WO2022054589A1 - Mat-style laminated film, laminate formed by laminating said mat-style laminated film and plastic substrate, and packaging material using same - Google Patents

Mat-style laminated film, laminate formed by laminating said mat-style laminated film and plastic substrate, and packaging material using same Download PDF

Info

Publication number
WO2022054589A1
WO2022054589A1 PCT/JP2021/031294 JP2021031294W WO2022054589A1 WO 2022054589 A1 WO2022054589 A1 WO 2022054589A1 JP 2021031294 W JP2021031294 W JP 2021031294W WO 2022054589 A1 WO2022054589 A1 WO 2022054589A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated film
film
propylene
derived
resin
Prior art date
Application number
PCT/JP2021/031294
Other languages
French (fr)
Japanese (ja)
Inventor
智久 木田
桂輔 浜崎
康史 渡辺
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021570196A priority Critical patent/JP7070813B1/en
Publication of WO2022054589A1 publication Critical patent/WO2022054589A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a packaging material for packaging foods, miscellaneous goods, magazines, etc., and is specifically used by printing on a single film or surface, or laminating Japanese paper or other films.
  • the present invention relates to a matte-like (matte) laminated film and a packaging material made of the film.
  • the matte-like film has a texture similar to that of Japanese paper as compared with a general transparent film, and thus brings out a high-class feeling of the contents.
  • a matte film for example, in order to obtain a sufficient matte feeling, a multilayer film of a resin layer in which a propylene-based material and high-density polyethylene are mixed and a resin layer containing a propylene-based resin (Patent Documents). 1) etc. are disclosed.
  • plant-derived resins are increasing in place of resins containing fuel-derived components as the main component.
  • a plant-derived resin there is a biodegradable resin typified by polylactic acid (PLA), but the resin has a problem in generalization in terms of cost and processability.
  • PPA polylactic acid
  • a general-purpose resin polyethylene derived from plants, which is a renewable resource derived from sugar cane, has shown increasing worldwide demand, and the cost has become general-purpose due to an increase in production volume.
  • As a package for reducing environmental load such general-purpose plant-derived resins are often used for sanitary and food packaging containers, miscellaneous goods, and plastic shopping bags, but recently, they have been applied to food packaging films. Adoption is expanding.
  • the needs for reducing the environmental load are increasing, it is desired to increase the ratio (biomass degree) of the plant-derived resin in the film (biomass film) using the plant-derived resin. There is.
  • plant-derived resins are highly environmentally friendly, they often exhibit different properties from fossil fuel-derived resins. Therefore, when a film is produced by replacing the fossil-derived resin with a plant-derived resin, various physical properties of the film such as impact resistance, rigidity, film forming property, glossiness, and cloudiness may be deteriorated. In particular, when the proportion of the plant-derived resin is increased, the influence on the physical characteristics of the film becomes large. However, the effect of using a plant-derived resin in the matte laminated film has not been investigated so far.
  • the present inventors have found that there is a problem that the film-forming property, which is one of the most basic performances in film production, is deteriorated. rice field.
  • the subject of the present invention has been made in view of the above problems, has excellent film forming property even when a plant-derived resin is used, and has excellent packaging suitability and mechanical properties required for packaging materials. It is an object of the present invention to provide a laminated film capable of obtaining a sufficient matte feeling without impairing the strength, a laminated body formed by laminating the film and a plastic base material, and a packaging material made of the laminated film or the laminated body thereof.
  • the present invention comprises a plant-derived high-density polyethylene (a1) having a melt florate of 1 g / 10 minutes or less and a propylene resin having a melt florate of 0.5 g / 10 minutes or more and 30 g / 10 minutes or less (a1).
  • a matte laminated film characterized by containing a propylene homopolymer (a2-1) and a propylene-ethylene block copolymer (a2-2), and the matte laminated film and a plastic base material are laminated.
  • the subject of the present invention is solved by the laminated body and the packaging material made of these laminated films or laminated bodies.
  • the laminated film of the present invention can reduce the environmental load by containing a plant-derived resin, has excellent film-forming properties, and has the packaging suitability and mechanical strength required for packaging materials. It develops a sufficient matte feeling without damaging it.
  • the laminated film of the present invention can be used alone, and can be adhered to or fused to other plastic substrates or plastic containers, so that it is excellent in suitability as a packaging material. Therefore, it can be suitably used for foods used to bring out a sense of quality, especially as a bread packaging bag that is stored and transferred at room temperature.
  • the laminated film in the present invention is a matte laminated film having at least a surface resin layer (A) and a resin layer (B).
  • the surface resin layer (A) in the laminated film of the present invention contains a plant-derived high-density polyethylene (a1) having a melt retard rate of 1 g / 10 minutes or less and a melt retard rate of 0.5 g / 10 minutes or more. It contains 30 g / 10 minutes or less of a propylene-based resin (a2).
  • the plant-derived high-density polyethylene (a1) is a polyethylene-based resin produced from plant-derived ethylene using sugar cane, corn, beat or the like as a starting material.
  • the biomass polyethylene (a1) include linear high-density polyethylene (LHDPE) and high-density polyethylene (HDPE), which may be used alone or in combination. Among these, high density polyethylene (HDPE) is particularly preferable.
  • LHDPE linear high-density polyethylene
  • HDPE high-density polyethylene
  • the plant-derived high-density polyethylene (a1) of the present invention requires that the melt flow rate (temperature 190 ° C., load 2.16 kg) be 1 g / 10 minutes or less. If the melt flow rate exceeds 1 g / 10 minutes, it becomes difficult to obtain a matte film having a texture similar to that of Japanese paper.
  • a particularly preferable melt flow rate is in the range of 0.05 to 0.8 g / 10 minutes.
  • the density of the plant-derived high-density polyethylene (a1) is in the range of 0.935 to 0.970 g / cm 2 , but the matte feeling, mechanical strength, film uniformity, etc. of the obtained laminated film are obtained. From the viewpoint of the above, it is more preferably in the range of 0.940 to 0.965 g / cm 2 .
  • the propylene-based resin (a2) contains a propylene homopolymer (a2-1) and a propylene-ethylene block copolymer (a2-2).
  • a propylene-based resin (a2) resins other than the propylene homopolymer (a2-1) and the propylene-ethylene block copolymer (a2-2), for example, a propylene-ethylene random copolymer and a propylene- ⁇ -olefin copolymer weight.
  • It may contain a coalescence (propylene-1-butene random copolymer, propylene-1-hexene random copolymer, etc.), propylene-ethylene-1-butene random copolymer, and metallocene-catalyzed polypropylene.
  • the propylene-based resin (a2) of the present invention is essential to have an MFR (temperature 230 ° C., load 2.16 kg) of 0.5 g / 10 minutes or more and 30 g / 10 minutes or less. From the viewpoint of less shrinkage of the film during bag making and further improving the film forming property of the film, it is preferably 4 g / 10 minutes or more and 20 g / 10 minutes or less, and 5 g / 10 minutes or more and 15 g / 10 minutes or less. It is more preferable to have.
  • the propylene-based resin (a2) of the present invention preferably has a melting point of 120 to 172 ° C, preferably 125 to 170 ° C. When the MFR and the melting point are in this range, the shrinkage of the film during bag making can be further reduced, and the film forming property of the film is further improved.
  • the content of the plant-derived high-density polyethylene (a1) is preferably 50% by mass or more, and preferably 55% by mass or more.
  • the high-density polyethylene (a1) is used in order to give the obtained film a sufficient matte feeling (high cloudiness and low gloss).
  • the propylene-based resin (a2) are preferably in the range of 60/40 to 40/60 in mass ratio (a1) / (a2).
  • the mass ratio (a2-1) / (a2-2) of the propylene homopolymer (a2-1) and the propylene-ethylene block copolymer (a2-2) is in the range of 45/55 to 65/35. It is preferable to have.
  • the total content of the plant-derived high-density polyethylene (a1) and the propylene-based resin (a2) in the surface resin layer (A) is preferably 80% by mass or more in the surface resin layer (A). , 85% by mass or more, more preferably 90% by mass or more. Within this range, it becomes easy to obtain a film having suitable mechanical strength. More preferably, the total content of the plant-derived high-density polyethylene (a1), the propylene homopolymer (a2-1), and the propylene-ethylene block copolymer (a2-2) is the surface resin layer. It is more preferably 80% by mass or more, 85% by mass or more, and 90% by mass or more in (A).
  • the surface resin layer (A) may contain components other than the plant-derived high-density polyethylene (a1) and the propylene-based resin (a2) as long as the effects of the present invention are not impaired.
  • the other components include polystyrene-based resins, polyurethane-based resins, polyester-based resins, and polyamide-based resins.
  • an ethylene resin derived from fossil fuel may be used in combination with an ethylene resin derived from a plant.
  • the surface roughness (Ra) of the surface resin layer (A) based on JIS B-0601 is preferably 0.5 to 2.0. With the surface roughness in this range, a suitable matte-like film having the texture of Japanese paper can be obtained, so that the designability can be improved.
  • the mass ratio of the high-density polyethylene (a1) and the propylene-based resin (a2) is set to 60 / (a2) as described above. It may be used in a ratio of 40 to 40/60 and does not require any particular adjustment.
  • the difference in MFR between the plant-derived high-density polyethylene (a1) and the propylene-based resin (a2) is preferably 5 g / 10 minutes or more, and more preferably 6 g / 10 minutes or more. Within this range, it becomes easy to obtain a suitable matte resin layer.
  • the laminated film of the present invention is formed by laminating the above-mentioned specific surface resin layer (A) on a resin layer (B) containing a polyolefin resin (b1).
  • a film having such a multi-layer structure it has a matte feeling even when used alone, and it is possible to develop strength and the like for use in packaging bags.
  • polyolefin resin (b1) various polyolefin resins used for packaging films can be used, and for example, a propylene homopolymer, a propylene-ethylene random copolymer, a propylene-ethylene block copolymer, and a propylene- ⁇ .
  • -Olefin copolymer propylene-based resin such as (propylene-1-butene random copolymer, propylene-1-hexene random copolymer, etc.), propylene-ethylene-1-butene random copolymer, metallocene-catalyzed polypropylene, etc.
  • VLDPE ultra-low density polyethylene
  • LLDPE linear low-density polyethylene
  • LDPE low-density polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • EMMA Acrylate copolymer
  • EAA ethylene-ethylacryllate copolymer
  • EMA ethylene-methylacrelate copolymer
  • EAA ethylene-acrylic acid copolymer
  • EEMA ethylene-methacrylic acid copolymer
  • An acid copolymer ionoma or the like can be used.
  • the interlayer strength of the laminated film can be enhanced.
  • a propylene-ethylene copolymer can be used.
  • a plant-derived resin as the polyolefin-based resin (b1).
  • the same resin as the plant-derived high-density polyethylene (a1) used in the surface resin layer (A) or an ethylene-based resin of the same type is used. It is preferable to use a resin.
  • linear low-density polyethylene LLDPE
  • LLDPE linear low-density polyethylene
  • MDPE medium-density polyethylene
  • HDPE high-density polyethylene
  • linear low-density polyethylene b1-1
  • the linear low-density polyelene preferably has a density of 0.925 g / cm 3 or less, and more preferably 0.920 g / cm 3 or less.
  • the MFR of the plant-derived polyethylene used for the resin layer (B) is preferably 0.1 to 30 g / 10 minutes, and particularly preferably 0.5 to 20 g / 10 minutes. When it is 1 g / 10 minutes or more, it becomes easy to obtain a suitable film-forming property, and when it is 20 g / 10 minutes or less, it becomes easy to obtain a suitable formability.
  • the plant-derived high-density polyethylene (a1) used for the surface resin layer (A) and the plant-derived ethylene resin used for the resin layer (B) are made of sugar cane or the like as compared with the petroleum-derived production method.
  • the production method is the same for other plants, except for the production of monomer.
  • the production method is not particularly limited, and can be produced by a known method. For example, a manufacturing method using a Ziegler-Natta catalyst or a metallocene catalyst can be mentioned.
  • the titanium-containing compound itself or a titanium-containing compound supported on a carrier such as a magnesium compound is used as a main catalyst and an organic aluminum compound is used as an auxiliary catalyst, and propylene alone or desired ⁇ such as ethylene is used.
  • a method of adding an olefin to carry out polymerization can be mentioned. This polymerization may be carried out by any process such as a slurry polymerization method, a solution polymerization method, and a gas phase polymerization method.
  • a uniform catalyst may be used, and a conventionally used catalyst composed of a vanadium compound and an organic aluminum compound, a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, or the like may be used.
  • a metallocene system consisting of transition metal compounds such as zirconium, titanium, and hafnium having one or two ligands, transition metal compounds whose ligands are geometrically controlled, and cocatalysts such as aluminoxane and ionic compounds.
  • a uniform system such as a catalyst can also be mentioned.
  • an organic aluminum compound may be used, and in addition to uniform polymerization in the presence of a solvent, any process such as slurry polymerization method or vapor phase polymerization method may be used.
  • Examples of commercially available products of such plant-derived polyethylene include SGM9450F, SLL118, SLL118 / 21, SLL218, SLL318, SLH118, SLH218, and SLH0820 manufactured by Braskem.
  • the content of the plant-derived linear low-density polyethylene (b1-1) is preferably 10% by mass or more, preferably 15% by mass or more, from the viewpoint of high impact resistance and bag breaking resistance. More preferably, it is by mass.
  • the total content of the polyolefin resin (b1) in the resin layer (B) is preferably 80% by mass or more, more preferably 85% by mass or more, and 90% by mass. It is more preferably mass% or more. Within this range, it becomes easy to obtain a film having suitable mechanical strength.
  • the total content of the plant-derived linear low-density polyethylene (b1-1) and the propylene-based resin (b1-2) is preferably 80% by mass or more in the resin layer (B). It is more preferably 85% by mass or more, and further preferably 90% by mass or more.
  • the resin layer (B) is excellent in balance between mechanical strength and heat sealability. It is preferable that the seal layer (C) is further provided on the) side.
  • the seal layer (C) is designed so that the seal strength can be easily obtained at the time of heat sealing between the seal layers (C) of the laminated film or in a container made of other materials.
  • the resin type can be selected depending on the use of the obtained laminated film. In particular, when it is used as a packaging bag and the seal layers (C) are heat-sealed with each other, an appropriate seal strength can be obtained, so that the seal layer (C) contains a propylene-ethylene random copolymer. Is preferable. Further, in order to adjust the seal strength, it is also possible to use an ethylene- ⁇ -olefin copolymer in combination.
  • the matte laminated film of the present invention may have one or two or more other layers in addition to the surface resin layer (A), the resin layer (B) and the seal layer (C).
  • the other layer various resin materials used for the packaging film can be used, and it is preferable that the other layer is provided between the resin layer (B) and the seal layer (C).
  • the total mass of polyethylene contained in the matte laminated film of the present invention is preferably 20% by mass or more, more preferably 23% by mass or more, and 24% by mass or more with respect to the mass of the laminated film. It is more preferable to have.
  • the total mass of the plant-derived polyethylene is 20% by mass or more with respect to the mass of the mat-like laminated film, and the total mass is 23. % Or more, more preferably 24% by mass or more.
  • the total mass of polyethylene preferably the total mass of polyethylene derived from plants, should be 24% by mass or more with respect to the total mass of the surface resin layer (A) and the resin layer (B) adjacent to the surface resin layer. Is more preferable, and it is more preferably 27% by mass or more, and further preferably 28% by mass.
  • the laminated film of the present invention has sufficient strength as a film by itself, its total thickness is preferably in the range of 20 to 50 ⁇ m, and is particularly used for packaging relatively lightweight contents such as bread. In this case, it is preferably 25 to 40 ⁇ m.
  • the surface resin layer (A) is 10 to 40% of the total thickness.
  • the thickness of the resin layer (A) is preferably 2 to 20 ⁇ m, more preferably 4 to 16 ⁇ m, because it is easy to obtain suitable design.
  • the resin layer (B) has a total thickness of 30 to 90%.
  • the thickness of the resin layer (B) is preferably 6 to 45 ⁇ m, more preferably 10 to 30 ⁇ m.
  • the seal layer (C) when the seal layer (C) is provided, it is preferable that the seal layer (C) has a total thickness of 10 to 25%.
  • the thickness of the seal layer (C) is preferably 2 to 12.5 ⁇ m, more preferably 3 to 10 ⁇ m.
  • the degree of fogging of the laminated film of the present invention is preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more in order to obtain a sufficient matte feeling.
  • the glossiness of the laminated film of the present invention is preferably 20% or less, more preferably 10% or less, and 5% or less in order to suppress the gloss of the surface and give a texture close to that of Japanese paper. Is more preferable.
  • the rigidity of the laminated film of the present invention is preferably 500 MPa or more, more preferably 600 MPa or more, still more preferably 650 MPa or more, in order to maintain suitable strength when applied as a packaging material. ..
  • the impact strength of the laminated film of the present invention is preferably 0.15 J (23 ° C.) or higher, and more preferably 0.17 J (23 ° C.) or higher. The impact strength is determined by holding the sample in a constant temperature room adjusted to 23 ° C. for 6 hours and then measuring the impact strength by the film impact method using a spherical impact head having a diameter of 25.4 mm.
  • Each of the resin layers (A), (B) or (C) may contain an anti-fog agent, an antistatic agent, a heat stabilizer, a nucleating agent, an antioxidant, a lubricant, an anti-blocking agent, if necessary.
  • Ingredients such as a mold release agent, an ultraviolet absorber, and a colorant can be added within a range that does not impair the object of the present invention.
  • the method for producing the laminated film of the present invention is not particularly limited, but for example, each resin or resin mixture used for the surface resin layer (A), the resin layer (B) and the seal layer (C) is separately used. It is heated and melted by an extruder, laminated in the order of (A) / (B) / (C) in a molten state by a method such as a coextrusion multi-layer die method or a feed block method, and then inflation or T-die. Examples thereof include a coextrusion method in which the film is formed into a film by a chill roll method or the like.
  • This coextrusion method is preferable because the thickness ratio of each layer can be adjusted relatively freely, and a coextruded multilayer film having excellent hygiene and cost performance can be obtained. Further, since the high-density polyethylene (a1) and the propylene-based resin (a2) used in the present invention have a large difference in melting point between them, the appearance of the film may be deteriorated during the coextrusion process. In order to suppress such deterioration, the T-die chill roll method, which can perform melt extrusion at a relatively high temperature, is preferable.
  • the laminated film of the present invention can be obtained as a substantially unstretched multilayer film by the above manufacturing method, secondary molding such as deep drawing by vacuum forming is also possible.
  • the resin layer (A) when printing or the like is performed on the surface resin layer (A), it is preferable to apply a surface treatment to the resin layer (A) in order to improve the adhesiveness with the printing ink.
  • a surface treatment When the other film is attached to the surface of the resin layer (B) or the seal layer (C), the resin layer (B) or the seal layer (C) is used in order to improve the adhesion with the adhesive.
  • the seal layer (C) of the laminated film of the present invention is used as a heat seal layer, and the seal layers (C) are overlapped with each other to form a heat seal or a surface resin layer (A). ) And the seal layer (C) are overlapped and heat-sealed to form a packaging bag with the seal layer (C) as the inside.
  • two laminated films are cut out to the desired size of a packaging bag, and they are stacked to form a bag by heat-sealing three sides, and then one side without heat-sealing. It can be used as a packaging bag by filling it with the contents, heat-sealing it, and sealing it.
  • the laminated film of the present invention and another film can be laminated and used as a composite film.
  • the other film may be provided on the surface resin layer (A) side or on the resin layer (B) or seal layer (C) side, but the resin layer (B) or seal layer (C) may be provided. It is preferable to provide a sealant film on the) side.
  • a film such as LDPE, EVA, or polypropylene having a relatively weak mechanical strength can be used, and it is preferable to use a biaxially stretched polypropylene film (OPP).
  • OPP biaxially stretched polypropylene film
  • a lamine in which a film such as LDPE, EVA, polypropylene and a stretched film having relatively good tearability for example, a biaxially stretched polyethylene terephthalate film (OPET), a biaxially stretched polypropylene film (OPP), etc. are bonded together.
  • -Polyethylene film can also be used.
  • a method of laminating a laminated body formed by laminating a laminated film of the present invention and another film in addition to the above heat seal, for example, dry lamination, wet lamination, non-solvent, etc. Examples thereof include methods such as laminating and extrusion laminating.
  • Examples of the adhesive used in the dry lamination include a polyether-polyurethane-based adhesive, a polyester-polyurethane-based adhesive, and the like.
  • a packaging material using the laminated film of the present invention or a laminated body obtained by laminating the laminated film of the present invention and a plastic base material a packaging bag used for foods, chemicals, industrial parts, miscellaneous goods, magazines, etc. , Containers, container lids, etc.
  • a packaging material similar to Japanese paper and the like it is possible to provide a packaging material similar to Japanese paper and the like, and it can be suitably used for foods and the like used to bring out a high-class feeling.
  • Example 1 As the surface layer (A), 20 parts of a propylene homopolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and high-density polyethylene derived from sugar cane (Brackem SGM9450F density: 0.952 g / cm3). , MFR: 0.05 g / 10 min) 55 parts and propylene-ethylene block copolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 min) 25 parts board.
  • a propylene homopolymer density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes
  • high-density polyethylene derived from sugar cane Brackem SGM9450F density: 0.952 g / cm3
  • MFR 0.05 g / 10 min
  • propylene-ethylene block copolymer density: 0.90 g / cm3, MFR: 7.0 g / 10 min
  • the resin layer (B) 85 parts of a propylene-ethylene block copolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and a linear low-density polyethylene derived from sugar cane (Brackem). SLH218 Density: 0.916 g / cm3, MFR: 2.3 g / 10 minutes) A mixture consisting of 15 parts was used. Further, as the seal layer (C), 80 parts of (1) propylene-ethylene random copolymer (density: 0.90 g / cm3, MFR: 5.0 g / 10 minutes) and (2) propylene-.
  • an ethylene random copolymer density: 0.90 g / cm3, MFR: 8.0 g / 10 minutes
  • Example 2 As the surface resin layer (A) of Example 1, 27 parts of propylene homopolymer / 55 parts of high-density polyethylene derived from sugar cane / 18 parts of propylene-ethylene block copolymer were replaced with the same thickness as in Example 1. A coextruded multilayer film having three layers of 30 ⁇ m was obtained. Next, the surface of the seal layer (C) of the obtained film was subjected to a corona discharge treatment so that the surface energy was 36 mN / m in the same manner as in Example 1.
  • Comparative Example 1 As the surface resin layer (A), 40 parts of a propylene homopolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and high-density polyethylene derived from sugar cane (SGM9450F density of Braskem): 0.952 g / A mixture consisting of 60 parts (cm3, MFR: 0.05 g / 10 minutes) was used.
  • the intermediate layer (B) 85 parts of a propylene-ethylene block copolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and a linear low-density high-density polyethylene derived from sugar cane.
  • a three-layer film having a thickness of 30 ⁇ m was formed.
  • the surface of the seal layer (C) of the obtained film was subjected to a corona discharge treatment so that the surface energy was 36 mN / m in the same manner as in Example 1.
  • Comparative Example 2 As the surface resin layer (A), 40 parts of a propylene homopolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and high-density polyethylene derived from fossil fuel (density: 0.955 g / cm3). , MFR: 0.35 g / 10 min) 60 parts mixture was used. Further, as the intermediate layer (B), 90 parts of a propylene-ethylene block copolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and linear low-density polyethylene derived from fossil fuel are used.
  • a three-layer film having a thickness of 30 ⁇ m was formed.
  • the surface of the seal layer (C) of the obtained film was subjected to a corona discharge treatment so that the surface energy was 36 mN / m in the same manner as in Example 1.
  • the 1% tangential modulus (unit: MPa) at 23 ° C. is determined by the extrusion direction (hereinafter referred to as “MD”) at the time of film production based on ASTM D-882. , Tensilon tensile tester [manufactured by ASTM Co., Ltd.].
  • the laminated films of Examples 1 and 2 contain a plant-derived resin, have excellent cloudiness and glossiness while achieving a high level of biomass, and have suitable rigidity, impact strength, and surface slipperiness. Since it has a film-forming property, it is suitable as a packaging film that can reduce the environmental load.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

Provided is a mat-style laminated film in which a surface resin layer (A) containing high-density polyethylene (a1) derived from a plant having a melt flow rate of 1 g/10 min or less and a propylene-based resin (a2) having a melt flow rate of 0.5 g/10 min to 30 g/10 min, and a resin layer (B) containing a polyolefin-based resin (b1) are laminated, the mat-style laminated film containing, as the propylene-based resin (a2), a propylene homopolymer (a2-1) and a propylene-α-olefin block copolymer (a2-2).

