WO2022057070A1 - 一种高精度三分量电磁场传感器及其数据传输控制系统 - Google Patents

一种高精度三分量电磁场传感器及其数据传输控制系统 Download PDF

Info

Publication number
WO2022057070A1
WO2022057070A1 PCT/CN2020/129381 CN2020129381W WO2022057070A1 WO 2022057070 A1 WO2022057070 A1 WO 2022057070A1 CN 2020129381 W CN2020129381 W CN 2020129381W WO 2022057070 A1 WO2022057070 A1 WO 2022057070A1
Authority
WO
WIPO (PCT)
Prior art keywords
precision
coil structure
direction coil
electromagnetic field
field sensor
Prior art date
Application number
PCT/CN2020/129381
Other languages
English (en)
French (fr)
Inventor
刘志新
陆占国
张小楷
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to GB2209174.8A priority Critical patent/GB2613915A/en
Publication of WO2022057070A1 publication Critical patent/WO2022057070A1/zh
Priority to ZA2022/03715A priority patent/ZA202203715B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils
    • G01V3/108Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils the emitter and the receiver coils or loops being uncoupled by positioning them perpendicularly to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • G01V3/165Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat operating with magnetic or electric fields produced or modified by the object or by the detecting device

Definitions

  • the present invention belongs to the field of ground-air electromagnetic detection technology, and specifically relates to a high-precision three-component electromagnetic field sensor and a data transmission control system thereof.
  • Ground-air electromagnetic method (also known as semi-aviation electromagnetic method) is based on the principle of electromagnetic induction. It transmits pulses or electromagnetic information of different frequencies to the ground through transmitting electrodes arranged on the ground, and is carried by drones, rotorcraft or airships.
  • the method combines the advantages of the ground electromagnetic method and the air electromagnetic method, that is, it has the high construction efficiency of the air electromagnetic method, and also has the characteristics of large detection depth, high safety factor and high signal-to-noise ratio of the ground high-power electromagnetic method.
  • the ground-air electromagnetic method combines the characteristics of the ground electromagnetic method and the aerial electromagnetic method, and has high field construction efficiency and detection accuracy, and is suitable for fast and high-precision detection in areas with complex terrain conditions.
  • the collected data is the response signal of the vertical magnetic field component (Hz), while the magnetic field components in the x and y directions (Hx and y) exist near the receiving point at the same time. Hy). If the magnetic field component signals in the three directions are collected and processed jointly, the data interpretation accuracy of the ground-air electromagnetic method can be improved.
  • the present invention provides a high-precision three-component electromagnetic field sensor and a data transmission control system thereof, which utilizes the collected three-component electromagnetic field response values for joint inversion and interpretation to realize electromagnetic exploration and interpretation Improve the accuracy and reduce the hidden safety hazards of hidden geological disasters.
  • a high-precision three-component electromagnetic field sensor comprising a box body, the box body is provided with an X-direction coil structure, a Y-direction coil structure and a Z-direction coil structure with the same structure, and the X-direction coil structure, Y-direction coil structure and The normal direction of the Z-direction coil structure is an orthogonal combination, the inside of the box is provided with a spirit level, the box is provided with a circuit control board and a battery, and the circuit control board is provided with the X-direction coil structure.
  • a preamplifier connected with the Y-direction coil structure and the Z-direction coil structure, and each preamplifier is connected with a noise filter, the noise filter is connected with a signal collector and the signal collector is electrically connected with the battery, The signal collector is connected with a connection port extending out of the box body.
  • connection port includes an Ethernet communication interface, an SD card interface and an indicator light interface.
  • the Z-direction coil structure includes a hollow bobbin and a magnetic core arranged in the hollow bobbin, and an induction coil is wound around the outside of the hollow bobbin.
  • the battery is a rechargeable lithium battery.
  • the material of the hollow bobbin is a non-conductive material.
  • the induction coil is an enameled wire wound in layers on the outside of the hollow bobbin.
  • a data transmission control system for a high-precision three-component electromagnetic field sensor comprising:
