two sides of the puncture hole layout, and generally mount surgical instruments.
  • each of the second sub-suspension trays 300 may also be connected with other numbers of robotic arms 11, and some robotic arms 11 may also be mounted on the main suspension tray 100.
  • the number and position of the robotic arms 11 connected to each suspension tray can be configured according to the actual needs of the operation, which is not limited in this embodiment.
  • FIG. 14a shows the setting state of the suspension plate setting mechanism 10 of the second embodiment corresponding to the left position
  • FIG. 14b shows the suspension plate setting mechanism 10 of the second embodiment
  • FIG. 14c shows the setting state of the suspension plate setting mechanism 10 of the second embodiment corresponding to the right side position.
  • the hanger pan setting mechanism 10 can be quickly switched between the various positions.
  • the initial state of the suspension plate setting mechanism 10 can be in any state between FIGS. 14a to 14c , and is not limited to the states shown in FIGS. 14a to 14c .
  • the suspension plate positioning mechanism 10 can be quickly positioned and converted to the required surgical layout.
  • FIG. 15 is a schematic diagram of the surgical robot according to the third embodiment of the present invention
  • FIG. 16 is a schematic diagram of the suspension plate setting mechanism and the robotic arm according to the third embodiment of the present invention after connecting
  • Fig. 17c is a schematic diagram of the swing position conversion of the suspension plate swing mechanism according to the third embodiment of the present invention.
  • the suspension plate positioning mechanism and the surgical robot provided in the third embodiment of the present invention are basically the same as the suspension plate positioning mechanism and the surgical robot provided in the first embodiment, and the same parts are not described, and only the differences are described below.
  • the suspension plate setting mechanism 10 provided in the third embodiment includes three main suspension plates 100 , and the three main suspension plates 100 are respectively rotatably arranged around the main rotation axis A1 relatively independently. .
  • the suspension plate setting mechanism 10 further includes three first sub-suspension plates 200 , and the three first sub-suspension plates 200 are respectively rotatably connected to the three main suspension plates 100 around the sub-rotation axis A2 .
  • Each of the main suspension plates 100 is indirectly connected to the robot arm 11 through the first sub suspension plate 200 , the robot arm 11 is not directly arranged on the main suspension plate 100 , and each first sub suspension plate 200 is hung on the main suspension plate 100 A robotic arm 11 is carried, and the robotic arm 11 is preferably rotatably connected to the first sub-suspension pan 200 .
  • FIG. 17 a shows the swing state of the suspension plate swing mechanism 10 of the first embodiment corresponding to the left position
  • FIG. 17 b shows the suspension plate swing mechanism 10 of the first embodiment
  • FIG. 17c shows the setting state of the suspension plate setting mechanism 10 of the first embodiment corresponding to the right side position.
  • the suspension plate setting mechanism 10 can be quickly switched between the various positions. It should be noted that during the operation preparation process, the initial state of the suspension plate setting mechanism 10 can be in any state between FIGS. 17a to 17c , and is not limited to the several states shown in FIGS. 17a to 17c . According to the needs of the operation, the suspension plate positioning mechanism 10 can be quickly positioned and converted to the required surgical layout.
  • the main suspension plate 100 or the first sub suspension plate 200 further has a clutch mechanism, and the rotation shaft of each suspension plate can be linked with other suspension plates or switched independently of movement through the clutch mechanism.
  • the suspension plate can be temporarily disconnected from the linkage with other suspension plates through the clutch mechanism, so as to realize the adjustment of the position angle of the suspension plate. adjust.
  • the three main suspension plates 100 can be configured to be linked together. After the three main suspension plates 100 rotate together to a predetermined position, one or two main suspension plates The 100 can achieve independent movement through the clutch mechanism to better adapt to the detailed adjustment of the positioning.
  • the suspension plate setting mechanism 10 includes two main suspension plates 100, one of which is rotatably connected to the first sub suspension plate 200 as in the first embodiment, and the other main suspension plate 100, as in the second embodiment, is connected with the second sub suspension plate 200.
  • the sub-suspension trays 300 are mobile connected.
  • the two sub suspension plates can be adjusted in detail in different ways. For details, please refer to the description of the above embodiment, which will not be repeated here.
  • the suspension plate positioning mechanism includes at least two main suspension plates, and the two main suspension plates respectively surround the same main rotation axis and are connected to each other.
  • a suspension end is rotatably connected; each of the main suspension plates is respectively used for connecting at least one robotic arm.
  • at least two main suspension plates are rotatably connected to the suspension ends around the same main rotation axis, and each main suspension plate is respectively mounted with at least one mechanical arm, so that multiple robot arms can follow the main suspension plate. It is quickly adjusted to the corresponding position at one time, which satisfies the rapid surgical layout of the robotic arm.
  • each robotic arm on the main suspension tray can obtain more adjustment space and operation space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Robotics (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种悬吊盘摆位机构(10)及手术机器人(1),悬吊盘摆位机构(10)包括至少两个主悬吊盘(100),两个主悬吊盘(100)分别围绕同一主转轴(A1)与一悬吊端可转动地连接;每个主悬吊盘(100)分别用于供至少一个机械臂(11)连接。如此配置,至少两个主悬吊盘(100)围绕同一主转轴(A1)可转动地与悬吊端进行连接,而每个主悬吊盘(100)分别挂载至少一个机械臂(11),使得多个机械臂(11)能够随主悬吊盘(100)被一次性地快速调整到相应位置,满足机械臂(11)实现快速的术式布局。此外,通过对至少两个主悬吊盘(100)的区分,可以使得主悬吊盘(100)上的各个机械臂(11)获得更大调整空间和手术空间。

