WO2022054191A1 - Substrate work machine - Google Patents

Substrate work machine Download PDF

Info

Publication number
WO2022054191A1
WO2022054191A1 PCT/JP2020/034253 JP2020034253W WO2022054191A1 WO 2022054191 A1 WO2022054191 A1 WO 2022054191A1 JP 2020034253 W JP2020034253 W JP 2020034253W WO 2022054191 A1 WO2022054191 A1 WO 2022054191A1
Authority
WO
WIPO (PCT)
Prior art keywords
support member
circuit board
contact
height
board
Prior art date
Application number
PCT/JP2020/034253
Other languages
French (fr)
Japanese (ja)
Inventor
敦志 鳥居
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2022548310A priority Critical patent/JPWO2022054191A1/ja
Priority to PCT/JP2020/034253 priority patent/WO2022054191A1/en
Publication of WO2022054191A1 publication Critical patent/WO2022054191A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/16Printing tables
    • B41F15/18Supports for workpieces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • G01B5/06Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness for measuring thickness
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a board-to-board working machine provided with a clamping device for clamping a board.
  • the work on the board can be appropriately performed by calculating the thickness of the board. Therefore, it is an object of the present invention to appropriately calculate the thickness of the substrate.
  • the present specification describes a support member that supports the substrate from the lower surface, a clamp device that clamps the substrate in a state of being supported by the support member, and the support member is moved up and down together with the clamp device.
  • An elevating device and a contact body that is positioned at a predetermined height above the support member and that the support member is raised by the elevating device to come into contact with the support member or a substrate supported by the support member.
  • the support member is based on the difference between the height of the support member when the support member comes into contact with the contact body and the height of the support member when the substrate supported by the support member comes into contact with the contact body.
  • an anti-board working machine provided with an arithmetic unit for calculating the thickness of a substrate supported by the above.
  • the support member is supported by the support member based on the difference between the height of the support member when the support member comes into contact with the contact body and the height of the support member when the substrate supported by the support member comes into contact with the contact body.
  • the thickness of the board is calculated. This makes it possible to appropriately calculate the thickness of the substrate.
  • FIGS. 1 and 2 show the printing machine 10.
  • the printing machine 10 is a working machine for printing cream solder on a circuit board.
  • the printing machine 10 includes a substrate transport holding device 20, a mask holding device 22, an image pickup device 23, a squeegee device 24, a solder supply device 26, and a control device (see FIG. 5) 28.
  • FIG. 1 is a diagram showing the printing press 10 from a side viewpoint
  • FIG. 2 is a diagram showing the printing press 10 from a viewpoint from above.
  • the board transfer holding device 20 includes a conveyor device 50, a board holding device 52, and a board lifting device 54.
  • FIG. 3 is a diagram showing the substrate transport holding device 20 from an obliquely upper viewpoint
  • FIG. 4 is a diagram showing the substrate transport holding device 20 from a viewpoint from the AA line of FIG.
  • the conveyor device 50 has a pair of guide rails 60 and 62 and a conveyor belt 66 provided on each of the guide rails 60 and 62.
  • a pair of guide rails 60 and 62 are arranged in parallel with each other, and each guide rail 60 and 62 is supported on the upper surface of the elevating table 72 via a pair of support legs 70.
  • the extending direction of the guide rails 60 and 62 is referred to as the X direction
  • the direction horizontally orthogonal to the X direction is referred to as the Y direction
  • the direction orthogonal to both the X direction and the Y direction is referred to as the Z direction.
  • each of the guide rails 60 and 62 two pulleys 74 and 76 are arranged with the Y direction as the axis.
  • the two pulleys 74 and 76 are arranged at both ends of the guide rails 60 and 62, respectively.
  • the guide rail 60 and the guide rail 62 are arranged so that the arrangement surfaces of the pulleys 74 and 76 face each other.
  • the conveyor belt 66 is wound around the pulleys 74 and 76 of the guide rails 60 and 62, and the conveyor belt 66 is rotated by the drive of the electromagnetic motor (see FIG. 5) 78.
  • the conveyor belt 66 orbits in the clockwise direction in FIG.
  • the circuit board (see FIG. 9) 80 is placed on the conveyor belt 66, so that the circuit board is directed from the side where the pulley 74 is arranged to the side where the pulley 76 is arranged. 80 is transported.
  • the board holding device 52 has an elevating table 90, a backup block 91, a table elevating mechanism 92, and a clamp device 93.
  • the elevating table 90 is generally rectangular and is arranged below the guide rails 60, 62 so as to extend between the pair of support legs 70 of the guide rails 60, 62.
  • a backup block 91 is arranged on the upper surface of the elevating table 90.
  • the backup block 91 is generally in the shape of a block, and the outer dimensions of the upper surface of the backup block 91 are slightly smaller than the outer dimensions of the circuit board 80.
  • the elevating table 90 is arranged on the upper surface of the elevating table 72 via the table elevating mechanism 92, and the table elevating mechanism 92 elevates the elevating table 90 by driving an electromagnetic motor (see FIG. 5) 96. ..
  • the clamp device 93 has a fixed clamper 100, a movable clamper 102, and an air cylinder (see FIG. 5) 104.
  • the fixed clamper 100 and the movable clamper 102 are generally rectangular, and the fixed clamper 100 is fixed to the upper surface of the guide rail 60 above the elevating table 90.
  • the movable clamper 102 is slidably arranged on the upper surface of the guide rail 62 in the Y direction above the elevating table 90, and the elastic force of the coil spring (not shown) is provided in the direction away from the fixed clamper 100. Is being urged by. Then, the movable clamper 102 approaches the fixed clamper 100 against the elastic force of the coil spring by driving the air cylinder 104.
  • the circuit board 80 conveyed by the conveyor device 50 is clamped by the substrate holding device 52. Specifically, the circuit board 80 is carried into the printing machine 10 and conveyed to a predetermined working position by the conveyor device 50. When the circuit board 80 is conveyed to the working position, both edges of the circuit board 80 placed on the conveyor belt 66 of the conveyor device 50 are located below the fixed clamper 100 and the movable clamper 102.
  • the elevating table 90 is raised by the drive of the electromagnetic motor 96.
  • the upper surface of the backup block comes into contact with the lower surface of the circuit board 80, and the circuit board 80 also rises as the elevating table 90 rises.
  • the circuit board 80 is lifted from the conveyor belt 66.
  • the elevating table 90 the circuit board 80 is lifted to the same height as the fixed clamper 100 and the movable clamper 102.
  • the movable clamper 102 approaches the fixed clamper 100 by driving the air cylinder 104, so that the circuit board 80 is sandwiched between the fixed clamper 100 and the movable clamper 102.
  • the circuit board 80 is clamped by the clamping device 93 in a state of being lifted from the conveyor belt 66.
  • the board elevating device 54 has the elevating table 72 and the table elevating mechanism 106.
  • the table elevating mechanism 106 raises and lowers the elevating table 72 by driving an electromagnetic motor (see FIG. 5) 108.
  • the conveyor device 50 and the board holding device 52 arranged on the elevating table 72 move up and down by the board elevating device 54. That is, the circuit board 80 in the state of being clamped by the clamp device 93 is moved up and down by the board elevating device 54.
  • the mask holding device 22 includes a mask support base 110 arranged above the substrate transport holding device 20 and a mask fixing mechanism 112 arranged on the upper surface of the mask support base 110. have.
  • An opening (not shown) is formed in the central portion of the mask support base 110, and the mask 116 is placed on the mask support base 110 so as to cover the opening. Then, the mask 116 placed on the mask support base 110 is fixedly held by the mask fixing mechanism 112.
  • the opening formed in the mask support base 110 is larger than the circuit board 80 conveyed by the substrate transfer holding device 20. Then, the circuit board 80 clamped by the clamp device 93 is raised by the board elevating device 54, so that the circuit board 80 is brought into close contact with the lower surface of the mask 116 held by the mask fixing mechanism 112. Further, the circuit board 80 clamped by the clamp device 93 is lowered by the board elevating device 54, so that the circuit board 80 is separated from the lower surface of the mask 116.
  • the image pickup device 23 has a camera moving device 120, a camera 122, a cylinder 123, and a stopper 124.
  • the camera moving device 120 includes a pair of slide rails 126, a Y slider 128, and an X slider 130.
  • the pair of slide rails 126 are arranged in the vertical direction between the substrate transport holding device 20 and the mask holding device 22 so as to be parallel to each other and extend in the Y-axis direction.
  • the Y slider 128 is slidably held by a pair of slide rails 126, and slides in the Y direction by the operation of the electromagnetic motor (see FIG. 5) 132.
  • the X slider 130 is slidably attached to the lower surface side of the Y slider 128 in the X direction, and slides in the X direction by the operation of the electromagnetic motor (see FIG. 5) 136.
  • the slide rail 126 does not overlap with the board elevating device 54 of the board transfer holding device 20 in the vertical direction, and the Y slider 128 moves from above the board elevating device 54, so that the circuit board 80 is an image pickup device. It is raised by the board elevating device 54 without contacting the 23.
  • the camera 122 is attached to the lower surface side of the X slider 130 in a state of facing downward. Further, the cylinder 123 is attached to the lower surface side of the X slider 130, and the cylinder rod (see FIG. 9) 125 of the cylinder 123 extends downward. A stopper 124 is fixed to the lower end of the cylinder rod 125. Therefore, the stopper 124 descends as the cylinder 123 expands, and rises as the cylinder 123 contracts. Further, the cylinder 123 has a built-in contact sensor (see FIG. 5) 140, and the contact sensor 140 reacts when the cylinder 123 is fully extended. That is, when the cylinder 123 is most extended and the stopper 124 is lowered to the lowermost end, the contact sensor 140 is turned on, and when the stopper 124 is slightly raised from the lowermost end, it is turned off.
  • the squeegee device 24 has a squeegee moving device 150, a pair of squeegees 152 and 154, and a squeegee elevating device 156.
  • the squeegee moving device 150 includes a pair of slide rails 158 and a slider 160.
  • the pair of slide rails 158 are arranged above the mask holding device 22 so as to be parallel to each other and extend in the Y-axis direction.
  • the slider 160 is slidably attached to a pair of slide rails 158 and slides in the Y direction by the operation of an electromagnetic motor (see FIG. 5) 162.
  • each of the pair of squeegees 152 and 154 is generally plate-shaped and is made of a flexible material.
  • the pair of squeegees 152 and 154 are arranged so as to face each other and extend in the X-axis direction, and are held by the squeegee elevating device 156 below the slider 160.
  • the squeegee elevating device 156 raises and lowers a pair of squeegees 152 and 154 individually.
  • the solder supply device 26 is a device for supplying cream solder, and a discharge port 170 for discharging cream solder is formed on the lower surface of the solder supply device 26.
  • the solder supply device 26 is fixed to the substantially central portion of the side surface of the slider 160 in the Y-axis direction. As a result, the solder supply device 26 moves to an arbitrary position in the Y-axis direction by the operation of the squeegee moving device 150.
  • the control device 28 includes a controller 180, a plurality of drive circuits 182, and an image processing device 186.
  • the plurality of drive circuits 182 are connected to the electromagnetic motors 78, 96, 108, 132, 136, 162, an air cylinder 104, a cylinder 123, a squeegee elevating device 156, and a solder supply device 26.
  • the controller 180 includes a CPU, ROM, RAM, and the like, and is mainly a computer, and is connected to a plurality of drive circuits 182. As a result, the operation of the substrate transfer holding device 20, the squeegee device 24, and the like is controlled by the controller 180.
  • the controller 180 is also connected to the image processing device 186.
  • the image processing device 186 processes the image data obtained by the camera 122, and the controller 180 acquires various information from the image data. Further, the controller 180 is connected to the contact sensor 140 and acquires the detection value from the contact sensor 140.
  • the circuit board 80 is conveyed to the working position and clamped by the clamping device 93 according to the above-described configuration. Subsequently, the clamped circuit board 80 is raised by the board elevating device 54 so as to be in close contact with the lower surface of the mask 116.
  • the mask 116 is formed with through holes (not shown) in accordance with the pattern of the pads and the like of the circuit board 80. Then, by applying the cream solder to the mask 116, the cream solder is printed on the circuit board 80 through the through holes of the mask 116.
  • the X slider 130 moves upward between the pair of conveyor belts 66 by the drive of the camera moving device 120. , The cylinder 123 attached to the X slider 130 extends. At this time, the stopper 124 fixed to the lower end of the cylinder rod 125 of the cylinder 123 descends until it is located below the upper surface of the conveyor belt 66. As a result, the circuit board 80 conveyed by the conveyor belt 66 comes into contact with the stopper 124.
  • the lowering position of the stopper 124 is a position where the circuit board 80 conveyed to the working position comes into contact with the stopper 124.
  • the circuit board 80 conveyed by the conveyor belt 66 comes into contact with the stopper 124 and is positioned at the working position. Then, when the circuit board 80 comes into contact with the stopper 124, the operation of the conveyor belt 66 is stopped, so that the circuit board 80 is stopped at the working position.
  • the stopper 124 rises. Subsequently, in the substrate transfer holding device 20, the elevating table 90 is raised, the circuit board 80 is lifted from the conveyor belt 66, and is clamped by the clamping device 93. Then, when the circuit board 80 is clamped by the clamp device 93, the camera 122 attached to the X slider 130 images the circuit board 80 clamped by the clamp device 93. Then, based on the image pickup data, the stop position of the circuit board 80 and the like are analyzed by the controller 180. After that, the Y slider 128 retracts from above the elevating table 72, and the elevating table 72 rises by driving the board elevating device 54. As a result, the circuit board 80 clamped by the clamping device 93 rises together with the conveyor device 50 and the board holding device 52, and comes into close contact with the lower surface of the mask 116.
  • the operator inputs the thickness dimension of the circuit board 80 to the printing machine 10.
  • the operator does not measure the thickness dimension of the circuit board 80 and input the measured value, but inputs the numerical value specified according to the type, lot, and the like of the circuit board 80.
  • the thickness dimension specified according to the type, lot, and the like of the circuit board 80 is T0.
  • the height of the lower surface of the mask 116 fixed to the mask support base 110 by the mask fixing mechanism 112 is a value peculiar to the printing machine 10, and is set in advance in the control device 28 of the printing machine 10.
  • the height of the lower surface of the mask 116 preset in the control device 28 is set to XM as shown in FIG.
  • the upper surface of the backup block 91 supporting the circuit board 80 clamped by the clamping device 93 is located below the lower surface of the mask 116 by a distance corresponding to T0.
  • the board elevating device 54 is operated. That is, as shown in FIG. 7, the board elevating device 54 is operated so that the upper surface of the backup block 91 that supports the circuit board 80 rises to the position of XM ⁇ T0 .
  • the electromagnetic motor 108 of the board elevating device 54 is a servomotor, and feedback control is performed based on the output value of the encoder. Therefore, by operating the board elevating device 54, the upper surface of the backup block 91 can be appropriately raised to the position of XM- T0 .
  • the upper surface of the backup block 91 rises to the position of XM- T0 and the actual thickness dimension of the circuit board 80 is T0, the upper surface of the circuit board 80 is the mask 116 as shown in FIG. Adheres to the underside of the.
  • the actual thickness dimension of the circuit board 80 may be thinner than T0.
  • the upper surface of the backup block 91 rises to the position of XM ⁇ T0 as shown in FIG. Even so, the upper surface of the circuit board 80 does not come into close contact with the lower surface of the mask 116. In such a case, a clearance of 1 mm remains between the upper surface of the circuit board 80 and the lower surface of the mask 116.
  • the upper surface of the circuit board 80 does not come into close contact with the lower surface of the mask 116, and the upper surface of the circuit board 80 and the lower surface of the mask 116 are formed. In the meantime, a clearance of 0.5 mm remains.
  • the transfer amount of the cream solder to the circuit board 80 and the thickness of the cream solder are constant. Instead, the print quality of the cream solder deteriorates.
  • the actual thickness dimension of the circuit board 80 may be thicker than T0.
  • the upper surface of the backup block 91 rises to the position of XM ⁇ T0 , the upper surface of the circuit board 80 comes into close contact with the lower surface of the mask 116, but the mask 116 is lifted by the circuit board 80. Therefore, the mask 116 may be warped. That is, for example, when the actual thickness dimension of the circuit board 80 is 11 mm even though T0 is 10 mm, the mask 116 faces upward at the position where the mask 116 is in close contact with the circuit board 80. It may be along 1 mm. Even in such a case, the print quality of the cream solder is deteriorated.
  • the operator visually confirms the gap between the mask 116 and the circuit board 80 by pressing the mask by hand, etc., but the judgment varies from worker to operator depending on the skill level of the operator. It occurs and the print quality cannot be stabilized.
  • the stopper 124 is a stepped block body in which a part of the lower end surface of the rectangular parallelepiped block body is cut out.
  • the stopper 124 has a lower end surface 200 facing downward, a contact surface 202 extending upward from one side of the lower end surface 200, and a step extending in the left-right direction from the upper end of the contact surface 202 in the direction opposite to the lower end surface 200. It has a surface 204.
