WO2022056788A1 - 通信方法及装置、网络设备、ue及存储介质 - Google Patents

通信方法及装置、网络设备、ue及存储介质 Download PDF

Info

Publication number
WO2022056788A1
WO2022056788A1 PCT/CN2020/115980 CN2020115980W WO2022056788A1 WO 2022056788 A1 WO2022056788 A1 WO 2022056788A1 CN 2020115980 W CN2020115980 W CN 2020115980W WO 2022056788 A1 WO2022056788 A1 WO 2022056788A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
configuration information
uplink data
unit
data transmission
Prior art date
Application number
PCT/CN2020/115980
Other languages
English (en)
French (fr)
Inventor
杨星
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080002332.7A priority Critical patent/CN112262597B/zh
Priority to EP20953646.5A priority patent/EP4216613A4/en
Priority to US18/044,362 priority patent/US20230328795A1/en
Priority to PCT/CN2020/115980 priority patent/WO2022056788A1/zh
Publication of WO2022056788A1 publication Critical patent/WO2022056788A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/328Reference signal received power [RSRP]; Reference signal received quality [RSRQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to data transmission technologies, and in particular, to a communication method and apparatus, network equipment, user equipment (User Equipment, UE), and a storage medium.
  • UE User Equipment
  • an inactive state is introduced.
  • the UE is allowed to directly carry encrypted data to the base station in the random access process, and the UE does not need to enter the connected state, which reduces transmission delay and signaling overhead.
  • this data sending method is suitable for sending small data packets, so this data sending method is called small data transmission.
  • the threshold of the amount of data that can be carried in the random access process is configured by the network side to the UE, and is consistent within a cell. Therefore, it is necessary to set a lower data transmission threshold according to the worst channel condition, so as to ensure uplink coverage.
  • UEs in areas with better channel conditions can send more data during random access.
  • this may lead to unnecessary radio resource control (Radio Resource Control) for many UEs. , RRC) connection recovery process.
  • Radio Resource Control Radio Resource Control
  • embodiments of the present disclosure provide a communication method and apparatus, network equipment, user equipment, and storage medium.
  • a communication method applied to a base station side, the method includes:
  • the configuration information is used to indicate at least one of the following information: a random access mode and a data bearing mode in a random access scenario.
  • the configuration information is applicable to a UE in an inactive state or a connected state.
  • the configuration information includes at least one of the following information:
  • the logical channel adopts a two-step or four-step random access method.
  • the channel quality includes reference signal received power (Reference Signal Receiving Power, RSRP).
  • RSRP Reference Signal Receiving Power
  • the sending configuration information includes:
  • the configuration information is sent through a system broadcast message.
  • the sending configuration information includes:
  • the configuration information is sent to the UE in the connected state through a radio resource control RRC message.
  • the configuration information when the UE is in a connected state, the configuration information is sent through a radio resource control (Radio Resource Control, RRC) message; if the UE enters an inactive state later, the configuration information of the broadcast message is ignored.
  • RRC Radio Resource Control
  • a communication method which is applied to a user equipment side, and the method includes:
  • the small data transmission threshold value corresponding to the channel quality is determined according to the configuration information.
  • the method further includes:
  • MAC PDU medium access control protocol data unit
  • the method further includes:
  • the logical channel corresponding to the uplink data does not need to perform random access in a two-step random access manner, and performs random access in a four-step random access manner.
  • the method further includes:
  • the minimum bearing resource capable of carrying the MAC PDU of the uplink data is selected, and the corresponding random access preamble is selected.
  • the method further includes:
  • Random access is initiated through the selected corresponding random access preamble.
  • the method further includes:
  • the configuration information of the broadcast message is ignored.
  • a communication device comprising:
  • the sending unit is configured to send configuration information for the UE, where the configuration information is used to indicate at least one of the following information: a random access mode and a data bearing mode in a random access scenario.
  • the configuration information is applicable to a UE in an inactive state or a connected state.
  • the configuration information includes at least one of the following information:
  • the logical channel adopts a two-step or four-step random access method.
  • the channel quality includes RSRP.
  • the sending unit is further configured to:
  • the configuration information is sent through a system broadcast message.
  • the sending unit is further configured to:
  • the configuration information is sent to the UE in the connected state through an RRC message.
  • a communication device comprising:
  • a receiving unit configured to receive configuration information
  • a measurement unit configured to measure channel quality
  • a determining unit configured to determine a small data transmission threshold value corresponding to the channel quality according to the configuration information.
  • the apparatus further includes:
  • a first determining unit configured to determine whether the MAC PDU that needs to carry the uplink data to be transmitted is less than or equal to the small data transmission threshold value, and triggers the sending unit; it is determined that the MAC PDU that needs to carry the uplink data is greater than the small data transmission Threshold value, trigger the connection establishment unit;
  • a sending unit configured to send the uplink data through a small data sending mechanism in a random access manner
  • a connection establishment unit configured to establish an RRC connection.
  • the apparatus further includes: a second determining unit and a random access unit; wherein,
  • the second determining unit is configured to, in response to sending the uplink data by the sending unit through the small data transmission mechanism of the random access mode, determine that the logical channel corresponding to the uplink data needs to be randomly accessed by a two-step random access mode. access, trigger the random access unit to perform random access through a two-step random access method, determine that the logical channel corresponding to the uplink data does not need to perform random access through a two-step random access method, and trigger the random access method.
  • the access unit performs random access through a four-step random access method.
  • the apparatus further includes:
  • a selection unit configured to select the minimum bearer resource of the MAC PDU capable of carrying the uplink data, and select the corresponding random access preamble in response to sending the uplink data through the small data transmission mechanism of the random access mode.
  • the random access unit is further configured to initiate random access through the corresponding random access preamble selected.
  • the receiving unit is further configured to ignore the configuration information of the broadcast message if it enters an inactive state after receiving the configuration information through the RRC message.
  • a network device including a processor, a transceiver, a memory, and an executable program stored on the memory and executable by the processor, the processor running the executable program When the program is executed, the steps of the communication method of the foregoing first aspect are executed.
  • a user equipment including a processor, a transceiver, a memory, and an executable program stored on the memory and executable by the processor, the processor running the executable program When the program is executed, the steps of the communication method of the foregoing second aspect are executed.
  • a storage medium on which an executable program is stored, and when the executable program is executed by a processor, the steps of the communication method are implemented.
  • the communication method and device, network device, user equipment, and storage medium according to the embodiments of the present disclosure configure the UE with the uplink data transmission threshold value in the random access mode related to its channel quality, so that the UE with different channel conditions
  • the current uplink data bearing capacity is determined based on the communication channel quality of the communication channel, so that the UE with better current channel quality does not needlessly enter the RRC connection recovery process because of the slightly larger uplink data transmission capacity, which saves the radio resources of the communication system, and Make UE more power efficient.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • FIG. 2 is a schematic flowchart of a communication method according to an exemplary embodiment
  • FIG. 3 is a schematic flowchart of a communication method according to an exemplary embodiment
  • FIG. 4 is a schematic diagram showing the composition and structure of a communication device according to an exemplary embodiment
  • FIG. 5 is a schematic diagram showing the composition and structure of a communication device according to an exemplary embodiment
  • Fig. 6 is a schematic diagram showing the composition and structure of a user equipment according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several terminals 11 and several base stations 12 .
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 may communicate with one or more core networks via a radio access network (RAN), and the terminal 11 may be an IoT terminal such as a sensor device, a mobile phone (or "cellular" phone) and a
  • RAN radio access network
  • the computer of the IoT terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or a vehicle-mounted device.
  • a station For example, a station (Station, STA), a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile), a remote station (remote station), an access point, a remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be a vehicle-mounted device, for example, a trip computer with a wireless communication function, or a wireless communication device externally connected to the trip computer.
  • the terminal 11 may also be a roadside device, for example, a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 12 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (the 4th generation mobile communication, 4G) system, also known as a long term evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may be of any generation.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the MTC system may be a network-side device in a wireless communication system.