  • Three-component data acquisition system including sensor signal receiving and matching circuit and high-precision data sampling circuit, which is used for electromagnetic induction signal output, converts magnetic signal into electrical signal, and sends it into the signal after signal conditioning circuit, filter circuit and A/D conversion.
  • Digital signal processing system processing including sensor signal receiving and matching circuit and high-precision data sampling circuit, which is used for electromagnetic induction signal output, converts magnetic signal into electrical signal, and sends it into the signal after signal conditioning circuit, filter circuit and A/D conversion.
  • Signal processing control system including the main control chip FPGA, preamplifier and digital filter, which are used to amplify and filter the sampled digital signal to make its amplitude meet the input range of the ADC, so that the ADC can be fully utilized the resolution of the converter;
  • Data transmission and storage system including SD card, USB interface and RJ45 interface, these data are quickly transmitted and stored in the memory, and the FPGA control parallel output and SD card are used together. Store the data on SD, and then export the data through the USB or RJ45 communication interface for subsequent interpretation of software calls.
  • control system further includes a time synchronization control unit, the time synchronization control unit includes GPS and a stable clock for precise time control of three-component data sampling points and synchronization with the transmitter.
  • the high-precision data sampling circuit uses three-component independent delta-sigma AD chips to realize multi-channel differential data acquisition, and is used to convert the analog signal output by the signal receiving and matching equivalent circuit into a digital signal.
  • the invention adopts the three-component electromagnetic field response value for joint inversion and interpretation, realizes the improvement of the interpretation accuracy of the electromagnetic method, and reduces the hidden danger of hidden geological disasters. , storage and transmission, effectively improve the overall performance of the system, the GPS timer can make each sampling point have an accurate time stamp, and the deviation from the absolute time is less than 30nS, ensuring the accuracy of data transmission.
  • Fig. 1 is the plane structure schematic diagram of the present invention
  • FIG. 2 is a schematic diagram of a data acquisition system of the present invention
  • Fig. 3 is the construction method schematic diagram of the present invention.
  • Fig. 5 is the time series noise floor FFT result graph of the present invention.
  • Fig. 6 is the sensor response curve of the present invention.
  • Figure 7 is a schematic diagram of the coil structure
  • FIG. 8 is a schematic diagram of a GPS synchronization circuit
  • 1-Box 2-X-direction coil structure, 3-Y-direction coil structure, 4-Z-direction coil structure, 5-Level meter, 6-Battery, 7-Preamplifier, 8-Noise filter, 9-Signal acquisition device, 10-connecting port, 11-hollow bobbin, 12-magnetic core, 13-induction coil.
  • a high-precision three-component electromagnetic field sensor includes a box body 1, and the box body 1 is provided with an X-direction coil structure 2, a Y-direction coil structure 3 and a Z-direction coil structure 4 with the same structure.
  • the normal directions of the X-direction coil structure 2, Y-direction coil structure 3 and Z-direction coil structure 4 are orthogonally combined.
  • connection port 10 includes an Ethernet communication interface, an SD card interface and an indicator light interface.
  • the Z-direction coil structure 4 includes a hollow bobbin 11 and a magnetic core 12 disposed in the hollow bobbin 11 , and an induction coil 13 is wound around the outside of the hollow bobbin 11 .
  • the battery is a rechargeable lithium battery.
  • the material of the hollow bobbin 11 is a non-conductive material.
  • the induction coil 13 is an enameled wire wound in layers on the outside of the hollow bobbin 11 .
  • a data transmission control system for a high-precision three-component electromagnetic field sensor comprising:
  • Three-component data acquisition system including sensor signal receiving and matching circuit and high-precision data sampling circuit, which is used for electromagnetic induction signal output, converts magnetic signal into electrical signal, and sends it into the signal after signal conditioning circuit, filter circuit and A/D conversion.
  • Digital signal processing system processing including sensor signal receiving and matching circuit and high-precision data sampling circuit, which is used for electromagnetic induction signal output, converts magnetic signal into electrical signal, and sends it into the signal after signal conditioning circuit, filter circuit and A/D conversion.