  • the stopper 124 is fixed to the tip of the cylinder rod 125 of the cylinder so that the lower end surface 200 and the stepped surface 204 extend in the horizontal direction and the contact surface 202 extends in the vertical direction.
  • the X slider 130 moves upward between the pair of conveyor belts 66 by the drive of the camera moving device 120, and the X slider The cylinder 123 attached to the 130 extends.
  • the stopper 124 is lowered to a position where the contact surface 202 of the stopper 124 fixed to the lower end of the cylinder rod 125 of the cylinder 123 is at the same height as the upper surface of the conveyor belt 66. That is, the stopper 124 is positioned at the lowermost position by extending the cylinder 123, and the lowermost position of the stopper 124 is a position where the contact surface 202 is at the same height as the upper surface of the conveyor belt 66.
  • the elevating table 90 is raised, the circuit board 80 is lifted from the conveyor belt 66, and is clamped by the clamping device 93.
  • the stopper 124 is raised in the conventional method, but here, the stopper 124 is not raised. That is, the circuit board 80 is lifted and clamped by the clamping device 93 while the stopper 124 is located at the lowermost end. Even if the circuit board 80 is lifted by the elevating table 90 during clamping, the upper surface of the circuit board 80 does not come into contact with the stepped surface 204 of the stopper 124.
  • the position of the lowermost end of the stopper 124 is a position where the upper surface of the circuit board 80 does not come into contact with the stepped surface 204 of the stopper 124 even if the circuit board 80 is lifted by the elevating table 90 at the time of clamping.
  • the elevating table 72 is raised by the operation of the board elevating device 54.
  • the circuit board 80 in the clamped state rises, and as shown in FIG. 11, the upper surface of the circuit board 80 comes into contact with the stepped surface 204 of the stopper 124.
  • the stopper 124 is lifted by the circuit board 80. That is, the stopper 124 rises from the position of the lowermost end.
  • the cylinder 123 to which the stopper 124 is attached has a built-in contact sensor 140, and when the cylinder 123 is extended, that is, when the stopper 124 is located at the lowermost end. Output the ON value.
  • the value detected by the contact sensor 140 is switched from the ON value to the OFF value. Then, at the timing when the value detected by the contact sensor 140 is switched from the ON value to the OFF value, the operation of the board elevating device 54 is stopped. At this time, the height XA of the upper surface of the backup block 91 is calculated based on the output value of the encoder of the electromagnetic motor 108 of the board elevating device 54.
  • the thickness dimension of the circuit board 80 input by the operator (hereinafter, ""
  • the ascending speed of the circuit board 80 is adjusted by using T0 (described as "input thickness dimension").
  • T0 input thickness dimension
  • the height of the stepped surface 204 when the stopper 124 is located at the lowermost end is preset in the control device 28.
  • the height of the stepped surface 204 preset in the control device 28 is referred to as XD as shown in FIG.
  • a predetermined multiple of the input thickness dimension T0 is calculated from the height XD of the stepped surface 204.
  • the position 1.5T0 lower than the height XD of the step surface 204 is calculated. Then, when the upper surface of the backup block 91 is raised to that position, the board elevating device 54 is operated at high speed. When raising the upper surface of the backup block 91 to the calculated position, that is, the height of (XD- 1.5T0 ), the actual thickness dimension of the circuit board 80 is slightly thicker than the input thickness dimension T0. However, the upper surface of the circuit board 80 does not come into contact with the stepped surface 204 of the stopper 124.
  • the circuit board 80 is raised by operating the board elevating device 54 at a low speed to raise the upper surface of the circuit board 80. It is brought into contact with the step surface 204. That is, the circuit board 80 is raised at a high speed in a range where the upper surface of the circuit board 80 does not come into contact with the stepped surface 204, and the circuit board 80 is raised in a range where the upper surface of the circuit board 80 may come into contact with the stepped surface 204. Raise at low speed.
  • the tact time is shortened by raising the circuit board 80 at a high speed, and by raising the circuit board 80 at a low speed, the backup block 91 when the upper surface of the circuit board 80 comes into contact with the stepped surface 204
  • the height XA of the upper surface can be calculated appropriately.
  • the upper surface of the backup block 91 is in contact with the stepped surface of the stopper 124 located at the lowermost end in a state where the circuit board 80 is not placed on the upper surface of the backup block 91.
  • the height of the upper surface of the backup block 91 becomes the height XD of the stepped surface 204 preset in the control device 28. That is, when the top surface height of the backup block 91 on which the circuit board 80 is not mounted is XD and the top surface height of the backup block 91 on which the circuit board 80 is mounted is XA, XD .
  • actual thickness dimension the height of the upper surface of the backup block 91 on which the circuit board 80 is not mounted is XD
  • the height of the upper surface of the backup block 91 on which the circuit board 80 is mounted is XA .
  • the calculated height X A and the height X A set in advance in the control device 28 are set in advance.
  • the actual thickness dimension T1 is calculated based on the difference from the height XD .
  • the upper surface of the backup block 91 that supports the circuit board 80 clamped by the clamp device 93 is located below the lower surface of the mask 116 by a distance corresponding to T1.
  • the board elevating device 54 is operated. That is, as shown in FIG.
  • the board elevating device 54 is operated so that the upper surface of the backup block 91 that supports the circuit board 80 rises to the position of XM-T1. Then, when the upper surface of the backup block 91 rises to the position of XM -T1, the upper surface of the circuit board 80 comes into close contact with the lower surface of the mask 116 as shown in FIG. At this time, since the operation of the board elevating device 54 is controlled based on the actual thickness dimension T1, the circuit board 80 is masked even when the actual thickness dimension T1 is different from the input thickness dimension T0. It is possible to properly adhere to the 116.
  • the circuit board 80 can be appropriately brought into close contact with the mask 116.
  • the stopper 124 used when calculating the actual thickness dimension T1 is for positioning the circuit board 80 to be conveyed at the working position as described above, and the actual thickness is obtained by using a conventional mechanism.
  • the dimension T1 is calculated.
  • the circuit board 80 can be appropriately brought into close contact with the mask 116 at no cost.
  • the thickness dimension of the circuit board may not be possible to properly calculate the thickness dimension of the circuit board depending on the shape of the circuit board.
  • a circuit board 220 having a stepped upper surface.
  • the upper surface of the circuit board 220 is a first upper surface 222 located at the edge of the circuit board 220 and a second upper surface 224 located at the center of the circuit board 220 and projecting upward from the first upper surface 222. It is composed of and.
  • the thickness dimension T1 of the circuit board 220 at the edge is calculated as the actual thickness dimension by the above method, but the actual thickness dimension of the circuit board 220 is the edge of the circuit board 220. It is a thickness dimension T2 near the center, not a portion.
  • the thickness dimension T1 on the first upper surface 222 is calculated, but it is necessary to calculate the thickness dimension T2 on the second upper surface 224 as the actual thickness dimension of the circuit board 220. .. Therefore, in the circuit board 220 having such a shape, the actual thickness dimension T2 is calculated using the contact surface 202 instead of the step surface 204 of the stopper 124.
  • the elevating table 72 is lowered by the operation of the board elevating device 54.
  • the board elevating device 54 operates so that the circuit board 220 descends to a height lower than the height of the lower end surface 200 of the stopper 124 located at the lowermost end.
  • the stopper 124 is moved above the second upper surface 224 of the circuit board 220 by the operation of the camera moving device 120. Then, the elevating table 72 is raised by the operation of the board elevating device 54.
  • the circuit board 220 rises below the stopper 124, and as shown in FIG. 15, the second upper surface 224 of the circuit board 220 comes into contact with the lower end surface 200 of the stopper 124.
  • the value detected by the contact sensor 140 is switched from the ON value to the OFF value at the timing when the stopper 124 is lifted by the circuit board 220 and rises from the position of the lowermost end.
  • the operation of the board elevating device 54 is stopped.
  • the height X B of the upper surface of the backup block 91 is calculated based on the output value of the encoder of the electromagnetic motor 108 of the board elevating device 54.
  • the height of the lower end surface 200 when the stopper 124 is located at the lowermost end is also preset in the control device 28.
  • the height of the lower end surface 200 preset in the control device 28 is XX , as shown in FIG.
  • the upper surface of the backup block 91 is placed on the lower end surface 200 of the stopper 124 located at the lowermost end.
  • the height of the upper surface of the backup block 91 becomes the height XX of the lower end surface 200 preset in the control device 28.
  • the calculated height X B and the control device 28 are calculated.
  • the actual thickness dimension T2 is calculated based on the difference from the height XX preset in. Then, when the actual thickness dimension T2 is calculated, the upper surface of the backup block 91 that supports the circuit board 220 clamped by the clamp device 93 is located below the lower surface of the mask 116 by a distance corresponding to T2. , The board elevating device 54 is operated. That is, as shown in FIG.
  • the board elevating device 54 is operated so that the upper surface of the backup block 91 that supports the circuit board 220 rises to the position of XM-T2. Then, when the upper surface of the backup block 91 rises to the position of XM -T2, the second upper surface 224 of the circuit board 220 comes into close contact with the lower surface of the mask 116 as shown in FIG. As described above, even if the circuit board 220 has a stepped upper surface, it can be appropriately brought into close contact with the mask 116 by calculating the actual thickness dimension T2 using the lower end surface 200 of the stopper 124. ..
  • the central portion of the circuit board 220 comes into contact with the lower end surface 200 of the stopper 124, so that the lower end surface is formed. It is suppressed by 200. This makes it possible to correct the warp of the circuit board when the circuit board 220 is warped so that the central portion of the circuit board 220 is located above the edge portion.
  • the calculation of the actual thickness dimension T2 using the lower end surface 200 of the stopper 124 is executed not only for the circuit board 220 having a stepped upper surface but also for circuit boards of various shapes.
  • the stepped surface 204 of the stopper 124 may not be appropriately brought into contact with the edge portion. Therefore, the lower end surface 200 of the stopper 124 is used for the actual thickness.
  • the dimension T2 is calculated.
  • a method of calculating the thickness of the circuit board 80 using the stepped surface 204 of the stopper 124 (hereinafter referred to as “first mode”) and the thickness of the circuit board 220 using the lower end surface 200 of the stopper 124. (Hereinafter referred to as “second mode”) is selectively executed according to the user operation.
  • an input interface (see FIG. 5) 240 such as a keyboard and operation buttons is connected to the controller 180, and the operator can use either the first mode or the second mode according to the circuit board to be worked on. It is input to the input interface 240 whether to calculate the thickness of the circuit board according to.
  • the control device 28 calculates the thickness of the circuit board according to the method according to the input mode. That is, the control device 28 selectively executes either the first mode or the second mode input by the user operation. This makes it possible to calculate the thickness of the circuit board by a method according to the intention of the operator.
  • an error screen is displayed on the display panel (not shown).
  • a predetermined allowable range including the input thickness dimension T0 is set. For example, when the input thickness dimension T0 is 10 mm, the allowable range is set to 5 mm to 15 mm. Then, if the calculated actual thickness dimensions T1 and T2 are within the permissible range, the operation of the board elevating device 54 is controlled based on the actual thickness dimensions T1 and T2 as described above, and the circuit board 80 is masked. It is brought into close contact with 116.
  • the actual thickness dimensions T1 and T2 are calculated as a numerical value approximately twice the input thickness dimension T0, and the actual thickness dimensions T1 and T2 are out of the allowable range. Therefore, by displaying the error screen on the display panel, the operator can recognize the overlapping transfer of the boards.
  • the backup block 91 is different depending on the circuit board to be worked on, and the operator may set a backup block different from the backup block 91 according to the circuit board to be worked on in the printing machine 10.
  • the top surface heights X A and X B of the backup block 91 used when calculating the actual thickness dimensions T1 and T2 cannot be calculated appropriately, and the actual thickness dimensions T1 and T2 are acceptable. It is out of range. Therefore, the operator can recognize the backup block setting error by displaying the error screen on the display panel.
  • the input thickness dimension T0 is input by the operator as described above, but an erroneous numerical value may be input at the time of input.
  • the allowable range is set in a range including the input thickness dimension T0. Therefore, if the operator originally inputs 10 mm and then inputs 20 mm, the permissible range is set to 15 mm to 25 mm.
  • the actual thickness dimensions T1 and T2 are calculated as numerical values of about 10 mm. In such a case, since the actual thickness dimensions T1 and T2 are out of the allowable range, the error screen is displayed on the display panel, so that the operator can recognize the input error of the input thickness dimension. ..
  • the calculated actual thickness dimensions T1 and T2 are stored in the control device 28 in association with the board ID of the circuit board.
  • the calculated actual thickness dimension T1 in association with the board ID of the circuit board in this way, it becomes possible to appropriately manage the traceability of the circuit board. In other words, for example, when a defective product occurs, it is possible to manage whether or not the thickness dimension of the board is related to the cause of the defective product, and to control the variation in the thickness dimension according to the lot of the circuit board. Can be managed.
  • the controller 180 has a clamp unit 230, a rising unit 232, a measuring unit 234, and a calculation unit 236.
  • the clamp unit 230 is a functional unit for clamping the circuit board by operating the substrate holding device 52.
  • the raising unit 232 is a functional unit for raising the clamped circuit board by operating the board elevating device 54.
  • the measuring unit 234 is a functional unit for measuring the heights X A and X B of the backup block 91 when the raised circuit board comes into contact with the stopper 124.
  • the calculation unit 236 has an actual thickness based on the difference between the calculated heights X A and X B of the backup block 91 and the heights X D and X K of the backup block 91 preset in the control device 28. It is a functional unit for calculating the dimensions T1 and T2.
  • the printing machine 10 is an example of a board-to-board working machine.
  • the control device 28 is an example of an arithmetic unit.
  • the conveyor device 50 is an example of a conveyor device.
  • the board holding device 52 is an example of a clamping device.
  • the board elevating device 54 is an example of an elevating device.
  • the backup block 91 is an example of a support member.
  • the stopper 124 is an example of a contact body.
  • the lower end surface 200 is an example of the lower end surface.
  • the step surface 204 is an example of a step surface.
  • the process executed by the clamp unit 230 is an example of the clamp process.
  • the step executed by the ascending section 232 is an example of the ascending step.
  • the process executed by the measuring unit 234 is an example of the measuring process.
  • the process executed by the arithmetic unit 236 is an example of the arithmetic process.
  • the present invention is not limited to the above embodiment, and can be carried out in various embodiments with various modifications and improvements based on the knowledge of those skilled in the art.
  • the heights X A and X B of the upper surface of the backup block 91 are calculated by using the stopper 124, but even if a dedicated contact body for measuring the height is used. good.
  • the control device 28 selectively executes either the first mode or the second mode input by the user operation, but the control device 28 is a mode corresponding to the circuit board. Is determined, and either the determined first mode or the determined second mode may be selectively executed. That is, for example, as information on the circuit board, information indicating whether or not the upper surface of the circuit board is a stepped surface and whether or not there is a notch at the edge of the circuit board is input to the controller 180. Therefore, the control device 28 determines in which mode, the first mode or the second mode, the thickness of the circuit board is calculated for the circuit board to be worked, based on the information. Then, the control device 28 selectively executes either the determined first mode or the second mode. This makes it possible to reduce the burden on the operator.
  • the circuit board is supported by the backup block 91, but it may be supported by the backup pin.
  • the height of the upper end of the backup pin is calculated using the stopper 124.
  • the heights X A and X B of the upper surface of the backup block 91 are measured based on the output value of the encoder of the electromagnetic motor 108 of the board elevating device 54, but are measured by a distance sensor or the like. May
  • the thickness dimension of the circuit board is calculated in the printing machine 10, but various working machines that perform work on the circuit board, for example, a working machine that executes mounting work of parts, and a circuit board.
  • the thickness dimension of the circuit board may be calculated in a working machine or the like for inspection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Screen Printers (AREA)

