WO2022056778A1 - Cell reselection procedure based on locally determined value for omitted system information block parameter - Google Patents

Cell reselection procedure based on locally determined value for omitted system information block parameter Download PDF

Info

Publication number
WO2022056778A1
WO2022056778A1 PCT/CN2020/115887 CN2020115887W WO2022056778A1 WO 2022056778 A1 WO2022056778 A1 WO 2022056778A1 CN 2020115887 W CN2020115887 W CN 2020115887W WO 2022056778 A1 WO2022056778 A1 WO 2022056778A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cell reselection
information
reselection
sib
Prior art date
Application number
PCT/CN2020/115887
Other languages
French (fr)
Inventor
Kuo-Chun Lee
Arvind Vardarajan Santhanam
Xuepan GUAN
Hewu GU
Shyamal Ramachandran
Subashini Krishnamurthy
Nitin Pant
Grace Wang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/115887 priority Critical patent/WO2022056778A1/en
Publication of WO2022056778A1 publication Critical patent/WO2022056778A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • aspects of the disclosure relate generally to wireless communications, and more particularly to a cell reselection procedure based on locally determined value (s) for omitted system information block (SIB) parameter (s) .
  • SIB system information block
  • Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G networks) , a third-generation (3G) high speed data, Internet-capable wireless service and a fourth-generation (4G) service (for example LTE or WiMax) .
  • cellular and personal communications service (PCS) systems include the cellular analog advanced mobile phone system (AMPS) , and digital cellular systems based on code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , the Global System for Mobile access (GSM) variation of TDMA, etc.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • GSM Global System for Mobile access
  • a fifth generation (5G) wireless standard referred to as New Radio (NR)
  • NR New Radio
  • the 5G standard according to the Next Generation Mobile Networks Alliance, is designed to provide data rates of several tens of megabits per second to each of tens of thousands of users, with 1 gigabit per second to tens of workers on an office floor. Several hundreds of thousands of simultaneous connections may be supported in order to support large wireless sensor deployments. Consequently, the spectral efficiency of 5G mobile communications may be significantly enhanced compared to the current 4G standard. Furthermore, signaling efficiencies may be enhanced and latency may be substantially reduced compared to current standards.
  • An aspect is directed to a method of operating a user equipment (UE) , comprising receiving, from a first cell, cell reselection information, identifying one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information, and performing a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
  • SIB system information block
  • a user equipment comprising means for receiving, from a first cell, cell reselection information, means for identifying one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information, and means for performing a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
  • SIB system information block
  • a user equipment comprising a memory, at least one transceiver, and at least one processor communicatively coupled to the memory and the at least one transceiver, the at least one processor configured to receive, from a first cell, cell reselection information, identify one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information, and perform a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
  • SIB system information block
  • Another aspect is directed to a non-transitory computer-readable medium containing instructions stored thereon, for causing at least one processor in a user equipment (UE) to receive, from a first cell, cell reselection information, identify one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information, and perform a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
  • SIB system information block
  • FIG. 1 illustrates a wireless communications system, according to various aspects.
  • FIGS. 2A and 2B illustrate example wireless network structures, according to various aspects.
  • FIGS. 3A to 3C are simplified block diagrams of several sample aspects of components that may be employed in wireless communication nodes and configured to support communication as taught herein.
  • FIG. 4 illustrates a process of wireless communication, according to aspects of the disclosure.
  • FIGS. 5-7 illustrate example implementation of the processes of FIG. 4, according to aspects of the disclosure.
  • example are used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “example” is not necessarily to be construed as preferred or advantageous over other aspects. Likewise, the term “aspects of the disclosure” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation.
  • sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (for example, application specific integrated circuits (ASICs) ) , by program instructions being executed by one or more processors, or by a combination of both. Additionally, the sequence (s) of actions described herein can be considered to be embodied entirely within any form of non-transitory computer-readable storage medium having stored therein a corresponding set of computer instructions that, upon execution, would cause or instruct an associated processor of a device to perform the functionality described herein.
  • ASICs application specific integrated circuits
  • a UE may be any wireless communication device (for example, a mobile phone, router, tablet computer, laptop computer, tracking device, wearable (for example, smartwatch, glasses, augmented reality (AR) /virtual reality (VR) headset, etc. ) , vehicle (for example, automobile, motorcycle, bicycle, etc. ) , Internet of Things (IoT) device, etc. ) used by a user to communicate over a wireless communications network.
  • a UE may be mobile or may (for example, at certain times) be stationary, and may communicate with a radio access network (RAN) .
  • RAN radio access network
  • the term “UE” may be referred to interchangeably as an “access terminal” or “AT, ” a “client device, ” a “wireless device, ” a “subscriber device, ” a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT, a “mobile terminal, ” a “mobile station, ” or variations thereof.
  • AT access terminal
  • client device a “wireless device
  • a “subscriber device a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT
  • UEs can communicate with a core network via a RAN, and through the core network the UEs can be connected with external networks such as the Internet and with other UEs.
  • WLAN wireless local area network
  • a base station may operate according to one of several RATs in communication with UEs depending on the network in which it is deployed, and may be alternatively referred to as an access point (AP) , a network node, a NodeB, an evolved NodeB (eNB) , a New Radio (NR) Node B (also referred to as a gNB or gNodeB) , etc.
  • AP access point
  • eNB evolved NodeB
  • NR New Radio
  • a base station may provide purely edge node signaling functions while in other systems it may provide additional control and/or network management functions.
  • a base station may correspond to a Customer Premise Equipment (CPE) or a road-side unit (RSU) .
  • CPE Customer Premise Equipment
  • RSU road-side unit
  • a base station may correspond to a high-powered UE (for example, a vehicle UE or VUE) that may provide limited certain infrastructure functionality.
  • a communication link through which UEs can send signals to a base station is called an uplink (UL) channel (for example, a reverse traffic channel, a reverse control channel, an access channel, etc. ) .
  • a communication link through which the base station can send signals to UEs is called a downlink (DL) or forward link channel (for example, a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc. ) .
  • DL downlink
  • forward link channel for example, a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc.
  • TCH traffic channel
  • TCH can refer to either an UL /reverse or DL /forward traffic channel.
  • base station may refer to a single physical transmission-reception point (TRP) or to multiple physical TRPs that may or may not be co-located.
  • TRP transmission-reception point
  • the physical TRP may be an antenna of the base station corresponding to a cell of the base station.
  • the physical TRPs may be an array of antennas (for example, as in a multiple-input multiple-output (MIMO) system or where the base station employs beamforming) of the base station.
  • MIMO multiple-input multiple-output
  • the physical TRPs may be a distributed antenna system (DAS) (a network of spatially separated antennas connected to a common source via a transport medium) or a remote radio head (RRH) (a remote base station connected to a serving base station) .
  • DAS distributed antenna system
  • RRH remote radio head
  • the non-co-located physical TRPs may be the serving base station receiving the measurement report from the UE and a neighbor base station whose reference RF signals the UE is measuring. Because a TRP is the point from which a base station transmits and receives wireless signals, as used herein, references to transmission from or reception at a base station are to be understood as referring to a particular TRP of the base station.
  • An “RF signal” includes an electromagnetic wave of a given frequency that transports information through the space between a transmitter and a receiver.
  • a transmitter may transmit a single “RF signal” or multiple “RF signals” to a receiver.
  • the receiver may receive multiple “RF signals” corresponding to each transmitted RF signal due to the propagation characteristics of RF signals through multipath channels.
  • the same transmitted RF signal on different paths between the transmitter and receiver may be referred to as a “multipath” RF signal.
  • FIG. 1 illustrates a wireless communications system 100.
  • the wireless communications system 100 (which may also be referred to as a wireless wide area network (WWAN) ) may include various base stations 102 and various UEs 104.
  • the base stations 102 may include macro cell base stations (high power cellular base stations) and/or small cell base stations (low power cellular base stations) .
  • the macro cell base station may include eNBs where the wireless communications system 100 corresponds to an LTE network, or gNBs where the wireless communications system 100 corresponds to a NR network, or a combination of both, and the small cell base stations may include femtocells, picocells, microcells, etc.
  • the base stations 102 may collectively form a RAN and interface with a core network 170 (for example, an evolved packet core (EPC) or next generation core (NGC) ) through backhaul links 122, and through the core network 170 to one or more location servers 172.
  • a core network 170 for example, an evolved packet core (EPC) or next generation core (NGC)
  • EPC evolved packet core
  • NTC next generation core
  • the base stations 102 may perform functions that relate to one or more of transferring user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (for example, handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, RAN sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • the base stations 102 may communicate with each other directly or indirectly (for example, through the EPC /NGC) over backhaul links 134, which may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. In an aspect, one or more cells may be supported by a base station 102 in each coverage area 110.
  • a “cell” is a logical communication entity used for communication with a base station (for example, over some frequency resource, referred to as a carrier frequency, component carrier, carrier, band, or the like) , and may be associated with an identifier (for example, a physical cell identifier (PCI) , a virtual cell identifier (VCI) ) for distinguishing cells operating via the same or a different carrier frequency.
  • PCI physical cell identifier
  • VCI virtual cell identifier
  • different cells may be configured according to different protocol types (for example, machine-type communication (MTC) , narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of UEs.
  • MTC machine-type communication
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a cell may refer to either or both the logical communication entity and the base station that supports it, depending on the context.
  • the term “cell” may also refer to a geographic coverage area of a base station (for example, a sector) , insofar as a carrier frequency can be detected and used for communication within some portion of geographic coverage areas 110.
  • While neighboring macro cell base station 102 geographic coverage areas 110 may partially overlap (for example, in a handover region) , some of the geographic coverage areas 110 may be substantially overlapped by a larger geographic coverage area 110.
  • a small cell base station 102' may have a coverage area 110' that substantially overlaps with the coverage area 110 of one or more macro cell base stations 102.
  • a network that includes both small cell and macro cell base stations may be known as a heterogeneous network.
  • a heterogeneous network may also include home eNBs (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • HeNBs home eNBs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include UL (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links 120 may be through one or more carrier frequencies. Allocation of carriers may be asymmetric with respect to DL and UL (for example, more or less carriers may be allocated for DL than for UL) .
  • the wireless communications system 100 may further include a wireless local area network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152 via communication links 154 in an unlicensed frequency spectrum (for example, 5 GHz) .
  • WLAN STAs 152 and/or the WLAN AP 150 may perform a clear channel assessment (CCA) or listen before talk (LBT) procedure prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • LBT listen before talk
  • the small cell base station 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell base station 102' may employ LTE or NR technology and use the same 5 GHz unlicensed frequency spectrum as used by the WLAN AP 150. The small cell base station 102', employing LTE /5G in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • NR in unlicensed spectrum may be referred to as NR-U.
  • LTE in an unlicensed spectrum may be referred to as LTE-U, licensed assisted access (LAA) , or MulteFire.
  • the wireless communications system 100 may further include a millimeter wave (mmW) base station 180 that may operate in mmW frequencies and/or near mmW frequencies in communication with a UE 182.
  • Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in this band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • the mmW base station 180 and the UE 182 may utilize beamforming (transmit and/or receive) over a mmW communication link 184 to compensate for the extremely high path loss and short range.
  • one or more base stations 102 may also transmit using mmW or near mmW and beamforming. Accordingly, it will be appreciated that the foregoing illustrations are merely examples and should not be construed to limit the various aspects disclosed herein.
  • Transmit beamforming is a technique for focusing an RF signal in a specific direction.
  • a network node for example, a base station
  • transmit beamforming the network node determines where a given target device (for example, a UE) is located (relative to the transmitting network node) and projects a stronger downlink RF signal in that specific direction, thereby providing a faster (in terms of data rate) and stronger RF signal for the receiving device (s) .
  • a network node can control the phase and relative amplitude of the RF signal at each of the one or more transmitters that are broadcasting the RF signal.
  • a network node may use an array of antennas (referred to as a “phased array” or an “antenna array” ) that creates a beam of RF waves that can be “steered” to point in different directions, without actually moving the antennas.
  • the RF current from the transmitter is fed to the individual antennas with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while cancelling to suppress radiation in undesired directions.
  • Transmit beams may be quasi-collocated, meaning that they appear to the receiver (for example, a UE) as having the same parameters, regardless of whether or not the transmitting antennas of the network node themselves are physically collocated.
  • a QCL relation of a given type means that certain parameters about a second reference RF signal on a second beam can be derived from information about a source reference RF signal on a source beam.
  • the receiver can use the source reference RF signal to estimate the Doppler shift, Doppler spread, average delay, and delay spread of a second reference RF signal transmitted on the same channel.
  • the receiver can use the source reference RF signal to estimate the Doppler shift and Doppler spread of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type C, the receiver can use the source reference RF signal to estimate the Doppler shift and average delay of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type D, the receiver can use the source reference RF signal to estimate the spatial receive parameter of a second reference RF signal transmitted on the same channel.
  • the receiver uses a receive beam to amplify RF signals detected on a given channel.
  • the receiver can increase the gain setting and/or adjust the phase setting of an array of antennas in a particular direction to amplify (for example, to increase the gain level of) the RF signals received from that direction.
  • a receiver is said to beamform in a certain direction, it means the beam gain in that direction is high relative to the beam gain along other directions, or the beam gain in that direction is the highest compared to the beam gain in that direction of all other receive beams available to the receiver.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SINR signal-to-interference-plus-noise ratio
  • Receive beams may be spatially related.
  • a spatial relation means that parameters for a transmit beam for a second reference signal can be derived from information about a receive beam for a first reference signal.
  • a UE may use a particular receive beam to receive a reference downlink reference signal (for example, synchronization signal block (SSB) ) from a base station.
  • the UE can then form a transmit beam for sending an uplink reference signal (for example, sounding reference signal (SRS) ) to that base station based on the parameters of the receive beam.