  • Signal processing control system including the main control chip FPGA, preamplifier and digital filter, which are used to amplify and filter the sampled digital signal to make its amplitude meet the input range of the ADC, so that the ADC can be fully utilized the resolution of the converter;
  • Data transmission and storage system including SD card, USB interface and RJ45 interface, these data are quickly transmitted and stored in the memory, and the FPGA control parallel output and SD card are used together. Store the data on SD, and then export the data through the USB or RJ45 communication interface for subsequent interpretation of software calls.
  • the control system further includes a time synchronization control unit, which includes GPS and a stable clock for precise time control of three-component data sampling points and synchronization with the transmitter.
  • a time synchronization control unit which includes GPS and a stable clock for precise time control of three-component data sampling points and synchronization with the transmitter.
  • the high-precision data sampling circuit uses three-component independent delta-sigma AD chips to realize multi-channel differential data acquisition, and is used to convert analog signals output by signal receiving and matching equivalent circuits into digital signals.
  • the high-precision three-component electromagnetic field sensor is suspended by the rotor UAV, and the flight measurement is carried out within the designed survey area.
  • the flight height is 50-100m, and the flight speed is not higher than 8m/s , the real-time data, real-time spatial coordinates and flight trajectory of the three component magnetic fields can be obtained during the flight detection process.
  • v(t) is the induced voltage of the induction coil
  • u(t) is the induced voltage actually connected to the amplifier circuit
  • L is the inductance of the receiving coil
  • r is the internal resistance
  • Cr is the distributed capacitance
  • Ra Ca represents the input impedance and input capacitance of the preamplifier, respectively
  • RT represents the matching resistance.
  • the filtering function is realized by the existing low-pass filtering and band-pass filtering circuit control technology.
  • the high-precision three-component electromagnetic sensor needs to be tested for noise.
  • the test method is: put the sensor into the magnetic shielding barrel, connect the sensor signal to the analog input end of the data collector through the analog data line, and test the sensor itself. Bottom peak-to-peak noise, sample rate 96K.
  • the peak noise is 0.3uVpp (1-10KHz)
  • the noise floor of the sensor is flat in the range of 1Hz-10KHz
  • the peak noise is less than 0.3uV.
  • sensor sensitivity test put the sensor into the calibration solenoid, excite signals of different frequencies through the solenoid, and measure the response of the sensor at different frequencies.
  • the abscissa is the frequency, and the ordinate is the response value.
  • the time synchronization control unit includes: GPS, a stable clock.
  • the GPS timing function is mainly used for precise time control of three-component data sampling points and synchronization with the transmitter.
  • the system is timed by GPS, the deviation between the precise timestamp of each sampling point and the absolute time is less than 30nS, and the system synchronization error of the three components is less than 30ns.
  • the specific working process is that the GPS time information generates a high-precision clock pulse (PPS) signal every 1 second, introduces the rising edge of the PPS signal to calibrate the synchronization time, and sends it to the FPGA control input port, and the FPGA samples the port to obtain the PPS. Precise pulse signal.
  • PPS high-precision clock pulse
  • the invention adopts ARM and FPGA combined control mode, FPGA performs real-time acquisition, ARM performs post-processing, storage and transmission, which effectively improves the overall performance of the system;
  • the system is timed by GPS, and each sampling point has an accurate time stamp, which is consistent with absolute The time deviation is less than 30nS, and a stable clock design is added to automatically keep time after the GPS is lost in the middle;
  • the device can be equipped with 4 external LED indicators to indicate the overall instrument status, which is convenient for status diagnosis;
  • the external RJ45 interface can be carried out through Ethernet. Connection operation, real-time status viewing; also an external GPS antenna can be connected to facilitate the overall integration with the drone-mounted platform; hot-swappable SD card can be replaced at any time.

