WO2022054160A1 - Object detecting device, object detecting method, and program - Google Patents

Object detecting device, object detecting method, and program Download PDF

Info

Publication number
WO2022054160A1
WO2022054160A1 PCT/JP2020/034070 JP2020034070W WO2022054160A1 WO 2022054160 A1 WO2022054160 A1 WO 2022054160A1 JP 2020034070 W JP2020034070 W JP 2020034070W WO 2022054160 A1 WO2022054160 A1 WO 2022054160A1
Authority
WO
WIPO (PCT)
Prior art keywords
weighting coefficient
intermediate frequency
radio wave
frequency signal
receiving
Prior art date
Application number
PCT/JP2020/034070
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 山之内
正行 有吉
俊之 野村
達哉 住谷
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2022548288A priority Critical patent/JP7416275B2/en
Priority to PCT/JP2020/034070 priority patent/WO2022054160A1/en
Publication of WO2022054160A1 publication Critical patent/WO2022054160A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Definitions

  • the present invention relates to an object detection device and an object detection method for recognizing or identifying the existence of a detection object by irradiating the detection object with radio waves and detecting the reflected or radiated radio waves from the object.
  • radio waves microwaves, millimeter waves, terahertz waves, etc.
  • Devices that image and inspect articles under clothes and in bags by utilizing the transmission capability of radio waves, and remote sensing technology that transmits clouds from satellites or aircraft to image the ground surface have been put into practical use.
  • An active antenna array system disclosed in Patent Document 1 has been proposed as an imaging device (object detection device) using radio waves.
  • the method will be described with reference to FIG. 24.
  • a transmission / reception device 201 including transmission / reception antennas 202 1 , 202 2 , ..., 202 N is used.
  • the transmission / reception device 201 irradiates the transmission wave (radio wave) 204 toward the detection object 203 from one or more of the transmission / reception antennas 202 1 , 202 2 , ..., 202 N and 202 m .
  • the transmitted wave 204 is reflected by the detection target object 203, and reflected waves 205 1 , 205 2 , ..., 205 N are generated.
  • the generated reflected waves 205 1 , 205 2 , ..., 205 N are received by the transmission / reception antennas 202 1 , 202 2 , ..., 202 N.
  • the transmission / reception device 201 calculates the radio wave amplitude reflected from the detection object 203 based on the received reflected waves 205 1 , 205 2 , ..., 205 N. By imaging the distribution of the radio wave amplitude, it is possible to obtain an image of the detection target object 203.
  • One of the problems with the active array antenna system is that the position of the detectable object 203 that can be detected is limited.
  • the reflected wave 205 generated in the detection object 203 has an amplitude dependence on its reflection angle.
  • the reflection angle satisfies the specular reflection condition, that is, when the incident angle of the transmitted wave 204 on the detection target object 203 and the reflection angle of the reflected wave 205 from the detection target object 203 are equal, the amplitude of the reflected wave 205 becomes. Become the maximum.
  • the reflection angle does not satisfy the specular reflection condition, the amplitude of the reflected wave 205 becomes weak.
  • the position of the detection object 203 deviates from the range of the opening 207 formed by the transmission / reception antennas 202 1 , 202 2 , ..., 202 N , the amplitude satisfying the specular reflection condition. Since the strong reflected wave 206 cannot be received by the transmission / reception antennas 202 1 , 202 2 , ..., 202 N , it becomes difficult to detect the detection target 203. That is, the position of the detectable object 203 that can be detected is limited to the range of the opening 207.
  • the opening 207 is the smallest area including all of the plurality of transmission / reception antennas 202 1 , 202 2 , ..., 202 N.
  • the shape of the opening 207 is determined based on the arrangement of the plurality of transmission / reception antennas 202 1 , 202 2 , ..., 202 N.
  • the shape of the opening 207 is, for example, rectangular, but is not limited thereto.
  • the detection object 203 is out of the range of the opening 207 means that the opening 207 is moved in a direction perpendicular to the plane on which the plurality of transmission / reception antennas 202 1 , 202 2 , ..., 202 N extend. It means that the detection object 203 does not exist in the space composed of the area through which the opening 207 sometimes passes. Further, "the detection object 203 is within the range of the opening 207” means that the detection object 203 exists in the space.
  • a transmitting means equipped with a transmitting antenna that irradiates radio waves toward the object, A receiving antenna for receiving the radio wave reflected from the object, and a receiving means for generating an intermediate frequency signal from the received signal received by the receiving antenna.
  • a reflection condition setting means for setting a desired reflection direction of the radio wave reflected from the object, and A required irradiation distribution calculation means for calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set in the reflection condition unit setting unit.
  • a weighting coefficient calculating means for calculating a weighting coefficient based on the required irradiation distribution calculated by the required irradiation distribution calculating means, and a weighting coefficient calculating means.
  • a weighting coefficient applying means for applying the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave or the intermediate frequency signal, and a weighting coefficient applying means.
  • An object detecting means for detecting the object based on the intermediate frequency signal, An object detection device characterized by being provided with the above is provided.
  • the computer The step of irradiating radio waves from the transmitting antenna toward the object, In the receiving antenna, the step of receiving the radio wave reflected from the object by the receiving antenna and further generating an intermediate frequency signal from the received signal received by the receiving antenna.
  • a transmitting means equipped with a transmitting antenna that irradiates radio waves toward the object, A receiving antenna for receiving the radio wave reflected from the object, and a receiving unit means for generating an intermediate frequency signal from the receiving signal received by the receiving antenna.
  • An object detection device equipped with Reflection condition setting means for setting a desired reflection direction of the radio wave reflected from the object, A required irradiation distribution calculation means for calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set in the reflection condition unit setting unit.
