WO2021243511A1 - Identifier for runtime client application with network slice association - Google Patents

Identifier for runtime client application with network slice association Download PDF

Info

Publication number
WO2021243511A1
WO2021243511A1 PCT/CN2020/093721 CN2020093721W WO2021243511A1 WO 2021243511 A1 WO2021243511 A1 WO 2021243511A1 CN 2020093721 W CN2020093721 W CN 2020093721W WO 2021243511 A1 WO2021243511 A1 WO 2021243511A1
Authority
WO
WIPO (PCT)
Prior art keywords
plmn
application
client application
runtime client
identifier
Prior art date
Application number
PCT/CN2020/093721
Other languages
French (fr)
Inventor
Nan Zhang
Ying Wang
Chaofeng HUI
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/093721 priority Critical patent/WO2021243511A1/en
Publication of WO2021243511A1 publication Critical patent/WO2021243511A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • aspects of the disclosure relate generally to an identifier for a runtime client application with a network slice association.
  • Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G networks) , a third-generation (3G) high speed data, Internet-capable wireless service and a fourth-generation (4G) service (e.g., LTE or WiMax) .
  • cellular and personal communications service (PCS) systems include the cellular Analog Advanced Mobile Phone System (AMPS) , and digital cellular systems based on code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , the Global System for Mobile access (GSM) variation of TDMA, etc.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • GSM Global System for Mobile access
  • a fifth generation (5G) wireless standard referred to as New Radio (NR)
  • NR New Radio
  • the 5G standard according to the Next Generation Mobile Networks Alliance, is designed to provide data rates of several tens of megabits per second to each of tens of thousands of users, with 1 gigabit per second to tens of workers on an office floor.
  • Several hundreds of thousands of simultaneous connections should be supported in order to support large wireless deployments. Consequently, the spectral efficiency of 5G mobile communications should be significantly enhanced compared to the current 4G standard.
  • signaling efficiencies should be enhanced and latency should be substantially reduced compared to current standards.
  • 5G public land mobile networks may be configured to support different network slices. Each network slice can be seen as an independent network partition optimized to support the performance requirements of a certain application category.
  • a wireless communication network may contain a network slice optimized for mobile broadband services (characterized by high data rate and medium latency) , a network slice optimized for autonomous driving (characterized by low latency and high reliability) , a network slice optimized for massive Internet of Things ( “IoT” ) or Machine Type Communications ( “MTC” ) (characterized by low mobility and low data rate) , and the like.
  • IoT massive Internet of Things
  • MTC Machine Type Communications
  • Each network slice being optimized to support its corresponding application category.
  • One slice may be designed to support an “Enhanced Mobile Broadband” application category
  • a second slice may be designed to support an “Ultra-reliable and Low Latency Communications” application category
  • a third slice may be designed to support a “Massive Machine Type Communications” application category.
  • a particular type of network slice may be deployed multiple times (i.e. have multiple instances) within the same PLMN. For example, a network operator may deploy multiple IoT/MTC slice instances to support multiple IoT customers such as utility companies, automotive companies, etc.
  • An aspect is directed to a method of operating a user equipment (UE) , comprising transmitting, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, and receiving, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
  • OS operating system
  • PLMN Public Land Mobile Network
  • Another aspect is directed to a method of operating an application server, comprising receiving, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, determining the OS application identifier of the client application, and transmitting, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
  • OS operating system
  • PLMN Public Land Mobile Network
  • Another aspect is directed to a method of operating a Public Land Mobile Network (PLMN) , comprising receiving, from an application server, an indication of an operating system (OS) application identifier of a runtime client application, and UE-identifying information, updating one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic descriptors for the runtime client application, and transmitting, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.
  • OS operating system
  • NSSAI network slice selection assistance information
  • a user equipment comprising means for transmitting, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, and means for receiving, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
  • OS operating system
  • PLMN Public Land Mobile Network
  • an application server comprising means for receiving, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, means for determining the OS application identifier of the client application, and means for transmitting, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
  • OS operating system
  • PLMN Public Land Mobile Network
  • PLMN Public Land Mobile Network
  • PLMN Public Land Mobile Network
  • OS operating system
  • NSSAI network slice selection assistance information
  • a user equipment comprising a memory, at least one communications interface, and at least one processor communicatively coupled to the memory, the at least one communications interface, the at least one processor configured to transmit, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, and receive, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
  • OS operating system
  • PLMN Public Land Mobile Network
  • an application server comprising a memory, at least one communications interface, and at least one processor communicatively coupled to the memory, the at least one communications interface, the at least one processor configured to receive, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, determine the OS application identifier of the client application, and transmit, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
  • OS operating system
  • PLMN Public Land Mobile Network
  • PLMN Public Land Mobile Network
  • PLMN Public Land Mobile Network
  • a Public Land Mobile Network comprising a memory, at least one communications interface, and at least one processor communicatively coupled to the memory, the at least one communications interface, the at least one processor configured to receive, from an application server, an indication of an operating system (OS) application identifier of a runtime client application, and UE-identifying information, update one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic descriptors for the runtime client application, and transmit, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.
  • OS operating system
  • NSSAI network slice selection assistance information
  • Another aspect is directed to a non-transitory computer-readable medium containing instructions stored thereon, which, when executed by a user equipment (UE) , cause the UE to perform operations, the instructions comprising at least one instruction to cause the UE to transmit, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, and at least one instruction to cause the UE to receive, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
  • OS operating system
  • PLMN Public Land Mobile Network
  • Another aspect is directed to a non-transitory computer-readable medium containing instructions stored thereon, which, when executed by an application server, cause the application server to perform operations, the instructions comprising at least one instruction to cause the application server to receive, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, at least one instruction to cause the application server to determine the OS application identifier of the client application, and at least one instruction to cause the application server to transmit, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
  • OS operating system
  • PLMN Public Land Mobile Network
  • Another aspect is directed to a non-transitory computer-readable medium containing instructions stored thereon, which, when executed by a Public Land Mobile Network (PLMN) , cause the PLMN to perform operations, the instructions comprising at least one instruction to cause the PLMN to receive, from an application server, an indication of an operating system (OS) application identifier of a runtime client application, and UE-identifying information, at least one instruction to cause the PLMN to update one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic descriptors for the runtime client application, and at least one instruction to cause the PLMN to transmit, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.
  • PLMN Public Land Mobile Network
  • FIG. 1 illustrates an exemplary wireless communications system, according to various aspects.
  • FIGS. 2A and 2B illustrate example wireless network structures, according to various aspects.
  • FIG. 3 is a block diagram illustrating an exemplary UE, according to various aspects.
  • FIG. 4 illustrates an exemplary process of wireless communication, according to aspects of the disclosure.
  • FIG. 5 illustrates an exemplary process of wireless communication, according to other aspects of the disclosure.
  • FIG. 6 illustrates an exemplary process of wireless communication, according to other aspects of the disclosure.
  • FIG. 7 illustrates an example implementation of the processes of FIGS. 4-6 in accordance with an aspect of the disclosure.
  • sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs) ) , by program instructions being executed by one or more processors, or by a combination of both. Additionally, the sequence (s) of actions described herein can be considered to be embodied entirely within any form of non-transitory computer-readable storage medium having stored therein a corresponding set of computer instructions that, upon execution, would cause or instruct an associated processor of a device to perform the functionality described herein.
  • ASICs application specific integrated circuits
  • a UE may be any wireless communication device (e.g., a mobile phone, router, tablet computer, laptop computer, tracking device, wearable (e.g., smartwatch, glasses, augmented reality (AR) /virtual reality (VR) headset, etc. ) , vehicle (e.g., automobile, motorcycle, bicycle, etc. ) , Internet of Things (IoT) device, etc. ) used by a user to communicate over a wireless communications network.
  • wireless communication device e.g., a mobile phone, router, tablet computer, laptop computer, tracking device, wearable (e.g., smartwatch, glasses, augmented reality (AR) /virtual reality (VR) headset, etc. )
  • vehicle e.g., automobile, motorcycle, bicycle, etc.
  • IoT Internet of Things
  • a UE may be mobile or may (e.g., at certain times) be stationary, and may communicate with a Radio Access Network (RAN) .
  • RAN Radio Access Network
  • the term “UE” may be referred to interchangeably as an “access terminal” or “AT, ” a “client device, ” a “wireless device, ” a “subscriber device, ” a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT, a “mobile terminal, ” a “mobile station, ” or variations thereof.
  • AT access terminal
  • client device e.g., a “wireless device
  • UEs can communicate with a core network via a RAN, and through the core network the UEs
  • a base station may operate according to one of several RATs in communication with UEs depending on the network in which it is deployed, and may be alternatively referred to as an access point (AP) , a network node, a NodeB, an evolved NodeB (eNB) , a New Radio (NR) Node B (also referred to as a gNB or gNodeB) , etc.
  • AP access point
  • eNB evolved NodeB
  • NR New Radio
  • a base station may provide purely edge node signaling functions while in other systems it may provide additional control and/or network management functions.
  • a communication link through which UEs can send signals to a base station is called an uplink (UL) channel (e.g., a reverse traffic channel, a reverse control channel, an access channel, etc. ) .
  • UL uplink
  • a communication link through which the base station can send signals to UEs is called a downlink (DL) or forward link channel (e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc. ) .
  • DL downlink
  • forward link channel e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc.
  • TCH traffic channel
  • base station may refer to a single physical transmission point or to multiple physical transmission points that may or may not be co-located.
  • the physical transmission point may be an antenna of the base station corresponding to a cell of the base station.
  • the physical transmission points may be an array of antennas (e.g., as in a multiple-input multiple-output (MIMO) system or where the base station employs beamforming) of the base station.
  • MIMO multiple-input multiple-output
  • the physical transmission points may be a distributed antenna system (DAS) (a network of spatially separated antennas connected to a common source via a transport medium) or a remote radio head (RRH) (a remote base station connected to a serving base station) .
  • DAS distributed antenna system
  • RRH remote radio head
  • the non-co- located physical transmission points may be the serving base station receiving the measurement report from the UE and a neighbor base station whose reference RF signals the UE is measuring.
  • An “RF signal” comprises an electromagnetic wave of a given frequency that transports information through the space between a transmitter and a receiver.
  • a transmitter may transmit a single “RF signal” or multiple “RF signals” to a receiver.
  • the receiver may receive multiple “RF signals” corresponding to each transmitted RF signal due to the propagation characteristics of RF signals through multipath channels.
  • the same transmitted RF signal on different paths between the transmitter and receiver may be referred to as a “multipath” RF signal.
  • FIG. 1 illustrates an exemplary wireless communications system 100.
  • the wireless communications system 100 (which may also be referred to as a wireless wide area network (WWAN) ) may include various base stations 102 and various UEs 104.
  • the base stations 102 may include macro cell base stations (high power cellular base stations) and/or small cell base stations (low power cellular base stations) .
  • the macro cell base station may include eNBs where the wireless communications system 100 corresponds to an LTE network, or gNBs where the wireless communications system 100 corresponds to a 5G network, or a combination of both, and the small cell base stations may include femtocells, picocells, microcells, etc.
  • the base stations 102 may collectively form a RAN and interface with a core network 170 (e.g., an evolved packet core (EPC) or next generation core (NGC) ) through backhaul links 122, and through the core network 170 to one or more application servers 172 (e.g., servers supporting various client application services, such as streaming video, streaming audio, web-based services, etc. ) .
  • a core network 170 e.g., an evolved packet core (EPC) or next generation core (NGC)
  • application servers 172 e.g., servers supporting various client application services, such as streaming video, streaming audio, web-based services, etc.
  • the base stations 102 may perform functions that relate to one or more of transferring user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, RAN sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • the base stations 102 may communicate with each other directly or indirectly (e.g., through the EPC /NGC) over backhaul links 134, which may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. In an aspect, one or more cells may be supported by a base station 102 in each coverage area 110.
  • a “cell” is a logical communication entity used for communication with a base station (e.g., over some frequency resource, referred to as a carrier frequency, component carrier, carrier, band, or the like) , and may be associated with an identifier (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) for distinguishing cells operating via the same or a different carrier frequency.
  • PCID physical cell identifier
  • VCID virtual cell identifier
  • different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of UEs.
  • MTC machine-type communication
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • the term “cell” may also refer to a geographic coverage area of a base station (e.g., a sector) , insofar as a carrier frequency can be detected and used for communication within some portion of geographic coverage areas 110.
  • While neighboring macro cell base station 102 geographic coverage areas 110 may partially overlap (e.g., in a handover region) , some of the geographic coverage areas 110 may be substantially overlapped by a larger geographic coverage area 110.
  • a small cell base station 102' may have a coverage area 110' that substantially overlaps with the coverage area 110 of one or more macro cell base stations 102.
  • a network that includes both small cell and macro cell base stations may be known as a heterogeneous network.
  • a heterogeneous network may also include home eNBs (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • HeNBs home eNBs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include UL (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links 120 may be through one or more carrier frequencies. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) .
  • the wireless communications system 100 may further include a wireless local area network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152 via communication links 154 in an unlicensed frequency spectrum (e.g., 5 GHz) .
  • WLAN wireless local area network
  • AP access point
  • the WLAN STAs 152 and/or the WLAN AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell base station 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell base station 102' may employ LTE or 5G technology and use the same 5 GHz unlicensed frequency spectrum as used by the WLAN AP 150. The small cell base station 102', employing LTE /5G in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network. LTE in an unlicensed spectrum may be referred to as LTE-unlicensed (LTE-U) , licensed assisted access (LAA) , or MulteFire.
  • LTE-U LTE-unlicensed
  • LAA licensed assisted access
  • MulteFire MulteFire
  • the wireless communications system 100 may further include a millimeter wave (mmW) base station 180 that may operate in mmW frequencies and/or near mmW frequencies in communication with a UE 182.
  • Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in this band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • the mmW base station 180 and the UE 182 may utilize beamforming (transmit and/or receive) over a mmW communication link 184 to compensate for the extremely high path loss and short range.