Description

悬吊盘摆位机构及手术机器人 技术领域
本发明涉及医疗器械技术领域,特别涉及一种悬吊盘摆位机构及手术机器人。
背景技术
目前的微创伤手术机器人多采用主从式操作方式,即医生位于主操作台进行控制,而机器人终端则含有多个机械臂,装持相应的手术器械,进入患者病灶进行相应的手术。因而,机械臂的位置和姿态将直接影响到手术的顺利进行。故在机器人手术开始前,均会对手术机器人进行相应的调整,使其适合进行所需的手术。
目前,在行业中的手术机器人中,一些产品的多个机械臂安装在一个固定平台上进行逐臂调整。这种方式无法实现快速的摆位,并且机械臂摆位和操作空间容易受到手术床和手术台车相对摆位的影响和限制,容易产生相互干涉的问题。
另外一些产品采用单个悬吊盘结构,将多个机械臂安装在一个可旋转的悬吊盘上进行统一调整。此方式虽然可快速调整多个机械臂,但无法兼顾各个机械臂的初始摆位姿态。因此,在通过转动悬吊盘将多个机械臂大范围地粗调整到位后,通常还需要进行逐个机械臂的姿态细调整。
因此,现有的手术机器人中,机械臂的姿态调整过程复杂,调整耗时长,延长了手术的时间。
发明内容
本发明的目的在于提供一种悬吊盘摆位机构及手术机器人,以解决现有手术机器人中,机械臂的姿态调整过程复杂,调整耗时长的问题。
为解决上述技术问题,本发明提供一种悬吊盘摆位机构,其包括:至少两个主悬吊盘,两个主悬吊盘分别围绕同一主转轴与一悬吊端可转动地连接;每个所述主悬吊盘分别用于供至少一个机械臂连接。
可选的,所述悬吊盘摆位机构还包括:至少一个第一子悬吊盘;所述第一子悬吊盘围绕与所述主转轴平行的子转轴可转动地与所述主悬吊盘连接,且每个所述主悬吊盘与至少一个所述第一子悬吊盘连接;每个所述第一子悬吊盘分别用于供至少一个机械臂连接。
可选的,每个所述主悬吊盘均与一个所述第一子悬吊盘连接,每个所述主悬吊盘用于供一个机械臂围绕所述子转轴可转动地连接。
可选的,所述主悬吊盘沿垂直于所述主转轴的方向延伸;所述悬吊盘摆位机构还包括:至少一个第二子悬吊盘,所述第二子悬吊盘沿所述主悬吊盘的延伸方向可移动地与所述主悬吊盘连接,每个所述第二子悬吊盘用于供至少一个机械臂连接。
可选的,每个所述主悬吊盘与至少两个所述第二子悬吊盘连接,与同一个所述主悬吊盘连接的所述第二子悬吊盘沿所述主悬吊盘的延伸方向相间隔地设置。
可选的,所述悬吊盘摆位机构包括两个主悬吊盘和四个第二子悬吊盘,每个所述主悬吊盘与两个所述第二子悬吊盘连接。
可选的,所述第二子悬吊盘沿垂直于所述主转轴的方向延伸,且所述第二子悬吊盘的延伸方向与所述主悬吊盘的延伸方向成角度地布置;每个所述第二子悬吊盘用于供至少一个机械臂沿所述第二子悬吊盘的延伸方向可移动地连接。
可选的,所述主悬吊盘包括沿自身的延伸方向设置的第一滑轨、以及沿所述第一滑轨可移动地设置的第一滑块;所述第二子悬吊盘包括沿自身的延伸方向设置的第二滑轨、以及沿所述第二滑轨可移动地设置的第二滑块;所述第二子悬吊盘与所述第一滑块连接,所述第二滑块用于与机械臂连接。
可选的,在所述主悬吊盘分别围绕所述主转轴转动的过程中,任意两个所述主悬吊盘之间的相对角度不小于60°。
可选的,任意两个所述主悬吊盘之间设置有限位机构,所述限位机构用于限制两个所述主悬吊盘之间的相对角度不小于60°;所述限位机构被配置为,当其中第一个所述主悬吊盘转动且相对于第二个所述主悬吊盘的角度达到60°时,所述限位机构带动第二个主悬吊盘跟随第一个所述主悬吊盘转动。
可选的,所述悬吊盘摆位机构包括三个主悬吊盘,三个主悬吊盘分别围绕主转轴相对独立可转动地设置,每个所述主悬吊盘与一个第一子悬吊盘连接,每个所述第一子悬吊盘分别用于供至少一个机械臂连接。
为解决上述技术问题,本发明还提供一种手术机器人,其包括如上所述的悬吊盘摆位机构、多个机械臂以及悬吊臂;
所述悬吊盘摆位机构的一个主悬吊盘围绕主转轴与所述悬吊臂可转动地连接,所述悬吊盘摆位机构的其它主悬吊盘分别围绕所述主转轴与同悬吊臂 连接的所述主悬吊盘可转动地连接,每个所述主悬吊盘分别与至少一个所述机械臂连接,且每个所述机械臂均可转动地与对应的主悬吊盘连接。
综上所述,在本发明提供的悬吊盘摆位机构及手术机器人中,所述悬吊盘摆位机构包括至少两个主悬吊盘,两个主悬吊盘分别围绕同一主转轴与一悬吊端可转动地连接;每个所述主悬吊盘分别用于供至少一个机械臂连接。
如此配置,至少两个主悬吊盘围绕同一主转轴可转动地与悬吊端进行连接,而每个主悬吊盘分别挂载至少一个机械臂,使得多个机械臂能够随主悬吊盘被一次性地快速调整到相应位置,满足机械臂实现快速的术式布局。此外,通过对至少两个主悬吊盘的区分,可以使得主悬吊盘上的各个机械臂获得更大调整空间和手术空间。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是本发明实施例的手术机器人的手术场景示意图;
图2是本发明实施例的侧位术式布局的示意图;
图3是本发明实施例的零位术式布局的示意图;
图4是本发明实施例一的手术机器人的示意图;
图5a和图5b是本发明实施例一的主悬吊盘与主转轴的轴向截面的示意图;
图6是本发明实施例一的限位机构的示意图;
图7是本发明实施例一的悬吊盘摆位机构的示意图;
图8是本发明实施例一的悬吊盘摆位机构与机械臂连接后的示意图;
图9a~图9c是本发明实施例一的悬吊盘摆位机构的摆位转换的示意图;
图10a和图10b是本发明实施例一的另一优选示例的悬吊盘摆位机构的示意图;
图11是本发明实施例二的手术机器人的示意图;
图12是本发明实施例二的悬吊盘摆位机构的示意图;
图13是本发明实施例二的悬吊盘摆位机构与机械臂连接后的示意图;
图14a~图14c是本发明实施例二的悬吊盘摆位机构的摆位转换的示意图;
图15是本发明实施例三的手术机器人的示意图;