Abstract

一种高精度三分量电磁场传感器及其数据传输控制系统,高精度三分量电磁场传感器包括箱体(1),箱体(1)内设置有结构相同的X方向线圈结构(2)、Y方向线圈结构(3)和Z方向线圈结构(4)且X方向线圈结构(2)、Y方向线圈结构(3)和Z方向线圈结构(4)的法线方向呈正交组合,箱体(1)的内部设有水平仪(5),箱体(1)内设有电路控制板和电池(6)。其实现电磁法勘探解释精度的提高,减轻隐蔽地质灾害的安全隐患,采用ARM和FPGA组合控制方式,FPGA进行实时采集,ARM进行后期的处理,存储和传输,有效提升系统整体使用性能,GPS授时器能够使每个采样点具有精确的时间戳,与绝对时间的偏差小于30nS,保证了数据传输的准确性。

Description

一种高精度三分量电磁场传感器及其数据传输控制系统 技术领域
本发明地空电磁法探测技术的领域,具体涉及一种高精度三分量电磁场传感器及其数据传输控制系统。
背景技术
经济的快速发展对矿产资源、能源需求不断提高。同时,矿产资源、能源的规模化、快速开采引起了地质环境的破坏,衍生出一系列的地质灾害问题,特别是大量的煤矿采空区,对后续经济的可持续发展已经产生了较大影响。这些地质灾害具有隐蔽性、时变性和突发性的特点,且大部分位于地质条件比较复杂,例如高寒地区、戈壁沙漠、丘陵地区、山区、植被茂密、水域等,这给传统地球物理技术勘探工作带来了很大的困难。传统的地球物理勘探方法很难满足对资源勘探、地质环境监测的需求,难以在这些地区实现大面积的快速、高效的精细探测,因此,急需能够在地质条件复杂的地区实现高效率、高质量探测装置及施工方法,提高对地质环境破坏程序的精准探测。
地空电磁法(又称为半航空电磁法)是以电磁感应原理为基础,通过在地面布置的发射电极向地下发射脉冲或不同频率电磁信息,利用无人机、旋翼机或者飞艇等装置搭载高精度电磁传感器接收电磁感应信号的一种地质勘探方法。该方法综合了地面电磁法和航空电磁法的优点,即具有航空电磁法较高的施工效率,也具有地面大功率电磁法探测深度大、安全系数高及高信噪比等特点。地空电磁法结合了地面电磁法和航空电磁法各自的特点,具有较高的野外施工效率和探测精度,适用于在地形条件复杂的地区进行快速、高精度的探测。
目前,国内外地空电磁法的理论研究与应用侧重于时间域的探测方法,采集数据为垂向磁场分量(Hz)的响应信号,而接收点附近同时存在x和y方向的磁场分量(Hx和Hy)。如果将三个方向上的磁场分量信号进行联合采集、处理,能够提高地空电磁法的资料解释精度。
发明内容
针对现有技术中的上述不足,本发明提供了一种高精度三分量电磁场传感器及其数据传输控制系统,其利用所采集的三个分量电磁场响应值进行联合反演解释,实现电磁法勘探解释精度的提高,减轻隐蔽地质灾害的安全隐患。
为了达到上述发明目的,本发明采用的技术方案为:
一种高精度三分量电磁场传感器,包括箱体,所述箱体内设置有结构相同的X方向线圈结构、Y方向线圈结构和Z方向线圈结构且所述的X方向线圈结构、Y方向线圈结构和Z方向线圈结构的法线方向呈正交组合,所述箱体的内部设有水平仪,所述箱体内设有电路控制板和电池,所述电路控制板上设有分别与 X方向线圈结构、Y方向线圈结构和Z方向线圈结构连接的前置放大器且每个前置放大器上均连接有一个噪声滤波器,所述噪声滤波器上连接有信号采集器且信号采集器与电池电连接,所述信号采集器上连接有连接口伸出箱体设置。
作为改进,所述连接口包括Ethernet通讯接口、SD卡接口及指示灯接口。
作为改进,所述Z方向线圈结构包括空心线轴和设置在空心线轴内的磁芯,所述空心线轴外侧缠绕设有感应线圈。
作为改进,所述电池为可充电的锂电池。
作为改进,,所述空心线轴的材质为非导电材料。
作为改进,所述感应线圈为漆包线分层缠绕在空心线轴外侧。
一种高精度三分量电磁场传感器的数据传输控制系统,包括:
三分量数据采集系统:包括传感器信号接收及匹配电路和高精度数据采样电路,用于电磁感应信号输出,将磁信号变为电信号,经过信号调理电路、滤波电路及A/D转换后送入数字信号处理系统处理;
信号处理控制系统:包括主控芯片FPGA,前置放大器和数字滤波器,用于利用采样数字信号的大小,对其进行放大和滤波处理,使其幅度满足ADC的输入范围,以便能够充分利用ADC转换器的分辨率;
数据传输及存储系统:包括SD卡、USB接口和RJ45接口,将这些数据进行快速地传输并存储在存储器,采用FPGA控制并行输出与SD卡共同配合使用的方式,通过将FPGA采集到的数据实时存储在SD上,然后通过USB或RJ45通讯接口将数据导出,以便后续解释软件调用。
作为改进,所述控制系统还包括时间同步控制单元,所述时间同步控制单元包括GPS和稳定时钟,用于三分量数据采样点精确的时间控制及与发射机保持同步。
作为改进,所述高精度数据采样电路使用三分量各自独立的Δ-Σ型AD芯片,实现多路差分数据采集,用于将信号接收及匹配等效电路输出的模拟信号转换为数字信号。
本发明的有益效果为:
本发明采用三个分量电磁场响应值进行联合反演解释,实现电磁法勘探解释精度的提高,减轻隐蔽地质灾害的安全隐患,采用ARM和FPGA组合控制方式,FPGA进行实时采集,ARM进行后期的处理,存储和传输,有效提升系统整体使用性能,GPS授时器能够使每个采样点具有精确的时间戳,与绝对时间的偏差小于30nS,保证了数据传输的准确性。
附图说明
图1为本发明的平面结构示意图;
图2为本发明的数据采集系统示意图;
图3为本发明的施工方法示意图;
图4为本发明的感应线圈等效电路图;
图5为本发明的时间序列本底噪声FFT结果图;
图6为本发明的传感器响应曲线;
图7为线圈结构示意图;
图8为GPS同步电路示意图;
附图标记对照表:
1-箱体、2-X方向线圈结构、3-Y方向线圈结构、4-Z方向线圈结构、5-水平仪、6-电池、7-前置放大器、8-噪声滤波器、9-信号采集器、10-连接口、11-空心线轴、12-磁芯、13-感应线圈。
具体实施方式
下面结合附图来进一步说明本发明的具体实施方式。其中相同的零部件用相同的附图标记表示。需要说明的是,下面描述中使用的词语“前”、“后”、“左”、“右”、“上”和“下”指的是附图中的方向,词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向。
为了使本发明的内容更容易被清楚地理解,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
如图1-2所示,一种高精度三分量电磁场传感器,包括箱体1,所述箱体1内设置有结构相同的X方向线圈结构2、Y方向线圈结构3和Z方向线圈结构4且所述的X方向线圈结构2、Y方向线圈结构3和Z方向线圈结构4的法线方向呈正交组合,所述箱体1的内部设有水平仪5,所述箱体1内设有电路控制板和电池6,所述电路控制板上设有分别与X方向线圈结构2、Y方向线圈结构3和Z方向线圈结构4连接的前置放大器7且每个前置放大器7上均连接有一个噪声滤波器8,所述噪声滤波器8上连接有信号采集器9且信号采集器9与电池6电连接,所述信号采集器9上连接有连接口10伸出箱体1设置。
所述连接口10包括Ethernet通讯接口、SD卡接口及指示灯接口。
所述Z方向线圈结构4包括空心线轴11和设置在空心线轴11内的磁芯12,所述空心线轴11外侧缠绕设有感应线圈13。
所述电池为可充电的锂电池。
所述空心线轴11的材质为非导电材料。
所述感应线圈13为漆包线分层缠绕在空心线轴11外侧。
一种高精度三分量电磁场传感器的数据传输控制系统,包括:
三分量数据采集系统:包括传感器信号接收及匹配电路和高精度数据采样电路,用于电磁感应信号输出,将磁信号变为电信号,经过信号调理电路、滤波电路及A/D转换后送入数字信号处理系统处理;
信号处理控制系统:包括主控芯片FPGA,前置放大器和数字滤波器,用于利用采样数字信号的大小,对其进行放大和滤波处理,使其幅度满足ADC的输入范围,以便能够充分利用ADC转换器的分辨率;