Abstract

This substrate work machine is provided with: a support member that supports a substrate from the bottom surface thereof; a clamp device that clamps the substrate in a state of being supported by the support member; a lifting device that lifts and lowers the support member along with the clamp device; a contact body that comes into contact with the support member or the substrate supported on the support member as a result of the contact body being positioned at a prescribed height above the support member and the support member being lifted by the lifting device; and a computation device that computes the thickness of the substrate supported on the support member on the basis of the difference between the height of the support member when the support member comes into contact with the contact body, and the height of the support member when the substrate supported on the support member comes into contact with the contact body.

Description

対基板作業機Anti-board work machine
 本発明は、基板をクランプするクランプ装置を備えた対基板作業機に関するものである。 The present invention relates to a board-to-board working machine provided with a clamping device for clamping a board.
 基板をクランプするクランプ装置を備えた対基板作業機では、クランプされた状態の基板に対して各種の作業が実行される。下記特許文献には、そのような対基板作業機の一例が記載されている。 In a board-to-board working machine equipped with a clamping device that clamps the board, various operations are executed on the board in the clamped state. The following patent document describes an example of such a substrate working machine.
特開2012-066558号公報Japanese Unexamined Patent Publication No. 2012-066558 特開2013-071284号公報Japanese Unexamined Patent Publication No. 2013-071284
 基板をクランプするクランプ装置を備えた対基板作業機では、基板の厚さを演算することで、基板に対する作業を適切に実行することができる。そこで、本発明は、基板の厚さを適切に演算することを課題とする。 In a board-to-board working machine equipped with a clamping device that clamps the board, the work on the board can be appropriately performed by calculating the thickness of the board. Therefore, it is an object of the present invention to appropriately calculate the thickness of the substrate.
 上記課題を解決するために、本明細書は、基板を下面から支持する支持部材と、前記支持部材により支持された状態の基板をクランプするクランプ装置と、前記支持部材を前記クランプ装置とともに昇降させる昇降装置と、前記支持部材の上方の所定の高さで位置決めされ、前記支持部材が前記昇降装置により上昇することで、前記支持部材若しくは、前記支持部材に支持された基板に接触する接触体と、前記支持部材が前記接触体に接触した際の支持部材の高さと、前記支持部材に支持された基板が前記接触体に接触した際の支持部材の高さとの差に基づいて、前記支持部材に支持された基板の厚さを演算する演算装置と、を備える対基板作業機を開示する。 In order to solve the above problems, the present specification describes a support member that supports the substrate from the lower surface, a clamp device that clamps the substrate in a state of being supported by the support member, and the support member is moved up and down together with the clamp device. An elevating device and a contact body that is positioned at a predetermined height above the support member and that the support member is raised by the elevating device to come into contact with the support member or a substrate supported by the support member. , The support member is based on the difference between the height of the support member when the support member comes into contact with the contact body and the height of the support member when the substrate supported by the support member comes into contact with the contact body. Disclosed is an anti-board working machine provided with an arithmetic unit for calculating the thickness of a substrate supported by the above.
 本開示では、支持部材が接触体に接触した際の支持部材の高さと、支持部材に支持された基板が接触体に接触した際の支持部材の高さとの差に基づいて、支持部材に支持された基板の厚さが演算される。これにより、基板の厚さを適切に演算することが可能となる。 In the present disclosure, the support member is supported by the support member based on the difference between the height of the support member when the support member comes into contact with the contact body and the height of the support member when the substrate supported by the support member comes into contact with the contact body. The thickness of the board is calculated. This makes it possible to appropriately calculate the thickness of the substrate.
印刷機を示す側面図である。It is a side view which shows the printing machine. 印刷機を示す平面図である。It is a top view which shows the printing machine. 基板搬送保持装置を示す斜視図である。It is a perspective view which shows the substrate transfer holding apparatus. 図3のAA線における断面図である。It is sectional drawing in the AA line of FIG. 制御装置を示すブロック図である。It is a block diagram which shows the control device. クランプされた状態の回路基板を示す図である。It is a figure which shows the circuit board in a clamped state. マスクに密着している状態の回路基板を示す図である。It is a figure which shows the circuit board in the state of being in close contact with a mask. マスクに密着していない状態の回路基板を示す図である。It is a figure which shows the circuit board in the state which is not in close contact with a mask. 回路基板の実厚さ寸法が演算される際の印刷機の作動図である。It is an operation diagram of the printing machine when the actual thickness dimension of a circuit board is calculated. 回路基板の実厚さ寸法が演算される際の印刷機の作動図である。It is an operation diagram of the printing machine when the actual thickness dimension of a circuit board is calculated. 回路基板の実厚さ寸法が演算される際の印刷機の作動図である。It is an operation diagram of the printing machine when the actual thickness dimension of a circuit board is calculated. 回路基板の実厚さ寸法が演算される際の印刷機の作動図である。It is an operation diagram of the printing machine when the actual thickness dimension of a circuit board is calculated. 回路基板の実厚さ寸法が演算される際の印刷機の作動図である。It is an operation diagram of the printing machine when the actual thickness dimension of a circuit board is calculated. 回路基板の実厚さ寸法が演算される際の印刷機の作動図である。It is an operation diagram of the printing machine when the actual thickness dimension of a circuit board is calculated. 回路基板の実厚さ寸法が演算される際の印刷機の作動図である。It is an operation diagram of the printing machine when the actual thickness dimension of a circuit board is calculated. 回路基板の実厚さ寸法が演算される際の印刷機の作動図である。It is an operation diagram of the printing machine when the actual thickness dimension of a circuit board is calculated. 回路基板の実厚さ寸法が演算される際の印刷機の作動図である。It is an operation diagram of the printing machine when the actual thickness dimension of a circuit board is calculated.
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings as a mode for carrying out the present invention.
 図1及び図2に印刷機10を示す。印刷機10は、回路基板にクリームはんだを印刷するための作業機である。印刷機10は、基板搬送保持装置20と、マスク保持装置22と、撮像装置23と、スキージ装置24と、はんだ供給装置26と、制御装置(図5参照)28とを備えている。なお、図1は、印刷機10を側方からの視点において示す図であり、図2は、印刷機10を上方からの視点において示す図である。 FIGS. 1 and 2 show the printing machine 10. The printing machine 10 is a working machine for printing cream solder on a circuit board. The printing machine 10 includes a substrate transport holding device 20, a mask holding device 22, an image pickup device 23, a squeegee device 24, a solder supply device 26, and a control device (see FIG. 5) 28. Note that FIG. 1 is a diagram showing the printing press 10 from a side viewpoint, and FIG. 2 is a diagram showing the printing press 10 from a viewpoint from above.
 基板搬送保持装置20は、図3及び図4に示すように、コンベア装置50と、基板保持装置52と、基板昇降装置54とを有している。図3は、基板搬送保持装置20を斜め上方からの視点において示す図であり、図4は、図3のAA線からの視点において示す図である。 As shown in FIGS. 3 and 4, the board transfer holding device 20 includes a conveyor device 50, a board holding device 52, and a board lifting device 54. FIG. 3 is a diagram showing the substrate transport holding device 20 from an obliquely upper viewpoint, and FIG. 4 is a diagram showing the substrate transport holding device 20 from a viewpoint from the AA line of FIG.
 コンベア装置50は、1対のガイドレール60,62と、各ガイドレール60,62に設けられたコンベアベルト66を有している。1対のガイドレール60,62は、互いに平行に配設されており、各ガイドレール60,62は、1対の支持脚70を介して昇降台72の上面において支持されている。なお、ガイドレール60,62の延びる方向をX方向、そのX方向に水平に直行する方向をY方向、X方向及びY方向の両方に直交する方向をZ方向と称する。 The conveyor device 50 has a pair of guide rails 60 and 62 and a conveyor belt 66 provided on each of the guide rails 60 and 62. A pair of guide rails 60 and 62 are arranged in parallel with each other, and each guide rail 60 and 62 is supported on the upper surface of the elevating table 72 via a pair of support legs 70. The extending direction of the guide rails 60 and 62 is referred to as the X direction, the direction horizontally orthogonal to the X direction is referred to as the Y direction, and the direction orthogonal to both the X direction and the Y direction is referred to as the Z direction.
 また、各ガイドレール60,62の側面には、2個のプーリ74,76がY方向を軸心として配設されている。それら2個のプーリ74,76は、各ガイドレール60,62の両端部に配設されている。なお、ガイドレール60とガイドレール62とは、互いのプーリ74,76の配設面が対向する状態で配設されている。そして、コンベアベルト66が、各ガイドレール60,62のプーリ74,76に巻き掛けられており、コンベアベルト66は、電磁モータ(図5参照)78の駆動により周回する。なお、コンベアベルト66は、図4における時計回りの方向に周回する。これにより、コンベアベルト66の上に回路基板(図9参照)80が載置されることで、プーリ74が配設されている側からプーリ76が配設されている側に向かう方向に回路基板80が搬送される。 Further, on the side surface of each of the guide rails 60 and 62, two pulleys 74 and 76 are arranged with the Y direction as the axis. The two pulleys 74 and 76 are arranged at both ends of the guide rails 60 and 62, respectively. The guide rail 60 and the guide rail 62 are arranged so that the arrangement surfaces of the pulleys 74 and 76 face each other. Then, the conveyor belt 66 is wound around the pulleys 74 and 76 of the guide rails 60 and 62, and the conveyor belt 66 is rotated by the drive of the electromagnetic motor (see FIG. 5) 78. The conveyor belt 66 orbits in the clockwise direction in FIG. As a result, the circuit board (see FIG. 9) 80 is placed on the conveyor belt 66, so that the circuit board is directed from the side where the pulley 74 is arranged to the side where the pulley 76 is arranged. 80 is transported.
 また、基板保持装置52は、昇降テーブル90と、バックアップブロック91と、テーブル昇降機構92と、クランプ装置93とを有している。昇降テーブル90は、概して矩形をなし、各ガイドレール60,62の1対の支持脚70の間に延びだすように、ガイドレール60,62の下方に配置されている。また、昇降テーブル90の上面に、バックアップブロック91が配置されている。なお、バックアップブロック91は、概してブロック状をなし、そのバックアップブロック91の上面の外寸は、回路基板80の外寸より僅かに小さい。また、昇降テーブル90は、テーブル昇降機構92を介して、昇降台72の上面に配設されており、テーブル昇降機構92は、電磁モータ(図5参照)96の駆動により昇降テーブル90を昇降させる。 Further, the board holding device 52 has an elevating table 90, a backup block 91, a table elevating mechanism 92, and a clamp device 93. The elevating table 90 is generally rectangular and is arranged below the guide rails 60, 62 so as to extend between the pair of support legs 70 of the guide rails 60, 62. Further, a backup block 91 is arranged on the upper surface of the elevating table 90. The backup block 91 is generally in the shape of a block, and the outer dimensions of the upper surface of the backup block 91 are slightly smaller than the outer dimensions of the circuit board 80. Further, the elevating table 90 is arranged on the upper surface of the elevating table 72 via the table elevating mechanism 92, and the table elevating mechanism 92 elevates the elevating table 90 by driving an electromagnetic motor (see FIG. 5) 96. ..
 また、クランプ装置93は、固定クランパ100と可動クランパ102とエアシリンダ(図5参照)104とを有している。固定クランパ100及び可動クランパ102は、概して矩形とされており、固定クランパ100は、昇降テーブル90の上方において、ガイドレール60の上面に固定されている。一方、可動クランパ102は、昇降テーブル90の上方において、ガイドレール62の上面にY方向にスライド可能に配設されており、固定クランパ100から離間する方向に、コイルスプリング(図示省略)の弾性力によって付勢されている。そして、可動クランパ102は、エアシリンダ104の駆動により、コイルスプリングの弾性力に抗して固定クランパ100に接近する。 Further, the clamp device 93 has a fixed clamper 100, a movable clamper 102, and an air cylinder (see FIG. 5) 104. The fixed clamper 100 and the movable clamper 102 are generally rectangular, and the fixed clamper 100 is fixed to the upper surface of the guide rail 60 above the elevating table 90. On the other hand, the movable clamper 102 is slidably arranged on the upper surface of the guide rail 62 in the Y direction above the elevating table 90, and the elastic force of the coil spring (not shown) is provided in the direction away from the fixed clamper 100. Is being urged by. Then, the movable clamper 102 approaches the fixed clamper 100 against the elastic force of the coil spring by driving the air cylinder 104.
 このような構造により、基板搬送保持装置20では、コンベア装置50により搬送された回路基板80が基板保持装置52によりクランプされる。詳しくは、回路基板80が印刷機10に搬入され、コンベア装置50により所定の作業位置まで搬送される。なお、回路基板80が作業位置まで搬送されると、コンベア装置50のコンベアベルト66の上に載置される回路基板80の両縁が、固定クランパ100及び可動クランパ102の下方に位置する。 With such a structure, in the substrate transfer holding device 20, the circuit board 80 conveyed by the conveyor device 50 is clamped by the substrate holding device 52. Specifically, the circuit board 80 is carried into the printing machine 10 and conveyed to a predetermined working position by the conveyor device 50. When the circuit board 80 is conveyed to the working position, both edges of the circuit board 80 placed on the conveyor belt 66 of the conveyor device 50 are located below the fixed clamper 100 and the movable clamper 102.
 次に、回路基板80が作業位置まで搬送されると、電磁モータ96の駆動により、昇降テーブル90が上昇する。この際、バックアップブロックの上面が回路基板80の下面に接触し、昇降テーブル90の上昇に伴って、回路基板80も上昇する。この際、回路基板80がコンベアベルト66から持ち上げられる。そして、更に、昇降テーブル90が上昇することで、回路基板80が固定クランパ100及び可動クランパ102と同じ高さまで持ち上げられる。この際、可動クランパ102がエアシリンダ104の駆動により固定クランパ100に向って接近することで、回路基板80が固定クランパ100と可動クランパ102とにより挟持される。これにより、回路基板80は、コンベアベルト66から持ち上げられた状態でクランプ装置93によってクランプされる。 Next, when the circuit board 80 is conveyed to the working position, the elevating table 90 is raised by the drive of the electromagnetic motor 96. At this time, the upper surface of the backup block comes into contact with the lower surface of the circuit board 80, and the circuit board 80 also rises as the elevating table 90 rises. At this time, the circuit board 80 is lifted from the conveyor belt 66. Further, by raising the elevating table 90, the circuit board 80 is lifted to the same height as the fixed clamper 100 and the movable clamper 102. At this time, the movable clamper 102 approaches the fixed clamper 100 by driving the air cylinder 104, so that the circuit board 80 is sandwiched between the fixed clamper 100 and the movable clamper 102. As a result, the circuit board 80 is clamped by the clamping device 93 in a state of being lifted from the conveyor belt 66.
 また、基板昇降装置54は、上記昇降台72と、台昇降機構106とを有している。台昇降機構106は、電磁モータ(図5参照)108の駆動により昇降台72を昇降させる。これにより、昇降台72の上に配設されたコンベア装置50及び基板保持装置52が、基板昇降装置54によって昇降する。つまり、クランプ装置93によってクランプされた状態の回路基板80が、基板昇降装置54によって昇降する。 Further, the board elevating device 54 has the elevating table 72 and the table elevating mechanism 106. The table elevating mechanism 106 raises and lowers the elevating table 72 by driving an electromagnetic motor (see FIG. 5) 108. As a result, the conveyor device 50 and the board holding device 52 arranged on the elevating table 72 move up and down by the board elevating device 54. That is, the circuit board 80 in the state of being clamped by the clamp device 93 is moved up and down by the board elevating device 54.
 また、マスク保持装置22は、図1に示すように、基板搬送保持装置20の上方に配設されたマスク支持台110と、そのマスク支持台110の上面に配設されたマスク固定機構112とを有している。マスク支持台110の中央部には、開口部(図示省略)が形成されており、その開口部を覆うように、マスク116がマスク支持台110の上に載置される。そして、マスク支持台110の上に載置されたマスク116が、マスク固定機構112によって固定的に保持される。 Further, as shown in FIG. 1, the mask holding device 22 includes a mask support base 110 arranged above the substrate transport holding device 20 and a mask fixing mechanism 112 arranged on the upper surface of the mask support base 110. have. An opening (not shown) is formed in the central portion of the mask support base 110, and the mask 116 is placed on the mask support base 110 so as to cover the opening. Then, the mask 116 placed on the mask support base 110 is fixedly held by the mask fixing mechanism 112.
 なお、マスク支持台110に形成されている開口部は、基板搬送保持装置20により搬送される回路基板80より大きくされている。そして、クランプ装置93によってクランプされた回路基板80が、基板昇降装置54によって上昇することで、マスク固定機構112によって保持されたマスク116の下面に密着する。また、クランプ装置93によってクランプされた回路基板80が、基板昇降装置54によって下降することで、マスク116の下面から離間する。 The opening formed in the mask support base 110 is larger than the circuit board 80 conveyed by the substrate transfer holding device 20. Then, the circuit board 80 clamped by the clamp device 93 is raised by the board elevating device 54, so that the circuit board 80 is brought into close contact with the lower surface of the mask 116 held by the mask fixing mechanism 112. Further, the circuit board 80 clamped by the clamp device 93 is lowered by the board elevating device 54, so that the circuit board 80 is separated from the lower surface of the mask 116.
 また、撮像装置23は、図1及び図2に示すように、カメラ移動装置120と、カメラ122と、シリンダ123と、ストッパ124とを有している。カメラ移動装置120は、1対のスライドレール126と、Yスライダ128と、Xスライダ130とを含む。1対のスライドレール126は、上下方向において基板搬送保持装置20とマスク保持装置22との間で、互いに平行かつ、Y軸方向に延びるように配設されている。Yスライダ128は、1対のスライドレール126によってスライド可能に保持されており、電磁モータ(図5参照)132の作動により、Y方向にスライドする。Xスライダ130は、Yスライダ128の下面側にX方向にスライド可能に取り付けられており、電磁モータ(図5参照)136の作動により、X方向にスライドする。なお、スライドレール126は、基板搬送保持装置20の基板昇降装置54と上下方向において重なっておらず、Yスライダ128が、基板昇降装置54の上方から移動することで、回路基板80は、撮像装置23と当接することなく、基板昇降装置54により上昇する。 Further, as shown in FIGS. 1 and 2, the image pickup device 23 has a camera moving device 120, a camera 122, a cylinder 123, and a stopper 124. The camera moving device 120 includes a pair of slide rails 126, a Y slider 128, and an X slider 130. The pair of slide rails 126 are arranged in the vertical direction between the substrate transport holding device 20 and the mask holding device 22 so as to be parallel to each other and extend in the Y-axis direction. The Y slider 128 is slidably held by a pair of slide rails 126, and slides in the Y direction by the operation of the electromagnetic motor (see FIG. 5) 132. The X slider 130 is slidably attached to the lower surface side of the Y slider 128 in the X direction, and slides in the X direction by the operation of the electromagnetic motor (see FIG. 5) 136. The slide rail 126 does not overlap with the board elevating device 54 of the board transfer holding device 20 in the vertical direction, and the Y slider 128 moves from above the board elevating device 54, so that the circuit board 80 is an image pickup device. It is raised by the board elevating device 54 without contacting the 23.