图16是本发明实施例三的悬吊盘摆位机构与机械臂连接后的示意图;
图17a~图17c是本发明实施例三的悬吊盘摆位机构的摆位转换的示意图。
附图中:
1-手术机器人;2-医生控制台;3-病床;4-图像台车;5-器械台;6-呼吸机和麻醉机;
10-悬吊盘摆位机构;11-机械臂;12-悬吊臂;100-主悬吊盘;110-回转轴承;120-第一滑块;130-限位槽;140-限位块;200-第一子悬吊盘;300-第二子悬吊盘;320-第二滑块;A1-主转轴;A2-子转轴。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例绘制。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象;术语“或”通常是以包括“和/或”的含义而进行使用的;术语“若干”通常是以包括“至少一个”的含义而进行使用的;术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征。“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点。术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。此外,如在本发明中所使用的,一元件设置于另一元件,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的核心思想在于提供一种悬吊盘摆位机构及手术机器人,以解决现有手术机器人中,机械臂的姿态调整过程复杂,调整耗时长的问题。
下面通过若干不同的实施例,结合附图进行详细说明。
【实施例一】
请参考图1至图10b,其中,图1是本发明实施例的手术机器人的手术场景示意图;图2是本发明实施例的侧位术式布局的示意图;图3是本发明实施例的零位术式布局的示意图;图4是本发明实施例一的手术机器人的示意图;图5a和图5b是本发明实施例一的主悬吊盘与主转轴的轴向截面的示意图;图6是本发明实施例一的限位机构的示意图;图7是本发明实施例一的悬吊盘摆位机构的示意图;图8是本发明实施例一的悬吊盘摆位机构与机械臂连接后的示意图;图9a~图9c是本发明实施例一的悬吊盘摆位机构的摆位转换的示意图;图10a和图10b是本发明实施例一的另一优选示例的悬吊盘摆位机构的示意图。
本发明实施例提供一种手术机器人。图1示出了在一个示范性的实施例中,利用所述手术机器人进行腹腔手术的应用场景。然而,本发明的手术机器人对应用环境没有特别的限制,也可应用于其他的手术。以下描述中,以用于腹腔微创手术为示例对手术机器人进行说明,但不应以此作为对本发明的限定。
如图1所示,该手术系统包括手术机器人1、医生控制台2和病床3。请参考图4,所述手术机器人1包括悬吊盘摆位机构10、多个机械臂11以及悬吊臂12。如图7所示,所述悬吊盘摆位机构10包括至少两个主悬吊盘100,两个主悬吊盘100分别围绕同一主转轴A1与一悬吊端可转动地连接;每个所述主悬吊盘100分别用于供至少一个机械臂11连接。不同的手术器械和内窥镜分别挂载于不同的机械臂11上。医生控制台2上设有主操作手。手术机器人的主要操作过程是操作者(例如,外科医生)通过医生控制台2及主操作手远程操作实现对病床3上的患者进行微创伤手术治疗。其中,主操作手与机械臂11及手术器械构成主从控制关系。机械臂11和手术器械在手术过程中根据主操作手的运动而运动,即根据操作者手部的操作而运动。需要说明的,在图1示出的手术场景中,以手术机器人1的悬吊臂12作为悬吊端。在实际中,悬吊端并不局限于为手术机器人1的悬吊臂12,例如悬吊端还可以是天花板、病床3上的固定机构等。悬吊盘摆位机构10还可通过连接在天花板、病床3等其它可固定的装置上,实现操作,本发明对此不限。
如此配置,至少两个主悬吊盘100围绕同一主转轴A1可转动地与悬吊臂12进行连接,而每个主悬吊盘100分别挂载至少一个机械臂11,使得多个机械臂11能够随主悬吊盘100被一次性地快速调整到相应位置,满足机械臂11实现快速的术式布局。此外,通过对至少两个主悬吊盘100的区分,可以使 得主悬吊盘100上的各个机械臂11获得更大调整空间和手术空间。
可选的,在一些实施例中,每个主悬吊盘100均可直接与主转轴A1连接。以两个主悬吊盘100为例,如图5a所示,主转轴A1可以为一圆柱状,沿自身轴向具有两个径向凸出的卡环,两个主悬吊盘100通过各自的回转轴承110分别与两个卡环连接。在另外的一些实施例中,其中至少一个主悬吊盘100直接与主转轴A1连接,其它至少一个主悬吊盘100悬挂在前述直接与主转轴A1连接的主悬吊盘100上。如图5b所示,主转轴A1沿自身轴向具有一个径向凸出的卡环,图5b中的上部的主悬吊盘100通过其对应的回转轴承110与卡环连接,下部的主悬吊盘100通过其对应的回转轴承110与上部的主悬吊盘100连接,悬挂在上部的主悬吊盘100上。
优选的,在所述主悬吊盘100分别围绕所述主转轴A1转动的过程中,任意两个所述主悬吊盘100之间的相对角度不小于60°。由于实际使用中,为满足机械臂11实现快速的术式布局,两个以上主悬吊盘100可被配置为同步且同向地围绕主转轴A1转动。需要说明的,这里两个以上主悬吊盘100同步且同向地转动,是指各主悬吊盘100同时围绕主转轴A1,并且沿同样的旋转方向进行转动,但并不限定各主悬吊盘100的转速相同。因此,实际上,各主悬吊盘100在同样的一段时间内所转过的角度并不一定相同。而只要各主悬吊盘100同步且同向地转动,即可使所有的主悬吊盘100能够迅速地同向地转向所需要的术式布局,从而可以简化机械臂11的姿态调整过程,减少机械臂11的调整耗时,减少手术的时间。然而,为了机械臂11的调整更准确,任意两个所述主悬吊盘100之间同步且同向地转动时,两者的转速差异导致两者之间存在相对转动角度。虽然该相对转动角度使主悬吊盘100之间的相对角度发生变化,但是只要在转动过程中任两个主悬吊盘100之间的相对角度不小于60°便可适应于不同的术式摆位需求。此外,后续也可通过单独驱动一个主悬吊盘100转动,或者驱动机械臂11转动以进行细节调整,对机械臂11的姿态进行补偿调整,从而可以实现快速的术式布局。可选的,在一些实施例中,两个以上主悬吊盘100可被配置为等速转动,这样各主悬吊盘100在一同转动时,不会产生相对转动角度。
