WO2022056561A1 - Temperature control apparatus for battery cells combined into a module - Google Patents

Temperature control apparatus for battery cells combined into a module Download PDF

Info

Publication number
WO2022056561A1
WO2022056561A1 PCT/AT2021/060275 AT2021060275W WO2022056561A1 WO 2022056561 A1 WO2022056561 A1 WO 2022056561A1 AT 2021060275 W AT2021060275 W AT 2021060275W WO 2022056561 A1 WO2022056561 A1 WO 2022056561A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature control
battery cells
flow channel
channel
module
Prior art date
Application number
PCT/AT2021/060275
Other languages
German (de)
French (fr)
Inventor
Norbert HEUBLEIN
Helmut Kastler
Original Assignee
Kreisel Electric Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kreisel Electric Gmbh & Co Kg filed Critical Kreisel Electric Gmbh & Co Kg
Publication of WO2022056561A1 publication Critical patent/WO2022056561A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Temperature control device for battery cells combined to form a module
  • the invention relates to a temperature control device for individual battery cells assembled into a module and arranged in a common flow channel for direct flow of a temperature control fluid.
  • AT520928 discloses a temperature control device for individual battery cells assembled into a module.
  • the temperature control device has a base body which, together with the battery cells, forms a flow channel for a temperature control fluid which flows against the battery cells transversely to a longitudinal direction of the battery cells.
  • a temperature control fluid which flows against the battery cells transversely to a longitudinal direction of the battery cells.
  • the invention is therefore based on the object of proposing a temperature control device of the type described at the beginning, which enables a reduced temperature spread within a battery module with simultaneously high temperature control dynamics.
  • the invention solves the problem in that a guide element is provided between the battery cells in the flow channel, which divides the flow channel into a transverse to a longitudinal direction of the battery cells running collecting channel and branching off from this, running in the longitudinal direction of the battery cells temperature control channels, in which preferably the battery cell shell is flowed directly against by the temperature control fluid and whose length is 60-99% of the height of the flow channel and whose share of the total pressure loss within the flow channel is 60-99%.
  • a guide element is provided between the battery cells in the flow channel, which divides the flow channel into a transverse to a longitudinal direction of the battery cells running collecting channel and branching off from this, running in the longitudinal direction of the battery cells temperature control channels, in which preferably the battery cell shell is flowed directly against by the temperature control fluid and whose length is 60-99% of the height of the flow channel and whose share of the total pressure loss within the flow channel is 60-99%.
  • the actual heat exchange between temperature control fluid and battery cells takes place only in the temperature control channel running in the longitudinal direction of the battery cells, in which the temperature control fluid flows around the majority of the battery cell casing. In this way, the tempering fluid flows to all battery cells at almost the same temperature, regardless of their position in the module. In order to further counteract a temperature spread of the battery cells in the module, the same temperature conditions as well as the same flow conditions must prevail at the battery cells. In order to distribute the total volume flow of the tempering fluid homogeneously to all battery cells and thus to create the same flow conditions for each battery cell, the proportion is of the pressure loss generated by the temperature control channel in the total pressure loss within the flow channel 60 - 99%.
  • This proportion can be set, for example, by the cross-sectional ratios between the collecting duct and the temperature control ducts and/or by the ratio of the channel lengths of the collecting duct and the temperature control ducts in a form known to those skilled in the art.
  • the tempering fluid can first be distributed in the low-pressure-loss collection channel before it enters each tempering channel with almost the same volume flow, and thus almost the same temperature difference between the battery cell and the tempering fluid is achieved at each battery cell.
  • each battery cell can be representative of the other battery cells within a module, which means that voltage, temperature measurements or the like only have to be carried out on one battery cell and the other battery cells can thus be inferred.
  • tempering fluid itself, since according to the invention all battery cells are acted upon at all times by a temperature fluid with the same temperature and flow rate and thus there is no time-related temperature spread between battery cells positioned differently in the flow channel.
  • the guide element in the flow channel, the amount of temperature control fluid required is reduced, as a result of which the inertia of the temperature control process can be reduced.
  • the temperature control device can of course be used both for heating and for cooling the battery cells.
  • the tempering ducts open into a common collecting duct, which also runs transversely to the longitudinal direction of the battery cells and is flow-connected to a tempering fluid outlet.
  • the guide element can be a one-piece body, the openings for the Has battery cells.
  • the breakthrough openings can, for example, have a larger diameter than the battery cells, resulting in an annular gap as a temperature control channel.
  • the breakthrough openings can also touch the battery cell on the peripheral side in sections, that is to say have the same diameter as the battery cells, resulting in a plurality of temperature control channels distributed over the periphery.
  • the temperature control channel can also have a cross section that differs from the shape of the battery cell cross section. In order to further adjust the pressure drop in the tempering channel, it can be filled with a porous material or include various built-in components.
  • the mass of the guide element be less than the mass of the tempering fluid displaced by the guide element. This can be achieved, for example, when the density of the guide element is lower than the density of the tempering fluid, or when the guide element is hollow and evacuated. In the case of a liquid tempering fluid, the cavities can also be filled with gas.
  • the flow channel can be delimited by a base body having openings for the end sections of the battery cells.
  • the end sections guided through the openings are therefore not arranged in the flow channel and can therefore be electrically contacted with battery cells of another module in a simple manner.
  • the battery cells of a module can also be contacted in parallel at these end sections.
  • the parallel contacting of the battery cells takes place via an electrical conductor of the conducting element, which is connected at least in groups to the lateral surfaces of the battery cells, which form an electrical cell pole and on which the tempering fluid flows.
  • This electrical conductor can, for example, have contact tongues passing through the tempering channels transversely to the longitudinal direction.
  • contact tongues can be designed in this way be that they form a flow resistance to adjust the pressure loss. It is also conceivable that the base body has pairs of openings lying opposite one another in the longitudinal direction of the battery cells. In this case, therefore, both end sections of each battery cell lie outside the flow channel.
  • the heat transfer coefficient between the temperature control fluid and the battery cells in the area of the collecting channel is lower than in the area of the temperature control channels.
  • the section running in the collecting channel can be provided with insulation, for example, which can be applied electrochemically and/or consist of polymers.
  • the insulation between the surfaces of the battery cells and the temperature control fluid flowing around can advantageously form a seal between the battery cells and the openings arranged in the base body.
  • a further possibility for adjusting the heat transfer coefficient lies in roughening the battery cell section running in the temperature control channel or in turbulence-promoting structuring of the surface of the guide element facing the battery cell, which improves heat transfer.
  • the guide element can include measuring line receptacles. This means that no additional space is required for the measuring lines.
  • the measuring lines can be routed, for example, in the cavity or on the surface of the guide elements.
  • Fig. 1 shows a schematic section through a temperature control device according to the invention
  • Figure 2 is a plan view of Figure 1, partially sectioned along line II-II, on the same scale.
  • a temperature control device for individual battery cells 1 assembled into a module has a flow channel 2 in which the battery cells 1 are arranged.
  • a preferably liquid tempering fluid flows through the flow channel 2 and flows directly around the battery cells 1 .
  • a guide element 3 is provided in the flow channel 2 between the battery cells 1, which divides the flow channel 2 into a collecting channel 5 running transversely to the longitudinal direction 4 of the battery cells 1 and temperature control channels 6 branching off from this and running in the longitudinal direction 4 Splits.
  • the tempering channels 6 can also open into a common collecting channel 5 . According to the invention, the length L of the temperature control channels 6 is 60-99% of the height h of the flow channel 2.
  • the length L of the temperature control channels 6 is 80-99% of the height h of the flow channel 2. In a particularly preferred embodiment, the length L of the temperature control channels 6 90 - 99% of the height h of the flow channel 2. Due to the ratio according to the invention between the length L of the temperature control channels 6 and the height h of the flow channel 2, there is only a small heat exchange between the temperature control fluid and the battery cells 1 in the collecting channel 5, since only one small surface of the shell of the battery cells 1 flows around. This results in the advantage that the tempering fluid has almost the same temperature in the entire collecting duct 5 before it enters the tempering ducts 6, as a result of which each battery cell 1 is subjected to the same temperature difference, regardless of its position in the module.
  • the heat exchange takes place accordingly mainly in the tempering channels 6, in which the tempering fluid flows around the battery cell casing.
  • the proportion of the pressure loss caused by the temperature control channels 6 is 60 - 99% of the total pressure loss in the flow channel 2.
  • the tempering fluid is first distributed evenly in the collecting channel 5, as a result of which all tempering channels can be subjected to the same volume flow.
  • the proportion of the total pressure loss can be adjusted by the cross-sectional ratios between the collecting channel 5 and the temperature control channels 6 and/or by the ratio of the length L of the temperature control channels 6 and the length of the collecting channels 5 .
  • the temperature control fluid can be supplied to or removed from the temperature control device via temperature control fluid inlets 7 or temperature control fluid outlets 8 .
  • Structurally favorable conditions arise when the flow channel 2 is delimited by a base body 10 having openings 9 for the end sections of the battery cells 1 .
  • the end sections are therefore located outside of the flow channel and can therefore be electrically contacted with other battery cells 1 in a simple manner.
  • the base body 10 can have openings 9 lying opposite one another in pairs in the longitudinal direction 4 of the battery cells 1 . In this case, therefore, both end portions of each battery cell 1 can lie outside of the flow channel 2 .
  • the guide element 3 is designed in one piece for this purpose and has round openings 11 for the battery cells 1 , the diameter of the openings 11 being larger than the diameter of the round battery cells 2 .
  • the temperature control channels 6 can be annular gaps. The proportion of the pressure loss caused by the temperature control channel 6 in the total pressure loss in the flow channel 2 can be adjusted via the width of the annular gap. If the length L of the tempering channels is 660 - 99% of the height h of the flow channel 2, the Annular gap width should be 0.01 -2mm in order to achieve the desired proportion of the total pressure drop.
  • the mass of the guide element 3 can be less than the mass of the tempering fluid displaced by the guide element 3 .
  • the guide element 3 can include measuring line receptacles.
  • the insulation 12 can simultaneously form a seal between the battery cells 2 and the openings 9 arranged in the base body 10 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to a temperature control apparatus for individual battery cells (1) which are combined into a module and which are arranged in a common flow channel (2) for direct incident flow by a temperature control fluid. In order to enable a reduced temperature spread within a battery module with high temperature regulation dynamics at the same time, according to the invention a conductive element (3) is provided in the flow channel (2) between the battery cells (1) which divides the flow channel (2) into a collection channel (5) extending transverse to a longitudinal direction (4) of the battery cells (1) and temperature control channels (6) branching from said collection channel and extending in the longitudinal direction (4) of the battery cells (1), the temperature control channels each having a length (L) which is 60–99% of the height (h) of the flow channel (2) and a proportion of total pressure loss within the flow channel (2) which is 60–99%.