 カメラ122は、Xスライダ130の下面側に、下を向いた状態で取り付けられている。また、シリンダ123は、Xスライダ130の下面側に取り付けられており、シリンダ123のシリンダロッド(図9参照)125が下方に向って延び出している。そして、そのシリンダロッド125の下端にストッパ124が固定されている。このため、ストッパ124は、シリンダ123の伸長に伴って下降し、シリンダ123の収縮に伴って上昇する。また、シリンダ123には、接触センサ(図5参照)140が内蔵されており、シリンダ123が最も伸長した際に接触センサ140が反応する。つまり、シリンダ123が最も伸長し、ストッパ124が最下端に下降した際に、接触センサ140がONとなり、ストッパ124が最下端から僅かでも上昇した際にOFFとなる。 The camera 122 is attached to the lower surface side of the X slider 130 in a state of facing downward. Further, the cylinder 123 is attached to the lower surface side of the X slider 130, and the cylinder rod (see FIG. 9) 125 of the cylinder 123 extends downward. A stopper 124 is fixed to the lower end of the cylinder rod 125. Therefore, the stopper 124 descends as the cylinder 123 expands, and rises as the cylinder 123 contracts. Further, the cylinder 123 has a built-in contact sensor (see FIG. 5) 140, and the contact sensor 140 reacts when the cylinder 123 is fully extended. That is, when the cylinder 123 is most extended and the stopper 124 is lowered to the lowermost end, the contact sensor 140 is turned on, and when the stopper 124 is slightly raised from the lowermost end, it is turned off.
 また、スキージ装置24は、スキージ移動装置150と、1対のスキージ152,154と、スキージ昇降装置156とを有している。スキージ移動装置150は、1対のスライドレール158とスライダ160とを含む。1対のスライドレール158は、マスク保持装置22の上方において、互いに平行かつ、Y軸方向に延びるように配設されている。スライダ160は、1対のスライドレール158にスライド可能に取り付けられており、電磁モータ(図5参照)162の作動により、Y方向にスライドする。また、1対のスキージ152,154の各々は、概して板状をなし、可撓性を有する素材により形成されている。1対のスキージ152,154は、互いに向かい合うとともに、X軸方向に延びるように配設され、スライダ160の下方において、スキージ昇降装置156によって保持されている。そのスキージ昇降装置156は、1対のスキージ152,154を個別に昇降させる。 Further, the squeegee device 24 has a squeegee moving device 150, a pair of squeegees 152 and 154, and a squeegee elevating device 156. The squeegee moving device 150 includes a pair of slide rails 158 and a slider 160. The pair of slide rails 158 are arranged above the mask holding device 22 so as to be parallel to each other and extend in the Y-axis direction. The slider 160 is slidably attached to a pair of slide rails 158 and slides in the Y direction by the operation of an electromagnetic motor (see FIG. 5) 162. Further, each of the pair of squeegees 152 and 154 is generally plate-shaped and is made of a flexible material. The pair of squeegees 152 and 154 are arranged so as to face each other and extend in the X-axis direction, and are held by the squeegee elevating device 156 below the slider 160. The squeegee elevating device 156 raises and lowers a pair of squeegees 152 and 154 individually.
 また、はんだ供給装置26は、クリームはんだを供給する装置であり、クリームはんだを吐出する吐出口170が、はんだ供給装置26の下面に形成されている。そして、はんだ供給装置26は、スライダ160のY軸方向における側面の略中央部に固定されている。これにより、はんだ供給装置26は、スキージ移動装置150の作動によりY軸方向の任意の位置に移動する。 Further, the solder supply device 26 is a device for supplying cream solder, and a discharge port 170 for discharging cream solder is formed on the lower surface of the solder supply device 26. The solder supply device 26 is fixed to the substantially central portion of the side surface of the slider 160 in the Y-axis direction. As a result, the solder supply device 26 moves to an arbitrary position in the Y-axis direction by the operation of the squeegee moving device 150.
 制御装置28は、図5に示すように、コントローラ180と、複数の駆動回路182と、画像処理装置186とを備えている。複数の駆動回路182は、上記電磁モータ78,96,108,132,136,162、エアシリンダ104、シリンダ123、スキージ昇降装置156、はんだ供給装置26に接続されている。コントローラ180は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路182に接続されている。これにより、基板搬送保持装置20、スキージ装置24等の作動が、コントローラ180によって制御される。また、コントローラ180は、画像処理装置186にも接続されている。画像処理装置186は、カメラ122によって得られた画像データを処理するものであり、コントローラ180は、画像データから各種情報を取得する。さらに、コントローラ180は、接触センサ140に接続されており、接触センサ140からの検出値を取得する。 As shown in FIG. 5, the control device 28 includes a controller 180, a plurality of drive circuits 182, and an image processing device 186. The plurality of drive circuits 182 are connected to the electromagnetic motors 78, 96, 108, 132, 136, 162, an air cylinder 104, a cylinder 123, a squeegee elevating device 156, and a solder supply device 26. The controller 180 includes a CPU, ROM, RAM, and the like, and is mainly a computer, and is connected to a plurality of drive circuits 182. As a result, the operation of the substrate transfer holding device 20, the squeegee device 24, and the like is controlled by the controller 180. The controller 180 is also connected to the image processing device 186. The image processing device 186 processes the image data obtained by the camera 122, and the controller 180 acquires various information from the image data. Further, the controller 180 is connected to the contact sensor 140 and acquires the detection value from the contact sensor 140.
 印刷機10では、上述した構成によって、回路基板80が作業位置まで搬送され、クランプ装置93によってクランプされる。続いて、クランプされた回路基板80が、基板昇降装置54によって上昇されることで、マスク116の下面に密着する。なお、マスク116には、回路基板80のパッド等のパターンに合わせて貫通孔(図示省略)が形成されている。そして、マスク116にクリームはんだが塗布されることで、マスク116の貫通穴を介して、クリームはんだが回路基板80に印刷される。 In the printing machine 10, the circuit board 80 is conveyed to the working position and clamped by the clamping device 93 according to the above-described configuration. Subsequently, the clamped circuit board 80 is raised by the board elevating device 54 so as to be in close contact with the lower surface of the mask 116. The mask 116 is formed with through holes (not shown) in accordance with the pattern of the pads and the like of the circuit board 80. Then, by applying the cream solder to the mask 116, the cream solder is printed on the circuit board 80 through the through holes of the mask 116.
 具体的には、回路基板80が印刷機10に搬入され、作業位置まで搬送される前に、Xスライダ130が、カメラ移動装置120の駆動により1対のコンベアベルト66の間の上方に移動し、Xスライダ130に取り付けられているシリンダ123が伸長する。この際、シリンダ123のシリンダロッド125の下端に固定されたストッパ124が、コンベアベルト66の上面より下方に位置するまで、下降する。これにより、コンベアベルト66により搬送される回路基板80が、ストッパ124に当接する。なお、ストッパ124の下降位置は、作業位置まで搬送された回路基板80がストッパ124に当接する位置とされている。このため、コンベアベルト66により搬送された回路基板80がストッパ124により当接することで、作業位置に位置決めされる。そして、回路基板80がストッパ124に当接すると、コンベアベルト66の作動が停止することで、回路基板80が作業位置において停止する。 Specifically, before the circuit board 80 is carried into the printing press 10 and transported to the working position, the X slider 130 moves upward between the pair of conveyor belts 66 by the drive of the camera moving device 120. , The cylinder 123 attached to the X slider 130 extends. At this time, the stopper 124 fixed to the lower end of the cylinder rod 125 of the cylinder 123 descends until it is located below the upper surface of the conveyor belt 66. As a result, the circuit board 80 conveyed by the conveyor belt 66 comes into contact with the stopper 124. The lowering position of the stopper 124 is a position where the circuit board 80 conveyed to the working position comes into contact with the stopper 124. Therefore, the circuit board 80 conveyed by the conveyor belt 66 comes into contact with the stopper 124 and is positioned at the working position. Then, when the circuit board 80 comes into contact with the stopper 124, the operation of the conveyor belt 66 is stopped, so that the circuit board 80 is stopped at the working position.
 回路基板80が作業位置において停止すると、ストッパ124が上昇する。続いて、基板搬送保持装置20において、昇降テーブル90が上昇し、回路基板80がコンベアベルト66から持ち上げられ、クランプ装置93によってクランプされる。そして、回路基板80がクランプ装置93によってクランプされると、Xスライダ130に取り付けられているカメラ122によって、クランプ装置93によってクランプされた回路基板80が撮像される。そして、撮像データに基づいて、回路基板80の停止位置等がコントローラ180によって分析される。その後、Yスライダ128が昇降台72の上方から退避し、昇降台72が基板昇降装置54の駆動により上昇する。これにより、クランプ装置93によってクランプされた回路基板80が、コンベア装置50及び基板保持装置52とともに上昇し、マスク116の下面に密着する。 When the circuit board 80 stops at the working position, the stopper 124 rises. Subsequently, in the substrate transfer holding device 20, the elevating table 90 is raised, the circuit board 80 is lifted from the conveyor belt 66, and is clamped by the clamping device 93. Then, when the circuit board 80 is clamped by the clamp device 93, the camera 122 attached to the X slider 130 images the circuit board 80 clamped by the clamp device 93. Then, based on the image pickup data, the stop position of the circuit board 80 and the like are analyzed by the controller 180. After that, the Y slider 128 retracts from above the elevating table 72, and the elevating table 72 rises by driving the board elevating device 54. As a result, the circuit board 80 clamped by the clamping device 93 rises together with the conveyor device 50 and the board holding device 52, and comes into close contact with the lower surface of the mask 116.
 しかしながら、回路基板80の厚さ寸法にはバラツキがあるため、回路基板80を適切にマスク116に密着させることができない虞がある。詳しくは、印刷機10において作業が実行される前に、作業者は印刷機10に回路基板80の厚さ寸法を入力する。この際、作業者は、回路基板80の厚さ寸法を測定し、その測定値を入力するのではなく、回路基板80の種類,ロットなどに応じて規定されている数値を入力する。ここでは、回路基板80の種類,ロットなどに応じて規定されている厚さ寸法をT0とする。また、マスク固定機構112によりマスク支持台110に固定されたマスク116の下面の高さは、印刷機10固有の値であり、印刷機10の制御装置28に予め設定されている。ここでは、制御装置28に予め設定されているマスク116の下面の高さを、図6に示すように、Xとする。 However, since the thickness dimension of the circuit board 80 varies, there is a possibility that the circuit board 80 cannot be properly brought into close contact with the mask 116. Specifically, before the work is executed in the printing machine 10, the operator inputs the thickness dimension of the circuit board 80 to the printing machine 10. At this time, the operator does not measure the thickness dimension of the circuit board 80 and input the measured value, but inputs the numerical value specified according to the type, lot, and the like of the circuit board 80. Here, the thickness dimension specified according to the type, lot, and the like of the circuit board 80 is T0. Further, the height of the lower surface of the mask 116 fixed to the mask support base 110 by the mask fixing mechanism 112 is a value peculiar to the printing machine 10, and is set in advance in the control device 28 of the printing machine 10. Here, the height of the lower surface of the mask 116 preset in the control device 28 is set to XM as shown in FIG.
 そして、従来の手法において、印刷機10は、クランプ装置93によりクランプされた回路基板80を支持するバックアップブロック91の上面が、マスク116の下面よりT0に相当する距離、下方に位置するように、基板昇降装置54を作動させる。つまり、回路基板80を支持するバックアップブロック91の上面が、図7に示すように、X-T0の位置まで上昇するように、基板昇降装置54を作動させる。なお、基板昇降装置54の電磁モータ108は、サーボモータであり、エンコーダの出力値に基づいてフィードバック制御されている。このため、基板昇降装置54の作動により、バックアップブロック91の上面を、X-T0の位置まで適切に上昇させることができる。そして、バックアップブロック91の上面がX-T0の位置まで上昇した場合に、回路基板80の実際の厚さ寸法がT0であれば、図7に示すように、回路基板80の上面がマスク116の下面に密着する。 Then, in the conventional method, in the printing machine 10, the upper surface of the backup block 91 supporting the circuit board 80 clamped by the clamping device 93 is located below the lower surface of the mask 116 by a distance corresponding to T0. The board elevating device 54 is operated. That is, as shown in FIG. 7, the board elevating device 54 is operated so that the upper surface of the backup block 91 that supports the circuit board 80 rises to the position of XM −T0 . The electromagnetic motor 108 of the board elevating device 54 is a servomotor, and feedback control is performed based on the output value of the encoder. Therefore, by operating the board elevating device 54, the upper surface of the backup block 91 can be appropriately raised to the position of XM- T0 . When the upper surface of the backup block 91 rises to the position of XM- T0 and the actual thickness dimension of the circuit board 80 is T0, the upper surface of the circuit board 80 is the mask 116 as shown in FIG. Adheres to the underside of the.
 しかしながら、回路基板80の厚さ寸法にはバラツキがあるため、回路基板80の実際の厚さ寸法がT0より薄い場合がある。例えば、T0が10mmであるにもかかわらず、回路基板80の実際の厚さ寸法が9mmである場合には、図8に示すように、バックアップブロック91の上面がX-T0の位置まで上昇しても、回路基板80の上面はマスク116の下面に密着しない。このような場合には、回路基板80の上面と、マスク116の下面との間に、1mmのクリアランスが残ってしまう。また、回路基板80の実際の厚さ寸法が9.5mmである場合にも、回路基板80の上面はマスク116の下面に密着せずに、回路基板80の上面と、マスク116の下面との間に、0.5mmのクリアランスが残ってしまう。このように、回路基板80の上面とマスク116の下面との間のクリアランスが回路基板の実際の厚さ寸法により変化すると、回路基板80へのクリームはんだの転写量,クリームはんだの厚みが一定とならずに、クリームはんだの印刷品質が低下する。 However, since the thickness dimension of the circuit board 80 varies, the actual thickness dimension of the circuit board 80 may be thinner than T0. For example, when the actual thickness dimension of the circuit board 80 is 9 mm even though T0 is 10 mm, the upper surface of the backup block 91 rises to the position of XM −T0 as shown in FIG. Even so, the upper surface of the circuit board 80 does not come into close contact with the lower surface of the mask 116. In such a case, a clearance of 1 mm remains between the upper surface of the circuit board 80 and the lower surface of the mask 116. Further, even when the actual thickness dimension of the circuit board 80 is 9.5 mm, the upper surface of the circuit board 80 does not come into close contact with the lower surface of the mask 116, and the upper surface of the circuit board 80 and the lower surface of the mask 116 are formed. In the meantime, a clearance of 0.5 mm remains. As described above, when the clearance between the upper surface of the circuit board 80 and the lower surface of the mask 116 changes depending on the actual thickness dimension of the circuit board, the transfer amount of the cream solder to the circuit board 80 and the thickness of the cream solder are constant. Instead, the print quality of the cream solder deteriorates.
 また、回路基板80の実際の厚さ寸法がT0より厚い場合もある。このような場合には、バックアップブロック91の上面がX-T0の位置まで上昇した際に、マスク116の下面に回路基板80の上面が密着するが、その回路基板80によりマスク116が持ち上げられて、マスク116に反りが生じる場合がある。つまり、例えば、例えば、T0が10mmであるにもかかわらず、回路基板80の実際の厚さ寸法が11mmである場合には、マスク116が回路基板80に密着している箇所において上方に向って1mm沿ってしまう場合がある。このような場合にも、クリームはんだの印刷品質が低下する。 Further, the actual thickness dimension of the circuit board 80 may be thicker than T0. In such a case, when the upper surface of the backup block 91 rises to the position of XM −T0 , the upper surface of the circuit board 80 comes into close contact with the lower surface of the mask 116, but the mask 116 is lifted by the circuit board 80. Therefore, the mask 116 may be warped. That is, for example, when the actual thickness dimension of the circuit board 80 is 11 mm even though T0 is 10 mm, the mask 116 faces upward at the position where the mask 116 is in close contact with the circuit board 80. It may be along 1 mm. Even in such a case, the print quality of the cream solder is deteriorated.
 また、従来は、作業者がマスク116と回路基板80との隙間などを目視,手による押さえ等で確認しているが、作業者の熟練度などに応じて、作業者毎に判断のバラツキが生じ、印刷品質を安定させることができない。 Further, conventionally, the operator visually confirms the gap between the mask 116 and the circuit board 80 by pressing the mask by hand, etc., but the judgment varies from worker to operator depending on the skill level of the operator. It occurs and the print quality cannot be stabilized.
 このようなことに鑑みて、印刷機10では、ストッパ124を用いて、回路基板80の実際の厚さ寸法が演算されている。具体的には、図9に示すように、ストッパ124は、直方体形状のブロック体の下端面の一部が切り欠かれた段付き形状のブロック体とされている。そのストッパ124は、下方を向く下端面200と、下端面200の一辺から上方に延び出す当接面202と、当接面202の上端から左右方向において下端面200と反対の方向の延び出す段差面204とを有している。なお、下端面200及び段差面204が水平方向に延び出し、当接面202が鉛直方向に延び出すように、ストッパ124はシリンダのシリンダロッド125の先端に固定されている。 In view of this, in the printing machine 10, the actual thickness dimension of the circuit board 80 is calculated by using the stopper 124. Specifically, as shown in FIG. 9, the stopper 124 is a stepped block body in which a part of the lower end surface of the rectangular parallelepiped block body is cut out. The stopper 124 has a lower end surface 200 facing downward, a contact surface 202 extending upward from one side of the lower end surface 200, and a step extending in the left-right direction from the upper end of the contact surface 202 in the direction opposite to the lower end surface 200. It has a surface 204. The stopper 124 is fixed to the tip of the cylinder rod 125 of the cylinder so that the lower end surface 200 and the stepped surface 204 extend in the horizontal direction and the contact surface 202 extends in the vertical direction.