  • one or more base stations 102 may also transmit using mmW or near mmW and beamforming. Accordingly, it will be appreciated that the foregoing illustrations are merely examples and should not be construed to limit the various aspects disclosed herein.
  • Transmit beamforming is a technique for focusing an RF signal in a specific direction.
  • a network node e.g., a base station
  • transmit beamforming the network node determines where a given target device (e.g., a UE) is located (relative to the transmitting network node) and projects a stronger downlink RF signal in that specific direction, thereby providing a faster (in terms of data rate) and stronger RF signal for the receiving device (s) .
  • a network node can control the phase and relative amplitude of the RF signal at each of the one or more transmitters that are broadcasting the RF signal.
  • a network node may use an array of antennas (referred to as a “phased array” or an “antenna array” ) that creates a beam of RF waves that can be “steered” to point in different directions, without actually moving the antennas.
  • the RF current from the transmitter is fed to the individual antennas with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while cancelling to suppress radiation in undesired directions.
  • Transmit beams may be quasi-collocated, meaning that they appear to the receiver (e.g., a UE) as having the same parameters, regardless of whether or not the transmitting antennas of the network node themselves are physically collocated.
  • the receiver e.g., a UE
  • QCL relation of a given type means that certain parameters about a second reference RF signal on a second beam can be derived from information about a source reference RF signal on a source beam.
  • the receiver can use the source reference RF signal to estimate the Doppler shift, Doppler spread, average delay, and delay spread of a second reference RF signal transmitted on the same channel.
  • the receiver can use the source reference RF signal to estimate the Doppler shift and Doppler spread of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type C, the receiver can use the source reference RF signal to estimate the Doppler shift and average delay of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type D, the receiver can use the source reference RF signal to estimate the spatial receive parameter of a second reference RF signal transmitted on the same channel.
  • the receiver uses a receive beam to amplify RF signals detected on a given channel. For example, the receiver can increase the gain setting and/or adjust the phase setting of an array of antennas in a particular direction to amplify (e.g., to increase the gain level of) the RF signals received from that direction.
  • a receiver is said to beamform in a certain direction, it means the beam gain in that direction is high relative to the beam gain along other directions, or the beam gain in that direction is the highest compared to the beam gain in that direction of all other receive beams available to the receiver.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SINR signal-to-interference-plus-noise ratio
  • Receive beams may be spatially related.
  • a spatial relation means that parameters for a transmit beam for a second reference signal can be derived from information about a receive beam for a first reference signal.
  • a UE may use a particular receive beam to receive a reference downlink reference signal (e.g., synchronization signal block (SSB) ) from a base station.
  • the UE can then form a transmit beam for sending an uplink reference signal (e.g., sounding reference signal (SRS) ) to that base station based on the parameters of the receive beam.
  • SSB synchronization signal block
  • SRS sounding reference signal
  • a “downlink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the downlink beam to transmit a reference signal to a UE, the downlink beam is a transmit beam. If the UE is forming the downlink beam, however, it is a receive beam to receive the downlink reference signal.
  • an “uplink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the uplink beam, it is an uplink receive beam, and if a UE is forming the uplink beam, it is an uplink transmit beam.
  • the frequency spectrum in which wireless nodes is divided into multiple frequency ranges, FR1 (from 450 to 6000 MHz) , FR2 (from 24250 to 52600 MHz) , FR3 (above 52600 MHz) , and FR4 (between FR1 and FR2) .
  • FR1 from 450 to 6000 MHz
  • FR2 from 24250 to 52600 MHz
  • FR3 above 52600 MHz
  • FR4 between FR1 and FR2
  • one of the carrier frequencies is referred to as the “primary carrier” or “anchor carrier” or “primary serving cell” or “PCell, ” and the remaining carrier frequencies are referred to as “secondary carriers” or “secondary serving cells” or “SCells.
  • the anchor carrier is the carrier operating on the primary frequency (e.g., FR1) utilized by a UE 104/182 and the cell in which the UE 104/182 either performs the initial radio resource control (RRC) connection establishment procedure or initiates the RRC connection re-establishment procedure.
  • the primary carrier carries all common and UE-specific control channels.
  • a secondary carrier is a carrier operating on a second frequency (e.g., FR2) that may be configured once the RRC connection is established between the UE 104 and the anchor carrier and that may be used to provide additional radio resources.
  • the secondary carrier may contain only necessary signaling information and signals, for example, those that are UE-specific may not be present in the secondary carrier, since both primary uplink and downlink carriers are typically UE-specific. This means that different UEs 104/182 in a cell may have different downlink primary carriers. The same is true for the uplink primary carriers.
  • the network is able to change the primary carrier of any UE 104/182 at any time. This is done, for example, to balance the load on different carriers.
  • a “serving cell” (whether a PCell or an SCell) corresponds to a carrier frequency /component carrier over which some base station is communicating, the term “cell, ” “serving cell, ” “component carrier, ” “carrier frequency, ” and the like can be used interchangeably.
  • one of the frequencies utilized by the macro cell base stations 102 may be an anchor carrier (or “PCell” ) and other frequencies utilized by the macro cell base stations 102 and/or the mmW base station 180 may be secondary carriers ( “SCells” ) .
  • the simultaneous transmission and/or reception of multiple carriers enables the UE 104/182 to significantly increase its data transmission and/or reception rates. For example, two 20 MHz aggregated carriers in a multi-carrier system would theoretically lead to a two-fold increase in data rate (i.e., 40 MHz) , compared to that attained by a single 20 MHz carrier.
  • the wireless communications system 100 may further include one or more UEs, such as UE 190, that connects indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links.
  • D2D device-to-device
  • P2P peer-to-peer
  • UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base stations 102 (e.g., through which UE 190 may indirectly obtain cellular connectivity) and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which UE 190 may indirectly obtain WLAN-based Internet connectivity) .
  • the D2D P2P links 192 and 194 may be supported with any well-known D2D RAT, such as LTE Direct (LTE-D) , WiFi Direct (WiFi-D) , and so on.
  • the wireless communications system 100 may further include a UE 164 that may communicate with a macro cell base station 102 over a communication link 120 and/or the mmW base station 180 over a mmW communication link 184.
  • the macro cell base station 102 may support a PCell and one or more SCells for the UE 164 and the mmW base station 180 may support one or more SCells for the UE 164.
  • FIG. 2A illustrates an example PLMN 200.
  • an NGC 210 also referred to as a “5GC”
  • control plane functions 214 e.g., UE registration, authentication, network access, gateway selection, etc.
  • user plane functions 212 e.g., UE gateway function, access to data networks, IP routing, etc.
  • User plane interface (NG-U) 213 and control plane interface (NG-C) 215 connect the gNB 222 to the NGC 210 and specifically to the control plane functions 214 and user plane functions 212.
  • an eNB 224 may also be connected to the NGC 210 via NG-C 215 to the control plane functions 214 and NG-U 213 to user plane functions 212. Further, eNB 224 may directly communicate with gNB 222 via a backhaul connection 223. In some configurations, the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both eNBs 224 and gNBs 222. Either gNB 222 or eNB 224 may communicate with UEs 204 (e.g., any of the UEs depicted in FIG. 1) .
  • the application server 230 may be in communication with the NGC 210 to provide client application services for UEs 204.
  • the application server 230 can be implemented as a plurality of separate servers (e.g., physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each correspond to a single server.
  • the application server 230 can be configured to support one or more client application services for UEs 204 that can connect to the application server 230 via the core network, NGC 210, and/or via the Internet (not illustrated) . Further, the application server 230 may be integrated into a component of the core network, or alternatively may be external to the core network.
  • FIG. 2B illustrates another example PLMN 250.
  • an NGC 260 (also referred to as a “5GC” ) can be viewed functionally as control plane functions, provided by an access and mobility management function (AMF) /user plane function (UPF) 264, and user plane functions, provided by a session management function (SMF) 262, which operate cooperatively to form the core network (i.e., NGC 260) .
  • AMF access and mobility management function
  • UPF user plane function
  • SMF session management function
  • User plane interface 263 and control plane interface 265 connect the eNB 224 to the NGC 260 and specifically to SMF 262 and AMF/UPF 264, respectively.
  • a gNB 222 may also be connected to the NGC 260 via control plane interface 265 to AMF/UPF 264 and user plane interface 263 to SMF 262. Further, eNB 224 may directly communicate with gNB 222 via the backhaul connection 223, with or without gNB direct connectivity to the NGC 260.
  • the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both eNBs 224 and gNBs 222. Either gNB 222 or eNB 224 may communicate with UEs 204 (e.g., any of the UEs depicted in FIG. 1) .
  • the base stations of the New RAN 220 communicate with the AMF-side of the AMF/UPF 264 over the N2 interface and the UPF-side of the AMF/UPF 264 over the N3 interface.
  • the functions of the AMF include registration management, connection management, reachability management, mobility management, lawful interception, transport for session management (SM) messages between the UE 204 and the SMF 262, transparent proxy services for routing SM messages, access authentication and access authorization, transport for short message service (SMS) messages between the UE 204 and the short message service function (SMSF) (not shown) , and security anchor functionality (SEAF) .
  • the AMF also interacts with the authentication server function (AUSF) (not shown) and the UE 204, and receives the intermediate key that was established as a result of the UE 204 authentication process.
  • AUSF authentication server function
  • the AMF retrieves the security material from the AUSF.
  • the functions of the AMF also include security context management (SCM) .
  • SCM receives a key from the SEAF that it uses to derive access-network specific keys.
  • the functionality of the AMF also includes location services management for regulatory services, transport for location services messages between the UE 204 and a location management function (LMF) , as well as between the New RAN 220 and the LMF, evolved packet system (EPS) bearer identifier allocation for interworking with the EPS, and UE 204 mobility event notification.
  • LMF location management function
  • EPS evolved packet system
  • the AMF also supports functionalities for non-3GPP access networks.
  • Functions of the UPF include acting as an anchor point for intra-/inter-RAT mobility (when applicable) , acting as an external protocol data unit (PDU) session point of interconnect to the data network (not shown) , providing packet routing and forwarding, packet inspection, user plane policy rule enforcement (e.g., gating, redirection, traffic steering) , lawful interception (user plane collection) , traffic usage reporting, quality of service (QoS) handling for the user plane (e.g., UL/DL rate enforcement, reflective QoS marking in the DL) , UL traffic verification (service data flow (SDF) to QoS flow mapping) , transport level packet marking in the UL and DL, DL packet buffering and DL data notification triggering, and sending and forwarding of one or more “end markers” to the source RAN node.
  • PDU protocol data unit
  • the functions of the SMF 262 include session management, UE Internet protocol (IP) address allocation and management, selection and control of user plane functions, configuration of traffic steering at the UPF to route traffic to the proper destination, control of part of policy enforcement and QoS, and downlink data notification.
  • IP Internet protocol
  • the interface over which the SMF 262 communicates with the AMF-side of the AMF/UPF 264 is referred to as the N11 interface.
  • the application server 270 may be in communication with the NGC 260 to provide client application services for UEs 204.
  • the application server 270 can be implemented as a plurality of separate servers (e.g., physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each correspond to a single server.
  • the application server 270 can be configured to support one or more client application services for UEs 204 that can connect to the application server 270 via the core network, NGC 260, and/or via the Internet (not illustrated) . Further, the application server 270 may be integrated into a component of the core network, or alternatively may be external to the core network.
  • FIG. 3 illustrates several sample components (represented by corresponding blocks) that may be incorporated into a UE 302 (which may correspond to any of the UEs described herein) , a PLMN 304 (e.g., representative of one or more components of the PLMN, e.g., a RAN component such as a BS, or a core network component such as an AMF, etc. ) , and an application server 306 that supports one or more client application services on behalf of one or more applications configured for execution or actively executing in runtime at UE 302. It will be appreciated that these components may be implemented in different types of apparatuses in different implementations (e.g., in an ASIC, in a system-on-chip (SoC) , etc.
  • SoC system-on-chip
  • the illustrated components may also be incorporated into other apparatuses in a communication system.
  • other apparatuses in a system may include components similar to those described to provide similar functionality.
  • a given apparatus may contain one or more of the components.
  • an apparatus may include multiple transceiver components that enable the apparatus to operate on multiple carriers and/or communicate via different technologies.
  • the UE 302 and the PLMN 304 each include at least one wireless communication device (represented by the communication devices 308 and 314 (and the communication device 320 if the apparatus 304 is a relay) ) for communicating with other nodes via at least one designated RAT.
  • the communication devices 308 and 314 may communicate with each other over a wireless communication link 360, which may correspond to a communication link 120 in FIG. 1.
  • Each communication device 308 includes at least one transmitter (represented by the transmitter 310) for transmitting and encoding signals (e.g., messages, indications, information, and so on) and at least one receiver (represented by the receiver 312) for receiving and decoding signals (e.g., messages, indications, information, pilots, and so on) .
  • each communication device 314 includes at least one transmitter (represented by the transmitter 316) for transmitting signals (e.g., messages, indications, information, pilots, and so on) and at least one receiver (represented by the receiver 318) for receiving signals (e.g., messages, indications, information, and so on) .
  • each communication device 320 may include at least one transmitter (represented by the transmitter 322) for transmitting signals (e.g., messages, indications, information, pilots, and so on) and at least one receiver (represented by the receiver 324) for receiving signals (e.g., messages, indications, information, and so on) .
  • the communication device 314 may be omitted, as direct wireless communications with UEs typically occurs at the RAN part of the PLMN 304 rather than the core network part of the PLMN 304.
  • a core network component e.g., AMF, etc.
  • a transmitter and a receiver may comprise an integrated device (e.g., embodied as a transmitter circuit and a receiver circuit of a single communication device, generally referred to as a “transceiver” ) in some implementations, may comprise a separate transmitter device and a separate receiver device in some implementations, or may be embodied in other ways in other implementations.
  • a wireless communication device (e.g., one of multiple wireless communication devices) of the PLMN 304 may also comprise a network listen module (NLM) or the like for performing various measurements.
  • NLM network listen module
  • the application server 306 (and the PLMN 304 if it is not a relay station) includes at least one communication device (represented by the communication device 326 and, optionally, 320) for communicating with other nodes.
  • the communication device 326 may comprise a network interface that is configured to communicate with one or more network entities via a wire-based or wireless backhaul 370 (which may correspond to the backhaul link 122 in FIG. 1, or to an Internet connection or pathway) .
  • the communication device 326 may be implemented as a transceiver configured to support wire-based or wireless signal communication, and the transmitter 328 and receiver 330 may be an integrated unit. This communication may involve, for example, sending and receiving: messages, parameters, or other types of information. Accordingly, in the example of FIG.
  • the communication device 326 is shown as comprising a transmitter 328 and a receiver 330.
  • the transmitter 328 and receiver 330 may be separate devices within the communication device 326.
  • the communication device 320 may comprise a network interface that is configured to communicate with one or more network entities 306 via a wire-based or wireless backhaul 370.
  • the communication device 320 is shown as comprising a transmitter 322 and a receiver 324.
  • the apparatuses 302, 304, and 306 also include other components that may be used in conjunction with the operations as disclosed herein.