  • a weighting coefficient calculating means for calculating a weighting coefficient based on the required irradiation distribution calculated by the required irradiation distribution calculating means,
  • a weighting coefficient applying means that applies the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave or the intermediate frequency signal, and
  • An object detecting means for detecting an object based on the intermediate frequency signal,
  • a program is provided that functions as.
  • the detectable object by controlling the reflection direction of the radio wave radiated to the object and enabling the detection of the object outside the range of the opening, the detectable object can be detected. It has the effect of eliminating restrictions on the position range and reducing the size of the device.
  • FIG. 1 is a configuration diagram showing a configuration of an object detection device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 3 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 4 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 5 is a flowchart showing an object detection method according to the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of a desired reflection direction of a reflected wave according to the embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of the positional relationship between the object detection device, the radio wave, and the object according to the embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of the reflection direction of the reflected wave in the general technique.
  • FIG. 9 is a diagram illustrating an example of the reflection direction of the reflected wave in the embodiment of the present invention.
  • FIG. 10 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 11 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 12 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 13 is a flowchart showing an object detection method according to the embodiment of the present invention.
  • FIG. 14 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 15 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 16 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 17 is a flowchart showing an object detection method according to the embodiment of the present invention.
  • FIG. 18 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 19 is a diagram illustrating an example of the positional relationship between the object detection device and the object.
  • FIG. 20 is a diagram showing the result of imaging the radio wave amplitude distribution of the reflected wave from the detection target in the conventional method.
  • FIG. 21 is a diagram showing the result of imaging the radio wave amplitude distribution of the reflected wave from the detection object in the embodiment of the present invention.
  • FIG. 22 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 23 is a block diagram showing an example of a computer that realizes the object detection device according to the embodiment of the present invention.
  • FIG. 24 is a conceptual diagram showing the concept of an imaging device (object detection device) using radio waves by an array antenna method in general technology.
  • FIG. 25 is a conceptual diagram showing the position of an object and the reception status of radio waves in an imaging device (object detection device) using radio waves in general technology.
  • the program will be disclosed.
  • the "opening" is the smallest area including all of the transmitting antenna 1202 and the receiving antenna 1203.
  • the shape of the opening is determined based on how the plurality of transmitting antennas 1202 and the receiving antennas 1203 are arranged.
  • the shape of the opening is, for example, rectangular, but is not limited to this.
  • “the object to be detected is out of the range of the opening” is composed of a region through which the opening passes when the opening is moved in a direction perpendicular to the plane on which the plurality of transmitting antennas 1202 and the receiving antenna 1203 extend. It means that there is no detection target in the space. Further, "the detection target is within the opening range” means that the detection target exists in the above space.
  • the object detection device 1000 in the present embodiment shown in FIG. 1 is a device for detecting an object by radio waves. As shown in FIG. 1, the object detection device 1000 includes a transmission unit 1101, a reception unit 1102, and an arithmetic unit 1211.
  • the transmission unit 1101 irradiates the radio wave 1002, which is a transmission signal, toward the object (hereinafter referred to as "object") 1003 that exists on the object placement surface 1005 and is to be detected.
  • the receiving unit 1102 receives the radio wave 1004 reflected by the object 1003 as a receiving signal.
  • the receiving unit 1102 further mixes the transmitted signal generated by the transmitting unit 1101 with the received received signal, and is referred to as an intermediate frequency signal (hereinafter referred to as "IF (Intermediate Frequency) signal"). .) Is generated. Specifically, as shown in FIG. 1, the transmission unit 1101 outputs a transmission signal toward the reception unit 1102 via the terminal 1208. The receiving unit 1102 mixes the radio wave reflected and received from the object 1003 with the transmission signal obtained via the terminal 1208 to generate an IF signal. Further, the transmission unit 1101 outputs the generated IF signal to the arithmetic unit 1211.
  • IF Intermediate Frequency
  • each transmission unit 1101 and one reception unit 1102 are shown, but a plurality of transmission unit 1101 and reception unit 1102 may actually be provided.
  • each of the plurality of reception units 1102 corresponds to any of the transmission units 1101.
  • FIGS. 2 to 3 will be used to more specifically explain the configuration of the transmission / reception device 1001 in the object detection device 1000 according to the first embodiment.
  • FIG. 2 is a diagram specifically showing the configuration of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the first embodiment of the present invention.
  • FIG. 3 is a diagram specifically showing the configuration of another example of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the first embodiment of the present invention.
  • the transmission unit 1101 in the first embodiment, includes an oscillator 1201, a variable amplitude phase detector 1207, and a transmission antenna 1202. Further, the receiving unit 1102 includes a receiving antenna 1203, a mixer 1204, and an interface circuit 1205. Further, as shown in FIG. 1, the transmission unit 1101 and the reception unit 1102 are connected to each other via the terminal 1208.
  • one receiving unit 1102 may be provided with a plurality of receiving antennas 1203 and mixer 1204.
  • the oscillator 1201 In the transmission unit 1101, the oscillator 1201 generates an RF signal (radio wave).
  • the RF signal generated by the oscillator 1201 is output after changing the amplitude and phase to desired values in the variable amplitude phase detector 1207.
  • the RF signal (radio wave) output from the variable amplitude phase device 1207 is applied to the object 1003 as a radio wave 1002 from the transmitting antenna 1202.
  • the radio wave 1004 reflected by the object 1003 is received by the receiving antenna 1203 in the receiving unit 1102.
  • the mixer 1204 generates an IF signal by mixing the RF signal input from the oscillator 1201 via the terminal 1208 and the radio wave (received signal) received by the receiving antenna 1203.
  • the IF signal generated by the mixer 1204 is transmitted to the arithmetic unit 1211 via the interface circuit 1205.
  • the interface circuit 1205 has a function of converting an IF signal, which is an analog signal, into a digital signal that can be handled by the arithmetic unit 1211, and outputs the obtained digital signal to the arithmetic unit 1211.