 そして、回路基板80が印刷機10に搬入され、作業位置まで搬送される前に、Xスライダ130が、カメラ移動装置120の駆動により1対のコンベアベルト66の間の上方に移動し、Xスライダ130に取り付けられているシリンダ123が伸長する。この際、シリンダ123のシリンダロッド125の下端に固定されたストッパ124の当接面202が、コンベアベルト66の上面と同じ高さとなる位置まで、ストッパ124が下降する。つまり、ストッパ124は、シリンダ123が伸長することで、最下端の位置において位置決めされており、そのストッパ124の最下端の位置は、当接面202がコンベアベルト66の上面と同じ高さとなる位置である。このように、ストッパ124が最下端の位置まで下降していることで、コンベアベルト66により搬送される回路基板80が、ストッパ124の当接面202に当接する。これにより、コンベアベルト66により搬送された回路基板80は、ストッパ124の当接面202により作業位置に位置決めされる。 Then, before the circuit board 80 is carried into the printing machine 10 and conveyed to the working position, the X slider 130 moves upward between the pair of conveyor belts 66 by the drive of the camera moving device 120, and the X slider The cylinder 123 attached to the 130 extends. At this time, the stopper 124 is lowered to a position where the contact surface 202 of the stopper 124 fixed to the lower end of the cylinder rod 125 of the cylinder 123 is at the same height as the upper surface of the conveyor belt 66. That is, the stopper 124 is positioned at the lowermost position by extending the cylinder 123, and the lowermost position of the stopper 124 is a position where the contact surface 202 is at the same height as the upper surface of the conveyor belt 66. Is. By lowering the stopper 124 to the lowermost position in this way, the circuit board 80 conveyed by the conveyor belt 66 comes into contact with the contact surface 202 of the stopper 124. As a result, the circuit board 80 conveyed by the conveyor belt 66 is positioned at the working position by the contact surface 202 of the stopper 124.
 そして、コンベアベルト66の作動が停止した後に、図10に示すように、昇降テーブル90が上昇し、回路基板80がコンベアベルト66から持ち上げられ、クランプ装置93によってクランプされる。なお、回路基板80がストッパ124により位置決めされた後に、従来の手法では、ストッパ124が上昇していたが、ここでは、ストッパ124は上昇しない。つまり、ストッパ124は最下端に位置した状態で、回路基板80が持ち上げられて、クランプ装置93によりクランプされる。なお、クランプ時に回路基板80が昇降テーブル90により持ち上げられても、回路基板80の上面は、ストッパ124の段差面204に接触しない。つまり、ストッパ124の最下端の位置は、クランプ時に回路基板80が昇降テーブル90により持ち上げられても、回路基板80の上面が、ストッパ124の段差面204に接触しない位置とされている。 Then, after the operation of the conveyor belt 66 is stopped, as shown in FIG. 10, the elevating table 90 is raised, the circuit board 80 is lifted from the conveyor belt 66, and is clamped by the clamping device 93. After the circuit board 80 is positioned by the stopper 124, the stopper 124 is raised in the conventional method, but here, the stopper 124 is not raised. That is, the circuit board 80 is lifted and clamped by the clamping device 93 while the stopper 124 is located at the lowermost end. Even if the circuit board 80 is lifted by the elevating table 90 during clamping, the upper surface of the circuit board 80 does not come into contact with the stepped surface 204 of the stopper 124. That is, the position of the lowermost end of the stopper 124 is a position where the upper surface of the circuit board 80 does not come into contact with the stepped surface 204 of the stopper 124 even if the circuit board 80 is lifted by the elevating table 90 at the time of clamping.
 そして、回路基板80がクランプ装置93によりクランプされると、昇降台72が基板昇降装置54の作動により上昇する。これにより、クランプされた状態の回路基板80が上昇し、図11に示すように、回路基板80の上面がストッパ124の段差面204に接触する。この際、ストッパ124は回路基板80により持ち上げられる。つまり、ストッパ124は最下端の位置から上昇する。なお、ストッパ124が取り付けられているシリンダ123には、上述したように、接触センサ140内蔵されており、シリンダ123が伸長している際、つまり、ストッパ124が最下端に位置している際にON値を出力する。このため、回路基板80の上面がストッパ124の段差面204に接触し、ストッパ124が最下端の位置から上昇したタイミングで、接触センサ140による検出値がON値からOFF値に切り替わる。そして、接触センサ140による検出値がON値からOFF値に切り替わったタイミングで、基板昇降装置54の作動が停止する。この際、基板昇降装置54の電磁モータ108のエンコーダの出力値に基づいて、バックアップブロック91の上面の高さXが演算される。 Then, when the circuit board 80 is clamped by the clamping device 93, the elevating table 72 is raised by the operation of the board elevating device 54. As a result, the circuit board 80 in the clamped state rises, and as shown in FIG. 11, the upper surface of the circuit board 80 comes into contact with the stepped surface 204 of the stopper 124. At this time, the stopper 124 is lifted by the circuit board 80. That is, the stopper 124 rises from the position of the lowermost end. As described above, the cylinder 123 to which the stopper 124 is attached has a built-in contact sensor 140, and when the cylinder 123 is extended, that is, when the stopper 124 is located at the lowermost end. Output the ON value. Therefore, when the upper surface of the circuit board 80 comes into contact with the stepped surface 204 of the stopper 124 and the stopper 124 rises from the position of the lowermost end, the value detected by the contact sensor 140 is switched from the ON value to the OFF value. Then, at the timing when the value detected by the contact sensor 140 is switched from the ON value to the OFF value, the operation of the board elevating device 54 is stopped. At this time, the height XA of the upper surface of the backup block 91 is calculated based on the output value of the encoder of the electromagnetic motor 108 of the board elevating device 54.
 なお、クランプされた状態の回路基板80を上昇させ、回路基板80の上面をストッパ124の段差面204に接触させる際に、作業者により入力されている回路基板80の厚さ寸法(以下、「入力厚さ寸法」と記載する)T0を利用して、回路基板80の上昇速度が調整される。詳しくは、ストッパ124が最下端に位置している際の段差面204の高さが、制御装置28に予め設定されている。ここでは、制御装置28に予め設定されている段差面204の高さを、図10に示すように、Xとする。そして、その段差面204の高さXより、入力厚さ寸法T0の所定倍数、例えば、1.5倍、低い位置を演算する。つまり、段差面204の高さXより1.5T0低い位置を演算する。そして、その位置までバックアップブロック91の上面を上昇させる際に、基板昇降装置54を高速で作動させる。なお、バックアップブロック91の上面を演算された位置、つまり、(X-1.5T0)の高さまで上昇させる際に、回路基板80の実際の厚さ寸法が入力厚さ寸法T0より多少厚くても、回路基板80の上面がストッパ124の段差面204に接触することはない。そして、バックアップブロック91の上面を(X-1.5T0)の高さまで上昇させた後に、基板昇降装置54を低速で作動させることで、回路基板80を上昇させて、回路基板80の上面を段差面204に接触させる。つまり、回路基板80の上面が段差面204に接触しない範囲において、回路基板80を高速で上昇させて、回路基板80の上面が段差面204に接触する可能性がある範囲において、回路基板80を低速で上昇させる。これにより、回路基板80を高速で上昇させることでタクトタイムの短縮を図るとともに、回路基板80を低速で上昇させることで、回路基板80の上面が段差面204に接触した際のバックアップブロック91の上面の高さXを適切に演算することができる。 When the circuit board 80 in the clamped state is raised and the upper surface of the circuit board 80 is brought into contact with the stepped surface 204 of the stopper 124, the thickness dimension of the circuit board 80 input by the operator (hereinafter, "" The ascending speed of the circuit board 80 is adjusted by using T0 (described as "input thickness dimension"). Specifically, the height of the stepped surface 204 when the stopper 124 is located at the lowermost end is preset in the control device 28. Here, the height of the stepped surface 204 preset in the control device 28 is referred to as XD as shown in FIG. Then, a predetermined multiple of the input thickness dimension T0, for example, 1.5 times, is calculated from the height XD of the stepped surface 204. That is, the position 1.5T0 lower than the height XD of the step surface 204 is calculated. Then, when the upper surface of the backup block 91 is raised to that position, the board elevating device 54 is operated at high speed. When raising the upper surface of the backup block 91 to the calculated position, that is, the height of (XD- 1.5T0 ), the actual thickness dimension of the circuit board 80 is slightly thicker than the input thickness dimension T0. However, the upper surface of the circuit board 80 does not come into contact with the stepped surface 204 of the stopper 124. Then, after raising the upper surface of the backup block 91 to a height of (XD- 1.5T0 ), the circuit board 80 is raised by operating the board elevating device 54 at a low speed to raise the upper surface of the circuit board 80. It is brought into contact with the step surface 204. That is, the circuit board 80 is raised at a high speed in a range where the upper surface of the circuit board 80 does not come into contact with the stepped surface 204, and the circuit board 80 is raised in a range where the upper surface of the circuit board 80 may come into contact with the stepped surface 204. Raise at low speed. As a result, the tact time is shortened by raising the circuit board 80 at a high speed, and by raising the circuit board 80 at a low speed, the backup block 91 when the upper surface of the circuit board 80 comes into contact with the stepped surface 204 The height XA of the upper surface can be calculated appropriately.
 また、例えば、図12に示すように、バックアップブロック91の上面に回路基板80が載置されていない状態で、最下端に位置しているストッパ124の段差面に、バックアップブロック91の上面を接触させた場合に、そのバックアップブロック91の上面の高さは、制御装置28に予め設定されている段差面204の高さXとなる。つまり、回路基板80が載置されていないバックアップブロック91の上面高さがXであり、回路基板80が載置されているバックアップブロック91の上面高さがXである場合に、XはXより回路基板80の実際の厚さ寸法(以下、「実厚さ寸法」と記載する)T1に相当する距離、高くなる。このため、実厚さ寸法T1は、回路基板80が載置されていないバックアップブロック91の上面高さがXから、回路基板80が載置されているバックアップブロック91の上面高さXを減じた値となる(T1=X-X)。なお、このことは、図11からも明らかである。 Further, for example, as shown in FIG. 12, the upper surface of the backup block 91 is in contact with the stepped surface of the stopper 124 located at the lowermost end in a state where the circuit board 80 is not placed on the upper surface of the backup block 91. In this case, the height of the upper surface of the backup block 91 becomes the height XD of the stepped surface 204 preset in the control device 28. That is, when the top surface height of the backup block 91 on which the circuit board 80 is not mounted is XD and the top surface height of the backup block 91 on which the circuit board 80 is mounted is XA, XD . Is higher than XA by a distance corresponding to the actual thickness dimension (hereinafter referred to as "actual thickness dimension") T1 of the circuit board 80. Therefore, in the actual thickness dimension T1, the height of the upper surface of the backup block 91 on which the circuit board 80 is not mounted is XD , and the height of the upper surface of the backup block 91 on which the circuit board 80 is mounted is XA . The value is subtracted (T1 = XD - XA). This is also clear from FIG.
 このため、回路基板80の上面が段差面204に接触した際のバックアップブロック91の上面の高さXが演算されると、その演算された高さXと、制御装置28に予め設定されている高さXとの差に基づいて、実厚さ寸法T1が演算される。そして、実厚さ寸法T1が演算されると、クランプ装置93によりクランプされた回路基板80を支持するバックアップブロック91の上面が、マスク116の下面よりT1に相当する距離、下方に位置するように、基板昇降装置54を作動させる。つまり、回路基板80を支持するバックアップブロック91の上面が、図13に示すように、X-T1の位置まで上昇するように、基板昇降装置54を作動させる。そして、バックアップブロック91の上面がX-T1の位置まで上昇すると、図13に示すように、回路基板80の上面がマスク116の下面に密着する。この際、基板昇降装置54の作動は、実厚さ寸法T1に基づいて制御されるため、実厚さ寸法T1が入力厚さ寸法T0と異なっている場合であっても、回路基板80をマスク116に適切に密着させることが可能となる。 Therefore, when the height X A of the upper surface of the backup block 91 when the upper surface of the circuit board 80 comes into contact with the stepped surface 204 is calculated, the calculated height X A and the height X A set in advance in the control device 28 are set in advance. The actual thickness dimension T1 is calculated based on the difference from the height XD . Then, when the actual thickness dimension T1 is calculated, the upper surface of the backup block 91 that supports the circuit board 80 clamped by the clamp device 93 is located below the lower surface of the mask 116 by a distance corresponding to T1. , The board elevating device 54 is operated. That is, as shown in FIG. 13, the board elevating device 54 is operated so that the upper surface of the backup block 91 that supports the circuit board 80 rises to the position of XM-T1. Then, when the upper surface of the backup block 91 rises to the position of XM -T1, the upper surface of the circuit board 80 comes into close contact with the lower surface of the mask 116 as shown in FIG. At this time, since the operation of the board elevating device 54 is controlled based on the actual thickness dimension T1, the circuit board 80 is masked even when the actual thickness dimension T1 is different from the input thickness dimension T0. It is possible to properly adhere to the 116.
 このように、ストッパ124を用いて回路基板80の実厚さ寸法T1が演算されることで、回路基板80をマスク116に適切に密着させることが可能となる。特に、実厚さ寸法T1の演算時に用いられるストッパ124は、上述したように、搬送される回路基板80を作業位置で位置決めするためのものであり、従来からある機構を利用して、実厚さ寸法T1が演算される。これにより、コストをかけずに、回路基板80をマスク116に適切に密着させることができる。 In this way, by calculating the actual thickness dimension T1 of the circuit board 80 using the stopper 124, the circuit board 80 can be appropriately brought into close contact with the mask 116. In particular, the stopper 124 used when calculating the actual thickness dimension T1 is for positioning the circuit board 80 to be conveyed at the working position as described above, and the actual thickness is obtained by using a conventional mechanism. The dimension T1 is calculated. As a result, the circuit board 80 can be appropriately brought into close contact with the mask 116 at no cost.
 ただし、上述した手法では、回路基板の形状に応じて、回路基板の厚さ寸法を適切に演算できない場合もある。例えば、図14に示すように、上面が段付き形状とされた回路基板220が存在する。この回路基板220の上面は、回路基板220の縁部に位置する第1の上面222と、回路基板220の中央部に位置し、第1の上面222より上方に突出している第2の上面224とにより構成されている。このような回路基板220では、縁部の回路基板220の厚さ寸法T1が、上記手法により実厚さ寸法として演算されるが、回路基板220の実際の厚さ寸法は、回路基板220の縁部ではなく、中央付近の厚さ寸法T2である。つまり、上記手法では第1の上面222での厚さ寸法T1が演算されるが、回路基板220の実際の厚さ寸法として、第2の上面224での厚さ寸法T2を演算する必要がある。このため、このような形状の回路基板220は、ストッパ124の段差面204でなく、当接面202を用いて実厚さ寸法T2が演算される。 However, with the above method, it may not be possible to properly calculate the thickness dimension of the circuit board depending on the shape of the circuit board. For example, as shown in FIG. 14, there is a circuit board 220 having a stepped upper surface. The upper surface of the circuit board 220 is a first upper surface 222 located at the edge of the circuit board 220 and a second upper surface 224 located at the center of the circuit board 220 and projecting upward from the first upper surface 222. It is composed of and. In such a circuit board 220, the thickness dimension T1 of the circuit board 220 at the edge is calculated as the actual thickness dimension by the above method, but the actual thickness dimension of the circuit board 220 is the edge of the circuit board 220. It is a thickness dimension T2 near the center, not a portion. That is, in the above method, the thickness dimension T1 on the first upper surface 222 is calculated, but it is necessary to calculate the thickness dimension T2 on the second upper surface 224 as the actual thickness dimension of the circuit board 220. .. Therefore, in the circuit board 220 having such a shape, the actual thickness dimension T2 is calculated using the contact surface 202 instead of the step surface 204 of the stopper 124.
 具体的には、回路基板220がクランプ装置93によりクランプされると、昇降台72が基板昇降装置54の作動により下降する。これにより、クランプされた状態の回路基板220が下降する。この際、回路基板220が、最下端に位置しているストッパ124の下端面200の高さより低い高さまで下降するように、基板昇降装置54が作動する。このように、回路基板220がストッパ124の下端面200の高さより低い高さまで下降すると、ストッパ124が、カメラ移動装置120の作動により、回路基板220の第2の上面224の上方に移動する。そして、昇降台72が基板昇降装置54の作動により上昇する。これにより、回路基板220がストッパ124の下方において上昇し、図15に示すように、回路基板220の第2の上面224がストッパ124の下端面200に接触する。この際、ストッパ124が回路基板220により持ち上げられて、最下端の位置から上昇したタイミングで、接触センサ140による検出値がON値からOFF値に切り替わる。そして、接触センサ140による検出値がON値からOFF値に切り替わったタイミングで、基板昇降装置54の作動が停止する。この際、基板昇降装置54の電磁モータ108のエンコーダの出力値に基づいて、バックアップブロック91の上面の高さXが演算される。なお、回路基板220の上面を下端面200に接触させるために回路基板220が上昇される際においても、回路基板80の上面を段差面204に接触させるために回路基板80が上昇される際と同様に、入力厚さ寸法T0を利用して、回路基板の上昇速度が調整される。 Specifically, when the circuit board 220 is clamped by the clamping device 93, the elevating table 72 is lowered by the operation of the board elevating device 54. As a result, the circuit board 220 in the clamped state is lowered. At this time, the board elevating device 54 operates so that the circuit board 220 descends to a height lower than the height of the lower end surface 200 of the stopper 124 located at the lowermost end. As described above, when the circuit board 220 is lowered to a height lower than the height of the lower end surface 200 of the stopper 124, the stopper 124 is moved above the second upper surface 224 of the circuit board 220 by the operation of the camera moving device 120. Then, the elevating table 72 is raised by the operation of the board elevating device 54. As a result, the circuit board 220 rises below the stopper 124, and as shown in FIG. 15, the second upper surface 224 of the circuit board 220 comes into contact with the lower end surface 200 of the stopper 124. At this time, the value detected by the contact sensor 140 is switched from the ON value to the OFF value at the timing when the stopper 124 is lifted by the circuit board 220 and rises from the position of the lowermost end. Then, at the timing when the value detected by the contact sensor 140 is switched from the ON value to the OFF value, the operation of the board elevating device 54 is stopped. At this time, the height X B of the upper surface of the backup block 91 is calculated based on the output value of the encoder of the electromagnetic motor 108 of the board elevating device 54. Even when the circuit board 220 is raised to bring the upper surface of the circuit board 220 into contact with the lower end surface 200, when the circuit board 80 is raised to bring the upper surface of the circuit board 80 into contact with the stepped surface 204. Similarly, the ascending speed of the circuit board is adjusted by using the input thickness dimension T0.
