WO2022054562A1 - Ophthalmic surgery system, control method, and program - Google Patents

Ophthalmic surgery system, control method, and program Download PDF

Info

Publication number
WO2022054562A1
WO2022054562A1 PCT/JP2021/030947 JP2021030947W WO2022054562A1 WO 2022054562 A1 WO2022054562 A1 WO 2022054562A1 JP 2021030947 W JP2021030947 W JP 2021030947W WO 2022054562 A1 WO2022054562 A1 WO 2022054562A1
Authority
WO
WIPO (PCT)
Prior art keywords
surgery system
unit
module
eye
patient
Prior art date
Application number
PCT/JP2021/030947
Other languages
French (fr)
Japanese (ja)
Inventor
知之 大月
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2022054562A1 publication Critical patent/WO2022054562A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser

Definitions

  • This technology relates to ophthalmic surgery systems, control methods, and programs applicable to ophthalmic surgery.
  • Surgical microscope devices and ultrasonic surgical devices are used in ophthalmic surgery such as cataract surgery, and it has been proposed to improve the convenience for the surgeon and the efficiency of the surgery for each of them (Patent Document 1). And 2).
  • the purpose of this technique is to provide an ophthalmologic surgery system, control method, and program that enables efficient utilization of space in the operating room and / or cost reduction.
  • the ophthalmologic surgery system includes one or more first modules and a second module.
  • the first module has a function used in the operation of the patient's eye.
  • the second module is connected to the first module, acquires configuration information about the first module, and outputs a control signal according to the configuration information.
  • one or more first modules having a function used for a patient's eye operation are connected to the first module, and configuration information about the first module is acquired and according to the configuration information.
  • a second module that outputs a control signal is provided. This makes it possible to efficiently utilize the space in the operating room and reduce costs.
  • a control method is a control method executed by a computer system and includes acquiring configuration information regarding one or a plurality of first modules having a function used for a patient's eye treatment. A control signal corresponding to the configuration information is output.
  • a program causes a computer system to perform the following steps.
  • FIG. 1 is a diagram schematically showing a configuration example of an ophthalmic surgery system according to the present technology.
  • the ophthalmic surgery system 100 is a system for controlling a medical device used for ophthalmic surgery. As shown in FIG. 1, the ophthalmologic surgery system 100 has a front-end module 1 and a back-end module 2. In FIG. 1, in the ophthalmic surgery system 100, the front-end module 1 and the back-end module 2 are communicably connected via a wire or a radio.
  • the connection form between each device is not limited, and for example, wireless LAN communication such as WiFi and short-range wireless communication such as Bluetooth (registered trademark) can be used.
  • the front-end module 1 is one or more modules having a function used for the treatment of the patient's eye.
  • the front-end module 1 corresponds to a module such as a medical device A, a medical device B, or a medical device C.
  • the back-end module 2 is connected to the front-end module 1, acquires configuration information about the front-end module 1, and outputs a control signal corresponding to the configuration information.
  • the back-end module 2 corresponds to the control device 10.
  • the back-end module 2 has a plurality of engines, and an engine corresponding to the connected front-end module 1 is used.
  • OCT Optical Coherence Tomography
  • the OCT engine in the back-end module 2 is used.
  • a laser engine is used.
  • a manipulator control engine is used.
  • the back-end module 2 is connected to the back-end module 2 from some modules of the front-end module 1 as needed, and the configuration information is acquired by the connection to control the front-end module 1. For example, depending on the content of the patient's eye procedure, the required modules are connected to the backend module 2.
  • the control of the back-end module 2 changes depending on the connected front-end module 1.
  • the back-end module 2 outputs different control signals depending on the configuration information of the microscope device 20 or the laser device 30 to control the OCT, which is a function common to the microscope device 20 and the laser device 30 described later.
  • the distance between the patient's eye and the lens barrel is about 20 cm, and in the laser device 30, the patient's eye and the lens barrel are docked.
  • the back-end module 2 has a control signal according to the connected module. Will be output.
  • the back-end module 2 acquires the configuration information of the medical device as the front-end module 1.
  • the back-end module 2 determines the components of the front-end module 1 based on the acquired configuration information.
  • the back-end module 2 outputs a control signal according to the determined component.
  • the front-end module 1 controls the functions it has based on the output control signal.
  • the ophthalmic surgery system 100 is an integrated system composed of a plurality of modules, and the medical devices connected to the back-end module 2 are modularized to aggregate and control the functions common to each medical device. Is possible. As a result, it is not necessary to prepare all the front-end modules 1 used for the treatment of the patient's eye, and it is possible to prepare and use only the necessary modules. That is, in the ophthalmologic surgery system 100, the back-end module 2 can be diverted, and the front-end module 1 can be replaced as needed. Further, the back-end module 2 can also be functionally updated by adding a device having an engine corresponding to the front-end module 1 later or updating the software.
  • the medical device includes an observation device (microscope or the like) capable of photographing and observing the patient's eye, a laser device for irradiating the patient's eye with a laser, and the like.
  • the medical device includes a multi-joint arm, a robot arm having an actuator in a joint, a manipulator capable of controlling the position and orientation of a surgical tool, and the like.
  • the treatment includes surgery and observation.
  • the control device 10 includes a microscope device 20 (see FIG. 2), a laser device 30 (see FIG. 4), a surgical device 50 (see FIG. 6), and a surgical device 70 (see FIG. 8) described later as medical devices. Connected as.
  • each front-end module 1 may have a common interface for connecting to the control device 10 which is the back-end module 2. That is, the ophthalmologic surgery system 100 is used for various purposes by attaching / detaching each front-end module 1 to / from the back-end module 2 which is the base.
  • the control device 10 acquires configuration information about the medical device and outputs a control signal corresponding to the configuration information.
  • the configuration information is information indicating the components of the medical device.
  • the component of the microscope device 20 includes a microscope unit for observing the patient's eye.
  • the component of the laser device 30 includes an exit portion that emits a laser to the patient's eye.
  • the configuration information also includes functions that can be performed by the components of the medical device. For example, the maximum magnifying power of the microscope unit, the range in which the emission unit can emit light, and the like can be mentioned.
  • the configuration information is not limited to this, and various information may be included depending on the type and use of the medical device used. For example, the specifications of the device such as the number of pixels of the image captured by the microscope may be included.
  • the component information may be medical device identification information that can identify the component.
  • the control device 10 can appropriately control the functions mounted on the medical device by outputting the control signal according to the components of the medical device.
  • the control device 10 can output a control signal to change the magnification and focal length (focus) of the observation image (patient's eye) to the microscope device 20 described later.
  • the drive mechanism of the image pickup unit appropriately moves the zoom lens and the focus lens, so that the magnifying power and the focus are adjusted.
  • the control device 10 can output a control signal to change the laser emission timing, the emission position, and the like to the laser device 30 described later. According to the control signal, the position or the emission direction of the emission unit is adjusted by the drive mechanism of the laser device 30.
  • FIG. 2 is a schematic diagram showing an example of an ophthalmic surgery system 100.
  • the microscope device 20 functions as the front-end module 1.
  • the control device 10 is mounted on the base portion 23 of the microscope device 20.
  • the control device 10 detects that the microscope device 20 has OCT from the configuration information and controls the OCT engine.
  • the microscope device 20 includes a microscope unit 21 for magnifying and observing an observation object, an arm unit 22 that supports the microscope unit 21 at the tip, and a base unit that supports the base end 27 of the arm unit 22. 23 and.
  • the microscope unit 21 is composed of a substantially cylindrical tubular portion 24, an imaging unit (not shown) provided inside the tubular portion 24, and an OCT unit (not shown).
  • the microscope unit 21 is an electron imaging type microscope unit (video type microscope unit) that electronically captures an image captured by the imaging unit.
  • a cover glass that protects the internal image pickup portion is provided on the opening surface at the lower end of the tubular portion 24.
  • the light from the observation target passes through the cover glass and is incident on the image pickup portion inside the tubular portion 24.
  • a light source made of, for example, an LED (Light Emitting Diode) may be provided inside the tubular portion 24, and even if light is emitted from the light source to the patient's eye through the cover glass at the time of imaging. good.
  • the image pickup unit is composed of an optical system that collects observation light and an image pickup element that receives the observation light collected by the optical system.
  • the optical system is composed of a combination of a plurality of lenses including a zoom lens and a focus lens, and its optical characteristics are adjusted so as to form an image of observation light on a light receiving surface of an image pickup device.
  • the image pickup device receives the observation light and performs photoelectric conversion to generate a signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • a device capable of color imaging having a Bayer array is used.
  • the image pickup device may be various known image pickup devices such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the image pickup unit has a drive mechanism for moving the zoom lens and the focus lens of the optical system along the optical axis. By appropriately moving the zoom lens and the focus lens by the drive mechanism, the magnifying power of the captured image and the focal length at the time of imaging can be adjusted.
  • the imaging unit may be equipped with various functions that can be generally provided in an electronic imaging type microscope unit, such as an AE (Auto Exposure) function and an AF (Auto Focus) function.
  • the OCT unit applies an OCT scan to the fundus of the patient's eye and acquires OCT data.
  • the OCT unit operates a laser beam with a galvano mirror or the like to acquire an image of the patient's eye. Further, when the same patient's eye is imaged, the OCT unit changes the inclination and position of the reference mirror and the scan mirror to image an arbitrary part of the patient's eye.
  • the OCT data may be interference signal data, reflection intensity profile data obtained by applying a Fourier transform to the interference signal data, or image data obtained by imaging the reflection intensity profile data.
  • an image acquired by using OCT may be referred to as an OCT image.
  • the OCT unit is realized by any configuration such as a beam splitter, a sensor, a reference mirror, a scan mirror, a light source, and various lenses.
  • the control device 10 controls the position and tilt of the reference mirror or the scan mirror.
  • the control device 10 controls the reference mirror so that the position changes along a predetermined axial direction (for example, the Z-axis direction).
  • the control device 10 controls the scan mirror so as to be tilted to the X-axis or the Y-axis.
  • the configuration of the OCT unit is not limited.
  • the observation light incident on the imaging unit may be incident on the OCT unit via a half mirror or the like.
  • each joint portion 25 extends in a predetermined direction and rotates in a predetermined range around each axis 26.
  • each joint portion 25 is provided with a drive mechanism such as a motor and each actuator equipped with an encoder or the like for detecting a rotation angle in each joint portion.
  • the drive of each actuator is appropriately controlled by the control device, and the posture of each arm portion, that is, the position and posture of the imaging unit (lens barrel) is controlled.
  • the base end 27 connecting the arm portion 22 and the base portion 23 can rotate about the shaft 26.
  • a user for example, a doctor
  • the structure, number, arrangement, position, direction of the rotation axis, and the like of the joint portions constituting the arm portion may be appropriately designed so as to realize a desired degree of freedom.
  • each joint may be provided with a brake or the like for restraining rotation.
  • FIG. 3 is a block diagram showing a configuration example of the ophthalmic surgery system 100.
  • FIG. 3 is an example of an ophthalmic surgery system 100 when the microscope device 20 and the control device 10 shown in FIG. 2 are connected. That is, the example of FIG. 3 is an embodiment of an ophthalmic surgery system 100 in which a microscope device 20 modularized as a front-end module 1 is connected to a control device 10 which is a back-end module 2 and functions as an integrated system. .. Further, the control device 10 has an output unit 14 as an engine for controlling the image pickup unit and the OCT unit of the microscope device 20.
  • the control device 10 has an information acquisition unit 11, a determination unit 12, an image processing unit 13, and an output unit 14.
  • the control device 10 has hardware necessary for configuring a computer, such as a processor such as a CPU, GPU, and DSP, a memory such as a ROM and a RAM, and a storage device such as an HDD (see FIG. 11).
  • a computer such as a processor such as a CPU, GPU, and DSP, a memory such as a ROM and a RAM, and a storage device such as an HDD (see FIG. 11).
  • the control method according to the present technology is executed by the CPU loading and executing the program according to the present technology recorded in advance in the ROM or the like into the RAM.
  • the control device 10 can be realized by an arbitrary computer such as a PC.
  • hardware such as FPGA and ASIC may be used.
  • the CPU executes a predetermined program to configure an output unit as a functional block.
  • the program is installed in the control device 10, for example, via various recording media.
  • the program may be installed via the Internet or the like.
  • the type of recording medium on which the program is recorded is not limited, and any computer-readable recording medium may be used.
  • any non-transient storage medium readable by a computer may be used.
  • the information acquisition unit 11 acquires various information about the front-end module 1.
  • the information acquisition unit 11 acquires configuration information regarding the medical device used for the treatment of the patient's eye.
  • the information acquisition unit 11 acquires an ID associated with the microscope device 20.
  • the information acquisition unit 11 acquires the configuration information corresponding to the acquired ID from the database that holds the IDs associated with various medical devices and the configuration information of the medical devices.
  • the information acquisition unit 11 acquires a captured image of the patient's eye.
  • a captured image of the patient's eye captured by the microscope device 20 is acquired.
  • an OCT image captured by the OCT unit is acquired.
  • the acquired configuration information is supplied to the determination unit 12.
  • the acquired captured image and OCT image of the patient's eye are supplied to the image processing unit 13 and the output unit 14.
  • the determination unit 12 determines the components of the front-end module 1 connected to the back-end module 2.
  • the determination unit 12 determines the components of the medical device based on the configuration information of the medical device acquired by the information acquisition unit 11. For example, the components such as the microscope unit 21 and the arm unit 22 of the microscope device 20, the angle of view of the image pickup unit of the microscope device 20, the imaging conditions such as the magnifying magnification, and the specifications such as the rotation range of the joint portion 25 are determined.
  • the determination result determined by the determination unit 12 is supplied to the image processing unit 13 and the output unit 14.
  • the method for determining the components is not limited.
  • the information acquisition unit 11 may acquire an ID for identifying the front-end module 1, and the determination unit 12 may determine the components of the medical device corresponding to the ID.
  • the image processing unit 13 executes image processing on the captured image and the OCT image of the patient's eye.
  • the image processing unit 13 executes different image processing between the microscope device 20 and the laser device 30 described later.
  • the reason is that, for example, the photographed image (front image) of the patient's eye of the microscope device 20 is stereoscopic, and the front image of the laser device 30 is monocular. Further, the color temperature of the light source of the microscope device 20 and the laser device 30 may be different. In addition to this, it is necessary to consider the difference in the light source for illumination and the difference between the imaging when docked in the patient's eye (imaging condition of the laser device 30) and the imaging through air (imaging condition of the microscope device 20). There is.
  • the image processing unit 13 changes the method of image processing of the captured image of the patient's eye according to the connected front-end module 1.
  • the method and type of image processing are not limited.
  • the image processing unit 13 may be mounted on an external device including the microscope device 20 and the laser device 30, and a control signal for executing the above image processing may be output from the output unit 14.
  • the output unit 14 outputs a control signal suitable for the components of the front-end module 1.
  • the output unit 14 outputs a control signal to the image pickup control unit 28 and the OCT control unit 29 of the microscope device 20.
  • the output unit 14 outputs a control signal to the image pickup control unit 28 and the OCT control unit 29 to image the patient's eye.
  • the output unit 14 outputs a control signal to perform shooting.
  • the output unit 14 outputs a control signal according to the content of the treatment for the patient's eye.
  • the output unit 14 may output a control signal according to a control pattern in which the position to be imaged by the microscope device 20 used for the treatment is set. Further, for example, the output unit 14 outputs a control signal based on the captured image acquired by the information acquisition unit 11. In this case, the current state of the treatment may be grasped from the captured image, and a control signal for capturing the captured image or the OCT image may be output centering on the lesion or the like. In addition to this, control signals corresponding to various components of the front-end module 1 may be output.
  • the microscope device 20 has an image pickup control unit 28 and an OCT control unit 29.
  • the image pickup control unit 28 controls the microscope unit 21.
  • the image pickup control unit 28 can control the magnifying power and the focal length.
  • the imaging control unit 28 executes imaging of the patient's eye according to the control signal output from the output unit 14 of the control device 10.
  • the OCT control unit 29 controls the OCT unit.
  • the control device 10 outputs a control signal for controlling the position and tilt of the reference mirror or the scan mirror.
  • the reference mirror is controlled to change its position along the Z-axis direction.
  • the scan mirror is controlled to be tilted to the X-axis or the Y-axis.
  • the front-end module 1 corresponds to one or a plurality of first modules having a function used for the treatment of the patient's eye.
  • the back-end module 2 corresponds to a second module to which the first module is connected, acquires configuration information about the first module, and outputs a control signal according to the configuration information.
  • the microscope device 20 and the surgical device 50 correspond to an observation device.
  • the arm portion 22, the joint portion 25, and the manipulator may function as a drive mechanism for driving the medical device.
  • the image processing unit 13 functions as an image processing unit that executes image processing on the captured image and a detection unit that detects the distance between the surgical instrument and the patient's eye based on the captured image of the patient's eye. You may.
  • FIG. 4 is a schematic diagram showing an example of the ophthalmic surgery system 100.
  • the laser device 30 functions as the front-end module 1.
  • the control device 10 is mounted on the base portion 31 of the laser device 30.
  • the control device 10 detects that the laser device 30 has the OCT and the emission unit 33 from the configuration information, and controls the OCT engine and the laser engine.
  • the laser device 30 has a base portion 31, an arm portion 32 attached to the base portion 31, and an emission unit 33 that emits laser light.
  • the arm portions 32 are rotatably connected to each other, and can be extended in a predetermined direction or rotated in a predetermined range, for example.
  • the exit portion 33 is formed by an arm portion 32a that extends in the Z-axis direction (arrow 40) and is rotatable about the shaft 41, and an arm portion 32b and an arm portion 32c that are rotatable on an XY plane. The position of is adjusted arbitrarily. Further, the emitting portion 33 is rotated on the XZ plane by the arm portion 32d. This makes it possible to emit the laser beam emitted from the emitting unit 33 to an arbitrary portion of the patient's eye.
  • each joint may be provided with a brake or the like for restraining rotation.
  • the emitting unit 33 is connected to the arm unit 32d and emits laser light.
  • the emission unit 33 emits a femtosecond laser.
  • the configuration of the emission unit 33 is not limited, and an arbitrary configuration and arrangement such as a galvano scanner for changing the laser beam in two horizontal scanning directions, an excitation light source, an optical fiber, and the like may be provided.
  • the emission unit 33 has an OCT unit similar to the OCT unit. For example, an imaging beam for inspecting the patient's eye, which is different from the femtosecond laser, may be generated from the emitting unit 33, and an OCT image of the patient's eye may be acquired.
  • FIG. 5 is a block diagram showing another configuration example of the ophthalmic surgery system 100.
  • FIG. 5 is an example of an ophthalmic surgery system 100 when the laser device 30 and the control device 10 shown in FIG. 4 are connected. That is, the example of FIG. 5 is an embodiment of an ophthalmic surgery system 100 in which a laser device 30 modularized as a front-end module 1 is connected to a control device 10 which is a back-end module 2 and functions as an integrated system. .. Further, the control device 10 has an output unit 14 as an engine for controlling the emission unit 33 and the OCT unit of the laser device 30.
  • the ophthalmologic surgery system 100 shown in FIG. 3 and the front-end module 1 of the ophthalmologic surgery system 100 shown in FIG. 5 have an OCT unit as a common function. Further, the back-end module 2 has an engine for controlling the OCT unit. That is, the ophthalmic surgery system 100 shown in FIG. 3 can be transformed into the ophthalmic surgery system 100 shown in FIG. 5 by changing the modules (microscope device 20 and laser device 30) connected according to the functions required for the treatment of the patient's eye. Is. Similarly, each module shown in FIGS. 6 to 10 shown below and the ophthalmologic surgery system 100 are also embodiments that can be modified as needed. Since the OCT control unit 36 of the laser device 30 has the same function as the OCT control unit 29 described above, the description thereof will be omitted.
  • the output unit 14 outputs a control signal to the laser control unit 35 and the OCT control unit 36.
  • the output unit 14 outputs a control signal for controlling the position where the femtosecond laser is irradiated to the laser control unit 35.
  • a control signal for controlling the inclination of each of the scanning mirrors provided in the emission unit 33 that can rotate in the X-axis direction or the scanning mirrors that can rotate in the Y-axis direction is output.
  • the output unit 14 outputs a control signal based on the captured image acquired by the information acquisition unit 11. In this case, the current state of the treatment may be grasped from the captured image, and a control signal to emit the laser to an appropriate place (for example, the cornea, the anterior lens capsule, the incision position of the lens nucleus, etc.) may be output.
  • the laser device 30 has a laser control unit 35 and an OCT control unit 36.
  • the laser control unit 35 controls the laser light emitted from the emission unit 33.
  • the laser control unit 35 controls the timing at which the femtosecond laser is emitted, the intensity of the femtosecond laser, and the like.
  • the laser control unit 35 outputs a femtosecond laser according to a control signal output from the output unit 14 of the control device 10.
  • FIG. 6 is a schematic view showing the appearance of the surgical apparatus 50.
  • the surgical device 50 which is a front-end module, has the functions of the microscope device 20 and the laser device 30.
  • the arm portion 51 and the lens barrel portion 54 having the microscope portion 52 and the exit portion 53 are provided.
  • the microscope unit 52 has the same function as the image pickup unit of the microscope device 20, and can acquire an image captured by the patient's eye.
  • the arm portions 51 have joint portions 55a to 55a and are rotatably connected to each other.
  • each of the joint portions 55a to 55a is stretched in a predetermined direction and rotated in a predetermined range.
  • each joint portion 55a to d is controlled by a manipulator. This makes it possible to arrange the microscope unit 52 and the emission unit 53 at arbitrary positions.
  • the joint portion 55d is connected to the lens barrel portion 54 and can rotate about the axis 57. That is, by rotating the joint portion 55d around the axis 57, the microscope portion 52 or the exit portion 53 facing the patient's eye can be switched.
  • the state in which the microscope unit 52 faces the patient's eye is referred to as a microscope mode
  • the state in which the exit unit 53 faces the patient's eye is referred to as a laser mode.
  • FIG. 6B is a schematic view showing the configuration of the lens barrel portion 54.
  • the lens barrel portion 54 has a light source portion 60 in the joint portion 55d in addition to the microscope portion 52 and the exit portion 53.
  • the microscope unit 52 has an arbitrary optical system (not shown) that collects the observation light.
  • the emitting unit 53 has an arbitrary optical system (not shown) capable of deflecting the laser or the like.
  • the light source unit 60 includes a beam unit 61 capable of emitting a laser or OCT beam, a scanner system 62 for deflecting a beam emitted from the beam unit 61 in at least orthogonal directions (X and Y-axis directions), and an image sensor 63.