  • SRS sounding reference signal
  • a “downlink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the downlink beam to transmit a reference signal to a UE, the downlink beam is a transmit beam. If the UE is forming the downlink beam, however, it is a receive beam to receive the downlink reference signal.
  • an “uplink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the uplink beam, it is an uplink receive beam, and if a UE is forming the uplink beam, it is an uplink transmit beam.
  • the frequency spectrum in which wireless nodes is divided into multiple frequency ranges, FR1 (from 450 to 6000 MHz) , FR2 (from 24250 to 52600 MHz) , FR3 (above 52600 MHz) , and FR4 (between FR1 and FR2) .
  • FR1 from 450 to 6000 MHz
  • FR2 from 24250 to 52600 MHz
  • FR3 above 52600 MHz
  • FR4 between FR1 and FR2
  • one of the carrier frequencies is referred to as the “primary carrier” or “anchor carrier” or “primary serving cell” or “PCell, ” and the remaining carrier frequencies are referred to as “secondary carriers” or “secondary serving cells” or “SCells.
  • the anchor carrier is the carrier operating on the primary frequency (for example, FR1) utilized by a UE 104/182 and the cell in which the UE 104/182 either performs the initial radio resource control (RRC) connection establishment procedure or initiates the RRC connection re-establishment procedure.
  • the primary carrier carries all common and UE-specific control channels, and may be a carrier in a licensed frequency (however, this is not always the case) .
  • a secondary carrier is a carrier operating on a second frequency (for example, FR2) that may be configured once the RRC connection is established between the UE 104 and the anchor carrier and that may be used to provide additional radio resources. In some cases, the secondary carrier may be a carrier in an unlicensed frequency.
  • the secondary carrier may include signaling information and signals, for example, those that are UE-specific may not be present in the secondary carrier, since both primary uplink and downlink carriers are typically UE-specific. This means that different UEs 104/182 in a cell may have different downlink primary carriers. The same is true for the uplink primary carriers.
  • the network is able to change the primary carrier of any UE 104/182 at any time. This is done, for example, to balance the load on different carriers.
  • a “serving cell” (whether a PCell or an SCell) corresponds to a carrier frequency /component carrier over which some base station is communicating, the term “cell, ” “serving cell, ” “component carrier, ” “carrier frequency, ” and the like can be used interchangeably.
  • one of the frequencies utilized by the macro cell base stations 102 may be an anchor carrier (or “PCell” ) and other frequencies utilized by the macro cell base stations 102 and/or the mmW base station 180 may be secondary carriers ( “SCells” ) .
  • the simultaneous transmission and/or reception of multiple carriers enables the UE 104/182 to significantly increase its data transmission and/or reception rates. For example, two 20 MHz aggregated carriers in a multi-carrier system would theoretically lead to a two-fold increase in data rate (i.e., 40 MHz) , compared to that attained by a single 20 MHz carrier.
  • the wireless communications system 100 may further include one or more UEs, such as UE 190, that connects indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links.
  • D2D device-to-device
  • P2P peer-to-peer
  • UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base stations 102 (for example, through which UE 190 may indirectly obtain cellular connectivity) and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which UE 190 may indirectly obtain WLAN-based Internet connectivity) .
  • the D2D P2P links 192 and 194 may be supported with any known D2D RAT, such as LTE Direct (LTE-D) , WiFi Direct (WiFi-D) , and so on.
  • the wireless communications system 100 may further include a UE 164 that may communicate with a macro cell base station 102 over a communication link 120 and/or the mmW base station 180 over a mmW communication link 184.
  • the macro cell base station 102 may support a PCell and one or more SCells for the UE 164 and the mmW base station 180 may support one or more SCells for the UE 164.
  • FIG. 2A illustrates an example wireless network structure 200.
  • an NGC 210 also referred to as a “5GC”
  • control plane functions 214 for example, UE registration, authentication, network access, gateway selection, etc.
  • user plane functions 212 for example, UE gateway function, access to data networks, IP routing, etc.
  • User plane interface (NG-U) 213 and control plane interface (NG-C) 215 connect the gNB 222 to the NGC 210 and specifically to the control plane functions 214 and user plane functions 212.
  • an eNB 224 may also be connected to the NGC 210 via NG-C 215 to the control plane functions 214 and NG-U 213 to user plane functions 212. Further, eNB 224 may directly communicate with gNB 222 via a backhaul connection 223. In some configurations, the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both eNBs 224 and gNBs 222. Either gNB 222 or eNB 224 may communicate with UEs 204 (for example, any of the UEs depicted in FIG. 1) .
  • location server 230 may be in communication with the NGC 210 to provide location assistance for UEs 204.
  • the location server 230 can be implemented as a plurality of separate servers (for example, physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each correspond to a single server.
  • the location server 230 can be configured to support one or more location services for UEs 204 that can connect to the location server 230 via the core network, NGC 210, and/or via the Internet (not illustrated) . Further, the location server 230 may be integrated into a component of the core network, or alternatively may be external to the core network.
  • FIG. 2B illustrates another example wireless network structure 250.
  • an NGC 260 (also referred to as a “5GC” ) can be viewed functionally as control plane functions, provided by an access and mobility management function (AMF) /user plane function (UPF) 264, and user plane functions, provided by a session management function (SMF) 262, which operate cooperatively to form the core network (i.e., NGC 260) .
  • AMF access and mobility management function
  • UPF user plane function
  • SMF session management function
  • User plane interface 263 and control plane interface 265 connect the eNB 224 to the NGC 260 and specifically to SMF 262 and AMF/UPF 264, respectively.
  • a gNB 222 may also be connected to the NGC 260 via control plane interface 265 to AMF/UPF 264 and user plane interface 263 to SMF 262. Further, eNB 224 may directly communicate with gNB 222 via the backhaul connection 223, with or without gNB direct connectivity to the NGC 260.
  • the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both eNBs 224 and gNBs 222. Either gNB 222 or eNB 224 may communicate with UEs 204 (for example, any of the UEs depicted in FIG. 1) .
  • the base stations of the New RAN 220 communicate with the AMF-side of the AMF/UPF 264 over the N2 interface and the UPF-side of the AMF/UPF 264 over the N3 interface.
  • the functions of the AMF include registration management, connection management, reachability management, mobility management, lawful interception, transport for session management (SM) messages between the UE 204 and the SMF 262, transparent proxy services for routing SM messages, access authentication and access authorization, transport for short message service (SMS) messages between the UE 204 and the short message service function (SMSF) (not shown) , and security anchor functionality (SEAF) .
  • the AMF also interacts with the authentication server function (AUSF) (not shown) and the UE 204, and receives the intermediate key that was established as a result of the UE 204 authentication process.
  • AUSF authentication server function
  • the AMF retrieves the security material from the AUSF.
  • the functions of the AMF also include security context management (SCM) .
  • SCM receives a key from the SEAF that it uses to derive access-network specific keys.
  • the functionality of the AMF also includes location services management for regulatory services, transport for location services messages between the UE 204 and the location management function (LMF) 270, as well as between the New RAN 220 and the LMF 270, evolved packet system (EPS) bearer identifier allocation for interworking with the EPS, and UE 204 mobility event notification.
  • the AMF also supports functionalities for non-3GPP access networks.
  • Functions of the UPF include acting as an anchor point for intra-/inter-RAT mobility (when applicable) , acting as an external protocol data unit (PDU) session point of interconnect to the data network (not shown) , providing packet routing and forwarding, packet inspection, user plane policy rule enforcement (for example, gating, redirection, traffic steering) , lawful interception (user plane collection) , traffic usage reporting, quality of service (QoS) handling for the user plane (for example, UL/DL rate enforcement, reflective QoS marking in the DL) , UL traffic verification (service data flow (SDF) to QoS flow mapping) , transport level packet marking in the UL and DL, DL packet buffering and DL data notification triggering, and sending and forwarding of one or more “end markers” to the source RAN node.
  • PDU protocol data unit
  • the functions of the SMF 262 include session management, UE Internet protocol (IP) address allocation and management, selection and control of user plane functions, configuration of traffic steering at the UPF to route traffic to the proper destination, control of part of policy enforcement and QoS, and downlink data notification.
  • IP Internet protocol
  • the interface over which the SMF 262 communicates with the AMF-side of the AMF/UPF 264 is referred to as the N11 interface.
  • LMF 270 may be in communication with the NGC 260 to provide location assistance for UEs 204.
  • the LMF 270 can be implemented as a plurality of separate servers (for example, physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each correspond to a single server.
  • the LMF 270 can be configured to support one or more location services for UEs 204 that can connect to the LMF 270 via the core network, NGC 260, and/or via the Internet (not illustrated) .
  • FIGS. 3A, 3B, and 3C illustrate several sample components (represented by corresponding blocks) that may be incorporated into a UE 302 (which may correspond to any of the UEs described herein) , a base station 304 (which may correspond to any of the base stations described herein) , and a network entity 306 (which may correspond to or embody any of the network functions described herein, including the location server 230 and the LMF 270) to support the file transmission operations as taught herein.
  • these components may be implemented in different types of apparatuses in different implementations (for example, in an ASIC, in a system-on-chip (SoC) , etc. ) .
  • the illustrated components may also be incorporated into other apparatuses in a communication system.
  • apparatuses in a system may include components similar to those described to provide similar functionality.
  • a given apparatus may contain one or more of the components.
  • an apparatus may include multiple transceiver components that enable the apparatus to operate on multiple carriers and/or communicate via different technologies.
  • the UE 302 and the base station 304 each include wireless wide area network (WWAN) transceiver 310 and 350, respectively, configured to communicate via one or more wireless communication networks (not shown) , such as an NR network, an LTE network, a GSM network, and/or the like.
  • the WWAN transceivers 310 and 350 may be connected to one or more antennas 316 and 356, respectively, for communicating with other network nodes, such as other UEs, access points, base stations (for example, eNBs, gNBs) , etc., via at least one designated RAT (for example, NR, LTE, GSM, etc. ) over a wireless communication medium of interest (for example, some set of time/frequency resources in a particular frequency spectrum) .
  • a wireless communication medium of interest for example, some set of time/frequency resources in a particular frequency spectrum
  • the WWAN transceivers 310 and 350 may be variously configured for transmitting and encoding signals 318 and 358 (for example, messages, indications, information, and so on) , respectively, and, conversely, for receiving and decoding signals 318 and 358 (for example, messages, indications, information, pilots, and so on) , respectively, in accordance with the designated RAT.
  • the transceivers 310 and 350 include one or more transmitters 314 and 354, respectively, for transmitting and encoding signals 318 and 358, respectively, and one or more receivers 312 and 352, respectively, for receiving and decoding signals 318 and 358, respectively.
  • the UE 302 and the base station 304 also include, at least in some cases, wireless local area network (WLAN) transceivers 320 and 360, respectively.
  • WLAN transceivers 320 and 360 may be connected to one or more antennas 326 and 366, respectively, for communicating with other network nodes, such as other UEs, access points, base stations, etc., via at least one designated RAT (for example, WiFi, LTE-D, etc. ) over a wireless communication medium of interest.
  • RAT for example, WiFi, LTE-D, etc.
  • the WLAN transceivers 320 and 360 may be variously configured for transmitting and encoding signals 328 and 368 (for example, messages, indications, information, and so on) , respectively, and, conversely, for receiving and decoding signals 328 and 368 (for example, messages, indications, information, pilots, and so on) , respectively, in accordance with the designated RAT.
  • the transceivers 320 and 360 include one or more transmitters 324 and 364, respectively, for transmitting and encoding signals 328 and 368, respectively, and one or more receivers 322 and 362, respectively, for receiving and decoding signals 328 and 368, respectively.
  • Transceiver circuitry including a transmitter and a receiver may include an integrated device (for example, embodied as a transmitter circuit and a receiver circuit of a single communication device) in some implementations, may include a separate transmitter device and a separate receiver device in some implementations, or may be embodied in other ways in other implementations.
  • a transmitter may include or be coupled to a plurality of antennas (for example, antennas 316, 336, and 376) , such as an antenna array, that permits the respective apparatus to perform transmit “beamforming, ” as described herein.
  • a receiver may include or be coupled to a plurality of antennas (for example, antennas 316, 336, and 376) , such as an antenna array, that permits the respective apparatus to perform receive beamforming, as described herein.
  • the transmitter and receiver may share the same plurality of antennas (for example, antennas 316, 336, and 376) , such that the respective apparatus can only receive or transmit at a given time, not both at the same time.
  • a wireless communication device for example, one or both of the transceivers 310 and 320 and/or 350 and 360) of the apparatuses 302 and/or 304 may also include a network listen module (NLM) or the like for performing various measurements.
  • NLM network listen module
  • the apparatuses 302 and 304 also include, at least in some cases, satellite positioning systems (SPS) receivers 330 and 370.
  • SPS satellite positioning systems
  • the SPS receivers 330 and 370 may be connected to one or more antennas 336 and 376, respectively, for receiving SPS signals 338 and 378, respectively, such as global positioning system (GPS) signals, global navigation satellite system (GLONASS) signals, Galileo signals, Beidou signals, Indian Regional Navigation Satellite System (NAVIC) , Quasi-Zenith Satellite System (QZSS) , etc.
  • the SPS receivers 330 and 370 may include any suitable hardware and/or software for receiving and processing SPS signals 338 and 378, respectively.
  • the SPS receivers 330 and 370 request information and operations as appropriate from the other systems, and performs calculations to determine the apparatus’ 302 and 304 positions using measurements obtained by any suitable SPS algorithm.
  • the base station 304 and the network entity 306 each include at least one network interfaces 380 and 390 for communicating with other network entities.
  • the network interfaces 380 and 390 (for example, one or more network access ports) may be configured to communicate with one or more network entities via a wire-based or wireless backhaul connection.
  • the network interfaces 380 and 390 may be implemented as transceivers configured to support wire-based or wireless signal communication. This communication may involve, for example, sending and receiving: messages, parameters, or other types of information.
  • the apparatuses 302, 304, and 306 also include other components that may be used in conjunction with the operations as disclosed herein.
  • the UE 302 includes processor circuitry implementing a processing system 332 for providing functionality relating to, for example, false base station (FBS) detection as disclosed herein and for providing other processing functionality.
  • the base station 304 includes a processing system 384 for providing functionality relating to, for example, FBS detection as disclosed herein and for providing other processing functionality.
  • the network entity 306 includes a processing system 394 for providing functionality relating to, for example, FBS detection as disclosed herein and for providing other processing functionality.
  • the processing systems 332, 384, and 394 may include, for example, one or more general purpose processors, multi-core processors, ASICs, digital signal processors (DSPs) , field programmable gate arrays (FPGA) , or other programmable logic devices or processing circuitry.
  • general purpose processors multi-core processors
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • FPGA field programmable gate arrays
  • FPGA field programmable gate arrays
  • the apparatuses 302, 304, and 306 include memory circuitry implementing memory components 340, 386, and 396 (for example, each including a memory device) , respectively, for maintaining information (for example, information indicative of reserved resources, thresholds, parameters, and so on) .
  • the apparatus 302 may include cell reselection module 342.
  • the cell reselection module 342 may be a hardware circuit that is part of or coupled to the processing system 332 that, when executed, cause the apparatus 302 to perform the functionality described herein.
  • the cell reselection module 342 may be a memory module (as shown in FIG. 3A) stored in the memory component 340 that, when executed by the processing system 332, causes the apparatus 302 to perform the functionality described herein.