  • FIG. 4 shows the internal configuration of the arithmetic unit 1211 in the present embodiment.
  • the arithmetic unit 1211 in the present embodiment includes a reflection condition setting unit 1301, a required irradiation distribution calculation unit 1302, a weighting coefficient calculation unit 1303, a weighting coefficient application unit 1304, and an object detection unit. It is equipped with 1305.
  • FIG. 5 is a flow chart showing the operation of the object detection device according to the first embodiment of the present invention.
  • FIGS. 1 to 4 will be referred to as appropriate.
  • the object detection method is implemented by operating the object detection device 1000. Therefore, the description of the object detection method in the first embodiment is replaced with the following description of the operation of the object detection device 1000.
  • the reflection condition setting unit 1301 sets the reflection condition (step A1).
  • the required irradiation distribution calculation unit 1302 calculates the required value of the irradiation distribution in the detection target object 1003 based on the information of the reflection condition output from the reflection condition setting unit 1301 (step A2).
  • the weighting coefficient calculation unit 1303 calculates the weighting coefficient based on the required value of the irradiation distribution in the detection target object 1003 output by the required irradiation distribution calculation unit 1302 (step A3).
  • the weighting coefficient application unit 1304 controls the variable amplitude phase detector 1207 in the transmission unit 1101 based on the weighting coefficient calculated by the weighting coefficient calculation unit 1303, and the amplitude and phase of the RF signal output from the oscillator 1201. Is set to a desired value (step A4).
  • the transmission unit 1101 irradiates the object 1003 with a radio wave that becomes a transmission signal (step A5). Further, the transmission unit 1101 outputs the transmission signal to the reception unit 1102 via the terminal 1208 at the same time as irradiating the radio wave that becomes the transmission signal.
  • the reception antenna 1203 of the reception unit 1102 receives the radio wave reflected from the object 1003 as a reception signal (step A6).
  • the transmission / reception device 1001 mixes the transmission signal generated by the transmission unit 1101 with the reception signal received by each reception antenna 1203 of the reception unit 1102 to generate an IF signal (step A7).
  • the object detection unit 1305 detects the object 1003 based on the IF signal generated by the reception unit 1102 (step A8).
  • steps A1 to A4 are processes independent of measurement, and steps A5 to A8 are processes linked to measurement. Steps A1 to A4 need to be processed only once before the measurement unless the positions of the transmitting antenna 1202 and the receiving antenna 1203 and the RF frequency of the transmitting signal transmitted from the transmitting antenna 1202 are changed. On the other hand, steps A5 to A8 are executed for each measurement.
  • the weighting coefficient calculated in step A3 may be stored in the recording device in the weighting coefficient application unit 1304, and the weighting coefficient may be read out from the recording device at the time of measurement executed in steps A5 to A8. good. That is, it is not necessary to recalculate the weighting coefficient for each measurement in steps A5 to A8.
  • Step A1 First, the scan position where the object detection device 1000 scans, the direction of the detection object 1003 assumed at each scan position, and the reflection direction of the radio wave 1004 reflected from the detection object 1003 desired at each scan position (desired). Information on reflection conditions including the reflection direction) is input in advance. The user can enter this information. The reflection condition setting unit 1301 sets the reflection condition indicated by the input information.
  • the x-axis is set with reference to the orientation of the detection target object 1003. Then, the scan position is specified by the x coordinate. Further, for each scan position, the desired reflection direction is specified by the rotation angle ⁇ from the direction perpendicular to the x-axis.
  • the scan position can be any position you want to scan.
  • the desired reflection direction is set so that the installation positions of the plurality of transmitting antennas 1202 and the receiving antenna 1203 exist ahead of the direction.
  • Step A2 The operation of the required irradiation distribution calculation unit 1302 in step A2 will be described based on an example of the position (scan position) of the detection object 1003 shown in FIG. 6 and the desired reflection direction at that position.
  • the radio wave 1002 is irradiated to the detection target object 1003, and the complex amplitude (hereinafter referred to as irradiation distribution) h'(x) at the position x on the detection target object 1003 of the irradiated radio wave 1002 satisfies the following equation (1).
  • the radio wave 1004 is reflected in the desired reflection direction (angle ⁇ ).
  • j is an imaginary unit
  • f is the frequency of the transmitted radio wave 1002
  • x is the value on the x-axis of the scan position on the detection object 1003
  • c is the speed of light.
  • the required irradiation distribution calculation unit 1302 determines the desired reflection direction of the radio wave 1004 determined by the scan position x output from the reflection condition setting unit 1301, the assumed orientation of the detection object 1003, and the positional relationship between the transmitting antenna 1202 and the receiving antenna 1203. Using (angle ⁇ ), the required irradiation distribution h'(x) on the detection target 1003 is calculated according to the equation (1). The required irradiation distribution calculation unit 1302 can calculate the required irradiation distribution h'(x) for each scan position x based on the desired reflection direction at each scan position.
  • the direction matrix ATX of the transmitting antenna 1202 is defined by the following equation (2).
  • the subscript T represents the transpose of the vector.
  • the weighting coefficient calculation unit 1303 calculates the weighting coefficient vector g based on the following equation (4) using the required irradiation distribution h'(x) on the detection object 1003 output from the required irradiation distribution calculation unit 1302. do.
  • (A TX T ) -1 is the inverse matrix of A TX T. If the number M of the transmitting antenna 1202 and the score of the position x do not match, the generalized inverse matrix of AT - T may be used instead of the inverse matrix of AT- T .
  • the complex amplitude of the radio wave 1002 to be generated is multiplied by g m . That is, the amplitude of the radio wave 1002 is multiplied (absolute value of g m ), and the phase of the radio wave 1002 is shifted by ⁇ g m .
  • the radio wave 1002 is simultaneously transmitted from (M) to the object 1003.
  • the complex amplitude s RX (n) of the radio wave 1004 received by the receiving antenna 1203 n is given by the following equation (5).