  • the UE 302 includes a processing system 332 for providing functionality relating to, for example, the UE operations as described herein and for providing other processing functionality.
  • the PLMN 304 includes a processing system 334 for providing functionality relating to, for example, the PLMN operations described herein and for providing other processing functionality.
  • the application server 306 includes a processing system 336 for providing functionality relating to, for example, the client application service operations described herein and for providing other processing functionality.
  • the apparatuses 302, 304, and 306 include memory components 338, 340, and 342 (e.g., each including a memory device) , respectively, for maintaining information (e.g., information indicative of reserved resources, thresholds, parameters, and so on) .
  • the UE 302 includes a user interface 350 for providing indications (e.g., audible and/or visual indications) to a user and/or for receiving user input (e.g., upon user actuation of a sensing device such a keypad, a touch screen, a microphone, and so on) .
  • the apparatuses 304 and 306 may also include user interfaces.
  • IP packets may be provided to the processing system 334.
  • the processing system 334 may implement functionality for a radio resource control (RRC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the processing system 334 may provide RRC layer functionality associated with broadcasting of system information (e.g., master information block (MIB) , system information blocks (SIBs) ) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter-RAT mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression/decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, scheduling information reporting, error correction, priority handling, and logical channel prioritization.
  • the transmitter 316 and the receiver 318 may implement Layer-1 functionality associated with various signal processing functions.
  • Layer-1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the transmitter 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • Each stream may then be mapped to an orthogonal frequency division multiplexing (OFDM) subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • OFDM orthogonal frequency division multiplexing
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 302.
  • Each spatial stream may then be provided to one or more different antennas.
  • the transmitter 316 may modulate an RF carrier with a respective spatial stream for transmission.
  • the receiver 312 receives a signal through its respective antenna (s) .
  • the receiver 312 recovers information modulated onto an RF carrier and provides the information to the processing system 332.
  • the transmitter 310 and the receiver 312 implement Layer-1 functionality associated with various signal processing functions.
  • the receiver 312 may perform spatial processing on the information to recover any spatial streams destined for the UE 302. If multiple spatial streams are destined for the UE 302, they may be combined by the receiver 312 into a single OFDM symbol stream.
  • the receiver 312 then converts the OFDM symbol stream from the time-domain to the frequency domain using a fast Fourier transform (FFT) .
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • FFT fast Fourier transform
  • the symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the PLMN 304. These soft decisions may be based on channel estimates computed by a channel estimator. The soft decisions are then decoded and de-interleaved to recover the data and control signals that were originally transmitted by the PLMN 304 on the physical channel. The data and control signals are then provided to the processing system 332, which implements Layer-3 and Layer-2 functionality.
  • the processing system 332 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the core network.
  • the processing system 332 is also responsible for error detection.
  • the processing system 332 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated
  • Channel estimates derived by the channel estimator from a reference signal or feedback transmitted by the PLMN 304 may be used by the transmitter 310 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the transmitter 310 may be provided to different antenna (s) .
  • the transmitter 310 may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the PLMN 304 in a manner similar to that described in connection with the receiver function at the UE 302.
  • the receiver 318 receives a signal through its respective antenna (s) .
  • the receiver 318 recovers information modulated onto an RF carrier and provides the information to the processing system 334.
  • the processing system 334 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 302. IP packets from the processing system 334 may be provided to the core network.
  • the processing system 334 is also responsible for error detection.
  • the apparatuses 302, 304 and 306 may include components 344, 348, 349 associated with a client application; namely, an application management component 344, a network slice component 348, and an application server component 349. It will be appreciated the functionality of the various components 344, 348 and 349 may differ based on the device where it is being implemented.
  • the components 344, 348 and ent 349 may be hardware circuits that are part of or coupled to the processing systems 332, 334, and 336, respectively, that, when executed, cause the apparatuses 302, 304, and 306 to perform the functionality described herein.
  • the components 344, 348, and 349 may be memory modules stored in the memory components 338, 340, and 342, respectively, that, when executed by the processing systems 332, 334, and 336, cause the apparatuses 302, 304, and 306 to perform the functionality described herein.
  • apparatuses 302, 304, and/or 306 are shown in FIG. 3 as including various components that may be configured according to the various examples described herein. It will be appreciated, however, that the illustrated blocks may have different functionality in different designs.
  • the various components of the apparatuses 302, 304, and 306 may communicate with each other over data buses 352, 354, and 356, respectively.
  • the components of FIG. 3 may be implemented in various ways.
  • the components of FIG. 3 may be implemented in one or more circuits such as, for example, one or more processors and/or one or more ASICs (which may include one or more processors) .
  • each circuit may use and/or incorporate at least one memory component for storing information or executable code used by the circuit to provide this functionality.
  • some or all of the functionality represented by blocks 308, 332, 338, 344, and 350 may be implemented by processor and memory component (s) of the UE 302 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components) .
  • some or all of the functionality represented by blocks 314, 320, 334, 340, and 348 may be implemented by processor and memory component (s) of the PLMN 304 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components) .
  • blocks 326, 336, 342, and 349 may be implemented by processor and memory component (s) of the application server 306 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components) .
  • processor and memory component e.g., by execution of appropriate code and/or by appropriate configuration of processor components.
  • various operations, acts, and/or functions are described herein as being performed “by a UE, ” “by a base station, ” “by a positioning entity, ” etc.
  • such operations, acts, and/or functions may actually be performed by specific components or combinations of components of the UE, PLMN, application server, etc., such as the processing systems 332, 334, 336, the communication devices 308, 314, 326, components 344, 348 and 349, etc.
  • 5G PLMNs may be configured to support different network slices, whereby a network slice is a logical network at the RAN and/or core network of the PLMN.
  • Each network slice can be seen as an independent network partition optimized to support the performance requirements of a certain application category.
  • a wireless communication network may contain a network slice optimized for mobile broadband services (characterized by high data rate and medium latency) , a network slice optimized for autonomous driving (characterized by low latency and high reliability) , a network slice optimized for massive Internet of Things ( “IoT” ) or Machine Type Communications ( “MTC” ) (characterized by low mobility and low data rate) , and the like.
  • IoT massive Internet of Things
  • MTC Machine Type Communications
  • Each network slice being optimized to support its corresponding application category.
  • One slice may be designed to support an “Enhanced Mobile Broadband” application category
  • a second slice may be designed to support an “Ultra-reliable and Low Latency Communications” application category
  • a third slice may be designed to support a “Massive Machine Type Communications” application category.
  • a particular type of network slice may be deployed multiple times (i.e. have multiple instances) within the same PLMN. For example, a network operator may deploy multiple IoT/MTC slice instances to support multiple IoT customers such as utility companies, automotive companies, etc.
  • NSSAI Network Slice Selection Assistance Information
  • UEs may be provided to UEs to help the UEs select a RAN and a core network part of a network slice instance for a particular application.
  • a single NSSAI may lead to the selection of several network slices.
  • the UE may also use device capabilities, subscription information and/or local operator policies to perform the network slice selection.
  • a NSSAI is a collection of smaller components, Session Management NSSAIs (SM-NSSAI) , which each include a Slice Service Type (SST) and possibly a Slice Differentiator (SD) .
  • SST Slice Service Type
  • SD Slice Differentiator
  • Slice service type refers to an expected network behavior in terms of features and services (e.g. specialized for broadband or massive IoT)
  • the slice differentiator can help selecting among several Network Slice Instances (NSIs) of the same type, e.g. to isolate traffic related to different services into different slices.
  • NSIs Network Slice Instances
  • a PDU session is a 5G concept for an association between the UE and a data network, which can be IP, Ethernet or Unstructured (i.e. transparent to the 5G system) .
  • the UE may associate an application with one out of multiple parallel PDU sessions, each PDU session correspond to one core network slice lice and one RAN slice. Different PDU sessions may belong to different network slices. More precisely, an application may be associated with a SM-NSSAI (as mentioned above, this includes a slice service type and may also include a slice differentiator) , and data for this application will be routed to a PDU session associated to this SM-NSSAI.
  • SM-NSSAI as mentioned above, this includes a slice service type and may also include a slice differentiator
  • the Common Control Network Function may be common to all or several network slices.
  • the control plane may include the AMF, as well as a Network Slice Selection Function (NSSF) , which in some designs is in charge of selecting core NSIs.
  • NSSF Network Slice Selection Function
  • different Network Slices may also have dedicated control plane functions such as the Session Management Function (SMF) , which manages PDU sessions.
  • SMF Session Management Function
  • User plane functions are dedicated to each slice.
  • the RAN selects a CCNF for a new PDU session.
  • CCNF may initiate the redirection of service for a device towards another CCNF, initially at session setup, or later on.
  • a UE Route Selection Policy (URSP) traffic descriptor “OS App Id field” or operating system (OS) application identifier field may be used by the UE to associate a particular client application with a corresponding NSI.
  • OS App Id field may comprise a Universally Unique Identifier (UUID) as specified in IETF RFC 4122
  • UUID Universally Unique Identifier
  • Current standards do not specify how the UE is to identify the OS application identifier for a client application at runtime. In other words, assume that a UE downloads and installed a particular client application (e.g., a video streaming application, an audio streaming application, etc. ) , and then executes the client application at runtime.
  • the particular client application at runtime can associate the client application with a particular NSI at this point based on the current NSSAI parameters (e.g., traffic descriptors, etc. ) from the serving PLMN.
  • the client application is forced to operate without an NSI association, which may result in reduced performance and/or user experience.
  • Various embodiments of the disclosure are directed to dynamic allocation of an OS application identifier to a client application at runtime, whereby NSSAI parameters are updated with traffic descriptors for the runtime client application.
  • This approach provides various technical advantages based on the runtime client application being associated with a particular NSI of a serving PLMN, including improved performance and/or user experience (e.g., based on an association with an NSI for a particular application type of the runtime client application) .
  • FIG. 4 illustrates an exemplary process 400 of wireless communication, according to aspects of the disclosure.
  • the process 400 may be performed by UE 302.
  • UE 302 transmits, to an application server (e.g., application server 230, 270, 306, etc. ) , a query for an OS application identifier of a runtime client application, PLMN information associated with a PLMN (e.g., a serving PLMN of UE 302) , and UE-identifying information.
  • the UE-identifying information may comprise subscriber identity module (SIM) card information associated with the UE.
  • SIM subscriber identity module
  • the transmission of 402 may be triggered in response to a request for data service from the runtime client application to an OS of UE 302.
  • UE 302 receives, from the PLMN in response to the query, one or more updated NSSAI parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
  • the one or more updated NSSAI parameters may be updated to include traffic descriptors that can be used for transport of traffic associated with the runtime client application through the PLMN, which can provide improved or optimized performance for the runtime client application.
  • FIG. 5 illustrates an exemplary process 500 of wireless communication, according to aspects of the disclosure.
  • the process 500 may be performed by application server 306.
  • application server 306 receives, from a UE (e.g., UE 302) , a query for an OS application identifier of a runtime client application, PLMN information associated with a PLMN (e.g., PLMN 304) , and UE-identifying information.
  • a UE e.g., UE 302
  • PLMN information associated with a PLMN (e.g., PLMN 304)
  • UE-identifying information may comprise subscriber SIM card information associated with the UE.
  • the SIM card information need not be used at the application server 306, but may rather be forwarded to the PLMN 304 for UE identification.
  • application server 306 determines the OS application identifier of the client application.
  • the determination of 504 can be based upon a quality of service (QoS) requirement for the runtime client application, an application type or category of the runtime client application (e.g., video streaming application, audio streaming application, chat application, etc. ) , or a combination thereof.
  • QoS quality of service
  • application server 306 (e.g., transmitter 328, etc. ) transmits, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
  • the PLMN information provided at 502 may be used to figure out where to target or address the transmission at 506.
  • FIG. 6 illustrates an exemplary process 600 of wireless communication, according to aspects of the disclosure.
  • the process 600 may be performed by PLMN 304 (e.g., by one or more particular PLMN components of PLMN 304, as noted above) .
  • PLMN 304 receives, from an application server (e.g., application server 230, 270, 306, etc. ) an indication of an OS application identifier of a runtime client application, and UE-identifying information.
  • an application server e.g., application server 230, 270, 306, etc.
  • the UE-identifying information may comprise subscriber SIM card information associated with the UE, which can be recognized by the PLMN 304 so as to uniquely identify the UE.
  • PLMN 304 updates one or more NSSAI parameters for the UE that comprise one or more traffic descriptors for the runtime client application.
  • the one or more NSSAI parameters may be updated so as to include the OS application identifier as a traffic descriptor for a particular NSI (e.g., such that traffic associated with the OS application identifier to/from the UE is handled by the PLMN 304 in accordance with the associated NSI) .
  • PLMN 304 (e.g., transmitter 322 or transmitter 316, etc. ) transmits, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application. For example, if the PLMN 304 corresponds to a core network component, then the transmission at 606 may be performed by transmitter 322. In another example, if the PLMN 304 corresponds to a RAN component, then the transmission at 606 may be performed by transmitter 316. In an example, the transmission at 606 may map to the reception of 404 at the UE-side.
  • FIG. 7 illustrates an example implementation 700 of the processes 400-600 of FIGS. 4-6 in accordance with an aspect of the disclosure.
  • UE 302 transmits, to application server 306, a query for an OS application identifier of a runtime client application, PLMN information associated with PLMN 304 (e.g., a serving PLMN of UE 302) .
  • application server 306 determines the OS application identifier of the client application.
  • 706 e.g., as in 506 of FIG. 5 or 602 of FIG.
  • application server 306 transmits, to PLMN 304, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
  • PLMN 304 updates one or more NSSAI parameters for the UE that comprise one or more traffic descriptors for the runtime client application.
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in random access memory (RAM) , flash memory, read-only memory (ROM) , erasable programmable ROM (EPROM) , electrically erasable programmable ROM (EEPROM) , registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal (e.g., UE) .
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In an embodiment, a user equipment (UE) transmits, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information. The application server determines the OS application identifier of the client application, and transmits, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information. The PLMN updates one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic descriptors for the runtime client application. The PLMN transmits, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.