  • the scanner system 62 has a mirror for scanning the beam in the X-axis direction and a mirror for operating the beam in the Y-axis direction.
  • the light source unit 60 can rotate so that the beam emitted from the beam unit 61 is always emitted in the direction of the patient's eye, regardless of the rotational drive of the joint portion 55d. That is, the light source unit 60 has a mechanism that does not rotate relatively regardless of whether the surgical apparatus 50 is in the microscope mode or the laser mode.
  • FIG. 7 is a block diagram showing another configuration example of the ophthalmic surgery system 100.
  • FIG. 7 is an example of an ophthalmic surgery system 100 in which the surgical device 50 and the control device 10 shown in FIG. 6 are connected and function as an integrated system.
  • the ophthalmologic surgery system 100 is controlled by mounting a control device 10 which is a back-end module 2 on a surgical device 50 which is a front-end module 1.
  • the imaging control unit 65, the laser control unit 66, and the OCT control unit 67 of the surgical apparatus 50 have the same functions as the image pickup control unit 28, the laser control unit 35, and the OCT control unit 29, and thus the description thereof will be omitted. ..
  • the information acquisition unit 11 acquires the configuration information of the surgical apparatus 50.
  • configuration information indicating that the surgical apparatus 50 has the arm portion 51 and the lens barrel portion 54 is acquired. Further, the information acquisition unit 11 acquires information indicating the current status of components such as the orientation and rotation angle of the lens barrel unit 54.
  • the determination unit 12 determines whether either the microscope unit 52 or the exit unit 53 is facing the patient's eye based on the current state of the lens barrel unit 54 acquired by the information acquisition unit 11. That is, the determination unit 12 determines whether the mode is the microscope mode or the laser mode.
  • the output unit 14 outputs a control signal based on the microscope mode or the laser mode determined by the determination unit 12. For example, a control signal for controlling the scan angle of the OCT or the like is output based on the microscope mode or the laser mode. For example, when switching from the laser mode to the microscope mode, the output unit 14 outputs a control signal to the robot arm control unit 68 so that the emission unit 53 docked to the patient's eye is arranged at an appropriate position. Further, the output unit 14 outputs a control signal for rotating the joint portion 55d. Further, for example, when switching from the microscope mode to the laser mode, the output unit 14 outputs a control signal for rotating the joint portion 55d. Further, the output unit 14 outputs a control signal to the robot arm control unit 68 so that the emission unit 53 is docked to the patient's eye.
  • the robot arm control unit 68 controls the drive of the arm unit 51 and the joint portions 55a to 55a.
  • the rotation angles and the like of the joint portions 55a to d are controlled according to the control signal output from the output unit 14.
  • a specific example is shown in which the surgical apparatus 50 shown in FIG. 6 is controlled by the control signal output from the output unit 14.
  • a control signal is output to the arm portion 51 and the robot arm control unit 68 that controls the joint portions 55a to 55 so that the coordinates of the exit portion 53 and the patient's eye match.
  • Output of a control signal for emitting a femtosecond laser to the incision position of the patient's eye For example, a control signal is output to the laser control unit 66 to control the tilt of the galvano mirror, so that the irradiation position of the femtosecond laser is changed.
  • a control signal is output to the image pickup control unit 65.
  • a control signal is output to the image pickup control unit 65.
  • FIG. 8 is a schematic view showing the appearance of the surgical apparatus 70.
  • the surgical apparatus 70 includes a surgical tool 72, a lock portion 74, and a rotation drive portion 80.
  • the surgical device 70 is connected to the control device 10 as a front-end module 1. That is, the control device 10 is mounted on the surgical device 70 and functions as an integrated system.
  • the surgical tool 72 is various surgical tools used for the treatment of the patient's eye.
  • the surgical instrument is a general instrument used for ophthalmic surgery such as a scalpel, an I / A tip, and forceps. That is, the surgical instrument 72 can be arbitrarily changed according to the surgery performed on the patient 3.
  • the lock portion 74 has a first lock portion 74a and a second lock portion 74b. As shown in FIG. 8, the head of the patient 3 is held by the first locking portion 74a and the second locking portion 74b.
  • the first locking portion 74a has a first holding portion 75 that holds the surgical instrument 72.
  • the first lock portion 74a has an arc shape, and the first holding portion 75 can be moved in the arc shape (arrow 76). Further, the first holding portion 75 has a function of moving the surgical tool 72. For example, it is possible to approach or move away from the patient's eye, which is the subject of the procedure.
  • the first holding portion 75 may be movable or rotatable in a direction other than the arrow 77 direction.
  • the second locking portion 74b has a second holding portion 75 that holds the surgical instrument 72.
  • the second lock portion 74b has an arc shape, and the surgical tool 72 can be moved in the arc shape (arrow 78).
  • the rotation drive unit 80 is connected to the first lock portion 74a and the second lock portion 74b, and can rotate about the shaft 81. Further, the rotation drive unit 80 has a groove 83 capable of moving the first lock portion 74a and the second lock portion 74b in the circumferential direction (direction of the arrow 82).
  • the surgical device 70 includes a microscope device (not shown) having the same function as the surgical device 50. That is, the microscope device acquires an image of the patient's eye held by the lock portion 74.
  • the control device 10 outputs a control signal to the manipulator control unit 85 that controls the drive of the surgical tool 72, the lock unit 74, and the rotation drive unit 80. Further, a control signal is output to the arm portion in order to photograph the patient's eye.
  • a control signal for performing image processing on the acquired captured image a control signal for controlling OCT, and a control signal for controlling the robot arm for moving the image pickup unit are also output. That is, each part is controlled by the image processing engine, the OCT engine, the robot arm control engine, and the manipulator control engine included in the control device 10.
  • FIG. 9 is a block diagram showing another configuration example of the ophthalmic surgery system 100.
  • FIG. 9 is an example of an ophthalmic surgery system 100 in which the surgical device 70 and the control device 10 shown in FIG. 8 are connected and function as an integrated system.
  • the control device 10 detects that the surgical device 70 has the rotation drive unit 80 from the configuration information, and controls the manipulator control engine.
  • the surgical apparatus 70 includes a manipulator control unit 85, an imaging control unit 86, an OCT control unit 87, and a robot arm control unit 88. Since the imaging control unit 86 and the OCT control unit 87 of the surgical apparatus 70 have the same functions as the imaging control unit 28 and the OCT control unit 29, the description thereof will be omitted. Further, since the robot arm control unit 88 has the same function as the robot arm control unit 68 described above, the description thereof will be omitted.
  • the manipulator control unit 85 controls the manipulator that controls the drive of the surgical tool 72, the lock unit 74, and the rotation drive unit 80.
  • the manipulator control unit 85 follows the control signal output from the output unit 14, the rotation angle of the first lock unit 74a and the second lock unit 74b, the position of the surgical tool 72, and the rotation drive unit 80. Controls the angle of rotation, etc.
  • the surgical device 70 can freely control the surgical instrument 72 according to the control signal of the output unit 14. For example, by controlling the surgical instrument 72 and the lock portion 74, suction of the crystalline lens nucleus, cortex, etc. of the patient's eye is performed.
  • the image processing unit 13 detects the distance between the surgical tool 72 and each part of the patient's eye from the captured image of the patient's eye.
  • the output unit 14 outputs a control signal for controlling the position of the surgical instrument 72 based on the detected distance. This allows the surgical instrument 72 to perform the appropriate treatment on the appropriate site of the patient's eye. For example, it is possible to prevent the possibility that the surgical tool 72 moves without grasping the surrounding retina or the like, thereby damaging the retina or the like and causing a visual field defect.
  • the operation of not only the output unit 14 but also the image processing unit 13 changes according to the configuration information of the front end module 1 connected to the back end module 2.
  • control signal output by the output unit 14 in FIG. 9 is shown below.
  • the output unit 14 outputs a control signal to the robot arm control unit 88 so that the robot arm control unit 88 is arranged at an appropriate position when imaging the patient's eye. That is, a control signal is output to the microscope device which is the front-end module 1.
  • the output unit 14 outputs a control signal for performing lens nucleus suction, cortical suction, intraocular lens insertion, and the like to the manipulator control unit 85. That is, a control signal is output to the surgical apparatus 70 (manipulator function) which is the front end module 1.
  • a femtosecond laser cataract surgery device may be provided to perform anterior capsule incision, nuclear division, and corneal incision prior to the operation by the device of FIG.
  • a control signal is output to the robot arm control unit 88 so as to move to the optimum position for imaging the patient's eye preset for each surgical step such as lens nucleus suction, cortical suction, and intraocular lens insertion.
  • the output unit 14 outputs a control signal to the effect that the photographed image and the OCT image of the patient's eye are acquired. That is, the captured image and the OCT image are acquired by the information acquisition unit 11. Further, the output unit 14 executes image processing on the acquired captured image and OCT image.
  • FIG. 10 is a diagram schematically showing a configuration example of the ophthalmic surgery system 100.
  • the ophthalmologic surgery system 100 has a surgical device 90 as a front-end module 1, a surgical device 90 having a surgical device 50, a surgical device 70, and a monitor 91, and a control device 10 as a back-end module 2.
  • the control device 10 is mounted on the surgical device 90.
  • the surgical device 90 is one device composed of a plurality of modules of the surgical device 50, the surgical device 70, and the monitor 91. That is, the surgical apparatus 90 composed of a plurality of modules and the control device 10 mounted on the surgical apparatus 90 constitute an ophthalmologic surgery system 100 as an integrated system.
  • the monitor 91 displays a photographed image or an OCT image captured by the microscope unit 52. For example, a captured image or an OCT image that has undergone predetermined image processing by the image processing unit 13 is displayed. In addition to this, a marker indicating the position of the surgical instrument 72, a sentence explaining the outline of the surgery currently being performed, or the like may be displayed.
  • the surgical apparatus 90 is a medical device capable of performing imaging of a patient's eye by a microscope unit 52, ophthalmic surgery using a laser by an exit unit 53, and various operations using a surgical tool 72.
  • the cataract surgery is performed by outputting a control signal to execute the procedure necessary for the cataract surgery.
  • the output unit 14 outputs the following control signals.
  • the output unit 14 outputs a control signal to the exit unit 53 to emit a femtosecond laser for creating a wound, incising the anterior capsule, and dividing the lens nucleus of the patient's eye.
  • a control signal is output to the arm portion 51 and the robot arm control unit 68 that controls the joint portions 55a to 55d so that the emission portion 53 is docked to the patient's eye.
  • a control signal is output to the laser control unit 66 to control the inclination of the galvano mirror, so that the irradiation position of the femtosecond laser is changed.
  • a control signal for emitting the femtosecond laser is output.
  • the output unit 14 outputs a control signal for switching from the laser mode to the microscope mode to the robot arm control unit 68. Specifically, a control signal is output to the robot arm control unit 68 so that the emission unit 53 docked to the patient's eye is arranged at an appropriate position. Further, the output unit 14 outputs a control signal for rotating the joint portion 55d. As a result, the microscope unit 52 faces the patient's eye.
  • the output unit 14 outputs a control signal for performing lens nucleus suction, cortical suction, and intraocular lens insertion to the manipulator control unit 85.
  • the microscope unit 52 (lens barrel unit 54) is assigned to the robot arm control unit 68 so that it moves to the optimum position for imaging at each surgical step such as lens nucleus suction, cortical suction, and intraocular lens insertion.
  • a control signal is output.
  • the captured image and the OCT image of the patient's eye are acquired by the information acquisition unit 11. Based on the acquired captured image or OCT image, a control signal is output that controls the position where the femtosecond laser is irradiated, the position of the surgical tool 72 that switches from the laser mode to the microscope mode, and performs cortical suction, etc. ..
  • the ophthalmologic surgery system 100 has a module capable of executing the procedure necessary for the surgery to be performed, so that a predetermined surgery can be performed from the beginning to the end.
  • a part of the surgery may be performed by the user.
  • a part of the surgery is performed by the ophthalmologic surgery system 100, and in the ophthalmologic surgery system 100, the surgery is performed by the user in a procedure having a high degree of difficulty in the surgery.
  • Specific examples include cases such as "Zonule of Zinn rupture” in which the zonule of Zinn that connects the crystalline lens from the tissue around the eye is cut, and "Zonule of Zinn fragility" in which the zonule of Zinn is weakened.
  • the user can use the Capsule Retractor to pull the lens with a surgical tool attached to the cornea to stabilize the position of the lens, or put a CTR (Capsular Tension Ring) in the lens capsule and remain. Procedures such as stabilizing the position of the crystalline lens in the zonule of Zinn are performed.
  • CTR Capsular Tension Ring
  • a control signal may be output to move the lock portion 74 of the surgical apparatus 70 to a location that does not interfere with the user's procedure.
  • configuration information regarding the components of the front-end module 1 used for the operation of the patient's eye is acquired.
  • the back-end module 2 to which the front-end module 1 is connected acquires configuration information and outputs a control signal corresponding to the component. This makes it possible to efficiently control the medical device.
  • each medical device is modularized as a front-end module, and the common functions of each medical device are integrated.
  • appropriate functions of the medical device are executed based on the configuration information of the modularized medical device. This makes it possible to efficiently utilize the space in the operating room and reduce costs. In addition, efficiency can be improved because one medical device can have many functions.
  • the wiring and equipment installation space is small, so it is possible to secure space for the operating room. It is also possible to shorten the time required to get used to the operation of each medical device. Further, this technology does not need to prepare modules that can perform surgery from the beginning to the end at once like the ophthalmic surgery system 100 shown in FIG.
  • a video microscope microscope device 20, etc.
  • a surgical device having a microscope, a laser device, and a robot arm (surgical device 50, etc.).
  • a fully automatic cataract surgery device ophthalmic surgery system 100, etc. equipped with each medical device necessary for cataract surgery. In other words, this technology can be gradually invested in the form of additional purchases according to the needs of users, including fully automatic cataract surgery equipment. It is also possible to replace some of the components to evolve functionality and performance. Note that the engine in the backend module may be added and / or updated according to the added frontend module.
  • a microscope such as a microscope device 20 and a surgical device 50 was used for the front end module 1.
  • a medical device used in any ophthalmology may be used as the front-end module 1.
  • an ophthalmic endoscope may be used as the front-end module 1.
  • other medical devices required for surgery in which an ophthalmic endoscope is used may be connected to the back-end module 2 as the front-end module 1. That is, the endoscope for ophthalmology corresponds to an observation device.
  • control signals may be output to the surgical apparatus in various ophthalmic surgery systems 100.
  • the lens barrel portion 54 of the surgical device 50 is in a predetermined position when the surgeon is performing the operation.
  • a control signal is output to move. After that, the arm portion 51 becomes a passive state operated by the operator.
  • control device 10 controls the front-end module 1. In addition to this, guidance of the treatment performed by the control device 10 may be presented to the user.
  • the configuration information was acquired by the information acquisition unit 11.
  • various information may be acquired. For example, information indicating the positional relationship between the surgical instrument such as the microscope unit 21 and the exit unit 33 and the patient's eye may be acquired. Further, a control signal corresponding to the positional relationship may be output.
  • control device 10 is mounted on the surgical device 50 of FIG. Not limited to this, the control device 10 may be arranged externally and connected wirelessly or the like. Further, the block of the control device 10 such as the image processing unit 13 may be mounted on the surgical device 50.
  • a control signal for performing surgery was output based on the captured image.
  • the lesion part of the patient's eye is recognized from the photographed image or the OCT image, the necessary treatment is determined from the lesion part, and a control signal indicating that the procedure necessary for the determined treatment is executed is output. May be done.
  • the above recognition and determination may be learned by machine learning or the like, and a control signal may be output based on the learning data.
  • the lens barrel portion 54 of the surgical apparatus 50 is provided with the microscope portion 52 and the exit portion 53.
  • the lens barrel portion 54 may have a connection portion to which the microscope portion 52 or the emission portion 53 can be attached.
  • the microscope unit 52 when the microscope unit 52 is connected to the connection unit, the microscope mode is set, and when the emission unit 53 is connected to the connection unit, the laser mode is set.
  • the output unit 14 outputs a control signal according to each mode.
  • common elements such as the OCT section of the microscope device 20 and the laser device 30 are shared by the ophthalmologic surgery system 100.
  • various medical devices may be controlled by the control device 10.
  • FIG. 11 is a block diagram showing a hardware configuration example of the control device 10.
  • the control device 10 includes a CPU 111, a ROM 112, a RAM 113, an input / output interface 115, and a bus 114 connecting these to each other.
  • a display unit 116, an input unit 117, a storage unit 118, a communication unit 119, a drive unit 120, and the like are connected to the input / output interface 115.
  • the display unit 116 is a display device using, for example, a liquid crystal display, an EL, or the like.
  • the input unit 117 is, for example, a keyboard, a pointing device, a touch panel, or other operating device. When the input unit 117 includes a touch panel, the touch panel may be integrated with the display unit 116.
  • the storage unit 118 is a non-volatile storage device, for example, an HDD, a flash memory, or other solid-state memory.
  • the drive unit 120 is a device capable of driving a removable recording medium 121 such as an optical recording medium or a magnetic recording tape.
  • the communication unit 119 is a modem, router, or other communication device for communicating with another device that can be connected to a LAN, WAN, or the like.
  • the communication unit 119 may communicate using either wired or wireless communication.
  • the communication unit 119 is often used separately from the control device 10. In the present embodiment, the communication unit 119 enables communication with other devices via the network.
  • Information processing by the control device 10 having the hardware configuration as described above is realized by the cooperation between the software stored in the storage unit 118 or the ROM 112 or the like and the hardware resources of the control device 10.
  • the control method according to the present technology is realized by loading the program constituting the software stored in the ROM 112 or the like into the RAM 113 and executing the program.
  • the program is installed in the control device 10 via, for example, the recording medium 121.
  • the program may be installed in the control device 10 via a global network or the like.
  • any non-transient storage medium that can be read by a computer may be used.
  • a control device 10 By linking a computer mounted on a communication terminal with another computer capable of communicating via a network or the like, an ophthalmic surgery system, a control method, and a program according to the present technology are executed, and a control device 10 according to the present technology is executed. It may be constructed.
  • the ophthalmic surgery system, control method, and program according to the present technology can be executed not only in a computer system composed of a single computer but also in a computer system in which a plurality of computers operate in conjunction with each other.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether or not all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device in which a plurality of modules are housed in one housing are both systems.
  • the execution of the ophthalmic surgery system, the control method, and the program according to the present technology by the computer system is, for example, when the acquisition of the configuration information, the output of the control signal, etc. are executed by a single computer, or by a computer in which each process is different. Includes both when executed. Further, the execution of each process by a predetermined computer includes having another computer execute a part or all of the process and acquiring the result.
  • the ophthalmologic surgery system, control method, and program related to this technology can be applied to the configuration of cloud computing in which one function is shared by a plurality of devices via a network and processed jointly.
  • the effects described in the present disclosure are merely examples and are not limited, and other effects may be obtained.
  • the description of the plurality of effects described above does not necessarily mean that the effects are exerted at the same time. It means that at least one of the above-mentioned effects can be obtained depending on the conditions and the like, and of course, there is a possibility that an effect not described in the present disclosure may be exhibited.
  • this technology can also adopt the following configurations.
  • An ophthalmologic surgery system comprising a second module to which the first module is connected and which acquires configuration information about the first module and outputs a control signal according to the configuration information.
  • the second module is an ophthalmologic surgery system that controls information about the procedure supplied from the first module according to the configuration information.
  • the information regarding the treatment is a captured image of the patient's eye.
  • the second module has an image processing unit that executes image processing on the captured image.
  • the image processing unit is an ophthalmologic surgery system that changes the image processing according to the configuration information.
  • the ophthalmologic surgery system is any one of (1) to (3).
  • the first module is an ophthalmic surgery system that includes at least one of an observation device or a laser device.
  • the ophthalmologic surgery system according to (4) When either the observation device or the laser device is connected, the second module outputs a control signal for controlling the observation device and the observation optical system of the laser device according to the configuration information. Eye surgery system.
  • the observation optical system includes at least one of a reference mirror and a scan mirror.
  • the control signal includes at least one of a signal that changes the distance of the reference mirror from the light source and a signal that changes the swing angle of the scan mirror. (7) The ophthalmologic surgery system according to (4).
  • the second module has an image processing unit that executes image processing on the captured image.
  • the image processing unit changes the captured image of the patient's eye into monocular display processing or compound eye display processing according to the configuration information.
  • An eye surgery system that performs at least one of processing or image processing that modifies the color processing of the captured image.
  • the first module is the observation device.
  • the second module is an ophthalmologic surgery system that outputs a control signal that controls at least one of the position of the observation device and the imaging condition of the observation device.
  • the first module is the laser device.
  • the second module is an ophthalmologic surgery system that outputs a control signal that controls at least the position of the laser beam emitted to the patient's eye.
  • the observation device is an ophthalmic surgery system having an optical coherence tomography (OCT) optical system.
  • OCT optical coherence tomography
  • the laser device is an ophthalmic surgery system having an optical coherence tomography (OCT) optical system.
  • the laser device is an ophthalmic surgery system capable of emitting a femtosecond laser. (13) The ophthalmologic surgery system according to (1).
  • the control signal is an ophthalmologic surgery system that includes behavioral information about the procedure performed on the patient's eye.
  • the ophthalmologic surgery system according to any one of (1) to (13), and further.
  • An ophthalmologic surgery system comprising a drive mechanism for driving the first module.
  • the second module is an ophthalmic surgery system that outputs the control signal to the drive mechanism.
  • the drive mechanism holds the surgical tool used for the treatment and holds the surgical tool.
  • the second module is an ophthalmologic surgery system having a detection unit that detects the distance between the surgical instrument and the patient's eye based on the captured image of the patient's eye.
  • the ophthalmologic surgery system according to (14).
  • the second module is an ophthalmic surgery system that outputs a control signal for controlling the drive mechanism according to the procedure of the operation.
  • (18) Obtain configuration information about one or more first modules that have the function used in patient eye surgery. A control method in which a computer system executes to output a control signal according to the configuration information.
  • (19) A step of acquiring configuration information about one or more first modules having a function used in a patient eye procedure, and A program that causes a computer system to perform steps to output control signals according to the components.