  • the UE 302 may include one or more sensors 344 coupled to the processing system 332 to provide movement and/or orientation information that is independent of motion data derived from signals received by the WWAN transceiver 310, the WLAN transceiver 320, and/or the GPS receiver 330.
  • the sensor (s) 344 may include an accelerometer (for example, a micro-electrical mechanical systems (MEMS) device) , a gyroscope, a geomagnetic sensor (for example, a compass) , an altimeter (for example, a barometric pressure altimeter) , and/or any other type of movement detection sensor.
  • MEMS micro-electrical mechanical systems
  • the senor (s) 344 may include a plurality of different types of devices and combine their outputs in order to provide motion information.
  • the sensor (s) 344 may use a combination of a multi-axis accelerometer and orientation sensors to provide the ability to compute positions in 2D and/or 3D coordinate systems.
  • the UE 302 includes a user interface 346 for providing indications (for example, audible and/or visual indications) to a user and/or for receiving user input (for example, upon user actuation of a sensing device such a keypad, a touch screen, a microphone, and so on) .
  • a user interface 346 for providing indications (for example, audible and/or visual indications) to a user and/or for receiving user input (for example, upon user actuation of a sensing device such a keypad, a touch screen, a microphone, and so on) .
  • the apparatuses 304 and 306 may also include user interfaces.
  • IP packets from the network entity 306 may be provided to the processing system 384.
  • the processing system 384 may implement functionality for an RRC layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the processing system 384 may provide RRC layer functionality associated with broadcasting of system information (for example, master information block (MIB) , system information blocks (SIBs) ) , RRC connection control (for example, RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter-RAT mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression/decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, scheduling information reporting, error correction, priority handling, and logical channel prioritization.
  • RRC connection control
  • the transmitter 354 and the receiver 352 may implement Layer-1 functionality associated with various signal processing functions.
  • Layer-1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the transmitter 354 handles mapping to signal constellations based on various modulation schemes (for example, binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • Each stream may then be mapped to an orthogonal frequency division multiplexing (OFDM) subcarrier, multiplexed with a reference signal (for example, pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • OFDM orthogonal frequency division multiplexing
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 302.
  • Each spatial stream may then be provided to one or more different antennas 356.
  • the transmitter 354 may modulate an RF carrier with a respective spatial stream for transmission.
  • the receiver 312 receives a signal through its respective antenna (s) 316.
  • the receiver 312 recovers information modulated onto an RF carrier and provides the information to the processing system 332.
  • the transmitter 314 and the receiver 312 implement Layer-1 functionality associated with various signal processing functions.
  • the receiver 312 may perform spatial processing on the information to recover any spatial streams destined for the UE 302. If multiple spatial streams are destined for the UE 302, they may be combined by the receiver 312 into a single OFDM symbol stream.
  • the receiver 312 then converts the OFDM symbol stream from the time-domain to the frequency domain using a fast Fourier transform (FFT) .
  • the frequency domain signal includes a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • FFT fast Fourier transform
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 304. These soft decisions may be based on channel estimates computed by a channel estimator. The soft decisions are then decoded and de-interleaved to recover the data and control signals that were originally transmitted by the base station 304 on the physical channel. The data and control signals are then provided to the processing system 332, which implements Layer-3 and Layer-2 functionality.
  • the processing system 332 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the core network.
  • the processing system 332 is also responsible for error detection.
  • the processing system 332 provides RRC layer functionality associated with system information (for example, MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (for example, MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with header compression/
  • Channel estimates derived by the channel estimator from a reference signal or feedback transmitted by the base station 304 may be used by the transmitter 314 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the transmitter 314 may be provided to different antenna (s) 316.
  • the transmitter 314 may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 304 in a manner similar to that described in connection with the receiver function at the UE 302.
  • the receiver 352 receives a signal through its respective antenna (s) 356.
  • the receiver 352 recovers information modulated onto an RF carrier and provides the information to the processing system 384.
  • the processing system 384 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 302. IP packets from the processing system 384 may be provided to the core network.
  • the processing system 384 is also responsible for error detection.
  • FIGS. 3A-C For convenience, the apparatuses 302, 304, and/or 306 are shown in FIGS. 3A-C as including various components that may be configured according to the various examples described herein. It will be appreciated, however, that the illustrated blocks may have different functionality in different designs.
  • the various components of the apparatuses 302, 304, and 306 may communicate with each other over data buses 334, 382, and 392, respectively.
  • the components of FIGS. 3A-C may be implemented in various ways.
  • the components of FIGS. 3A-C may be implemented in one or more circuits such as, for example, one or more processors and/or one or more ASICs (which may include one or more processors) .
  • each circuit may use and/or incorporate at least one memory component for storing information or executable code used by the circuit to provide this functionality.
  • some or all of the functionality represented by blocks 310 to 346 may be implemented by processor and memory component (s) of the UE 302 (for example, by execution of appropriate code and/or by appropriate configuration of processor components) .
  • some or all of the functionality represented by blocks 350 to 388 may be implemented by processor and memory component (s) of the base station 304 (for example, by execution of appropriate code and/or by appropriate configuration of processor components) .
  • some or all of the functionality represented by blocks 390 to 396 may be implemented by processor and memory component (s) of the network entity 306 (for example, by execution of appropriate code and/or by appropriate configuration of processor components) .
  • a UE may be capable of operating in a standalone (SA) or in a non-standalone (NSA) mode within a given RAT.
  • SA standalone
  • NSA non-standalone
  • the UE When operating in the SA mode, the UE is able to exchange both control and data plane information with the network node and/or the core network of the given RAT (for example, NR) .
  • the UE When operating in the NSA mode, the UE is communicating with network nodes of the first and second RATs.
  • the UE can exchange data plane information with the network nodes of both the first RAT (e.g., LTE) and the second RAT (e.g., NR) .
  • the control plane information is exchanged only with the network node of the first RAT (for example, LTE) .
  • SIBs System information blocks
  • SIBs may be used to provide various types of system information.
  • some SIBs provide information related to cell reselection, and as such may be referred to herein as SIBs for cell reselection.
  • SIBs for cell reselection include SIB4 for NR-to-NR inter-frequency reselection, SIB5 for NR-to-LTE reselection, or SIB24 for LTE-to-NR reselection.
  • the LTE eNB may transmit an RRCConnectionRelease message with an idleModeMobilityControlInfo Information Element (IE) .
  • the idleModeMobilityControlInfo IE includes cell reselection information such as a list of NR frequencies and their respective cell reselection priorities to help guide a respective UE in terms of how to reselect to NR network.
  • the idleModeMobilityControlInfo IE is not a complete replacement for SIB24, as the cell reselection information included therein omits a number of SIB24 parameters.
  • aspects of the disclosure are thereby directed to a cell reselection procedure that uses a combination of cell reselection information received from a first cell (e.g., a serving cell) in combination with locally determined value (s) for SIB parameter (s) omitted from the cell reselection information.
  • a first cell e.g., a serving cell
  • s locally determined value
  • SIB parameter s
  • Such aspects may provide various technical advantage, such as improved or faster cell reselection (e.g., LTE-to-NR, NR-to-LTE, or NR-to-NR) .
  • FIG. 4 illustrates a process 400 of wireless communication, according to aspects of the disclosure.
  • the process 400 may be performed by a UE, such as UE 302.
  • UE 302 receives, from a first cell, cell reselection information.
  • the first cell may correspond to a serving cell of UE 302.
  • the cell reselection information may be received via idleModeMobilityControlInfo IE of an RRCConnectionRelease message.
  • the cell reselection information may be received via a CellReselectionPriorities Information Element (IE) of an RRCRelease message.
  • IE CellReselectionPriorities Information Element
  • UE 302 e.g., processing system 332, cell reselection module 342, etc. identifies one or more omitted parameters associated with a SIB for cell reselection that are omitted from the cell reselection information.
  • the SIB for cell reselection may correspond to SIB4, SIB5 or SIB24.
  • the SIB for cell selection may not be received or decoded at UE 302 for various reasons (e.g., the SIB is not transmitted by the serving cell at all such as in certain LTE networks in case of SIB24, or the serving cell transmits the SIB but UE 302 fails to properly decode the SIB, etc. ) .
  • UE 302 performs a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
  • UE 302 may be able to perform the cell reselection procedure at 430 as if the respective SIB for reselection (e.g., SIB4 or SIB5 or SIB24) was actually received at UE 302.
  • SIB for reselection e.g., SIB4 or SIB5 or SIB24
  • a “locally” determined value is not necessarily a locally generated value, but rather could include a value that is network-configured or configured by an operator or phone vendor.
  • the value is locally determined in the sense that the value is stored locally at UE 302 before the cell reselection procedure is attempted and as such is locally available to supplement the cell reselection information in case of a missing SIB for cell reselection.
  • SIB24 includes various parameters, such as t-ReselectionNR, t-ReselectionNR-SF, carrierFreq, multiBandInfoList, multiBandInfoListSUL, subcarrierSpacingSSB, ss-RSSI-Measurement, cellReselectionPriority, cellReselectionSubPriority, threshX-High, threshX-Low, threshX-Q: threshX-HighQ, threshX-Q: threshX-LowQ, q-RxLevMin, q-RxLevMinSUL, p-MaxNR, ns-PmaxListNR, q-QualMin, deriveSSB-IndexFromCell, maxRS-IndexCellQual, and threshRS-Index.
  • idleModeMobilityControlInfo IE such as carrierFreq, measTimingConig, subcarrierSpacingSSB, cellReselectionPriority, and cellReselectionSubPriority (if provided) .
  • SIB24 parameters which may be helpful or even required for reselection may not be provided, such as:
  • some or all of the SIB24 parameters depicted in Table 1 which are omitted by the idleModeMobilityControlInfo IE of the RRCConnectionRelease message may be determined locally at UE 302 to facilitate an LTE-to-NR cell reselection procedure.
  • Table 2 depicts the available values for the SIB24 parameters depicted in Table 1 along with an example of a default (or locally determined default) value for the respective SIB24 parameters, e.g.:
  • SIB24 parameters are denoted as O for optional or M for mandatory.
  • a value for threshX-High can be provided or a value for threshX-Low can be provided, but not necessarily both.
  • Other SIB24 parameters e.g., t-ReselectionNR-SF, q-RxLevMinSUL, ns-PmaxListNR, maxRS-IndexCellQual, thresRS-Index
  • the unneeded SIB24 parameters do not need to be locally determined for the cell reselection procedure.
  • the entire SIB24 need not be reconstructed (as a function of the cell reselection information plus the locally determined value (s) ) for the cell reselection procedure to be performed at 430 of FIG. 4.
  • some SIB24 parameters e.g., multiBandInfoList, multiBandInfoListSUL
  • ACQDB Acquisition Database
  • SIB4 and SIB5 as well for NR-to-NR inter-frequency cell reselection and NR-to-LTE cell reselection, respectively, where UE 302 is operating in accordance with SA mode.
  • the cell reselection information may be received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes evolved Universal Mobile Telecommunications Service Terrestrial Radio Access (EUTRA) frequencies and associated reselection priorities (e.g., sub-priorities) .
  • IE cell reselection priorities information element
  • RRCRelease radio resource control release
  • EUTRA evolved Universal Mobile Telecommunications Service Terrestrial Radio Access
  • locally determined values for the missing SIB5 parameters may include, e.g., thresholds, t-Reselection, q-RxLevMin, p-Max to form UE local SIB5 and perform N2L (NR-to-LTE) cell reselection.
  • the cell reselection information may be received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes NR frequencies and associated reselection priorities (e.g., sub-priorities) .
  • IE cell reselection priorities information element
  • RRCRelease radio resource control release
  • locally determined values for the missing SIB5 parameters may include, e.g., thresholds, t-Reselection, q-RxLevMin, p-Max, deriveSSB-IndexFromCell to form UE local SIB4 and perform N2N (NR-to-NR) inter-frequency cell reselection.
  • the omitted SIB parameters may generally include any of the following in some designs:
  • a cell reselection timer value (e.g., t-ReselectionNR) during which cell reselection criteria is met continuously in order to trigger cell reselection,
  • RSRP Reference Signal Receive Power
  • a second RSRP threshold (e.g., threshX-Low) associated with lower priority neighbor cells
  • a first Reference Signal Received Quality (RSRQ) threshold (e.g., threshX-Q: threshX-HighQ) associated with the higher priority neighbor cells
  • a second RSRQ threshold (e.g., threshX-Q: threshX-LowQ) associated with the lower priority neighbor cells
  • a minimum receive level parameter (e.g., q-RxLevMin) ,
  • a maximum uplink power parameter (e.g., p-MaxNR) ,
  • whether or not a time-domain boundary (e.g., subframe or frame) between a serving cell and a candidate neighbor cell are aligned (e.g., deriveSSB-IndexFromCell) , or
  • FIG. 5 illustrates an example implementation 500 of the process 400 of FIG. 4 in accordance with an aspect of the disclosure.
  • an eNB of an LTE network transmits an RRCConnectionRelease message including an idleModeMobilityControlInfo IE to UE 302.
  • UE 302 misses an SIB24 from the eNB (e.g., because UE 302 failed to decode a transmitted SIB24, or because SIB24 was not transmitted by the eNB at all) .
  • UE 302 determines local value (s) for SIB24 parameter (s) that are omitted from the idleModeMobilityControlInfo IE.
  • UE 302 performs a cell reselection procedure (e.g., identifying one of gNBs 1...N for cell reselection) based on the idleModeMobilityControlInfo IE received at 502 and the locally determined value (s) from 506.
  • a cell reselection procedure e.g., identifying one of gNBs 1...N for cell reselection
  • FIG. 6 illustrates an example implementation 600 of the process 400 of FIG. 4 in accordance with another aspect of the disclosure.
  • a gNB of an NR network transmits an RRCRelease message including a CellReselectionPriorities IE to UE 302.
  • UE 302 misses an SIB4 from the gNB (e.g., because UE 302 failed to decode a transmitted SIB4, or because SIB4 was not transmitted by the gNB at all) .
  • UE 302 determines local value (s) for SIB4 parameter (s) that are omitted from the CellReselectionPriorities IE.
  • UE 302 performs a cell reselection procedure (e.g., identifying one of eNBs 1...N for cell reselection) based on the CellReselectionPriorities IE received at 602 and the locally determined value (s) from 606.
  • a cell reselection procedure e.g., identifying one of eNBs 1...N for cell reselection
  • FIG. 7 illustrates an example implementation 700 of the process 400 of FIG. 4 in accordance with another aspect of the disclosure.
  • gNB 1 of an NR network transmits an RRCRelease message including a CellReselectionPriorities IE to UE 302.
  • UE 302 misses an SIB5 from the gNB 1 (e.g., because UE 302 failed to decode a transmitted SIB5, or because SIB5 was not transmitted by the gNB at all) .
  • UE 302 determines local value (s) for SIB5 parameter (s) that are omitted from the CellReselectionPriorities IE.
  • UE 302 performs a cell reselection procedure (e.g., identifying one of gNBs 2...N for inter-frequency NR-to-NR cell reselection) based on the CellReselectionPriorities IE received at 702 and the locally determined value (s) from 706.
  • a cell reselection procedure e.g., identifying one of gNBs 2...N for inter-frequency NR-to-NR cell reselection
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in random access memory (RAM) , flash memory, read-only memory (ROM) , erasable programmable ROM (EPROM) , electrically erasable programmable ROM (EEPROM) , registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An example storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal (for example, UE) .
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In an aspect, a UE receives, from a first cell, cell reselection information (e.g., via RRCConnectionRelease message or RRCRelease message). The UE identifies one or more omitted parameters associated with a SIB for cell reselection (e.g., SIB4, SIB5 or SIB24) that are omitted from the cell reselection information. The UE performs a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.