  • ⁇ (x) is the reflectance of the object 1003 at the position x.
  • step A7 the transmission / reception device 1001 mixes the transmission signal generated by the transmission unit 1101 with the reception signal received by each reception antenna 1203 of the reception unit 1102 to generate an IF signal.
  • the IF signal s'IF (n) generated via the receiving antenna 1203 n has a complex amplitude of the radio wave 1004 received by the receiving antenna 1203 n of the formula (5) as shown by the following formula (6).
  • the object 1003 has the transmitting antenna 1202 and the receiving antenna 1203 as shown in FIG.
  • the receiving antenna 1203 can receive the radio wave 1004 even if it is out of the range of the opening configured by.
  • the object detection device 1000 can detect the object 1003 even when the object 1003 is out of the range of the opening composed of the transmitting antenna 1202 and the receiving antenna 1203.
  • FIG. 8 shows the reflection direction of the radio wave 1004 in the conventional method.
  • the radio wave 1002 is irradiated from the transmitting antenna 1202 to the object 1003 without applying the weighting by the weighting coefficient used in the embodiment of the present invention.
  • the transmitted radio wave 1002 is reflected by the mirror surface of the object 1003, and the radio wave 1004 is reflected in the direction opposite to that of the transmitted radio wave 1002.
  • FIG. 9 shows the reflection direction of the radio wave 1004 when the embodiment of the present invention is applied.
  • the weighting by the weighting coefficient used in the embodiment of the present invention is applied, and the radio wave 1002 is irradiated from the transmitting antenna 1202 to the object 1003. In this case, by applying the weighting by the weighting coefficient, the reflection direction of the radio wave 1004 can be directed to the existing direction of the transmitting antenna 1202.
  • the receiving antenna 1203 can receive the radio wave 1004. That is, in the embodiment of the present invention, the detectable range of the object 1003 is extended to the outside of the opening by controlling the reflection direction of the radio wave 1004 in a direction that can be received by the receiving antenna 1203 by weighting with a weighting coefficient. .. Further, in the embodiment of the present invention, since the limitation of the detectable range by the opening size is removed, the opening size can be reduced, and the cost and size of the device can be reduced.
  • the configuration of the object detection device will be described. Also in the second embodiment, as in the first embodiment, the reflection direction of the radio wave 1004 reflected from the object 1003 is controlled in a desired direction by applying the weighting by the weighting coefficient.
  • the variable amplitude phase detector 1207 mounted in the transmitting unit 1101 applies weighting by a weighting coefficient, whereas in the second embodiment, the variable amplitude phase mounted in the receiving unit 1102 is applied. The weighting by the weighting coefficient is applied by the device 1207.
  • the object detection device 1000 in the second embodiment is realized by the device having the configuration shown in FIG. 1, as in the first embodiment.
  • FIGS. 10 to 11 will be used to more specifically explain the configuration of the transmission / reception device 1001 in the object detection device 1000 according to the second embodiment.
  • FIG. 10 is a diagram specifically showing the configuration of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the second embodiment of the present invention.
  • FIG. 11 is a diagram specifically showing the configuration of another example of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the second embodiment of the present invention.
  • the transmission unit 1101 includes an oscillator 1201, a transmission antenna 1202, and a switch 1206 for switching the transmission antenna 1202 to be used.
  • the receiving unit 1102 includes a receiving antenna 1203, a mixer 1204, an interface circuit 1205, and a variable amplitude phase detector 1207.
  • variable amplitude phase detector 1207 is provided in front of the mixer 1204.
  • variable amplitude phase detector 1207 may be provided after the mixer 1204.
  • the RF signal generated by the oscillator 1201 is transmitted as a transmission signal from at least one transmission antenna 1202 selected by the switch 1206, and is irradiated to the object 1003.
  • the radio wave reflected by the object 1003 is received by the receiving antenna 1203 at the receiving unit 1102.
  • the mixer 1204 generates an IF signal by mixing the RF signal input from the oscillator 1201 via the terminal 1208 and the radio wave (received signal) received by the receiving antenna 1203.
  • the amplitude or phase of the IF signal is set to a desired value by the variable amplitude phase detector 1207 provided in the front stage or the rear stage of the mixer 1204.
  • the IF signal is transmitted to the arithmetic unit 1211 via the interface circuit 1205.
  • the interface circuit 1205 has a function of converting an IF signal, which is an analog signal, into a digital signal that can be handled by the arithmetic unit 1211, and outputs the obtained digital signal to the arithmetic unit 1211.
  • FIG. 12 shows the internal configuration of the arithmetic unit 1211 in the present embodiment.
  • the arithmetic unit 1211 in the present embodiment includes a reflection condition setting unit 1301, a required irradiation distribution calculation unit 1302, a weighting coefficient calculation unit 1303, a weighting coefficient application unit 1304, and an object detection unit. It is equipped with 1305.
  • FIG. 13 A flow chart showing the operation of the object detection device 1000 in the second embodiment is shown in FIG. In the flow chart of the second embodiment shown in FIG. 13, step B1 is added to the flow chart of the first embodiment shown in FIG.
  • steps A1 to A3 in the second embodiment are common to steps A1 to A3 described in FIG. 5 of the first embodiment, the description will not be repeated.
  • variable amplitude phase device 1207 the same amount of amplitude gain and phase shift of the variable amplitude phase device 1207 is applied to all the receiving antennas 1203 n (that is, the complex amplitude of the IF signal obtained via all the receiving antennas 1203 n is uniformly applied. It is multiplied by g m ).
  • step A7 the transmission / reception device 1001 mixes the transmission signal generated by the transmission unit 1101 with the reception signal received by each reception antenna 1203 of the reception unit 1102 to generate an IF signal.
  • the IF signal s IF (m, n) transmitted by the transmitting antenna 1202 m and generated via the receiving antenna 1203 n is given by the following equation (7).