Abstract

Provided are an ophthalmic surgery system that enables efficient use of the space in an operating room and/or cost reduction, a control method, and a program. This ophthalmic surgery system that enables efficient use of the space in an operating room and/or cost reduction is equipped with one or more first modules (1) and a second module (2). Each of the first modules (1) has a function that enables use thereof in a treatment of a patient's eye (3). The second module (2) is connected to the first modules (1), acquires configuration information relating to the first modules (1), and outputs a control signal in accordance with the configuration information.

Description

眼科手術システム、制御方法、及びプログラムOphthalmic surgery systems, control methods, and programs
 本技術は、眼科手術等に適用可能な眼科手術システム、制御方法、及びプログラムに関する。 This technology relates to ophthalmic surgery systems, control methods, and programs applicable to ophthalmic surgery.
 白内障手術等の眼科に関する手術において、手術用顕微鏡装置や超音波手術装置が用いられており、それぞれについて、術者にとっての利便性向上や手術の効率を上げる工夫が提案されている(特許文献1および2)。 Surgical microscope devices and ultrasonic surgical devices are used in ophthalmic surgery such as cataract surgery, and it has been proposed to improve the convenience for the surgeon and the efficiency of the surgery for each of them (Patent Document 1). And 2).
WO18/055888号公報WO18 / 055888 特開2005-013425号公報Japanese Unexamined Patent Publication No. 2005-013425
 しかしながら、手術に用いる医療機器を複数用意すると、各機器が手術室内のスペースを占有することになる。また、病院経営の観点では各機器を購入するコストが必要となる。ゆえに、手術室内のスペースの効率的な活用やコスト削減に繋がるような技術が求められている。 However, if multiple medical devices used for surgery are prepared, each device will occupy the space in the operating room. In addition, from the viewpoint of hospital management, the cost of purchasing each device is required. Therefore, there is a need for technology that leads to efficient use of space in the operating room and cost reduction.
 以上のような事情に鑑み、本技術の目的は、手術室内のスペースの効率的な活用および/またはコスト削減を可能とする眼科手術システム、制御方法、及びプログラムを提供することにある。 In view of the above circumstances, the purpose of this technique is to provide an ophthalmologic surgery system, control method, and program that enables efficient utilization of space in the operating room and / or cost reduction.
 上記目的を達成するため、本技術の一形態に係る眼科手術システムは、1又は複数の第1のモジュールと、第2のモジュールとを具備する。
 前記第1のモジュールは、患者眼の施術に用いられる機能を有する。
 前記第2のモジュールは、前記第1のモジュールが接続され、前記第1のモジュールに関する構成情報を取得して前記構成情報に応じた制御信号を出力する。
In order to achieve the above object, the ophthalmologic surgery system according to one embodiment of the present technology includes one or more first modules and a second module.
The first module has a function used in the operation of the patient's eye.
The second module is connected to the first module, acquires configuration information about the first module, and outputs a control signal according to the configuration information.
 この眼科手術システムでは、患者眼の施術に用いられる機能を有する1または複数の第1のモジュールと、第1のモジュールが接続され、第1のモジュールに関する構成情報を取得して当該構成情報に応じた制御信号を出力する第2のモジュールとが具備される。これにより、手術室内のスペースの効率的な活用やコスト削減が可能となる。 In this ophthalmologic surgery system, one or more first modules having a function used for a patient's eye operation are connected to the first module, and configuration information about the first module is acquired and according to the configuration information. A second module that outputs a control signal is provided. This makes it possible to efficiently utilize the space in the operating room and reduce costs.
 本技術の一形態に係る制御方法は、コンピュータシステムが実行する制御方法であって、患者眼の施術に用いられる機能を有する1又は複数の第1のモジュールに関する構成情報を取得することを含む。
 前記構成情報に応じた制御信号を出力される。
A control method according to an embodiment of the present technology is a control method executed by a computer system and includes acquiring configuration information regarding one or a plurality of first modules having a function used for a patient's eye treatment.
A control signal corresponding to the configuration information is output.
 本技術の一形態に係るプログラムは、コンピュータシステムに以下のステップを実行させる。
 患者眼の施術に用いられる機能を有する1又は複数の第1のモジュールに関する構成情報を取得するステップ。
 前記構成要素に応じた制御信号を出力するステップ。
A program according to an embodiment of the present technology causes a computer system to perform the following steps.
A step of acquiring configuration information about one or more first modules having a function used in a patient eye procedure.
A step of outputting a control signal according to the component.
眼科手術システムの構成例を模式的に示す図である。It is a figure which shows the structural example of the ophthalmologic surgery system schematically. 眼科手術システムの例を示す模式図である。It is a schematic diagram which shows the example of the ophthalmologic surgery system. 眼科手術システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the ophthalmologic surgery system. 眼科手術システムの例を示す模式図である。It is a schematic diagram which shows the example of the ophthalmologic surgery system. 眼科手術システムの他の構成例を示すブロック図である。It is a block diagram which shows the other configuration example of an ophthalmologic surgery system. 手術装置の外観を示す模式図である。It is a schematic diagram which shows the appearance of a surgical apparatus. 眼科手術システムの他の構成例を示すブロック図である。It is a block diagram which shows the other configuration example of an ophthalmologic surgery system. 手術装置の外観を示す模式図である。It is a schematic diagram which shows the appearance of a surgical apparatus. 眼科手術システムの他の構成例を示すブロック図である。It is a block diagram which shows the other configuration example of an ophthalmologic surgery system. 眼科手術システムの構成例を模式的に示す図である。It is a figure which shows the structural example of the ophthalmologic surgery system schematically. 制御装置のハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware configuration example of a control device.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments relating to this technology will be described with reference to the drawings.
 [眼科手術システムの構成]
 図1は、本技術に係る眼科手術システムの構成例を模式的に示す図である。
[Configuration of eye surgery system]
FIG. 1 is a diagram schematically showing a configuration example of an ophthalmic surgery system according to the present technology.
 眼科手術システム100は、眼科手術に用いられる医療機器を制御するシステムである。図1に示すように、眼科手術システム100は、フロントエンドモジュール1と、バックエンドモジュール2とを有する。
 図1では、眼科手術システム100は、フロントエンドモジュール1及びバックエンドモジュール2は、有線又は無線を介して、通信可能に接続されている。各デバイス間の接続形態は限定されず、例えばWiFi等の無線LAN通信や、Bluetooth(登録商標)等の近距離無線通信を利用することが可能である。
The ophthalmic surgery system 100 is a system for controlling a medical device used for ophthalmic surgery. As shown in FIG. 1, the ophthalmologic surgery system 100 has a front-end module 1 and a back-end module 2.
In FIG. 1, in the ophthalmic surgery system 100, the front-end module 1 and the back-end module 2 are communicably connected via a wire or a radio. The connection form between each device is not limited, and for example, wireless LAN communication such as WiFi and short-range wireless communication such as Bluetooth (registered trademark) can be used.
 フロントエンドモジュール1は、患者眼の施術に用いられる機能を有する1又は複数のモジュールである。例えば、本実施形態では、フロントエンドモジュール1は、医療機器A、医療機器B、又は医療機器C等のモジュールが該当する。 The front-end module 1 is one or more modules having a function used for the treatment of the patient's eye. For example, in the present embodiment, the front-end module 1 corresponds to a module such as a medical device A, a medical device B, or a medical device C.
 バックエンドモジュール2は、フロントエンドモジュール1が接続され、フロントエンドモジュール1に関する構成情報を取得して、該構成情報に応じた制御信号を出力する。例えば、本実施形態では、バックエンドモジュール2は、制御装置10が該当する。
 また本実施形態では、バックエンドモジュール2は、複数のエンジンを有し、接続されるフロントエンドモジュール1に対応するエンジンが用いられる。例えば、フロントエンドモジュール1がOCT(Optical Coherence Tomography)を有する場合、バックエンドモジュール2内のOCTエンジンが用いられる。また例えば、フロントエンドモジュール1がレーザ鏡筒を有する場合は、レーザエンジンが用いられる。また例えば、フロントエンドモジュール1がマニピュレータモジュールを有する場合、マニピュレータ制御エンジンが用いられる。
The back-end module 2 is connected to the front-end module 1, acquires configuration information about the front-end module 1, and outputs a control signal corresponding to the configuration information. For example, in the present embodiment, the back-end module 2 corresponds to the control device 10.
Further, in the present embodiment, the back-end module 2 has a plurality of engines, and an engine corresponding to the connected front-end module 1 is used. For example, when the front-end module 1 has OCT (Optical Coherence Tomography), the OCT engine in the back-end module 2 is used. Further, for example, when the front-end module 1 has a laser lens barrel, a laser engine is used. Further, for example, when the front-end module 1 has a manipulator module, a manipulator control engine is used.
 また眼科手術システム100では、バックエンドモジュール2に対してフロントエンドモジュール1のいくつかのモジュールから必要に応じて接続され、その接続によって構成情報が取得されフロントエンドモジュール1が制御される。例えば、患者眼の施術の内容に応じて、必要なモジュールがバックエンドモジュール2に対して接続される。 Further, in the ophthalmic surgery system 100, the back-end module 2 is connected to the back-end module 2 from some modules of the front-end module 1 as needed, and the configuration information is acquired by the connection to control the front-end module 1. For example, depending on the content of the patient's eye procedure, the required modules are connected to the backend module 2.
 また眼科手術システム100では、接続されるフロントエンドモジュール1によって、バックエンドモジュール2の制御が変わる。例えば、バックエンドモジュール2は、後述する顕微鏡装置20及び後述するレーザ装置30に共通する機能であるOCTの制御を、顕微鏡装置20又はレーザ装置30の構成情報に応じて異なる制御信号を出力する。
 具体的には、顕微鏡装置20の場合、患者眼と鏡筒の距離は20cm程度離れており、レーザ装置30では患者眼と鏡筒がドッキングされている。すなわち、顕微鏡装置20が接続される場合では、OCT光源から患者眼までの距離が遠くなるためにOCT光源からリファレンスミラーまでの距離を相対的に大きくし、患者眼とスキャンミラーとの距離が遠いため、OCTスキャンの角度が相対的に小さくなる。これは他のOCTを有するモジュールでも同様であり、OCTの作動距離に応じてリファレンスミラーの位置やスキャンミラーを傾ける範囲が変わることから、バックエンドモジュール2は、接続されたモジュールに応じて制御信号を出力することになる。
Further, in the ophthalmologic surgery system 100, the control of the back-end module 2 changes depending on the connected front-end module 1. For example, the back-end module 2 outputs different control signals depending on the configuration information of the microscope device 20 or the laser device 30 to control the OCT, which is a function common to the microscope device 20 and the laser device 30 described later.
Specifically, in the case of the microscope device 20, the distance between the patient's eye and the lens barrel is about 20 cm, and in the laser device 30, the patient's eye and the lens barrel are docked. That is, when the microscope device 20 is connected, the distance from the OCT light source to the patient's eye is long, so the distance from the OCT light source to the reference mirror is relatively large, and the distance between the patient's eye and the scan mirror is long. Therefore, the angle of the OCT scan becomes relatively small. This also applies to modules having other OCTs, and since the position of the reference mirror and the range in which the scan mirror is tilted change according to the operating distance of the OCT, the back-end module 2 has a control signal according to the connected module. Will be output.
 ここで眼科手術システム100の基本的な動作例を示す。
 バックエンドモジュール2は、フロントエンドモジュール1として医療機器の構成情報を取得する。
 バックエンドモジュール2は、取得された構成情報に基づいて、フロントエンドモジュール1の構成要素を判定する。
 バックエンドモジュール2は、判定された構成要素に応じた制御信号を出力する。
 フロントエンドモジュール1は、出力された制御信号に基づいて、有する機能を制御する。
Here, an example of basic operation of the ophthalmologic surgery system 100 is shown.
The back-end module 2 acquires the configuration information of the medical device as the front-end module 1.
The back-end module 2 determines the components of the front-end module 1 based on the acquired configuration information.
The back-end module 2 outputs a control signal according to the determined component.
The front-end module 1 controls the functions it has based on the output control signal.
 すなわち、眼科手術システム100は、複数のモジュールから構成される一体のシステムであり、バックエンドモジュール2に接続される医療機器をモジュール化して各医療機器で共通する機能を集約し、制御を行うことが可能である。
 これにより、患者眼の施術に用いられるフロントエンドモジュール1の全てを揃える必要が無く、必要なモジュールだけを揃えて使用することが可能となる。すなわち、眼科手術システム100は、バックエンドモジュール2を流用することが可能であり、必要に応じてフロントエンドモジュール1を交換することが可能である。
 またバックエンドモジュール2も、フロントエンドモジュール1に対応したエンジンを有する装置を後から追加する、又はソフトウェアを更新する等の機能更新が可能となる。
That is, the ophthalmic surgery system 100 is an integrated system composed of a plurality of modules, and the medical devices connected to the back-end module 2 are modularized to aggregate and control the functions common to each medical device. Is possible.
As a result, it is not necessary to prepare all the front-end modules 1 used for the treatment of the patient's eye, and it is possible to prepare and use only the necessary modules. That is, in the ophthalmologic surgery system 100, the back-end module 2 can be diverted, and the front-end module 1 can be replaced as needed.
Further, the back-end module 2 can also be functionally updated by adding a device having an engine corresponding to the front-end module 1 later or updating the software.
 例えば、医療機器は、患者眼を撮影及び観察可能な観察装置(顕微鏡等)、患者眼にレーザを照射するレーザ装置等が含まれる。また例えば、医療機器は、多関節アームや関節にアクチュエータを有するロボットアーム、術具等の位置や向き等を制御可能なマニピュレータ等も含まれる。なお、施術は、手術及び観察を含む。
 本実施形態では、制御装置10に後述する顕微鏡装置20(図2参照)、レーザ装置30(図4参照)、手術装置50(図6参照)、及び手術装置70(図8参照)が医療機器として接続される。例えば、各フロントエンドモジュール1(医療機器)がバックエンドモジュール2である制御装置10に接続するための共通のインタフェースを有してもよい。すなわち、ベースとなるバックエンドモジュール2に対して各フロントエンドモジュール1が着脱されることで、眼科手術システム100が様々な用途に用いられる。
For example, the medical device includes an observation device (microscope or the like) capable of photographing and observing the patient's eye, a laser device for irradiating the patient's eye with a laser, and the like. Further, for example, the medical device includes a multi-joint arm, a robot arm having an actuator in a joint, a manipulator capable of controlling the position and orientation of a surgical tool, and the like. The treatment includes surgery and observation.
In the present embodiment, the control device 10 includes a microscope device 20 (see FIG. 2), a laser device 30 (see FIG. 4), a surgical device 50 (see FIG. 6), and a surgical device 70 (see FIG. 8) described later as medical devices. Connected as. For example, each front-end module 1 (medical device) may have a common interface for connecting to the control device 10 which is the back-end module 2. That is, the ophthalmologic surgery system 100 is used for various purposes by attaching / detaching each front-end module 1 to / from the back-end module 2 which is the base.
 制御装置10は、医療機器に関する構成情報を取得して、該構成情報に応じた制御信号を出力する。
 構成情報とは、医療機器の構成要素を示す情報である。例えば、顕微鏡装置20の構成要素は、患者眼を観察するための顕微鏡部等が挙げられる。また例えば、レーザ装置30の構成要素は、患者眼にレーザを射出する出射部等が挙げられる。
 また構成情報は、医療機器の有する構成要素により実施可能な機能を含む。例えば、顕微鏡部の最大拡大倍率、出射部の出射可能な範囲等が挙げられる。
 もちろん構成情報はこれに限定されず、用いられる医療機器の種類や用途に応じて様々な情報が含まれてもよい。例えば、顕微鏡により撮像される画像の画素数等の機器のスペックが含まれてもよい。また、例えば、構成情報は構成要素を特定できるような、医療機器の識別情報であってもよい。
The control device 10 acquires configuration information about the medical device and outputs a control signal corresponding to the configuration information.
The configuration information is information indicating the components of the medical device. For example, the component of the microscope device 20 includes a microscope unit for observing the patient's eye. Further, for example, the component of the laser device 30 includes an exit portion that emits a laser to the patient's eye.
The configuration information also includes functions that can be performed by the components of the medical device. For example, the maximum magnifying power of the microscope unit, the range in which the emission unit can emit light, and the like can be mentioned.
Of course, the configuration information is not limited to this, and various information may be included depending on the type and use of the medical device used. For example, the specifications of the device such as the number of pixels of the image captured by the microscope may be included. Further, for example, the component information may be medical device identification information that can identify the component.
 すなわち、制御装置10は、医療機器の構成要素に応じた制御信号を出力することで、医療機器に搭載された機能を適切に制御することが可能である。
 例えば、制御装置10は、後述する顕微鏡装置20に観察像(患者眼)の拡大倍率及び焦点距離(フォーカス)を変更する旨の制御信号を出力できる。該制御信号に従って、撮像部の駆動機構がズームレンズ及びフォーカスレンズを適宜移動させることにより、拡大倍率及びフォーカスが調整される。
 また例えば、制御装置10は、後述するレーザ装置30に、レーザの射出タイミング、射出位置等を変更する旨の制御信号を出力できる。該制御信号に従って、レーザ装置30の駆動機構により出射部の位置又は出射方向が調節される。
That is, the control device 10 can appropriately control the functions mounted on the medical device by outputting the control signal according to the components of the medical device.
For example, the control device 10 can output a control signal to change the magnification and focal length (focus) of the observation image (patient's eye) to the microscope device 20 described later. According to the control signal, the drive mechanism of the image pickup unit appropriately moves the zoom lens and the focus lens, so that the magnifying power and the focus are adjusted.
Further, for example, the control device 10 can output a control signal to change the laser emission timing, the emission position, and the like to the laser device 30 described later. According to the control signal, the position or the emission direction of the emission unit is adjusted by the drive mechanism of the laser device 30.
 図2は、眼科手術システム100の例を示す模式図である。図2では、顕微鏡装置20がフロントエンドモジュール1として機能する。また本実施形態では、顕微鏡装置20のベース部23に制御装置10が搭載される。例えば、制御装置10は、構成情報から顕微鏡装置20がOCTを有することを検出し、OCTエンジンを制御する。 FIG. 2 is a schematic diagram showing an example of an ophthalmic surgery system 100. In FIG. 2, the microscope device 20 functions as the front-end module 1. Further, in the present embodiment, the control device 10 is mounted on the base portion 23 of the microscope device 20. For example, the control device 10 detects that the microscope device 20 has OCT from the configuration information and controls the OCT engine.
 図2に示すように、顕微鏡装置20は、観察対象を拡大観察するための顕微鏡部21と、顕微鏡部21を先端で支持するアーム部22と、アーム部22の基端27を支持するベース部23とを有する。 As shown in FIG. 2, the microscope device 20 includes a microscope unit 21 for magnifying and observing an observation object, an arm unit 22 that supports the microscope unit 21 at the tip, and a base unit that supports the base end 27 of the arm unit 22. 23 and.
 顕微鏡部21は、略円筒形状の筒状部24、該筒状部24の内部に設けられる撮像部(図示せず)、及びOCT部(図示せず)から構成される。顕微鏡部21は、撮像部によって電子的に撮像画像を撮像する、電子撮像式の顕微鏡部(ビデオ式の顕微鏡部)である。 The microscope unit 21 is composed of a substantially cylindrical tubular portion 24, an imaging unit (not shown) provided inside the tubular portion 24, and an OCT unit (not shown). The microscope unit 21 is an electron imaging type microscope unit (video type microscope unit) that electronically captures an image captured by the imaging unit.
 筒状部24の下端の開口面には、内部の撮像部を保護するカバーガラスが設けられる。観察対象からの光(観察光)は、該カバーガラスを通過して、筒状部24の内部の撮像部に入射する。なお、筒状部24の内部には例えばLED(Light Emitting Diode)等からなる光源が設けられてもよく、撮像時には、カバーガラスを介して、光源から患者眼に対して光が照射されてもよい。 A cover glass that protects the internal image pickup portion is provided on the opening surface at the lower end of the tubular portion 24. The light from the observation target (observation light) passes through the cover glass and is incident on the image pickup portion inside the tubular portion 24. A light source made of, for example, an LED (Light Emitting Diode) may be provided inside the tubular portion 24, and even if light is emitted from the light source to the patient's eye through the cover glass at the time of imaging. good.
 撮像部は、観察光を集光する光学系、及び該光学系が集光した観察光を受光する撮像素子から構成される。該光学系は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成され、その光学特性は、観察光を撮像素子の受光面上に結像するように調整されている。該撮像素子は、観察光を受光して光電変換することにより、観察光に対応した信号、すなわち観察像に対応した画像信号を生成する。該撮像素子としては、例えばBayer配列を有するカラー撮像可能なものが用いられる。該撮像素子は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ又はCCD(Charge Coupled Device)イメージセンサ等、各種の公知の撮像素子であってよい。 The image pickup unit is composed of an optical system that collects observation light and an image pickup element that receives the observation light collected by the optical system. The optical system is composed of a combination of a plurality of lenses including a zoom lens and a focus lens, and its optical characteristics are adjusted so as to form an image of observation light on a light receiving surface of an image pickup device. The image pickup device receives the observation light and performs photoelectric conversion to generate a signal corresponding to the observation light, that is, an image signal corresponding to the observation image. As the image pickup device, for example, a device capable of color imaging having a Bayer array is used. The image pickup device may be various known image pickup devices such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor.
 また撮像部は、その光学系のズームレンズ及びフォーカスレンズを光軸に沿って移動させる駆動機構を有する。該駆動機構によってズームレンズ及びフォーカスレンズが適宜移動されることにより、撮像画像の拡大倍率及び撮像時の焦点距離が調整され得る。また、撮像部には、AE(Auto Exposure)機能やAF(Auto Focus)機能等、一般的に電子撮像式の顕微鏡部に備えられ得る各種の機能が搭載されてもよい。 Further, the image pickup unit has a drive mechanism for moving the zoom lens and the focus lens of the optical system along the optical axis. By appropriately moving the zoom lens and the focus lens by the drive mechanism, the magnifying power of the captured image and the focal length at the time of imaging can be adjusted. Further, the imaging unit may be equipped with various functions that can be generally provided in an electronic imaging type microscope unit, such as an AE (Auto Exposure) function and an AF (Auto Focus) function.
 OCT部は、患者眼の眼底等にOCTスキャンを適用してOCTデータを取得する。例えば、OCT部は、ガルバノミラー等によりレーザ光を操作して、患者眼の画像を取得する。またOCT部は、同じ患者眼を撮像する際、リファレンスミラー及びスキャンミラーの傾き及び位置を変更し、患者眼の任意の箇所を撮像する。
 OCTデータは、干渉信号データでもよいし、干渉信号データにフーリエ変換を適用して得られた反射強度プロファイルデータでもよいし、反射強度プロファイルデータを画像化して得られた画像データでもよい。以下、OCTを用いて取得された画像をOCT画像と表記する場合がある。
 OCT部は、例えば、ビームスプリッタ、センサ、リファレンスミラー、スキャンミラー、光源や各種レンズ等の任意の構成により実現される。本実施形態では、制御装置10によりリファレンスミラー又はスキャンミラーの位置及び傾きが制御される。例えば、制御装置10は、リファレンスミラーを所定の軸方向(例えばZ軸方向)に沿って位置が変わるように制御する。また例えば、制御装置10は、スキャンミラーをX軸又はY軸に傾けるように制御する。
 なお、OCT部の構成は限定されない。例えば、撮像部に入射される観察光がハーフミラー等を介してOCT部に入射されてもよい。
The OCT unit applies an OCT scan to the fundus of the patient's eye and acquires OCT data. For example, the OCT unit operates a laser beam with a galvano mirror or the like to acquire an image of the patient's eye. Further, when the same patient's eye is imaged, the OCT unit changes the inclination and position of the reference mirror and the scan mirror to image an arbitrary part of the patient's eye.
The OCT data may be interference signal data, reflection intensity profile data obtained by applying a Fourier transform to the interference signal data, or image data obtained by imaging the reflection intensity profile data. Hereinafter, an image acquired by using OCT may be referred to as an OCT image.
The OCT unit is realized by any configuration such as a beam splitter, a sensor, a reference mirror, a scan mirror, a light source, and various lenses. In this embodiment, the control device 10 controls the position and tilt of the reference mirror or the scan mirror. For example, the control device 10 controls the reference mirror so that the position changes along a predetermined axial direction (for example, the Z-axis direction). Further, for example, the control device 10 controls the scan mirror so as to be tilted to the X-axis or the Y-axis.
The configuration of the OCT unit is not limited. For example, the observation light incident on the imaging unit may be incident on the OCT unit via a half mirror or the like.
 アーム部22は、複数の関節部25によって、互いに回動可能に連結される。例えば、図2に示すように、各々の関節部25により、所定の方向へ延伸や、各軸26を中心に所定の範囲の回動が行われる。
 また各関節部25には、モータ等の駆動機構、及び各関節部における回転角度を検出するエンコーダ等が搭載された各アクチュータが設けられる。各アクチュータの駆動が、制御装置によって適宜制御され、各アーム部の姿勢、すなわち、撮像部(鏡筒)の位置及び姿勢が制御される。またアーム部22とベース部23とを接続する基端27は、軸26を中心に回動することが可能である。
 例えば、ユーザ(例えば医者)は、手を用いてアーム部22を様々な方向へ延伸又は回動させることで、顕微鏡部21を任意の位置に制御することが可能である。