 また、ストッパ124が最下端に位置している際の下端面200の高さも、制御装置28に予め設定されている。ここでは、制御装置28に予め設定されている下端面200の高さを、図15に示すように、Xとする。そして、例えば、図16に示すように、バックアップブロック91の上面に回路基板220が載置されていない状態で、最下端に位置しているストッパ124の下端面200に、バックアップブロック91の上面を接触させた場合に、そのバックアップブロック91の上面の高さは、制御装置28に予め設定されている下端面200の高さXとなる。つまり、回路基板220が載置されていないバックアップブロック91の上面高さがXであり、回路基板220が載置されているバックアップブロック91の上面高さがXである場合に、XはXより回路基板220の実厚さ寸法T2に相当する距離、高くなる。このため、実厚さ寸法T2は、回路基板220が載置されていないバックアップブロック91の上面高さXから、回路基板220が載置されているバックアップブロック91の上面高さXを減じた値となる(T2=X-X)。なお、このことは、図15からも明らかである。 Further, the height of the lower end surface 200 when the stopper 124 is located at the lowermost end is also preset in the control device 28. Here, the height of the lower end surface 200 preset in the control device 28 is XX , as shown in FIG. Then, for example, as shown in FIG. 16, in a state where the circuit board 220 is not placed on the upper surface of the backup block 91, the upper surface of the backup block 91 is placed on the lower end surface 200 of the stopper 124 located at the lowermost end. When brought into contact, the height of the upper surface of the backup block 91 becomes the height XX of the lower end surface 200 preset in the control device 28. That is, when the height of the upper surface of the backup block 91 on which the circuit board 220 is not mounted is XX , and the height of the upper surface of the backup block 91 on which the circuit board 220 is mounted is XX . Is higher than XB by a distance corresponding to the actual thickness dimension T2 of the circuit board 220. Therefore, the actual thickness dimension T2 is obtained by subtracting the top surface height X B of the backup block 91 on which the circuit board 220 is mounted from the top surface height X K of the backup block 91 on which the circuit board 220 is mounted. (T2 = XK - XB). This is also clear from FIG.
 このため、回路基板220の第2の上面224が下端面200に接触した際のバックアップブロック91の上面の高さXが演算されると、その演算された高さXと、制御装置28に予め設定されている高さXとの差に基づいて、実厚さ寸法T2が演算される。そして、実厚さ寸法T2が演算されると、クランプ装置93によりクランプされた回路基板220を支持するバックアップブロック91の上面が、マスク116の下面よりT2に相当する距離、下方に位置するように、基板昇降装置54を作動させる。つまり、回路基板220を支持するバックアップブロック91の上面が、図17に示すように、X-T2の位置まで上昇するように、基板昇降装置54を作動させる。そして、バックアップブロック91の上面がX-T2の位置まで上昇すると、図17に示すように、回路基板220の第2の上面224がマスク116の下面に密着する。このように、上面が段付き形状とされた回路基板220であっても、ストッパ124の下端面200を用いて実厚さ寸法T2を演算することで、マスク116に適切に密着させることができる。 Therefore, when the height X B of the upper surface of the backup block 91 when the second upper surface 224 of the circuit board 220 comes into contact with the lower end surface 200 is calculated, the calculated height X B and the control device 28 are calculated. The actual thickness dimension T2 is calculated based on the difference from the height XX preset in. Then, when the actual thickness dimension T2 is calculated, the upper surface of the backup block 91 that supports the circuit board 220 clamped by the clamp device 93 is located below the lower surface of the mask 116 by a distance corresponding to T2. , The board elevating device 54 is operated. That is, as shown in FIG. 17, the board elevating device 54 is operated so that the upper surface of the backup block 91 that supports the circuit board 220 rises to the position of XM-T2. Then, when the upper surface of the backup block 91 rises to the position of XM -T2, the second upper surface 224 of the circuit board 220 comes into close contact with the lower surface of the mask 116 as shown in FIG. As described above, even if the circuit board 220 has a stepped upper surface, it can be appropriately brought into close contact with the mask 116 by calculating the actual thickness dimension T2 using the lower end surface 200 of the stopper 124. ..
 また、ストッパ124の下端面200を用いて実厚さ寸法T2が演算される際には、上述したように、回路基板220の中央部がストッパ124の下端面200に接触することで、下端面200により押さえられる。これにより、回路基板220の中央部が縁部より上方に位置するように回路基板220が反っている場合において、回路基板の反りを矯正することも可能となっている。なお、ストッパ124の下端面200を用いた実厚さ寸法T2の演算は、上面が段付き形状とされた回路基板220だけでなく、種々の形状の回路基板に対しても実行される。例えば、縁部に切欠き部が形成されている回路基板では、縁部にストッパ124の段差面204を適切に接触させることができない虞があるため、ストッパ124の下端面200を用いて実厚さ寸法T2が演算される。 Further, when the actual thickness dimension T2 is calculated using the lower end surface 200 of the stopper 124, as described above, the central portion of the circuit board 220 comes into contact with the lower end surface 200 of the stopper 124, so that the lower end surface is formed. It is suppressed by 200. This makes it possible to correct the warp of the circuit board when the circuit board 220 is warped so that the central portion of the circuit board 220 is located above the edge portion. The calculation of the actual thickness dimension T2 using the lower end surface 200 of the stopper 124 is executed not only for the circuit board 220 having a stepped upper surface but also for circuit boards of various shapes. For example, in a circuit board in which a notch is formed at an edge portion, the stepped surface 204 of the stopper 124 may not be appropriately brought into contact with the edge portion. Therefore, the lower end surface 200 of the stopper 124 is used for the actual thickness. The dimension T2 is calculated.
 なお、ストッパ124の段差面204を用いて回路基板80の厚さを演算する手法(以下、「第1モード」と記載する)と、ストッパ124の下端面200を用いて回路基板220の厚さを演算する手法(以下、「第2モード」と記載する)とは、ユーザ操作に応じて選択的に実行される。詳しくは、コントローラ180にキーボード,操作ボタン等の入力インタフェース(図5参照)240が接続されており、作業者は、作業対象の回路基板に応じて第1モードと第2モードとの何れのモードに従って回路基板の厚さを演算するかを入力インタフェース240に入力する。そして、制御装置28は、入力されたモードに応じた手法に従って回路基板の厚さを演算する。つまり、制御装置28は、ユーザ操作により入力された第1モードと第2モードとの何れかを選択的に実行する。これにより、作業者の意思に従った手法により、回路基板の厚さを演算することができる。 A method of calculating the thickness of the circuit board 80 using the stepped surface 204 of the stopper 124 (hereinafter referred to as “first mode”) and the thickness of the circuit board 220 using the lower end surface 200 of the stopper 124. (Hereinafter referred to as "second mode") is selectively executed according to the user operation. Specifically, an input interface (see FIG. 5) 240 such as a keyboard and operation buttons is connected to the controller 180, and the operator can use either the first mode or the second mode according to the circuit board to be worked on. It is input to the input interface 240 whether to calculate the thickness of the circuit board according to. Then, the control device 28 calculates the thickness of the circuit board according to the method according to the input mode. That is, the control device 28 selectively executes either the first mode or the second mode input by the user operation. This makes it possible to calculate the thickness of the circuit board by a method according to the intention of the operator.
 また、印刷機10では、演算された実厚さ寸法T1,T2が入力厚さ寸法T0と大きく異なる場合には、表示パネル(図示省略)にエラー画面が表示される。具体的には、入力厚さ寸法T0を含む所定の許容範囲が設定されている。例えば、入力厚さ寸法T0が10mmである場合に、許容範囲が5mm~15mmに設定されている。そして、演算された実厚さ寸法T1,T2が許容範囲内であれば、上述したように、実厚さ寸法T1,T2に基づいて基板昇降装置54の作動が制御され、回路基板80がマスク116に密着させられる。一方、演算された実厚さ寸法T1,T2が許容範囲外である場合には、表示パネルにエラー画面が表示される。これにより、基板の重なり搬送,バックアップブロック91のセットミス,作業者による寸法の入力ミス等を認識することができる。 Further, in the printing machine 10, if the calculated actual thickness dimensions T1 and T2 are significantly different from the input thickness dimensions T0, an error screen is displayed on the display panel (not shown). Specifically, a predetermined allowable range including the input thickness dimension T0 is set. For example, when the input thickness dimension T0 is 10 mm, the allowable range is set to 5 mm to 15 mm. Then, if the calculated actual thickness dimensions T1 and T2 are within the permissible range, the operation of the board elevating device 54 is controlled based on the actual thickness dimensions T1 and T2 as described above, and the circuit board 80 is masked. It is brought into close contact with 116. On the other hand, when the calculated actual thickness dimensions T1 and T2 are out of the allowable range, an error screen is displayed on the display panel. As a result, it is possible to recognize overlapping transfer of boards, setting mistakes of the backup block 91, dimensional input mistakes by the operator, and the like.
 つまり、例えば、通常、1枚の回路基板がコンベア装置50により搬送されるが、誤って2枚の回路基板が重ねられた状態でコンベア装置50により搬送される場合がある。このような場合には、実厚さ寸法T1,T2は入力厚さ寸法T0の約2倍の数値として演算され、実厚さ寸法T1,T2が許容範囲外となる。このため、表示パネルにエラー画面が表示されることで、作業者は基板の重なり搬送を認識することができる。 That is, for example, one circuit board is usually conveyed by the conveyor device 50, but there are cases where two circuit boards are mistakenly conveyed by the conveyor device 50 in a stacked state. In such a case, the actual thickness dimensions T1 and T2 are calculated as a numerical value approximately twice the input thickness dimension T0, and the actual thickness dimensions T1 and T2 are out of the allowable range. Therefore, by displaying the error screen on the display panel, the operator can recognize the overlapping transfer of the boards.
 また、バックアップブロック91は作業対象の回路基板に応じて異なっており、作業者が、作業対象の回路基板に応じたバックアップブロック91と異なるバックアップブロックを印刷機10にセットする場合がある。このような場合には、実厚さ寸法T1,T2の演算時に用いられるバックアップブロック91の上面高さX,Xを適切に演算することができず、実厚さ寸法T1,T2が許容範囲外となる。このため、表示パネルにエラー画面が表示されることで、作業者はバックアップブロックのセットミスを認識することができる。 Further, the backup block 91 is different depending on the circuit board to be worked on, and the operator may set a backup block different from the backup block 91 according to the circuit board to be worked on in the printing machine 10. In such a case, the top surface heights X A and X B of the backup block 91 used when calculating the actual thickness dimensions T1 and T2 cannot be calculated appropriately, and the actual thickness dimensions T1 and T2 are acceptable. It is out of range. Therefore, the operator can recognize the backup block setting error by displaying the error screen on the display panel.
 また、入力厚さ寸法T0は、上述したように、作業者により入力されるが、入力時に誤った数値が入力される場合がある。また、許容範囲は入力厚さ寸法T0を含む範囲で設定されている。このため、作業者が、本来、10mmと入力すべき場合に、20mmと入力してしまうと、許容範囲は15mm~25mmに設定される。一方で、実厚さ寸法T1,T2は、10mm前後の数値として演算される。このような場合には、実厚さ寸法T1,T2が許容範囲外となるため、表示パネルにエラー画面が表示されることで、作業者は入力厚さ寸法の入力ミスを認識することができる。 Further, the input thickness dimension T0 is input by the operator as described above, but an erroneous numerical value may be input at the time of input. Further, the allowable range is set in a range including the input thickness dimension T0. Therefore, if the operator originally inputs 10 mm and then inputs 20 mm, the permissible range is set to 15 mm to 25 mm. On the other hand, the actual thickness dimensions T1 and T2 are calculated as numerical values of about 10 mm. In such a case, since the actual thickness dimensions T1 and T2 are out of the allowable range, the error screen is displayed on the display panel, so that the operator can recognize the input error of the input thickness dimension. ..
 さらに、印刷機10では、演算された実厚さ寸法T1,T2が、回路基板の基板IDと関連付けて制御装置28に記憶されている。このように、演算された実厚さ寸法T1と、回路基板の基板IDと関連付けて記憶しておくことで、回路基板のトレーサビリティ管理を適切に行うことが可能となる。つまり、例えば、不良品が発生した場合に、不良品が発生した要因に基板の厚さ寸法が関係しているか否かを管理したり、回路基板のロットに応じた厚さ寸法のバラツキなどを管理することができる。 Further, in the printing machine 10, the calculated actual thickness dimensions T1 and T2 are stored in the control device 28 in association with the board ID of the circuit board. By storing the calculated actual thickness dimension T1 in association with the board ID of the circuit board in this way, it becomes possible to appropriately manage the traceability of the circuit board. In other words, for example, when a defective product occurs, it is possible to manage whether or not the thickness dimension of the board is related to the cause of the defective product, and to control the variation in the thickness dimension according to the lot of the circuit board. Can be managed.
 また、コントローラ180は、図5に示すように、クランプ部230と、上昇部232と、測定部234と、演算部236とを有している。クランプ部230は、基板保持装置52の作動により回路基板をクランプするための機能部である。上昇部232は、クランプされた状態の回路基板を、基板昇降装置54の作動により上昇させるための機能部である。測定部234は、上昇した回路基板がストッパ124に接触した際のバックアップブロック91の高さX,Xを測定するための機能部である。演算部236は、演算されたバックアップブロック91の高さX,Xと、制御装置28に予め設定されているバックアップブロック91の高さX,Xとの差に基づいて実厚さ寸法T1,T2を演算するための機能部である。 Further, as shown in FIG. 5, the controller 180 has a clamp unit 230, a rising unit 232, a measuring unit 234, and a calculation unit 236. The clamp unit 230 is a functional unit for clamping the circuit board by operating the substrate holding device 52. The raising unit 232 is a functional unit for raising the clamped circuit board by operating the board elevating device 54. The measuring unit 234 is a functional unit for measuring the heights X A and X B of the backup block 91 when the raised circuit board comes into contact with the stopper 124. The calculation unit 236 has an actual thickness based on the difference between the calculated heights X A and X B of the backup block 91 and the heights X D and X K of the backup block 91 preset in the control device 28. It is a functional unit for calculating the dimensions T1 and T2.
 なお、印刷機10は、対基板作業機の一例である。制御装置28は、演算装置の一例である。コンベア装置50は、搬送装置の一例である。基板保持装置52は、クランプ装置の一例である。基板昇降装置54は、昇降装置の一例である。バックアップブロック91は、支持部材の一例である。ストッパ124は、接触体の一例である。下端面200は、下端面の一例である。段差面204は、段差面の一例である。また、クランプ部230により実行される工程は、クランプ工程の一例である。上昇部232により実行される工程は、上昇工程の一例である。測定部234により実行される工程は、測定工程の一例である。演算部236により実行される工程は、演算工程の一例である。 The printing machine 10 is an example of a board-to-board working machine. The control device 28 is an example of an arithmetic unit. The conveyor device 50 is an example of a conveyor device. The board holding device 52 is an example of a clamping device. The board elevating device 54 is an example of an elevating device. The backup block 91 is an example of a support member. The stopper 124 is an example of a contact body. The lower end surface 200 is an example of the lower end surface. The step surface 204 is an example of a step surface. Further, the process executed by the clamp unit 230 is an example of the clamp process. The step executed by the ascending section 232 is an example of the ascending step. The process executed by the measuring unit 234 is an example of the measuring process. The process executed by the arithmetic unit 236 is an example of the arithmetic process.
 また、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、ストッパ124を用いてバックアップブロック91の上面の高さX,Xが演算されているが、高さを測定する専用の接触体を用いてもよい。 Further, the present invention is not limited to the above embodiment, and can be carried out in various embodiments with various modifications and improvements based on the knowledge of those skilled in the art. Specifically, for example, in the above embodiment, the heights X A and X B of the upper surface of the backup block 91 are calculated by using the stopper 124, but even if a dedicated contact body for measuring the height is used. good.
 また、上記実施例では、制御装置28が、ユーザ操作により入力された第1モードと第2モードとの何れかを選択的に実行しているが、制御装置28が、回路基板に応じたモードを決定し、決定した第1モードと第2モードとの何れかを選択的に実行してもよい。つまり、例えば、回路基板に関する情報として、回路基板の上面が段差面であるか否か,回路基板の縁部に切欠き部があるか否かを示す情報が、コントローラ180に入力されている。そこで、制御装置28が、その情報に基づいて、作業対象の回路基板に対して第1モードと第2モードとの何れのモードで回路基板の厚さを演算するかを決定する。そして、制御装置28は、決定した第1モードと第2モードとの何れかを選択的に実行する。これにより、作業者の負担を軽減することが可能となる。 Further, in the above embodiment, the control device 28 selectively executes either the first mode or the second mode input by the user operation, but the control device 28 is a mode corresponding to the circuit board. Is determined, and either the determined first mode or the determined second mode may be selectively executed. That is, for example, as information on the circuit board, information indicating whether or not the upper surface of the circuit board is a stepped surface and whether or not there is a notch at the edge of the circuit board is input to the controller 180. Therefore, the control device 28 determines in which mode, the first mode or the second mode, the thickness of the circuit board is calculated for the circuit board to be worked, based on the information. Then, the control device 28 selectively executes either the determined first mode or the second mode. This makes it possible to reduce the burden on the operator.
 また、上記実施例では、回路基板がバックアップブロック91により支持されているが、バックアップピンにより支持されてもよい。このような場合には、バックアップピンの上端の高さが、ストッパ124を用いて演算される。 Further, in the above embodiment, the circuit board is supported by the backup block 91, but it may be supported by the backup pin. In such a case, the height of the upper end of the backup pin is calculated using the stopper 124.
 また、上記実施例では、バックアップブロック91の上面の高さX,Xが、基板昇降装置54の電磁モータ108のエンコーダの出力値に基づいて測定されているが、距離センサなどにより測定されてもよい Further, in the above embodiment, the heights X A and X B of the upper surface of the backup block 91 are measured based on the output value of the encoder of the electromagnetic motor 108 of the board elevating device 54, but are measured by a distance sensor or the like. May
 また、上記実施例では、印刷機10において回路基板の厚さ寸法が演算されているが、回路基板に対する作業を行う各種の作業機、例えば、部品の装着作業を実行する作業機,回路基板の検査を行う作業機等において回路基板の厚さ寸法が演算されてもよい。 Further, in the above embodiment, the thickness dimension of the circuit board is calculated in the printing machine 10, but various working machines that perform work on the circuit board, for example, a working machine that executes mounting work of parts, and a circuit board. The thickness dimension of the circuit board may be calculated in a working machine or the like for inspection.
 10:印刷機(対基板作業機)  28:制御装置(演算装置)  50:コンベア装置(搬送装置)  52:基板保持装置(クランプ装置)  54:基板昇降装置(昇降装置)  124:ストッパ(接触体)  200:下端面  204:段差面  230:クランプ部(クランプ工程)  232:上昇部(上昇工程)  234:測定部(測定工程)  236:演算部(演算工程) 10: Printing machine (anti-board work machine) 28: Control device (calculation device) 50: Conveyor device (conveyor device) 52: Board holding device (clamp device) 54: Board lifting device (lifting device) 124: Stopper (contact body) ) 200: Lower end surface 204: Step surface 230: Clamp part (clamp process) 232: Rise part (rise process) 234: Measurement unit (measurement process) 236: Calculation unit (calculation process)