Description

Temperiervorrichtunq für zu einem Modul zusammengesetzte Batteriezellen Temperature control device for battery cells combined to form a module
Technisches Gebiet technical field
Die Erfindung bezieht sich auf eine Temperiervorrichtung für einzelne, zu einem Modul zusammengesetzte und in einem gemeinsamen Strömungskanal zur direkten Anströmung mit einem Temperierfluid angeordnete Batteriezellen. The invention relates to a temperature control device for individual battery cells assembled into a module and arranged in a common flow channel for direct flow of a temperature control fluid.
Stand der Technik State of the art
Aus der AT520928 ist eine Temperiervorrichtung für einzelne, zu einem Modul zusammengesetzte Batteriezellen bekannt. Die Temperiervorrichtung weist hierzu einen Grundkörper auf, der gemeinsam mit den Batteriezellen einen Strömungskanal für ein Temperierfluid ausbildet, das die Batteriezellen quer zu einer Längsrichtung der Batteriezellen anströmt. Zwar kann durch die mantelseitige beinahe vollständige Umströmung der Batteriezellen eine effektive Temperierung der einzelnen Batteriezellen erfolgen, jedoch ergibt sich dabei der Nachteil, dass das Temperierfluid in Strömungsrichtung nach und nach erwärmt wird. Dies hat zur Folge, dass vor allem bei Modulen mit vielen Batteriezellen eine Temperaturspreizung zwischen den temperierfluideinlassseitg angeordneten und den temperierfluidauslassseitig angeordneten Batteriezellen entsteht. Solche Temperaturunterschiede führen zum einen zu einer verminderten Leistungseffizienz zum anderen zu einer beschleunigten Alterung der Batteriemodule. Dadurch, dass das Temperierfluid erst durch das sequentielle Anströmen der im Strömungskanal hintereinanderliegenden Batteriezellen seine Wärmeenergienach und nach abgibt bzw. die Wärmeenergie von den Batteriezellen aufnimmt, ergibt sich aufgrund der maximal zulässigen Temperaturdifferenz zwischen dem Temperierfluid und den temperierfluideinlassseitgen Batteriezellen eine wesentliche Einschränkung hinsichtlich der Änderungsraten bei der Temperaturregelung. Durch diese beschränkte Temperaturregelungsdynamik können die einzelnen Batteriezellen insgesamt erst verzögert auf ihre Solltemperatur gebracht werden. AT520928 discloses a temperature control device for individual battery cells assembled into a module. For this purpose, the temperature control device has a base body which, together with the battery cells, forms a flow channel for a temperature control fluid which flows against the battery cells transversely to a longitudinal direction of the battery cells. Although the flow around the battery cells on the shell side is almost complete, effective temperature control of the individual battery cells can take place, but this has the disadvantage that the temperature control fluid is gradually heated in the direction of flow. The consequence of this is that, particularly in the case of modules with many battery cells, there is a temperature spread between the battery cells arranged on the temperature-control fluid inlet side and the battery cells on the temperature-control fluid outlet side. On the one hand, such temperature differences lead to reduced power efficiency and, on the other hand, to accelerated aging of the battery modules. Due to the fact that the temperature control fluid only gradually releases its heat energy through the sequential flow against the battery cells located one behind the other in the flow channel or absorbs the heat energy from the battery cells, there is a significant restriction with regard to the rates of change due to the maximum permissible temperature difference between the temperature control fluid and the battery cells on the temperature control fluid inlet side the temperature control. Through this Limited temperature control dynamics, the individual battery cells can only be brought to their target temperature with a delay.
Darstellung der Erfindung Presentation of the invention
Der Erfindung liegt somit die Aufgabe zugrunde, eine Temperiervorrichtung der eingangs geschilderten Art vorzuschlagen, die eine verringerte Temperaturspreizung innerhalb eines Batteriemoduls bei gleichzeitig hoher Temperaturregelungsdynamik ermöglicht. The invention is therefore based on the object of proposing a temperature control device of the type described at the beginning, which enables a reduced temperature spread within a battery module with simultaneously high temperature control dynamics.
Die Erfindung löst die gestellte Aufgabe dadurch, dass zwischen den Batteriezellen im Strömungskanal ein Leitelement vorgesehen ist, das den Strömungskanal in einen quer zu einer Längsrichtung der Batteriezellen verlaufenden Sammelkanal und von diesem abzweigende, in Längsrichtung der Batteriezellen verlaufende Temperierkanäle teilt, in denen vorzugsweise der Batteriezellenmantel direkt vom Temperierfluid angeströmt wird und deren Länge je 60 - 99% der Höhe des Strömungskanals und deren Anteil am Gesamtdruckverlust innerhalb des Strömungskanals 60 - 99% beträgt. Zufolge dieser Maßnahmen erfolgt im Sammelkanal nur ein äußerst geringer Wärmeaustausch zwischen den Batteriezellen und dem vorzugsweise flüssigen Temperierfluid, sodass die Temperatur des Temperierfluids im gesamten Sammelkanal und damit an den jeweiligen Eingängen der Temperierkanäle über das gesamte Modul nahezu konstant ist. Der eigentliche Wärmeaustausch zwischen Temperierfluid und Batteriezellen erfolgt erst im in Längsrichtung der Batteriezellen verlaufenden Temperierkanal, in dem das Temperierfluid den Großteil des Batteriezellenmantels umströmt. Auf diese Weise strömt das Temperierfluid alle Batteriezellen unabhängig von ihrer Lage im Modul mit der nahezu gleichen Temperatur an. Um einer Temperaturspreizung der Batteriezellen im Modul weiter entgegen zu wirken, müssen allerdings neben gleichen Temperaturbedingungen auch gleiche Strömungsbedingungen an den Batteriezellen herrschen. Um daher den Gesamtvolumenstrom des Temperierfluids homogen auf alle Batteriezellen zu verteilen und somit gleiche Umströmungsbedingungen für jede Batteriezelle zu erzeugen, beträgt der Anteil des durch den Temperierkanal erzeugten Druckverlustes am Gesamtdruckverlust innerhalb