 なお、アーム部を構成する関節部の構造や数、配置、位置、回転軸の方向等は、所望の自由度が実現されるように適宜設計されてよい。また各関節部に回転を拘束するブレーキ等が設けられてもよい。
The arm portions 22 are rotatably connected to each other by a plurality of joint portions 25. For example, as shown in FIG. 2, each joint portion 25 extends in a predetermined direction and rotates in a predetermined range around each axis 26.
Further, each joint portion 25 is provided with a drive mechanism such as a motor and each actuator equipped with an encoder or the like for detecting a rotation angle in each joint portion. The drive of each actuator is appropriately controlled by the control device, and the posture of each arm portion, that is, the position and posture of the imaging unit (lens barrel) is controlled. Further, the base end 27 connecting the arm portion 22 and the base portion 23 can rotate about the shaft 26.
For example, a user (for example, a doctor) can control the microscope unit 21 to an arbitrary position by extending or rotating the arm unit 22 in various directions by using a hand.
The structure, number, arrangement, position, direction of the rotation axis, and the like of the joint portions constituting the arm portion may be appropriately designed so as to realize a desired degree of freedom. Further, each joint may be provided with a brake or the like for restraining rotation.
 図3は、眼科手術システム100の構成例を示すブロック図である。
 図3では、図2に示す顕微鏡装置20と制御装置10とが接続された場合の眼科手術システム100の例である。すなわち図3の例は、フロントエンドモジュール1としてモジュール化された顕微鏡装置20が、バックエンドモジュール2である制御装置10に接続され、一体のシステムとして機能する眼科手術システム100の一実施形態である。また制御装置10は、顕微鏡装置20の有する撮像部及びOCT部を制御するためのエンジンとして出力部14を有する。
FIG. 3 is a block diagram showing a configuration example of the ophthalmic surgery system 100.
FIG. 3 is an example of an ophthalmic surgery system 100 when the microscope device 20 and the control device 10 shown in FIG. 2 are connected. That is, the example of FIG. 3 is an embodiment of an ophthalmic surgery system 100 in which a microscope device 20 modularized as a front-end module 1 is connected to a control device 10 which is a back-end module 2 and functions as an integrated system. .. Further, the control device 10 has an output unit 14 as an engine for controlling the image pickup unit and the OCT unit of the microscope device 20.
 制御装置10は、情報取得部11、判定部12、画像処理部13、及び出力部14を有する。
 制御装置10は、例えばCPUやGPU、DSP等のプロセッサ、ROMやRAM等のメモリ、HDD等の記憶デバイス等、コンピュータの構成に必要なハードウェアを有する(図11参照)。例えばCPUがROM等に予め記録されている本技術に係るプログラムをRAMにロードして実行することにより、本技術に係る制御方法が実行される。
 例えばPC等の任意のコンピュータにより、制御装置10を実現することが可能である。もちろんFPGA、ASIC等のハードウェアが用いられてもよい。
 本実施形態では、CPUが所定のプログラムを実行することで、機能ブロックとしての出力部が構成される。もちろん機能ブロックを実現するために、IC(集積回路)等の専用のハードウェアが用いられてもよい。
 プログラムは、例えば種々の記録媒体を介して制御装置10にインストールされる。あるいは、インターネット等を介してプログラムのインストールが実行されてもよい。
 プログラムが記録される記録媒体の種類等は限定されず、コンピュータが読み取り可能な任意の記録媒体が用いられてよい。例えば、コンピュータが読み取り可能な非一過性の任意の記憶媒体が用いられてよい。
The control device 10 has an information acquisition unit 11, a determination unit 12, an image processing unit 13, and an output unit 14.
The control device 10 has hardware necessary for configuring a computer, such as a processor such as a CPU, GPU, and DSP, a memory such as a ROM and a RAM, and a storage device such as an HDD (see FIG. 11). For example, the control method according to the present technology is executed by the CPU loading and executing the program according to the present technology recorded in advance in the ROM or the like into the RAM.
For example, the control device 10 can be realized by an arbitrary computer such as a PC. Of course, hardware such as FPGA and ASIC may be used.
In the present embodiment, the CPU executes a predetermined program to configure an output unit as a functional block. Of course, in order to realize the functional block, dedicated hardware such as an IC (integrated circuit) may be used.
The program is installed in the control device 10, for example, via various recording media. Alternatively, the program may be installed via the Internet or the like.
The type of recording medium on which the program is recorded is not limited, and any computer-readable recording medium may be used. For example, any non-transient storage medium readable by a computer may be used.
 情報取得部11は、フロントエンドモジュール1に関する種々の情報を取得する。本実施形態では、情報取得部11は、患者眼の施術に用いられる医療機器に関する構成情報を取得する。例えば、情報取得部11は、顕微鏡装置20に紐づけられたIDを取得する。この場合、情報取得部11は、各種の医療機器に紐づけられたIDと該医療機器の構成情報とを保持するデータベース内から、取得したIDに対応する構成情報を取得する。
 また情報取得部11は、患者眼の撮像画像を取得する。例えば、顕微鏡装置20により撮像された患者眼の撮像画像が取得される。また例えば、OCT部により撮像されたOCT画像が取得される。
 また本実施形態では、取得された構成情報が判定部12に供給される。また取得された患者眼の撮像画像及びOCT画像が画像処理部13及び出力部14に供給される。
The information acquisition unit 11 acquires various information about the front-end module 1. In the present embodiment, the information acquisition unit 11 acquires configuration information regarding the medical device used for the treatment of the patient's eye. For example, the information acquisition unit 11 acquires an ID associated with the microscope device 20. In this case, the information acquisition unit 11 acquires the configuration information corresponding to the acquired ID from the database that holds the IDs associated with various medical devices and the configuration information of the medical devices.
Further, the information acquisition unit 11 acquires a captured image of the patient's eye. For example, a captured image of the patient's eye captured by the microscope device 20 is acquired. Further, for example, an OCT image captured by the OCT unit is acquired.
Further, in the present embodiment, the acquired configuration information is supplied to the determination unit 12. Further, the acquired captured image and OCT image of the patient's eye are supplied to the image processing unit 13 and the output unit 14.
 判定部12は、バックエンドモジュール2に接続されたフロントエンドモジュール1の構成要素を判定する。本実施形態では、判定部12は、情報取得部11により取得された、医療機器の構成情報に基づいて、医療機器の構成要素を判定する。例えば、顕微鏡装置20の有する顕微鏡部21及びアーム部22等の構成要素、顕微鏡装置20の撮像部の画角、拡大倍率等の撮像条件や、関節部25の回動範囲等のスペックが判定される。
 また本実施形態では、判定部12により判定された判定結果は、画像処理部13及び出力部14に供給される。
 なお、構成要素を判定する方法は限定されない。例えば、情報取得部11によりフロントエンドモジュール1を識別するためのIDが取得され、判定部12により該IDに対応した医療機器の構成要素が判定されてもよい。
The determination unit 12 determines the components of the front-end module 1 connected to the back-end module 2. In the present embodiment, the determination unit 12 determines the components of the medical device based on the configuration information of the medical device acquired by the information acquisition unit 11. For example, the components such as the microscope unit 21 and the arm unit 22 of the microscope device 20, the angle of view of the image pickup unit of the microscope device 20, the imaging conditions such as the magnifying magnification, and the specifications such as the rotation range of the joint portion 25 are determined. To.
Further, in the present embodiment, the determination result determined by the determination unit 12 is supplied to the image processing unit 13 and the output unit 14.
The method for determining the components is not limited. For example, the information acquisition unit 11 may acquire an ID for identifying the front-end module 1, and the determination unit 12 may determine the components of the medical device corresponding to the ID.
 画像処理部13は、患者眼の撮影画像及びOCT画像に対して画像処理を実行する。なお本実施形態では、画像処理部13は、顕微鏡装置20と後述するレーザ装置30とで異なる画像処理を実行する。理由としては、例えば、顕微鏡装置20の患者眼の撮影画像(正面画像)はステレオ視であり、レーザ装置30の正面画像は単眼である。また顕微鏡装置20とレーザ装置30との光源の色温度が異なることが挙げられる。これ以外にも、照明用の光源の差や、患者眼にドッキングした際の撮像(レーザ装置30の撮像条件)と空気を通した撮像(顕微鏡装置20の撮像条件)との差に考慮する必要がある。
 すなわち、画像処理部13は、接続されるフロントエンドモジュール1に応じて、患者眼の撮影画像の画像処理の方法を変更する。なお、画像処理の方法や種類は限定されない。また画像処理部13が、顕微鏡装置20及びレーザ装置30を含む外部の装置に搭載され、出力部14から上記の画像処理を実行させる旨の制御信号が出力されてもよい。
The image processing unit 13 executes image processing on the captured image and the OCT image of the patient's eye. In this embodiment, the image processing unit 13 executes different image processing between the microscope device 20 and the laser device 30 described later. The reason is that, for example, the photographed image (front image) of the patient's eye of the microscope device 20 is stereoscopic, and the front image of the laser device 30 is monocular. Further, the color temperature of the light source of the microscope device 20 and the laser device 30 may be different. In addition to this, it is necessary to consider the difference in the light source for illumination and the difference between the imaging when docked in the patient's eye (imaging condition of the laser device 30) and the imaging through air (imaging condition of the microscope device 20). There is.
That is, the image processing unit 13 changes the method of image processing of the captured image of the patient's eye according to the connected front-end module 1. The method and type of image processing are not limited. Further, the image processing unit 13 may be mounted on an external device including the microscope device 20 and the laser device 30, and a control signal for executing the above image processing may be output from the output unit 14.
 出力部14は、フロントエンドモジュール1の構成要素に適した制御信号を出力する。本実施形態では、出力部14は、顕微鏡装置20の撮像制御部28及びOCT制御部29に制御信号を出力する。
 顕微鏡装置20が接続される場合、出力部14は、撮像制御部28及びOCT制御部29に患者眼を撮影する旨の制御信号を出力する。例えば、ユーザがボタンを押す等の撮影を行う旨の操作を行った場合、出力部14により撮影を行う旨の制御信号が出力される。
 また例えば、出力部14は、患者眼の施術の内容に応じた制御信号を出力する。この場合、出力部14は、施術に用いられる顕微鏡装置20の撮像する位置等が設定された制御パターンに従い、制御信号を出力してもよい。
 また例えば、出力部14は、情報取得部11により取得された撮影画像に基づいて、制御信号を出力する。この場合、撮影画像から現在の施術の状況を把握し、病変部等を中心に撮影画像又はOCT画像を撮影する旨の制御信号を出力してもよい。
 これ以外にも、様々なフロントエンドモジュール1の構成要素に応じた制御信号が出力されてもよい。
The output unit 14 outputs a control signal suitable for the components of the front-end module 1. In the present embodiment, the output unit 14 outputs a control signal to the image pickup control unit 28 and the OCT control unit 29 of the microscope device 20.
When the microscope device 20 is connected, the output unit 14 outputs a control signal to the image pickup control unit 28 and the OCT control unit 29 to image the patient's eye. For example, when the user presses a button or performs an operation to perform shooting, the output unit 14 outputs a control signal to perform shooting.
Further, for example, the output unit 14 outputs a control signal according to the content of the treatment for the patient's eye. In this case, the output unit 14 may output a control signal according to a control pattern in which the position to be imaged by the microscope device 20 used for the treatment is set.
Further, for example, the output unit 14 outputs a control signal based on the captured image acquired by the information acquisition unit 11. In this case, the current state of the treatment may be grasped from the captured image, and a control signal for capturing the captured image or the OCT image may be output centering on the lesion or the like.
In addition to this, control signals corresponding to various components of the front-end module 1 may be output.
 顕微鏡装置20は、撮像制御部28及びOCT制御部29を有する。
 撮像制御部28は、顕微鏡部21を制御する。例えば、撮像制御部28は、拡大倍率及び焦点距離を制御することが可能である。本実施形態では、撮像制御部28は、制御装置10の出力部14から出力される制御信号に従い、患者眼の撮像を実行する。
 OCT制御部29は、OCT部を制御する。本実施形態では、制御装置10によりリファレンスミラー又はスキャンミラーの位置及び傾きを制御する旨の制御信号が出力される。例えば、リファレンスミラーはZ軸方向に沿って位置が変わるように制御される。また例えば、スキャンミラーがX軸又はY軸に傾けられるように制御される。
The microscope device 20 has an image pickup control unit 28 and an OCT control unit 29.
The image pickup control unit 28 controls the microscope unit 21. For example, the image pickup control unit 28 can control the magnifying power and the focal length. In the present embodiment, the imaging control unit 28 executes imaging of the patient's eye according to the control signal output from the output unit 14 of the control device 10.
The OCT control unit 29 controls the OCT unit. In the present embodiment, the control device 10 outputs a control signal for controlling the position and tilt of the reference mirror or the scan mirror. For example, the reference mirror is controlled to change its position along the Z-axis direction. Also, for example, the scan mirror is controlled to be tilted to the X-axis or the Y-axis.
 なお、本実施形態において、フロントエンドモジュール1は、患者眼の施術に用いられる機能を有する1又は複数の第1のモジュールに相当する。
 なお、本実施形態において、バックエンドモジュール2は、第1のモジュールが接続され、第1のモジュールに関する構成情報を取得して構成情報に応じた制御信号を出力する第2のモジュールに相当する。
 なお、本実施形態において、顕微鏡装置20及び手術装置50は、観察装置に相当する。
 なお、本実施形態において、アーム部22、関節部25、及びマニピュレータは、医療機器を駆動させる駆動機構として機能させてもよい。
 なお、本実施形態において、画像処理部13は、撮像画像に画像処理を実行する画像処理部及び患者眼の撮像画像に基づいて、術具と患者眼との距離を検出する検出部として機能させてもよい。
In the present embodiment, the front-end module 1 corresponds to one or a plurality of first modules having a function used for the treatment of the patient's eye.
In the present embodiment, the back-end module 2 corresponds to a second module to which the first module is connected, acquires configuration information about the first module, and outputs a control signal according to the configuration information.
In this embodiment, the microscope device 20 and the surgical device 50 correspond to an observation device.
In this embodiment, the arm portion 22, the joint portion 25, and the manipulator may function as a drive mechanism for driving the medical device.
In the present embodiment, the image processing unit 13 functions as an image processing unit that executes image processing on the captured image and a detection unit that detects the distance between the surgical instrument and the patient's eye based on the captured image of the patient's eye. You may.
 図4は、眼科手術システム100の例を示す模式図である。図4では、レーザ装置30がフロントエンドモジュール1として機能する。また本実施形態では、レーザ装置30のベース部31に制御装置10が搭載される。例えば、制御装置10は、構成情報からレーザ装置30がOCT及び出射部33を有することを検出し、OCTエンジン及びレーザエンジンを制御する。 FIG. 4 is a schematic diagram showing an example of the ophthalmic surgery system 100. In FIG. 4, the laser device 30 functions as the front-end module 1. Further, in the present embodiment, the control device 10 is mounted on the base portion 31 of the laser device 30. For example, the control device 10 detects that the laser device 30 has the OCT and the emission unit 33 from the configuration information, and controls the OCT engine and the laser engine.
 レーザ装置30は、ベース部31、ベース部31に取り付けられたアーム部32、及びレーザ光を出射する出射部33を有する。 The laser device 30 has a base portion 31, an arm portion 32 attached to the base portion 31, and an emission unit 33 that emits laser light.
 アーム部32は、互いに回動可能に連結され、例えば、所定の方向へ延伸や、所定の範囲の回動を可能とする。本実施形態では、Z軸方向(矢印40)に延伸、及び軸41を中心に回動可能なアーム部32aや、XY平面上に回動可能なアーム部32b及びアーム部32cにより、出射部33の位置が任意に調節される。またアーム部32dにより、出射部33がXZ平面上に回動される。
 これにより、出射部33から出射されるレーザ光を患者眼の任意の箇所に出射することが可能となる。
 なお、アーム部を構成する関節部の構造や数、配置、位置、回転軸の方向等は、所望の自由度が実現されるように適宜設計されてよい。また各関節部に回転を拘束するブレーキ等が設けられてもよい。
The arm portions 32 are rotatably connected to each other, and can be extended in a predetermined direction or rotated in a predetermined range, for example. In the present embodiment, the exit portion 33 is formed by an arm portion 32a that extends in the Z-axis direction (arrow 40) and is rotatable about the shaft 41, and an arm portion 32b and an arm portion 32c that are rotatable on an XY plane. The position of is adjusted arbitrarily. Further, the emitting portion 33 is rotated on the XZ plane by the arm portion 32d.
This makes it possible to emit the laser beam emitted from the emitting unit 33 to an arbitrary portion of the patient's eye.
The structure, number, arrangement, position, direction of the rotation axis, and the like of the joint portions constituting the arm portion may be appropriately designed so as to realize a desired degree of freedom. Further, each joint may be provided with a brake or the like for restraining rotation.
 出射部33は、アーム部32dに接続され、レーザ光を出射する。本実施形態では、出射部33は、フェムト秒レーザを出射する。出射部33の構成は限定されず、レーザ光を2つの水平な走査方向に変更するためのガルバノスキャナや、励起光源、光ファイバ等の任意の構成及び配置が設けられてもよい。
 また出射部33は、上記OCT部と同様のOCT部を有する。例えば、出射部33からフェムト秒レーザとは異なる患者眼を精査するためのイメージングビームが生成されて、患者眼のOCT画像が取得されてもよい。
The emitting unit 33 is connected to the arm unit 32d and emits laser light. In this embodiment, the emission unit 33 emits a femtosecond laser. The configuration of the emission unit 33 is not limited, and an arbitrary configuration and arrangement such as a galvano scanner for changing the laser beam in two horizontal scanning directions, an excitation light source, an optical fiber, and the like may be provided.
Further, the emission unit 33 has an OCT unit similar to the OCT unit. For example, an imaging beam for inspecting the patient's eye, which is different from the femtosecond laser, may be generated from the emitting unit 33, and an OCT image of the patient's eye may be acquired.
 図5は、眼科手術システム100の他の構成例を示すブロック図である。図5では、図4に示すレーザ装置30と制御装置10とが接続された場合の眼科手術システム100の例である。すなわち図5の例は、フロントエンドモジュール1としてモジュール化されたレーザ装置30が、バックエンドモジュール2である制御装置10に接続され、一体のシステムとして機能する眼科手術システム100の一実施形態である。また制御装置10は、レーザ装置30の有する出射部33及びOCT部を制御するためのエンジンとして出力部14を有する。 FIG. 5 is a block diagram showing another configuration example of the ophthalmic surgery system 100. FIG. 5 is an example of an ophthalmic surgery system 100 when the laser device 30 and the control device 10 shown in FIG. 4 are connected. That is, the example of FIG. 5 is an embodiment of an ophthalmic surgery system 100 in which a laser device 30 modularized as a front-end module 1 is connected to a control device 10 which is a back-end module 2 and functions as an integrated system. .. Further, the control device 10 has an output unit 14 as an engine for controlling the emission unit 33 and the OCT unit of the laser device 30.
 図3で示した眼科手術システム100、及び図5で示した眼科手術システム100のフロントエンドモジュール1は、共通する機能としてOCT部を有する。またバックエンドモジュール2は、OCT部を制御するエンジンを有する。すなわち、患者眼の施術に必要な機能に応じて接続されるモジュール(顕微鏡装置20及びレーザ装置30)を変えることで図3に示す眼科手術システム100から図5に示す眼科手術システム100に変形可能である。同様に下記に示す図6~10に示す各モジュール及び眼科手術システム100も必要に応じて変形可能な一実施形態である。
 なお、レーザ装置30のOCT制御部36は、上記のOCT制御部29と同様の機能を有するため説明は省略する。
The ophthalmologic surgery system 100 shown in FIG. 3 and the front-end module 1 of the ophthalmologic surgery system 100 shown in FIG. 5 have an OCT unit as a common function. Further, the back-end module 2 has an engine for controlling the OCT unit. That is, the ophthalmic surgery system 100 shown in FIG. 3 can be transformed into the ophthalmic surgery system 100 shown in FIG. 5 by changing the modules (microscope device 20 and laser device 30) connected according to the functions required for the treatment of the patient's eye. Is. Similarly, each module shown in FIGS. 6 to 10 shown below and the ophthalmologic surgery system 100 are also embodiments that can be modified as needed.
Since the OCT control unit 36 of the laser device 30 has the same function as the OCT control unit 29 described above, the description thereof will be omitted.
 出力部14は、レーザ制御部35及びOCT制御部36に制御信号を出力する。例えば、出力部14は、レーザ制御部35に対して、フェムト秒レーザが照射される位置を制御する制御信号を出力する。具体的には、出射部33に設けられるX軸方向に回動可能なスキャニングミラー、又はY軸方向に回動可能なスキャニングミラーの各々の傾きを制御する制御信号が出力される。
 また例えば、出力部14は、情報取得部11により取得された撮影画像に基づいて、制御信号を出力する。この場合、撮影画像から現在の施術の状況を把握し、適切な箇所(例えば角膜や水晶体前嚢、水晶体核の切開位置等)にレーザを出射する旨の制御信号を出力してもよい。
The output unit 14 outputs a control signal to the laser control unit 35 and the OCT control unit 36. For example, the output unit 14 outputs a control signal for controlling the position where the femtosecond laser is irradiated to the laser control unit 35. Specifically, a control signal for controlling the inclination of each of the scanning mirrors provided in the emission unit 33 that can rotate in the X-axis direction or the scanning mirrors that can rotate in the Y-axis direction is output.
Further, for example, the output unit 14 outputs a control signal based on the captured image acquired by the information acquisition unit 11. In this case, the current state of the treatment may be grasped from the captured image, and a control signal to emit the laser to an appropriate place (for example, the cornea, the anterior lens capsule, the incision position of the lens nucleus, etc.) may be output.
 レーザ装置30は、レーザ制御部35及びOCT制御部36を有する。
 レーザ制御部35は、出射部33から出射されるレーザ光に関する制御を行う。例えば、レーザ制御部35は、フェムト秒レーザを出射するタイミングやフェムト秒レーザの強度等を制御する。本実施形態では、レーザ制御部35は、制御装置10の出力部14から出力される制御信号に従い、フェムト秒レーザを出力する。
The laser device 30 has a laser control unit 35 and an OCT control unit 36.
The laser control unit 35 controls the laser light emitted from the emission unit 33. For example, the laser control unit 35 controls the timing at which the femtosecond laser is emitted, the intensity of the femtosecond laser, and the like. In the present embodiment, the laser control unit 35 outputs a femtosecond laser according to a control signal output from the output unit 14 of the control device 10.
 図6は、手術装置50の外観を示す模式図である。図6では、フロントエンドモジュールである手術装置50は、顕微鏡装置20とレーザ装置30との機能を有する。
 図6Aに示すように、アーム部51と、顕微鏡部52及び出射部53を有する鏡筒部54を具備する。本実施形態では、顕微鏡部52は、上記の顕微鏡装置20の有する撮像部と同様の機能を有し、患者眼の撮像画像を取得することが可能である。
FIG. 6 is a schematic view showing the appearance of the surgical apparatus 50. In FIG. 6, the surgical device 50, which is a front-end module, has the functions of the microscope device 20 and the laser device 30.
As shown in FIG. 6A, the arm portion 51 and the lens barrel portion 54 having the microscope portion 52 and the exit portion 53 are provided. In the present embodiment, the microscope unit 52 has the same function as the image pickup unit of the microscope device 20, and can acquire an image captured by the patient's eye.
 アーム部51は、各関節部55a~dを有し、互いに回動可能に連結される。例えば、各々の関節部55a~dにより、所定の方向へ延伸や、所定の範囲の回動が行われる。また各関節部55a~dは、マニピュレータにより制御される。これにより、顕微鏡部52及び出射部53を任意の位置に配置することが可能となる。
 また関節部55dは、鏡筒部54が接続され、軸57を中心に回転することが可能である。すなわち、関節部55dが軸57を中心に回転することで、患者眼に相対する顕微鏡部52又は出射部53が切り替えられる。以下、患者眼に顕微鏡部52が相対している状態を顕微鏡モード、出射部53が相対している状態をレーザモードと記載する。
The arm portions 51 have joint portions 55a to 55a and are rotatably connected to each other. For example, each of the joint portions 55a to 55a is stretched in a predetermined direction and rotated in a predetermined range. Further, each joint portion 55a to d is controlled by a manipulator. This makes it possible to arrange the microscope unit 52 and the emission unit 53 at arbitrary positions.
Further, the joint portion 55d is connected to the lens barrel portion 54 and can rotate about the axis 57. That is, by rotating the joint portion 55d around the axis 57, the microscope portion 52 or the exit portion 53 facing the patient's eye can be switched. Hereinafter, the state in which the microscope unit 52 faces the patient's eye is referred to as a microscope mode, and the state in which the exit unit 53 faces the patient's eye is referred to as a laser mode.
 図6Bは、鏡筒部54の構成を示す模式図である。
 図6Bに示すように、鏡筒部54は、顕微鏡部52及び出射部53に加え、関節部55d内に光源部60を有する。
FIG. 6B is a schematic view showing the configuration of the lens barrel portion 54.
As shown in FIG. 6B, the lens barrel portion 54 has a light source portion 60 in the joint portion 55d in addition to the microscope portion 52 and the exit portion 53.
 顕微鏡部52は、観察光を集光する任意の光学系(図示せず)を有する。
 出射部53は、レーザを偏向等が可能な任意の光学系(図示せず)を有する。
The microscope unit 52 has an arbitrary optical system (not shown) that collects the observation light.
The emitting unit 53 has an arbitrary optical system (not shown) capable of deflecting the laser or the like.
 光源部60は、レーザ又はOCT用ビームを出射可能なビーム部61、ビーム部61から出射されるビームを少なくとも直交する方向(X及びY軸方向)に偏向させるスキャナ系62、及びイメージセンサ63を有する。例えば、スキャナ系62は、ビームをX軸方向に走査するためのミラー、及びY軸方向に操作するためのミラーを有する。 The light source unit 60 includes a beam unit 61 capable of emitting a laser or OCT beam, a scanner system 62 for deflecting a beam emitted from the beam unit 61 in at least orthogonal directions (X and Y-axis directions), and an image sensor 63. Have. For example, the scanner system 62 has a mirror for scanning the beam in the X-axis direction and a mirror for operating the beam in the Y-axis direction.