可选的,任意两个所述主悬吊盘100之间设置有限位机构,所述限位机构用于限制两个所述主悬吊盘100之间的相对角度不小于60°。所述限位机构被配置为,当其中第一个所述主悬吊盘100转动且相对于第二个所述主悬吊盘100的角度达到60°时,所述限位机构带动第二个所述主悬吊盘100跟随第一个所述主悬吊盘转动。图6示出了一种两主悬吊盘100之间的限位机构, 所述限位机构包括沿周向开设于第一个主悬吊盘100上的限位槽130,以及与第二个主悬吊盘100固定连接的限位块140,所述限位块140可活动地设置在限位槽130中。当在转动过程中两个主悬吊盘100之间的相对角度达到60°时,限位块140与限位槽130的侧壁相抵靠,从而实现由第一个主悬吊盘100带动第二个主悬吊盘100跟随转动。一般地,两主悬吊盘100可独立的围绕主转轴A1转动而不互相干涉。但是,当驱动其中一个主悬吊盘100相对另一个主悬吊盘100运动时,主动驱动的主悬吊盘100运动一定角度后(例如,两个主悬吊盘100之间的相对角度达到60°),继续朝向另一主悬吊盘100的方向运动时,可通过限位机构推动另一主悬吊盘100同步且同向的跟随该主动驱动的主悬吊盘100运动。通过如此布置,可使所有的主悬吊盘100能够迅速地同向地转向所需要的术式布局,从而可以简化机械臂11的姿态调整过程,减少机械臂11的调整耗时,减少手术的时间。通过限位机构的设置,可保证两主悬吊盘100间的夹角不小于60°。如此布置,可尽量避免调整过程中相关悬吊盘或机械臂的干涉。需要说明的,限位机构不限于图6所示的结构,本领域技术人员可根据实际,将其配置为其它的机械限位结构。
可选的,在一些手术中,手术系统还包括图像台车4、器械台5、呼吸机和麻醉机6等辅助部件,以用于供手术中使用。本领域技术人员可根据现有技术对这些辅助部件进行选择和配置,这里不再展开描述。
在腹腔镜手术中,一般有3种较典型的术式体位和相对应的穿刺孔位布局,左侧摆位,右侧摆位以及零位摆位;在手术时也应该满足这些术式体位和穿孔布局的需求,并且需要满足机械臂11的操作空间能够足够覆盖需要到达的术式穿孔位置。在手术准备过程中,手术机器人需要快速带动机械臂11使其末端较为精准的指向该机械臂11所对应的穿孔点位。
请参考图2,在左侧摆位或右侧摆位时,手术穿刺孔位位于病人腹部的一侧,悬吊盘摆位机构10的各悬吊盘朝向于病人身体的侧边布置,手术机器人的立柱位于病床3旁边一侧,病人上下两侧孔位所对应的手术器械由手术机器人两侧的机械臂11所持,中部孔位对应的内窥镜或手术器械由手术机器人中间的机械臂11所持。
请参考图3,在零位摆位时,手术穿刺孔位位于病人腹部的中间,相对于病人的矢状面呈垂直对称分布,悬吊盘摆位机构10的各悬吊盘沿与病人的矢状面方向呈平行的方向布置,病人左右两侧孔位所对应的手术器械由手术机器人两侧的机械臂11所持,中部孔位对应的内窥镜或手术器械由手术机器人中间的机械臂11所持。
为保证机械臂11操作空间的需求,各机械臂11所持的内窥镜或手术器械可到达的范围应覆盖该机械臂11所对应的穿刺孔位,并应保证一定的空间裕量。
请参考图7和图8,本实施例一提供的悬吊盘摆位机构10包括至少一个第一子悬吊盘200;两个主悬吊盘100分别围绕同一主转轴A1与一悬吊端可转动地连接;每个所述第一子悬吊盘200分别用于供至少一个机械臂11连接。
实际使用中,主悬吊盘100可配合病床3的布置,顺时针或逆时针方向围绕主转轴A1转动到合适的角度。在转动过程中,连接在主悬吊盘100上的第一子悬吊盘200可跟随主悬吊盘100作大角度地转动(即被动地跟随转动),进而当主悬吊盘100转动到位后,第一子悬吊盘200可围绕子转轴A2转动,作细节调整,以使其上挂载的机械臂11运动到更合适的位置。需要说明的,第一子悬吊盘200围绕子转轴A2的转动,也可以与主悬吊盘100围绕主转轴A1的转动同时进行。
优选的,每个所述主悬吊盘100均与一个所述第一子悬吊盘200连接,每个所述主悬吊盘100用于供一个机械臂11围绕所述子转轴A2可转动地连接。在一些实施例中,每个主悬吊盘100可与一个机械臂11连接。具体的,该机械臂11围绕子转轴A2可转动地与主悬吊盘100连接。而同时,第一子悬吊盘200也围绕子转轴A2可转动地与主悬吊盘100连接。因此,可以理解的,第一子悬吊盘200与主悬吊盘100挂载的机械臂11分别围绕子转轴A2与主悬吊盘100连接。可选的,第一子悬吊盘200的转动与主悬吊盘100挂载的机械臂11的转动相互解耦,各自独立地进行转动,有利于将各机械臂11调整到所需要的位置。
请继续参考图7和图8,在一个示范性的实施例中,悬吊盘摆位机构10包括两个主悬吊盘100和两个第一子悬吊盘200,每个主悬吊盘100与一个第一子悬吊盘200连接。每个主悬吊盘100和第一子悬吊盘200分别挂载一个机械臂11。在一个示范例中,每个机械臂11相对于对应的悬吊盘(主悬吊盘100或子悬吊盘200)均可独立地转动。两个主悬吊盘100所挂载的机械臂11主要针对于穿刺孔位布局中的中间部位,一般可挂载内窥镜及一个手术器械。当然,在其它的一些实施例中,每个悬吊盘还分别可以与其它数量的机械臂11连接,本领域技术人员可根据手术的实际需要对每个悬吊盘所连接的机械臂11的数量进行配置。