des Strömungskanals 60 - 99%. Dieser Anteil kann beispielsweise durch die Querschnittsverhältnisse zwischen dem Sammelkanal und den Temperierkanälen und/oder durch das Verhältnis der Kanallängen des Sammelkanals und der Temperierkanäle in für den Fachmann bekannter Form eingestellt werden. Zufolge der genannten Maßnahmen kann sich das Temperierfluid zuerst im druckverlustarmen Sammelkanal verteilen, bevor es in jeden Temperierkanal mit nahezu gleichem Volumenstrom eintritt und somit an jeder Batteriezelle die nahezu gleiche Temperaturdifferenz zwischen Batteriezelle und Temperierfluid erzielt wird. Daraus ergeben sich gleich mehrere Vorteile. Zum einen kann jede Batteriezelle repräsentativ für die anderen Batteriezellen innerhalb eines Moduls wirken, wodurch Spannungs-, Temperaturmessungen oder dergleichen nur an einer Batteriezelle getätigt werden müssen und dadurch auf die anderen Batteriezellen geschlossen werden kann. Zum anderen kann das Temperierfluid selbst mit steileren Temperaturrampen beaufschlagt werden, da erfindungsgemäß alle Batteriezellen zu jedem Zeitpunkt von einem Temperaturfluid mit gleicher Temperatur und Strömungsgeschwindigkeit beaufschlagt werden und somit keine zeitlich bedingte Temperaturspreizung zwischen unterschiedlich im Strömungskanal positionierten Batteriezellen erfolgt. Darüber hinaus wird durch den Einbau des Leitelements in den Strömungskanal die benötigte Temperierfluidmenge verringert, wodurch die Trägheit des Temperiervorgangs verringert werden kann. Die Temperiervorrichtung kann selbstverständlich sowohl zum Heizen als auch zum Kühlen der Batteriezellen eingesetzt werden. Außerdem ist es denkbar, dass die Temperierkanäle in einen gemeinsamen Sammelkanal münden, der ebenfalls quer zur Längsrichtung der Batteriezellen verläuft und mit einem Temperierfluidauslass strömungsverbunden ist. The invention solves the problem in that a guide element is provided between the battery cells in the flow channel, which divides the flow channel into a transverse to a longitudinal direction of the battery cells running collecting channel and branching off from this, running in the longitudinal direction of the battery cells temperature control channels, in which preferably the battery cell shell is flowed directly against by the temperature control fluid and whose length is 60-99% of the height of the flow channel and whose share of the total pressure loss within the flow channel is 60-99%. As a result of these measures, there is only an extremely low heat exchange between the battery cells and the preferably liquid temperature control fluid in the collection channel, so that the temperature of the temperature control fluid is almost constant in the entire collection channel and thus at the respective inputs of the temperature control channels over the entire module. The actual heat exchange between temperature control fluid and battery cells takes place only in the temperature control channel running in the longitudinal direction of the battery cells, in which the temperature control fluid flows around the majority of the battery cell casing. In this way, the tempering fluid flows to all battery cells at almost the same temperature, regardless of their position in the module. In order to further counteract a temperature spread of the battery cells in the module, the same temperature conditions as well as the same flow conditions must prevail at the battery cells. In order to distribute the total volume flow of the tempering fluid homogeneously to all battery cells and thus to create the same flow conditions for each battery cell, the proportion is of the pressure loss generated by the temperature control channel in the total pressure loss within the flow channel 60 - 99%. This proportion can be set, for example, by the cross-sectional ratios between the collecting duct and the temperature control ducts and/or by the ratio of the channel lengths of the collecting duct and the temperature control ducts in a form known to those skilled in the art. As a result of the measures mentioned, the tempering fluid can first be distributed in the low-pressure-loss collection channel before it enters each tempering channel with almost the same volume flow, and thus almost the same temperature difference between the battery cell and the tempering fluid is achieved at each battery cell. This results in several advantages. On the one hand, each battery cell can be representative of the other battery cells within a module, which means that voltage, temperature measurements or the like only have to be carried out on one battery cell and the other battery cells can thus be inferred. On the other hand, steeper temperature ramps can be applied to the tempering fluid itself, since according to the invention all battery cells are acted upon at all times by a temperature fluid with the same temperature and flow rate and thus there is no time-related temperature spread between battery cells positioned differently in the flow channel. In addition, by installing the guide element in the flow channel, the amount of temperature control fluid required is reduced, as a result of which the inertia of the temperature control process can be reduced. The temperature control device can of course be used both for heating and for cooling the battery cells. In addition, it is conceivable that the tempering ducts open into a common collecting duct, which also runs transversely to the longitudinal direction of the battery cells and is flow-connected to a tempering fluid outlet.