Claims (4)

  1.  基板を下面から支持する支持部材と、
     前記支持部材により支持された状態の基板をクランプするクランプ装置と、
     前記支持部材を前記クランプ装置とともに昇降させる昇降装置と、
     前記支持部材の上方の所定の高さで位置決めされ、前記支持部材が前記昇降装置により上昇することで、前記支持部材若しくは、前記支持部材に支持された基板に接触する接触体と、
     前記支持部材が前記接触体に接触した際の支持部材の高さと、前記支持部材に支持された基板が前記接触体に接触した際の支持部材の高さとの差に基づいて、前記支持部材に支持された基板の厚さを演算する演算装置と、
     を備える対基板作業機。
    A support member that supports the board from the bottom surface,
    A clamping device that clamps the substrate in a state of being supported by the support member, and
    An elevating device that raises and lowers the support member together with the clamp device,
    A contact body that is positioned above the support member at a predetermined height and that the support member is raised by the elevating device to come into contact with the support member or a substrate supported by the support member.
    Based on the difference between the height of the support member when the support member comes into contact with the contact body and the height of the support member when the substrate supported by the support member comes into contact with the contact body, the support member An arithmetic unit that calculates the thickness of the supported substrate,
    With anti-board working machine.
  2.  基板を搬送する搬送装置を備え、
     前記接触体が、
     前記クランプ装置による基板のクランプ位置まで前記搬送装置に搬送された基板に当接するストッパとして機能する請求項1に記載の対基板作業機。
    Equipped with a transport device to transport the board
    The contact body
    The anti-board working machine according to claim 1, which functions as a stopper that abuts on the substrate conveyed to the conveying device to the clamping position of the substrate by the clamping device.
  3.  前記接触体が、下端面と、下端面より上方に位置する段差面とを有し、
     前記演算装置が、
     前記支持部材が前記接触体の下端面に接触した際の支持部材の高さと、前記支持部材に支持された基板が前記接触体の下端面に接触した際の支持部材の高さとの差に基づいて、前記支持部材に支持された基板の厚さを演算することと、前記支持部材が前記接触体の段差面に接触した際の支持部材の高さと、前記支持部材に支持された基板が前記接触体の段差面に接触した際の支持部材の高さとの差に基づいて、前記支持部材に支持された基板の厚さを演算することとの何れかを選択的に実行する請求項1または請求項2に記載の対基板作業機。
    The contact body has a lower end surface and a stepped surface located above the lower end surface.
    The arithmetic unit
    Based on the difference between the height of the support member when the support member contacts the lower end surface of the contact body and the height of the support member when the substrate supported by the support member contacts the lower end surface of the contact body. The thickness of the substrate supported by the support member is calculated, the height of the support member when the support member comes into contact with the stepped surface of the contact body, and the substrate supported by the support member are described above. 1. The anti-board working machine according to claim 2.
  4.  支持部材により支持された状態の基板をクランプするクランプ工程と、
     前記クランプ工程においてクランプされた基板を前記支持部材とともに上昇させる上昇工程と、
     前記上昇工程において上昇させられる基板が、前記支持部材の上方の所定の高さで位置決めされている接触体に接触した際の前記支持部材の高さを測定する測定工程と、
     基板を支持していない状態の前記支持部材が前記接触体に接触する際の支持部材の高さと、前記測定工程において測定された前記支持部材の高さとの差に基づいて、前記支持部材に支持された基板の厚さを演算する演算工程と、
     を含む演算方法。
    The clamping process for clamping the substrate supported by the support member,
    In the ascending step of raising the clamped substrate together with the supporting member in the clamping step,
    A measurement step of measuring the height of the support member when the substrate raised in the ascending step comes into contact with a contact body positioned above the support member at a predetermined height.
    Supported by the support member based on the difference between the height of the support member when the support member in a state of not supporting the substrate comes into contact with the contact body and the height of the support member measured in the measurement step. An arithmetic process that calculates the thickness of the board,
    Operation method including.
PCT/JP2020/034253 2020-09-10 2020-09-10 Substrate work machine WO2022054191A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022548310A JPWO2022054191A1 (en) 2020-09-10 2020-09-10
PCT/JP2020/034253 WO2022054191A1 (en) 2020-09-10 2020-09-10 Substrate work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034253 WO2022054191A1 (en) 2020-09-10 2020-09-10 Substrate work machine