 本実施形態では、光源部60は、関節部55dの回転駆動によらず、常にビーム部61から出射されるビームが患者眼の方向へ出射されるように回転可能である。すなわち、手術装置50が顕微鏡モード又はレーザモードに関わらず、光源部60は相対的に回転しない機構を有する。 In the present embodiment, the light source unit 60 can rotate so that the beam emitted from the beam unit 61 is always emitted in the direction of the patient's eye, regardless of the rotational drive of the joint portion 55d. That is, the light source unit 60 has a mechanism that does not rotate relatively regardless of whether the surgical apparatus 50 is in the microscope mode or the laser mode.
 図7は、眼科手術システム100の他の構成例を示すブロック図である。図7では、図6に示す手術装置50と制御装置10とが接続され、一体のシステムとして機能する眼科手術システム100の例である。例えば、眼科手術システム100は、フロントエンドモジュール1である手術装置50にバックエンドモジュール2である制御装置10が搭載されることで制御が行われる。
 なお、手術装置50の撮像制御部65、レーザ制御部66、及びOCT制御部67は、上記の撮像制御部28、レーザ制御部35、及びOCT制御部29と同様の機能を有するため説明省略する。
FIG. 7 is a block diagram showing another configuration example of the ophthalmic surgery system 100. FIG. 7 is an example of an ophthalmic surgery system 100 in which the surgical device 50 and the control device 10 shown in FIG. 6 are connected and function as an integrated system. For example, the ophthalmologic surgery system 100 is controlled by mounting a control device 10 which is a back-end module 2 on a surgical device 50 which is a front-end module 1.
The imaging control unit 65, the laser control unit 66, and the OCT control unit 67 of the surgical apparatus 50 have the same functions as the image pickup control unit 28, the laser control unit 35, and the OCT control unit 29, and thus the description thereof will be omitted. ..
 情報取得部11は、手術装置50の構成情報を取得する。本実施形態では、手術装置50がアーム部51及び鏡筒部54を有することを示す構成情報が取得される。また情報取得部11は、鏡筒部54の向きや回転角等の構成要素の現在の状況を示す情報を取得する。 The information acquisition unit 11 acquires the configuration information of the surgical apparatus 50. In the present embodiment, configuration information indicating that the surgical apparatus 50 has the arm portion 51 and the lens barrel portion 54 is acquired. Further, the information acquisition unit 11 acquires information indicating the current status of components such as the orientation and rotation angle of the lens barrel unit 54.
 判定部12は、情報取得部11により取得された鏡筒部54の現在の状況に基づいて、顕微鏡部52又は出射部53のどちらかが患者眼に向いているかを判定する。すなわち、判定部12は、顕微鏡モード又はレーザモードかを判定する。 The determination unit 12 determines whether either the microscope unit 52 or the exit unit 53 is facing the patient's eye based on the current state of the lens barrel unit 54 acquired by the information acquisition unit 11. That is, the determination unit 12 determines whether the mode is the microscope mode or the laser mode.
 出力部14は、判定部12により判定された顕微鏡モード又はレーザモードに基づいて、制御信号を出力する。例えば、顕微鏡モード又はレーザモードに基づいて、OCTのスキャンの角度等が制御される制御信号が出力される。
 例えば、レーザモードから顕微鏡モードへと切り替わる場合、出力部14は、患者眼にドッキングされていた出射部53が適切な位置へ配置されるようにロボットアーム制御部68に制御信号を出力する。また出力部14は、関節部55dを回転させる制御信号を出力する。また例えば、顕微鏡モードからレーザモードへと切り替わる場合、出力部14は、関節部55dを回転させる制御信号を出力する。また出力部14は、出射部53が患者眼にドッキングされるようにロボットアーム制御部68に制御信号を出力する。
The output unit 14 outputs a control signal based on the microscope mode or the laser mode determined by the determination unit 12. For example, a control signal for controlling the scan angle of the OCT or the like is output based on the microscope mode or the laser mode.
For example, when switching from the laser mode to the microscope mode, the output unit 14 outputs a control signal to the robot arm control unit 68 so that the emission unit 53 docked to the patient's eye is arranged at an appropriate position. Further, the output unit 14 outputs a control signal for rotating the joint portion 55d. Further, for example, when switching from the microscope mode to the laser mode, the output unit 14 outputs a control signal for rotating the joint portion 55d. Further, the output unit 14 outputs a control signal to the robot arm control unit 68 so that the emission unit 53 is docked to the patient's eye.
 ロボットアーム制御部68は、アーム部51及び各関節部55a~dの駆動を制御する。本実施形態では、出力部14から出力される制御信号に従い、各関節部55a~dの回転角等が制御される。 The robot arm control unit 68 controls the drive of the arm unit 51 and the joint portions 55a to 55a. In the present embodiment, the rotation angles and the like of the joint portions 55a to d are controlled according to the control signal output from the output unit 14.
 ここで、出力部14から出力される制御信号により、図6に示す手術装置50が制御される具体例を示す。
 出射部53を患者眼にドッキング(接触)させるための制御信号の出力。具体的には、出射部53と患者眼との座標が一致するように、アーム部51及び各関節部55a~dを制御するロボットアーム制御部68に制御信号が出力される。
 患者眼の切開位置等にフェムト秒レーザを出射させるための制御信号の出力。例えば、レーザ制御部66に制御信号が出力され、ガルバノミラーの傾きが制御されることで、フェムト秒レーザの照射位置が変更される。
 顕微鏡部52を患者眼が適切に撮像される位置へ移動させるための制御信号の出力。撮像制御部65に制御信号が出力される。
 撮像部へ患者眼を撮像させるための制御信号の出力。撮像制御部65に制御信号が出力される。
 これにより、患者眼に行われる施術に必要な医療機器の動作が実行される。なお施術を行うための施術に関する行動情報(手順)はユーザにより任意に設定されてもよいし、施術ごとに予め設定されてもよい。
Here, a specific example is shown in which the surgical apparatus 50 shown in FIG. 6 is controlled by the control signal output from the output unit 14.
Output of a control signal for docking (contacting) the emitting unit 53 with the patient's eye. Specifically, a control signal is output to the arm portion 51 and the robot arm control unit 68 that controls the joint portions 55a to 55 so that the coordinates of the exit portion 53 and the patient's eye match.
Output of a control signal for emitting a femtosecond laser to the incision position of the patient's eye. For example, a control signal is output to the laser control unit 66 to control the tilt of the galvano mirror, so that the irradiation position of the femtosecond laser is changed.
Output of a control signal for moving the microscope unit 52 to a position where the patient's eye is appropriately imaged. A control signal is output to the image pickup control unit 65.
Output of a control signal for making the image pickup unit image the patient's eye. A control signal is output to the image pickup control unit 65.
As a result, the operation of the medical device necessary for the treatment performed on the patient's eye is executed. The action information (procedure) related to the treatment for performing the treatment may be arbitrarily set by the user, or may be set in advance for each treatment.
 図8は、手術装置70の外観を示す模式図である。
 図8に示すように、手術装置70は、術具72と、ロック部74と、回転駆動部80とを有する。
 本実施形態では、手術装置70がフロントエンドモジュール1として制御装置10に接続される。すなわち、手術装置70に制御装置10が搭載され一体のシステムとして機能する。
FIG. 8 is a schematic view showing the appearance of the surgical apparatus 70.
As shown in FIG. 8, the surgical apparatus 70 includes a surgical tool 72, a lock portion 74, and a rotation drive portion 80.
In this embodiment, the surgical device 70 is connected to the control device 10 as a front-end module 1. That is, the control device 10 is mounted on the surgical device 70 and functions as an integrated system.
 術具72は、患者眼の施術に用いられる様々な術具である。本実施形態では、術具は、メス、I/Aチップ、鉗子等の眼科手術に用いられる全般の器具である。すなわち、患者3に実施される手術に応じて、術具72は任意に変更可能である。 The surgical tool 72 is various surgical tools used for the treatment of the patient's eye. In the present embodiment, the surgical instrument is a general instrument used for ophthalmic surgery such as a scalpel, an I / A tip, and forceps. That is, the surgical instrument 72 can be arbitrarily changed according to the surgery performed on the patient 3.
 ロック部74は、第1のロック部74a及び第2のロック部74bを有する。図8に示すように、第1のロック部74a及び第2のロック部74bにより患者3の頭が保持される。
 第1のロック部74aは、術具72を保持する第1の保持部75を有する。第1のロック部74aは、弧状であり、第1の保持部75を該弧状(矢印76)に移動させることが可能である。また第1の保持部75は、術具72を移動可能な機能を有する。例えば、施術の対象である患者眼に近づく又は遠のくことが可能である。なお、第1の保持部75は、矢印77方向以外にも移動又は回動が可能でもよい。
 第2のロック部74bは、術具72を保持する第2の保持部75を有する。第2のロック部74bは、弧状であり、術具72を該弧状(矢印78)に移動させることが可能である。
The lock portion 74 has a first lock portion 74a and a second lock portion 74b. As shown in FIG. 8, the head of the patient 3 is held by the first locking portion 74a and the second locking portion 74b.
The first locking portion 74a has a first holding portion 75 that holds the surgical instrument 72. The first lock portion 74a has an arc shape, and the first holding portion 75 can be moved in the arc shape (arrow 76). Further, the first holding portion 75 has a function of moving the surgical tool 72. For example, it is possible to approach or move away from the patient's eye, which is the subject of the procedure. The first holding portion 75 may be movable or rotatable in a direction other than the arrow 77 direction.
The second locking portion 74b has a second holding portion 75 that holds the surgical instrument 72. The second lock portion 74b has an arc shape, and the surgical tool 72 can be moved in the arc shape (arrow 78).
 回転駆動部80は、第1のロック部74a及び第2のロック部74bと接続され、軸81を中心に回転することが可能である。また回転駆動部80は、第1のロック部74a及び第2のロック部74bを円周方向(矢印82方向)に移動させることが可能な溝83を有する。 The rotation drive unit 80 is connected to the first lock portion 74a and the second lock portion 74b, and can rotate about the shaft 81. Further, the rotation drive unit 80 has a groove 83 capable of moving the first lock portion 74a and the second lock portion 74b in the circumferential direction (direction of the arrow 82).
 また手術装置70は、手術装置50と同様の機能を有する顕微鏡装置(図示せず)を備える。すなわち、該顕微鏡装置により、ロック部74により保持された患者3の患者眼の撮像画像が取得される。例えば、制御装置10により術具72、ロック部74、及び回転駆動部80の駆動を制御するマニピュレータ制御部85に制御信号が出力される。また患者眼を撮影するために、アーム部に制御信号が出力される。もちろん取得された撮像画像に対して画像処理を行うための制御信号、OCTを制御する制御信号、及び撮像部を移動させるためのロボットアームを制御する制御信号も出力される。すなわち、制御装置10の有する画像処理エンジン、OCTエンジン、ロボットアーム制御エンジン、及びマニピュレータ制御エンジンにより、各部が制御される。 Further, the surgical device 70 includes a microscope device (not shown) having the same function as the surgical device 50. That is, the microscope device acquires an image of the patient's eye held by the lock portion 74. For example, the control device 10 outputs a control signal to the manipulator control unit 85 that controls the drive of the surgical tool 72, the lock unit 74, and the rotation drive unit 80. Further, a control signal is output to the arm portion in order to photograph the patient's eye. Of course, a control signal for performing image processing on the acquired captured image, a control signal for controlling OCT, and a control signal for controlling the robot arm for moving the image pickup unit are also output. That is, each part is controlled by the image processing engine, the OCT engine, the robot arm control engine, and the manipulator control engine included in the control device 10.
 図9は、眼科手術システム100の他の構成例を示すブロック図である。図9では、図8に示す手術装置70と制御装置10とが接続され、一体のシステムとして機能する眼科手術システム100の例である。例えば、制御装置10は、構成情報から手術装置70が回転駆動部80を有することを検出し、マニピュレータ制御エンジンを制御する。 FIG. 9 is a block diagram showing another configuration example of the ophthalmic surgery system 100. FIG. 9 is an example of an ophthalmic surgery system 100 in which the surgical device 70 and the control device 10 shown in FIG. 8 are connected and function as an integrated system. For example, the control device 10 detects that the surgical device 70 has the rotation drive unit 80 from the configuration information, and controls the manipulator control engine.
 図9に示すように、手術装置70は、マニピュレータ制御部85、撮像制御部86、OCT制御部87、及びロボットアーム制御部88を有する。
 なお、手術装置70の撮像制御部86及びOCT制御部87は、上記の撮像制御部28及びOCT制御部29と同様の機能を有するため説明は省略する。またロボットアーム制御部88は、上記のロボットアーム制御部68と同様の機能を有するため説明は省略する。
As shown in FIG. 9, the surgical apparatus 70 includes a manipulator control unit 85, an imaging control unit 86, an OCT control unit 87, and a robot arm control unit 88.
Since the imaging control unit 86 and the OCT control unit 87 of the surgical apparatus 70 have the same functions as the imaging control unit 28 and the OCT control unit 29, the description thereof will be omitted. Further, since the robot arm control unit 88 has the same function as the robot arm control unit 68 described above, the description thereof will be omitted.
 マニピュレータ制御部85は、術具72、ロック部74、及び回転駆動部80の駆動を制御するマニピュレータを制御する。本実施形態では、マニピュレータ制御部85は、出力部14から出力される制御信号に従い、第1のロック部74a及び第2のロック部74bの回転角、術具72の位置、及び回転駆動部80の回転角等を制御する。 The manipulator control unit 85 controls the manipulator that controls the drive of the surgical tool 72, the lock unit 74, and the rotation drive unit 80. In the present embodiment, the manipulator control unit 85 follows the control signal output from the output unit 14, the rotation angle of the first lock unit 74a and the second lock unit 74b, the position of the surgical tool 72, and the rotation drive unit 80. Controls the angle of rotation, etc.
 手術装置70は、出力部14の制御信号に従い、術具72を自由に制御することが可能である。例えば、術具72及びロック部74が制御されることで、患者眼の水晶体核、皮質等の吸引等が行われる。 The surgical device 70 can freely control the surgical instrument 72 according to the control signal of the output unit 14. For example, by controlling the surgical instrument 72 and the lock portion 74, suction of the crystalline lens nucleus, cortex, etc. of the patient's eye is performed.
 また図9では、画像処理部13により患者眼の撮影画像から術具72と患者眼の各部位との距離が検出される。出力部14は、検出された距離に基づいて、術具72の位置を制御する制御信号を出力する。これにより、術具72が患者眼の適切な部位に適切な処置を実行可能である。例えば、術具72が周囲の網膜等を把握せずに動くことで網膜等を傷つけ視野欠損を生じる可能性を防ぐことができる。 Further, in FIG. 9, the image processing unit 13 detects the distance between the surgical tool 72 and each part of the patient's eye from the captured image of the patient's eye. The output unit 14 outputs a control signal for controlling the position of the surgical instrument 72 based on the detected distance. This allows the surgical instrument 72 to perform the appropriate treatment on the appropriate site of the patient's eye. For example, it is possible to prevent the possibility that the surgical tool 72 moves without grasping the surrounding retina or the like, thereby damaging the retina or the like and causing a visual field defect.
 すなわち、バックエンドモジュール2に接続されるフロントエンドモジュール1の構成情報に応じて、出力部14のみならず画像処理部13の動作が変わる。 That is, the operation of not only the output unit 14 but also the image processing unit 13 changes according to the configuration information of the front end module 1 connected to the back end module 2.
 ここで図9における出力部14により出力される制御信号の例を以下に示す。 Here, an example of the control signal output by the output unit 14 in FIG. 9 is shown below.
 例えば、出力部14により、ロボットアーム制御部88に、患者眼を撮像する際の適切な位置へ配置されるように制御信号が出力される。すなわち、フロントエンドモジュール1である顕微鏡装置に対して、制御信号が出力される。 For example, the output unit 14 outputs a control signal to the robot arm control unit 88 so that the robot arm control unit 88 is arranged at an appropriate position when imaging the patient's eye. That is, a control signal is output to the microscope device which is the front-end module 1.
 出力部14により、マニピュレータ制御部85に、水晶体核吸引、皮質吸引、及び眼内レンズ挿入等を行うための制御信号が出力される。すなわち、フロントエンドモジュール1である手術装置70(マニピュレータ機能)に対して、制御信号が出力される。なお、図8の装置とは別にフェムト秒レーザ白内障手術装置を設けて、図8の装置による手術に先立って前嚢切開、核分割、角膜切開を実行しておくようにしてもよい。 The output unit 14 outputs a control signal for performing lens nucleus suction, cortical suction, intraocular lens insertion, and the like to the manipulator control unit 85. That is, a control signal is output to the surgical apparatus 70 (manipulator function) which is the front end module 1. In addition to the device of FIG. 8, a femtosecond laser cataract surgery device may be provided to perform anterior capsule incision, nuclear division, and corneal incision prior to the operation by the device of FIG.
 また水晶体核吸引、皮質吸引、及び眼内レンズ挿入等の手術のステップごとにあらかじめ設定された患者眼の撮像に最適な位置に移動するよう、ロボットアーム制御部88に制御信号が出力される。
 またロボットアーム制御部88に制御信号が出力される際に、出力部14により、患者眼の撮影画像及びOCT画像が取得される旨の制御信号が出力される。すなわち、情報取得部11により撮影画像及びOCT画像が取得される。
 また出力部14により、取得された撮影画像及びOCT画像に対して、画像処理が実行される。
Further, a control signal is output to the robot arm control unit 88 so as to move to the optimum position for imaging the patient's eye preset for each surgical step such as lens nucleus suction, cortical suction, and intraocular lens insertion.
Further, when the control signal is output to the robot arm control unit 88, the output unit 14 outputs a control signal to the effect that the photographed image and the OCT image of the patient's eye are acquired. That is, the captured image and the OCT image are acquired by the information acquisition unit 11.
Further, the output unit 14 executes image processing on the acquired captured image and OCT image.
 図10は、眼科手術システム100の構成例を模式的に示す図である。
 本実施形態では、眼科手術システム100は、フロントエンドモジュール1として、手術装置50、手術装置70、及びモニタ91を有する手術装置90と、バックエンドモジュール2として制御装置10とを有する。本実施形態では、手術装置90に制御装置10が搭載される。
 図10では図示されないが、手術装置90は、手術装置50、手術装置70、及びモニタ91の複数のモジュールから構成される1つの装置である。すなわち、複数のモジュールから構成される手術装置90と、手術装置90に搭載される制御装置10とが一体のシステムとして眼科手術システム100を構成する。
FIG. 10 is a diagram schematically showing a configuration example of the ophthalmic surgery system 100.
In the present embodiment, the ophthalmologic surgery system 100 has a surgical device 90 as a front-end module 1, a surgical device 90 having a surgical device 50, a surgical device 70, and a monitor 91, and a control device 10 as a back-end module 2. In the present embodiment, the control device 10 is mounted on the surgical device 90.
Although not shown in FIG. 10, the surgical device 90 is one device composed of a plurality of modules of the surgical device 50, the surgical device 70, and the monitor 91. That is, the surgical apparatus 90 composed of a plurality of modules and the control device 10 mounted on the surgical apparatus 90 constitute an ophthalmologic surgery system 100 as an integrated system.
 モニタ91は、顕微鏡部52により撮像された撮影画像又はOCT画像が表示される。例えば、画像処理部13により所定の画像処理が行われた撮影画像又はOCT画像が表示される。これ以外にも、術具72の位置を示すマーカや現在実施されている手術の概要を説明する文章等が表示されてもよい The monitor 91 displays a photographed image or an OCT image captured by the microscope unit 52. For example, a captured image or an OCT image that has undergone predetermined image processing by the image processing unit 13 is displayed. In addition to this, a marker indicating the position of the surgical instrument 72, a sentence explaining the outline of the surgery currently being performed, or the like may be displayed.
 図10では、手術装置90は、顕微鏡部52による患者眼の撮像、出射部53によるレーザを用いた眼科手術、及び術具72による種々の手術を実施可能な医療機器である。
 例えば、白内障手術を実施する場合に、白内障手術に必要な手順を実行する旨の制御信号が出力されることで、白内障手術が実施される。
In FIG. 10, the surgical apparatus 90 is a medical device capable of performing imaging of a patient's eye by a microscope unit 52, ophthalmic surgery using a laser by an exit unit 53, and various operations using a surgical tool 72.
For example, when performing cataract surgery, the cataract surgery is performed by outputting a control signal to execute the procedure necessary for the cataract surgery.
 具体的には、出力部14により以下の制御信号が出力される。
 出力部14により、出射部53に患者眼の、創口作成、前嚢切開、及び水晶体核分割を行うためのフェムト秒レーザを出射させる制御信号が出力される。例えば、出射部53を患者眼にドッキングさせるようにアーム部51及び各関節部55a~dを制御するロボットアーム制御部68に制御信号が出力される。またレーザ制御部66に制御信号が出力され、ガルバノミラーの傾きが制御されることで、フェムト秒レーザの照射位置が変更される。また、出射部53が適切な部位にフェムト秒レーザを出射可能な位置に配置された際に、フェムト秒レーザを出射する旨の制御信号が出力される。
 出力部14により、ロボットアーム制御部68に、レーザモードから顕微鏡モードに切り替えさせる制御信号が出力される。具体的には、患者眼にドッキングされていた出射部53が適切な位置へ配置されるようにロボットアーム制御部68に制御信号が出力される。また出力部14により、関節部55dを回転させる制御信号を出力する。これにより、患者眼に顕微鏡部52が相対する。
 出力部14により、マニピュレータ制御部85に、水晶体核吸引、皮質吸引、及び眼内レンズ挿入を行うための制御信号が出力される。また水晶体核吸引、皮質吸引、及び眼内レンズ挿入等の手術のステップごとに顕微鏡部52(鏡筒部54)はあらかじめ設定された撮像に最適な位置に移動するよう、ロボットアーム制御部68に制御信号が出力される。
Specifically, the output unit 14 outputs the following control signals.
The output unit 14 outputs a control signal to the exit unit 53 to emit a femtosecond laser for creating a wound, incising the anterior capsule, and dividing the lens nucleus of the patient's eye. For example, a control signal is output to the arm portion 51 and the robot arm control unit 68 that controls the joint portions 55a to 55d so that the emission portion 53 is docked to the patient's eye. Further, a control signal is output to the laser control unit 66 to control the inclination of the galvano mirror, so that the irradiation position of the femtosecond laser is changed. Further, when the emitting unit 53 is arranged at an appropriate portion at a position where the femtosecond laser can be emitted, a control signal for emitting the femtosecond laser is output.
The output unit 14 outputs a control signal for switching from the laser mode to the microscope mode to the robot arm control unit 68. Specifically, a control signal is output to the robot arm control unit 68 so that the emission unit 53 docked to the patient's eye is arranged at an appropriate position. Further, the output unit 14 outputs a control signal for rotating the joint portion 55d. As a result, the microscope unit 52 faces the patient's eye.
The output unit 14 outputs a control signal for performing lens nucleus suction, cortical suction, and intraocular lens insertion to the manipulator control unit 85. In addition, the microscope unit 52 (lens barrel unit 54) is assigned to the robot arm control unit 68 so that it moves to the optimum position for imaging at each surgical step such as lens nucleus suction, cortical suction, and intraocular lens insertion. A control signal is output.
 また上記の制御信号が出力される際に、情報取得部11により患者眼の撮影画像及びOCT画像が取得される。取得された撮影画像又はOCT画像に基づいて、フェムト秒レーザの照射される位置、レーザモードから顕微鏡モードへの切替え、皮質吸引等を行う術具72の位置が制御される制御信号が出力される。 Further, when the above control signal is output, the captured image and the OCT image of the patient's eye are acquired by the information acquisition unit 11. Based on the acquired captured image or OCT image, a control signal is output that controls the position where the femtosecond laser is irradiated, the position of the surgical tool 72 that switches from the laser mode to the microscope mode, and performs cortical suction, etc. ..
 すなわち、眼科手術システム100は、実施される手術に必要な手順を実行可能なモジュールを有することで、所定の手術を最初から最後まで行うことが可能となる。 That is, the ophthalmologic surgery system 100 has a module capable of executing the procedure necessary for the surgery to be performed, so that a predetermined surgery can be performed from the beginning to the end.
 なお、眼科手術システム100は、ユーザにより手術の一部が実施されてもよい。例えば、患者3の白内障が難症例である場合に、手術の一部が眼科手術システム100により行われ、眼科手術システム100では手術の難度の高い手順ではユーザにより施術が行われる。
 具体的には、水晶体を目の周辺組織からつっているチン小帯が切れている「チン小帯断裂」やチン小帯が弱っている「チン小帯脆弱」等の症例が挙げられる。この場合、例えば、ユーザは、Capsule Retractorを使用して、水晶体を角膜につけた術具で引っ張って水晶体の位置を安定させる手順や、水晶体嚢の中にCTR(Capsular Tension Ring)を入れて残っているチン小帯で水晶体の位置を安定させる手順等が行われる。
In the ophthalmic surgery system 100, a part of the surgery may be performed by the user. For example, when the cataract of the patient 3 is a difficult case, a part of the surgery is performed by the ophthalmologic surgery system 100, and in the ophthalmologic surgery system 100, the surgery is performed by the user in a procedure having a high degree of difficulty in the surgery.
Specific examples include cases such as "Zonule of Zinn rupture" in which the zonule of Zinn that connects the crystalline lens from the tissue around the eye is cut, and "Zonule of Zinn fragility" in which the zonule of Zinn is weakened. In this case, for example, the user can use the Capsule Retractor to pull the lens with a surgical tool attached to the cornea to stabilize the position of the lens, or put a CTR (Capsular Tension Ring) in the lens capsule and remain. Procedures such as stabilizing the position of the crystalline lens in the zonule of Zinn are performed.
 なお上記のような難症例の場合、手術装置70のロック部74がユーザの手技の邪魔にならない箇所に移動させる制御信号が出力されてもよい。 In the case of a difficult case as described above, a control signal may be output to move the lock portion 74 of the surgical apparatus 70 to a location that does not interfere with the user's procedure.