Description

IDENTIFIER FOR RUNTIME CLIENT APPLICATION WITH NETWORK SLICE ASSOCIATION
BACKGROUND OF THE DISCLOSURE
1. Field of the Disclosure
Aspects of the disclosure relate generally to an identifier for a runtime client application with a network slice association.
2. Description of the Related Art
Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G networks) , a third-generation (3G) high speed data, Internet-capable wireless service and a fourth-generation (4G) service (e.g., LTE or WiMax) . There are presently many different types of wireless communication systems in use, including cellular and personal communications service (PCS) systems. Examples of known cellular systems include the cellular Analog Advanced Mobile Phone System (AMPS) , and digital cellular systems based on code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , the Global System for Mobile access (GSM) variation of TDMA, etc.
A fifth generation (5G) wireless standard, referred to as New Radio (NR) , enables higher data transfer speeds, greater numbers of connections, and better coverage, among other improvements. The 5G standard, according to the Next Generation Mobile Networks Alliance, is designed to provide data rates of several tens of megabits per second to each of tens of thousands of users, with 1 gigabit per second to tens of workers on an office floor. Several hundreds of thousands of simultaneous connections should be supported in order to support large wireless deployments. Consequently, the spectral efficiency of 5G mobile communications should be significantly enhanced compared to the current 4G standard. Furthermore, signaling efficiencies should be enhanced and latency should be substantially reduced compared to current standards.
5G public land mobile networks (PLMNs) may be configured to support different network slices. Each network slice can be seen as an independent network  partition optimized to support the performance requirements of a certain application category. For example, a wireless communication network may contain a network slice optimized for mobile broadband services (characterized by high data rate and medium latency) , a network slice optimized for autonomous driving (characterized by low latency and high reliability) , a network slice optimized for massive Internet of Things ( “IoT” ) or Machine Type Communications ( “MTC” ) (characterized by low mobility and low data rate) , and the like.
Different application categories can be supported with different network slices, each network slice being optimized to support its corresponding application category. One slice may be designed to support an “Enhanced Mobile Broadband” application category, a second slice may be designed to support an “Ultra-reliable and Low Latency Communications” application category, and a third slice may be designed to support a “Massive Machine Type Communications” application category. A particular type of network slice may be deployed multiple times (i.e. have multiple instances) within the same PLMN. For example, a network operator may deploy multiple IoT/MTC slice instances to support multiple IoT customers such as utility companies, automotive companies, etc.
SUMMARY
The following presents a simplified summary relating to one or more aspects disclosed herein. Thus, the following summary should not be considered an extensive overview relating to all contemplated aspects, nor should the following summary be considered to identify key or critical elements relating to all contemplated aspects or to delineate the scope associated with any particular aspect. Accordingly, the following summary has the sole purpose to present certain concepts relating to one or more aspects relating to the mechanisms disclosed herein in a simplified form to precede the detailed description presented below.
An aspect is directed to a method of operating a user equipment (UE) , comprising transmitting, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, and receiving, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic  descriptors for the runtime client application and the OS application identifier of the runtime client application.
Another aspect is directed to a method of operating an application server, comprising receiving, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, determining the OS application identifier of the client application, and transmitting, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
Another aspect is directed to a method of operating a Public Land Mobile Network (PLMN) , comprising receiving, from an application server, an indication of an operating system (OS) application identifier of a runtime client application, and UE-identifying information, updating one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic descriptors for the runtime client application, and transmitting, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.
Another aspect is directed to a user equipment (UE) , comprising means for transmitting, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, and means for receiving, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
Another aspect is directed to an application server, comprising means for receiving, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, means for determining the OS application identifier of the client application, and means for transmitting, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
Another aspect is directed to a Public Land Mobile Network (PLMN) ,  comprising means for receiving, from an application server, an indication of an operating system (OS) application identifier of a runtime client application, and UE-identifying information, means for updating one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic descriptors for the runtime client application, and means for transmitting, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.
Another aspect is directed to a user equipment (UE) , comprising a memory, at least one communications interface, and at least one processor communicatively coupled to the memory, the at least one communications interface, the at least one processor configured to transmit, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, and receive, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
Another aspect is directed to an application server, comprising a memory, at least one communications interface, and at least one processor communicatively coupled to the memory, the at least one communications interface, the at least one processor configured to receive, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, determine the OS application identifier of the client application, and transmit, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
Another aspect is directed to a Public Land Mobile Network (PLMN) , comprising a memory, at least one communications interface, and at least one processor communicatively coupled to the memory, the at least one communications interface, the at least one processor configured to receive, from an application server, an indication of an operating system (OS) application identifier of a runtime client application, and UE-identifying information, update one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic  descriptors for the runtime client application, and transmit, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.
Another aspect is directed to a non-transitory computer-readable medium containing instructions stored thereon, which, when executed by a user equipment (UE) , cause the UE to perform operations, the instructions comprising at least one instruction to cause the UE to transmit, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, and at least one instruction to cause the UE to receive, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
Another aspect is directed to a non-transitory computer-readable medium containing instructions stored thereon, which, when executed by an application server, cause the application server to perform operations, the instructions comprising at least one instruction to cause the application server to receive, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information, at least one instruction to cause the application server to determine the OS application identifier of the client application, and at least one instruction to cause the application server to transmit, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
Another aspect is directed to a non-transitory computer-readable medium containing instructions stored thereon, which, when executed by a Public Land Mobile Network (PLMN) , cause the PLMN to perform operations, the instructions comprising at least one instruction to cause the PLMN to receive, from an application server, an indication of an operating system (OS) application identifier of a runtime client application, and UE-identifying information, at least one instruction to cause the PLMN to update one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic descriptors for the runtime client application, and at least one instruction to cause the PLMN to transmit, to the UE,  the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.
Other objects and advantages associated with the aspects disclosed herein will be apparent to those skilled in the art based on the accompanying drawings and detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are presented to aid in the description of various aspects of the disclosure and are provided solely for illustration of the aspects and not limitation thereof.
FIG. 1 illustrates an exemplary wireless communications system, according to various aspects.
FIGS. 2A and 2B illustrate example wireless network structures, according to various aspects.
FIG. 3 is a block diagram illustrating an exemplary UE, according to various aspects.
FIG. 4 illustrates an exemplary process of wireless communication, according to aspects of the disclosure.
FIG. 5 illustrates an exemplary process of wireless communication, according to other aspects of the disclosure.
FIG. 6 illustrates an exemplary process of wireless communication, according to other aspects of the disclosure.
FIG. 7 illustrates an example implementation of the processes of FIGS. 4-6 in accordance with an aspect of the disclosure.
DETAILED DESCRIPTION
Aspects of the disclosure are provided in the following description and related drawings directed to various examples provided for illustration purposes. Alternate aspects may be devised without departing from the scope of the disclosure. Additionally, well-known elements of the disclosure will not be described in detail or will be omitted so as not to obscure the relevant details of the disclosure.
The words “exemplary” and/or “example” are used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary”  and/or “example” is not necessarily to be construed as preferred or advantageous over other aspects. Likewise, the term “aspects of the disclosure” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation.
Those of skill in the art will appreciate that the information and signals described below may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description below may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof, depending in part on the particular application, in part on the desired design, in part on the corresponding technology, etc.
Further, many aspects are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs) ) , by program instructions being executed by one or more processors, or by a combination of both. Additionally, the sequence (s) of actions described herein can be considered to be embodied entirely within any form of non-transitory computer-readable storage medium having stored therein a corresponding set of computer instructions that, upon execution, would cause or instruct an associated processor of a device to perform the functionality described herein. Thus, the various aspects of the disclosure may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the aspects described herein, the corresponding form of any such aspects may be described herein as, for example, “logic configured to” perform the described action.
As used herein, the terms “user equipment” (UE) and “base station” are not intended to be specific or otherwise limited to any particular Radio Access Technology (RAT) , unless otherwise noted. In general, a UE may be any wireless communication device (e.g., a mobile phone, router, tablet computer, laptop computer, tracking device, wearable (e.g., smartwatch, glasses, augmented reality (AR) /virtual reality (VR) headset, etc. ) , vehicle (e.g., automobile, motorcycle, bicycle, etc. ) , Internet of Things (IoT) device, etc. ) used by a user to communicate over a wireless communications network. A UE may be mobile or may (e.g., at certain times) be stationary, and may  communicate with a Radio Access Network (RAN) . As used herein, the term “UE” may be referred to interchangeably as an “access terminal” or “AT, ” a “client device, ” a “wireless device, ” a “subscriber device, ” a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT, a “mobile terminal, ” a “mobile station, ” or variations thereof. Generally, UEs can communicate with a core network via a RAN, and through the core network the UEs can be connected with external networks such as the Internet and with other UEs. Of course, other mechanisms of connecting to the core network and/or the Internet are also possible for the UEs, such as over wired access networks, wireless local area network (WLAN) networks (e.g., based on IEEE 802.11, etc. ) and so on.
A base station may operate according to one of several RATs in communication with UEs depending on the network in which it is deployed, and may be alternatively referred to as an access point (AP) , a network node, a NodeB, an evolved NodeB (eNB) , a New Radio (NR) Node B (also referred to as a gNB or gNodeB) , etc. In addition, in some systems a base station may provide purely edge node signaling functions while in other systems it may provide additional control and/or network management functions. A communication link through which UEs can send signals to a base station is called an uplink (UL) channel (e.g., a reverse traffic channel, a reverse control channel, an access channel, etc. ) . A communication link through which the base station can send signals to UEs is called a downlink (DL) or forward link channel (e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc. ) . As used herein the term traffic channel (TCH) can refer to either an UL /reverse or DL /forward traffic channel.
The term “base station” may refer to a single physical transmission point or to multiple physical transmission points that may or may not be co-located. For example, where the term “base station” refers to a single physical transmission point, the physical transmission point may be an antenna of the base station corresponding to a cell of the base station. Where the term “base station” refers to multiple co-located physical transmission points, the physical transmission points may be an array of antennas (e.g., as in a multiple-input multiple-output (MIMO) system or where the base station employs beamforming) of the base station. Where the term “base station” refers to multiple non-co-located physical transmission points, the physical transmission points may be a distributed antenna system (DAS) (a network of spatially separated antennas connected to a common source via a transport medium) or a remote radio head (RRH) (a remote base station connected to a serving base station) . Alternatively, the non-co- located physical transmission points may be the serving base station receiving the measurement report from the UE and a neighbor base station whose reference RF signals the UE is measuring.