Publications (1)

Publication Number Publication Date
WO2022054191A1 true WO2022054191A1 (en) 2022-03-17

Family

ID=80631825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034253 WO2022054191A1 (en) 2020-09-10 2020-09-10 Substrate work machine

Country Status (2)

Country Link
JP (1) JPWO2022054191A1 (en)
WO (1) WO2022054191A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666549A (en) * 1992-08-24 1994-03-08 Murata Mfg Co Ltd Machine for measuring thickness of plate-shaped work
JP2012066558A (en) * 2010-09-27 2012-04-05 Fuji Mach Mfg Co Ltd Screen printing machine
JP2012145439A (en) * 2011-01-12 2012-08-02 Sumco Corp Apparatus and method for measuring thickness of substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666549A (en) * 1992-08-24 1994-03-08 Murata Mfg Co Ltd Machine for measuring thickness of plate-shaped work
JP2012066558A (en) * 2010-09-27 2012-04-05 Fuji Mach Mfg Co Ltd Screen printing machine
JP2012145439A (en) * 2011-01-12 2012-08-02 Sumco Corp Apparatus and method for measuring thickness of substrate

Also Published As

Publication number Publication date
JPWO2022054191A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
CN108040474B (en) Lifting tool assembly for stencil printer
JPWO2016199207A1 (en) Printing apparatus and substrate working apparatus
JP6622500B2 (en) Transport device
JP4748118B2 (en) Electronic component mounting apparatus and substrate receiving method in electronic component mounting apparatus
JP2014083787A (en) Screen printing method and screen printing apparatus
JP5552012B2 (en) Screen printing machine
JP2014083788A (en) Screen printing apparatus and setting method of base plate clamp position in the same
JP6694778B2 (en) Screen printer
WO2018193773A1 (en) Screen printing device and screen printing method
CN110637508B (en) Measurement position determining device
WO2022054191A1 (en) Substrate work machine
JP7002181B2 (en) Screen printing machine
WO2018109891A1 (en) Substrate transfer device
JP4537223B2 (en) Electronic component mounting device
CN111093996B (en) Screen printing machine
JP4706668B2 (en) Electronic component mounting apparatus and substrate receiving method in electronic component mounting apparatus
US11518621B2 (en) Substrate working machine
JP7389894B2 (en) Printing machines and printing systems
US20220126566A1 (en) Gripping system for variable thickness workpieces
JP4954666B2 (en) Mounting machine and component mounting system using the same
EP3560716B1 (en) Screen printing machine
WO2021130891A1 (en) Substrate conveyance device
KR19980072995A (en) Bad point marking device and bad point marking method
JP2006142646A (en) Screen printing machine
CN111670612A (en) Edge locking assembly for stencil printer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953256

Country of ref document: EP

Kind code of ref document: A1