  • step B1 the weighting coefficient application unit 1304 takes the sum of the IF signals s IF (m, n) obtained in step A7, and the weighted IF signal s'IF (n) according to the following equation (8). ) Is generated.
  • the weighted IF signal s'IF (n) of the second embodiment given by the formula (9) coincides with the IF signal s'IF (n) of the first embodiment given by the formula (6).
  • step A8 the object detection unit 1305 detects the object 1003 based on the weighted IF signal s'IF (n) obtained in step B1.
  • the IF signal s'IF (n) of the formula (6) is used in the first embodiment, and the weighted IF signal of the formula (9) is used in the second embodiment.
  • s'IF (n) is used.
  • step B1 of the second embodiment since the IF signal s'IF (n) of the equation (6) and the weighted IF signal s'IF (n) of the equation (9) are the same, in step A8.
  • the detection result of the object 1003 is the same in the first embodiment and the second embodiment.
  • the reflection direction of the radio wave 1004 reflected from the object 1003 is controlled in a desired direction by applying the weighting by the weighting coefficient.
  • the weighting by the weighting coefficient is applied in the circuit mounted by the variable amplitude phase detector 1207, whereas in the third embodiment, the weighting by the weighting coefficient is applied in the signal processing in the arithmetic unit 1211. do.
  • the object detection device 1000 in the third embodiment is realized by the device having the configuration shown in FIG. 1, as in the first embodiment.
  • FIGS. 14 to 15 will be used to more specifically explain the configuration of the transmission / reception device 1001 in the object detection device 1000 according to the third embodiment.
  • FIG. 14 is a diagram specifically showing the configuration of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the third embodiment of the present invention.
  • FIG. 15 is a diagram specifically showing the configuration of another example of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the third embodiment of the present invention.
  • the transmission unit 1101 includes an oscillator 1201, a transmission antenna 1202, and a switch 1206 for switching the transmission antenna 1202 to be used.
  • the receiving unit 1102 includes a receiving antenna 1203, a mixer 1204, and an interface circuit 1205.
  • one receiving unit 1102 may be provided with a plurality of receiving antennas 1203 and mixer 1204.
  • the RF signal generated by the oscillator 1201 is transmitted as a transmission signal from at least one transmission antenna 1202 selected by the switch 1206, and is irradiated to the object 1003.
  • the radio wave reflected by the object 1003 is received by the receiving antenna 1203 at the receiving unit 1102.
  • the mixer 1204 generates an IF signal by mixing the RF signal input from the oscillator 1201 via the terminal 1208 and the radio wave (received signal) received by the receiving antenna 1203.
  • the IF signal generated by the mixer 1204 is transmitted to the arithmetic unit 1211 via the interface circuit 1205.
  • the interface circuit 1205 has a function of converting an IF signal, which is an analog signal, into a digital signal that can be handled by the arithmetic unit 1211, and outputs the obtained digital signal to the arithmetic unit 1211.
  • FIG. 16 shows the internal configuration of the arithmetic unit 1211 in the present embodiment.
  • the arithmetic unit 1211 in the present embodiment includes a reflection condition setting unit 1301, a required irradiation distribution calculation unit 1302, a weighting coefficient calculation unit 1303, a weighting coefficient application unit 1304, and an object detection unit. It is equipped with 1305.
  • FIG. 17 is a flow chart showing the operation of the object detection device 1000 according to the third embodiment of the present invention.
  • step A4 is deleted from the flow chart of the first embodiment shown in FIG. 5, and step B2 is added.
  • steps A1 to A3 in the third embodiment are common to steps A1 to A3 described in FIG. 5 of the first embodiment, the description will not be repeated.
  • the complex amplitude s RX (m, n) of the radio wave 1004 received by the receiving antenna 1203 n when the transmitting antenna 1202 m transmits is given by the following equation (10).
  • step A7 the transmission / reception device 1001 mixes the transmission signal generated by the transmission unit 1101 with the reception signal received by each reception antenna 1203 of the reception unit 1102 to generate an IF signal.
  • the IF signal s IF (m, n) transmitted by the transmitting antenna 1202 m and generated via the receiving antenna 1203 n is a complex number of the radio wave 1004 of the equation (10) as shown by the following equation (11). Consistent with the amplitude s RX (n).
  • step B2 After step A7, in step B2, the weighting coefficient application unit 1304 uses the IF signal s IF ( m , n) obtained in step A7 and the weighting coefficient gm obtained in step A3 according to the following equation (12). The weighted IF signal s'IF (n) is generated.
  • the weighted IF signal s'IF (n) of the third embodiment given by the formula (13) coincides with the IF signal s'IF (n) of the first embodiment given by the formula (6).
  • step A8 the object detection unit 1305 detects the object 1003 based on the weighted IF signal s'IF (n) obtained in step B2.
  • the IF signal s'IF (n) of the formula (6) is used in the first embodiment, and the weighted IF signal of the formula (13) is used in the third embodiment.
  • s'IF (n) is used.
  • step B2 of the third embodiment since the IF signal s'IF (n) of the equation (6) and the weighted IF signal s'IF (n) of the equation (13) are the same, in step A8.
  • the detection result of the object 1003 is the same in the first embodiment and the third embodiment.
  • the object detection unit 1305 includes an object image generation unit 1401, an object image database 1402, and an object image collation unit 1403.
  • the object image generation unit 1401 generates an image of the object 1003 by using the IF signal s'IF (n) in the first embodiment to the second embodiment.
  • the object image database 1402 stores data showing the relationship between the image of the object 1003 measured in advance and the type of the object 1003.
  • the object image collation unit 1403 collates the image of the object 1003 generated by the object image generation unit 1401 with the image of the object 1003 stored in the object image database 1402, and types of the object 1003. Is output as an object detection result.