  • the base station 12 may be an evolved base station (eNB) used in the 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (Central Unit, CU) and at least two distributed units (Distributed Unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the terminals 11 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to Pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in a wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 13 is not limited in the embodiments of the present disclosure.
  • the execution subjects involved in the embodiments of the present disclosure include, but are not limited to: User Equipment (UE, User Equipment) in a cellular mobile communication system, and a base station of cellular mobile communication.
  • UE User Equipment
  • UE User Equipment
  • FIG. 2 is a schematic flowchart of a communication method according to an exemplary embodiment. As shown in FIG. 2 , the communication method according to an embodiment of the present disclosure includes the following processing steps:
  • Step 201 sending configuration information for the UE.
  • the configuration information is used to indicate at least one of the following information: a random access mode and a data bearing mode in a random access scenario.
  • a network-side device such as a base station sends configuration information to the UE in the inactive state through a system message, so that the UE in the inactive state can transmit uplink data in a random access manner.
  • the configuration information is also applicable to the UE in the connected state.
  • the configuration information may be sent to the UE through an RRC message.
  • the UE is again in a non-connected state.
  • configuration information sent via system messages is ignored.
  • the communication method of the embodiment of the present disclosure is applied to the network device side, for example, to the base station.
  • the configuration information includes at least one of the following information:
  • the channel quality includes parameters such as Reference Signal Receiving Power (RSRP).
  • RSRP Reference Signal Receiving Power
  • the data threshold is set to 100kb; when the RSRP is less than -98db and greater than -108db, the data threshold is set to 80kb; when the RSRP is less than -108db, the data threshold is set to 50kb.
  • the data threshold when the RSRP is greater than -90db, the data threshold is set to 120kb; when the RSRP is less than -90db and greater than -110db, the data threshold is set to 70kb; when the RSRP is less than -110db, the data threshold is set to 45kb.
  • the corresponding small data carrying threshold is 100kb, preamble11-20, the corresponding small data carrying threshold is 80kb, preamble21- 30, the corresponding small data bearer threshold is 50kb, preamble 31-40, the corresponding small data bearer threshold is 20kb.
  • it can also be: Preamble 1-10, corresponding to the small data bearer threshold of 110kb, preamble11-20, corresponding to the small data bearer threshold of 90kb, preamble 21-30, corresponding to the small data bearer threshold of 60kb, preamble 31-40 , the corresponding small data bearer threshold is 30kb.
  • the logical channel adopts a two-step or four-step random access method.
  • the sending the configuration information includes: sending the configuration information through a system broadcast message.
  • the configuration information is sent through a Radio Resource Control (RRC) message; after the configuration information is sent through the RRC message, when the UE enters the inactive state again, the configuration information is sent through the RRC message.
  • RRC Radio Resource Control
  • the configuration information received by the RRC message shall prevail, and the configuration information sent by the broadcast message is ignored.
  • FIG. 3 is a schematic flowchart of a communication method according to an exemplary embodiment. As shown in FIG. 3 , the communication method according to an embodiment of the present disclosure includes the following processing steps:
  • Step 301 Receive configuration information and measure channel quality.
  • the communication method in the embodiment of the present disclosure is applicable to the UE side.
  • this step there is no sequence between receiving the configuration information and performing the channel quality measurement, and may be performed in parallel.
  • the UE After receiving the configuration information sent by the network side, the UE determines the current small data transmission threshold value in the UE random access mode according to the currently measured channel quality.
  • Step 302 Determine a small data transmission threshold value corresponding to the channel quality according to the configuration information.
  • the small data transmission threshold value may be determined according to the RSRP.
  • the data threshold when the RSRP is greater than -98db, the data threshold is set to 100kb; when the RSRP is less than -98db and greater than -108db, the data threshold is set to 80kb; when the RSRP is less than -108db, the data threshold is set to 50kb.
  • the data threshold when the RSRP is greater than -90db, the data threshold is set to 120kb; when the RSRP is less than -90db and greater than -110db, the data threshold is set to 70kb; when the RSRP is less than -110db, the data threshold is set to 45kb.
  • the small data transmission threshold is determined according to the correspondence between the random access preamble and the small data bearing capacity.
  • Preamble 1-10 corresponding to the small data bearer threshold of 100kb
  • preamble11-20 corresponding to the small data bearer threshold of 80kb
  • preamble 21-30 corresponding to the small data bearer threshold of 50kb
  • preamble 31-40 corresponding to the small data
  • the bearer threshold is 20kb.
  • Preamble 1-10 corresponding to the small data bearer threshold of 110kb
  • preamble11-20 corresponding to the small data bearer threshold of 90kb
  • preamble21-30 corresponding to the small data bearer threshold of 60kb
  • preamble 31-40 corresponding to the small data bearer threshold
  • the data bearing threshold is 30kb.
  • the random access method When there is uplink data that needs to be transmitted, when it is determined that the Media Access Control Protocol Data Unit (MAC PDU) that needs to carry the uplink data is less than or equal to the small data transmission threshold, the random access method is used.
  • the small data transmission mechanism of the device sends the uplink data, and when it is determined that the MAC PDU that needs to carry the uplink data is greater than the small data transmission threshold, the RRC connection establishment process is triggered.
  • MAC PDU Media Access Control Protocol Data Unit
  • the MAC PDU carrying the amount of uplink data to be sent is less than or equal to the current small data transmission threshold, and if the MAC PDU is less than or equal to the current small data transmission threshold, it indicates that the current uplink random access In the incoming mode, it can carry the current uplink data to be sent.
  • the MAC PDU carrying the uplink data is larger than the current small data transmission threshold, it cannot be transmitted in the random access mode, and the RRC connection establishment process needs to be triggered. After the RRC connection is established, the uplink data is sent.
  • the UE also determines, according to the current channel quality, whether to select the two-step mode or the four-step random access mode for the current random access. Specifically, it is necessary to determine corresponding random access modes for different logical channels according to the conditions of the logical channels.
  • the communication method of the embodiment of the present disclosure further includes:
  • the logical channel corresponding to the uplink data In response to sending the uplink data through the small data transmission mechanism of the random access method, determine that the logical channel corresponding to the uplink data needs to perform random access through a two-step random access method, and perform random access through a two-step random access method. Alternatively, it is determined that the logical channel corresponding to the uplink data does not need to perform random access in a two-step random access manner, and performs random access in a four-step random access manner. That is to say, it is necessary to determine whether the current RSRP of the UE meets the threshold requirement configured by the network side.
  • the UE performs random access through a two-step random access method, and uses the small data transmission mechanism to send The current uplink data; otherwise, if the RSRP fails to meet the threshold requirement configured by the network side, the UE performs random access through a four-step random access method, and uses the small data transmission mechanism to send the current uplink data.
  • the communication method of the embodiment of the present disclosure further includes:
  • the UE In response to sending the uplink data through the small data transmission mechanism of the random access mode, select the minimum bearing resource that can carry the MAC PDU of the uplink data, and select the corresponding random access preamble.
  • the minimum bearing resource that can carry the MAC PDU of the uplink data
  • select the corresponding random access preamble after the MAC PDU is determined for the uplink data to be sent, the smallest transmission resource is selected for carrying the determined MAC PDU, and the corresponding random access preamble is selected for random access.
  • the UE initiates random access through the selected corresponding random access preamble.
  • the communication method of the embodiment of the present disclosure further includes: after receiving the configuration information through the RRC message, if the configuration information is in an inactive state, the configuration information of the broadcast message is ignored.
  • the base station is broadcasting, and the configuration is as follows:
  • the data threshold is 100kb; when the RSRP is less than -98db and greater than -108db, the data threshold is 80kb; when the RSRP is less than -108db, the data threshold is 50kb.
  • Preamble 1-10 corresponding to small data carrying 100kb, preamble11-20, corresponding to small data carrying 80kb, preamble21-30, corresponding to small data carrying 50kb, preamble 31-40, corresponding to small data carrying 20kb.
  • Logical channel 1 requires 2-step random access
  • logical channel 2 does not require 2-step random access
  • logical channel 3 does not require 2-step random access.
  • the UE A is in an inactive state, and the RSRP measurement value is -110db at this time, and the data threshold is selected as 50kb.
  • the UE triggers the RRC connection recovery process.
  • the UE B is in an inactive state and can use the 2-step random access method for random access.
  • the RSRP measurement value is -110db
  • the data threshold is selected as 50kb.
  • Uplink data comes from logical channels 1 and 2, where logical channel 1 needs to go through 2-step random access, so choose the 2-step random access process.
  • Select 20kb small data bearer and then randomly select a preamble in preamble31-40.
  • the UE initiates a two-step random access process through the selected preamble, and carries a 20kb small data bearer in this process.