数据传输及存储系统:包括SD卡、USB接口和RJ45接口,将这些数据进行快速地传输并存储在存储器,采用FPGA控制并行输出与SD卡共同配合使用的方式,通过将FPGA采集到的数据实时存储在SD上,然后通过USB或RJ45通讯接口将数据导出,以便后续解释软件调用。
所述控制系统还包括时间同步控制单元,所述时间同步控制单元包括GPS和稳定时钟,用于三分量数据采样点精确的时间控制及与发射机保持同步。
所述高精度数据采样电路使用三分量各自独立的Δ-Σ型AD芯片,实现多路差分数据采集,用于将信号接收及匹配等效电路输出的模拟信号转换为数字信号。
如图3所述,高精度三分量电磁传感器使用过程中,其操作步骤如下:
1)在正式探测工作之前,利于时间同步装置与发射机保持发射、接收时间上的同步;
2)在地空电磁法勘探中,采用旋翼无人机吊挂高精度三分量电磁场传感器方式,在设计的测区范围内进行飞行测量,飞行高度50~100m、飞行速度不高于8m/s,飞行探测过程中可获得三个分量磁场的实时数据、实时空间坐标及飞行轨迹。
3)在地面常规电磁法勘探中,使用人工方法将高精度三分量电磁传感器放置测点位置,并使其处于水平状态;
4)利用地空瞬变电磁逆合成孔径成像算法和三维“叠前偏移”算法对采集三个分量的磁场响应信息进行处理解释,获得可靠的地质资料。
如图4所示,v(t)为感应线圈的感应电压,u(t)为实际接入放大电路的感应电压;L为接收线圈的电感、r为内阻、Cr为分布电容,Ra、Ca分别表示前置放大器的输入阻抗和输入电容,RT表示匹配电阻。滤波功能通过现有的低通滤波和带通滤波电路控制技术来实现。
如图5所述,高精度三分量电磁传感器要进行噪声测试,其测试方法为:将传感器放入磁屏蔽桶内,通过模拟数据线将传感器信号连接到数据采集器模拟输入端,测试传感器本底峰峰值噪声,采样率96K。
结果显示峰值噪声0.3uVpp(1-10KHz),传感器本底噪声频带在1Hz-10KHz范围内为平坦区,且峰值噪声都小于0.3uV。
如图6所示,传感器灵敏度测试:将传感器放入标定螺线管内,通过螺线管激发不同频率的信号,测量传感器在不同频率上的响应。横坐标为频率,纵坐标为响应值。
测试结果:
序号 测试内容 技术指标要求 测试结果
1 传感器噪声 小于3nV/Hz 0.3uVpp,优于3nV/Hz
2 传感器灵敏度 优于0.15mv/nT·Hz 优于0.15mv/nT·Hz
如图8所示,时间同步控制单元包括:GPS,稳定时钟。GPS授时功能主要用于三分量数据采样点精确的时间控制及与发射机保持同步。系统通过GPS授时,每个采样点精确的时间戳与绝对时间的偏差小于 30nS,三个分量的系统同步误差小于30ns。增加了稳定时钟,中途丢失GPS后自动守时。具体工作过程为GPS时间信息每隔1秒产生一个高精度的时钟脉冲(PPS)信号,引入PPS信号的上升沿来标定同步时刻,送入FPGA控制输入端口,FPGA对该端口进行采样,获取PPS精确脉冲信号。达到通过FPGA逻辑管理方法对AD输入口的数字信号进行采样的目的。
本发明采用ARM和FPGA组合控制方式,FPGA进行实时采集,ARM进行后期的处理,存储和传输,有效提升系统整体使用性能;系统通过GPS授时,每个采样点都有精确的时间戳,与绝对时间的偏差小于30nS,增加了稳定时钟设计,中途丢失GPS后自动守时;设备可以外置4个LED指示灯,进行整体仪器状态指示,方便进行状态诊断;外置RJ45接口,可以通过Ethernet进行连接操作,实时状态查看;同样可以外接GPS天线,方便与进行无人机搭载平台进行整体整合;热插拔SD卡,可以随时进行更换。
以上所述仅为本发明专利的较佳实施例而已,并不用以限制本发明专利,凡在本发明专利的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明专利的保护范围之内。