  • the object image database 1402 and the object image collating unit 1403 may be omitted.
  • the object detection unit 1305 outputs an image of the object 1003 output from the object image generation unit 1401 via an output device such as a display, and then the type of the object 1003 included in the image from the user. You may accept the input of. The user visually confirms the output image, identifies the type of the object 1003, and inputs the identified result.
  • the beam former method can be mentioned.
  • the scan position x is used by using the IF signal s'IF (n, f) in the first embodiment to the second embodiment obtained when the measurement is performed using the transmitted radio wave 1002 having the frequency f.
  • the complex amplitude P (x) of the image of the object 1003 in the above is calculated according to the following equation (14).
  • an example of the image intensity of the object 1003 in the conventional method in which the weighting by the weighting coefficient is not applied, and an example of the image intensity of the object 1003 in the case where the weighting by the weighting coefficient is applied in the fourth embodiment, respectively. show.
  • the image intensities when the object 1003 1 exists in the opening composed of the transmitting antenna 1202 and the receiving antenna 1203 and when the object 1003 2 exists outside the opening are shown.
  • FIG. 20 shows the results of calculating the image intensities of the object 1003 1 in the opening and the object 1003 2 outside the opening by the conventional method to which the weighting by the weighting coefficient is not applied.
  • the image intensity disappears.
  • the image intensity of the object 1003 2 outside the opening disappears. There is a problem.
  • FIG. 21 shows the results of calculating the image intensities of the object 1003 1 in the opening and the object 1003 2 outside the opening when weighting by a weighting coefficient is applied in the fourth embodiment.
  • the IF signal s'IF (n,) having sufficient strength from the reflected radio wave 1004 for both the object 1003 1 in the opening and the object 1003 2 outside the opening is weighted by the weighting coefficient.
  • the object detection unit 1305 includes an object IF signal database 1501 and an object IF signal collation unit 1502.
  • the object IF signal database 1501 stores data showing the relationship between the measurement result of the IF signal of the object 1003 obtained in advance and the type of the object 1003.
  • the object IF signal collation unit 1502 is input with the IF signal s'IF (n) in the first embodiment to the second embodiment obtained by the measurement.
  • the object IF signal collation unit 1502 collates the IF signal obtained by the measurement with the IF signal stored in the object IF signal database 1501, and outputs the type of the object 1003 as the object detection result.
  • FIG. 23 is a block diagram showing an example of a computer that realizes the object detection device 1000 according to the embodiment of the present invention.
  • the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. Each of these parts is connected to each other via a bus 121 so as to be capable of data communication.
  • the CPU 111 expands the program (code) in the present embodiment stored in the storage device 113 into the main memory 112, and executes these in a predetermined order to perform various operations.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program in the present embodiment is provided in a state of being stored in a computer-readable recording medium 120.
  • the program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
  • the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and mouse.
  • the display controller 115 is connected to the display device 119 and controls the display on the display device 119.
  • the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
  • the data reader / writer 116 mediates the data transmission between the CPU 111 and the recording medium 120, reads the program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include a general-purpose semiconductor storage device such as CF (CompactFlash (registered trademark)) and SD (SecureDigital), a magnetic recording medium such as a flexible disk, or a CD-.
  • CF CompactFlash (registered trademark)
  • SD Secure Digital
  • magnetic recording medium such as a flexible disk
  • CD- CompactDiskReadOnlyMemory
  • optical recording media such as ROM (CompactDiskReadOnlyMemory).
  • the object detection device 1000 in the present embodiment can also be realized by using hardware corresponding to each part instead of the computer in which the program is installed. Further, the object detection device may be partially realized by a program and the rest may be realized by hardware.
  • the radio wave 1002 is irradiated to the object 1003 so that the reflection direction of the radio wave 1004 reflected from the object 1003 becomes a desired value.
  • the weighting coefficient calculation unit 1303 and the weighting application unit 1304 weight the radio waves 1002 emitted from the transmitting antenna 1202 and the radio waves 1004 to IF signals received by the receiving antenna 1203 so that the irradiation state is realized.
  • the reflection direction of the radio wave 1004 reflected from the object 1003 can be controlled to a desired value.
  • the radio wave 1004 reflected from the object 1003 can be received by the receiving antenna 1203, so that the object 1003
  • the detectable range of is extended to the outside of the opening. Further, in the embodiment of the present invention, since the limitation of the detectable range by the opening size is removed, the opening size can be reduced, and the size and cost of the device can be reduced.
  • a transmitting means equipped with a transmitting antenna that irradiates radio waves toward the object, A receiving antenna for receiving the radio wave reflected from the object, and a receiving means for generating an intermediate frequency signal from the received signal received by the receiving antenna.
  • a reflection condition setting means for setting a desired reflection direction of the radio wave reflected from the object, and A required irradiation distribution calculation means for calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set in the reflection condition unit setting unit.
  • a weighting coefficient calculating means for calculating a weighting coefficient based on the required irradiation distribution calculated by the required irradiation distribution calculating means, and a weighting coefficient calculating means.
  • a weighting coefficient applying means for applying the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave or the intermediate frequency signal, and a weighting coefficient applying means.
  • An object detecting means for detecting the object based on the intermediate frequency signal, An object detection device characterized by being equipped with. 2. 2. The object detecting means includes an object image generating means for generating an image of the object from the intermediate frequency signal. The object detection device according to 1, characterized in that. 3. 3. The object detecting means includes an object image database and an object image collating means.
  • the object image database holds data showing the relationship between the image of the object and the type of the object obtained in advance.
  • the object image collating means outputs the type of the object by collating the image of the object generated by the object image generating means with the image of the object held by the object image database.
  • the object detection device includes an object intermediate frequency signal database and an object intermediate frequency signal collating means.
  • the object intermediate frequency signal database holds data showing the relationship between the measurement result of the intermediate frequency signal of the object obtained in advance and the type of the object.