Description

マット調積層フィルム、該マット調積層フィルムとプラスチック基材をラミネ-トしてなる積層体及びこれらを用いた包装材A matte-like laminated film, a laminated body made by laminating the matte-like laminated film and a plastic base material, and a packaging material using these.
 本発明は、食品、雑貨、雑誌等を包装する包装材に関するものであって、詳しくは単体のフィルム若しくは表面に印刷を施したり、和紙や他のフィルム等をラミネ-トしたりすることにより使用するマット調(つや消し性)の積層フィルム及び該フィルムからなる包装材に関する。 The present invention relates to a packaging material for packaging foods, miscellaneous goods, magazines, etc., and is specifically used by printing on a single film or surface, or laminating Japanese paper or other films. The present invention relates to a matte-like (matte) laminated film and a packaging material made of the film.
 近年、パンや菓子等の食品や雑貨、雑誌等の各種包装において、多様な衣装の包装材が使用されている。なかでも、表面がつや消し性を有するマット調フィルムのニ-ズが高まっている。マット調フィルムは、一般の透明フィルムに比べ、和紙に近い風合いを有するため、内容物の高級感を引き出すものである。このようなマット調フィルムとしては、例えば、充分なマット感を得るために、プロピレン系材料と高密度ポリエチレンを混合した樹脂層と、プロピレン系樹脂を含有する樹脂層との多層化フィルム(特許文献1)等が開示されている。
 一方、国内流通大手や食品メ-カ-では、COP21への対応や、持続可能な開発目標(SDGs)の一つに掲げられている「持続可能な生産消費形態を確保する」という目標にむけた取り組みとして、環境負荷低減パッケ-ジを積極推進している。従来からの環境負荷低減パッケ-ジの取り組みは「3R」(減容化、再利用、リサイクル)の推進化が図られてきたが、近年では、石油資源節約の観点からも、石油等の化石燃料由来成分を主成分とした樹脂に換えて、植物由来成分を主原料とした樹脂(以下、「植物由来の樹脂」という)の採用も増加している。
植物由来の樹脂としては、ポリ乳酸(PLA)に代表される生分解性樹脂があるが、当該樹脂はコストや加工性面で汎用化に問題があった。一方で、汎用樹脂としては、サトウキビ由来の再生可能資源である植物由来のポリエチレンが世界的な需要の高まりをみせ、生産量の増加によりコストも汎用的になっている。環境負荷低減パッケ-ジとしては、このような汎用の植物由来の樹脂をサニタリ-や食品の包装容器や雑貨やレジ袋に使用される例が多いが、最近になり、食品包装用フィルムへの採用が広がりつつある。
また、環境負荷低減のニ-ズは高まる一方であることから、植物由来の樹脂を使用したフィルム(バイオマスフィルム)において、植物由来の樹脂の割合(バイオマス度)をより高くすることが望まれている。
In recent years, various wrapping materials for costumes have been used in various packagings for foods such as bread and confectionery, miscellaneous goods, and magazines. In particular, the need for a matte film having a matte surface is increasing. The matte-like film has a texture similar to that of Japanese paper as compared with a general transparent film, and thus brings out a high-class feeling of the contents. As such a matte film, for example, in order to obtain a sufficient matte feeling, a multilayer film of a resin layer in which a propylene-based material and high-density polyethylene are mixed and a resin layer containing a propylene-based resin (Patent Documents). 1) etc. are disclosed.
On the other hand, major domestic distributors and food manufacturers are aiming to respond to COP21 and to secure a sustainable production and consumption form, which is one of the Sustainable Development Goals (SDGs). As an initiative, we are actively promoting packages to reduce environmental impact. Conventional efforts for the environmental load reduction package have been to promote the "3Rs" (volume reduction, reuse, recycling), but in recent years, fossils such as petroleum have been promoted from the viewpoint of saving petroleum resources. The adoption of resins using plant-derived components as the main raw material (hereinafter referred to as "plant-derived resins") is increasing in place of resins containing fuel-derived components as the main component.
As a plant-derived resin, there is a biodegradable resin typified by polylactic acid (PLA), but the resin has a problem in generalization in terms of cost and processability. On the other hand, as a general-purpose resin, polyethylene derived from plants, which is a renewable resource derived from sugar cane, has shown increasing worldwide demand, and the cost has become general-purpose due to an increase in production volume. As a package for reducing environmental load, such general-purpose plant-derived resins are often used for sanitary and food packaging containers, miscellaneous goods, and plastic shopping bags, but recently, they have been applied to food packaging films. Adoption is expanding.
In addition, since the needs for reducing the environmental load are increasing, it is desired to increase the ratio (biomass degree) of the plant-derived resin in the film (biomass film) using the plant-derived resin. There is.
特開2016-68417号公報Japanese Unexamined Patent Publication No. 2016-68417
 植物由来の樹脂は、環境対応性は高いものの化石燃料由来の樹脂とは異なる性質を示すことが多い。そのため、化石由来の樹脂を植物由来の樹脂に置き換えてフィルムを作製すると、耐衝撃性、剛性、成膜性、光沢度、曇り度等のフィルムの各種物性において低下する場合がある。特に、植物由来の樹脂の割合を高くすると、フィルムの物性への影響が大きくなる。しかしながら、マット調積層フィルムにおいて、植物由来の樹脂を用いた場合の影響について、これまで検討がなされていない。
 本発明者らは、マット調フィルムにおいて植物由来の樹脂を採用して各種物性を検討した結果、フィルム製造において最も基本的な性能の一つである成膜性が低下する問題が生じることがわかった。
 本発明の課題は、上記のような問題に鑑みなされたものであり、植物由来の樹脂を用いた場合にも優れた成膜性を有し、包装材に求められている包装適性、機械的強度を損なうことなく充分なマット感が得られる積層フィルム、該フィルムとプラスチック基材をラミネ-トしてなる積層体、及びこれらの積層フィルム又は積層体からなる包装材を提供することである。
Although plant-derived resins are highly environmentally friendly, they often exhibit different properties from fossil fuel-derived resins. Therefore, when a film is produced by replacing the fossil-derived resin with a plant-derived resin, various physical properties of the film such as impact resistance, rigidity, film forming property, glossiness, and cloudiness may be deteriorated. In particular, when the proportion of the plant-derived resin is increased, the influence on the physical characteristics of the film becomes large. However, the effect of using a plant-derived resin in the matte laminated film has not been investigated so far.
As a result of examining various physical properties by using a plant-derived resin in a matte-like film, the present inventors have found that there is a problem that the film-forming property, which is one of the most basic performances in film production, is deteriorated. rice field.
The subject of the present invention has been made in view of the above problems, has excellent film forming property even when a plant-derived resin is used, and has excellent packaging suitability and mechanical properties required for packaging materials. It is an object of the present invention to provide a laminated film capable of obtaining a sufficient matte feeling without impairing the strength, a laminated body formed by laminating the film and a plastic base material, and a packaging material made of the laminated film or the laminated body thereof.
 本発明は、メルトフロ-レ-トが1g/10分以下の植物由来の高密度ポリエチレン(a1)と、メルトフロ-レ-トが0.5g/10分以上30g/10分以下のプロピレン系樹脂(a2)とを含有する表面樹脂層(A)と、ポリオレフィン系樹脂(b1)を含有する樹脂層(B)と、が積層されたマット調積層フィルムであって、前記プロピレン系樹脂(a2)としてプロピレン単独重合体(a2-1)及びプロピレン-エチレンブロック共重合体(a2-2)を含有することを特徴とするマット調積層フィルム、該マット調積層フィルムとプラスチック基材をラミネ-トしてなる積層体、及びこれらの積層フィルム又は積層体からなる包装材により、本発明の課題を解決するものである。 The present invention comprises a plant-derived high-density polyethylene (a1) having a melt florate of 1 g / 10 minutes or less and a propylene resin having a melt florate of 0.5 g / 10 minutes or more and 30 g / 10 minutes or less (a1). A matte laminated film in which a surface resin layer (A) containing a2) and a resin layer (B) containing a polyolefin resin (b1) are laminated, as the propylene resin (a2). A matte laminated film characterized by containing a propylene homopolymer (a2-1) and a propylene-ethylene block copolymer (a2-2), and the matte laminated film and a plastic base material are laminated. The subject of the present invention is solved by the laminated body and the packaging material made of these laminated films or laminated bodies.
 本発明の積層フィルムは、植物由来の樹脂を含有することにより環境負荷を小さくすることができ、且つ、優れた成膜性を有し、包装材に求められている包装適性、機械的強度を損なうことなく充分なマット感を発現する。本発明の積層フィルムは、単体で使用することも可能であるし、また、他のプラスチック基材やプラスチック容器に接着又は融着可能であるため、包装材としての適性に優れるものである。従って、高級感を引き出すために使用される食品用、特には常温で保管・移送されるパン用包装袋として好適に用いることができる。 The laminated film of the present invention can reduce the environmental load by containing a plant-derived resin, has excellent film-forming properties, and has the packaging suitability and mechanical strength required for packaging materials. It develops a sufficient matte feeling without damaging it. The laminated film of the present invention can be used alone, and can be adhered to or fused to other plastic substrates or plastic containers, so that it is excellent in suitability as a packaging material. Therefore, it can be suitably used for foods used to bring out a sense of quality, especially as a bread packaging bag that is stored and transferred at room temperature.
 本発明における積層フィルムは、表面樹脂層(A)と樹脂層(B)とを少なくとも有するマット調積層フィルムである。
 本発明の積層フィルムにおける表面樹脂層(A)は、メルトフロ-レ-トが1g/10分以下の植物由来の高密度ポリエチレン(a1)と、メルトフロ-レ-トが0.5g/10分以上30g/10分以下のプロピレン系樹脂(a2)とを含有する。
The laminated film in the present invention is a matte laminated film having at least a surface resin layer (A) and a resin layer (B).
The surface resin layer (A) in the laminated film of the present invention contains a plant-derived high-density polyethylene (a1) having a melt retard rate of 1 g / 10 minutes or less and a melt retard rate of 0.5 g / 10 minutes or more. It contains 30 g / 10 minutes or less of a propylene-based resin (a2).
 植物由来の高密度ポリエチレン(a1)は、サトウキビ、トウモロコシ、ビ-ト等を出発原料とする植物由来のエチレンから生成されるポリエチレン系樹脂である。当該バイオマスポリエチレン(a1)としては、例えば、線状高密度ポリエチレン(LHDPE)、高密度ポリエチレン(HDPE)等が挙げられ、これらは単独でも、混合して使用してもよい。これらのなかでも、特に、高密度ポリエチレン(HDPE)であることが好ましい。
本発明の植物由来の高密度ポリエチレン(a1)は、メルトフロ-レ-ト(温度190℃、荷重2.16kg)が1g/10分以下であることを必須とするものである。メルトフロ-レ-トが1g/10分を超えると、和紙の風合いに近いマット調のフィルムが得られにくくなる。特に好ましいメルトフロ-レ-トは0.05~0.8g/10分の範囲である。
The plant-derived high-density polyethylene (a1) is a polyethylene-based resin produced from plant-derived ethylene using sugar cane, corn, beat or the like as a starting material. Examples of the biomass polyethylene (a1) include linear high-density polyethylene (LHDPE) and high-density polyethylene (HDPE), which may be used alone or in combination. Among these, high density polyethylene (HDPE) is particularly preferable.
The plant-derived high-density polyethylene (a1) of the present invention requires that the melt flow rate (temperature 190 ° C., load 2.16 kg) be 1 g / 10 minutes or less. If the melt flow rate exceeds 1 g / 10 minutes, it becomes difficult to obtain a matte film having a texture similar to that of Japanese paper. A particularly preferable melt flow rate is in the range of 0.05 to 0.8 g / 10 minutes.