Description

CELL RESELECTION PROCEDURE BASED ON LOCALLY DETERMINED VALUE FOR OMITTED SYSTEM INFORMATION BLOCK PARAMETER
BACKGROUND OF THE DISCLOSURE
1. Field of the Disclosure
Aspects of the disclosure relate generally to wireless communications, and more particularly to a cell reselection procedure based on locally determined value (s) for omitted system information block (SIB) parameter (s) .
2. Description of the Related Art
Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G networks) , a third-generation (3G) high speed data, Internet-capable wireless service and a fourth-generation (4G) service (for example LTE or WiMax) . There are presently many different types of wireless communication systems in use, including cellular and personal communications service (PCS) systems. Examples of known cellular systems include the cellular analog advanced mobile phone system (AMPS) , and digital cellular systems based on code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , the Global System for Mobile access (GSM) variation of TDMA, etc.
A fifth generation (5G) wireless standard, referred to as New Radio (NR) , enables higher data transfer speeds, greater numbers of connections, and better coverage, among other improvements. The 5G standard, according to the Next Generation Mobile Networks Alliance, is designed to provide data rates of several tens of megabits per second to each of tens of thousands of users, with 1 gigabit per second to tens of workers on an office floor. Several hundreds of thousands of simultaneous connections may be supported in order to support large wireless sensor deployments. Consequently, the spectral efficiency of 5G mobile communications may be significantly enhanced compared to the current 4G standard. Furthermore, signaling efficiencies may be enhanced and latency may be substantially reduced compared to current standards.
SUMMARY
The following presents a simplified summary relating to one or more aspects disclosed herein. Thus, the following summary should not be considered an extensive overview relating to all contemplated aspects, nor should the following summary be considered to identify key or critical elements relating to all contemplated aspects or to delineate the scope associated with any particular aspect. Accordingly, the following summary has the sole purpose to present certain concepts relating to one or more aspects relating to the mechanisms disclosed herein in a simplified form to precede the detailed description presented below.
An aspect is directed to a method of operating a user equipment (UE) , comprising receiving, from a first cell, cell reselection information, identifying one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information, and performing a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
Another aspect is directed to a user equipment (UE) , comprising means for receiving, from a first cell, cell reselection information, means for identifying one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information, and means for performing a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
Another aspect is directed to a user equipment (UE) , comprising a memory, at least one transceiver, and at least one processor communicatively coupled to the memory and the at least one transceiver, the at least one processor configured to receive, from a first cell, cell reselection information, identify one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information, and perform a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
Another aspect is directed to a non-transitory computer-readable medium  containing instructions stored thereon, for causing at least one processor in a user equipment (UE) to receive, from a first cell, cell reselection information, identify one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information, and perform a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
Other objects and advantages associated with the aspects disclosed herein will be apparent to those skilled in the art based on the accompanying drawings and detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are presented to aid in the description of various aspects of the disclosure and are provided solely for illustration of the aspects and not limitation thereof.
FIG. 1 illustrates a wireless communications system, according to various aspects.
FIGS. 2A and 2B illustrate example wireless network structures, according to various aspects.
FIGS. 3A to 3C are simplified block diagrams of several sample aspects of components that may be employed in wireless communication nodes and configured to support communication as taught herein.
FIG. 4 illustrates a process of wireless communication, according to aspects of the disclosure.
FIGS. 5-7 illustrate example implementation of the processes of FIG. 4, according to aspects of the disclosure.
DETAILED DESCRIPTION
Aspects of the disclosure are provided in the following description and related drawings directed to various examples provided for illustration purposes. Alternate aspects may be devised without departing from the scope of the disclosure. Additionally, well-known elements of the disclosure will not be described in detail or will be omitted so as not to obscure the relevant details of the disclosure.
The words “example” are used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “example” is not necessarily to be construed as preferred or advantageous over other aspects. Likewise, the term “aspects of the disclosure” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation.
Those of skill in the art will appreciate that the information and signals described below may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description below may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof, depending in part on the particular application, in part on the desired design, in part on the corresponding technology, etc.
Further, many aspects are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (for example, application specific integrated circuits (ASICs) ) , by program instructions being executed by one or more processors, or by a combination of both. Additionally, the sequence (s) of actions described herein can be considered to be embodied entirely within any form of non-transitory computer-readable storage medium having stored therein a corresponding set of computer instructions that, upon execution, would cause or instruct an associated processor of a device to perform the functionality described herein. Thus, the various aspects of the disclosure may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the aspects described herein, the corresponding form of any such aspects may be described herein as, for example, “logic configured to” perform the described action.
As used herein, the terms “user equipment” (UE) and “base station” are not intended to be specific or otherwise limited to any particular radio access technology (RAT) , unless otherwise noted. In general, a UE may be any wireless communication device (for example, a mobile phone, router, tablet computer, laptop computer, tracking device, wearable (for example, smartwatch, glasses, augmented reality (AR) /virtual reality (VR) headset, etc. ) , vehicle (for example, automobile, motorcycle, bicycle, etc. ) ,  Internet of Things (IoT) device, etc. ) used by a user to communicate over a wireless communications network. A UE may be mobile or may (for example, at certain times) be stationary, and may communicate with a radio access network (RAN) . As used herein, the term “UE” may be referred to interchangeably as an “access terminal” or “AT, ” a “client device, ” a “wireless device, ” a “subscriber device, ” a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT, a “mobile terminal, ” a “mobile station, ” or variations thereof. Generally, UEs can communicate with a core network via a RAN, and through the core network the UEs can be connected with external networks such as the Internet and with other UEs. Of course, other mechanisms of connecting to the core network and/or the Internet are also possible for the UEs, such as over wired access networks, wireless local area network (WLAN) networks (for example, based on IEEE 802.11, etc. ) and so on.
A base station may operate according to one of several RATs in communication with UEs depending on the network in which it is deployed, and may be alternatively referred to as an access point (AP) , a network node, a NodeB, an evolved NodeB (eNB) , a New Radio (NR) Node B (also referred to as a gNB or gNodeB) , etc. In addition, in some systems a base station may provide purely edge node signaling functions while in other systems it may provide additional control and/or network management functions. In some systems, a base station may correspond to a Customer Premise Equipment (CPE) or a road-side unit (RSU) . In some designs, a base station may correspond to a high-powered UE (for example, a vehicle UE or VUE) that may provide limited certain infrastructure functionality. A communication link through which UEs can send signals to a base station is called an uplink (UL) channel (for example, a reverse traffic channel, a reverse control channel, an access channel, etc. ) . A communication link through which the base station can send signals to UEs is called a downlink (DL) or forward link channel (for example, a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc. ) . As used herein the term traffic channel (TCH) can refer to either an UL /reverse or DL /forward traffic channel.
The term “base station” may refer to a single physical transmission-reception point (TRP) or to multiple physical TRPs that may or may not be co-located. For example, where the term “base station” refers to a single physical TRP, the physical TRP may be an antenna of the base station corresponding to a cell of the base station. Where the term “base station” refers to multiple co-located physical TRPs, the physical  TRPs may be an array of antennas (for example, as in a multiple-input multiple-output (MIMO) system or where the base station employs beamforming) of the base station. Where the term “base station” refers to multiple non-co-located physical TRPs, the physical TRPs may be a distributed antenna system (DAS) (a network of spatially separated antennas connected to a common source via a transport medium) or a remote radio head (RRH) (a remote base station connected to a serving base station) . Alternatively, the non-co-located physical TRPs may be the serving base station receiving the measurement report from the UE and a neighbor base station whose reference RF signals the UE is measuring. Because a TRP is the point from which a base station transmits and receives wireless signals, as used herein, references to transmission from or reception at a base station are to be understood as referring to a particular TRP of the base station.
An “RF signal” includes an electromagnetic wave of a given frequency that transports information through the space between a transmitter and a receiver. As used herein, a transmitter may transmit a single “RF signal” or multiple “RF signals” to a receiver. However, the receiver may receive multiple “RF signals” corresponding to each transmitted RF signal due to the propagation characteristics of RF signals through multipath channels. The same transmitted RF signal on different paths between the transmitter and receiver may be referred to as a “multipath” RF signal.
According to various aspects, FIG. 1 illustrates a wireless communications system 100. The wireless communications system 100 (which may also be referred to as a wireless wide area network (WWAN) ) may include various base stations 102 and various UEs 104. The base stations 102 may include macro cell base stations (high power cellular base stations) and/or small cell base stations (low power cellular base stations) . In an aspect, the macro cell base station may include eNBs where the wireless communications system 100 corresponds to an LTE network, or gNBs where the wireless communications system 100 corresponds to a NR network, or a combination of both, and the small cell base stations may include femtocells, picocells, microcells, etc.
The base stations 102 may collectively form a RAN and interface with a core network 170 (for example, an evolved packet core (EPC) or next generation core (NGC) ) through backhaul links 122, and through the core network 170 to one or more location servers 172. In addition to other functions, the base stations 102 may perform functions that relate to one or more of transferring user data, radio channel ciphering  and deciphering, integrity protection, header compression, mobility control functions (for example, handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, RAN sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate with each other directly or indirectly (for example, through the EPC /NGC) over backhaul links 134, which may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. In an aspect, one or more cells may be supported by a base station 102 in each coverage area 110. A “cell” is a logical communication entity used for communication with a base station (for example, over some frequency resource, referred to as a carrier frequency, component carrier, carrier, band, or the like) , and may be associated with an identifier (for example, a physical cell identifier (PCI) , a virtual cell identifier (VCI) ) for distinguishing cells operating via the same or a different carrier frequency. In some cases, different cells may be configured according to different protocol types (for example, machine-type communication (MTC) , narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of UEs. Because a cell is supported by a specific base station, the term “cell” may refer to either or both the logical communication entity and the base station that supports it, depending on the context. In some cases, the term “cell” may also refer to a geographic coverage area of a base station (for example, a sector) , insofar as a carrier frequency can be detected and used for communication within some portion of geographic coverage areas 110.
While neighboring macro cell base station 102 geographic coverage areas 110 may partially overlap (for example, in a handover region) , some of the geographic coverage areas 110 may be substantially overlapped by a larger geographic coverage area 110. For example, a small cell base station 102' may have a coverage area 110' that substantially overlaps with the coverage area 110 of one or more macro cell base stations 102. A network that includes both small cell and macro cell base stations may be known as a heterogeneous network. A heterogeneous network may also include  home eNBs (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
The communication links 120 between the base stations 102 and the UEs 104 may include UL (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links 120 may be through one or more carrier frequencies. Allocation of carriers may be asymmetric with respect to DL and UL (for example, more or less carriers may be allocated for DL than for UL) .