下面请参考图9a至图9c,并结合图1,对本实施例提供的悬吊盘摆位机构10的摆位转换进行详细的说明。具体的,图9a示出了悬吊盘摆位机构10 对应于左侧位的摆位状态,图9b示出了悬吊盘摆位机构10对应于零位的摆位状态,图9c示出了悬吊盘摆位机构10对应于右侧位的摆位状态。
如图1所示,当手术机器人1的立柱布局在病床3的头端一侧,从手术机器人1的立柱朝向悬吊盘摆位机构10方向看去,左侧位的穿刺孔位一般位于手术机器人1之悬吊臂12的左侧,因此对应于左侧位的摆位状态,此时各悬吊盘转动至大致如图9a的方向排布,其各悬吊盘主要排布在悬吊臂12的右侧,避免对病人的左侧手术区域产生干涉和影响,各机械臂11可以同时朝向病人的左侧腹位置依次排列,从而使各机械臂11按预期的术式布局依次排布。
图9b和图9c分别示出了对应于零位摆位及右侧位的摆位状态,具体可参考上文关于左侧位的说明,这里不再展开。实际中,悬吊盘摆位机构10可在各个摆位之间迅速地转换。需要说明的,在手术准备过程中,悬吊盘摆位机构10的初始状态可以处于图9a至图9c之间的任一状态,并不局限于图9a至图9c所示出的几种状态。根据手术的需要,悬吊盘摆位机构10可以迅速地摆位转换至所需要的术式布局。
请参考图10a和图10b,在另一个优选示例中,一部分的主悬吊盘100与两个以上的第一子悬吊盘200连接。
图10a示出的示例中,悬吊盘摆位机构10包括两个主悬吊盘100和四个第一子悬吊盘200,每个主悬吊盘100分别与两个第一子悬吊盘200连接。此时,机械臂11可仅挂载于第一子悬吊盘200上,而可不直接挂载在主悬吊盘100上。这种构型的悬吊盘摆位机构10,还可以适用于当手术器械需要从患者的两侧分别进入病人时的情况。具体的,对于类似肝胆手术、前列腺手术等需要尽量从腹腔的两侧插入手术器械的临床应用场景,可通过主悬吊盘100摆位到预定位置后,每个主悬吊盘100上的两个第一子悬吊盘200进一步的转动调整,可以实现使两个主悬吊盘100所挂载的手术器械位于病人两侧。进一步提高了手术机器人1的适用范围。
在图10b示出的示例中,悬吊盘摆位机构10同样包括两个主悬吊盘100和四个第一子悬吊盘200。与图8a示出的示例不同的是,其中一个主悬吊盘100与三个第一子悬吊盘200连接,另一个主悬吊盘100与一个第一子悬吊盘200连接。这种构型也可以适用于一些特定的手术,提高手术机器人1的适用范围。摆位时,与三个第一子悬吊盘200连接的主悬吊盘100可以带动着其附属的三个第一子悬吊盘200一同,迅速地摆位至需要的角度,进而三个第一子悬吊盘200各自进行细节调整,有效地提高了摆位的速度。
【实施例二】
请参考图11至图14c,其中,图11是本发明实施例二的手术机器人的示意图;图12是本发明实施例二的悬吊盘摆位机构的示意图;图13是本发明实施例二的悬吊盘摆位机构与机械臂连接后的示意图;图14a~图14c是本发明实施例二的悬吊盘摆位机构的摆位转换的示意图;
本发明实施例二提供的悬吊盘摆位机构及手术机器人与实施例一提供的悬吊盘摆位机构及手术机器人基本相同,对于相同部分不再叙述,以下仅针对不同点进行描述。
如图11至图13所示,本实施例二提供的悬吊盘摆位机构10中,所述主悬吊盘100沿垂直于所述主转轴A1的方向延伸;所述悬吊盘摆位机构10还包括:至少一个第二子悬吊盘300,所述第二子悬吊盘300沿所述主悬吊盘100的延伸方向可移动地与所述主悬吊盘100连接,每个所述第二子悬吊盘300用于供至少一个机械臂11连接。需要说明的,主悬吊盘100的延伸方向并不限于如图9至图11所示的为一直线,其延伸方向还可以是垂直于所述主转轴A1的曲线,例如为一弧线,如此配置,第二子悬吊盘300可以跟随主悬吊盘100的弧线形的延伸方向呈弧线形地移动。
实际使用中,主悬吊盘100可配合病床3的布置,顺时针或逆时针方向围绕主转轴A1转动到合适的角度。在转动过程中,连接在主悬吊盘100上的第二子悬吊盘300可跟随主悬吊盘100作大角度地转动(即被动地跟随转动),进而当主悬吊盘100转动到位后,第二子悬吊盘300可沿主悬吊盘100的延伸方向移动,作细节调整,以使其上挂载的机械臂11运动到更合适的位置。需要说明的,第二子悬吊盘300沿主悬吊盘100的移动,也可以与主悬吊盘100围绕主转轴A1的转动同时进行。
在一些实施例中,机械臂11可转动地挂载于第二子悬吊盘300上,并随第二子悬吊盘300沿着主悬吊盘100移动。而在另一些实施例中,机械臂11还可以进一步沿着第二子悬吊盘300的延伸方向移动。优选的,所述第二子悬吊盘300沿垂直于所述主转轴A1的方向延伸,且所述第二子悬吊盘300的延伸方向与所述主悬吊盘100的延伸方向成角度地布置;每个所述第二子悬吊盘300用于供至少一个机械臂11沿所述第二子悬吊盘300的延伸方向可移动地连接。第二子悬吊盘300的延伸方向与主悬吊盘100的延伸方向成角度地布置,挂载在第二子悬吊盘300上的机械臂11可沿第二子悬吊盘300的延伸方向移动,同时第二子悬吊盘300可沿主悬吊盘100的延伸方向移动。如 此配置,可以使机械臂11具有更多的调节自由度。同样的,这里对于第二子悬吊盘300的延伸方向的形态亦不作限定,如图11至图13所示的直线形,或其它的形状,如弧线形等均可。