  • the UE with different channel conditions can determine the current uplink data bearer according to the current quality of the communication channel. Therefore, the UE with better current channel quality does not needlessly enter the RRC connection recovery process due to the slightly larger uplink data transmission volume, which saves the radio resources of the communication system and makes the UE more power-saving.
  • FIG. 4 is a schematic diagram showing the composition and structure of a communication device according to an exemplary embodiment.
  • the communication device in the embodiment of the present application includes:
  • the sending unit 40 is configured to send configuration information for the UE.
  • the configuration information is used to indicate at least one of the following information: a random access mode and a data bearing mode in a random access scenario.
  • the configuration information is applicable to a UE in an inactive state or a connected state.
  • the configuration information includes at least one of the following information:
  • the logical channel adopts a two-step or four-step random access method.
  • the channel quality includes RSRP.
  • the sending unit 40 is further configured to:
  • the configuration information is sent through a system broadcast message.
  • the sending unit 40 is further configured to:
  • the configuration information is sent to the UE in the connected state through an RRC message.
  • the sending unit 40 and the like may be operated by one or more central processing units (CPU, Central Processing Unit), graphics processing unit (GPU, Graphics Processing Unit), baseband processor (BP, base processor), application Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field- Programmable Gate Array), general-purpose processors, controllers, microcontrollers (MCU, Micro Controller Unit), microprocessors (Microprocessor), or other electronic components to achieve, can also be combined with one or more radio frequency (RF, radio frequency)
  • RF radio frequency
  • FIG. 5 is a schematic diagram showing the composition and structure of a communication device according to an exemplary embodiment.
  • the communication device in the embodiment of the present application includes:
  • a receiving unit 50 configured to receive configuration information
  • a measuring unit 51 configured to measure channel quality
  • the determining unit 52 is configured to determine the small data transmission threshold value corresponding to the channel quality according to the configuration information.
  • the apparatus further includes:
  • the first determination unit (not shown in FIG. 5 ) is configured to determine whether the MAC PDU that needs to carry the uplink data to be transmitted is less than or equal to the small data transmission threshold value, and triggers the sending unit; The MAC PDU is greater than the small data transmission threshold, triggering the connection establishment unit;
  • a sending unit (not shown in FIG. 5 ), configured to send the uplink data through a small data sending mechanism in a random access manner;
  • a connection establishment unit (not shown in FIG. 5 ) is configured to establish an RRC connection.
  • the apparatus further includes: a second determining unit (not shown in FIG. 5 ) and a random access unit (not shown in FIG. 5 ); wherein,
  • a second determining unit configured to determine that the logical channel corresponding to the uplink data needs to perform random access in a two-step random access manner in response to sending the uplink data by the sending unit through a small data transmission mechanism in a random access manner.
  • to trigger the random access unit to perform random access through a two-step random access method determine that the logical channel corresponding to the uplink data does not need to perform random access through a two-step random access method, and trigger the random access method.
  • the incoming unit performs random access through a four-step random access method.
  • the apparatus further includes:
  • the selection unit (not shown in FIG. 5 ) is configured to select the minimum bearer resource capable of carrying the MAC PDU of the uplink data in response to sending the uplink data through the small data transmission mechanism of the random access mode, and select the corresponding random Access preamble.
  • the random access unit initiates random access through the selected corresponding random access preamble.
  • the receiving unit 50 is further configured to ignore the configuration information of the broadcast message if it enters an inactive state after receiving the configuration information through the RRC message.
  • the receiving unit 50, the measuring unit 51, the determining unit 52, the first determining unit, the transmitting unit, the connection establishing unit, the second determining unit, the random access unit, the selecting unit, etc. may be configured by one or more Central Processing Unit (CPU, Central Processing Unit), Graphics Processing Unit (GPU, Graphics Processing Unit), Baseband Processor (BP, base processor), Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field-Programmable Gate Array), General Purpose Processor, Controller, Microcontroller (MCU) , a Micro Controller Unit), a microprocessor (Microprocessor), or other electronic components, and may also be implemented in combination with one or more radio frequency (RF, radio frequency) antennas, for implementing the communication methods in the foregoing embodiments.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP
  • FIG. 6 is a block diagram of a user equipment 6000 according to an exemplary embodiment.
  • user equipment 6000 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • user equipment 6000 may include one or more of the following components: processing component 6002, memory 6004, power supply component 6006, multimedia component 6008, audio component 6010, input/output (I/O) interface 6012, sensor component 6014 , and the communication component 6016.
  • the processing component 6002 generally controls the overall operations of the user equipment 6000, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 6002 can include one or more processors 6020 to execute instructions to perform all or part of the steps of the methods described above.
  • processing component 6002 may include one or more modules that facilitate interaction between processing component 6002 and other components.
  • processing component 6002 may include a multimedia module to facilitate interaction between multimedia component 6008 and processing component 6002.
  • Memory 6004 is configured to store various types of data to support operation at device 6000 . Examples of such data include instructions for any application or method operating on the user device 6000, contact data, phonebook data, messages, pictures, videos, and the like. Memory 6004 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 6006 provides power to various components of user equipment 6000.
  • Power components 6006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to user equipment 6000.
  • Multimedia component 6008 includes a screen that provides an output interface between user equipment 6000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. A touch sensor can sense not only the boundaries of a touch or swipe action, but also the duration and pressure associated with the touch or swipe action.
  • the multimedia component 6008 includes a front-facing camera and/or a rear-facing camera. When the device 6000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 6010 is configured to output and/or input audio signals.
  • the audio component 6010 includes a microphone (MIC) that is configured to receive external audio signals when the user device 6000 is in operating modes, such as calling mode, recording mode, and speech recognition mode.
  • the received audio signal may be further stored in memory 6004 or transmitted via communication component 6016.
  • audio component 6010 also includes a speaker for outputting audio signals.
  • the I/O interface 6012 provides an interface between the processing component 6002 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor component 6014 includes one or more sensors for providing user equipment 6000 with status assessments of various aspects.
  • the sensor component 6014 can detect the open/closed state of the device 6000, the relative positioning of components, such as the display and keypad of the user device 6000, the sensor component 6014 can also detect the position of the user device 6000 or a component of the user device 6000 changes, the presence or absence of user contact with the user equipment 6000, the orientation or acceleration/deceleration of the user equipment 6000 and the temperature change of the user equipment 6000.
  • Sensor assembly 6014 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 6014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 6014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 6016 is configured to facilitate wired or wireless communications between user device 6000 and other devices.
  • the user equipment 6000 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 6016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 6016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • user equipment 6000 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programmed gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above communication method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programmed gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above communication method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 6004 including instructions, is also provided, and the instructions are executable by the processor 6020 of the user equipment 6000 to complete the communication method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the embodiments of the present disclosure further describe a network device, including a processor, a transceiver, a memory, and an executable program stored on the memory and executable by the processor, and the processor executes the executable program when the processor runs the executable program
  • a network device including a processor, a transceiver, a memory, and an executable program stored on the memory and executable by the processor, and the processor executes the executable program when the processor runs the executable program
  • the embodiment of the present disclosure further describes a user equipment, including a processor, a transceiver, a memory, and an executable program stored in the memory and executable by the processor, and the processor executes the executable program when the processor runs the executable program.
  • the embodiment of the present disclosure further describes a storage medium, which stores an executable program, and the executable program is executed by a processor to execute the steps of the communication method of the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于通信方法及装置、网络设备、用户设备及存储介质。所述通信方法包括:为UE发送配置信息,所述配置信息用于指示以下信息至少之一:随机接入方式、随机接入场景下的数据承载方式。UE接收配置信息,测量信道质量,根据所述配置信息确定所述信道质量对应的小数据传输门限值。通过为UE配置与其信道质量相关的随机接入方式下的上行数据传输门限值,使不同信道条件的UE根据自身当前的通信信道质量来确定当前的上行数据承载量,以使当前信道质量较佳的UE,不必因为稍微大一些的上行数据传输量而无谓进入RRC连接恢复过程,节省了通信系统的无线资源,且使UE更省电。