 更に前記植物由来の高密度ポリエチレン(a1)の密度としては、0.935~0.970g/cmの範囲であるが、得られる積層フィルムのマット感・機械的な強度・フィルムの均一性等の観点から0.940~0.965g/cmの範囲であることがより好ましい。 Further, the density of the plant-derived high-density polyethylene (a1) is in the range of 0.935 to 0.970 g / cm 2 , but the matte feeling, mechanical strength, film uniformity, etc. of the obtained laminated film are obtained. From the viewpoint of the above, it is more preferably in the range of 0.940 to 0.965 g / cm 2 .
 前記プロピレン系樹脂(a2)は、プロピレン単独重合体(a2-1)及びプロピレン-エチレンブロック共重合体(a2-2)を含有する。プロピレン系樹脂としてプロピレン単独重合体(a2-1)及びプロピレン-エチレンブロック共重合体(a2-2)の2成分を含有することにより、成膜性を向上させることができ、また、マット感と、表面粗さの調整が容易となる。
 プロピレン系樹脂(a2)として前記プロピレン単独重合体(a2-1)及びプロピレン-エチレンブロック共重合体(a2-2)以外の樹脂、例えばプロピレン-エチレンランダム共重合体、プロピレン-α-オレフィン共重合体(プロピレン-1-ブテンランダム共重合体、プロピレン-1-ヘキセンランダム共重合体、等)、プロピレン-エチレン-1-ブテンランダム共重合体、メタロセン触媒系ポリプロピレンを含有していてもよい。
The propylene-based resin (a2) contains a propylene homopolymer (a2-1) and a propylene-ethylene block copolymer (a2-2). By containing two components of the propylene homopolymer (a2-1) and the propylene-ethylene block copolymer (a2-2) as the propylene resin, the film forming property can be improved and the matte feeling can be obtained. , The surface roughness can be easily adjusted.
As the propylene-based resin (a2), resins other than the propylene homopolymer (a2-1) and the propylene-ethylene block copolymer (a2-2), for example, a propylene-ethylene random copolymer and a propylene-α-olefin copolymer weight. It may contain a coalescence (propylene-1-butene random copolymer, propylene-1-hexene random copolymer, etc.), propylene-ethylene-1-butene random copolymer, and metallocene-catalyzed polypropylene.
 本発明のプロピレン系樹脂(a2)は、MFR(温度230℃、荷重2.16kg)が0.5g/10分以上30g/10分以下であることを必須とするものである。製袋時のフィルムの収縮が少なく、更にフィルムの成膜性も向上させる観点からは、4g/10分以上20g/10分以下であることが好ましく、5g/10分以上15g/10分以下であることがより好ましい。
 また、本発明のプロピレン系樹脂(a2)は、融点が120~172℃であるものが好ましく、125~170℃であることが好ましい。MFR及び融点がこの範囲であれば、製袋時のフィルムの収縮をより少なくでき、更にフィルムの成膜性もより向上する。
The propylene-based resin (a2) of the present invention is essential to have an MFR (temperature 230 ° C., load 2.16 kg) of 0.5 g / 10 minutes or more and 30 g / 10 minutes or less. From the viewpoint of less shrinkage of the film during bag making and further improving the film forming property of the film, it is preferably 4 g / 10 minutes or more and 20 g / 10 minutes or less, and 5 g / 10 minutes or more and 15 g / 10 minutes or less. It is more preferable to have.
The propylene-based resin (a2) of the present invention preferably has a melting point of 120 to 172 ° C, preferably 125 to 170 ° C. When the MFR and the melting point are in this range, the shrinkage of the film during bag making can be further reduced, and the film forming property of the film is further improved.
 表面樹脂層(A)において、植物由来の高密度ポリエチレン(a1)の含有量は、50質量%以上であることが好ましく、55質量%以上であることが好ましい。 In the surface resin layer (A), the content of the plant-derived high-density polyethylene (a1) is preferably 50% by mass or more, and preferably 55% by mass or more.
 植物由来の高密度ポリエチレン(a1)と、プロピレン系樹脂(a2)の使用割合としては、得られるフィルムに充分なマット感(高曇り度と低光沢度)を発現させるために、高密度ポリエチレン(a1)と、プロピレン系樹脂(a2)との質量比(a1)/(a2)が60/40~40/60の範囲であることが好ましい。植物由来の高密度ポリエチレン(a1)の使用割合がこれよりも低い場合には、目的とするマット感が得られにくく、一方、使用割合がこれよりも高い場合には、得られるフィルムの機械的な強度、特に衝撃強度が不足し、実用レベルの包装袋が得られにくい。
 また、プロピレン単独重合体(a2-1)とプロピレン-エチレンブロック共重合体(a2-2)との質量比(a2-1)/(a2-2)が45/55~65/35の範囲であることが好ましい。
As for the ratio of the plant-derived high-density polyethylene (a1) and the propylene-based resin (a2), the high-density polyethylene (a1) is used in order to give the obtained film a sufficient matte feeling (high cloudiness and low gloss). ) And the propylene-based resin (a2) are preferably in the range of 60/40 to 40/60 in mass ratio (a1) / (a2). When the usage ratio of the plant-derived high-density polyethylene (a1) is lower than this, it is difficult to obtain the desired matte feeling, while when the usage ratio is higher than this, the obtained film is mechanical. The strength, especially the impact strength, is insufficient, and it is difficult to obtain a practical level packaging bag.
Further, the mass ratio (a2-1) / (a2-2) of the propylene homopolymer (a2-1) and the propylene-ethylene block copolymer (a2-2) is in the range of 45/55 to 65/35. It is preferable to have.
 表面樹脂層(A)中の植物由来の高密度ポリエチレン(a1)と、プロピレン系樹脂(a2)の含有量は、その総量が表面樹脂層(A)中の80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。当該範囲とすることで、好適な機械的強度のフィルムを得やすくなる。より好ましくは、植物由来の高密度ポリエチレン(a1)と、プロピレン単独重合体(a2-1)と、プロピレン-エチレンブロック共重合体(a2-2)との含有量は、その総量が表面樹脂層(A)中の80質量%以上であり、85質量%以上であり、90質量%以上であることがさらに好ましい。 The total content of the plant-derived high-density polyethylene (a1) and the propylene-based resin (a2) in the surface resin layer (A) is preferably 80% by mass or more in the surface resin layer (A). , 85% by mass or more, more preferably 90% by mass or more. Within this range, it becomes easy to obtain a film having suitable mechanical strength. More preferably, the total content of the plant-derived high-density polyethylene (a1), the propylene homopolymer (a2-1), and the propylene-ethylene block copolymer (a2-2) is the surface resin layer. It is more preferably 80% by mass or more, 85% by mass or more, and 90% by mass or more in (A).
 表面樹脂層(A)中には、本発明の効果を損なわない範囲で、上記植物由来の高密度ポリエチレン(a1)と、プロピレン系樹脂(a2)以外の他の成分を含有してもよい。当該他の成分としては、例えば、ポリスチレン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、等が挙げられる。また、植物由来のエチレン系樹脂と併用して化石燃料由来のエチレン系樹脂を用いてもよい。 The surface resin layer (A) may contain components other than the plant-derived high-density polyethylene (a1) and the propylene-based resin (a2) as long as the effects of the present invention are not impaired. Examples of the other components include polystyrene-based resins, polyurethane-based resins, polyester-based resins, and polyamide-based resins. Further, an ethylene resin derived from fossil fuel may be used in combination with an ethylene resin derived from a plant.
 また、本発明の積層フィルムにおいて、表面樹脂層(A)のJIS B-0601に基づく表面粗さ(Ra)は0.5~2.0であることが好ましい。この範囲の表面粗さであることによって、和紙の風合いを有する好適なマット調のフィルムを得られるため、意匠性を向上させることができる。
Further, in the laminated film of the present invention, the surface roughness (Ra) of the surface resin layer (A) based on JIS B-0601 is preferably 0.5 to 2.0. With the surface roughness in this range, a suitable matte-like film having the texture of Japanese paper can be obtained, so that the designability can be improved.
 前記表面粗さ(Ra)の範囲を調整するためには、高密度ポリエチレン(a1)とプロピレン系樹脂(a2)との質量比を前記のように質量比(a1)/(a2)が60/40~40/60の割合で用いればよく、特に調整を必要とするものではない。 In order to adjust the range of the surface roughness (Ra), the mass ratio of the high-density polyethylene (a1) and the propylene-based resin (a2) is set to 60 / (a2) as described above. It may be used in a ratio of 40 to 40/60 and does not require any particular adjustment.
 植物由来の高密度ポリエチレン(a1)と、プロピレン系樹脂(a2)とのMFRの差は、5g/10分以上であることが好ましく、6g/10分以上であることがより好ましい。当該範囲とすることで、好適なマット調の樹脂層を得やすくなる。 The difference in MFR between the plant-derived high-density polyethylene (a1) and the propylene-based resin (a2) is preferably 5 g / 10 minutes or more, and more preferably 6 g / 10 minutes or more. Within this range, it becomes easy to obtain a suitable matte resin layer.
 本発明の積層フィルムは、前述の特定の表面樹脂層(A)を、ポリオレフィン系樹脂(b1)を含有してなる樹脂層(B)に積層してなるものである。この様な多層構造のフィルムとすることによって、単体使用でもマット感があり、又包装袋用途としての強度等を発現することが可能となる。 The laminated film of the present invention is formed by laminating the above-mentioned specific surface resin layer (A) on a resin layer (B) containing a polyolefin resin (b1). By forming a film having such a multi-layer structure, it has a matte feeling even when used alone, and it is possible to develop strength and the like for use in packaging bags.
 前記ポリオレフィン系樹脂(b1)としては、包装フィルムに使用される各種ポリオレフィン系樹脂を使用でき、例えば、プロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体、プロピレン-α-オレフィン共重合体、(プロピレン-1-ブテンランダム共重合体、プロピレン-1-ヘキセンランダム共重合体等)、プロピレン-エチレン-1-ブテンランダム共重合体、メタロセン触媒系ポリプロピレンなどのプロピレン系樹脂(b1-2)、超低密度ポリエチレン(VLDPE)、線状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)等のポリエチレン樹脂や、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メチルメタアクリレ-ト共重合体(EMMA)、エチレン-エチルアクリレ-ト共重合体(EEA)、エチレン-メチルアクリレ-ト(EMA)共重合体、エチレン-エチルアクリレ-ト-無水マレイン酸共重合体(E-EA-MAH)、エチレン-アクリル酸共重合体(EAA)、エチレン-メタクリル酸共重合体(EMAA)等のエチレン系共重合体、更にはエチレン-アクリル酸共重合体のアイオノマ-、エチレン-メタクリル酸共重合体のアイオノマ-等を使用できる。なかでも、表面樹脂層(A)との密着性を向上させやすいことからプロピレン系樹脂を用いることが好ましい。この様に、表面樹脂層(A)と樹脂層(B)とで同系の樹脂を用いることにより、積層フィルムの層間強度を強めることができる。特に好ましく用いることができるのは、プロピレン-エチレン共重合体である。
 また、植物由来のバイオマス樹脂の割合を高めるために、ポリオレフィン系樹脂(b1)として植物由来の樹脂を用いることが好ましい。植物由来の樹脂としては、表面樹脂層(A)との密着性を向上させやすいことから、表面樹脂層(A)で用いた植物由来の高密度ポリエチレン(a1)と同じ樹脂又は同系のエチレン系樹脂を用いることが好ましい。具体的には、サトウキビ、トウモロコシ、ビ-ト等を出発原料とする植物由来のエチレンから生成されるポリエチレン系樹脂であり、例えば、線状低密度ポリエチレン(LLDPE)、線状中密度ポリエチレン(LMDPE)、線状高密度ポリエチレン(LHDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)等が挙げられ、これらは単独でも、2種類以上を混合して使用してもよい。これらのなかでも、特に、直鎖状低密度ポリエチレン(b1-1)であることが好ましい。直鎖状低密度ポリエレンとしては、密度が0.925g/cm以下であることが好ましく、0.920g/cm以下であることがより好ましい。使用する直鎖状低密度ポリエチレンの密度を上記範囲とすることで、好適な溶断強度と高い耐衝撃性、耐破袋性を兼備しやすくなる。
As the polyolefin resin (b1), various polyolefin resins used for packaging films can be used, and for example, a propylene homopolymer, a propylene-ethylene random copolymer, a propylene-ethylene block copolymer, and a propylene-α. -Olefin copolymer, propylene-based resin such as (propylene-1-butene random copolymer, propylene-1-hexene random copolymer, etc.), propylene-ethylene-1-butene random copolymer, metallocene-catalyzed polypropylene, etc. (B1-2), ultra-low density polyethylene (VLDPE), linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE) and other polyethylene resins, ethylene-vinyl acetate copolymer (EVA), ethylene-methylmetha. Acrylate copolymer (EMMA), ethylene-ethylacryllate copolymer (EEA), ethylene-methylacrelate (EMA) copolymer, ethylene-ethylacryllate-maleic anhydride copolymer (E-) EA-MAH), ethylene-acrylic acid copolymer (EAA), ethylene-methacrylic acid copolymer (EMAA) and other ethylene-based copolymers, as well as ethylene-acrylic acid copolymer ionoma-, ethylene-methacryl. An acid copolymer ionoma or the like can be used. Of these, it is preferable to use a propylene-based resin because it is easy to improve the adhesion to the surface resin layer (A). As described above, by using the same type of resin for the surface resin layer (A) and the resin layer (B), the interlayer strength of the laminated film can be enhanced. Particularly preferably, a propylene-ethylene copolymer can be used.