An “RF signal” comprises an electromagnetic wave of a given frequency that transports information through the space between a transmitter and a receiver. As used herein, a transmitter may transmit a single “RF signal” or multiple “RF signals” to a receiver. However, the receiver may receive multiple “RF signals” corresponding to each transmitted RF signal due to the propagation characteristics of RF signals through multipath channels. The same transmitted RF signal on different paths between the transmitter and receiver may be referred to as a “multipath” RF signal.
According to various aspects, FIG. 1 illustrates an exemplary wireless communications system 100. The wireless communications system 100 (which may also be referred to as a wireless wide area network (WWAN) ) may include various base stations 102 and various UEs 104. The base stations 102 may include macro cell base stations (high power cellular base stations) and/or small cell base stations (low power cellular base stations) . In an aspect, the macro cell base station may include eNBs where the wireless communications system 100 corresponds to an LTE network, or gNBs where the wireless communications system 100 corresponds to a 5G network, or a combination of both, and the small cell base stations may include femtocells, picocells, microcells, etc.
The base stations 102 may collectively form a RAN and interface with a core network 170 (e.g., an evolved packet core (EPC) or next generation core (NGC) ) through backhaul links 122, and through the core network 170 to one or more application servers 172 (e.g., servers supporting various client application services, such as streaming video, streaming audio, web-based services, etc. ) . In addition to other functions, the base stations 102 may perform functions that relate to one or more of transferring user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, RAN sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate  with each other directly or indirectly (e.g., through the EPC /NGC) over backhaul links 134, which may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. In an aspect, one or more cells may be supported by a base station 102 in each coverage area 110. A “cell” is a logical communication entity used for communication with a base station (e.g., over some frequency resource, referred to as a carrier frequency, component carrier, carrier, band, or the like) , and may be associated with an identifier (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) for distinguishing cells operating via the same or a different carrier frequency. In some cases, different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of UEs. In some cases, the term “cell” may also refer to a geographic coverage area of a base station (e.g., a sector) , insofar as a carrier frequency can be detected and used for communication within some portion of geographic coverage areas 110.
While neighboring macro cell base station 102 geographic coverage areas 110 may partially overlap (e.g., in a handover region) , some of the geographic coverage areas 110 may be substantially overlapped by a larger geographic coverage area 110. For example, a small cell base station 102' may have a coverage area 110' that substantially overlaps with the coverage area 110 of one or more macro cell base stations 102. A network that includes both small cell and macro cell base stations may be known as a heterogeneous network. A heterogeneous network may also include home eNBs (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
The communication links 120 between the base stations 102 and the UEs 104 may include UL (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links 120 may be through one or more carrier frequencies. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) .
The wireless communications system 100 may further include a wireless local area network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152 via communication links 154 in an unlicensed frequency spectrum (e.g., 5 GHz) . When communicating in an unlicensed frequency spectrum, the WLAN STAs 152 and/or the WLAN AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell base station 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell base station 102' may employ LTE or 5G technology and use the same 5 GHz unlicensed frequency spectrum as used by the WLAN AP 150. The small cell base station 102', employing LTE /5G in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network. LTE in an unlicensed spectrum may be referred to as LTE-unlicensed (LTE-U) , licensed assisted access (LAA) , or MulteFire.
The wireless communications system 100 may further include a millimeter wave (mmW) base station 180 that may operate in mmW frequencies and/or near mmW frequencies in communication with a UE 182. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in this band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW/near mmW radio frequency band have high path loss and a relatively short range. The mmW base station 180 and the UE 182 may utilize beamforming (transmit and/or receive) over a mmW communication link 184 to compensate for the extremely high path loss and short range. Further, it will be appreciated that in alternative configurations, one or more base stations 102 may also transmit using mmW or near mmW and beamforming. Accordingly, it will be appreciated that the foregoing illustrations are merely examples and should not be construed to limit the various aspects disclosed herein.
Transmit beamforming is a technique for focusing an RF signal in a specific direction. Traditionally, when a network node (e.g., a base station) broadcasts an RF signal, it broadcasts the signal in all directions (omni-directionally) . With transmit  beamforming, the network node determines where a given target device (e.g., a UE) is located (relative to the transmitting network node) and projects a stronger downlink RF signal in that specific direction, thereby providing a faster (in terms of data rate) and stronger RF signal for the receiving device (s) . To change the directionality of the RF signal when transmitting, a network node can control the phase and relative amplitude of the RF signal at each of the one or more transmitters that are broadcasting the RF signal. For example, a network node may use an array of antennas (referred to as a “phased array” or an “antenna array” ) that creates a beam of RF waves that can be “steered” to point in different directions, without actually moving the antennas. Specifically, the RF current from the transmitter is fed to the individual antennas with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while cancelling to suppress radiation in undesired directions.
Transmit beams may be quasi-collocated, meaning that they appear to the receiver (e.g., a UE) as having the same parameters, regardless of whether or not the transmitting antennas of the network node themselves are physically collocated. In NR, there are four types of quasi-collocation (QCL) relations. Specifically, a QCL relation of a given type means that certain parameters about a second reference RF signal on a second beam can be derived from information about a source reference RF signal on a source beam. Thus, if the source reference RF signal is QCL Type A, the receiver can use the source reference RF signal to estimate the Doppler shift, Doppler spread, average delay, and delay spread of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type B, the receiver can use the source reference RF signal to estimate the Doppler shift and Doppler spread of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type C, the receiver can use the source reference RF signal to estimate the Doppler shift and average delay of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type D, the receiver can use the source reference RF signal to estimate the spatial receive parameter of a second reference RF signal transmitted on the same channel.
In receive beamforming, the receiver uses a receive beam to amplify RF signals detected on a given channel. For example, the receiver can increase the gain setting and/or adjust the phase setting of an array of antennas in a particular direction to  amplify (e.g., to increase the gain level of) the RF signals received from that direction. Thus, when a receiver is said to beamform in a certain direction, it means the beam gain in that direction is high relative to the beam gain along other directions, or the beam gain in that direction is the highest compared to the beam gain in that direction of all other receive beams available to the receiver. This results in a stronger received signal strength (e.g., reference signal received power (RSRP) , reference signal received quality (RSRQ) , signal-to-interference-plus-noise ratio (SINR) , etc. ) of the RF signals received from that direction.
Receive beams may be spatially related. A spatial relation means that parameters for a transmit beam for a second reference signal can be derived from information about a receive beam for a first reference signal. For example, a UE may use a particular receive beam to receive a reference downlink reference signal (e.g., synchronization signal block (SSB) ) from a base station. The UE can then form a transmit beam for sending an uplink reference signal (e.g., sounding reference signal (SRS) ) to that base station based on the parameters of the receive beam.
Note that a “downlink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the downlink beam to transmit a reference signal to a UE, the downlink beam is a transmit beam. If the UE is forming the downlink beam, however, it is a receive beam to receive the downlink reference signal. Similarly, an “uplink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the uplink beam, it is an uplink receive beam, and if a UE is forming the uplink beam, it is an uplink transmit beam.
In 5G, the frequency spectrum in which wireless nodes (e.g., base stations 102/180, UEs 104/182) operate is divided into multiple frequency ranges, FR1 (from 450 to 6000 MHz) , FR2 (from 24250 to 52600 MHz) , FR3 (above 52600 MHz) , and FR4 (between FR1 and FR2) . In a multi-carrier system, such as 5G, one of the carrier frequencies is referred to as the “primary carrier” or “anchor carrier” or “primary serving cell” or “PCell, ” and the remaining carrier frequencies are referred to as “secondary carriers” or “secondary serving cells” or “SCells. ” In carrier aggregation, the anchor carrier is the carrier operating on the primary frequency (e.g., FR1) utilized by a UE 104/182 and the cell in which the UE 104/182 either performs the initial radio resource control (RRC) connection establishment procedure or initiates the RRC  connection re-establishment procedure. The primary carrier carries all common and UE-specific control channels. A secondary carrier is a carrier operating on a second frequency (e.g., FR2) that may be configured once the RRC connection is established between the UE 104 and the anchor carrier and that may be used to provide additional radio resources. The secondary carrier may contain only necessary signaling information and signals, for example, those that are UE-specific may not be present in the secondary carrier, since both primary uplink and downlink carriers are typically UE-specific. This means that different UEs 104/182 in a cell may have different downlink primary carriers. The same is true for the uplink primary carriers. The network is able to change the primary carrier of any UE 104/182 at any time. This is done, for example, to balance the load on different carriers. Because a “serving cell” (whether a PCell or an SCell) corresponds to a carrier frequency /component carrier over which some base station is communicating, the term “cell, ” “serving cell, ” “component carrier, ” “carrier frequency, ” and the like can be used interchangeably.
For example, still referring to FIG. 1, one of the frequencies utilized by the macro cell base stations 102 may be an anchor carrier (or “PCell” ) and other frequencies utilized by the macro cell base stations 102 and/or the mmW base station 180 may be secondary carriers ( “SCells” ) . The simultaneous transmission and/or reception of multiple carriers enables the UE 104/182 to significantly increase its data transmission and/or reception rates. For example, two 20 MHz aggregated carriers in a multi-carrier system would theoretically lead to a two-fold increase in data rate (i.e., 40 MHz) , compared to that attained by a single 20 MHz carrier.
The wireless communications system 100 may further include one or more UEs, such as UE 190, that connects indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links. In the example of FIG. 1, UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base stations 102 (e.g., through which UE 190 may indirectly obtain cellular connectivity) and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which UE 190 may indirectly obtain WLAN-based Internet connectivity) . In an example, the D2D P2P links 192 and 194 may be supported with any well-known D2D RAT, such as LTE Direct (LTE-D) , WiFi Direct (WiFi-D) , 
Figure PCTCN2020093721-appb-000001
and so on.
The wireless communications system 100 may further include a UE 164 that may communicate with a macro cell base station 102 over a communication link 120  and/or the mmW base station 180 over a mmW communication link 184. For example, the macro cell base station 102 may support a PCell and one or more SCells for the UE 164 and the mmW base station 180 may support one or more SCells for the UE 164.
According to various aspects, FIG. 2A illustrates an example PLMN 200. For example, an NGC 210 (also referred to as a “5GC” ) can be viewed functionally as control plane functions 214 (e.g., UE registration, authentication, network access, gateway selection, etc. ) and user plane functions 212, (e.g., UE gateway function, access to data networks, IP routing, etc. ) which operate cooperatively to form the core network. User plane interface (NG-U) 213 and control plane interface (NG-C) 215 connect the gNB 222 to the NGC 210 and specifically to the control plane functions 214 and user plane functions 212. In an additional configuration, an eNB 224 may also be connected to the NGC 210 via NG-C 215 to the control plane functions 214 and NG-U 213 to user plane functions 212. Further, eNB 224 may directly communicate with gNB 222 via a backhaul connection 223. In some configurations, the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both eNBs 224 and gNBs 222. Either gNB 222 or eNB 224 may communicate with UEs 204 (e.g., any of the UEs depicted in FIG. 1) . Another optional aspect may include application server 230, which may be in communication with the NGC 210 to provide client application services for UEs 204. The application server 230 can be implemented as a plurality of separate servers (e.g., physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each correspond to a single server. The application server 230 can be configured to support one or more client application services for UEs 204 that can connect to the application server 230 via the core network, NGC 210, and/or via the Internet (not illustrated) . Further, the application server 230 may be integrated into a component of the core network, or alternatively may be external to the core network.