Description

通信方法及装置、网络设备、UE及存储介质 技术领域
本公开涉及数据传输技术,尤其涉及一种通信方法及装置、网络设备、用户设备(User Equipment,UE)及存储介质。
背景技术
在NR中,引入了非激活状态(inactive)。在此状态下,允许UE直接在随机接入过程中携带加密过的数据发送给基站,而UE无需进入连接态,减少了传输时延和信令开销。由于随机接入过程中能够发送的数据量较小,这种数据发送方式适合小数据包的发送,因此这种数据发送方式称为小数据传输。目前在小数据传输机制中,随机接入过程中可以携带的数据量的门限是网络侧配置给UE的,在小区内都是一致的。因此,需要按照信道状况最差的情况来设置一个较低的数据传输门限,从而保证上行覆盖。而处于信道状况较好区域的UE是可以在随机接入过程中发送较多的数据的,而基于目前的小数据传输机制,这可能导致众多的UE进行不必要的无线资源控制(Radio Resource Control,RRC)连接恢复过程。
发明内容
有鉴于此,本公开实施例提供了一种通信方法及装置、网络设备、用户设备及存储介质。
根据本公开实施例的第一方面,提供一种通信方法,应用于基站侧,所述方法包括:
为UE发送配置信息,所述配置信息用于指示以下信息至少之一:随机接入方式、随机接入场景下的数据承载方式。
在一个实施例中,所述配置信息适用于处于非激活态或者连接态的UE。
在一个实施例中,所述配置信息包括以下信息至少之一:
信道质量和数据门限值之间的关联关系;
随机接入前导码与小数据承载量之间的对应关系;以及
逻辑信道采用两步或四步随机接入方式。
在一个实施例中,所述信道质量包括参考信号接收功率(Reference Signal Receiving Power,RSRP)。
在一个实施例中,所述发送配置信息,包括:
通过系统广播消息发送所述配置信息。
在一个实施例中,所述发送配置信息,包括:
通过无线资源控制RRC消息向处于连接态的UE发送所述配置信息。
本申请实施例中,在UE处于连接态时,通过无线资源控制(Radio Resource Control,RRC)消息发送所述配置信息;若之后UE进入非激活状态,忽略广播消息的配置信息。
根据本公开实施例的第二方面,提供一种通信方法,应用于用户设备侧,所述方法包括:
接收配置信息;
测量信道质量;
根据所述配置信息确定所述信道质量对应的小数据传输门限值。
在一个实施例中,所述方法还包括:
确定需要承载待传输的上行数据的媒体接入控制协议数据单元MAC PDU小于等于所述小数据传输门限值,通过随机接入方式的小数据发送机制发送所述上行数据;或者
确定需要承载所述上行数据的MAC PDU大于所述小数据传输门限 值,触发RRC连接建立过程。
在一个实施例中,所述方法还包括:
响应于通过随机接入方式的小数据发送机制发送所述上行数据,确定所述上行数据对应的逻辑信道中需要通过两步随机接入方式进行随机接入,通过两步随机接入方式进行随机接入;或者
确定所述上行数据对应的逻辑信道中不需要通过两步随机接入方式进行随机接入,通过四步随机接入方式进行随机接入。
在一个实施例中,所述方法还包括:
响应于通过随机接入方式的小数据发送机制发送所述上行数据,选择能够承载所述上行数据的MAC PDU的最小承载资源,并选择对应的随机接入前导码。
在一个实施例中,所述方法还包括:
通过所选择对应的随机接入前导码发起随机接入。
在一个实施例中,所述方法还包括:
通过RRC消息接收配置信息后,若进入非激活状态,忽略广播消息的配置信息。
根据本公开实施例的第三方面,提供一种通信装置,包括:
发送单元,配置为为UE发送配置信息,所述配置信息用于指示以下信息至少之一:随机接入方式、随机接入场景下的数据承载方式。
在一个实施例中,所述配置信息适用于处于非激活态或者连接态的UE。
在一个实施例中,所述配置信息包括以下信息至少之一:
信道质量和数据门限值之间的关联关系;
随机接入前导码与小数据承载量之间的对应关系;以及
逻辑信道采用两步或四步随机接入方式。
在一个实施例中,所述信道质量包括RSRP。
在一个实施例中,所述发送单元,还配置为:
通过系统广播消息发送所述配置信息。
在一个实施例中,所述发送单元,还配置为:
通过RRC消息向处于连接态的UE发送所述配置信息。
根据本公开实施例的第四方面,提供一种通信装置,包括:
接收单元,配置为接收配置信息;
测量单元,配置为测量信道质量;
确定单元,配置为根据所述配置信息确定所述信道质量对应的小数据传输门限值。
在一个实施例中,所述装置还包括:
第一确定单元,配置为确定需要承载待传输的上行数据的是否MAC PDU小于等于所述小数据传输门限值,触发发送单元;确定需要承载所述上行数据的MAC PDU大于所述小数据传输门限值,触发连接建立单元;
发送单元,配置为通过随机接入方式的小数据发送机制发送所述上行数据;
连接建立单元,配置为建立RRC连接。
在一个实施例中,所述装置还包括:第二确定单元和随机接入单元;其中,
第二确定单元,配置为响应于通过所述发送单元通过随机接入方式的小数据发送机制发送所述上行数据,确定所述上行数据对应的逻辑信道中需要通过两步随机接入方式进行随机接入,触发所述随机接入单元通过两步随机接入方式进行随机接入,确定所述上行数据对应的逻辑信道中不需要通过两步随机接入方式进行随机接入,触发所述随机接入单 元通过四步随机接入方式进行随机接入。
在一个实施例中,所述装置还包括:
选择单元,配置为响应于通过随机接入方式的小数据发送机制发送所述上行数据,选择能够承载所述上行数据的MAC PDU的最小承载资源,并选择对应的随机接入前导码。
在一个实施例中,所述随机接入单元,还配置为通过所选择对应的随机接入前导码发起随机接入。
在一个实施例中,所述接收单元,还配置为通过RRC消息接收配置信息后,若进入非激活状态,忽略广播消息的配置信息。
根据本公开实施例的第五方面,提供一种网络设备,包括处理器、收发器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,所述处理器运行所述可执行程序时执行前述第一方面的通信方法的步骤。
根据本公开实施例的第六方面,提供一种用户设备,包括处理器、收发器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,所述处理器运行所述可执行程序时执行前述第二方面的通信方法的步骤。
根据本公开实施例的第七方面,提供一种存储介质,其上存储由可执行程序,所述可执行程序被处理器执行时实现所述的通信方法的步骤。
本公开实施例的通信方法及装置、网络设备、用户设备及存储介质,通过为UE配置与其信道质量相关的随机接入方式下的上行数据传输门限值,使不同信道条件的UE根据自身当前的通信信道质量来确定当前的上行数据承载量,以使当前信道质量较佳的UE,不必因为稍微大一些的上行数据传输量而无谓进入RRC连接恢复过程,节省了通信系统的无线资源,且使UE更省电。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的无线通信系统的结构示意图;
图2是根据一示例性实施例示出的通信方法的流程示意图;
图3是根据一示例性实施例示出的通信方法的流程示意图;
图4是根据一示例性实施例示出的通信装置的组成结构示意图;
图5是根据一示例性实施例示出的通信装置的组成结构示意图;
图6是根据一示例性实施例示出的一种用户设备的组成结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时” 或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是任一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基 站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(Central Unit,CU)和至少两个分布单元(Distributed Unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to Pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实 施例不做限定。
本公开实施例涉及的执行主体包括但不限于:蜂窝移动通信系统中的用户设备(UE,User Equipment),以及蜂窝移动通信的基站等。
图2是根据一示例性实施例示出的通信方法的流程示意图,如图2所示,本公开实施例的通信方法包括以下处理步骤:
步骤201,为UE发送配置信息。
所述配置信息用于指示以下信息至少之一:随机接入方式、随机接入场景下的数据承载方式。