 以上、本実施形態に係る眼科手術システム100は、患者眼の施術に用いられるフロントエンドモジュール1の構成要素に関する構成情報が取得される。フロントエンドモジュール1が接続されるバックエンドモジュール2は、構成情報を取得して、構成要素に応じた制御信号を出力する。これにより、医療機器の制御を効率よく実行することが可能となる。 As described above, in the ophthalmologic surgery system 100 according to the present embodiment, configuration information regarding the components of the front-end module 1 used for the operation of the patient's eye is acquired. The back-end module 2 to which the front-end module 1 is connected acquires configuration information and outputs a control signal corresponding to the component. This makes it possible to efficiently control the medical device.
 従来、医療分野では、様々な医療機器が製造された。製造された医療機器ごとに操作が異なったり、医療機器ごとの様々な制限があるため、それらの医療機器を使いこなすことは難しい。また新しい医療機器をその都度更新するとコストがかかる。 Conventionally, various medical devices have been manufactured in the medical field. It is difficult to master these medical devices because the operations are different for each manufactured medical device and there are various restrictions for each medical device. Also, updating new medical devices each time is costly.
 そこで本技術では、各医療機器をフロントエンドモジュールとしてモジュール化し、各医療機器の共通する機能が集約される。またモジュール化された医療機器の構成情報に基づいて、医療機器の適切な機能が実行される。これにより、手術室内のスペースの効率的な活用やコスト削減が可能となる。また一台の医療機器に多くの機能を持たせることができるため効率化が図られる。また1台の医療機器のため、配線や機器の設置スペースが小さいため、手術室のスペースが確保することができる。また医療機器ごとの操作に慣れるための時間も短縮することが可能である。
 また本技術は、図10に示す眼科手術システム100のように手術を最初から最後まで行うことが可能なモジュールを一度に揃える必要はなく、例えば以下のような順番でフロントエンドモジュールを追加(買い足す)することが可能である。
 自在に操作可能なアームを有し、患者眼の撮像画像や動画を撮像可能なビデオ顕微鏡(顕微鏡装置20等)。
 顕微鏡とレーザ装置とロボットアームとを有する手術装置(手術装置50等)。
 白内障手術に必要な各医療機器を備えた全自動白内障手術装置(眼科手術システム100等)。
 すなわち本技術は、全自動白内障手術装置に至るまでのユーザのニーズに応じて買い足す形で徐々に投資が可能である。また構成要素の一部を入れ替えて機能及び性能を進化させることが可能である。
 なお、追加されたフロントエンドモジュールに応じて、バックエンドモジュール内のエンジンが追加および/または更新されてもよい。
Therefore, in this technology, each medical device is modularized as a front-end module, and the common functions of each medical device are integrated. In addition, appropriate functions of the medical device are executed based on the configuration information of the modularized medical device. This makes it possible to efficiently utilize the space in the operating room and reduce costs. In addition, efficiency can be improved because one medical device can have many functions. In addition, since there is only one medical device, the wiring and equipment installation space is small, so it is possible to secure space for the operating room. It is also possible to shorten the time required to get used to the operation of each medical device.
Further, this technology does not need to prepare modules that can perform surgery from the beginning to the end at once like the ophthalmic surgery system 100 shown in FIG. 10, and for example, add (buy) front-end modules in the following order. It is possible to add).
A video microscope (microscope device 20, etc.) that has an arm that can be freely operated and can capture images and moving images of the patient's eye.
A surgical device having a microscope, a laser device, and a robot arm (surgical device 50, etc.).
A fully automatic cataract surgery device (ophthalmic surgery system 100, etc.) equipped with each medical device necessary for cataract surgery.
In other words, this technology can be gradually invested in the form of additional purchases according to the needs of users, including fully automatic cataract surgery equipment. It is also possible to replace some of the components to evolve functionality and performance.
Note that the engine in the backend module may be added and / or updated according to the added frontend module.
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
<Other embodiments>
The present technology is not limited to the embodiments described above, and various other embodiments can be realized.
 上記の実施形態では、フロントエンドモジュール1に顕微鏡装置20及び手術装置50等の顕微鏡が用いられた。これに限定されず、フロントエンドモジュール1として、任意の眼科に用いられる医療機器が用いられてもよい。例えば、フロントエンドモジュール1として、眼科用内視鏡が用いられてもよい。もちろん、眼科用内視鏡が使用される手術に必要な他の医療機器がフロントエンドモジュール1としてバックエンドモジュール2に接続されてもよい。すなわち、眼科用内視鏡は観察装置に相当する。 In the above embodiment, a microscope such as a microscope device 20 and a surgical device 50 was used for the front end module 1. Not limited to this, a medical device used in any ophthalmology may be used as the front-end module 1. For example, an ophthalmic endoscope may be used as the front-end module 1. Of course, other medical devices required for surgery in which an ophthalmic endoscope is used may be connected to the back-end module 2 as the front-end module 1. That is, the endoscope for ophthalmology corresponds to an observation device.
 上記の実施形態では、患者3の白内障が難症例だった場合に施術の一部が術者により実施され、手術装置70が術者の邪魔にならないように制御された。これ以外にも、様々な眼科手術システム100で手術装置に制御信号が出力されてもよい。例えば、図6及び図7に示す眼科手術システム100(手術装置70がない)場合の難症例では、術者が施術を実行している際に手術装置50の鏡筒部54が所定の位置に移動するように制御信号が出力される。その後アーム部51は術者により操作される受動的な状態となる。 In the above embodiment, when the cataract of patient 3 is a difficult case, a part of the operation is performed by the surgeon, and the surgical device 70 is controlled so as not to disturb the surgeon. In addition to this, control signals may be output to the surgical apparatus in various ophthalmic surgery systems 100. For example, in the difficult case of the ophthalmologic surgery system 100 (without the surgical device 70) shown in FIGS. 6 and 7, the lens barrel portion 54 of the surgical device 50 is in a predetermined position when the surgeon is performing the operation. A control signal is output to move. After that, the arm portion 51 becomes a passive state operated by the operator.
 上記の実施形態では、制御装置10により、フロントエンドモジュール1の制御が実行された。これ以外にも、制御装置10により実行される施術のガイダンスがユーザに提示されてもよい。 In the above embodiment, the control device 10 controls the front-end module 1. In addition to this, guidance of the treatment performed by the control device 10 may be presented to the user.
 上記の実施形態では、情報取得部11により構成情報が取得された。これ以外にも、様々な情報が取得されてもよい。例えば、顕微鏡部21や出射部33等の術具と患者眼の位置関係を示す情報が取得されてもよい。またその位置関係に応じた制御信号が出力されてもよい。 In the above embodiment, the configuration information was acquired by the information acquisition unit 11. In addition to this, various information may be acquired. For example, information indicating the positional relationship between the surgical instrument such as the microscope unit 21 and the exit unit 33 and the patient's eye may be acquired. Further, a control signal corresponding to the positional relationship may be output.
 上記の実施形態では、図10の手術装置50に制御装置10が搭載された。これに限定されず、制御装置10は外部に配置され、無線等で接続されていてもよい。また画像処理部13等の制御装置10のブロックが手術装置50に搭載されてもよい。 In the above embodiment, the control device 10 is mounted on the surgical device 50 of FIG. Not limited to this, the control device 10 may be arranged externally and connected wirelessly or the like. Further, the block of the control device 10 such as the image processing unit 13 may be mounted on the surgical device 50.
 上記の実施形態では、撮影画像に基づいて、手術を実行するための制御信号が出力された。これに限定されず、患者眼の病変部等が撮影画像又はOCT画像から認識され、該病変部から必要な施術が判定され、判定された施術に必要な手順を実行する旨の制御信号が出力されてもよい。また上記の認識及び判定が機械学習等で学習され、該学習データに基づいて、制御信号が出力されてもいい In the above embodiment, a control signal for performing surgery was output based on the captured image. Not limited to this, the lesion part of the patient's eye is recognized from the photographed image or the OCT image, the necessary treatment is determined from the lesion part, and a control signal indicating that the procedure necessary for the determined treatment is executed is output. May be done. Further, the above recognition and determination may be learned by machine learning or the like, and a control signal may be output based on the learning data.
 上記の実施形態では、手術装置50の鏡筒部54に顕微鏡部52及び出射部53が具備された。これに限定されず、鏡筒部54が顕微鏡部52又は出射部53を取り付け可能な接続部を有してもよい。例えば、接続部に顕微鏡部52が接続された場合、顕微鏡モードとなり、接続部に出射部53が接続された場合、レーザモードとなる。この場合、出力部14は、各モードに応じて、制御信号を出力する。 In the above embodiment, the lens barrel portion 54 of the surgical apparatus 50 is provided with the microscope portion 52 and the exit portion 53. The lens barrel portion 54 may have a connection portion to which the microscope portion 52 or the emission portion 53 can be attached. For example, when the microscope unit 52 is connected to the connection unit, the microscope mode is set, and when the emission unit 53 is connected to the connection unit, the laser mode is set. In this case, the output unit 14 outputs a control signal according to each mode.
 上記の実施形態では、顕微鏡装置20及びレーザ装置30のOCT部等の共通要素が眼科手術システム100により共有化された。これに限定されず、様々な医療装置が制御装置10により制御されてもよい。 In the above embodiment, common elements such as the OCT section of the microscope device 20 and the laser device 30 are shared by the ophthalmologic surgery system 100. Not limited to this, various medical devices may be controlled by the control device 10.
 図11は、制御装置10のハードウェア構成例を示すブロック図である。 FIG. 11 is a block diagram showing a hardware configuration example of the control device 10.
 制御装置10は、CPU111、ROM112、RAM113、入出力インタフェース115、及びこれらを互いに接続するバス114を備える。入出力インタフェース115には、表示部116、入力部117、記憶部118、通信部119、及びドライブ部120等が接続される。 The control device 10 includes a CPU 111, a ROM 112, a RAM 113, an input / output interface 115, and a bus 114 connecting these to each other. A display unit 116, an input unit 117, a storage unit 118, a communication unit 119, a drive unit 120, and the like are connected to the input / output interface 115.
 表示部116は、例えば液晶、EL等を用いた表示デバイスである。入力部117は、例えばキーボード、ポインティングデバイス、タッチパネル、その他の操作装置である。入力部117がタッチパネルを含む場合、そのタッチパネルは表示部116と一体となり得る。 The display unit 116 is a display device using, for example, a liquid crystal display, an EL, or the like. The input unit 117 is, for example, a keyboard, a pointing device, a touch panel, or other operating device. When the input unit 117 includes a touch panel, the touch panel may be integrated with the display unit 116.
 記憶部118は、不揮発性の記憶デバイスであり、例えばHDD、フラッシュメモリ、その他の固体メモリである。ドライブ部120は、例えば光学記録媒体、磁気記録テープ等、リムーバブルの記録媒体121を駆動することが可能なデバイスである。 The storage unit 118 is a non-volatile storage device, for example, an HDD, a flash memory, or other solid-state memory. The drive unit 120 is a device capable of driving a removable recording medium 121 such as an optical recording medium or a magnetic recording tape.
 通信部119は、LAN、WAN等に接続可能な、他のデバイスと通信するためのモデム、ルータ、その他の通信機器である。通信部119は、有線及び無線のどちらを利用して通信するものであってもよい。通信部119は、制御装置10とは別体で使用される場合が多い。
 本実施形態では、通信部119により、ネットワークを介した他の装置との通信が可能となる。
The communication unit 119 is a modem, router, or other communication device for communicating with another device that can be connected to a LAN, WAN, or the like. The communication unit 119 may communicate using either wired or wireless communication. The communication unit 119 is often used separately from the control device 10.
In the present embodiment, the communication unit 119 enables communication with other devices via the network.
 上記のようなハードウェア構成を有する制御装置10による情報処理は、記憶部118またはROM112等に記憶されたソフトウェアと、制御装置10のハードウェア資源との協働により実現される。具体的には、ROM112等に記憶された、ソフトウェアを構成するプログラムをRAM113にロードして実行することにより、本技術に係る制御方法が実現される。 Information processing by the control device 10 having the hardware configuration as described above is realized by the cooperation between the software stored in the storage unit 118 or the ROM 112 or the like and the hardware resources of the control device 10. Specifically, the control method according to the present technology is realized by loading the program constituting the software stored in the ROM 112 or the like into the RAM 113 and executing the program.
 プログラムは、例えば記録媒体121を介して制御装置10にインストールされる。あるいは、グローバルネットワーク等を介してプログラムが制御装置10にインストールされてもよい。その他、コンピュータ読み取り可能な非一過性の任意の記憶媒体が用いられてよい。 The program is installed in the control device 10 via, for example, the recording medium 121. Alternatively, the program may be installed in the control device 10 via a global network or the like. In addition, any non-transient storage medium that can be read by a computer may be used.
 通信端末に搭載されたコンピュータとネットワーク等を介して通信可能な他のコンピュータとが連動することにより本技術に係る眼科手術システム、制御方法、及びプログラムが実行され、本技術に係る制御装置10が構築されてもよい。 By linking a computer mounted on a communication terminal with another computer capable of communicating via a network or the like, an ophthalmic surgery system, a control method, and a program according to the present technology are executed, and a control device 10 according to the present technology is executed. It may be constructed.
 すなわち本技術に係る眼科手術システム、制御方法、及びプログラムは、単体のコンピュータにより構成されたコンピュータシステムのみならず、複数のコンピュータが連動して動作するコンピュータシステムにおいても実行可能である。なお、本開示において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれもシステムである。 That is, the ophthalmic surgery system, control method, and program according to the present technology can be executed not only in a computer system composed of a single computer but also in a computer system in which a plurality of computers operate in conjunction with each other. In the present disclosure, the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether or not all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device in which a plurality of modules are housed in one housing are both systems.
 コンピュータシステムによる本技術に係る眼科手術システム、制御方法、及びプログラムの実行は、例えば、構成情報の取得、制御信号の出力等が、単体のコンピュータにより実行される場合、及び各処理が異なるコンピュータにより実行される場合の両方を含む。また所定のコンピュータによる各処理の実行は、当該処理の一部又は全部を他のコンピュータに実行させその結果を取得することを含む。 The execution of the ophthalmic surgery system, the control method, and the program according to the present technology by the computer system is, for example, when the acquisition of the configuration information, the output of the control signal, etc. are executed by a single computer, or by a computer in which each process is different. Includes both when executed. Further, the execution of each process by a predetermined computer includes having another computer execute a part or all of the process and acquiring the result.
 すなわち本技術に係る眼科手術システム、制御方法、及びプログラムは、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成にも適用することが可能である。 That is, the ophthalmologic surgery system, control method, and program related to this technology can be applied to the configuration of cloud computing in which one function is shared by a plurality of devices via a network and processed jointly.
 各図面を参照して説明した情報取得部、判定部、出力部等の各構成等はあくまで一実施形態であり、本技術の趣旨を逸脱しない範囲で、任意に変形可能である。すなわち本技術を実施するための他の任意の構成やアルゴリズム等が採用されてよい。 Each configuration of the information acquisition unit, the determination unit, the output unit, etc. described with reference to each drawing is only one embodiment, and can be arbitrarily deformed as long as it does not deviate from the purpose of the present technology. That is, other arbitrary configurations, algorithms, and the like for implementing the present technology may be adopted.
 なお、本開示中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。上記の複数の効果の記載は、それらの効果が必ずしも同時に発揮されるということを意味しているのではない。条件等により、少なくとも上記した効果のいずれかが得られることを意味しており、もちろん本開示中に記載されていない効果が発揮される可能性もある。 It should be noted that the effects described in the present disclosure are merely examples and are not limited, and other effects may be obtained. The description of the plurality of effects described above does not necessarily mean that the effects are exerted at the same time. It means that at least one of the above-mentioned effects can be obtained depending on the conditions and the like, and of course, there is a possibility that an effect not described in the present disclosure may be exhibited.
 以上説明した各形態の特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。 It is also possible to combine at least two feature parts out of the feature parts of each form described above. That is, the various feature portions described in each embodiment may be arbitrarily combined without distinction between the respective embodiments.
 なお、本技術は以下のような構成も採ることができる。
(1)
 患者眼の施術に用いられる機能を有する1又は複数の第1のモジュールと、
 前記第1のモジュールが接続され、前記第1のモジュールに関する構成情報を取得して前記構成情報に応じた制御信号を出力する第2のモジュールと
 を具備する眼科手術システム。
(2)(1)に記載の眼科手術システムであって、
 前記第2のモジュールは、前記構成情報に応じて、前記第1のモジュールから供給される前記施術に関する情報を制御する
 眼科手術システム。
(3)(2)に記載の眼科手術システムであって、
 前記施術に関する情報は、前記患者眼の撮像画像であり、
 前記第2のモジュールは、前記撮像画像に画像処理を実行する画像処理部を有し、
 前記画像処理部は、前記構成情報に応じて、前記画像処理を変更する
 眼科手術システム。
(4)(1)から(3)のうちいずれか1つに記載の眼科手術システムであって、
 前記第1のモジュールは、観察装置、又はレーザ装置の少なくとも一方を含む
 眼科手術システム。
(5)(4)に記載の眼科手術システムであって、
 前記第2のモジュールは、前記観察装置又は前記レーザ装置のどちらかが接続される場合に、前記構成情報に応じて、前記観察装置及び前記レーザ装置の有する観察光学系を制御する制御信号を出力する
 眼科手術システム。
(6)(5)に記載の眼科手術システムであって、
 前記観察光学系は、リファレンスミラー又はスキャンミラーの少なくとも一方を含み、
 前記制御信号は、前記リファレンスミラーの光源からの距離を変化させる信号、又は前記スキャンミラーの振り角を変化させる信号の少なくとも一方を含む
 眼科手術システム。
(7)(4)に記載の眼科手術システムであって、
 前記第2のモジュールは、前記撮像画像に画像処理を実行する画像処理部を有し、
 前記画像処理部は、前記観察装置又は前記レーザ装置のどちらかが接続される場合に、前記構成情報に応じて、前記患者眼の撮像画像を単眼表示用処理又は複眼表示用処理に変更する画像処理、又は前記撮像画像の色処理を変更する画像処理の少なくとも一方を実行する
 眼科手術システム。
(8)(4)に記載の眼科手術システムであって、
 前記第1のモジュールは、前記観察装置であり、
 前記第2のモジュールは、前記観察装置の位置又は前記観察装置の撮像条件の少なくとも一方を制御する制御信号を出力する
 眼科手術システム。
(9)(4)に記載の眼科手術システムであって、
 前記第1のモジュールは、前記レーザ装置であり、
 前記第2のモジュールは、少なくとも前記患者眼に照射されるレーザ光の位置を制御する制御信号を出力する
 眼科手術システム。
(10)(4)に記載の眼科手術システムであって、
 前記観察装置は、光学コヒーレンストモグラフィ(OCT:Optical Coherence Tomography)光学系を有する
 眼科手術システム。
(11)(4)に記載の眼科手術システムであって、
 前記レーザ装置は、光学コヒーレンストモグラフィ(OCT:Optical Coherence Tomography)光学系を有する
 眼科手術システム。
(12)(4)に記載の眼科手術システムであって、
 前記レーザ装置は、フェムト秒レーザを出射可能である
 眼科手術システム。
(13)(1)に記載の眼科手術システムであって、
 前記制御信号は、前記患者眼に対して行われる前記施術に関する行動情報を含む
 眼科手術システム。
(14)(1)から(13)のうちいずれか1つに記載の眼科手術システムであって、さらに、
 前記第1のモジュールを駆動させる駆動機構を具備する
 眼科手術システム。
(15)(14)に記載の眼科手術システムであって、
 前記第2のモジュールは、前記制御信号を前記駆動機構に出力する
 眼科手術システム。
(16)(14)に記載の眼科手術システムであって、
 前記駆動機構は、前記施術に用いられる術具を保持し、
 前記第2のモジュールは、前記患者眼の撮像画像に基づいて、前記術具と前記患者眼との距離を検出する検出部を有する
 眼科手術システム。
(17)(14)に記載の眼科手術システムであって、
 前記第2のモジュールは、前記施術の手順に応じて、前記駆動機構を制御する制御信号を出力する
 眼科手術システム。
(18)
 患者眼の施術に用いられる機能を有する1又は複数の第1のモジュールに関する構成情報を取得し、
 前記構成情報に応じた制御信号を出力する
 ことをコンピュータシステムが実行する制御方法。
(19)
 患者眼の施術に用いられる機能を有する1又は複数の第1のモジュールに関する構成情報を取得するステップと、
 前記構成要素に応じた制御信号を出力するステップと
 をコンピュータシステムに実行させるプログラム。
In addition, this technology can also adopt the following configurations.
(1)
With one or more first modules having the functions used in the treatment of the patient's eye,
An ophthalmologic surgery system comprising a second module to which the first module is connected and which acquires configuration information about the first module and outputs a control signal according to the configuration information.
(2) The ophthalmologic surgery system according to (1).
The second module is an ophthalmologic surgery system that controls information about the procedure supplied from the first module according to the configuration information.
(3) The ophthalmologic surgery system according to (2).
The information regarding the treatment is a captured image of the patient's eye.
The second module has an image processing unit that executes image processing on the captured image.
The image processing unit is an ophthalmologic surgery system that changes the image processing according to the configuration information.
(4) The ophthalmologic surgery system according to any one of (1) to (3).
The first module is an ophthalmic surgery system that includes at least one of an observation device or a laser device.
(5) The ophthalmologic surgery system according to (4).
When either the observation device or the laser device is connected, the second module outputs a control signal for controlling the observation device and the observation optical system of the laser device according to the configuration information. Eye surgery system.
(6) The ophthalmologic surgery system according to (5).
The observation optical system includes at least one of a reference mirror and a scan mirror.
The control signal includes at least one of a signal that changes the distance of the reference mirror from the light source and a signal that changes the swing angle of the scan mirror.
(7) The ophthalmologic surgery system according to (4).
The second module has an image processing unit that executes image processing on the captured image.
When either the observation device or the laser device is connected, the image processing unit changes the captured image of the patient's eye into monocular display processing or compound eye display processing according to the configuration information. An eye surgery system that performs at least one of processing or image processing that modifies the color processing of the captured image.
(8) The ophthalmologic surgery system according to (4).
The first module is the observation device.
The second module is an ophthalmologic surgery system that outputs a control signal that controls at least one of the position of the observation device and the imaging condition of the observation device.
(9) The ophthalmologic surgery system according to (4).
The first module is the laser device.
The second module is an ophthalmologic surgery system that outputs a control signal that controls at least the position of the laser beam emitted to the patient's eye.
(10) The ophthalmologic surgery system according to (4).
The observation device is an ophthalmic surgery system having an optical coherence tomography (OCT) optical system.
(11) The ophthalmologic surgery system according to (4).
The laser device is an ophthalmic surgery system having an optical coherence tomography (OCT) optical system.
(12) The ophthalmologic surgery system according to (4).
The laser device is an ophthalmic surgery system capable of emitting a femtosecond laser.
(13) The ophthalmologic surgery system according to (1).
The control signal is an ophthalmologic surgery system that includes behavioral information about the procedure performed on the patient's eye.
(14) The ophthalmologic surgery system according to any one of (1) to (13), and further.
An ophthalmologic surgery system comprising a drive mechanism for driving the first module.
(15) The ophthalmologic surgery system according to (14).
The second module is an ophthalmic surgery system that outputs the control signal to the drive mechanism.
(16) The ophthalmologic surgery system according to (14).
The drive mechanism holds the surgical tool used for the treatment and holds the surgical tool.
The second module is an ophthalmologic surgery system having a detection unit that detects the distance between the surgical instrument and the patient's eye based on the captured image of the patient's eye.
(17) The ophthalmologic surgery system according to (14).
The second module is an ophthalmic surgery system that outputs a control signal for controlling the drive mechanism according to the procedure of the operation.
(18)
Obtain configuration information about one or more first modules that have the function used in patient eye surgery.
A control method in which a computer system executes to output a control signal according to the configuration information.
(19)
A step of acquiring configuration information about one or more first modules having a function used in a patient eye procedure, and
A program that causes a computer system to perform steps to output control signals according to the components.
 1…フロントエンドモジュール
 2…バックエンドモジュール
 10…制御装置
 11…情報取得部
 13…画像処理部
 14…出力部
 20…顕微鏡装置
 30…レーザ装置
 50…手術装置
 70…手術装置
 100…眼科手術システム
1 ... Front-end module 2 ... Back-end module 10 ... Control device 11 ... Information acquisition unit 13 ... Image processing unit 14 ... Output unit 20 ... Microscope device 30 ... Laser device 50 ... Surgical device 70 ... Surgical device 100 ... Eye surgery system