Further, in order to increase the proportion of the plant-derived biomass resin, it is preferable to use a plant-derived resin as the polyolefin-based resin (b1). As the plant-derived resin, since it is easy to improve the adhesion to the surface resin layer (A), the same resin as the plant-derived high-density polyethylene (a1) used in the surface resin layer (A) or an ethylene-based resin of the same type is used. It is preferable to use a resin. Specifically, it is a polyethylene-based resin produced from plant-derived ethylene using sugar cane, corn, beat or the like as a starting material, and is, for example, linear low-density polyethylene (LLDPE) or linear medium-density polyethylene (LMDPE). ), Linear high-density polyethylene (LHDPE), low-density polyethylene (LDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), etc. May be. Among these, linear low-density polyethylene (b1-1) is particularly preferable. The linear low-density polyelene preferably has a density of 0.925 g / cm 3 or less, and more preferably 0.920 g / cm 3 or less. By setting the density of the linear low-density polyethylene to be used in the above range, it becomes easy to combine suitable fusing strength, high impact resistance, and bag-breaking resistance.
 樹脂層(B)に使用する植物由来のポリエチレンのMFRは、0.1~30g/10分が好ましく、0.5~20g/10分が特に好ましい。1g/10分以上とすることで、好適な製膜性を得やすくなり、20g/10分以下とすることで、好適な成形性を得やすくなる。 The MFR of the plant-derived polyethylene used for the resin layer (B) is preferably 0.1 to 30 g / 10 minutes, and particularly preferably 0.5 to 20 g / 10 minutes. When it is 1 g / 10 minutes or more, it becomes easy to obtain a suitable film-forming property, and when it is 20 g / 10 minutes or less, it becomes easy to obtain a suitable formability.
 なお、表面樹脂層(A)に用いられる植物由来の高密度ポリエチレン(a1)及び樹脂層(B)に用いられる植物由来のエチレン系樹脂は、石油由来の製造方法に対して、原料がサトウキビなどの植物で、モノマ-生成までは異なるが、それ以外は、製造方法は同一である。製造方法としては、特に制限はなく、公知の方法で製造されたものでできる。例えば、チ-グラ-・ナッタ触媒やメタロセン触媒を用いた製造法が上げられる。 The plant-derived high-density polyethylene (a1) used for the surface resin layer (A) and the plant-derived ethylene resin used for the resin layer (B) are made of sugar cane or the like as compared with the petroleum-derived production method. The production method is the same for other plants, except for the production of monomer. The production method is not particularly limited, and can be produced by a known method. For example, a manufacturing method using a Ziegler-Natta catalyst or a metallocene catalyst can be mentioned.
 具体的には、チタン含有化合物自体またはチタン含有化合物をマグネシウム化合物等の担体に担持させたものを主触媒とし、有機アルミニウム化合物を助触媒とした触媒系で、プロピレン単独または所望のエチレンなどのα-オレフィンを添加して重合を行う方法を挙げることが出来る。この重合は、スラリ-重合法、溶液重合法、気相重合法等のいずれのプロセスでもよい。 Specifically, it is a catalyst system in which the titanium-containing compound itself or a titanium-containing compound supported on a carrier such as a magnesium compound is used as a main catalyst and an organic aluminum compound is used as an auxiliary catalyst, and propylene alone or desired α such as ethylene is used. -A method of adding an olefin to carry out polymerization can be mentioned. This polymerization may be carried out by any process such as a slurry polymerization method, a solution polymerization method, and a gas phase polymerization method.
 また、均一系触媒を用いてもよく、従来から用いられているバナジュウム化合物と有機アルミニウム化合物とからなる触媒、あるいはシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基、置換インデニル基等を1又は2個を配位子とするジルコニウム、チタン、ハフニウムなどの遷移金属化合物、該配位子が幾何学的に制御された遷移金属化合物とアルミノキサンやイオン性化合物などの助触媒からなるメタロセン系触媒等の均一系触媒系も挙げることができる。メタロセン触媒は、必要により有機アルミ化合物を用いて、溶媒存在下の均一系重合のほか、スラリ-重合法、気相重合法等のいずれのプロセスでもよい。 Further, a uniform catalyst may be used, and a conventionally used catalyst composed of a vanadium compound and an organic aluminum compound, a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, or the like may be used. A metallocene system consisting of transition metal compounds such as zirconium, titanium, and hafnium having one or two ligands, transition metal compounds whose ligands are geometrically controlled, and cocatalysts such as aluminoxane and ionic compounds. A uniform system such as a catalyst can also be mentioned. As the metallocene catalyst, if necessary, an organic aluminum compound may be used, and in addition to uniform polymerization in the presence of a solvent, any process such as slurry polymerization method or vapor phase polymerization method may be used.
 このような植物由来のポリエチレンの市販品としては、ブラスケム社製、SGM9450F、SLL118、SLL118/21、SLL218、SLL318、SLH118、SLH218、SLH0820等が例示できる。 Examples of commercially available products of such plant-derived polyethylene include SGM9450F, SLL118, SLL118 / 21, SLL218, SLL318, SLH118, SLH218, and SLH0820 manufactured by Braskem.
 なかでも、樹脂層(B)は、積層フィルムの強度・剛性を高めると共に、表面樹脂層(A)とのマット感をより強調でき、更に積層フィルムのバイオマス度を高める点から、植物由来の直鎖状低密度ポリエチレン(b1-1)と、1種又は2種以上のプロピレン系樹脂(b1-2)を組み合わせて用いることが好ましい。このときの使用割合としては、植物由来の直鎖状低密度ポリエチレン(b1-1)/プロピレン系樹脂(b1-2)=5/95~30/70の範囲であることがより好ましい。 Among them, the resin layer (B) is directly derived from a plant because it enhances the strength and rigidity of the laminated film, can further emphasize the matte feeling with the surface resin layer (A), and further enhances the degree of biomass of the laminated film. It is preferable to use a chain low-density polyethylene (b1-1) in combination with one or more propylene-based resins (b1-2). The ratio of use at this time is more preferably in the range of plant-derived linear low-density polyethylene (b1-1) / propylene-based resin (b1-2) = 5/95 to 30/70.
 樹脂層(B)において、植物由来の直鎖状低密度ポリエチレン(b1-1)の含有量は、高い耐衝撃性、耐破袋性の点から、10質量%以上であることが好ましく、15質量%であることがより好ましい。 In the resin layer (B), the content of the plant-derived linear low-density polyethylene (b1-1) is preferably 10% by mass or more, preferably 15% by mass or more, from the viewpoint of high impact resistance and bag breaking resistance. More preferably, it is by mass.
 樹脂層(B)中のポリオレフィン系樹脂(b1)の含有量は、その総量が樹脂層(B)中の80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。当該範囲とすることで、好適な機械的強度のフィルムを得やすくなる。植物由来の直鎖状低密度ポリエチレン(b1-1)と、プロピレン系樹脂(b1-2)との含有量は、その総量が樹脂層(B)中の80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 The total content of the polyolefin resin (b1) in the resin layer (B) is preferably 80% by mass or more, more preferably 85% by mass or more, and 90% by mass. It is more preferably mass% or more. Within this range, it becomes easy to obtain a film having suitable mechanical strength. The total content of the plant-derived linear low-density polyethylene (b1-1) and the propylene-based resin (b1-2) is preferably 80% by mass or more in the resin layer (B). It is more preferably 85% by mass or more, and further preferably 90% by mass or more.
 表面樹脂層(A)及び樹脂層(B)が積層された積層フィルムは、包装袋として用いる場合には、機械的強度とヒ-トシ-ル性とのバランスに優れる点から、樹脂層(B)側にシ-ル層(C)を更に有するものであることが好ましい。 When the laminated film in which the surface resin layer (A) and the resin layer (B) are laminated is used as a packaging bag, the resin layer (B) is excellent in balance between mechanical strength and heat sealability. It is preferable that the seal layer (C) is further provided on the) side.
 前記シ-ル層(C)は、積層フィルムのシ-ル層(C)同士、又はその他の材質からなる容器等にヒ-トシ-ル際に容易にシ-ル強度が得られるように設計するものであり、得られる積層フィルムの用途によって、樹脂種を選択することができる。特に包装袋として用い、シ-ル層(C)同士をヒ-トシ-ルする場合に、適度なシ-ル強度が得られる点から、プロピレン-エチレンランダム共重合体を含有するものであることが好ましい。更に、シ-ル強度を調整するためには、エチレン-α-オレフィン共重合体を併用する
ことも可能である。
The seal layer (C) is designed so that the seal strength can be easily obtained at the time of heat sealing between the seal layers (C) of the laminated film or in a container made of other materials. The resin type can be selected depending on the use of the obtained laminated film. In particular, when it is used as a packaging bag and the seal layers (C) are heat-sealed with each other, an appropriate seal strength can be obtained, so that the seal layer (C) contains a propylene-ethylene random copolymer. Is preferable. Further, in order to adjust the seal strength, it is also possible to use an ethylene-α-olefin copolymer in combination.
 本発明のマット調積層フィルムは、表面樹脂層(A)、樹脂層(B)及びシ-ル層(C)以外に1又は2以上の他の層を有していてもよい。他の層は、包装フィルムに使用される各種樹脂材料を使用でき、樹脂層(B)とシ-ル層(C)の間に設けられることが好ましい。 The matte laminated film of the present invention may have one or two or more other layers in addition to the surface resin layer (A), the resin layer (B) and the seal layer (C). As the other layer, various resin materials used for the packaging film can be used, and it is preferable that the other layer is provided between the resin layer (B) and the seal layer (C).
 本発明のマット調積層フィルム中に含有するポリエチレンの総質量は、積層フィルムの質量に対して20質量%以上であることが好ましく、23質量%以上であることがより好ましく、24質量%以上であることが更に好ましい。マット調積層フィルムにおいて植物由来の成分を多くしてバイオマス度を高めるためには、マット調積層フィルムの質量に対して植物由来のポリエチレンの総質量を20質量%以上とすることが好ましく、23質量%以上であることがより好ましく、24質量%以上とすることが更に好ましい。
 また、表面樹脂層(A)と表面樹脂層に隣接する樹脂層(B)を合計した質量に対して、ポリエチレンの総質量、好ましくは植物由来のポリエチレンの総質量を24質量%以上とすることが好ましく、27質量%以上であることがより好ましく、28質量%であることが更に好ましい。
The total mass of polyethylene contained in the matte laminated film of the present invention is preferably 20% by mass or more, more preferably 23% by mass or more, and 24% by mass or more with respect to the mass of the laminated film. It is more preferable to have. In order to increase the amount of plant-derived components in the mat-like laminated film and increase the degree of biomass, it is preferable that the total mass of the plant-derived polyethylene is 20% by mass or more with respect to the mass of the mat-like laminated film, and the total mass is 23. % Or more, more preferably 24% by mass or more.