可选的,所述主悬吊盘100包括沿自身的延伸方向设置的第一滑轨、以及沿所述第一滑轨可移动地设置的第一滑块120;所述第二子悬吊盘300包括沿自身的延伸方向设置的第二滑轨、以及沿所述第二滑轨可移动地设置的第二滑块320;所述第二子悬吊盘300与所述第一滑块120连接,所述第二滑块320用于与机械臂11连接。在一个示范性的实施例中,主悬吊盘100与第二子悬吊盘300之间通过第一滑块120和第一滑轨连接,机械臂11与第二子悬吊盘300之间通过第二滑块320和第二滑轨连接,可以实现机械臂11相对主悬吊盘100沿第一滑轨和第二滑轨两个方向的调节。进一步的,机械臂11可转动地与第二滑块320连接,以进一步提高机械臂11的调节自由度。当然,在其它的一些实施例中,机械臂11、第二子悬吊盘300与主悬吊盘100之间并不限于采用滑块、滑轨的方式连接,还可以采用如同步带、丝杠等本领域常见的连接方式进行传动,本实施例对此不作限制。
优选的,每个所述主悬吊盘100与至少两个所述第二子悬吊盘300连接,与同一个所述主悬吊盘100连接的所述第二子悬吊盘300沿所述主悬吊盘100的延伸方向相间隔地设置。在一个示范例中,所述悬吊盘摆位机构10包括两个主悬吊盘100和四个第二子悬吊盘300,每个所述主悬吊盘100与两个所述第二子悬吊盘300连接。每个所述主悬吊盘100均通过第二子悬吊盘300间接地供机械臂11连接,机械臂11不直接设置在主悬吊盘100上。每个第二子悬吊盘300上分别挂载有一个机械臂11。在使用中,两个靠近主转轴A1的第二子悬吊盘300所挂载的机械臂11主要针对于穿刺孔位布局中的中间部位,一般可挂载内窥镜及一个手术器械。两个远离主转轴A1的第二子悬吊盘300所挂载的机械臂11主要针对于穿刺孔位布局中的两侧部位,一般挂载手术器械。当然,在其它的一些实施例中,每个第二子悬吊盘300还分别可以与其它数量的机械臂11连接,主悬吊盘100上也可以挂载一些机械臂11,本领域技术人员可根据手术的实际需要对每个悬吊盘所连接的机械臂11的数量和位置进行配置,本实施例对此不作限制。
请参考图14a至图14c,图14a示出了实施例二的悬吊盘摆位机构10对应于左侧位的摆位状态,图14b示出了实施例二的悬吊盘摆位机构10对应于零位的摆位状态,图14c示出了实施例二的悬吊盘摆位机构10对应于右侧位的摆位状态。具体可参考实施例一关于摆位状态的说明,这里不再展开。实 际中,悬吊盘摆位机构10可在各个摆位之间迅速地转换。需要说明的,在手术准备过程中,悬吊盘摆位机构10的初始状态可以处于图14a至图14c之间的任一状态,并不局限于图14a至图14c所示出的几种状态。而根据手术的需要,悬吊盘摆位机构10可以迅速地摆位转换至所需要的术式布局。
【实施例三】
请参考图15至图17c,其中,图15是本发明实施例三的手术机器人的示意图;图16是本发明实施例三的悬吊盘摆位机构与机械臂连接后的示意图;图17a~图17c是本发明实施例三的悬吊盘摆位机构的摆位转换的示意图。
本发明实施例三提供的悬吊盘摆位机构及手术机器人与实施例一提供的悬吊盘摆位机构及手术机器人基本相同,对于相同部分不再叙述,以下仅针对不同点进行描述。
如图15至图17c所示,本实施例三提供的悬吊盘摆位机构10包括三个主悬吊盘100,三个主悬吊盘100分别围绕主转轴A1相对独立地可转动地设置。
优选的,悬吊盘摆位机构10还包括三个第一子悬吊盘200,三个第一子悬吊盘200分别围绕子转轴A2可转动地与三个主悬吊盘100连接。每个所述主悬吊盘100均通过第一子悬吊盘200间接地供机械臂11连接,机械臂11不直接设置在主悬吊盘100上,每个第一子悬吊盘200挂载一个机械臂11,机械臂11优选可转动地与第一子悬吊盘200连接。
请参考图17a至图17c,图17a示出了实施例一的悬吊盘摆位机构10对应于左侧位的摆位状态,图17b示出了实施例一的悬吊盘摆位机构10对应于零位的摆位状态,图17c示出了实施例一的悬吊盘摆位机构10对应于右侧位的摆位状态。具体可参考实施例一关于摆位状态的说明,这里不再展开。实际中,悬吊盘摆位机构10可在各个摆位之间迅速地转换。需要说明的,在手术准备过程中,悬吊盘摆位机构10的初始状态可以处于图17a至图17c之间的任一状态,并不局限于图17a至图17c所示出的几种状态。而根据手术的需要,悬吊盘摆位机构10可以迅速地摆位转换至所需要的术式布局。
可选的,至少一部分的主悬吊盘100或第一子悬吊盘200还具有离合机构,每个悬吊盘的转轴可通过离合机构实现与其它悬吊盘的联动或者独立运动的切换。在一些情况下,当需要对某一个悬吊盘的位置角度进行调节时,可以通过离合机构使该悬吊盘暂时脱离与其它悬吊盘的联动,从而实现对该悬吊盘的位置角度的调节。例如在常规情况下,需要迅速地摆位转换,可将 三个主悬吊盘100配置为联动,三个主悬吊盘100在一同转动到预定位置后,某一个或两个主悬吊盘100可通过离合机构实现独立运动,以更好地适应摆位的细节调整。
需要说明的,上述多个实施例中的方案,可结合使用。例如悬吊盘摆位机构10包括两个主悬吊盘100,其中一个如实施例一,与第一子悬吊盘200转动连接,另一个主悬吊盘100如实施例二,与第二子悬吊盘300移动连接。使用中,两个主悬吊盘100在转动摆位到预定位置后,两支的子悬吊盘可按各自不同的方式进行细节调整,具体可参考上述实施例的说明,这里不再赘述。
综上所述,在本发明提供的悬吊盘摆位机构及手术机器人中,所述悬吊盘摆位机构包括至少两个主悬吊盘,两个主悬吊盘分别围绕同一主转轴与一悬吊端可转动地连接;每个所述主悬吊盘分别用于供至少一个机械臂连接。如此配置,至少两个主悬吊盘围绕同一主转轴可转动地与悬吊端进行连接,而每个主悬吊盘分别挂载至少一个机械臂,使得多个机械臂能够随主悬吊盘被一次性地快速调整到相应位置,满足机械臂实现快速的术式布局。此外,通过对至少两个主悬吊盘的区分,可以使得主悬吊盘上的各个机械臂获得更大调整空间和手术空间。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (12)