Claims (19)

  1.  患者眼の施術に用いられる機能を有する1又は複数の第1のモジュールと、
     前記第1のモジュールが接続され、前記第1のモジュールに関する構成情報を取得して前記構成情報に応じた制御信号を出力する第2のモジュールと
     を具備する眼科手術システム。
    With one or more first modules having the functions used in the treatment of the patient's eye,
    An ophthalmologic surgery system comprising a second module to which the first module is connected and which acquires configuration information about the first module and outputs a control signal according to the configuration information.
  2.  請求項1に記載の眼科手術システムであって、
     前記第2のモジュールは、前記構成情報に応じて、前記第1のモジュールから供給される前記施術に関する情報を制御する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 1.
    The second module is an ophthalmologic surgery system that controls information about the procedure supplied from the first module according to the configuration information.
  3.  請求項2に記載の眼科手術システムであって、
     前記施術に関する情報は、前記患者眼の撮像画像であり、
     前記第2のモジュールは、前記撮像画像に画像処理を実行する画像処理部を有し、
     前記画像処理部は、前記構成情報に応じて、前記画像処理を変更する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 2.
    The information regarding the treatment is a captured image of the patient's eye.
    The second module has an image processing unit that executes image processing on the captured image.
    The image processing unit is an ophthalmologic surgery system that changes the image processing according to the configuration information.
  4.  請求項1に記載の眼科手術システムであって、
     前記第1のモジュールは、観察装置、又はレーザ装置の少なくとも一方を含む
     眼科手術システム。
    The ophthalmologic surgery system according to claim 1.
    The first module is an ophthalmic surgery system that includes at least one of an observation device or a laser device.
  5.  請求項4に記載の眼科手術システムであって、
     前記第2のモジュールは、前記観察装置又は前記レーザ装置のどちらかが接続される場合に、前記構成情報に応じて、前記観察装置及び前記レーザ装置の有する観察光学系を制御する制御信号を出力する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 4.
    When either the observation device or the laser device is connected, the second module outputs a control signal for controlling the observation device and the observation optical system of the laser device according to the configuration information. Eye surgery system.
  6.  請求項5に記載の眼科手術システムであって、
     前記観察光学系は、リファレンスミラー又はスキャンミラーの少なくとも一方を含み、
     前記制御信号は、前記リファレンスミラーの光源からの距離を変化させる信号、又は前記スキャンミラーの振り角を変化させる信号の少なくとも一方を含む
     眼科手術システム。
    The ophthalmologic surgery system according to claim 5.
    The observation optical system includes at least one of a reference mirror and a scan mirror.
    The control signal includes at least one of a signal that changes the distance of the reference mirror from the light source and a signal that changes the swing angle of the scan mirror.
  7.  請求項4に記載の眼科手術システムであって、
     前記第2のモジュールは、前記撮像画像に画像処理を実行する画像処理部を有し、
     前記画像処理部は、前記観察装置又は前記レーザ装置のどちらかが接続される場合に、前記構成情報に応じて、前記患者眼の撮像画像を単眼表示用処理又は複眼表示用処理に変更する画像処理、又は前記撮像画像の色処理を変更する画像処理の少なくとも一方を実行する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 4.
    The second module has an image processing unit that executes image processing on the captured image.
    When either the observation device or the laser device is connected, the image processing unit changes the captured image of the patient's eye into monocular display processing or compound eye display processing according to the configuration information. An eye surgery system that performs at least one of processing or image processing that modifies the color processing of the captured image.
  8.  請求項4に記載の眼科手術システムであって、
     前記第1のモジュールは、前記観察装置であり、
     前記第2のモジュールは、前記観察装置の位置又は前記観察装置の撮像条件の少なくとも一方を制御する制御信号を出力する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 4.
    The first module is the observation device.
    The second module is an ophthalmologic surgery system that outputs a control signal that controls at least one of the position of the observation device and the imaging condition of the observation device.
  9.  請求項4に記載の眼科手術システムであって、
     前記第1のモジュールは、前記レーザ装置であり、
     前記第2のモジュールは、少なくとも前記患者眼に照射されるレーザ光の位置を制御する制御信号を出力する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 4.
    The first module is the laser device.
    The second module is an ophthalmologic surgery system that outputs a control signal that controls at least the position of the laser beam emitted to the patient's eye.
  10.  請求項4に記載の眼科手術システムであって、
     前記観察装置は、光学コヒーレンストモグラフィ(OCT:Optical Coherence Tomography)光学系を有する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 4.
    The observation device is an ophthalmic surgery system having an optical coherence tomography (OCT) optical system.
  11.  請求項4に記載の眼科手術システムであって、
     前記レーザ装置は、光学コヒーレンストモグラフィ(OCT:Optical Coherence Tomography)光学系を有する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 4.
    The laser device is an ophthalmic surgery system having an optical coherence tomography (OCT) optical system.
  12.  請求項4に記載の眼科手術システムであって、
     前記レーザ装置は、フェムト秒レーザを出射可能である
     眼科手術システム。
    The ophthalmologic surgery system according to claim 4.
    The laser device is an ophthalmic surgery system capable of emitting a femtosecond laser.
  13.  請求項1に記載の眼科手術システムであって、
     前記制御信号は、前記患者眼に対して行われる前記施術に関する行動情報を含む
     眼科手術システム。
    The ophthalmologic surgery system according to claim 1.
    The control signal is an ophthalmologic surgery system that includes behavioral information about the procedure performed on the patient's eye.
  14.  請求項1に記載の眼科手術システムであって、さらに、
     前記第1のモジュールを駆動させる駆動機構を具備する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 1, further
    An ophthalmologic surgery system comprising a drive mechanism for driving the first module.
  15.  請求項14に記載の眼科手術システムであって、
     前記第2のモジュールは、前記制御信号を前記駆動機構に出力する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 14.
    The second module is an ophthalmic surgery system that outputs the control signal to the drive mechanism.
  16.  請求項14に記載の眼科手術システムであって、
     前記駆動機構は、前記施術に用いられる術具を保持し、
     前記第2のモジュールは、前記患者眼の撮像画像に基づいて、前記術具と前記患者眼との距離を検出する検出部を有する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 14.
    The drive mechanism holds the surgical tool used for the treatment and holds the surgical tool.
    The second module is an ophthalmologic surgery system having a detection unit that detects the distance between the surgical instrument and the patient's eye based on the captured image of the patient's eye.
  17.  請求項14に記載の眼科手術システムであって、
     前記第2のモジュールは、前記施術の手順に応じて、前記駆動機構を制御する制御信号を出力する
     眼科手術システム。
    The ophthalmologic surgery system according to claim 14.
    The second module is an ophthalmic surgery system that outputs a control signal for controlling the drive mechanism according to the procedure of the operation.
  18.  患者眼の施術に用いられる機能を有する1又は複数の第1のモジュールに関する構成情報を取得し、
     前記構成情報に応じた制御信号を出力する
     ことをコンピュータシステムが実行する制御方法。
    Obtain configuration information about one or more first modules that have the function used in patient eye surgery.
    A control method in which a computer system executes to output a control signal according to the configuration information.
  19.  患者眼の施術に用いられる機能を有する1又は複数の第1のモジュールに関する構成情報を取得するステップと、
     前記構成要素に応じた制御信号を出力するステップと
     をコンピュータシステムに実行させるプログラム。
    A step of acquiring configuration information about one or more first modules having a function used in a patient eye procedure, and
    A program that causes a computer system to perform steps to output control signals according to the components.
PCT/JP2021/030947 2020-09-10 2021-08-24 Ophthalmic surgery system, control method, and program WO2022054562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-151902 2020-09-10
JP2020151902A JP2022046056A (en) 2020-09-10 2020-09-10 Ophthalmic surgery system, control method, and program