  • the object intermediate frequency signal matching means outputs the type of the object by collating the intermediate frequency signal of the object obtained by measurement with the intermediate frequency signal of the object held by the object intermediate frequency signal database. do, The object detection device according to 1, characterized in that. 5.
  • the transmission means includes a variable amplitude phase detector.
  • the weighting coefficient applying means controls the variable amplitude phase device in the transmitting means, and applies the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave transmitted by the transmitting antenna.
  • the object detection device according to 1 to 4, wherein the object is detected.
  • the receiving means includes a variable amplitude phase detector.
  • the weighting coefficient applying means controls the variable amplitude phase device in the receiving means, and the radio wave received by the receiving antenna or the receiving means generates the weighting by the weighting coefficient calculated by the weighting coefficient calculating means.
  • Applies to intermediate frequency signals The object detection device according to 1 to 4, wherein the object is detected.
  • the receiving means includes an interface circuit for digitizing the intermediate frequency signal.
  • the weighting coefficient applying means applies the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the intermediate frequency signal digitized in the interface circuit.
  • the object detection device according to 1 to 4, wherein the object is detected.
  • the weighting coefficient applying means includes a recording device for storing the weighting coefficient.
  • the weighting coefficient applying means reads out the weighting coefficient stored from the recording device when applying the weighting by the weighting coefficient.
  • the computer The step of irradiating radio waves from the transmitting antenna toward the object, In the receiving antenna, the step of receiving the radio wave reflected from the object by the receiving antenna and further generating an intermediate frequency signal from the received signal received by the receiving antenna. A step of setting a desired reflection direction of the radio wave reflected from the object, and A step of calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set, and a step of calculating the required irradiation distribution.
  • a transmitting means equipped with a transmitting antenna that irradiates radio waves toward the object, A receiving antenna for receiving the radio wave reflected from the object, and a receiving unit means for generating an intermediate frequency signal from the receiving signal received by the receiving antenna.
  • An object detection device equipped with Reflection condition setting means for setting a desired reflection direction of the radio wave reflected from the object, A required irradiation distribution calculation means for calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set in the reflection condition unit setting unit.
  • a weighting coefficient calculating means for calculating a weighting coefficient based on the required irradiation distribution calculated by the required irradiation distribution calculating means,
  • a weighting coefficient applying means that applies the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave or the intermediate frequency signal, and
  • An object detecting means for detecting an object based on the intermediate frequency signal, A program that functions as.
  • Object detection device 1001 Transmission / reception device 1002 Radio wave (transmission signal) 1003 Object (object to be detected) 1004 radio wave (received signal) 1005 Object placement surface 1101 Transmitter 1102 Receiver 1201 Oscillator 1202 Transmitter antenna 1203 Receiver antenna 1204 Mixer 1205 Interface circuit 1206 Switch 1207 Variable amplitude phase device 1208 Terminal 1211 Computing device 1301 Reflection condition setting unit 1302 Requested irradiation distribution calculation unit 1303 Weighting coefficient Calculation unit 1304, 1306 Weighting coefficient application unit 1305 Object detection unit 1401 Object image generation unit 1402 Object image database 1403 Object image collation unit 1501 Object IF signal database 1502 Object IF signal collation unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The present invention is an object detecting device (1000) for detecting an object with radio waves, the object detecting device (1000) characterized by comprising: a transmitting unit (1101) provided with a transmitting antenna for irradiating an object with radio waves; a receiving unit (1102) provided with a receiving antenna for receiving the radio waves reflected from the object, the receiving unit further generating an intermediate frequency signal from a reception signal received with the receiving antenna; a reflection condition setting unit (1301) for setting a desired reflection direction of the radio waves reflected from the object; a required irradiation distribution calculating unit (1302) for calculating, on the basis of the set desired reflection direction, a required radiation distribution of radio waves for irradiating the object; a weighting coefficient calculating unit (1303) for calculating a weighting coefficient on the basis of the calculated required radiation distribution; a weighting coefficient applying unit (1304) for applying, to the radio waves or the intermediate frequency signal, a weight in accordance with the weighting coefficient calculated by the weighting coefficient calculating unit (1303); and a target detecting unit (1305) for detecting the object on the basis of the intermediate frequency signal.

Description

物体検知装置、物体検知方法及びプログラムObject detection device, object detection method and program
 本発明は、電波を検知対象物に照射し、対象物からの反射ないし放射された電波を検知する事で検知対象物の存在を認識ないし識別するための物体検知装置および物体検知方法に関する。 The present invention relates to an object detection device and an object detection method for recognizing or identifying the existence of a detection object by irradiating the detection object with radio waves and detecting the reflected or radiated radio waves from the object.
 電波(マイクロ波、ミリ波、テラヘルツ波など)は、光と異なり、物体を透過する能力が優れている。電波の透過能力を活用し、衣服下や鞄内の物品を画像化して検査する装置や、衛星ないし航空機から雲を透過して地表を画像化するリモートセンシング技術が実用化されている。 Unlike light, radio waves (microwaves, millimeter waves, terahertz waves, etc.) have an excellent ability to pass through objects. Devices that image and inspect articles under clothes and in bags by utilizing the transmission capability of radio waves, and remote sensing technology that transmits clouds from satellites or aircraft to image the ground surface have been put into practical use.