According to various aspects, FIG. 2B illustrates another example PLMN 250. For example, an NGC 260 (also referred to as a “5GC” ) can be viewed functionally as control plane functions, provided by an access and mobility management function (AMF) /user plane function (UPF) 264, and user plane functions, provided by a session management function (SMF) 262, which operate cooperatively to form the core network (i.e., NGC 260) . User plane interface 263 and control plane interface 265 connect the  eNB 224 to the NGC 260 and specifically to SMF 262 and AMF/UPF 264, respectively. In an additional configuration, a gNB 222 may also be connected to the NGC 260 via control plane interface 265 to AMF/UPF 264 and user plane interface 263 to SMF 262. Further, eNB 224 may directly communicate with gNB 222 via the backhaul connection 223, with or without gNB direct connectivity to the NGC 260. In some configurations, the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both eNBs 224 and gNBs 222. Either gNB 222 or eNB 224 may communicate with UEs 204 (e.g., any of the UEs depicted in FIG. 1) . The base stations of the New RAN 220 communicate with the AMF-side of the AMF/UPF 264 over the N2 interface and the UPF-side of the AMF/UPF 264 over the N3 interface.
The functions of the AMF include registration management, connection management, reachability management, mobility management, lawful interception, transport for session management (SM) messages between the UE 204 and the SMF 262, transparent proxy services for routing SM messages, access authentication and access authorization, transport for short message service (SMS) messages between the UE 204 and the short message service function (SMSF) (not shown) , and security anchor functionality (SEAF) . The AMF also interacts with the authentication server function (AUSF) (not shown) and the UE 204, and receives the intermediate key that was established as a result of the UE 204 authentication process. In the case of authentication based on a UMTS (universal mobile telecommunications system) subscriber identity module (USIM) , the AMF retrieves the security material from the AUSF. The functions of the AMF also include security context management (SCM) . The SCM receives a key from the SEAF that it uses to derive access-network specific keys. The functionality of the AMF also includes location services management for regulatory services, transport for location services messages between the UE 204 and a location management function (LMF) , as well as between the New RAN 220 and the LMF, evolved packet system (EPS) bearer identifier allocation for interworking with the EPS, and UE 204 mobility event notification. In addition, the AMF also supports functionalities for non-3GPP access networks.
Functions of the UPF include acting as an anchor point for intra-/inter-RAT mobility (when applicable) , acting as an external protocol data unit (PDU) session point of interconnect to the data network (not shown) , providing packet routing and forwarding, packet inspection, user plane policy rule enforcement (e.g., gating,  redirection, traffic steering) , lawful interception (user plane collection) , traffic usage reporting, quality of service (QoS) handling for the user plane (e.g., UL/DL rate enforcement, reflective QoS marking in the DL) , UL traffic verification (service data flow (SDF) to QoS flow mapping) , transport level packet marking in the UL and DL, DL packet buffering and DL data notification triggering, and sending and forwarding of one or more “end markers” to the source RAN node.
The functions of the SMF 262 include session management, UE Internet protocol (IP) address allocation and management, selection and control of user plane functions, configuration of traffic steering at the UPF to route traffic to the proper destination, control of part of policy enforcement and QoS, and downlink data notification. The interface over which the SMF 262 communicates with the AMF-side of the AMF/UPF 264 is referred to as the N11 interface.
Another optional aspect may include application server 270, which may be in communication with the NGC 260 to provide client application services for UEs 204. The application server 270 can be implemented as a plurality of separate servers (e.g., physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each correspond to a single server. The application server 270 can be configured to support one or more client application services for UEs 204 that can connect to the application server 270 via the core network, NGC 260, and/or via the Internet (not illustrated) . Further, the application server 270 may be integrated into a component of the core network, or alternatively may be external to the core network.
FIG. 3 illustrates several sample components (represented by corresponding blocks) that may be incorporated into a UE 302 (which may correspond to any of the UEs described herein) , a PLMN 304 (e.g., representative of one or more components of the PLMN, e.g., a RAN component such as a BS, or a core network component such as an AMF, etc. ) , and an application server 306 that supports one or more client application services on behalf of one or more applications configured for execution or actively executing in runtime at UE 302. It will be appreciated that these components may be implemented in different types of apparatuses in different implementations (e.g., in an ASIC, in a system-on-chip (SoC) , etc. ) . The illustrated components may also be incorporated into other apparatuses in a communication system. For example, other apparatuses in a system may include components similar to those described to provide  similar functionality. Also, a given apparatus may contain one or more of the components. For example, an apparatus may include multiple transceiver components that enable the apparatus to operate on multiple carriers and/or communicate via different technologies.
The UE 302 and the PLMN 304 each include at least one wireless communication device (represented by the communication devices 308 and 314 (and the communication device 320 if the apparatus 304 is a relay) ) for communicating with other nodes via at least one designated RAT. For example, the  communication devices  308 and 314 may communicate with each other over a wireless communication link 360, which may correspond to a communication link 120 in FIG. 1. Each communication device 308 includes at least one transmitter (represented by the transmitter 310) for transmitting and encoding signals (e.g., messages, indications, information, and so on) and at least one receiver (represented by the receiver 312) for receiving and decoding signals (e.g., messages, indications, information, pilots, and so on) . Similarly, each communication device 314 includes at least one transmitter (represented by the transmitter 316) for transmitting signals (e.g., messages, indications, information, pilots, and so on) and at least one receiver (represented by the receiver 318) for receiving signals (e.g., messages, indications, information, and so on) . If the PLMN 304 comprises a relay station, each communication device 320 may include at least one transmitter (represented by the transmitter 322) for transmitting signals (e.g., messages, indications, information, pilots, and so on) and at least one receiver (represented by the receiver 324) for receiving signals (e.g., messages, indications, information, and so on) . If the PLMN 304 maps specifically to a core network component (e.g., AMF, etc. ) , the communication device 314 may be omitted, as direct wireless communications with UEs typically occurs at the RAN part of the PLMN 304 rather than the core network part of the PLMN 304.
A transmitter and a receiver may comprise an integrated device (e.g., embodied as a transmitter circuit and a receiver circuit of a single communication device, generally referred to as a “transceiver” ) in some implementations, may comprise a separate transmitter device and a separate receiver device in some implementations, or may be embodied in other ways in other implementations. A wireless communication device (e.g., one of multiple wireless communication devices) of the PLMN 304 may  also comprise a network listen module (NLM) or the like for performing various measurements.
The application server 306 (and the PLMN 304 if it is not a relay station) includes at least one communication device (represented by the communication device 326 and, optionally, 320) for communicating with other nodes. For example, the communication device 326 may comprise a network interface that is configured to communicate with one or more network entities via a wire-based or wireless backhaul 370 (which may correspond to the backhaul link 122 in FIG. 1, or to an Internet connection or pathway) . In some aspects, the communication device 326 may be implemented as a transceiver configured to support wire-based or wireless signal communication, and the transmitter 328 and receiver 330 may be an integrated unit. This communication may involve, for example, sending and receiving: messages, parameters, or other types of information. Accordingly, in the example of FIG. 3, the communication device 326 is shown as comprising a transmitter 328 and a receiver 330. Alternatively, the transmitter 328 and receiver 330 may be separate devices within the communication device 326. Similarly, if the PLMN 304 is not a relay station, the communication device 320 may comprise a network interface that is configured to communicate with one or more network entities 306 via a wire-based or wireless backhaul 370. As with the communication device 326, the communication device 320 is shown as comprising a transmitter 322 and a receiver 324.
The  apparatuses  302, 304, and 306 also include other components that may be used in conjunction with the operations as disclosed herein. The UE 302 includes a processing system 332 for providing functionality relating to, for example, the UE operations as described herein and for providing other processing functionality. The PLMN 304 includes a processing system 334 for providing functionality relating to, for example, the PLMN operations described herein and for providing other processing functionality. The application server 306 includes a processing system 336 for providing functionality relating to, for example, the client application service operations described herein and for providing other processing functionality. The  apparatuses  302, 304, and 306 include  memory components  338, 340, and 342 (e.g., each including a memory device) , respectively, for maintaining information (e.g., information indicative of reserved resources, thresholds, parameters, and so on) . In addition, the UE 302 includes a user interface 350 for providing indications (e.g., audible and/or visual indications) to  a user and/or for receiving user input (e.g., upon user actuation of a sensing device such a keypad, a touch screen, a microphone, and so on) . Although not shown, the  apparatuses  304 and 306 may also include user interfaces.
Referring to the processing system 334 in more detail, in the downlink, IP packets may be provided to the processing system 334. The processing system 334 may implement functionality for a radio resource control (RRC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The processing system 334 may provide RRC layer functionality associated with broadcasting of system information (e.g., master information block (MIB) , system information blocks (SIBs) ) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter-RAT mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression/decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, scheduling information reporting, error correction, priority handling, and logical channel prioritization.
The transmitter 316 and the receiver 318 may implement Layer-1 functionality associated with various signal processing functions. Layer-1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The transmitter 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an orthogonal frequency division multiplexing (OFDM) subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together  using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 302. Each spatial stream may then be provided to one or more different antennas. The transmitter 316 may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 302, the receiver 312 receives a signal through its respective antenna (s) . The receiver 312 recovers information modulated onto an RF carrier and provides the information to the processing system 332. The transmitter 310 and the receiver 312 implement Layer-1 functionality associated with various signal processing functions. The receiver 312 may perform spatial processing on the information to recover any spatial streams destined for the UE 302. If multiple spatial streams are destined for the UE 302, they may be combined by the receiver 312 into a single OFDM symbol stream. The receiver 312 then converts the OFDM symbol stream from the time-domain to the frequency domain using a fast Fourier transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the PLMN 304. These soft decisions may be based on channel estimates computed by a channel estimator. The soft decisions are then decoded and de-interleaved to recover the data and control signals that were originally transmitted by the PLMN 304 on the physical channel. The data and control signals are then provided to the processing system 332, which implements Layer-3 and Layer-2 functionality.
In the UL, the processing system 332 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the core network. The processing system 332 is also responsible for error detection.
Similar to the functionality described in connection with the DL transmission by the PLMN 304, the processing system 332 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header  compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by the channel estimator from a reference signal or feedback transmitted by the PLMN 304 may be used by the transmitter 310 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the transmitter 310 may be provided to different antenna (s) . The transmitter 310 may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the PLMN 304 in a manner similar to that described in connection with the receiver function at the UE 302. The receiver 318 receives a signal through its respective antenna (s) . The receiver 318 recovers information modulated onto an RF carrier and provides the information to the processing system 334.
In the UL, the processing system 334 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 302. IP packets from the processing system 334 may be provided to the core network. The processing system 334 is also responsible for error detection.