Publications (1)

Publication Number Publication Date
WO2022054562A1 true WO2022054562A1 (en) 2022-03-17

Family

ID=80631596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030947 WO2022054562A1 (en) 2020-09-10 2021-08-24 Ophthalmic surgery system, control method, and program

Country Status (2)

Country Link
JP (1) JP2022046056A (en)
WO (1) WO2022054562A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288001A (en) * 1999-04-09 2000-10-17 Morita Mfg Co Ltd Medical treatment device provided with multi-joint tube, multi-joint treatment equipment and adapter for multi- joint
JP2007260417A (en) * 1996-08-29 2007-10-11 Bausch & Lomb Inc Surgical operation system for providing automatic reconfiguration function
JP2009544422A (en) * 2006-07-21 2009-12-17 アルコン,インコーポレイティド Smart connector system for surgical machines
JP2010538703A (en) * 2007-09-10 2010-12-16 アルコン レンゼックス, インコーポレーテッド Apparatus, system and technique for providing an interface to the eye in laser surgery
JP2012120852A (en) * 2004-12-15 2012-06-28 Alcon Inc System and method for identifying and controlling ophthalmic surgical device and component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260417A (en) * 1996-08-29 2007-10-11 Bausch & Lomb Inc Surgical operation system for providing automatic reconfiguration function
JP2000288001A (en) * 1999-04-09 2000-10-17 Morita Mfg Co Ltd Medical treatment device provided with multi-joint tube, multi-joint treatment equipment and adapter for multi- joint
JP2012120852A (en) * 2004-12-15 2012-06-28 Alcon Inc System and method for identifying and controlling ophthalmic surgical device and component
JP2009544422A (en) * 2006-07-21 2009-12-17 アルコン,インコーポレイティド Smart connector system for surgical machines
JP2010538703A (en) * 2007-09-10 2010-12-16 アルコン レンゼックス, インコーポレーテッド Apparatus, system and technique for providing an interface to the eye in laser surgery

Also Published As

Publication number Publication date
JP2022046056A (en) 2022-03-23

Similar Documents

Publication Publication Date Title
JP7151109B2 (en) Medical imaging device and medical observation system
JP2017113343A (en) Medical imaging apparatus and surgery navigation system
JP7115493B2 (en) Surgical arm system and surgical arm control system
JP7480477B2 (en) Medical observation system, control device and control method
US20230210347A1 (en) Surgery system, control method, surgical apparatus, and program
JP7334499B2 (en) Surgery support system, control device and control method
WO2018096763A1 (en) Microscope apparatus and control method
WO2019239942A1 (en) Surgical observation device, surgical observation method, surgical light source device, and light irradiation method for surgery
WO2018088113A1 (en) Joint driving actuator and medical system
JP2018075218A (en) Medical support arm and medical system
JP2019084334A (en) Medical holding apparatus, medical arm system, and drape mounting mechanism
US20230172438A1 (en) Medical arm control system, medical arm control method, medical arm simulator, medical arm learning model, and associated programs
WO2021049438A1 (en) Medical support arm and medical system
EP3603562B1 (en) Medical observation apparatus and observation field correction method
JPWO2018100828A1 (en) Microscope device and control method
US20230142404A1 (en) Medical imaging apparatus, learning model generation method, and learning model generation program
WO2021049220A1 (en) Medical support arm and medical system
US20220400938A1 (en) Medical observation system, control device, and control method
US11553838B2 (en) Endoscope and arm system
WO2022054562A1 (en) Ophthalmic surgery system, control method, and program
WO2017221491A1 (en) Control device, control system, and control method
WO2018043205A1 (en) Medical image processing device, medical image processing method, and program
JP2023507063A (en) Methods, devices, and systems for controlling image capture devices during surgery
WO2023017651A1 (en) Medical observation system, information processing device, and information processing method
US20240155241A1 (en) Medical observation system, information processing device, and information processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866522

Country of ref document: EP

Kind code of ref document: A1