Further, the total mass of polyethylene, preferably the total mass of polyethylene derived from plants, should be 24% by mass or more with respect to the total mass of the surface resin layer (A) and the resin layer (B) adjacent to the surface resin layer. Is more preferable, and it is more preferably 27% by mass or more, and further preferably 28% by mass.
 本発明の積層フィルムは、単体でもフィルムとして充分な強度を有するために、その全厚として20~50μmの範囲であることが好ましく、特にパン等の比較的軽量な内容物の包装用等に使用する場合には、25~40μmであることが好ましい。 Since the laminated film of the present invention has sufficient strength as a film by itself, its total thickness is preferably in the range of 20 to 50 μm, and is particularly used for packaging relatively lightweight contents such as bread. In this case, it is preferably 25 to 40 μm.
 更に、積層フィルムに対して充分なマット感(高曇り度と低光沢度)を与えるためには
、表面樹脂層(A)が全厚の10~40%になるようにすることが好ましい。樹脂層(A)の厚さは、好適な意匠性を得やすいことから、2~20μmとすることが好ましく、4~16μmとすることがより好ましい。
また、樹脂層(B)は全厚の30~90%になるようにすることが好ましい。樹脂層(B)の厚さ6~45μmとすることが好ましく、10~30μmとすることがより好ましい。
さらに、シ-ル層(C)を設ける場合は、シ-ル層(C)は全厚の10~25%になるようにすることが好ましい。シ-ル層(C)の厚さ2~12.5μmとすることが好ましく、3~10μmとすることがより好ましい。
Further, in order to give a sufficient matte feeling (high cloudiness and low glossiness) to the laminated film, it is preferable that the surface resin layer (A) is 10 to 40% of the total thickness. The thickness of the resin layer (A) is preferably 2 to 20 μm, more preferably 4 to 16 μm, because it is easy to obtain suitable design.
Further, it is preferable that the resin layer (B) has a total thickness of 30 to 90%. The thickness of the resin layer (B) is preferably 6 to 45 μm, more preferably 10 to 30 μm.
Further, when the seal layer (C) is provided, it is preferable that the seal layer (C) has a total thickness of 10 to 25%. The thickness of the seal layer (C) is preferably 2 to 12.5 μm, more preferably 3 to 10 μm.
 本発明の積層フィルムの曇り度は、充分なマット感を得るために、50%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが特に好ましい。 The degree of fogging of the laminated film of the present invention is preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more in order to obtain a sufficient matte feeling.
 本発明の積層フィルムの光沢度は、表面のつやを抑えて和紙に近い風合いを出すためには20%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることが更に好ましい。
本発明の積層フィルムの剛性は、包装材として適用した際に好適な強度を保持するために、500MPa以上であることが好ましく、600MPa以上であることがより好ましく、650MPa以上であることが更に好ましい。
また、本発明の積層フィルムの衝撃強度は、0.15J(23℃)以上であることが好ましく、0.17J(23℃)以上であることがより好ましい。衝撃強度は、積層フィルムを23℃に状態調整された恒温室内で、サンプルを6時間保持した後、直径25.4mmの球状の衝撃頭を用いてフィルムインパクト法で測定することにより求められる。
The glossiness of the laminated film of the present invention is preferably 20% or less, more preferably 10% or less, and 5% or less in order to suppress the gloss of the surface and give a texture close to that of Japanese paper. Is more preferable.
The rigidity of the laminated film of the present invention is preferably 500 MPa or more, more preferably 600 MPa or more, still more preferably 650 MPa or more, in order to maintain suitable strength when applied as a packaging material. ..
The impact strength of the laminated film of the present invention is preferably 0.15 J (23 ° C.) or higher, and more preferably 0.17 J (23 ° C.) or higher. The impact strength is determined by holding the sample in a constant temperature room adjusted to 23 ° C. for 6 hours and then measuring the impact strength by the film impact method using a spherical impact head having a diameter of 25.4 mm.
 前記の各樹脂層(A)、(B)又は(C)には、必要に応じて、防曇剤、帯電防止剤、熱安定剤、造核剤、酸化防止剤、滑剤、アンチブロッキング剤、離型剤、紫外線吸収剤、着色剤等の成分を本発明の目的を損なわない範囲で添加することができる。 Each of the resin layers (A), (B) or (C) may contain an anti-fog agent, an antistatic agent, a heat stabilizer, a nucleating agent, an antioxidant, a lubricant, an anti-blocking agent, if necessary. Ingredients such as a mold release agent, an ultraviolet absorber, and a colorant can be added within a range that does not impair the object of the present invention.
 本発明の積層フィルムの製造方法としては、特に限定されないが、例えば、表面樹脂層(A)、樹脂層(B)及びシ-ル層(C)に用いる各樹脂又は樹脂混合物を、それぞれ別々の押出機で加熱溶融させ、共押出多層ダイス法やフィ-ドブロック法等の方法により溶融状態で(A)/(B)/(C)の順で積層した後、インフレ-ションやTダイ・チルロ-ル法等によりフィルム状に成形する共押出法が挙げられる。この共押出法は、各層の厚さの比率を比較的自由に調整することが可能で、衛生性に優れ、コストパフォ-マンスにも優れた共押出多層フィルムが得られるので好ましい。さらに、本発明で用いる高密度ポリエチレン(a1)と、プロピレン系樹脂(a2)には、両者間で融点の差が大きいため、共押出加工時にフィルム外観が劣化する場合がある。このような劣化を抑制するためには、比較的高温で溶融押出を行うことができるTダイ・チルロ-ル法が好ましい。 The method for producing the laminated film of the present invention is not particularly limited, but for example, each resin or resin mixture used for the surface resin layer (A), the resin layer (B) and the seal layer (C) is separately used. It is heated and melted by an extruder, laminated in the order of (A) / (B) / (C) in a molten state by a method such as a coextrusion multi-layer die method or a feed block method, and then inflation or T-die. Examples thereof include a coextrusion method in which the film is formed into a film by a chill roll method or the like. This coextrusion method is preferable because the thickness ratio of each layer can be adjusted relatively freely, and a coextruded multilayer film having excellent hygiene and cost performance can be obtained. Further, since the high-density polyethylene (a1) and the propylene-based resin (a2) used in the present invention have a large difference in melting point between them, the appearance of the film may be deteriorated during the coextrusion process. In order to suppress such deterioration, the T-die chill roll method, which can perform melt extrusion at a relatively high temperature, is preferable.
 本発明の積層フィルムは、上記の製造方法によって、実質的に無延伸の多層フィルムとして得られるため、真空成形による深絞り成形等の二次成形も可能となる。 Since the laminated film of the present invention can be obtained as a substantially unstretched multilayer film by the above manufacturing method, secondary molding such as deep drawing by vacuum forming is also possible.
 さらに、表面樹脂層(A)に印刷等を行なう場合には、印刷インキとの接着性等を向上させるため、前記樹脂層(A)に表面処理を施すことが好ましい。樹脂層(B)またはシ-ル層(C)面に他フィルムと貼り合わせる場合には、接着剤との密着性を向上させるために、前記樹脂層(B)またはシ-ル層(C)に表面処理を施すことが好ましい。このような表面処理としては、例えば、コロナ処理、プラズマ処理、クロム酸処理、火炎処理、熱風処理、オゾン・紫外線処理等の表面酸化処理、あるいはサンドブラスト等の表面凹凸処理を挙げることができるが、好ましくはコロナ処理である。 Further, when printing or the like is performed on the surface resin layer (A), it is preferable to apply a surface treatment to the resin layer (A) in order to improve the adhesiveness with the printing ink. When the other film is attached to the surface of the resin layer (B) or the seal layer (C), the resin layer (B) or the seal layer (C) is used in order to improve the adhesion with the adhesive. Is preferably surface-treated. Examples of such surface treatments include corona treatment, plasma treatment, chromic acid treatment, flame treatment, hot air treatment, surface oxidation treatment such as ozone / ultraviolet treatment, and surface unevenness treatment such as sandblasting. Corona treatment is preferable.
 前記包装袋は、本発明の積層フィルムのシ-ル層(C)をヒ-トシ-ル層として、シ-ル層(C)同士を重ねてヒ-トシ-ル、あるいは表面樹脂層(A)とシ-ル層(C)とを重ね合わせてヒ-トシ-ルすることにより、シ-ル層(C)を内側として形成した包装袋であることが好ましい。例えば当該積層フィルム2枚を所望とする包装袋の大きさに切り出して、それらを重ねて3辺をヒ-トシ-ルして袋状にした後、ヒ-トシ-ルをしていない1辺から内容物を充填しヒ-トシ-ルして密封することで包装袋として用いることができる。さらには自動包装機によりロ-ル状のフィルムを円筒形に端部をシ-ルした後、上下をシ-ルすることにより包装袋を形成することも可能である In the packaging bag, the seal layer (C) of the laminated film of the present invention is used as a heat seal layer, and the seal layers (C) are overlapped with each other to form a heat seal or a surface resin layer (A). ) And the seal layer (C) are overlapped and heat-sealed to form a packaging bag with the seal layer (C) as the inside. For example, two laminated films are cut out to the desired size of a packaging bag, and they are stacked to form a bag by heat-sealing three sides, and then one side without heat-sealing. It can be used as a packaging bag by filling it with the contents, heat-sealing it, and sealing it. Furthermore, it is also possible to form a packaging bag by sealing the end of a roll-shaped film in a cylindrical shape with an automatic packaging machine and then sealing the top and bottom.
 また、本発明の積層フィルムと他のフィルムをラミネ-トして複合フィルムとして使用することもできる。他のフィルムは、表面樹脂層(A)側に設けても、樹脂層(B)又はシ-ル層(C)側に設けてもよいが、樹脂層(B)又はシ-ル層(C)側にシ-ラントフィルムを設けることが好ましい。
 その際、使用する他のフィルムとしては、比較的機械強度の弱いLDPE、EVA、ポリプロピレン等のフィルムを用いることができ、二軸延伸ポリプロピレンフィルム(OPP)を用いることが好ましい。また、LDPE、EVA、ポリプロピレン等のフィルムと、比較的引き裂き性の良い延伸フィルム、例えば、二軸延伸ポリエチレンテレフタレ-トフィルム(OPET)、二軸延伸ポリプロピレンフィルム(OPP)等とを貼り合わせたラミネ-トフィルムも用いることができる。
 また、本発明の積層フィルムと他のフィルムをラミネ-トしてなる積層体の積層方法としては、上記のヒ-トシ-ルの他に、例えば、ドライラミネ-ション、ウェットラミネ-ション、ノンソルベントラミネ-ション、押出ラミネ-ション等の方法が挙げられる。
Further, the laminated film of the present invention and another film can be laminated and used as a composite film. The other film may be provided on the surface resin layer (A) side or on the resin layer (B) or seal layer (C) side, but the resin layer (B) or seal layer (C) may be provided. It is preferable to provide a sealant film on the) side.
At that time, as another film to be used, a film such as LDPE, EVA, or polypropylene having a relatively weak mechanical strength can be used, and it is preferable to use a biaxially stretched polypropylene film (OPP). Further, a lamine in which a film such as LDPE, EVA, polypropylene and a stretched film having relatively good tearability, for example, a biaxially stretched polyethylene terephthalate film (OPET), a biaxially stretched polypropylene film (OPP), etc. are bonded together. -Polyethylene film can also be used.
Further, as a method of laminating a laminated body formed by laminating a laminated film of the present invention and another film, in addition to the above heat seal, for example, dry lamination, wet lamination, non-solvent, etc. Examples thereof include methods such as laminating and extrusion laminating.
 前記ドライラミネ-ションで用いる接着剤としては、例えば、ポリエ-テル-ポリウレ
タン系接着剤、ポリエステル-ポリウレタン系接着剤等が挙げられる。
Examples of the adhesive used in the dry lamination include a polyether-polyurethane-based adhesive, a polyester-polyurethane-based adhesive, and the like.