The wireless communications system 100 may further include a wireless local area network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152 via communication links 154 in an unlicensed frequency spectrum (for example, 5 GHz) . When communicating in an unlicensed frequency spectrum, the WLAN STAs 152 and/or the WLAN AP 150 may perform a clear channel assessment (CCA) or listen before talk (LBT) procedure prior to communicating in order to determine whether the channel is available.
The small cell base station 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell base station 102' may employ LTE or NR technology and use the same 5 GHz unlicensed frequency spectrum as used by the WLAN AP 150. The small cell base station 102', employing LTE /5G in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network. NR in unlicensed spectrum may be referred to as NR-U. LTE in an unlicensed spectrum may be referred to as LTE-U, licensed assisted access (LAA) , or MulteFire.
The wireless communications system 100 may further include a millimeter wave (mmW) base station 180 that may operate in mmW frequencies and/or near mmW frequencies in communication with a UE 182. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in this band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.  Communications using the mmW/near mmW radio frequency band have high path loss and a relatively short range. The mmW base station 180 and the UE 182 may utilize beamforming (transmit and/or receive) over a mmW communication link 184 to compensate for the extremely high path loss and short range. Further, it will be appreciated that in alternative configurations, one or more base stations 102 may also transmit using mmW or near mmW and beamforming. Accordingly, it will be appreciated that the foregoing illustrations are merely examples and should not be construed to limit the various aspects disclosed herein.
Transmit beamforming is a technique for focusing an RF signal in a specific direction. Traditionally, when a network node (for example, a base station) broadcasts an RF signal, it broadcasts the signal in all directions (omni-directionally) . With transmit beamforming, the network node determines where a given target device (for example, a UE) is located (relative to the transmitting network node) and projects a stronger downlink RF signal in that specific direction, thereby providing a faster (in terms of data rate) and stronger RF signal for the receiving device (s) . To change the directionality of the RF signal when transmitting, a network node can control the phase and relative amplitude of the RF signal at each of the one or more transmitters that are broadcasting the RF signal. For example, a network node may use an array of antennas (referred to as a “phased array” or an “antenna array” ) that creates a beam of RF waves that can be “steered” to point in different directions, without actually moving the antennas. Specifically, the RF current from the transmitter is fed to the individual antennas with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while cancelling to suppress radiation in undesired directions.
Transmit beams may be quasi-collocated, meaning that they appear to the receiver (for example, a UE) as having the same parameters, regardless of whether or not the transmitting antennas of the network node themselves are physically collocated. In NR, there are four types of quasi-collocation (QCL) relations. Specifically, a QCL relation of a given type means that certain parameters about a second reference RF signal on a second beam can be derived from information about a source reference RF signal on a source beam. Thus, if the source reference RF signal is QCL Type A, the receiver can use the source reference RF signal to estimate the Doppler shift, Doppler spread, average delay, and delay spread of a second reference RF signal transmitted on  the same channel. If the source reference RF signal is QCL Type B, the receiver can use the source reference RF signal to estimate the Doppler shift and Doppler spread of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type C, the receiver can use the source reference RF signal to estimate the Doppler shift and average delay of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type D, the receiver can use the source reference RF signal to estimate the spatial receive parameter of a second reference RF signal transmitted on the same channel.
In receive beamforming, the receiver uses a receive beam to amplify RF signals detected on a given channel. For example, the receiver can increase the gain setting and/or adjust the phase setting of an array of antennas in a particular direction to amplify (for example, to increase the gain level of) the RF signals received from that direction. Thus, when a receiver is said to beamform in a certain direction, it means the beam gain in that direction is high relative to the beam gain along other directions, or the beam gain in that direction is the highest compared to the beam gain in that direction of all other receive beams available to the receiver. This results in a stronger received signal strength (for example, reference signal received power (RSRP) , reference signal received quality (RSRQ) , signal-to-interference-plus-noise ratio (SINR) , etc. ) of the RF signals received from that direction.
Receive beams may be spatially related. A spatial relation means that parameters for a transmit beam for a second reference signal can be derived from information about a receive beam for a first reference signal. For example, a UE may use a particular receive beam to receive a reference downlink reference signal (for example, synchronization signal block (SSB) ) from a base station. The UE can then form a transmit beam for sending an uplink reference signal (for example, sounding reference signal (SRS) ) to that base station based on the parameters of the receive beam.
Note that a “downlink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the downlink beam to transmit a reference signal to a UE, the downlink beam is a transmit beam. If the UE is forming the downlink beam, however, it is a receive beam to receive the downlink reference signal. Similarly, an “uplink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base  station is forming the uplink beam, it is an uplink receive beam, and if a UE is forming the uplink beam, it is an uplink transmit beam.
In 5G, the frequency spectrum in which wireless nodes (for example, base stations 102/180, UEs 104/182) operate is divided into multiple frequency ranges, FR1 (from 450 to 6000 MHz) , FR2 (from 24250 to 52600 MHz) , FR3 (above 52600 MHz) , and FR4 (between FR1 and FR2) . In a multi-carrier system, such as 5G, one of the carrier frequencies is referred to as the “primary carrier” or “anchor carrier” or “primary serving cell” or “PCell, ” and the remaining carrier frequencies are referred to as “secondary carriers” or “secondary serving cells” or “SCells. ” In carrier aggregation, the anchor carrier is the carrier operating on the primary frequency (for example, FR1) utilized by a UE 104/182 and the cell in which the UE 104/182 either performs the initial radio resource control (RRC) connection establishment procedure or initiates the RRC connection re-establishment procedure. The primary carrier carries all common and UE-specific control channels, and may be a carrier in a licensed frequency (however, this is not always the case) . A secondary carrier is a carrier operating on a second frequency (for example, FR2) that may be configured once the RRC connection is established between the UE 104 and the anchor carrier and that may be used to provide additional radio resources. In some cases, the secondary carrier may be a carrier in an unlicensed frequency. The secondary carrier may include signaling information and signals, for example, those that are UE-specific may not be present in the secondary carrier, since both primary uplink and downlink carriers are typically UE-specific. This means that different UEs 104/182 in a cell may have different downlink primary carriers. The same is true for the uplink primary carriers. The network is able to change the primary carrier of any UE 104/182 at any time. This is done, for example, to balance the load on different carriers. Because a “serving cell” (whether a PCell or an SCell) corresponds to a carrier frequency /component carrier over which some base station is communicating, the term “cell, ” “serving cell, ” “component carrier, ” “carrier frequency, ” and the like can be used interchangeably.
For example, still referring to FIG. 1, one of the frequencies utilized by the macro cell base stations 102 may be an anchor carrier (or “PCell” ) and other frequencies utilized by the macro cell base stations 102 and/or the mmW base station 180 may be secondary carriers ( “SCells” ) . The simultaneous transmission and/or reception of multiple carriers enables the UE 104/182 to significantly increase its data transmission  and/or reception rates. For example, two 20 MHz aggregated carriers in a multi-carrier system would theoretically lead to a two-fold increase in data rate (i.e., 40 MHz) , compared to that attained by a single 20 MHz carrier.
The wireless communications system 100 may further include one or more UEs, such as UE 190, that connects indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links. In the example of FIG. 1, UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base stations 102 (for example, through which UE 190 may indirectly obtain cellular connectivity) and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which UE 190 may indirectly obtain WLAN-based Internet connectivity) . In an example, the D2D P2P links 192 and 194 may be supported with any known D2D RAT, such as LTE Direct (LTE-D) , WiFi Direct (WiFi-D) , 
Figure PCTCN2020115887-appb-000001
and so on.
The wireless communications system 100 may further include a UE 164 that may communicate with a macro cell base station 102 over a communication link 120 and/or the mmW base station 180 over a mmW communication link 184. For example, the macro cell base station 102 may support a PCell and one or more SCells for the UE 164 and the mmW base station 180 may support one or more SCells for the UE 164.
According to various aspects, FIG. 2A illustrates an example wireless network structure 200. For example, an NGC 210 (also referred to as a “5GC” ) can be viewed functionally as control plane functions 214 (for example, UE registration, authentication, network access, gateway selection, etc. ) and user plane functions 212, (for example, UE gateway function, access to data networks, IP routing, etc. ) which operate cooperatively to form the core network. User plane interface (NG-U) 213 and control plane interface (NG-C) 215 connect the gNB 222 to the NGC 210 and specifically to the control plane functions 214 and user plane functions 212. In an additional configuration, an eNB 224 may also be connected to the NGC 210 via NG-C 215 to the control plane functions 214 and NG-U 213 to user plane functions 212. Further, eNB 224 may directly communicate with gNB 222 via a backhaul connection 223. In some configurations, the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both eNBs 224 and gNBs 222. Either gNB 222 or eNB 224 may communicate with UEs 204 (for example, any of the UEs depicted in FIG. 1) . Another optional aspect may include location server 230, which  may be in communication with the NGC 210 to provide location assistance for UEs 204. The location server 230 can be implemented as a plurality of separate servers (for example, physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each correspond to a single server. The location server 230 can be configured to support one or more location services for UEs 204 that can connect to the location server 230 via the core network, NGC 210, and/or via the Internet (not illustrated) . Further, the location server 230 may be integrated into a component of the core network, or alternatively may be external to the core network.
According to various aspects, FIG. 2B illustrates another example wireless network structure 250. For example, an NGC 260 (also referred to as a “5GC” ) can be viewed functionally as control plane functions, provided by an access and mobility management function (AMF) /user plane function (UPF) 264, and user plane functions, provided by a session management function (SMF) 262, which operate cooperatively to form the core network (i.e., NGC 260) . User plane interface 263 and control plane interface 265 connect the eNB 224 to the NGC 260 and specifically to SMF 262 and AMF/UPF 264, respectively. In an additional configuration, a gNB 222 may also be connected to the NGC 260 via control plane interface 265 to AMF/UPF 264 and user plane interface 263 to SMF 262. Further, eNB 224 may directly communicate with gNB 222 via the backhaul connection 223, with or without gNB direct connectivity to the NGC 260. In some configurations, the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both eNBs 224 and gNBs 222. Either gNB 222 or eNB 224 may communicate with UEs 204 (for example, any of the UEs depicted in FIG. 1) . The base stations of the New RAN 220 communicate with the AMF-side of the AMF/UPF 264 over the N2 interface and the UPF-side of the AMF/UPF 264 over the N3 interface.
The functions of the AMF include registration management, connection management, reachability management, mobility management, lawful interception, transport for session management (SM) messages between the UE 204 and the SMF 262, transparent proxy services for routing SM messages, access authentication and access authorization, transport for short message service (SMS) messages between the UE 204 and the short message service function (SMSF) (not shown) , and security anchor functionality (SEAF) . The AMF also interacts with the authentication server  function (AUSF) (not shown) and the UE 204, and receives the intermediate key that was established as a result of the UE 204 authentication process. In the case of authentication based on a UMTS (universal mobile telecommunications system) subscriber identity module (USIM) , the AMF retrieves the security material from the AUSF. The functions of the AMF also include security context management (SCM) . The SCM receives a key from the SEAF that it uses to derive access-network specific keys. The functionality of the AMF also includes location services management for regulatory services, transport for location services messages between the UE 204 and the location management function (LMF) 270, as well as between the New RAN 220 and the LMF 270, evolved packet system (EPS) bearer identifier allocation for interworking with the EPS, and UE 204 mobility event notification. In addition, the AMF also supports functionalities for non-3GPP access networks.
Functions of the UPF include acting as an anchor point for intra-/inter-RAT mobility (when applicable) , acting as an external protocol data unit (PDU) session point of interconnect to the data network (not shown) , providing packet routing and forwarding, packet inspection, user plane policy rule enforcement (for example, gating, redirection, traffic steering) , lawful interception (user plane collection) , traffic usage reporting, quality of service (QoS) handling for the user plane (for example, UL/DL rate enforcement, reflective QoS marking in the DL) , UL traffic verification (service data flow (SDF) to QoS flow mapping) , transport level packet marking in the UL and DL, DL packet buffering and DL data notification triggering, and sending and forwarding of one or more “end markers” to the source RAN node.