Eine konstruktiv einfache Möglichkeit den Anteil des Temperierkanals am Gesamtdruckverlust einzustellen und dabei gleichzeitig weiter der Temperaturspreizung innerhalb des Moduls entgegenzuwirken, ergibt sich, wenn je Batteriezelle wenigstens ein Temperierkanal vorgesehen ist. Hierzu kann das Leitelement ein einstückiger Körper sein, der Durchbruchsöffnungen für die Batteriezellen aufweist. Die Durchbruchsöffnungen können im Fall von Rundzellen beispielsweise einen größeren Durchmesser als die Batteriezellen aufweisen, sodass sich ein Ringspalt als Temperierkanal ergibt. Die Durchbruchsöffnungen können die Batteriezelle auch abschnittsweise umfangseitig berühren, also den gleichen Durchmesser wie die Batteriezellen aufweisen, wodurch sich mehrere über den Umfang verteilte Temperierkanäle ergeben. Grundsätzlich kann der Temperierkanal auch einen von der Form des Batteriezellenquerschnitts abweichenden Querschnitt aufweisen. Um den Druckverlust im Temperierkanal weiter anzupassen, kann dieser mit einem porösen Material aufgefüllt sein, oder diverse Einbauten umfassen. A constructively simple way of adjusting the proportion of the temperature control channel in the total pressure loss and at the same time counteracting the temperature spread within the module results if at least one temperature control channel is provided for each battery cell. For this purpose, the guide element can be a one-piece body, the openings for the Has battery cells. In the case of round cells, the breakthrough openings can, for example, have a larger diameter than the battery cells, resulting in an annular gap as a temperature control channel. The breakthrough openings can also touch the battery cell on the peripheral side in sections, that is to say have the same diameter as the battery cells, resulting in a plurality of temperature control channels distributed over the periphery. In principle, the temperature control channel can also have a cross section that differs from the shape of the battery cell cross section. In order to further adjust the pressure drop in the tempering channel, it can be filled with a porous material or include various built-in components.
Um die gravimetrische Energiedichte des Moduls zu erhöhen, wird vorgeschlagen, dass die Masse des Leitelements geringer als die Masse des durch das Leitelement verdrängten Temperierfluids ist. Dies kann beispielsweise erreicht werden, wenn die Dichte des Leitelements geringer als die Dichte des Temperierfluids ist, oder wenn das Leitelement hohl ausgebildet und evakuiert ist. Im Falle eines flüssigen Temperierfluides können die Hohlräume auch gasgefüllt sein. In order to increase the gravimetric energy density of the module, it is proposed that the mass of the guide element be less than the mass of the tempering fluid displaced by the guide element. This can be achieved, for example, when the density of the guide element is lower than the density of the tempering fluid, or when the guide element is hollow and evacuated. In the case of a liquid tempering fluid, the cavities can also be filled with gas.
Damit die Temperiervorrichtung auch bei mehreren zu einem Modul-Stack zusammengesetzten Modulen Anwendung finden kann, kann der Strömungskanal von einem Durchbrüche für die Endabschnitte der Batteriezellen aufweisenden Grundkörper begrenzt sein. Die durch die Durchbrüche geführten Endabschnitte sind demnach nicht im Strömungskanal angeordnet und können dadurch auf einfache Weise mit Batteriezellen eines anderen Moduls elektrisch kontaktiert sein. Auch eine parallele Kontaktierung der Batteriezellen eines Moduls kann an diesen Endabschnitten erfolgen. In einer besonders bevorzugten Ausführungsform erfolgt die parallele Kontaktierung des Batteriezellen über einen elektrischen Leiter des Leitelements, der wenigstens gruppenweise mit den einen elektrischen Zellpol ausbildenden vom Temperierfluid angeströmten Mantelflächen der Batteriezellen verbunden ist. Dieser elektrische Leiter kann beispielsweise die Temperierkanäle quer zur Längsrichtung durchsetzende Kontaktzungen aufweisen. Diese Kontaktzungen können dabei so ausgebildet sein, dass sie einen Strömungswiderstand zur Einstellung des Druckverlustes ausbilden. Es ist auch denkbar, dass der Grundkörper in Längsrichtung der Batteriezellen paarweise gegenüberliegende Durchbrüche aufweist. In diesem Fall liegen demnach beide Endabschnitte jeder Batteriezelle außerhalb des Strömungskanals. So that the temperature control device can also be used with a plurality of modules assembled to form a module stack, the flow channel can be delimited by a base body having openings for the end sections of the battery cells. The end sections guided through the openings are therefore not arranged in the flow channel and can therefore be electrically contacted with battery cells of another module in a simple manner. The battery cells of a module can also be contacted in parallel at these end sections. In a particularly preferred embodiment, the parallel contacting of the battery cells takes place via an electrical conductor of the conducting element, which is connected at least in groups to the lateral surfaces of the battery cells, which form an electrical cell pole and on which the tempering fluid flows. This electrical conductor can, for example, have contact tongues passing through the tempering channels transversely to the longitudinal direction. These contact tongues can be designed in this way be that they form a flow resistance to adjust the pressure loss. It is also conceivable that the base body has pairs of openings lying opposite one another in the longitudinal direction of the battery cells. In this case, therefore, both end sections of each battery cell lie outside the flow channel.
Um eine Temperaturspreizung auch bei Modulen mit einer besonders großen Anzahl an einzelnen Batteriezellen zu verhindern, empfiehlt es sich in einer besonders effektiven Ausführungsform der erfindungsgemäßen Temperiervorrichtung, dass der Wärmeübergangskoeffizient zwischen dem Temperierfluid und den Batteriezellen im Bereich des Sammelkanals geringer als im Bereich der Temperierkanäle ist. Dem Fachmann sind hierzu mehrere Möglichkeiten bekannt. Der im Sammelkanal verlaufende Abschnitt kann beispielsweise mit einer Isolierung versehen sein, die beispielsweise elektrochemisch aufgebracht und/oder aus Polymeren bestehen kann. Die Isolierung zwischen den Oberflächen der Batteriezellen und dem umströmenden Temperierfluid kann vorteilhafterweise eine Abdichtung zwischen den Batteriezellen und den im Grundkörper angeordneten Durchbrüchen bilden. Eine weitere Möglichkeit zur Einstellung des Wärmeübergangskoeffizienten liegt in der Aufrauhung des im Temperierkanal verlaufenden Batteriezellenabschnittes oder in einer turbulenzfördernden Strukturierung der battieriezellenzugewandten Oberfläche des Leitelements, wodurch Wärmeübergang verbessert wird. In