 本発明の積層フィルム、または本発明の積層フィルムとプラスチック基材をラミネ-トしてなる積層体を用いた包装材としては、食品、薬品、工業部品、雑貨、雑誌等の用途に用いる包装袋、容器、容器の蓋材等が挙げられる。特に、マット感が従来になく優れる点から、和紙等に似た包装材を提供でき、高級感を引き出すために用いる食品用等に好適に用いることができる。 As a packaging material using the laminated film of the present invention or a laminated body obtained by laminating the laminated film of the present invention and a plastic base material, a packaging bag used for foods, chemicals, industrial parts, miscellaneous goods, magazines, etc. , Containers, container lids, etc. In particular, since the matte feeling is superior to that of the past, it is possible to provide a packaging material similar to Japanese paper and the like, and it can be suitably used for foods and the like used to bring out a high-class feeling.
 次に、実施例及び比較例を挙げて本発明をより詳しく説明する。以下、特に断りのない限り、「部」は質量基準である。 Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. Hereinafter, unless otherwise specified, "part" is based on mass.
 実施例1
表面層(A)として、プロピレン単独重合体(密度:0.90g/cm3、MFR:7.0 g/10分間)20部と、サトウキビ由来高密度ポリエチレン(Braskem社 SGM9450F 密度:0.952g/cm3、MFR:0.05 g/10分間)55部と、プロピレン-エチレンブロック共重合体(密度:0.90 g/cm3、MFR:7.0 g/10分間)25部とからなる混合物を用いた。
また、樹脂層(B)として、プロピレン-エチレンブロック共重合体(密度:0.90 g/cm3、MFR:7.0 g/10分間)85部と、サトウキビ由来直鎖状低密度ポリエチレン(Braskem社 SLH218 密度:0.916g/cm3、MFR:2.3 g/10分間)15部からなる混合物を用いた。
更に、シ-ル層(C)として、(1)プロピレン-エチレンランダム共重合体(密度:0.90 g/cm3、MFR:5.0 g/10分間)80部と、(2)プロピレン-エチレンランダム共重合体(密度:0.90 g/cm3、MFR:8.0 g/10分間)20部からなる混合物を用いた。
これらをそれぞれ3台の押出機に供給し、表面樹脂層(A)と樹脂層(B)とシ-ル層(C)の平均厚さが7:10:3となるように共押出して、厚さ30μmの3層フィルムを成形した。次いで、得られた3層フィルムのシ-ル層(C)に、表面エネルギ-が36mN/mになるようにコロナ放電処理を施して、積層フィルムを得た。
Example 1
As the surface layer (A), 20 parts of a propylene homopolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and high-density polyethylene derived from sugar cane (Brackem SGM9450F density: 0.952 g / cm3). , MFR: 0.05 g / 10 min) 55 parts and propylene-ethylene block copolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 min) 25 parts board.
Further, as the resin layer (B), 85 parts of a propylene-ethylene block copolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and a linear low-density polyethylene derived from sugar cane (Brackem). SLH218 Density: 0.916 g / cm3, MFR: 2.3 g / 10 minutes) A mixture consisting of 15 parts was used.
Further, as the seal layer (C), 80 parts of (1) propylene-ethylene random copolymer (density: 0.90 g / cm3, MFR: 5.0 g / 10 minutes) and (2) propylene-. A mixture consisting of 20 parts of an ethylene random copolymer (density: 0.90 g / cm3, MFR: 8.0 g / 10 minutes) was used.
These are each supplied to three extruders and co-extruded so that the average thickness of the surface resin layer (A), the resin layer (B) and the seal layer (C) is 7: 10: 3. A three-layer film having a thickness of 30 μm was formed. Next, the seal layer (C) of the obtained three-layer film was subjected to a corona discharge treatment so that the surface energy was 36 mN / m to obtain a laminated film.
 実施例2
 実施例1の表面樹脂層(A)として、プロピレン単独重合体27部/サトウキビ由来高密度ポリエチレン55部/プロピレン-エチレンブロック共重合体18部に代えた以外は実施例1と同様に行い、厚さ30μmの3層からなる共押出多層フィルムを得た。次いで、得られたフィルムのシ-ル層(C)の表面を、実施例1と同様に表面エネルギ-が36mN/mになるようにコロナ放電処理を施した。
Example 2
As the surface resin layer (A) of Example 1, 27 parts of propylene homopolymer / 55 parts of high-density polyethylene derived from sugar cane / 18 parts of propylene-ethylene block copolymer were replaced with the same thickness as in Example 1. A coextruded multilayer film having three layers of 30 μm was obtained. Next, the surface of the seal layer (C) of the obtained film was subjected to a corona discharge treatment so that the surface energy was 36 mN / m in the same manner as in Example 1.
 比較例1
表面樹脂層(A)として、プロピレン単独重合体(密度:0.90g/cm3、MFR:7.0 g/10分間)40部と、サトウキビ由来高密度ポリエチレン(Braskem社 SGM9450F 密度:0.952g/cm3、MFR:0.05 g/10分間)60部からなる混合物を用いた。
また、中間層(B)として、プロピレン-エチレンブロック共重合体(密度:0.90 g/cm3、MFR:7.0 g/10分間)85部と、サトウキビ由来直鎖状低密度高密度ポリエチレン(Braskem社 SLH218 密度:0.916g/cm3、MFR:2.3 g/10分間)15部からなる混合物を用いた。
更に、シ-ル層(C)として、(1)プロピレン-エチレンランダム共重合体(密度:0.90 g/cm3、MFR:5.0 g/10分間)80部と、(2)プロピレン-エチレンランダム共重合体(密度:0.90 g/cm3、MFR:8.0 g/10分間)20部からなる混合物を用いた。
これらをそれぞれ3台の押出機に供給し、表面樹脂層(A)と樹脂層(B)とシ-ル層(C)の平均厚さが7:10:3となるように共押出して、厚さ30μmの3層フィルムを成形した。次いで、得られたフィルムのシ-ル層(C)の表面を、実施例1と同様に表面エネルギ-が36mN/mになるようにコロナ放電処理を施した。
Comparative Example 1
As the surface resin layer (A), 40 parts of a propylene homopolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and high-density polyethylene derived from sugar cane (SGM9450F density of Braskem): 0.952 g / A mixture consisting of 60 parts (cm3, MFR: 0.05 g / 10 minutes) was used.
In addition, as the intermediate layer (B), 85 parts of a propylene-ethylene block copolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and a linear low-density high-density polyethylene derived from sugar cane. (Brackem SLH218 Density: 0.916 g / cm3, MFR: 2.3 g / 10 minutes) A mixture consisting of 15 parts was used.
Further, as the seal layer (C), 80 parts of (1) propylene-ethylene random copolymer (density: 0.90 g / cm3, MFR: 5.0 g / 10 minutes) and (2) propylene-. A mixture consisting of 20 parts of an ethylene random copolymer (density: 0.90 g / cm3, MFR: 8.0 g / 10 minutes) was used.
These are each supplied to three extruders and co-extruded so that the average thickness of the surface resin layer (A), the resin layer (B) and the seal layer (C) is 7: 10: 3. A three-layer film having a thickness of 30 μm was formed. Next, the surface of the seal layer (C) of the obtained film was subjected to a corona discharge treatment so that the surface energy was 36 mN / m in the same manner as in Example 1.
 比較例2
表面樹脂層(A)として、プロピレン単独重合体(密度:0.90g/cm3、MFR:7.0 g/10分間)40部と、化石燃料由来の高密度ポリエチレン(密度:0.955g/cm3、MFR:0.35 g/10分間)60部からなる混合物を用いた。
また、中間層(B)として、プロピレン-エチレンブロック共重合体(密度:0.90 g/cm3、MFR:7.0 g/10分間)90部と、化石燃料由来の直鎖状低密度ポリエチレン(密度:0.905g/cm3、MFR:4g/10分間)15部からなる混合物を用いた。
更に、シ-ル層(C)として、(1)プロピレン-エチレンランダム共重合体(密度:0.90 g/cm3、MFR:5.0 g/10分間)80部と、(2)プロピレン-エチレンランダム共重合体(密度:0.90 g/cm3、MFR:8.0 g/10分間)20部からなる混合物を用いた。
これらをそれぞれ3台の押出機に供給し、表面樹脂層(A)と樹脂層(B)とシ-ル層(C)の平均厚さが3:5:2となるように共押出して、厚さ30μmの3層フィルムを成形した。次いで、得られたフィルムのシ-ル層(C)の表面を、実施例1と同様に表面エネルギ-が36mN/mになるようにコロナ放電処理を施した。
Comparative Example 2
As the surface resin layer (A), 40 parts of a propylene homopolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and high-density polyethylene derived from fossil fuel (density: 0.955 g / cm3). , MFR: 0.35 g / 10 min) 60 parts mixture was used.
Further, as the intermediate layer (B), 90 parts of a propylene-ethylene block copolymer (density: 0.90 g / cm3, MFR: 7.0 g / 10 minutes) and linear low-density polyethylene derived from fossil fuel are used. A mixture consisting of 15 parts (density: 0.905 g / cm3, MFR: 4 g / 10 minutes) was used.
Further, as the seal layer (C), 80 parts of (1) propylene-ethylene random copolymer (density: 0.90 g / cm3, MFR: 5.0 g / 10 minutes) and (2) propylene-. A mixture consisting of 20 parts of an ethylene random copolymer (density: 0.90 g / cm3, MFR: 8.0 g / 10 minutes) was used.
These are each supplied to three extruders and co-extruded so that the average thickness of the surface resin layer (A), the resin layer (B) and the seal layer (C) is 3: 5: 2. A three-layer film having a thickness of 30 μm was formed. Next, the surface of the seal layer (C) of the obtained film was subjected to a corona discharge treatment so that the surface energy was 36 mN / m in the same manner as in Example 1.
 上記の実施例1、2及び比較例1、2で得られた積層フィルムを用いて、下記の試験及び評価を行った。 The following tests and evaluations were performed using the laminated films obtained in Examples 1 and 2 and Comparative Examples 1 and 2 above.
(1)曇り度の測定
 得られたフィルムを用い、JIS K7105に基づき、フィルム1枚についてヘ-ズメ-タ-(日本電飾工業株式会社製)を用いて曇り度(単位:%)測定した。
(1) Measurement of cloudiness degree Using the obtained film, the cloudiness degree (unit:%) is measured for one film using a heads meter (manufactured by Nippon Denshoku Kogyo Co., Ltd.) based on JIS K7105. did.
(2)光沢度の測定
 得られたフィルムを用い、JIS K7105に基づき、フィルム1枚についてヘ-ズメ-タ-(日本電飾工業株式会社製)を用いて光沢度(単位:%)を測定した。
(2) Measurement of glossiness Using the obtained film, the glossiness (unit:%) was measured for one film using a heat meter (manufactured by Nippon Denshoku Kogyo Co., Ltd.) based on JIS K7105. It was measured.
(3)表面粗さ(Ra)の測定
 得られたフィルムを用い、JIS B-0601に基づき、フィルム1枚について東京精密社製 SURFCOM 480Aを用いて表面樹脂層(A)側の表面粗さ(Ra)(単位:μm)を測定した。
(3) Measurement of Surface Roughness (Ra) Using the obtained film, the surface roughness on the surface resin layer (A) side (A) was used for one film using SURFCOM 480A manufactured by Tokyo Seimitsu Co., Ltd. based on JIS B-0601. Ra) (unit: μm) was measured.
(4)剛性の測定
 得られたフィルムを用い、ASTM D-882に基づき、23℃における1%接線モジュラス(単位:MPa)を、フィルム製造時の押出方向(以下、「MD」という。)について、テンシロン引張試験機〔株式会社エ-・アンド・デ-製〕を用いて測定した。
(4) Measurement of Rigidity Using the obtained film, the 1% tangential modulus (unit: MPa) at 23 ° C. is determined by the extrusion direction (hereinafter referred to as “MD”) at the time of film production based on ASTM D-882. , Tensilon tensile tester [manufactured by ASTM Co., Ltd.].
(5)衝撃強度の測定
 得られたフィルムを用い、23℃に状態調整された恒温室内で、サンプルを6時間保持した後、直径25.4mmの球状の衝撃頭を用いてフィルムインパクト法で測定した。  
(5) Measurement of impact strength Using the obtained film, the sample was held in a constant temperature room adjusted to 23 ° C for 6 hours, and then measured by the film impact method using a spherical impact head with a diameter of 25.4 mm. did.
(6)成膜性
 得られたフィルムを用いて、目視にてフィルムの外観を確認した。
 ○:フィルムに穴が発生していないもの
 ×:フィルムに穴が開いているもの
(7)バイオマス度
 フィルム中に含まれる植物由来のポリエチレンの配合比から、バイオマス度を計算した。
(6) Film formation property Using the obtained film, the appearance of the film was visually confirmed.
◯: No holes in the film ×: Holes in the film (7) Biomass degree The biomass degree was calculated from the mixing ratio of plant-derived polyethylene contained in the film.
 上記で得られた結果を表1に示す。 Table 1 shows the results obtained above.
Figure JPOXMLDOC01-appb-T000001