网络侧设备如基站通过系统消息为非激活态下的UE发送配置信息,以便使处于非激活态下的UE能够通过随机接入方式进行上行数据的传输。在本申请实施例中,所述配置信息也适用于连接态的UE,具体地,可以通过RRC消息将配置信息向UE发送,此时,当通过RRC消息接收到配置信息后,UE再次处于非激活态下时,将忽略通过系统消息发送的配置信息。
本公开实施例的通信方法应用于网络设备侧,如应用于基站中。
所述配置信息包括以下信息至少之一:
信道质量和数据门限值之间的关联关系;这里,所述信道质量包括参考信号接收功率(Reference Signal Receiving Power,RSRP)等参数。作为一种示例,RSRP大于-98db时,数据门限设置为100kb;RSRP小于-98db,大于-108db时,数据门限设置为80kb;RSRP小于-108db时,数据门限设置为50kb。本领域技术人员应当理解,这里仅是示例性地给出了一种可能的实现方式,根据不同的RSRP设置不同数据门限,都应在本申请技术方案的本质之内。如,也可以为:RSRP大于-90db时,数据门限设置为120kb;RSRP小于-90db,大于-110db时,数据门限设置为70kb;RSRP小于-110db时,数据门限设置为45kb。
随机接入前导码与小数据承载量之间的对应关系;这里,作为一种 示例,Preamble 1-10,对应小数据承载门限为100kb,preamble11-20,对应小数据承载门限为80kb,preamble21-30,对应小数据承载门限为50kb,preamble 31-40,对应小数据承载门限为20kb。作为一种示例,也可以为:Preamble 1-10,对应小数据承载门限为110kb,preamble11-20,对应小数据承载门限为90kb,preamble21-30,对应小数据承载门限为60kb,preamble 31-40,对应小数据承载门限为30kb。
逻辑信道采用两步或四步随机接入方式。
本公开实施例中,所述发送配置信息,包括:通过系统广播消息发送所述配置信息。
或者,在UE处于连接态时,通过无线资源控制(Radio Resource Control,RRC)消息发送所述配置信息;当通过RRC消息发送了所述配置信息后,当UE进入再次非激活状态时,以通过RRC消息接收的所述配置信息为准,并忽略通过广播消息发送的配置信息。
图3是根据一示例性实施例示出的通信方法的流程示意图,如图3所示,本公开实施例的通信方法包括以下处理步骤:
步骤301,接收配置信息,测量信道质量。
本公开实施例通信方法适用于UE侧。本步骤中,接收配置信息和进行信道质量测量之间并无先后顺序,可以并行进行。
当UE接收到网络侧发送的配置信息后,根据当前测量的信道质量确定当的UE随机接入方式下的小数据传输门限值。
步骤302,根据所述配置信息确定所述信道质量对应的小数据传输门限值。
具体地,可以根据RSRP来确定小数据传输门限值。作为一种示例,RSRP大于-98db时,数据门限设置为100kb;RSRP小于-98db,大于-108db时,数据门限设置为80kb;RSRP小于-108db时,数据门限设置为50kb。 或者,RSRP大于-90db时,数据门限设置为120kb;RSRP小于-90db,大于-110db时,数据门限设置为70kb;RSRP小于-110db时,数据门限设置为45kb。
或者,根据随机接入前导码与小数据承载量之间的对应关系,确定小数据传输门限值。作为一种示例,Preamble 1-10,对应小数据承载门限为100kb,preamble11-20,对应小数据承载门限为80kb,preamble21-30,对应小数据承载门限为50kb,preamble 31-40,对应小数据承载门限为20kb。或者,也可以为:Preamble 1-10,对应小数据承载门限为110kb,preamble11-20,对应小数据承载门限为90kb,preamble21-30,对应小数据承载门限为60kb,preamble 31-40,对应小数据承载门限为30kb。
有上行数据需要传输时,确定需要承载所述上行数据的媒体接入控制协议数据单元(Media Access Control Protocol Data Unit,MAC PDU)小于等于所述小数据传输门限值时,通过随机接入方式的小数据发送机制发送所述上行数据,确定需要承载所述上行数据的MAC PDU大于所述小数据传输门限值时,触发RRC连接建立过程。本申请实施例中,确定承载需要发送的上行数据量的MAC PDU是否小于等于当前的小数据传输门限值,若MAC PDU小于等于当前的小数据传输门限值,则说明当前的上行随机接入方式下可以承载当前的待发送的上行数据,当承载上行数据的MAC PDU大于当前的小数据传输门限值时,将不能通过随机接入方式进行传输,则需要触发RRC连接建立过程,通过建立RRC连接后再发送上行数据。
UE还根据当前的信道质量,确定当前的随机接入是选择两步方式,还是四步随机接入方式。具体需要根据逻辑信道的情况,为不同的逻辑信道确定相应的随机接入方式。
在前述方法是基础上,本公开实施例的通信方法还包括:
响应于通过随机接入方式的小数据发送机制发送所述上行数据,确定所述上行数据对应的逻辑信道中需要通过两步随机接入方式进行随机接入,通过两步随机接入方式进行随机接入;或者,确定所述上行数据对应的逻辑信道中不需要通过两步随机接入方式进行随机接入,通过四步随机接入方式进行随机接入。也就是说,需要确定UE当前的RSRP是否达到网络侧配置的门限要求,若RSRP达到了网络侧配置的门限要求,则UE通过两步随机接入方式进行随机接入,利用小数据传输机制发送当前的上行数据;否则,若RSRP达不到网络侧配置的门限要求,UE通过四步随机接入方式进行随机接入,利用小数据传输机制发送当前的上行数据。
在前述方法是基础上,本公开实施例的通信方法还包括:
响应于通过随机接入方式的小数据发送机制发送所述上行数据时,选择能够承载所述上行数据的MAC PDU的最小承载资源,并选择对应的随机接入前导码。在本公开实施例中,为待发送的上行数据确定MAC PDU后,为所确定的MAC PDU选择最小的传输资源进行承载,并选择相应的随机接入前导码,以便进行随机接入。UE通过所选择对应的随机接入前导码发起随机接入。
在前述方法是基础上,本公开实施例的通信方法还包括:通过RRC消息接收配置信息后,若进入非激活状态,忽略广播消息的配置信息。
以下通过一具体示例,进一步阐明本申请实施例技术方案的实质。
基站在广播中,配置如下内容:
RSRP大于-98db时,数据门限为100kb;RSRP小于-98db,大于-108db时,数据门限为80kb;RSRP小于-108db时,数据门限为50kb。
Preamble 1-10,对应小数据承载100kb,preamble11-20,对应小数据承载80kb,preamble21-30,对应小数据承载50kb,preamble 31-40,对应小数 据承载20kb。
逻辑信道1,需要通过2步随机接入,逻辑信道2,不需要通过2步随机接入,逻辑信道3,不需要通过2步随机接入。
UE A处于非激活状态,此时RSRP测量值为-110db,则选择数据门限为50kb。当有上行数据到达需要传输时,需要用于发送数据的MAC PDU为60kb,则UE触发RRC连接恢复过程。
UE B处于非激活状态,且可以使用2步的随机接入方式进行随机接入,此时RSRP测量值为-110db,则选择数据门限为50kb。当有上行数据到达,需要用于发送数据的MAC PDU为10kb<50kb,则UE选择通过小数据机制发送数据。
上行数据来自逻辑信道1和2,其中逻辑信道1需要通过2步随机接入,则选择2步随机接入过程。选择20kb的小数据承载,进而在preamble31-40中随机选择一个preamble。UE通过所选择的preamble发起两步随机接入过程,在这个过程中携带20kb的小数据承载。
本公开实施例的通信方法,通过为UE配置与其信道质量相关的随机接入方式下的上行数据传输门限值,使不同信道条件的UE根据自身当前的通信信道质量来确定当前的上行数据承载量,以使当前信道质量较佳的UE,不必因为稍微大一些的上行数据传输量而无谓进入RRC连接恢复过程,节省了通信系统的无线资源,且使UE更省电。
图4是根据一示例性实施例示出的通信装置的组成结构示意图,如图4所示,本申请实施例的通信装置包括:
发送单元40,配置为为UE发送配置信息。其中,所述配置信息用于指示以下信息至少之一:随机接入方式、随机接入场景下的数据承载方式。
作为一种实现方式,所述配置信息适用于处于非激活态或者连接态 的UE。
在一个实施例中,所述配置信息包括以下信息至少之一:
信道质量和数据门限值之间的关联关系;