  1. 一种悬吊盘摆位机构,其特征在于,包括:至少两个主悬吊盘,两个主悬吊盘分别围绕同一主转轴与一悬吊端可转动地连接;每个所述主悬吊盘分别用于供至少一个机械臂连接。
  2. 根据权利要求1所述的悬吊盘摆位机构,其特征在于,所述悬吊盘摆位机构还包括:至少一个第一子悬吊盘;所述第一子悬吊盘围绕与所述主转轴平行的子转轴可转动地与所述主悬吊盘连接,且至少一个所述主悬吊盘与至少一个所述第一子悬吊盘连接;每个所述第一子悬吊盘分别用于供至少一个机械臂连接。
  3. 根据权利要求2所述的悬吊盘摆位机构,其特征在于,每个所述主悬吊盘均与一个所述第一子悬吊盘连接,每个所述子悬吊盘用于供一个机械臂围绕所述子转轴可转动地连接。
  4. 根据权利要求1所述的悬吊盘摆位机构,其特征在于,所述主悬吊盘沿垂直于所述主转轴的方向延伸;所述悬吊盘摆位机构还包括:至少一个第二子悬吊盘,所述第二子悬吊盘沿所述主悬吊盘的延伸方向可移动地与所述主悬吊盘连接,每个所述第二子悬吊盘用于供至少一个机械臂连接。
  5. 根据权利要求4所述的悬吊盘摆位机构,其特征在于,每个所述主悬吊盘与至少两个所述第二子悬吊盘连接,与同一个所述主悬吊盘连接的所述第二子悬吊盘沿所述主悬吊盘的延伸方向相间隔地设置。
  6. 根据权利要求5所述的悬吊盘摆位机构,其特征在于,所述悬吊盘摆位机构包括两个主悬吊盘和四个第二子悬吊盘,每个所述主悬吊盘与两个所述第二子悬吊盘连接。
  7. 根据权利要求4所述的悬吊盘摆位机构,其特征在于,所述第二子悬吊盘沿垂直于所述主转轴的方向延伸,且所述第二子悬吊盘的延伸方向与所述主悬吊盘的延伸方向成角度地布置;每个所述第二子悬吊盘用于供至少一个机械臂沿所述第二子悬吊盘的延伸方向可移动地连接。
  8. 根据权利要求7所述的悬吊盘摆位机构,其特征在于,所述主悬吊盘包括沿自身的延伸方向设置的第一滑轨、以及沿所述第一滑轨可移动地设置的第一滑块;所述第二子悬吊盘包括沿自身的延伸方向设置的第二滑轨、以及沿所述第二滑轨可移动地设置的第二滑块;所述第二子悬吊盘与所述第一滑块连接,所述第二滑块用于与机械臂连接。
  9. 根据权利要求1所述的悬吊盘摆位机构,其特征在于,在所述主悬吊盘分别围绕所述主转轴转动的过程中,任意两个所述主悬吊盘之间的相对角度不小于60°。
  10. 根据权利要求9所述的悬吊盘摆位机构,其特征在于,任意两个所述主悬吊盘之间设置有限位机构,所述限位机构用于限制两个所述主悬吊盘之间的相对角度不小于60°;所述限位机构被配置为,当其中第一个所述主悬吊盘转动且相对于第二个所述主悬吊盘的角度达到60°时,所述限位机构带动第二个所述主悬吊盘跟随第一个所述主悬吊盘转动。
  11. 根据权利要求1所述的悬吊盘摆位机构,其特征在于,所述悬吊盘摆位机构包括三个主悬吊盘,三个主悬吊盘分别围绕主转轴相对独立可转动地设置,每个所述主悬吊盘与一个第一子悬吊盘连接,每个所述第一子悬吊盘分别用于供至少一个机械臂连接。
  12. 一种手术机器人,其特征在于,包括根据权利要求1~11中的任一项所述的悬吊盘摆位机构、多个机械臂以及悬吊臂;
    所述悬吊盘摆位机构的一个主悬吊盘围绕主转轴与所述悬吊臂可转动地连接,所述悬吊盘摆位机构的其它主悬吊盘分别围绕所述主转轴与同悬吊臂连接的所述主悬吊盘可转动地连接,每个所述主悬吊盘分别与至少一个所述机械臂连接,且每个所述机械臂均可转动地与对应的主悬吊盘连接。
PCT/CN2021/104608 2020-09-18 2021-07-05 悬吊盘摆位机构及手术机器人 WO2022057395A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112023004169A BR112023004169A2 (pt) 2020-09-18 2021-07-05 Mecanismo de posicionamento de disco de suspensão e robô cirúrgico
EP21868224.3A EP4215146A4 (en) 2020-09-18 2021-07-05 SUSPENSION DISC POSITIONING MECHANISM AND SURGICAL ROBOT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010988531.1A CN114191087A (zh) 2020-09-18 2020-09-18 悬吊盘摆位机构及手术机器人
CN202010988531.1 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022057395A1 true WO2022057395A1 (zh) 2022-03-24