In an aspect, the  apparatuses  302, 304 and 306 may include  components  344, 348, 349 associated with a client application; namely, an application management component 344, a network slice component 348, and an application server component 349. It will be appreciated the functionality of the  various components  344, 348 and 349 may differ based on the device where it is being implemented. The  components  344, 348 and ent 349 may be hardware circuits that are part of or coupled to the  processing systems  332, 334, and 336, respectively, that, when executed, cause the  apparatuses  302, 304, and 306 to perform the functionality described herein. Alternatively, the  components  344, 348, and 349 may be memory modules stored in the  memory components  338, 340, and 342, respectively, that, when executed by the  processing systems  332, 334, and 336, cause the  apparatuses  302, 304, and 306 to perform the functionality described herein.
For convenience, the  apparatuses  302, 304, and/or 306 are shown in FIG. 3 as including various components that may be configured according to the various examples described herein. It will be appreciated, however, that the illustrated blocks may have different functionality in different designs.
The various components of the  apparatuses  302, 304, and 306 may communicate with each other over  data buses  352, 354, and 356, respectively. The components of FIG. 3 may be implemented in various ways. In some implementations, the components of FIG. 3 may be implemented in one or more circuits such as, for example, one or more processors and/or one or more ASICs (which may include one or more processors) . Here, each circuit may use and/or incorporate at least one memory component for storing information or executable code used by the circuit to provide this functionality. For example, some or all of the functionality represented by  blocks  308, 332, 338, 344, and 350 may be implemented by processor and memory component (s) of the UE 302 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components) . Similarly, some or all of the functionality represented by  blocks  314, 320, 334, 340, and 348 may be implemented by processor and memory component (s) of the PLMN 304 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components) . Also, some or all of the functionality represented by  blocks  326, 336, 342, and 349 may be implemented by processor and memory component (s) of the application server 306 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components) . For simplicity, various operations, acts, and/or functions are described herein as being performed “by a UE, ” “by a base station, ” “by a positioning entity, ” etc. However, as will be appreciated, such operations, acts, and/or functions may actually be performed by specific components or combinations of components of the UE, PLMN, application server, etc., such as the  processing systems  332, 334, 336, the  communication devices  308, 314, 326,  components  344, 348 and 349, etc.
5G PLMNs may be configured to support different network slices, whereby a network slice is a logical network at the RAN and/or core network of the PLMN. Each network slice can be seen as an independent network partition optimized to support the  performance requirements of a certain application category. For example, a wireless communication network may contain a network slice optimized for mobile broadband services (characterized by high data rate and medium latency) , a network slice optimized for autonomous driving (characterized by low latency and high reliability) , a network slice optimized for massive Internet of Things ( “IoT” ) or Machine Type Communications ( “MTC” ) (characterized by low mobility and low data rate) , and the like.
Different application categories can be supported with different network slices, each network slice being optimized to support its corresponding application category. One slice may be designed to support an “Enhanced Mobile Broadband” application category, a second slice may be designed to support an “Ultra-reliable and Low Latency Communications” application category, and a third slice may be designed to support a “Massive Machine Type Communications” application category. A particular type of network slice may be deployed multiple times (i.e. have multiple instances) within the same PLMN. For example, a network operator may deploy multiple IoT/MTC slice instances to support multiple IoT customers such as utility companies, automotive companies, etc.
Network Slice Selection Assistance Information (NSSAI) parameters may be provided to UEs to help the UEs select a RAN and a core network part of a network slice instance for a particular application. In some designs, a single NSSAI may lead to the selection of several network slices. The UE may also use device capabilities, subscription information and/or local operator policies to perform the network slice selection.
A NSSAI is a collection of smaller components, Session Management NSSAIs (SM-NSSAI) , which each include a Slice Service Type (SST) and possibly a Slice Differentiator (SD) . Slice service type refers to an expected network behavior in terms of features and services (e.g. specialized for broadband or massive IoT) , while the slice differentiator can help selecting among several Network Slice Instances (NSIs) of the same type, e.g. to isolate traffic related to different services into different slices.
A PDU session is a 5G concept for an association between the UE and a data network, which can be IP, Ethernet or Unstructured (i.e. transparent to the 5G system) . The UE may associate an application with one out of multiple parallel PDU sessions, each PDU session correspond to one core network slice lice and one RAN slice.  Different PDU sessions may belong to different network slices. More precisely, an application may be associated with a SM-NSSAI (as mentioned above, this includes a slice service type and may also include a slice differentiator) , and data for this application will be routed to a PDU session associated to this SM-NSSAI.
In some designs, part of the control plane, the Common Control Network Function (CCNF) , may be common to all or several network slices. The control plane may include the AMF, as well as a Network Slice Selection Function (NSSF) , which in some designs is in charge of selecting core NSIs. Besides those shared functions, different Network Slices may also have dedicated control plane functions such as the Session Management Function (SMF) , which manages PDU sessions. User plane functions are dedicated to each slice. The RAN selects a CCNF for a new PDU session. CCNF may initiate the redirection of service for a device towards another CCNF, initially at session setup, or later on.
In some designs, a UE Route Selection Policy (URSP) traffic descriptor “OS App Id field” or operating system (OS) application identifier field (sometimes denoted as “OS App Id field” , which may comprise a Universally Unique Identifier (UUID) as specified in IETF RFC 4122) may be used by the UE to associate a particular client application with a corresponding NSI. Current standards do not specify how the UE is to identify the OS application identifier for a client application at runtime. In other words, assume that a UE downloads and installed a particular client application (e.g., a video streaming application, an audio streaming application, etc. ) , and then executes the client application at runtime. There is currently no mechanism by which the particular client application at runtime can associate the client application with a particular NSI at this point based on the current NSSAI parameters (e.g., traffic descriptors, etc. ) from the serving PLMN. Hence, the client application is forced to operate without an NSI association, which may result in reduced performance and/or user experience.
Various embodiments of the disclosure are directed to dynamic allocation of an OS application identifier to a client application at runtime, whereby NSSAI parameters are updated with traffic descriptors for the runtime client application. This approach provides various technical advantages based on the runtime client application being associated with a particular NSI of a serving PLMN, including improved performance and/or user experience (e.g., based on an association with an NSI for a particular application type of the runtime client application) .
FIG. 4 illustrates an exemplary process 400 of wireless communication, according to aspects of the disclosure. The process 400 may be performed by UE 302.
At 402, UE 302 (e.g., transmitter 310, etc. ) transmits, to an application server (e.g.,  application server  230, 270, 306, etc. ) , a query for an OS application identifier of a runtime client application, PLMN information associated with a PLMN (e.g., a serving PLMN of UE 302) , and UE-identifying information. In some designs, the UE-identifying information may comprise subscriber identity module (SIM) card information associated with the UE. In some designs, the transmission of 402 may be triggered in response to a request for data service from the runtime client application to an OS of UE 302.
At 404, UE 302 (e.g., receiver 312, etc. ) receives, from the PLMN in response to the query, one or more updated NSSAI parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application. For example, the one or more updated NSSAI parameters may be updated to include traffic descriptors that can be used for transport of traffic associated with the runtime client application through the PLMN, which can provide improved or optimized performance for the runtime client application.
FIG. 5 illustrates an exemplary process 500 of wireless communication, according to aspects of the disclosure. The process 500 may be performed by application server 306.
At 502, application server 306 (e.g., receiver 330, etc. ) receives, from a UE (e.g., UE 302) , a query for an OS application identifier of a runtime client application, PLMN information associated with a PLMN (e.g., PLMN 304) , and UE-identifying information. In some designs, the UE-identifying information may comprise subscriber SIM card information associated with the UE. In an example, the SIM card information need not be used at the application server 306, but may rather be forwarded to the PLMN 304 for UE identification.
At 504, application server 306 (e.g., processing system 336, application service component 349, etc. ) determines the OS application identifier of the client application. In an example, the determination of 504 can be based upon a quality of service (QoS) requirement for the runtime client application, an application type or category of the runtime client application (e.g., video streaming application, audio streaming application, chat application, etc. ) , or a combination thereof.
At 506, application server 306 (e.g., transmitter 328, etc. ) transmits, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information. For example, the PLMN information provided at 502 may be used to figure out where to target or address the transmission at 506.
FIG. 6 illustrates an exemplary process 600 of wireless communication, according to aspects of the disclosure. The process 600 may be performed by PLMN 304 (e.g., by one or more particular PLMN components of PLMN 304, as noted above) .
At 602, PLMN 304 (e.g., receiver 318, receiver 324, etc. ) receives, from an application server (e.g.,  application server  230, 270, 306, etc. ) an indication of an OS application identifier of a runtime client application, and UE-identifying information. In some designs, the UE-identifying information may comprise subscriber SIM card information associated with the UE, which can be recognized by the PLMN 304 so as to uniquely identify the UE.
At 604, PLMN 304 (e.g., application service component 349, processing system 336, memory component 342, etc. ) updates one or more NSSAI parameters for the UE that comprise one or more traffic descriptors for the runtime client application. For example, the one or more NSSAI parameters may be updated so as to include the OS application identifier as a traffic descriptor for a particular NSI (e.g., such that traffic associated with the OS application identifier to/from the UE is handled by the PLMN 304 in accordance with the associated NSI) .
At 606, PLMN 304 (e.g., transmitter 322 or transmitter 316, etc. ) transmits, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application. For example, if the PLMN 304 corresponds to a core network component, then the transmission at 606 may be performed by transmitter 322. In another example, if the PLMN 304 corresponds to a RAN component, then the transmission at 606 may be performed by transmitter 316. In an example, the transmission at 606 may map to the reception of 404 at the UE-side.
FIG. 7 illustrates an example implementation 700 of the processes 400-600 of FIGS. 4-6 in accordance with an aspect of the disclosure.
Referring to FIG. 7, at 702 (e.g., as in 402 of FIG. 4 or 502 of FIG. 5) , UE 302 transmits, to application server 306, a query for an OS application identifier of a runtime client application, PLMN information associated with PLMN 304 (e.g., a serving PLMN of UE 302) . At 704 (e.g., as in 504 of FIG. 5) , application server 306 determines  the OS application identifier of the client application. At 706 (e.g., as in 506 of FIG. 5 or 602 of FIG. 6) , application server 306 transmits, to PLMN 304, an indication of the OS application identifier of the runtime client application, and the UE-identifying information. At 708 (e.g., as in 604 of FIG. 6) , PLMN 304 updates one or more NSSAI parameters for the UE that comprise one or more traffic descriptors for the runtime client application. At 710 (e.g., as in 404 of FIG. 4 or 606 of FIG. 6) , transmits, to the UE, the one or more updated NSSAI parameters for the UE, and at 712, UE 302 updates the NSSAI parameter (s) . At 714 (e.g., as in 404 of FIG. 4 or 606 of FIG. 6) , transmits, to the UE, the OS application identifier of the runtime client application, and at 716, UE 302 updates the OS application identifier of the runtime client application.
Those of skill in the art will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Further, those of skill in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the aspects disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
The various illustrative logical blocks, modules, and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be  any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The methods, sequences and/or algorithms described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in random access memory (RAM) , flash memory, read-only memory (ROM) , erasable programmable ROM (EPROM) , electrically erasable programmable ROM (EEPROM) , registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal (e.g., UE) . In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein,  includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
While the foregoing disclosure shows illustrative aspects of the disclosure, it should be noted that various changes and modifications could be made herein without departing from the scope of the disclosure as defined by the appended claims. The functions, steps and/or actions of the method claims in accordance with the aspects of the disclosure described herein need not be performed in any particular order. Furthermore, although elements of the disclosure may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.