The functions of the SMF 262 include session management, UE Internet protocol (IP) address allocation and management, selection and control of user plane functions, configuration of traffic steering at the UPF to route traffic to the proper destination, control of part of policy enforcement and QoS, and downlink data notification. The interface over which the SMF 262 communicates with the AMF-side of the AMF/UPF 264 is referred to as the N11 interface.
Another optional aspect may include a LMF 270, which may be in communication with the NGC 260 to provide location assistance for UEs 204. The LMF 270 can be implemented as a plurality of separate servers (for example, physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each  correspond to a single server. The LMF 270 can be configured to support one or more location services for UEs 204 that can connect to the LMF 270 via the core network, NGC 260, and/or via the Internet (not illustrated) .
FIGS. 3A, 3B, and 3C illustrate several sample components (represented by corresponding blocks) that may be incorporated into a UE 302 (which may correspond to any of the UEs described herein) , a base station 304 (which may correspond to any of the base stations described herein) , and a network entity 306 (which may correspond to or embody any of the network functions described herein, including the location server 230 and the LMF 270) to support the file transmission operations as taught herein. It will be appreciated that these components may be implemented in different types of apparatuses in different implementations (for example, in an ASIC, in a system-on-chip (SoC) , etc. ) . The illustrated components may also be incorporated into other apparatuses in a communication system. For example, other apparatuses in a system may include components similar to those described to provide similar functionality. Also, a given apparatus may contain one or more of the components. For example, an apparatus may include multiple transceiver components that enable the apparatus to operate on multiple carriers and/or communicate via different technologies.
The UE 302 and the base station 304 each include wireless wide area network (WWAN)  transceiver  310 and 350, respectively, configured to communicate via one or more wireless communication networks (not shown) , such as an NR network, an LTE network, a GSM network, and/or the like. The  WWAN transceivers  310 and 350 may be connected to one or  more antennas  316 and 356, respectively, for communicating with other network nodes, such as other UEs, access points, base stations (for example, eNBs, gNBs) , etc., via at least one designated RAT (for example, NR, LTE, GSM, etc. ) over a wireless communication medium of interest (for example, some set of time/frequency resources in a particular frequency spectrum) . The  WWAN transceivers  310 and 350 may be variously configured for transmitting and encoding signals 318 and 358 (for example, messages, indications, information, and so on) , respectively, and, conversely, for receiving and decoding signals 318 and 358 (for example, messages, indications, information, pilots, and so on) , respectively, in accordance with the designated RAT. Specifically, the  transceivers  310 and 350 include one or  more transmitters  314 and 354, respectively, for transmitting and  encoding signals  318 and  358, respectively, and one or  more receivers  312 and 352, respectively, for receiving and  decoding signals  318 and 358, respectively.
The UE 302 and the base station 304 also include, at least in some cases, wireless local area network (WLAN) transceivers 320 and 360, respectively. The WLAN transceivers 320 and 360 may be connected to one or more antennas 326 and 366, respectively, for communicating with other network nodes, such as other UEs, access points, base stations, etc., via at least one designated RAT (for example, WiFi, LTE-D, 
Figure PCTCN2020115887-appb-000002
etc. ) over a wireless communication medium of interest. The  WLAN transceivers  320 and 360 may be variously configured for transmitting and encoding signals 328 and 368 (for example, messages, indications, information, and so on) , respectively, and, conversely, for receiving and decoding signals 328 and 368 (for example, messages, indications, information, pilots, and so on) , respectively, in accordance with the designated RAT. Specifically, the  transceivers  320 and 360 include one or  more transmitters  324 and 364, respectively, for transmitting and  encoding signals  328 and 368, respectively, and one or  more receivers  322 and 362, respectively, for receiving and  decoding signals  328 and 368, respectively.
Transceiver circuitry including a transmitter and a receiver may include an integrated device (for example, embodied as a transmitter circuit and a receiver circuit of a single communication device) in some implementations, may include a separate transmitter device and a separate receiver device in some implementations, or may be embodied in other ways in other implementations. In an aspect, a transmitter may include or be coupled to a plurality of antennas (for example,  antennas  316, 336, and 376) , such as an antenna array, that permits the respective apparatus to perform transmit “beamforming, ” as described herein. Similarly, a receiver may include or be coupled to a plurality of antennas (for example,  antennas  316, 336, and 376) , such as an antenna array, that permits the respective apparatus to perform receive beamforming, as described herein. In an aspect, the transmitter and receiver may share the same plurality of antennas (for example,  antennas  316, 336, and 376) , such that the respective apparatus can only receive or transmit at a given time, not both at the same time. A wireless communication device (for example, one or both of the  transceivers  310 and 320 and/or 350 and 360) of the apparatuses 302 and/or 304 may also include a network listen module (NLM) or the like for performing various measurements.
The  apparatuses  302 and 304 also include, at least in some cases, satellite positioning systems (SPS)  receivers  330 and 370. The  SPS receivers  330 and 370 may be connected to one or  more antennas  336 and 376, respectively, for receiving  SPS signals  338 and 378, respectively, such as global positioning system (GPS) signals, global navigation satellite system (GLONASS) signals, Galileo signals, Beidou signals, Indian Regional Navigation Satellite System (NAVIC) , Quasi-Zenith Satellite System (QZSS) , etc. The  SPS receivers  330 and 370 may include any suitable hardware and/or software for receiving and processing SPS signals 338 and 378, respectively. The  SPS receivers  330 and 370 request information and operations as appropriate from the other systems, and performs calculations to determine the apparatus’ 302 and 304 positions using measurements obtained by any suitable SPS algorithm.
The base station 304 and the network entity 306 each include at least one network interfaces 380 and 390 for communicating with other network entities. For example, the network interfaces 380 and 390 (for example, one or more network access ports) may be configured to communicate with one or more network entities via a wire-based or wireless backhaul connection. In some aspects, the network interfaces 380 and 390 may be implemented as transceivers configured to support wire-based or wireless signal communication. This communication may involve, for example, sending and receiving: messages, parameters, or other types of information.
The  apparatuses  302, 304, and 306 also include other components that may be used in conjunction with the operations as disclosed herein. The UE 302 includes processor circuitry implementing a processing system 332 for providing functionality relating to, for example, false base station (FBS) detection as disclosed herein and for providing other processing functionality. The base station 304 includes a processing system 384 for providing functionality relating to, for example, FBS detection as disclosed herein and for providing other processing functionality. The network entity 306 includes a processing system 394 for providing functionality relating to, for example, FBS detection as disclosed herein and for providing other processing functionality. In an aspect, the  processing systems  332, 384, and 394 may include, for example, one or more general purpose processors, multi-core processors, ASICs, digital signal processors (DSPs) , field programmable gate arrays (FPGA) , or other programmable logic devices or processing circuitry.
The  apparatuses  302, 304, and 306 include memory circuitry implementing  memory components  340, 386, and 396 (for example, each including a memory device) , respectively, for maintaining information (for example, information indicative of reserved resources, thresholds, parameters, and so on) . In some cases, the apparatus 302 may include cell reselection module 342. The cell reselection module 342 may be a hardware circuit that is part of or coupled to the processing system 332 that, when executed, cause the apparatus 302 to perform the functionality described herein. Alternatively, the cell reselection module 342 may be a memory module (as shown in FIG. 3A) stored in the memory component 340 that, when executed by the processing system 332, causes the apparatus 302 to perform the functionality described herein.
The UE 302 may include one or more sensors 344 coupled to the processing system 332 to provide movement and/or orientation information that is independent of motion data derived from signals received by the WWAN transceiver 310, the WLAN transceiver 320, and/or the GPS receiver 330. By way of example, the sensor (s) 344 may include an accelerometer (for example, a micro-electrical mechanical systems (MEMS) device) , a gyroscope, a geomagnetic sensor (for example, a compass) , an altimeter (for example, a barometric pressure altimeter) , and/or any other type of movement detection sensor. Moreover, the sensor (s) 344 may include a plurality of different types of devices and combine their outputs in order to provide motion information. For example, the sensor (s) 344 may use a combination of a multi-axis accelerometer and orientation sensors to provide the ability to compute positions in 2D and/or 3D coordinate systems.
In addition, the UE 302 includes a user interface 346 for providing indications (for example, audible and/or visual indications) to a user and/or for receiving user input (for example, upon user actuation of a sensing device such a keypad, a touch screen, a microphone, and so on) . Although not shown, the  apparatuses  304 and 306 may also include user interfaces.
Referring to the processing system 384 in more detail, in the downlink, IP packets from the network entity 306 may be provided to the processing system 384. The processing system 384 may implement functionality for an RRC layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The processing system 384 may provide RRC layer functionality associated with broadcasting of system information (for example, master  information block (MIB) , system information blocks (SIBs) ) , RRC connection control (for example, RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter-RAT mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression/decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, scheduling information reporting, error correction, priority handling, and logical channel prioritization.
The transmitter 354 and the receiver 352 may implement Layer-1 functionality associated with various signal processing functions. Layer-1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The transmitter 354 handles mapping to signal constellations based on various modulation schemes (for example, binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an orthogonal frequency division multiplexing (OFDM) subcarrier, multiplexed with a reference signal (for example, pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 302. Each spatial stream may then be provided to one or more different antennas 356. The transmitter 354 may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 302, the receiver 312 receives a signal through its respective antenna (s) 316. The receiver 312 recovers information modulated onto an RF carrier and provides the information to the processing system 332. The transmitter 314 and the receiver 312 implement Layer-1 functionality associated with various signal processing functions. The receiver 312 may perform spatial processing on the information to recover any spatial streams destined for the UE 302. If multiple spatial streams are destined for the UE 302, they may be combined by the receiver 312 into a single OFDM symbol stream. The receiver 312 then converts the OFDM symbol stream from the time-domain to the frequency domain using a fast Fourier transform (FFT) . The frequency domain signal includes a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 304. These soft decisions may be based on channel estimates computed by a channel estimator. The soft decisions are then decoded and de-interleaved to recover the data and control signals that were originally transmitted by the base station 304 on the physical channel. The data and control signals are then provided to the processing system 332, which implements Layer-3 and Layer-2 functionality.
In the UL, the processing system 332 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the core network. The processing system 332 is also responsible for error detection.
Similar to the functionality described in connection with the DL transmission by the base station 304, the processing system 332 provides RRC layer functionality associated with system information (for example, MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks  (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by the channel estimator from a reference signal or feedback transmitted by the base station 304 may be used by the transmitter 314 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the transmitter 314 may be provided to different antenna (s) 316. The transmitter 314 may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 304 in a manner similar to that described in connection with the receiver function at the UE 302. The receiver 352 receives a signal through its respective antenna (s) 356. The receiver 352 recovers information modulated onto an RF carrier and provides the information to the processing system 384.
In the UL, the processing system 384 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 302. IP packets from the processing system 384 may be provided to the core network. The processing system 384 is also responsible for error detection.
For convenience, the  apparatuses  302, 304, and/or 306 are shown in FIGS. 3A-C as including various components that may be configured according to the various examples described herein. It will be appreciated, however, that the illustrated blocks may have different functionality in different designs.