Family

ID=80645136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104608 WO2022057395A1 (zh) 2020-09-18 2021-07-05 悬吊盘摆位机构及手术机器人

Country Status (4)

Country Link
EP (1) EP4215146A4 (zh)
CN (1) CN114191087A (zh)
BR (1) BR112023004169A2 (zh)
WO (1) WO2022057395A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114601563A (zh) * 2022-04-12 2022-06-10 山东威高手术机器人有限公司 一种手术系统从手机械臂被动部分的结构
CN117481825B (zh) * 2024-01-02 2024-03-29 首都医科大学附属北京天坛医院 血管介入手术机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106737850A (zh) * 2016-12-13 2017-05-31 山东威高手术机器人有限公司 一种模块化空间调整机械臂
US20170191607A1 (en) * 2016-01-04 2017-07-06 Chen-Source Inc. Adjustable dual-screen monitor stand
CN108056823A (zh) * 2017-12-27 2018-05-22 微创(上海)医疗机器人有限公司 手术机器人终端
CN108186120A (zh) * 2017-12-27 2018-06-22 微创(上海)医疗机器人有限公司 手术机器人终端
CN110179543A (zh) * 2019-04-30 2019-08-30 深圳市阿瑟医疗机器人有限公司 一种腹腔镜手术机器人
CN212415897U (zh) * 2020-09-18 2021-01-29 微创(上海)医疗机器人有限公司 悬吊盘摆位机构及手术机器人

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106236276B (zh) * 2016-09-28 2019-09-17 微创(上海)医疗机器人有限公司 手术机器人系统
WO2020140072A1 (en) * 2018-12-28 2020-07-02 Auris Health, Inc. Percutaneous sheath for robotic medical systems and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170191607A1 (en) * 2016-01-04 2017-07-06 Chen-Source Inc. Adjustable dual-screen monitor stand
CN106737850A (zh) * 2016-12-13 2017-05-31 山东威高手术机器人有限公司 一种模块化空间调整机械臂
CN108056823A (zh) * 2017-12-27 2018-05-22 微创(上海)医疗机器人有限公司 手术机器人终端
CN108186120A (zh) * 2017-12-27 2018-06-22 微创(上海)医疗机器人有限公司 手术机器人终端
CN110179543A (zh) * 2019-04-30 2019-08-30 深圳市阿瑟医疗机器人有限公司 一种腹腔镜手术机器人
CN212415897U (zh) * 2020-09-18 2021-01-29 微创(上海)医疗机器人有限公司 悬吊盘摆位机构及手术机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4215146A4 *

Also Published As

Publication number Publication date
EP4215146A1 (en) 2023-07-26
CN114191087A (zh) 2022-03-18
EP4215146A4 (en) 2024-03-20
BR112023004169A2 (pt) 2023-04-11

Similar Documents

Publication Publication Date Title
US10779711B2 (en) Center robotic arm with five-bar spherical linkage for endoscopic camera
JP6907414B2 (ja) 手術用ロボット端末
JP6991340B2 (ja) 手術用ロボット端末
WO2022057395A1 (zh) 悬吊盘摆位机构及手术机器人
US8167872B2 (en) Center robotic arm with five-bar spherical linkage for endoscopic camera
US8167873B2 (en) Center robotic arm with five-bar spherical linkage for endoscopic camera
US8162926B2 (en) Robotic arm with five-bar spherical linkage
US8142420B2 (en) Robotic arm with five-bar spherical linkage
KR20150023290A (ko) 영공간을 이용한 수술 머니퓰레이터의 명령된 재구성을 위한 시스템 및 방법
JP2017512662A (ja) 外科用アーム
CN212415897U (zh) 悬吊盘摆位机构及手术机器人
WO2022057394A1 (zh) 悬吊盘摆位机构及手术机器人
CN212415896U (zh) 悬吊盘摆位机构及手术机器人
JP2020533054A (ja) 可動外科手術制御コンソール
CN217066571U (zh) 手术机器人及其机械臂
CN114305708A (zh) 悬吊盘摆位机构及手术机器人
CN114305709A (zh) 悬吊盘摆位机构及手术机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868224

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023004169

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023004169

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230306

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021868224

Country of ref document: EP

Effective date: 20230418