order to prevent temperature spread even in modules with a particularly large number of individual battery cells, it is recommended in a particularly effective embodiment of the temperature control device according to the invention that the heat transfer coefficient between the temperature control fluid and the battery cells in the area of the collecting channel is lower than in the area of the temperature control channels. A person skilled in the art is aware of several possibilities for this. The section running in the collecting channel can be provided with insulation, for example, which can be applied electrochemically and/or consist of polymers. The insulation between the surfaces of the battery cells and the temperature control fluid flowing around can advantageously form a seal between the battery cells and the openings arranged in the base body. A further possibility for adjusting the heat transfer coefficient lies in roughening the battery cell section running in the temperature control channel or in turbulence-promoting structuring of the surface of the guide element facing the battery cell, which improves heat transfer.
Oftmals werden Batteriemodule zu großen Modul-Stacks zusammengesetzt, was die Fehlersuche bei etwaigen defekten Batteriezellen erschweren kann. Um daher eine Identifikation von schadhaften Batteriezellen bzw. Modulen zu erleichtern, ohne dabei die Energiedichte des Modul-Stacks zu verschlechtern, kann das Leitelement Messleitungsaufnahmen umfassen. Dadurch wird kein zusätzlicher Platzbedarf für die Messleitungen benötigt. Die Messleitungen können beispielsweise im Hohlraum oder an der Oberfläche der Leitelemente geführt sein. Battery modules are often assembled into large module stacks, which can make troubleshooting any defective battery cells more difficult. Therefore, in order to facilitate the identification of defective battery cells or modules without worsening the energy density of the module stack, the guide element can include measuring line receptacles. This means that no additional space is required for the measuring lines. The measuring lines can be routed, for example, in the cavity or on the surface of the guide elements.
Kurze Beschreibung der Erfindung In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt. Es zeigen Brief description of the invention In the drawing, the subject of the invention is shown as an example. Show it
Fig. 1 einen schematischen Schnitt durch eine erfindungsgemäße Temperiervorrichtung und Fig. 1 shows a schematic section through a temperature control device according to the invention and
Fig. 2 eine teilweise entlang der Linie ll-ll geschnittene Draufsicht der Fig. 1 im gleichen Maßstab. Figure 2 is a plan view of Figure 1, partially sectioned along line II-II, on the same scale.
Wege zur Ausführung der Erfindung Ways to carry out the invention
Eine Temperiervorrichtung für einzelne, zu einem Modul zusammengesetzte Batteriezellen 1 weist, wie der Fig. 1 zu entnehmen ist, einen Strömungskanal 2 auf, in welchem die Batteriezellen 1 angeordnet sind. Durch den Strömungskanal 2 verläuft ein vorzugsweise flüssiges Temperierfluid, das die Batteriezellen 1 direkt umströmt. Um eine Temperaturspreizung zwischen den Batteriezellen 1 zu verhindern, ist im Strömungskanal 2 zwischen den Batteriezellen 1 ein Leitelement 3 vorgesehen, das den Strömungskanal 2 in einen quer zur Längsrichtung 4 der Batteriezellen 1 verlaufenden Sammelkanal 5 und von diesem abzweigende, in Längsrichtung 4 verlaufende Temperierkanäle 6 teilt. Die Temperierkanäle 6 können auch in einen gemeinsamen Sammelkanal 5 münden. Erfindungsgemäß beträgt die Länge L der Temperierkanäle 6 60 - 99% der Höhe h des Strömungskanals 2. In einer bevorzugten Ausführungsform beträgt die Länge L der Temperierkanäle 6 80 - 99% der Höhe h des Strömungskanals 2. In einer besonders bevorzugten Ausführungsform beträgt die Länge L der Temperierkanäle 6 90 - 99% der Höhe h des Strömungskanals 2. Aufgrund des erfindungsgemäßen Verhältnisses zwischen der Länge L der Temperierkanäle 6 und der Höhe h des Strömungskanals 2 erfolgt im Sammelkanal 5 nur ein geringer Wärmeaustausch zwischen Temperierfluid und Batteriezellen 1 , da dort nur eine geringe Fläche des Mantels der Batteriezellen 1 umströmt wird. Dadurch ergibt sich der Vorteil, dass das Temperierfluid vor Eintritt in die Temperierkanäle 6 im gesamten Sammelkanal 5 eine nahezu gleiche Temperatur aufweist, wodurch jede Batteriezelle 1 unabhängig von deren Lage im Modul mit einer gleichen Temperaturdifferenz beaufschlagt wird. Der Wärmeaustausch erfolgt demnach überwiegend in den Temperierkanälen 6, in denen das Temperierfluid den Batteriezellenmantel umströmt. Um neben der gleichen Temperaturdifferenz zwischen Batteriezellen und Temperierfluid auch gleiche Strömungsbedingungen an jeder Batteriezelle 1 zu etablieren und daher den Gesamtvolumenstrom des Temperierfluids homogen auf alle Batteriezellen 1 zu verteilen, beträgt der Anteil des durch die Temperierkanäle 6 verursachten Druckverlustes 60 - 99% des Gesamtdruckverlustes im Strömungskanal 2. Dadurch erfolgt erst eine gleichmäßige Verteilung des Temperierfluids im Sammelkanal 5, wodurch alle Temperierkanäle mit demselben Volumenstrom beaufschlagt werden können. Der Anteil am Gesamtdruckverlust kann durch die Querschnittsverhältnisse zwischen dem Sammelkanal 5 und den Temperierkanälen 6 und/oder durch das Verhältnis der Länge L der Temperierkanäle 6 und der Länge der Sammelkanäle 5 eingestellt werden. Das Temperierfluid kann über Temperierfluideinlässe 7 bzw. Temperierfluidauslässe 8 der Temperiervorrichtung zu- bzw- abgeführt werden. As can be seen from FIG. 1, a temperature control device for individual battery cells 1 assembled into a module has a flow channel 2 in which the battery cells 1 are arranged. A preferably liquid tempering fluid flows through the flow channel 2 and flows directly around the battery cells 1 . In order to prevent temperature spread between the battery cells 1, a guide element 3 is provided in the flow channel 2 between the battery cells 1, which divides the flow channel 2 into a collecting channel 5 running transversely to the longitudinal direction 4 of the battery cells 1 and temperature