The various components of the  apparatuses  302, 304, and 306 may communicate with each other over data buses 334, 382, and 392, respectively. The components of FIGS. 3A-C may be implemented in various ways. In some implementations, the components of FIGS. 3A-C may be implemented in one or more circuits such as, for example, one or more processors and/or one or more ASICs (which may include one or more processors) . Here, each circuit may use and/or incorporate at least one memory component for storing information or executable code used by the circuit to provide this functionality. For example, some or all of the functionality represented by blocks 310 to 346 may be implemented by processor and memory component (s) of the UE 302 (for example, by execution of appropriate code and/or by appropriate configuration of processor components) . Similarly, some or all of the functionality represented by blocks  350 to 388 may be implemented by processor and memory component (s) of the base station 304 (for example, by execution of appropriate code and/or by appropriate configuration of processor components) . Also, some or all of the functionality represented by blocks 390 to 396 may be implemented by processor and memory component (s) of the network entity 306 (for example, by execution of appropriate code and/or by appropriate configuration of processor components) . For simplicity, various operations, acts, and/or functions are described herein as being performed “by a UE, ” “by a base station, ” “by a positioning entity, ” etc. However, as will be appreciated, such operations, acts, and/or functions may actually be performed by specific components or combinations of components of the UE, base station, positioning entity, etc., such as the  processing systems  332, 384, 394, the  transceivers  310, 320, 350, and 360, the  memory components  340, 386, and 396, the cell reselection module 342, etc.
A UE may be capable of operating in a standalone (SA) or in a non-standalone (NSA) mode within a given RAT. When operating in the SA mode, the UE is able to exchange both control and data plane information with the network node and/or the core network of the given RAT (for example, NR) . When operating in the NSA mode, the UE is communicating with network nodes of the first and second RATs. In the NSA mode, the UE can exchange data plane information with the network nodes of both the first RAT (e.g., LTE) and the second RAT (e.g., NR) . However, the control plane information is exchanged only with the network node of the first RAT (for example, LTE) .
System information blocks (SIBs) may be used to provide various types of system information. In particular, some SIBs provide information related to cell reselection, and as such may be referred to herein as SIBs for cell reselection. Examples of SIBs for cell reselection include SIB4 for NR-to-NR inter-frequency reselection, SIB5 for NR-to-LTE reselection, or SIB24 for LTE-to-NR reselection.
With respect to SIB24 as an example, some LTE networks may not provide SIB24 to avoid impact to legacy UEs which cannot handoff to NR cells. To at least partially address this issue, the LTE eNB may transmit an RRCConnectionRelease message with an idleModeMobilityControlInfo Information Element (IE) . The idleModeMobilityControlInfo IE includes cell reselection information such as a list of NR frequencies and their respective cell reselection priorities to help guide a respective UE in terms of how to reselect to NR network. However, the  idleModeMobilityControlInfo IE is not a complete replacement for SIB24, as the cell reselection information included therein omits a number of SIB24 parameters.
Aspects of the disclosure are thereby directed to a cell reselection procedure that uses a combination of cell reselection information received from a first cell (e.g., a serving cell) in combination with locally determined value (s) for SIB parameter (s) omitted from the cell reselection information. Such aspects may provide various technical advantage, such as improved or faster cell reselection (e.g., LTE-to-NR, NR-to-LTE, or NR-to-NR) .
FIG. 4 illustrates a process 400 of wireless communication, according to aspects of the disclosure. In an aspect, the process 400 may be performed by a UE, such as UE 302.
At 410, UE 302 (e.g., receiver 312 or 322) receives, from a first cell, cell reselection information. As an example, the first cell may correspond to a serving cell of UE 302. In an example where the first cell corresponds to an LTE cell (or eNB) , the cell reselection information may be received via idleModeMobilityControlInfo IE of an RRCConnectionRelease message. In an example where the first cell corresponds to an NR cell (or gNB) , the cell reselection information may be received via a CellReselectionPriorities Information Element (IE) of an RRCRelease message.
At 420, UE 302 (e.g., processing system 332, cell reselection module 342, etc. ) identifies one or more omitted parameters associated with a SIB for cell reselection that are omitted from the cell reselection information. In an example, the SIB for cell reselection may correspond to SIB4, SIB5 or SIB24. In some designs, the SIB for cell selection may not be received or decoded at UE 302 for various reasons (e.g., the SIB is not transmitted by the serving cell at all such as in certain LTE networks in case of SIB24, or the serving cell transmits the SIB but UE 302 fails to properly decode the SIB, etc. ) .
At 430, UE 302 (e.g.,  receiver  312 or 322,  transmitter  314 or 324, processing system 332, cell reselection module 342, etc. ) performs a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters. In some designs, via the use of the locally determined value (s) as a supplement to the cell reselection procedure, UE 302 may be able to perform the cell reselection procedure at 430 as if the respective SIB for reselection (e.g., SIB4 or SIB5 or SIB24) was actually  received at UE 302. As used herein, a “locally” determined value is not necessarily a locally generated value, but rather could include a value that is network-configured or configured by an operator or phone vendor. In this case, the value is locally determined in the sense that the value is stored locally at UE 302 before the cell reselection procedure is attempted and as such is locally available to supplement the cell reselection information in case of a missing SIB for cell reselection.
Referring to FIG. 4, as an example, SIB24 includes various parameters, such as t-ReselectionNR, t-ReselectionNR-SF, carrierFreq, multiBandInfoList, multiBandInfoListSUL, subcarrierSpacingSSB, ss-RSSI-Measurement, cellReselectionPriority, cellReselectionSubPriority, threshX-High, threshX-Low, threshX-Q: threshX-HighQ, threshX-Q: threshX-LowQ, q-RxLevMin, q-RxLevMinSUL, p-MaxNR, ns-PmaxListNR, q-QualMin, deriveSSB-IndexFromCell, maxRS-IndexCellQual, and threshRS-Index. Some of these parameters may be ascertained from the idleModeMobilityControlInfo IE, such as carrierFreq, measTimingConig, subcarrierSpacingSSB, cellReselectionPriority, and cellReselectionSubPriority (if provided) . However, other SIB24 parameters which may be helpful or even required for reselection may not be provided, such as:
Figure PCTCN2020115887-appb-000003
Figure PCTCN2020115887-appb-000004
Table 1: Example SIB24 Parameters that are Not Provided by idleModeMobilityControlInfo IE
In some designs, some or all of the SIB24 parameters depicted in Table 1 which are omitted by the idleModeMobilityControlInfo IE of the RRCConnectionRelease message may be determined locally at UE 302 to facilitate an LTE-to-NR cell reselection procedure. Table 2 depicts the available values for the SIB24 parameters depicted in Table 1 along with an example of a default (or locally determined default) value for the respective SIB24 parameters, e.g.:
Figure PCTCN2020115887-appb-000005
Table 2: Example of Locally Determined SIB24 Parameters and Default Values
In Table 2, some SIB24 parameters are denoted as O for optional or M for mandatory. For example, a value for threshX-High can be provided or a value for threshX-Low can be provided, but not necessarily both. Other SIB24 parameters (e.g., t-ReselectionNR-SF, q-RxLevMinSUL, ns-PmaxListNR, maxRS-IndexCellQual, thresRS-Index) will not be provided by the idleModeMobilityControlInfo IE of the RRCConnectionRelease message, but in any case are not used for the cell reselection procedure. In this case, the unneeded SIB24 parameters do not need to be locally determined for the cell reselection procedure. In other words, the entire SIB24 need not be reconstructed (as a function of the cell reselection information plus the locally determined value (s) ) for the cell reselection procedure to be performed at 430 of FIG. 4.  Also, some SIB24 parameters (e.g., multiBandInfoList, multiBandInfoListSUL) may be obtained ACQDB (Acquisition Database) on same ARFCN, if available.
While described above primarily with respect to SIB24 for LTE-to-NR cell reselection, other aspects relate to SIB4 and SIB5 as well for NR-to-NR inter-frequency cell reselection and NR-to-LTE cell reselection, respectively, where UE 302 is operating in accordance with SA mode. For example, in a case where the SIB for cell reselection corresponds to a missing SIB5, the cell reselection information may be received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes evolved Universal Mobile Telecommunications Service Terrestrial Radio Access (EUTRA) frequencies and associated reselection priorities (e.g., sub-priorities) . In this case, locally determined values for the missing SIB5 parameters may include, e.g., thresholds, t-Reselection, q-RxLevMin, p-Max to form UE local SIB5 and perform N2L (NR-to-LTE) cell reselection. In another example, in a case where the SIB for cell reselection corresponds to a missing SIB4, the cell reselection information may be received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes NR frequencies and associated reselection priorities (e.g., sub-priorities) . In this case, locally determined values for the missing SIB5 parameters may include, e.g., thresholds, t-Reselection, q-RxLevMin, p-Max, deriveSSB-IndexFromCell to form UE local SIB4 and perform N2N (NR-to-NR) inter-frequency cell reselection.
Referring to FIG. 4 in view of Table 1 with respect to SIB24 (with many of the same parameters also associated with SIB4 and SIB5) , the omitted SIB parameters may generally include any of the following in some designs:
· a cell reselection timer value (e.g., t-ReselectionNR) during which cell reselection criteria is met continuously in order to trigger cell reselection,
· a first Reference Signal Receive Power (RSRP) threshold (e.g., threshX-High) associated with higher priority neighbor cells,
· a second RSRP threshold (e.g., threshX-Low) associated with lower priority neighbor cells,
· a first Reference Signal Received Quality (RSRQ) threshold (e.g., threshX-Q: threshX-HighQ) associated with the higher priority neighbor cells,
· a second RSRQ threshold (e.g., threshX-Q: threshX-LowQ) associated with the lower priority neighbor cells,
· a minimum receive level parameter (e.g., q-RxLevMin) ,
· a maximum uplink power parameter (e.g., p-MaxNR) ,
· whether or not a time-domain boundary (e.g., subframe or frame) between a serving cell and a candidate neighbor cell are aligned (e.g., deriveSSB-IndexFromCell) , or
· any combination thereof
FIG. 5 illustrates an example implementation 500 of the process 400 of FIG. 4 in accordance with an aspect of the disclosure. At 502, an eNB of an LTE network transmits an RRCConnectionRelease message including an idleModeMobilityControlInfo IE to UE 302. At 504, UE 302 misses an SIB24 from the eNB (e.g., because UE 302 failed to decode a transmitted SIB24, or because SIB24 was not transmitted by the eNB at all) . At 506, UE 302 determines local value (s) for SIB24 parameter (s) that are omitted from the idleModeMobilityControlInfo IE. As noted above, the SIB24 need not be reconstructed entirety, as some SIB24 parameters may not be needed for cell reselection. At 508, UE 302 performs a cell reselection procedure (e.g., identifying one of gNBs 1…N for cell reselection) based on the idleModeMobilityControlInfo IE received at 502 and the locally determined value (s) from 506.
FIG. 6 illustrates an example implementation 600 of the process 400 of FIG. 4 in accordance with another aspect of the disclosure. At 602, a gNB of an NR network transmits an RRCRelease message including a CellReselectionPriorities IE to UE 302. At 604, UE 302 misses an SIB4 from the gNB (e.g., because UE 302 failed to decode a transmitted SIB4, or because SIB4 was not transmitted by the gNB at all) . At 606, UE 302 determines local value (s) for SIB4 parameter (s) that are omitted from the CellReselectionPriorities IE. As noted above, the SIB4 need not be reconstructed entirety, as some SIB4 parameters may not be needed for cell reselection. At 608, UE 302 performs a cell reselection procedure (e.g., identifying one of eNBs 1…N for cell reselection) based on the CellReselectionPriorities IE received at 602 and the locally determined value (s) from 606.
FIG. 7 illustrates an example implementation 700 of the process 400 of FIG. 4 in accordance with another aspect of the disclosure. At 702, gNB 1 of an NR network  transmits an RRCRelease message including a CellReselectionPriorities IE to UE 302. At 704, UE 302 misses an SIB5 from the gNB 1 (e.g., because UE 302 failed to decode a transmitted SIB5, or because SIB5 was not transmitted by the gNB at all) . At 706, UE 302 determines local value (s) for SIB5 parameter (s) that are omitted from the CellReselectionPriorities IE. As noted above, the SIB5 need not be reconstructed entirety, as some SIB5 parameters may not be needed for cell reselection. At 708, UE 302 performs a cell reselection procedure (e.g., identifying one of gNBs 2…N for inter-frequency NR-to-NR cell reselection) based on the CellReselectionPriorities IE received at 702 and the locally determined value (s) from 706.
Those of skill in the art will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Further, those of skill in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the aspects disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
The various illustrative logical blocks, modules, and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor  may also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The methods, sequences and/or algorithms described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in random access memory (RAM) , flash memory, read-only memory (ROM) , erasable programmable ROM (EPROM) , electrically erasable programmable ROM (EEPROM) , registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An example storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal (for example, UE) . In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy  disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
While the foregoing disclosure shows illustrative aspects of the disclosure, it should be noted that various changes and modifications could be made herein without departing from the scope of the disclosure as defined by the appended claims. The functions, steps and/or actions of the method claims in accordance with the aspects of the disclosure described herein need not be performed in any particular order. Furthermore, although elements of the disclosure may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.