随机接入前导码与小数据承载量之间的对应关系;以及
逻辑信道采用两步或四步随机接入方式。
在一个实施例中,所述信道质量包括RSRP。
在一个实施例中,所述发送单元40,还配置为:
通过系统广播消息发送所述配置信息。
在一个实施例中,所述发送单元40,还配置为:
通过RRC消息向处于连接态的UE发送所述配置信息。
在示例性实施例中,发送单元40等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,base processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,也可以结合一个或多个射频(RF,radio frequency)天线实现,用于执行前述实施例的通信方法。
在本公开实施例中,图4示出的通信装置中各个单元执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图5是根据一示例性实施例示出的通信装置的组成结构示意图,如图5所示,本申请实施例的通信装置包括:
接收单元50,配置为接收配置信息;
测量单元51,配置为测量信道质量;
确定单元52,配置为根据所述配置信息确定所述信道质量对应的小数据传输门限值。
在一个实施例中,所述装置还包括:
第一确定单元(图5中未示出),配置为确定需要承载待传输的上行数据的是否MAC PDU小于等于所述小数据传输门限值,触发发送单元;确定需要承载所述上行数据的MAC PDU大于所述小数据传输门限值,触发连接建立单元;
发送单元(图5中未示出),配置为通过随机接入方式的小数据发送机制发送所述上行数据;
连接建立单元(图5中未示出),配置为建立RRC连接。
在一个实施例中,所述装置还包括:第二确定单元(图5中未示出)和随机接入单元(图5中未示出);其中,
第二确定单元,配置响应于通过所述发送单元通过随机接入方式的小数据发送机制发送所述上行数据,确定所述上行数据对应的逻辑信道中需要通过两步随机接入方式进行随机接入,触发所述随机接入单元通过两步随机接入方式进行随机接入,确定所述上行数据对应的逻辑信道中不需要通过两步随机接入方式进行随机接入,触发所述随机接入单元通过四步随机接入方式进行随机接入。
在一个实施例中,所述装置还包括:
选择单元(图5中未示出),配置响应于通过随机接入方式的小数据发送机制发送所述上行数据,选择能够承载所述上行数据的MAC PDU的最小承载资源,并选择对应的随机接入前导码。
在一个实施例中,所述随机接入单元通过所选择对应的随机接入前导码发起随机接入。
在一个实施例中,所述接收单元50,还配置为通过RRC消息接收配置信息后,若进入非激活状态,忽略广播消息的配置信息。
在示例性实施例中,接收单元50、测量单元51、确定单元52、第一确定单元、发送单元、连接建立单元、第二确定单元、随机接入单元、选择单元等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,base processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,也可以结合一个或多个射频(RF,radio frequency)天线实现,用于执行前述实施例的通信方法。
在本公开实施例中,图5示出的通信装置中各个单元执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图6是根据一示例性实施例示出的一种用户设备6000的框图。例如,用户设备6000可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,用户设备6000可以包括以下一个或多个组件:处理组件6002,存储器6004,电源组件6006,多媒体组件6008,音频组件6010,输入/输出(I/O)的接口6012,传感器组件6014,以及通信组件6016。
处理组件6002通常控制用户设备6000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件6002可以包括一个或多个处理器6020来执行指令,以完成上述的方法的全部或部 分步骤。此外,处理组件6002可以包括一个或多个模块,便于处理组件6002和其他组件之间的交互。例如,处理组件6002可以包括多媒体模块,以方便多媒体组件6008和处理组件6002之间的交互。
存储器6004被配置为存储各种类型的数据以支持在设备6000的操作。这些数据的示例包括用于在用户设备6000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器6004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件6006为用户设备6000的各种组件提供电力。电源组件6006可以包括电源管理系统,一个或多个电源,及其他与为用户设备6000生成、管理和分配电力相关联的组件。
多媒体组件6008包括在用户设备6000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件6008包括一个前置摄像头和/或后置摄像头。当设备6000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件6010被配置为输出和/或输入音频信号。例如,音频组件6010包括一个麦克风(MIC),当用户设备6000处于操作模式,如呼叫模式、记 录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器6004或经由通信组件6016发送。在一些实施例中,音频组件6010还包括一个扬声器,用于输出音频信号。
I/O接口6012为处理组件6002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件6014包括一个或多个传感器,用于为用户设备6000提供各个方面的状态评估。例如,传感器组件6014可以检测到设备6000的打开/关闭状态,组件的相对定位,例如组件为用户设备6000的显示器和小键盘,传感器组件6014还可以检测用户设备6000或用户设备6000一个组件的位置改变,用户与用户设备6000接触的存在或不存在,用户设备6000方位或加速/减速和用户设备6000的温度变化。传感器组件6014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件6014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件6014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件6016被配置为便于用户设备6000和其他设备之间有线或无线方式的通信。用户设备6000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件6016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件6016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,用户设备6000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编 程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述通信方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器6004,上述指令可由用户设备6000的处理器6020执行以完成上述通信方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本公开实施例还记载了一种网络设备,包括处理器、收发器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,所述处理器运行所述可执行程序时执行前述实施例的通信方法的步骤。
本公开实施例还记载了一种用户设备,包括处理器、收发器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,所述处理器运行所述可执行程序时执行前述实施例的通信方法的步骤。
本公开实施例还记载了一种存储介质,其上存储由可执行程序,所述可执行程序被处理器执行前述实施例的通信方法的步骤。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (27)