 表1の結果より、比較例1の表面樹脂層(A)として植物由来高密度ポリエチレン/プロピレン単独重合体の2元系を用いた積層フィルムは成膜中に穴が発生し、衝撃強度も低下した。比較例2の表面樹脂層(A)として高密度ポリエチレン/プロピレン単独重合体の2元系を用いた積層フィルムでは穴が発生しなかったことから、比較例1の穴の原因は、植物由来高密度ポリエチレンを用いたことに起因すると考えられる。これに対して、実施例1及び2の積層フィルムは植物由来の樹脂を含有し、高水準のバイオマス度を達成しつつ、曇り度や光沢度に優れ、好適な剛性、衝撃強度、表面滑り性、成膜性を有することから、環境負荷低減を実現できる包装用フィルムとして好適である。
Figure JPOXMLDOC01-appb-T000001

From the results in Table 1, the laminated film using the binary system of the plant-derived high-density polyethylene / propylene homopolymer as the surface resin layer (A) of Comparative Example 1 has holes during film formation and the impact strength is also lowered. did. Since no holes were generated in the laminated film using the binary system of the high-density polyethylene / propylene homopolymer as the surface resin layer (A) of Comparative Example 2, the cause of the holes in Comparative Example 1 was the plant-derived height. It is considered that this is due to the use of high density polyethylene. On the other hand, the laminated films of Examples 1 and 2 contain a plant-derived resin, have excellent cloudiness and glossiness while achieving a high level of biomass, and have suitable rigidity, impact strength, and surface slipperiness. Since it has a film-forming property, it is suitable as a packaging film that can reduce the environmental load.