control channels 6 branching off from this and running in the longitudinal direction 4 Splits. The tempering channels 6 can also open into a common collecting channel 5 . According to the invention, the length L of the temperature control channels 6 is 60-99% of the height h of the flow channel 2. In a preferred embodiment, the length L of the temperature control channels 6 is 80-99% of the height h of the flow channel 2. In a particularly preferred embodiment, the length L of the temperature control channels 6 90 - 99% of the height h of the flow channel 2. Due to the ratio according to the invention between the length L of the temperature control channels 6 and the height h of the flow channel 2, there is only a small heat exchange between the temperature control fluid and the battery cells 1 in the collecting channel 5, since only one small surface of the shell of the battery cells 1 flows around. This results in the advantage that the tempering fluid has almost the same temperature in the entire collecting duct 5 before it enters the tempering ducts 6, as a result of which each battery cell 1 is subjected to the same temperature difference, regardless of its position in the module. The heat exchange takes place accordingly mainly in the tempering channels 6, in which the tempering fluid flows around the battery cell casing. In order to establish not only the same temperature difference between battery cells and temperature control fluid but also the same flow conditions on each battery cell 1 and therefore to distribute the total volume flow of the temperature control fluid homogeneously to all battery cells 1, the proportion of the pressure loss caused by the temperature control channels 6 is 60 - 99% of the total pressure loss in the flow channel 2. As a result, the tempering fluid is first distributed evenly in the collecting channel 5, as a result of which all tempering channels can be subjected to the same volume flow. The proportion of the total pressure loss can be adjusted by the cross-sectional ratios between the collecting channel 5 and the temperature control channels 6 and/or by the ratio of the length L of the temperature control channels 6 and the length of the collecting channels 5 . The temperature control fluid can be supplied to or removed from the temperature control device via temperature control fluid inlets 7 or temperature control fluid outlets 8 .
Konstruktiv günstige Bedingungen ergeben sich, wenn der Strömungskanal 2 von einem Durchbrüche 9 für die Endabschnitte der Batteriezellen 1 aufweisenden Grundkörper 10 begrenzt ist. Die Endabschnitte befinden sich demnach außerhalb des Strömungskanales und können dadurch auf einfache Weise mit anderen Batteriezellen 1 elektrisch kontaktiert werden. Wie in der Fig. 1 offenbart ist, kann der Grundkörper 10 in Längsrichtung 4 der Batteriezellen 1 paarweise gegenüberliegende Durchbrüche 9 aufweisen. In diesem Fall können demnach beide Endabschnitte jeder Batteriezelle 1 außerhalb des Strömungskanals 2 liegen. Structurally favorable conditions arise when the flow channel 2 is delimited by a base body 10 having openings 9 for the end sections of the battery cells 1 . The end sections are therefore located outside of the flow channel and can therefore be electrically contacted with other battery cells 1 in a simple manner. As is disclosed in FIG. 1 , the base body 10 can have openings 9 lying opposite one another in pairs in the longitudinal direction 4 of the battery cells 1 . In this case, therefore, both end portions of each battery cell 1 can lie outside of the flow channel 2 .
Wie insbesondere aus Fig. 2 ersichtlich ist, kann je Batteriezelle 1 wenigstens ein Temperierkanal 6 vorgesehen sein. Im Ausführungsbeispiel ist das Leitelement 3 hierzu einstückig ausgebildet und weist runde Durchbruchsöffnungen 11 für die Batteriezellen 1 auf, wobei der Durchmesser der Durchbruchsöffnungen 11 größer als der Durchmesser der runden Batteriezellen 2 ist. Die Temperierkanäle 6 können demnach Ringspalte sein. Über die Breite des Ringspaltes kann der Anteil des vom Temperierkanal 6 verursachten Druckverlustes am Gesamtdruckverlust im Strömungskanal 2 eingestellt werden. Beträgt die Länge L der Temperierkanäle 660 - 99% der Höhe h des Strömungskanals 2, kann die Ringspaltbreite 0,01 -2mm betragen, um den gewünschten Anteil am Gesamtdruckverlust zu erzielen. As can be seen in particular from FIG. 2 , at least one temperature control channel 6 can be provided for each battery cell 1 . In the exemplary embodiment, the guide element 3 is designed in one piece for this purpose and has round openings 11 for the battery cells 1 , the diameter of the openings 11 being larger than the diameter of the round battery cells 2 . Accordingly, the temperature control channels 6 can be annular gaps. The proportion of the pressure loss caused by the temperature control channel 6 in the total pressure loss in the flow channel 2 can be adjusted via the width of the annular gap. If the length L of the tempering channels is 660 - 99% of the height h of the flow channel 2, the Annular gap width should be 0.01 -2mm in order to achieve the desired proportion of the total pressure drop.
Die Masse des Leitelements 3 kann geringer als die Masse des durch das Leitelement 3 verdrängten Temperierfluids sein. Darüber hinaus kann das Leitelement 3 Messleitungsaufnahmen umfassen. The mass of the guide element 3 can be less than the mass of the tempering fluid displaced by the guide element 3 . In addition, the guide element 3 can include measuring line receptacles.
Wie in der Fig. 1 gezeigt wird, kann zur Erniedrigung desAs shown in FIG. 1, to decrease the
Wärmeübergangskoeffizienten des im Sammelkanal 5 verlaufenden Abschnitts der Batteriezelle 2, dieser mit einer Isolierung 12 versehen sein. Die Isolierung 12 kann gleichzeitig eine Abdichtung zwischen den Batteriezellen 2 und den im Grundkörper 10 angeordneten Durchbrüchen 9 bilden. Heat transfer coefficients of the section of the battery cell 2 running in the collecting channel 5, this section being provided with an insulation 12. The insulation 12 can simultaneously form a seal between the battery cells 2 and the openings 9 arranged in the base body 10 .