  1. 一种通信方法,应用于基站侧,其中,所述方法包括:
    为用户设备UE发送配置信息,所述配置信息用于指示以下信息至少之一:随机接入方式、随机接入场景下的数据承载方式。
  2. 根据权利要求1所述的方法,其中所述配置信息适用于处于非激活态或者连接态的UE。
  3. 根据权利要求1所述的方法,其中,所述配置信息包括以下信息至少之一:
    信道质量和数据门限值之间的关联关系;
    随机接入前导码与小数据承载量之间的对应关系;以及
    逻辑信道采用两步或四步随机接入方式。
  4. 根据权利要求3所述的方法,其中,所述信道质量包括参考信号接收功率RSRP。
  5. 根据权利要求1所述的方法,其中,所述发送配置信息,包括:
    通过系统广播消息发送所述配置信息。
  6. 根据权利要求1所述的方法,其中,所述发送配置信息,包括:
    通过无线资源控制RRC消息向处于连接态的UE发送所述配置信息。
  7. 一种通信方法,应用于用户设备UE侧,其中,所述方法包括:
    接收配置信息;
    测量信道质量;
    根据所述配置信息确定所述信道质量对应的小数据传输门限值。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    确定需要承载待传输的上行数据的媒体接入控制协议数据单元MAC PDU小于等于所述小数据传输门限值,通过随机接入方式的小数据发送机制发送所述上行数据;或者
    确定需要承载所述上行数据的MAC PDU大于所述小数据传输门限值,触发RRC连接建立过程。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    响应于通过随机接入方式的小数据发送机制发送所述上行数据,确定所述上行数据对应的逻辑信道中需要通过两步随机接入方式进行随机接入,通过两步随机接入方式进行随机接入;或者
    确定所述上行数据对应的逻辑信道中不需要通过两步随机接入方式进行随机接入,通过四步随机接入方式进行随机接入。
  10. 根据权利要求8所述的方法,其中,所述方法还包括:
    响应于通过随机接入方式的小数据发送机制发送所述上行数据,选择能够承载所述上行数据的MAC PDU的最小承载资源,并选择对应的随机接入前导码。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    通过所选择对应的随机接入前导码发起随机接入。
  12. 根据权利要求7所述的方法,其中,所述方法还包括:
    通过RRC消息接收配置信息后,若进入非激活状态,忽略广播消息的配置信息。
  13. 一种通信装置,应用于基站侧,其中,所述装置包括:
    发送单元,配置为为UE发送配置信息,所述配置信息用于指示以下信息至少之一:随机接入方式、随机接入场景下的数据承载方式。
  14. 根据权利要求12所述的装置,其中,所述配置信息适用于处于非激活态或者连接态的UE。
  15. 根据权利要求12所述的装置,其中,所述配置信息包括以下信息至少之一:
    信道质量和数据门限值之间的关联关系;
    随机接入前导码与小数据承载量之间的对应关系;以及
    逻辑信道采用两步或四步随机接入方式。
  16. 根据权利要求15所述的装置,其中,所述信道质量包括RSRP。
  17. 根据权利要求13所述的装置,其中,所述发送单元,还配置为:
    通过系统广播消息发送所述配置信息。
  18. 根据权利要求13所述的装置,其中,所述发送单元,还配置为:
    通过RRC消息向处于连接态的UE发送所述配置信息。
  19. 一种通信装置,应用于用户设备侧,其中,所述装置包括:
    接收单元,配置为接收配置信息;
    测量单元,配置为测量信道质量;
    确定单元,配置为根据所述配置信息确定所述信道质量对应的小数据传输门限值。
  20. 根据权利要求19所述的装置,其中,所述装置还包括:
    第一确定单元,配置为确定需要承载待传输的上行数据的是否MAC PDU小于等于所述小数据传输门限值,触发发送单元;确定需要承载所述上行数据的MAC PDU大于所述小数据传输门限值,触发连接建立单元;
    发送单元,配置为通过随机接入方式的小数据发送机制发送所述上行数据;
    连接建立单元,配置为建立RRC连接。
  21. 根据权利要求20所述的装置,其中,所述装置还包括:第二确定单元和随机接入单元;其中,
    第二确定单元,配置为响应于通过所述发送单元通过随机接入方式的小数据发送机制发送所述上行数据,确定所述上行数据对应的逻辑信道中需要通过两步随机接入方式进行随机接入,触发所述随机接入单元 通过两步随机接入方式进行随机接入,确定所述上行数据对应的逻辑信道中不需要通过两步随机接入方式进行随机接入,触发所述随机接入单元通过四步随机接入方式进行随机接入。
  22. 根据权利要求21所述的装置,其中,所述装置还包括:
    选择单元,配置为响应于通过随机接入方式的小数据发送机制发送所述上行数据,选择能够承载所述上行数据的MAC PDU的最小承载资源,并选择对应的随机接入前导码。
  23. 根据权利要求22所述的装置,其中,所述随机接入单元,还配置为通过所选择对应的随机接入前导码发起随机接入。
  24. 根据权利要求19所述的装置,其中,所述接收单元,还配置为通过RRC消息接收配置信息后,若进入非激活状态,忽略广播消息的配置信息。
  25. 一种网络设备,包括处理器、收发器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,所述处理器运行所述可执行程序时执行如权利要求1至6任一项所述的通信方法的步骤。
  26. 一种用户设备,包括处理器、收发器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,所述处理器运行所述可执行程序时执行如权利要求7至12任一项所述的通信方法的步骤。
  27. 一种存储介质,其上存储由可执行程序,所述可执行程序被处理器执行时实现如求1至12任一项所述的通信方法的步骤。
PCT/CN2020/115980 2020-09-17 2020-09-17 通信方法及装置、网络设备、ue及存储介质 WO2022056788A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080002332.7A CN112262597B (zh) 2020-09-17 2020-09-17 通信方法及装置、网络设备、ue及存储介质
EP20953646.5A EP4216613A4 (en) 2020-09-17 2020-09-17 COMMUNICATION METHOD AND APPARATUS, NETWORK DEVICE, USER DEVICE AND STORAGE MEDIUM
US18/044,362 US20230328795A1 (en) 2020-09-17 2020-09-17 Communication method and apparatus, network device, ue, and storage medium
PCT/CN2020/115980 WO2022056788A1 (zh) 2020-09-17 2020-09-17 通信方法及装置、网络设备、ue及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115980 WO2022056788A1 (zh) 2020-09-17 2020-09-17 通信方法及装置、网络设备、ue及存储介质