Claims (28)

  1. A method of operating a user equipment (UE) , comprising:
    receiving, from a first cell, cell reselection information;
    identifying one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information; and
    performing a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
  2. The method of claim 1, wherein the cell reselection information comprises a set of frequencies and a corresponding set of cell reselection priorities.
  3. The method of claim 1, wherein the one or more omitted parameters comprise:
    a cell reselection timer value during which cell reselection criteria is met continuously in order to trigger cell reselection,
    a first Reference Signal Receive Power (RSRP) threshold associated with higher priority neighbor cells,
    a second RSRP threshold associated with lower priority neighbor cells,
    a first Reference Signal Received Quality (RSRQ) threshold associated with the higher priority neighbor cells,
    a second RSRQ threshold associated with the lower priority neighbor cells,
    a minimum receive level parameter,
    a maximum uplink power parameter,
    whether or not a time-domain boundary between a serving cell and a candidate neighbor cell are aligned, or
    any combination thereof.
  4. The method of claim 1, wherein the first cell is associated with a first radio access technology (RAT) and the second cell is associated with a second RAT.
  5. The method of claim 4, wherein the first RAT is long term evolution (LTE) and the second RAT is new radio (NR) .
  6. The method of claim 5, wherein the SIB for cell reselection corresponds to a SIB24.
  7. The method of claim 6, wherein the cell reselection information is received as idle mode mobility control information within a radio resource control (RRC) connection release message.
  8. The method of claim 4, wherein the second RAT is long term evolution (LTE) and the first RAT is new radio (NR) .
  9. The method of claim 8, wherein the SIB for cell reselection corresponds to a SIB5.
  10. The method of claim 9, wherein the cell reselection information is received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes evolved Universal Mobile Telecommunications Service Terrestrial Radio Access (EUTRA) frequencies and associated reselection priorities.
  11. The method of claim 9, wherein the UE is operating in accordance with standalone (SA) mode during the cell reselection procedure.
  12. The method of claim 1, wherein the first cell and the second cell are associated with the same radio access technology (RAT) .
  13. The method of claim 12, wherein the RAT is new radio (NR) .
  14. The method of claim 13, wherein the SIB for cell reselection corresponds to a SIB4.
  15. The method of claim 14, wherein the cell reselection information is received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes NR frequencies and associated reselection priorities.
  16. The method of claim 14, wherein the UE is operating in accordance with standalone (SA) mode during the cell reselection procedure.
  17. A user equipment (UE) , comprising:
    means for receiving, from a first cell, cell reselection information;
    means for identifying one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information; and
    means for performing a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
  18. The UE of claim 17,
    wherein the first cell is associated with long term evolution (LTE) and the second cell is associated with new radio (NR) ,
    wherein the SIB for cell reselection corresponds to a SIB24, and
    wherein the cell reselection information is received as idle mode mobility control information within a radio resource control (RRC) connection release message.
  19. The UE of claim 17,
    wherein the second cell is associated with long term evolution (LTE) and the first cell is associated with new radio (NR) ,
    wherein the SIB for cell reselection corresponds to a SIB5,
    wherein the cell reselection information is received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes evolved Universal Mobile Telecommunications Service Terrestrial Radio Access (EUTRA) frequencies and associated reselection priorities, and
    wherein the UE is operating in accordance with standalone (SA) mode during the cell reselection procedure.
  20. The UE of claim 17,
    wherein the first cell and the second cell are both associated with new radio (NR) ,
    wherein the SIB for cell reselection corresponds to a SIB4,
    wherein the cell reselection information is received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes NR frequencies and associated reselection priorities, and
    wherein the UE is operating in accordance with standalone (SA) mode during the cell reselection procedure.
  21. A user equipment (UE) , comprising:
    a memory;
    at least one transceiver; and
    at least one processor communicatively coupled to the memory and the at least one transceiver, the at least one processor configured to:
    receive, from a first cell, cell reselection information;
    identify one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information; and
    perform a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
  22. The UE of claim 21,
    wherein the first cell is associated with long term evolution (LTE) and the second cell is associated with new radio (NR) ,
    wherein the SIB for cell reselection corresponds to a SIB24, and
    wherein the cell reselection information is received as idle mode mobility control information within a radio resource control (RRC) connection release message.
  23. The UE of claim 21,
    wherein the second cell is associated with long term evolution (LTE) and the first cell is associated with new radio (NR) ,
    wherein the SIB for cell reselection corresponds to a SIB5,
    wherein the cell reselection information is received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes evolved Universal Mobile Telecommunications Service Terrestrial Radio Access (EUTRA) frequencies and associated reselection priorities, and
    wherein the UE is operating in accordance with standalone (SA) mode during the cell reselection procedure.
  24. The UE of claim 21,
    wherein the first cell and the second cell are both associated with new radio (NR) ,
    wherein the SIB for cell reselection corresponds to a SIB4,
    wherein the cell reselection information is received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes NR frequencies and associated reselection priorities, and
    wherein the UE is operating in accordance with standalone (SA) mode during the cell reselection procedure.
  25. A non-transitory computer-readable medium containing instructions stored thereon, for causing at least one processor in a user equipment (UE) to:
    receive, from a first cell, cell reselection information;
    identify one or more omitted parameters associated with a system information block (SIB) for cell reselection that are omitted from the cell reselection information; and
    perform a cell reselection procedure from the first cell to a second cell based on the cell reselection information and one or more locally determined values for the one or more omitted parameters.
  26. The non-transitory computer-readable medium of claim 25,
    wherein the first cell is associated with long term evolution (LTE) and the second cell is associated with new radio (NR) ,
    wherein the SIB for cell reselection corresponds to a SIB24, and
    wherein the cell reselection information is received as idle mode mobility control information within a radio resource control (RRC) connection release message.
  27. The non-transitory computer-readable medium of claim 25,
    wherein the second cell is associated with long term evolution (LTE) and the first cell is associated with new radio (NR) ,
    wherein the SIB for cell reselection corresponds to a SIB5,
    wherein the cell reselection information is received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes evolved Universal Mobile Telecommunications Service Terrestrial Radio Access (EUTRA) frequencies and associated reselection priorities, and
    wherein the UE is operating in accordance with standalone (SA) mode during the cell reselection procedure.
  28. The non-transitory computer-readable medium of claim 25,
    wherein the first cell and the second cell are both associated with new radio (NR) ,
    wherein the SIB for cell reselection corresponds to a SIB4,
    wherein the cell reselection information is received via a cell reselection priorities information element (IE) of a radio resource control release (RRCRelease) message which includes NR frequencies and associated reselection priorities, and
    wherein the UE is operating in accordance with standalone (SA) mode during the cell reselection procedure.
PCT/CN2020/115887 2020-09-17 2020-09-17 Cell reselection procedure based on locally determined value for omitted system information block parameter WO2022056778A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115887 WO2022056778A1 (en) 2020-09-17 2020-09-17 Cell reselection procedure based on locally determined value for omitted system information block parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115887 WO2022056778A1 (en) 2020-09-17 2020-09-17 Cell reselection procedure based on locally determined value for omitted system information block parameter

Publications (1)

Publication Number Publication Date
WO2022056778A1 true WO2022056778A1 (en) 2022-03-24

Family

ID=80777352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115887 WO2022056778A1 (en) 2020-09-17 2020-09-17 Cell reselection procedure based on locally determined value for omitted system information block parameter

Country Status (1)

Country Link
WO (1) WO2022056778A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031863A1 (en) * 2017-08-09 2019-02-14 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving system information in wireless communication system
US20190394753A1 (en) * 2016-04-20 2019-12-26 Convida Wireless, Llc System information provisioning and light weight connection signalling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190394753A1 (en) * 2016-04-20 2019-12-26 Convida Wireless, Llc System information provisioning and light weight connection signalling
WO2019031863A1 (en) * 2017-08-09 2019-02-14 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving system information in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC, ERICSSON: "CR on alternative cell reselection priorities", 3GPP DRAFT; R2-2000915, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051849371 *
HUAWEI, HISILICON, DATANG LINKTESTER: "Correction to NR TC 6.1.2.18-Cell reselection with Sintrasearch and Snonintrasearch", 3GPP DRAFT; R5-201340, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG5, no. Online Meeting ;20200518 - 20200529, 8 May 2020 (2020-05-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051881444 *

Similar Documents

Publication Publication Date Title
EP4098038A1 (en) Downlink control information (dci)-based triggered positioning reference signals (prs)
US20230336295A1 (en) Open radio access network message configurations
US11825420B2 (en) Selective transmission of power headroom reports
US11632687B2 (en) Positioning measurement data
US11632725B2 (en) Selective transmission of power headroom reports
WO2021232226A1 (en) Modifying a beam failure threshold based upon user equipment movement information
US20220369333A1 (en) Conditional grants in integrated access and backbone (iab) network
WO2022047610A1 (en) Secondary cell group in dormant state with data traffic disabled
WO2021155582A1 (en) Complementary timing information for positioning reference signals for non-terrestrial networks
WO2022056778A1 (en) Cell reselection procedure based on locally determined value for omitted system information block parameter
US11711772B2 (en) Power control scheme for active bandwidth part transition
US11895668B2 (en) Uplink power change capability indication
WO2022193115A1 (en) Puncturing of inter-frequency measurements during evolved packet system fallback call procedure
US11812439B2 (en) Rescheduling in integrated access fronthaul networks
US11832244B2 (en) Timers and uplink skipping
WO2022126305A1 (en) Tearing down a packet data session after a transition to a different subscription of a dual subscriber identity module dual standby user equipment
WO2021243511A1 (en) Identifier for runtime client application with network slice association
WO2022126302A1 (en) Determining an initial prach preamble transmission power based on historical completed prach procedures
WO2021223076A1 (en) Optimizing physical downlink control channel (pdcch) power
WO2022027554A1 (en) Aperiodic measurements for a secondary cell group in a dormant state
WO2021164008A1 (en) Dci-guided pdcch dmrs reception bundling
US20220322072A1 (en) Quasi co-location source reference signal capability for transmission configuration indication state
US20240224190A1 (en) At least partial disablement of transmission port based on thermal condition and associated capability indication
WO2022212967A1 (en) Quasi co-location source reference signal capability for transmission configuration indication state

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953636

Country of ref document: EP

Kind code of ref document: A1