Claims (16)

  1. A method of operating a user equipment (UE) , comprising:
    transmitting, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information; and
    receiving, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
  2. The method of claim 1, wherein the UE-identifying information comprises subscriber identity module (SIM) card information associated with the UE.
  3. The method of claim 1, wherein the transmitting is triggered in response to a request for data service from the runtime client application to the OS.
  4. A method of operating an application server, comprising:
    receiving, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information;
    determining the OS application identifier of the client application; and
    transmitting, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
  5. The method of claim 1, wherein the UE-identifying information comprises subscriber identity module (SIM) card information associated with the UE.
  6. A method of operating a Public Land Mobile Network (PLMN) , comprising:
    receiving, from an application server, an indication of an operating system (OS) application identifier of a runtime client application, and UE-identifying information;
    updating one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic descriptors for the runtime client application; and
    transmitting, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.
  7. The method of claim 6, wherein the UE-identifying information comprises subscriber identity module (SIM) card information associated with the UE.
  8. A user equipment (UE) , comprising:
    means for transmitting, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information; and
    means for receiving, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
  9. An application server, comprising:
    means for receiving, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information;
    means for determining the OS application identifier of the client application; and
    means for transmitting, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
  10. A Public Land Mobile Network (PLMN) , comprising:
    means for receiving, from an application server, an indication of an operating system (OS) application identifier of a runtime client application, and UE-identifying information;
    means for updating one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic descriptors for the runtime client application; and
    means for transmitting, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.
  11. A user equipment (UE) , comprising:
    a memory;
    at least one communications interface; and
    at least one processor communicatively coupled to the memory, the at least one communications interface, the at least one processor configured to:
    transmit, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information; and
    receive, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
  12. An application server, comprising:
    a memory;
    at least one communications interface; and
    at least one processor communicatively coupled to the memory, the at least one communications interface, the at least one processor configured to:
    receive, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information;
    determine the OS application identifier of the client application; and
    transmit, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
  13. A Public Land Mobile Network (PLMN) , comprising:
    a memory;
    at least one communications interface; and
    at least one processor communicatively coupled to the memory, the at least one communications interface, the at least one processor configured to:
    receive, from an application server, an indication of an operating system (OS) application identifier of a runtime client application, and UE-identifying information;
    update one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic descriptors for the runtime client application; and
    transmit, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.
  14. A non-transitory computer-readable medium containing instructions stored thereon, which, when executed by a user equipment (UE) , cause the UE to perform operations, the instructions comprising:
    at least one instruction to cause the UE to transmit, to an application server, a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information; and
    at least one instruction to cause the UE to receive, from the PLMN in response to the query, one or more updated network slice selection assistance information (NSSAI) parameters that comprise one or more traffic descriptors for the runtime client application and the OS application identifier of the runtime client application.
  15. A non-transitory computer-readable medium containing instructions stored thereon, which, when executed by an application server, cause the application server to perform operations, the instructions comprising:
    at least one instruction to cause the application server to receive, from a user equipment (UE) , a query for an operating system (OS) application identifier of a runtime client application, Public Land Mobile Network (PLMN) information associated with a PLMN, and UE-identifying information;
    at least one instruction to cause the application server to determine the OS application identifier of the client application; and
    at least one instruction to cause the application server to transmit, to the PLMN, an indication of the OS application identifier of the runtime client application, and the UE-identifying information.
  16. A non-transitory computer-readable medium containing instructions stored thereon, which, when executed by a Public Land Mobile Network (PLMN) , cause the PLMN to perform operations, the instructions comprising:
    at least one instruction to cause the PLMN to receive, from an application server, an indication of an operating system (OS) application identifier of a runtime client application, and UE-identifying information;
    at least one instruction to cause the PLMN to update one or more updated network slice selection assistance information (NSSAI) parameters for the UE that comprise one or more traffic descriptors for the runtime client application; and
    at least one instruction to cause the PLMN to transmit, to the UE, the one or more updated NSSAI parameters for the UE and the OS application identifier of the runtime client application.
PCT/CN2020/093721 2020-06-01 2020-06-01 Identifier for runtime client application with network slice association WO2021243511A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093721 WO2021243511A1 (en) 2020-06-01 2020-06-01 Identifier for runtime client application with network slice association

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093721 WO2021243511A1 (en) 2020-06-01 2020-06-01 Identifier for runtime client application with network slice association

Publications (1)

Publication Number Publication Date
WO2021243511A1 true WO2021243511A1 (en) 2021-12-09

Family

ID=78831500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093721 WO2021243511A1 (en) 2020-06-01 2020-06-01 Identifier for runtime client application with network slice association

Country Status (1)

Country Link
WO (1) WO2021243511A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603830A (en) * 2017-04-27 2019-12-20 三星电子株式会社 Network sliceable area information acquisition method
US20190394279A1 (en) * 2018-06-22 2019-12-26 Huawei Technologies Co., Ltd. Optimizing user equipment operation by conditioning multiple policies on information elements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603830A (en) * 2017-04-27 2019-12-20 三星电子株式会社 Network sliceable area information acquisition method
US20190394279A1 (en) * 2018-06-22 2019-12-26 Huawei Technologies Co., Ltd. Optimizing user equipment operation by conditioning multiple policies on information elements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3GPP Technical Specification Group Services and System Aspects / Policy and Charging Control Framework for the 5G System Draft e 16eaRe", POLICY AND CHARGING CONTROL FRAMEWORK FOR THE 5G SYSTEM, no. 20, XP051867067 *

Similar Documents

Publication Publication Date Title
EP4038801A1 (en) Sounding reference signal (srs) configurations for one or more frequency hops
JP2023517455A (en) Downlink Control Information (DCI) based Triggered Positioning Reference Signal (PRS)
US20240049193A1 (en) Indication of slot offset for a sounding reference signal via trigger value
US20230336295A1 (en) Open radio access network message configurations
WO2022016495A1 (en) Cell (re)selection and sidelink relay (re)selection procedures
WO2021022395A1 (en) Dynamic spectrum sharing (dss) synchronization signal block (ssb) design and additional demodulation reference signal (dmrs)
US11825420B2 (en) Selective transmission of power headroom reports
WO2021227070A1 (en) Triggering transmission of a sounding reference signal
US11641652B2 (en) Uplink control information transmission format selection
US11632725B2 (en) Selective transmission of power headroom reports
WO2021196155A1 (en) Mac ce with spatial relation information for srs resources across a list of cells
WO2021232226A1 (en) Modifying a beam failure threshold based upon user equipment movement information
WO2022047610A1 (en) Secondary cell group in dormant state with data traffic disabled
WO2021243511A1 (en) Identifier for runtime client application with network slice association
WO2022056778A1 (en) Cell reselection procedure based on locally determined value for omitted system information block parameter
US11711772B2 (en) Power control scheme for active bandwidth part transition
US11832244B2 (en) Timers and uplink skipping
WO2021164008A1 (en) Dci-guided pdcch dmrs reception bundling
WO2022027554A1 (en) Aperiodic measurements for a secondary cell group in a dormant state
WO2022126302A1 (en) Determining an initial prach preamble transmission power based on historical completed prach procedures
WO2022193115A1 (en) Puncturing of inter-frequency measurements during evolved packet system fallback call procedure
WO2021223076A1 (en) Optimizing physical downlink control channel (pdcch) power
WO2021223057A1 (en) Selecting dual connectivity cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939419

Country of ref document: EP

Kind code of ref document: A1