Claims (9)

  1. 一种高精度三分量电磁场传感器,包括箱体(1),其特征在于,所述箱体(1)内设置有结构相同的X方向线圈结构(2)、Y方向线圈结构(3)和Z方向线圈结构(4)且所述的X方向线圈结构(2)、Y方向线圈结构(3)和Z方向线圈结构(4)的法线方向呈正交组合,所述箱体(1)的内部设有水平仪(5),所述箱体(1)内设有电路控制板和电池(6),所述电路控制板上设有分别与X方向线圈结构(2)、Y方向线圈结构(3)和Z方向线圈结构(4)连接的前置放大器(7)且每个前置放大器(7)上均连接有一个噪声滤波器(8),所述噪声滤波器(8)上连接有信号采集器(9)且信号采集器(9)与电池(6)电连接,所述信号采集器(9)上连接有连接口(10)伸出箱体(1)设置。
  2. 根据权利要求1所述的一种高精度三分量电磁场传感器,其特征在于,所述连接口(10)包括Ethernet通讯接口、SD卡接口及指示灯接口。
  3. 根据权利要求1所述的一种高精度三分量电磁场传感器,其特征在于,所述Z方向线圈结构(4)包括空心线轴(11)和设置在空心线轴(11)内的磁芯(12),所述空心线轴(11)外侧缠绕设有感应线圈(13)。
  4. 根据权利要求1所述的一种高精度三分量电磁场传感器,其特征在于:所述电池为可充电的锂电池。
  5. 根据权利要求3所述的一种高精度三分量电磁场传感器,其特征在于,所述空心线轴(11)的材质为非导电材料。
  6. 根据权利要求3所述的一种高精度三分量电磁场传感器,其特征在于,所述感应线圈(13)为漆包线分层缠绕在空心线轴(11)外侧。
  7. 一种高精度三分量电磁场传感器的数据传输控制系统,其特征在于,包括:
    三分量数据采集系统:包括传感器信号接收及匹配电路和高精度数据采样电路,用于电磁感应信号输出,将磁信号变为电信号,经过信号调理电路、滤波电路及A/D转换后送入数字信号处理系统处理;
    信号处理控制系统:包括主控芯片FPGA,前置放大器和数字滤波器,用于利用采样数字信号的大小,对其进行放大和滤波处理,使其幅度满足ADC的输入范围,以便能够充分利用ADC转换器的分辨率;
    数据传输及存储系统:包括SD卡、USB接口和RJ45接口,将这些数据进行快速地传输并存储在存储器,采用FPGA控制并行输出与SD卡共同配合使用的方式,通过将FPGA采集到的数据实时存储在SD上,然后通过USB或RJ45通讯接口将数据导出,以便后续解释软件调用。
  8. 根据权利要求7所述的一种高精度三分量电磁场传感器的数据传输控制系统,其特征在于,所述控制系统还包括时间同步控制单元,所述时间同步控制单元包括GPS和稳定时钟,用于三分量数据采样点精确的时间控制及与发射机保持同步。
  9. 根据权利要求7所述的一种高精度三分量电磁场传感器的数据传输控制系统,其特征在于,所述高精度数据采样电路使用三分量各自独立的Δ-Σ型AD芯片,实现多路差分数据采集,用于将信号接收及匹 配等效电路输出的模拟信号转换为数字信号。
PCT/CN2020/129381 2020-09-15 2020-11-17 一种高精度三分量电磁场传感器及其数据传输控制系统 WO2022057070A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2209174.8A GB2613915A (en) 2020-09-15 2020-11-17 High-precision three-component electromagnetic field sensor and data transmission control system therefor
ZA2022/03715A ZA202203715B (en) 2020-09-15 2022-03-31 A high-precision three-component electromagnetic field sensor and its data transmission control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010968406.4 2020-09-15
CN202010968406.4A CN111913224A (zh) 2020-09-15 2020-09-15 一种高精度三分量电磁场传感器及其测量方法

Publications (1)

Publication Number Publication Date
WO2022057070A1 true WO2022057070A1 (zh) 2022-03-24

Family

ID=73267014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129381 WO2022057070A1 (zh) 2020-09-15 2020-11-17 一种高精度三分量电磁场传感器及其数据传输控制系统

Country Status (4)