Publications (1)

Publication Number Publication Date
WO2022056788A1 true WO2022056788A1 (zh) 2022-03-24

Family

ID=74225426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115980 WO2022056788A1 (zh) 2020-09-17 2020-09-17 通信方法及装置、网络设备、ue及存储介质

Country Status (4)

Country Link
US (1) US20230328795A1 (zh)
EP (1) EP4216613A4 (zh)
CN (1) CN112262597B (zh)
WO (1) WO2022056788A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193205A1 (zh) * 2021-03-18 2022-09-22 北京小米移动软件有限公司 Ue省电处理方法、装置、通信设备及存储介质
EP4316146A1 (en) * 2021-03-22 2024-02-07 Nokia Technologies Oy Initiation of small data transmission
WO2022205380A1 (zh) * 2021-04-01 2022-10-06 北京小米移动软件有限公司 小数据传输sdt退回到非sdt的处理方法及其装置
EP4316151A1 (en) * 2021-04-01 2024-02-07 Lenovo (Beijing) Limited Method and apparatus for data transmission in non-connected state
WO2022236614A1 (en) * 2021-05-10 2022-11-17 Lenovo (Beijing) Limited Method and apparatus for avoiding repeated state transition in small data transmission
CN115460625A (zh) * 2021-06-08 2022-12-09 大唐移动通信设备有限公司 数据传输方法、设备及存储介质
WO2023000123A1 (en) * 2021-07-19 2023-01-26 Qualcomm Incorporated Configuration and procedure for search space used in small data transfer over pre-configured uplink resources
CN115942395A (zh) * 2021-08-06 2023-04-07 维沃移动通信有限公司 信息上报方法、终端及网络侧设备
CN113796110A (zh) * 2021-08-12 2021-12-14 北京小米移动软件有限公司 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
CN117242834A (zh) * 2022-04-15 2023-12-15 北京小米移动软件有限公司 无线传输的方法、装置、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087280A1 (en) * 2018-10-30 2020-05-07 Qualcomm Incorporated Configurations for small data transmission
CN111385909A (zh) * 2018-12-29 2020-07-07 北京三星通信技术研究有限公司 信号传输方法、ue、基站以及计算机可读介质
CN111615208A (zh) * 2019-02-22 2020-09-01 中国移动通信有限公司研究院 随机接入的通信方法、装置、相关设备及存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9815914A (pt) * 1998-06-19 2001-02-20 Ericsson Telefon Ab L M Processos para uso em comunicações de dados em pacote e em um sistema de comunicações, e, controlador e aparelho em um sistema de comunicações.
EP3210427A1 (en) * 2014-10-23 2017-08-30 Intel IP Corporation Connection control for machine type communication (mtc) devices
US10299244B2 (en) * 2015-06-19 2019-05-21 Qualcomm Incorporated Small data transmission in a wireless communications system
WO2018031603A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Light connectivity and autonomous mobility
RU2750617C2 (ru) * 2016-09-28 2021-06-30 Сони Корпорейшн Произвольный доступ в системах беспроводной связи следующего поколения
WO2018086600A1 (en) * 2016-11-11 2018-05-17 Chou Chie Ming Data packet delivery in rrc inactive state
EP3697163A4 (en) * 2017-11-09 2020-08-26 Huawei Technologies Co., Ltd. RANDOM ACCESS PROCESS, DEVICE AND STORAGE MEDIA FOR COMMUNICATION DEVICE
CN110139365B (zh) * 2018-02-08 2022-08-26 展讯通信(上海)有限公司 在非激活状态下传输数据的方法、装置及用户设备
CN117202375A (zh) * 2018-08-09 2023-12-08 北京三星通信技术研究有限公司 用于rrc空闲态上行传输的方法及设备
US11903032B2 (en) * 2018-08-13 2024-02-13 Qualcomm Incorporated Downlink data transmission in RRC inactive mode
US20200252967A1 (en) * 2019-02-05 2020-08-06 Qualcomm Incorporated Techniques for configuring random access transmissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087280A1 (en) * 2018-10-30 2020-05-07 Qualcomm Incorporated Configurations for small data transmission
CN111385909A (zh) * 2018-12-29 2020-07-07 北京三星通信技术研究有限公司 信号传输方法、ue、基站以及计算机可读介质
CN111615208A (zh) * 2019-02-22 2020-09-01 中国移动通信有限公司研究院 随机接入的通信方法、装置、相关设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4216613A4 *

Also Published As

Publication number Publication date
EP4216613A4 (en) 2023-11-01
CN112262597A (zh) 2021-01-22
EP4216613A1 (en) 2023-07-26
CN112262597B (zh) 2024-01-19
US20230328795A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
WO2022056788A1 (zh) 通信方法及装置、网络设备、ue及存储介质
WO2022000188A1 (zh) 用户设备辅助信息的上报方法及装置、用户设备、存储介质
WO2022120544A1 (zh) 通信方法及装置、无线接入网、终端及存储介质
WO2022036649A1 (zh) 扩展非连续接收参数确定方法、通信设备和存储介质
WO2022052024A1 (zh) 参数配置方法、装置、通信设备和存储介质
WO2022183456A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021030974A1 (zh) 寻呼配置方法、装置、通信设备及存储介质
WO2022120751A1 (zh) 通信方法及装置、接入设备、终端及存储介质
WO2022155835A1 (zh) 切换配置确定方法、装置和通信设备装置
WO2021007789A1 (zh) 信息处理方法、装置及计算机存储介质
WO2022000200A1 (zh) 定位参考信号配置方法及装置、用户设备、存储介质
WO2021196216A1 (zh) 寻呼处理方法、装置、用户设备、基站及存储介质
WO2023193211A1 (zh) Rsrp门限确定方法、装置、通信设备及存储介质
WO2022205314A1 (zh) 寻呼原因处理方法及装置、通信设备及存储介质
WO2022120735A1 (zh) 无线通信的方法、装置、通信设备及存储介质
WO2022061616A1 (zh) 寻呼碰撞处理方法及装置、用户设备、网络设备及存储介质
WO2022006786A1 (zh) 网络数据收集方法及装置、网络设备、用户设备及存储介质
WO2022021033A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2021120204A1 (zh) 信号测量方法、装置、通信设备及存储介质
WO2023184121A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023092422A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022205472A1 (zh) 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质
WO2022147695A1 (zh) 中继ue选择、信息处理方法及装置、设备及介质
WO2022006759A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022120718A1 (zh) 数据传输方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020953646

Country of ref document: EP

Effective date: 20230417