Claims

9 Patentansprüche 9 patent claims
1 . Temperiervorrichtung für einzelne, zu einem Modul zusammengesetzte und in einem gemeinsamen Strömungskanal (2) zur direkten Anströmung mit einem Temperierfluid angeordnete Batteriezellen (1 ), dadurch gekennzeichnet, dass zwischen den Batteriezellen (1 ) im Strömungskanal (2) ein Leitelement (3) vorgesehen ist, das den Strömungskanal (2) in einen quer zu einer Längsrichtung (4) der Batteriezellen (1 ) verlaufenden Sammelkanal (5) und von diesem abzweigende, in Längsrichtung (4) der Batteriezellen (1 ) verlaufende Temperierkanäle (6) teilt, deren Länge (L) je 60 - 99% der Höhe (h) des Strömungskanals (2) und deren Anteil am Gesamtdruckverlust innerhalb des Strömungskanals (2) 60 - 99% beträgt. 1 . Temperature control device for individual battery cells (1) assembled to form a module and arranged in a common flow channel (2) for the direct flow of a temperature control fluid, characterized in that a guide element (3) is provided between the battery cells (1) in the flow channel (2). , which divides the flow channel (2) into a collecting channel (5) running transversely to a longitudinal direction (4) of the battery cells (1) and temperature control channels (6) branching off from this and running in the longitudinal direction (4) of the battery cells (1), the length of which (L) each 60 - 99% of the height (h) of the flow channel (2) and their share of the total pressure loss within the flow channel (2) is 60 - 99%.
2. Temperiervorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass je Batteriezelle (1 ) wenigstens ein Temperierkanal (6) vorgesehen ist. 2. Temperature control device according to claim 1, characterized in that each battery cell (1) has at least one temperature control channel (6) is provided.
3. Temperiervorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Masse des Leitelements (3) geringer als die Masse des durch das Leitelement verdrängten Temperierfluids ist. 3. Temperature control device according to claim 1 or 2, characterized in that the mass of the guide element (3) is less than the mass of the temperature control fluid displaced by the guide element.
4. Temperiervorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Strömungskanal (2) von einem Durchbrüche (9) für die Endabschnitte der Batteriezellen (1 ) aufweisenden Grundkörper (10) begrenzt ist. 4. Temperature control device according to one of claims 1 to 3, characterized in that the flow channel (2) is delimited by a base body (10) having openings (9) for the end sections of the battery cells (1).
5. Temperiervorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wärmeübergangskoeffizient zwischen dem Temperierfluid und den Batteriezellen (1 ) im Bereich des Sammelkanals (5) geringer als im Bereich der Temperierkanäle (6) ist. 5. Temperature control device according to one of claims 1 to 4, characterized in that the heat transfer coefficient between the temperature control fluid and the battery cells (1) in the area of the collecting channel (5) is lower than in the area of the temperature control channels (6).
6. Temperiervorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Leitelement (3) Messleitungsaufnahmen umfasst. 6. Temperature control device according to one of claims 1 to 5, characterized in that the guide element (3) comprises measuring line receptacles.
PCT/AT2021/060275 2020-09-18 2021-08-09 Temperature control apparatus for battery cells combined into a module WO2022056561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50797/2020 2020-09-18
ATA50797/2020A AT523635B1 (en) 2020-09-18 2020-09-18 Temperature control device for battery cells combined to form a module