Country Link
CN (1) CN111913224A (zh)
GB (1) GB2613915A (zh)
WO (1) WO2022057070A1 (zh)
ZA (1) ZA202203715B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116449438A (zh) * 2023-06-16 2023-07-18 中国地质大学(武汉) 一种瞬变电磁法参考消噪装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111913224A (zh) * 2020-09-15 2020-11-10 中国矿业大学 一种高精度三分量电磁场传感器及其测量方法
CN113917549B (zh) * 2021-09-08 2023-11-14 成都理工大学 基于光纤传感技术的航空电磁数据采集系统及采集方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060208737A1 (en) * 2005-03-16 2006-09-21 Baker Hughes Incorporated Calibration of xx, yy and zz induction tool measurements
CN102096113A (zh) * 2010-12-03 2011-06-15 吉林大学 时间域地空电磁探测系统及标定方法
CN202182950U (zh) * 2011-07-29 2012-04-04 中国地震局地球物理研究所 台阵式磁通门磁力仪
CN102520455A (zh) * 2011-12-14 2012-06-27 吉林大学 航空地磁矢量检测装置
CN104865608A (zh) * 2015-05-22 2015-08-26 吉林大学 时间域航空电磁法运动噪声检测装置及抑制方法
CN105204072A (zh) * 2015-09-16 2015-12-30 吉林大学 高密度电法仪器中的磁电极及测量方法
CN111913224A (zh) * 2020-09-15 2020-11-10 中国矿业大学 一种高精度三分量电磁场传感器及其测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060208737A1 (en) * 2005-03-16 2006-09-21 Baker Hughes Incorporated Calibration of xx, yy and zz induction tool measurements
CN102096113A (zh) * 2010-12-03 2011-06-15 吉林大学 时间域地空电磁探测系统及标定方法
CN202182950U (zh) * 2011-07-29 2012-04-04 中国地震局地球物理研究所 台阵式磁通门磁力仪
CN102520455A (zh) * 2011-12-14 2012-06-27 吉林大学 航空地磁矢量检测装置
CN104865608A (zh) * 2015-05-22 2015-08-26 吉林大学 时间域航空电磁法运动噪声检测装置及抑制方法
CN105204072A (zh) * 2015-09-16 2015-12-30 吉林大学 高密度电法仪器中的磁电极及测量方法
CN111913224A (zh) * 2020-09-15 2020-11-10 中国矿业大学 一种高精度三分量电磁场传感器及其测量方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116449438A (zh) * 2023-06-16 2023-07-18 中国地质大学(武汉) 一种瞬变电磁法参考消噪装置及方法
CN116449438B (zh) * 2023-06-16 2023-09-12 中国地质大学(武汉) 一种瞬变电磁法参考消噪装置及方法

Also Published As

Publication number Publication date
GB2613915A (en) 2023-06-21
GB202209174D0 (en) 2022-08-10
ZA202203715B (en) 2022-07-27
CN111913224A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2022057070A1 (zh) 一种高精度三分量电磁场传感器及其数据传输控制系统
CN102053280B (zh) 带有参考线圈的核磁共振地下水探测系统及探测方法
CN106908847A (zh) 一种地空核磁共振地下水探测系统及探测方法
US10746894B2 (en) Magnetotelluric measurement system
CN102096111B (zh) 收发天线分离式核磁共振找水装置及找水方法
CN105676295B (zh) 基于squid的磁源激发极化‑感应的联合探测系统与方法
CN102565862B (zh) 一种瞬变电磁响应信号梯度测量方法及观测装置
CN106383364B (zh) 一种伪随机扫频核磁共振探测仪器
CN203759262U (zh) 瞬变电磁信号接收装置
CN102073061B (zh) 使用数字地听仪的地听信息高密度记录系统
CN109270579A (zh) 用于小型多旋翼低空无人机的瞬变电磁接收装置
Qiao et al. Hybrid seismic-electrical data acquisition station based on cloud technology and green IoT
Gao et al. Design of distributed three component seismic data acquisition system based on LoRa wireless communication technology
CN114217354A (zh) 基于光纤电磁传感器的电磁数据采集系统及采集方法
CN106772634B (zh) 一种用于探测地下电性结构的井中电磁接收机
CN205317861U (zh) 一种三分量瞬变电磁探测接收机
CN1176387C (zh) 智能三分量地震检波器
CN202794564U (zh) 一种磁电合一全空间找矿系统
CN212989676U (zh) 一种高精度三分量电磁传感器
CN110068871B (zh) 一种车载时域电磁感应-极化效应的微型测量系统及方法
CN206095416U (zh) 多通道水听器灵敏度检测装置
CN103558648A (zh) 无缆井地电法与微地震联用系统及测试方法
CN113504570A (zh) 一种基于三维聚焦磁场的地下空间探测装置
CN106772558A (zh) 一种海底地震监测系统
RU2799398C1 (ru) Аппаратно-программный комплекс микросейсмического мониторинга разработки нефтяных и газовых месторождений

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202209174

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20201117

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953927

Country of ref document: EP

Kind code of ref document: A1