Claims (8)

  1.  メルトフロ-レ-トが1g/10分以下(温度190℃、荷重2.16kg)の植物由来の高密度ポリエチレン(a1)と、メルトフロ-レ-トが0.5g/10分以上30g/10分以下(温度230℃、荷重2.16kg)のプロピレン系樹脂(a2)とを含有する表面樹脂層(A)と、
     ポリオレフィン系樹脂(b1)を含有する樹脂層(B)と、が積層されたマット調積層フィルムであって、
     前記プロピレン系樹脂(a2)としてプロピレン単独重合体(a2-1)及びプロピレン-エチレンブロック共重合体(a2-2)を含有することを特徴とするマット調積層フィルム。
    Plant-derived high-density polyethylene (a1) with a melt flow rate of 1 g / 10 minutes or less (temperature 190 ° C., load 2.16 kg) and melt flow rate of 0.5 g / 10 minutes or more and 30 g / 10 minutes. The surface resin layer (A) containing the propylene-based resin (a2) having the following (temperature 230 ° C., load 2.16 kg) and the like.
    A matte laminated film in which a resin layer (B) containing a polyolefin resin (b1) is laminated.
    A matte laminated film comprising a propylene homopolymer (a2-1) and a propylene-ethylene block copolymer (a2-2) as the propylene-based resin (a2).
  2.  前記ポリオレフィン系樹脂(b1)として、植物由来の直鎖状低密度ポリエチレン(b1-1)と、プロピレン系樹脂(b1-2)を含有する請求項1記載のマット調積層フィルム。 The matte laminated film according to claim 1, which contains a plant-derived linear low-density polyethylene (b1-1) and a propylene-based resin (b1-2) as the polyolefin-based resin (b1).
  3.  前記植物由来の高密度ポリエチレン(a1)と前記プロピレン系樹脂(a2)との使用割合(質量比)(a1)/(a2)が60/40~40/60の範囲である請求項1又は2記載のマット調積層フィルム。 Claim 1 or 2 in which the usage ratio (mass ratio) (a1) / (a2) of the plant-derived high-density polyethylene (a1) and the propylene-based resin (a2) is in the range of 60/40 to 40/60. The matte laminated film described.
  4.  樹脂層側に、シ-ル層を更に有する請求項1~3のいずれかに記載のマット調積層フィルム。 The matte laminated film according to any one of claims 1 to 3, further having a seal layer on the resin layer side.
  5.  前記積層フィルム中に含有するポリエチレンの総質量が、前記積層フィルムの質量に対して20質量%以上である請求項1~4のいずれかに記載のマット調積層フィルム。 The matte laminated film according to any one of claims 1 to 4, wherein the total mass of polyethylene contained in the laminated film is 20% by mass or more with respect to the mass of the laminated film.
  6.  請求項1~5のいずれかに記載の積層フィルム上に他のフィルムをラミネ-トしてなる積層体。 A laminated body obtained by laminating another film on the laminated film according to any one of claims 1 to 5.
  7.  請求項1~5のいずれかに記載の積層フィルム又は請求項6に記載の積層体を用いた包装材。 A packaging material using the laminated film according to any one of claims 1 to 5 or the laminated body according to claim 6.
  8.  食品用の包装袋である請求項7に記載の包装材。 The packaging material according to claim 7, which is a packaging bag for food.
PCT/JP2021/031294 2020-09-08 2021-08-26 Mat-style laminated film, laminate formed by laminating said mat-style laminated film and plastic substrate, and packaging material using same WO2022054589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021570196A JP7070813B1 (en) 2020-09-08 2021-08-26 A matte-like laminated film, a laminate made by laminating the matte-like laminated film and a plastic base material, and a packaging material using these.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020150420 2020-09-08
JP2020-150420 2020-09-08

Publications (1)

Publication Number Publication Date
WO2022054589A1 true WO2022054589A1 (en) 2022-03-17

Family

ID=80632352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031294 WO2022054589A1 (en) 2020-09-08 2021-08-26 Mat-style laminated film, laminate formed by laminating said mat-style laminated film and plastic substrate, and packaging material using same

Country Status (3)

Country Link
JP (1) JP7070813B1 (en)
TW (1) TW202210306A (en)
WO (1) WO2022054589A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194588A (en) * 2010-03-17 2011-10-06 Dic Corp Mat-style laminated film and packaging material made of the film
JP2016068417A (en) * 2014-09-30 2016-05-09 Dic株式会社 Laminate film and packaging material
JP2020055157A (en) * 2018-09-28 2020-04-09 大日本印刷株式会社 Laminate, packaging material, packaging bag and stand pouch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194588A (en) * 2010-03-17 2011-10-06 Dic Corp Mat-style laminated film and packaging material made of the film
JP2016068417A (en) * 2014-09-30 2016-05-09 Dic株式会社 Laminate film and packaging material
JP2020055157A (en) * 2018-09-28 2020-04-09 大日本印刷株式会社 Laminate, packaging material, packaging bag and stand pouch

Also Published As

Publication number Publication date
JPWO2022054589A1 (en) 2022-03-17
JP7070813B1 (en) 2022-05-18
TW202210306A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
JP5884553B2 (en) Laminated film
JP6863483B2 (en) Laminated film and food packaging bag
JP7140105B2 (en) Laminated film and food packaging bag
JP5458991B2 (en) Matte laminated film and packaging material comprising the film
JP5713190B2 (en) Easy-open multilayer film and packaging material using the film
JP7140104B2 (en) Laminated film and food packaging bag
JP5741935B2 (en) Multilayer film and packaging material comprising the film
TWI586535B (en) Multi-layer film for lamination with low adsorptive properties, composite film using the same and packaging material
JP6172398B2 (en) Multilayer film, laminated film for packaging material, packaging bag and standing pouch
WO2017018282A1 (en) Laminate film and packaging material
JP5991504B2 (en) Easy-penetrating lid
JP5716286B2 (en) Coextruded multilayer film and packaging material comprising the film
JP2005199514A (en) Multilayered laminated resin film and laminated material using it
WO2019230417A1 (en) Multilayer film and food packaging bag
WO2019230416A1 (en) Multilayer film and food packaging bag
JP7070813B1 (en) A matte-like laminated film, a laminate made by laminating the matte-like laminated film and a plastic base material, and a packaging material using these.
JP7207604B2 (en) Alcohol permeation suppressing film, and packaging material and package using alcohol permeation suppressing film
JP2010280391A (en) Self-standing packaging container, and method for manufacturing the same
JP7259243B2 (en) Polyethylene-based resin composition for sealant film containing plant-derived polyethylene and sealant film
JP6839924B2 (en) Lid material
JP6763761B2 (en) Deep drawn molded package for food packaging
JP6041123B2 (en) Easy-penetrating lid for glass containers
JP7380189B2 (en) Laminated film and packaging bags
JP2003231224A (en) Laminated sheet and method for manufacturing the same
JP2022154807A (en) Anti-fogging coating composition and use thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021570196

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866548

Country of ref document: EP

Kind code of ref document: A1