Publications (1)

Publication Number Publication Date
WO2022056561A1 true WO2022056561A1 (en) 2022-03-24

Family

ID=77358025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2021/060275 WO2022056561A1 (en) 2020-09-18 2021-08-09 Temperature control apparatus for battery cells combined into a module

Country Status (2)

Country Link
AT (1) AT523635B1 (en)
WO (1) WO2022056561A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632421A (en) * 2023-07-24 2023-08-22 宁德时代新能源科技股份有限公司 Method, apparatus and computer readable storage medium for temperature regulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075989A2 (en) * 2000-04-04 2001-10-11 Moltech Power Systems, Inc. Extended life battery pack with active cooling
US20130149583A1 (en) * 2010-11-09 2013-06-13 Mitsubishi Heavy Industries, Ltd. Battery system
AT520928A4 (en) 2018-06-08 2019-09-15 Raiffeisenlandesbank Oberoesterreich Ag Temperature control device for individual, assembled into a module battery cells
WO2020097638A1 (en) * 2018-11-15 2020-05-22 Raiffeisenlandesbank Oberösterreich Aktiengesellschaft Cooling device for battery cells assembled into a module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046463B2 (en) * 2000-08-03 2008-02-13 三洋電機株式会社 Power supply
JP5384635B2 (en) * 2008-07-26 2014-01-08 エルジー・ケム・リミテッド Medium or large battery pack case with excellent cooling efficiency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075989A2 (en) * 2000-04-04 2001-10-11 Moltech Power Systems, Inc. Extended life battery pack with active cooling
US20130149583A1 (en) * 2010-11-09 2013-06-13 Mitsubishi Heavy Industries, Ltd. Battery system
AT520928A4 (en) 2018-06-08 2019-09-15 Raiffeisenlandesbank Oberoesterreich Ag Temperature control device for individual, assembled into a module battery cells
WO2019232557A1 (en) * 2018-06-08 2019-12-12 Raiffeisenlandesbank Oberösterreich Aktiengesellschaft Temperature-control device for individual battery cells which are combined into a module
WO2020097638A1 (en) * 2018-11-15 2020-05-22 Raiffeisenlandesbank Oberösterreich Aktiengesellschaft Cooling device for battery cells assembled into a module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632421A (en) * 2023-07-24 2023-08-22 宁德时代新能源科技股份有限公司 Method, apparatus and computer readable storage medium for temperature regulation

Also Published As

Publication number Publication date
AT523635A4 (en) 2021-10-15
AT523635B1 (en) 2021-10-15

Similar Documents

Publication Publication Date Title
EP2250684B1 (en) Modular battery system with cooling system
WO2003054466A1 (en) Heat exchanger, particularly for a motor vehicle
DE102017116984B4 (en) Temperature control device for temperature control of a battery system and battery system
DE102017114330A1 (en) Battery assembly and method for cooling a battery assembly
EP3437155A1 (en) Temperature-controlling device for a battery module, method for manufacturing same and battery module
EP3328678A1 (en) Traction battery for a motor vehicle, comprising a cooling device
WO2020104387A1 (en) Electric machine having multiple rigid winding pieces in the form of hollow conductors - hydraulic connection concept ii
EP3255688B1 (en) Thermoelectric generator for exhaust systems and contact member for a thermoelectric generator
WO2022056561A1 (en) Temperature control apparatus for battery cells combined into a module
EP3350852B1 (en) Housing arrangement for at least one battery cell
EP0126858A1 (en) Electrical heating element
WO2018172280A1 (en) Method for heating a medium
DE3907179C2 (en) Device for heating a flowing fluid medium, in particular water
DE1764914A1 (en) Fissile material arrangement
WO2018041424A1 (en) Arrangement for controlling the temperature of a fluid
AT522356B1 (en) Temperature control device
AT521705B1 (en) Battery module
EP4367736A1 (en) Battery module having temperature-control channel arrangement
DE102021100843A1 (en) Electrical energy storage
EP4432424A2 (en) Cooling plate comprising at least one fluid channel for controlling the temperature of an electric drive energy storage of a vehicle and method for producing such a cooling plate
WO2016110344A1 (en) Device for supplying a medium to fuel cells of a fuel cell stack, and fuel cell stack
DE4212335C2 (en) Extrusion device for the production of plates
DE102021125470A1 (en) Cooling unit, battery module and battery module assembly
DE102022102419A1 (en) Battery module with temperature control channel arrangement
WO2019149446A1 (en) Insulating surface coating on heat exchangers for reducing thermal stresses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21755351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21755351

Country of ref document: EP

Kind code of ref document: A1