 電波を用いたイメージング装置(物体検知装置)として特許文献1に開示されたアクティブ型のアンテナアレイ方式が提案されている。ここで図24を用いて当該方式を説明する。図24の概念図で示したアレイアンテナ方式では、送受信アンテナ202、202、・・・、202を備えた送受信装置201が使用される。送受信装置201は、送受信アンテナ202、202、・・・、202の内の一つもしくは複数のアンテナ202から送信波(電波)204を検知対象物203に向けて照射する。送信波204は検知対象物203において反射され、反射波205、205、・・・、205が発生する。発生した反射波205、205、・・・、205は送受信アンテナ202、202、・・・、202において受信される。送受信装置201は、受信した反射波205、205、・・・、205に基づいて検知対象物203から反射されている電波振幅を算出する。その電波振幅の分布を画像化する事で、検知対象物203の像を得る事ができる。 An active antenna array system disclosed in Patent Document 1 has been proposed as an imaging device (object detection device) using radio waves. Here, the method will be described with reference to FIG. 24. In the array antenna system shown in the conceptual diagram of FIG. 24, a transmission / reception device 201 including transmission / reception antennas 202 1 , 202 2 , ..., 202 N is used. The transmission / reception device 201 irradiates the transmission wave (radio wave) 204 toward the detection object 203 from one or more of the transmission / reception antennas 202 1 , 202 2 , ..., 202 N and 202 m . The transmitted wave 204 is reflected by the detection target object 203, and reflected waves 205 1 , 205 2 , ..., 205 N are generated. The generated reflected waves 205 1 , 205 2 , ..., 205 N are received by the transmission / reception antennas 202 1 , 202 2 , ..., 202 N. The transmission / reception device 201 calculates the radio wave amplitude reflected from the detection object 203 based on the received reflected waves 205 1 , 205 2 , ..., 205 N. By imaging the distribution of the radio wave amplitude, it is possible to obtain an image of the detection target object 203.
US2014/0167784 A1US2014 / 0167784 A1
 上述したアクティブ型のアンテナアレイ方式の問題点について説明する。 The problems of the above-mentioned active antenna array method will be explained.
 アクティブ型のアレイアンテナ方式の問題点の一つは、検出可能な検知対象物203の位置が限定される事である。 One of the problems with the active array antenna system is that the position of the detectable object 203 that can be detected is limited.
 上記の点について具体的に説明する。検知対象物203において発生する反射波205は、その反射角度に対する振幅依存性を持つ。特に反射角度が鏡面反射条件を満たす場合、すなわち検知対象物203への送信波204の入射角度と、検知対象物203からの反射波205の反射角度が等しくなる場合に、反射波205の振幅が最大になる。一方で、反射角度が鏡面反射条件を満たさない場合、反射波205の振幅は微弱になる。 The above points will be explained concretely. The reflected wave 205 generated in the detection object 203 has an amplitude dependence on its reflection angle. In particular, when the reflection angle satisfies the specular reflection condition, that is, when the incident angle of the transmitted wave 204 on the detection target object 203 and the reflection angle of the reflected wave 205 from the detection target object 203 are equal, the amplitude of the reflected wave 205 becomes. Become the maximum. On the other hand, when the reflection angle does not satisfy the specular reflection condition, the amplitude of the reflected wave 205 becomes weak.
 図25で示すように、検知対象物203の位置が、送受信アンテナ202、202、・・・、202で形成される開口207の範囲から外れた場合、鏡面反射条件を満たした振幅の強い反射波206を送受信アンテナ202、202、・・・、202で受信できなくなるため、検知対象物203の検出は困難になる。すなわち、検出可能な検知対象物203の位置は開口207の範囲内に限定される。なお、開口207は、複数の送受信アンテナ202、202、・・・、202のすべてを内包する最小の領域である。開口207の形状は複数の送受信アンテナ202、202、・・・、202の配置の仕方に基づき定まる。開口207の形状は例えば矩形であるが、これに限定されない。また『検知対象物203が開口207の範囲から外れる』とは、複数の送受信アンテナ202、202、・・・、202が延在する面に対し垂直な方向に開口207を移動させた時に開口207が通過する領域で構成される空間内に検知対象物203が存在しないことを意味する。また『検知対象物203が開口207の範囲にいる』とは、上記空間内に検知対象物203が存在することを意味する。 As shown in FIG. 25, when the position of the detection object 203 deviates from the range of the opening 207 formed by the transmission / reception antennas 202 1 , 202 2 , ..., 202 N , the amplitude satisfying the specular reflection condition. Since the strong reflected wave 206 cannot be received by the transmission / reception antennas 202 1 , 202 2 , ..., 202 N , it becomes difficult to detect the detection target 203. That is, the position of the detectable object 203 that can be detected is limited to the range of the opening 207. The opening 207 is the smallest area including all of the plurality of transmission / reception antennas 202 1 , 202 2 , ..., 202 N. The shape of the opening 207 is determined based on the arrangement of the plurality of transmission / reception antennas 202 1 , 202 2 , ..., 202 N. The shape of the opening 207 is, for example, rectangular, but is not limited thereto. Further, "the detection object 203 is out of the range of the opening 207" means that the opening 207 is moved in a direction perpendicular to the plane on which the plurality of transmission / reception antennas 202 1 , 202 2 , ..., 202 N extend. It means that the detection object 203 does not exist in the space composed of the area through which the opening 207 sometimes passes. Further, "the detection object 203 is within the range of the opening 207" means that the detection object 203 exists in the space.
 したがって、検知対象物203の検出可能な位置範囲を広く取ろうとした場合、開口207の開口長を大きく取る必要がある。しかし、開口207の開口長を大きく取る事は送受信装置201の大型化につながり、送受信装置201の設置容易性を損なう。また開口207のサイズを大きく取る場合、必要となる送受信アンテナ202、202、・・・、202および送受信アンテナ202と接続する送受信機の数が増大し、送受信装置201のコスト増大につながる。 Therefore, when trying to widen the detectable position range of the detection target object 203, it is necessary to take a large opening length of the opening 207. However, increasing the opening length of the opening 207 leads to an increase in the size of the transmission / reception device 201, which impairs the ease of installation of the transmission / reception device 201. Further, when the size of the opening 207 is large, the number of transceivers connected to the transmission / reception antennas 202 1 , 202 2 , ..., 202 N and the transmission / reception antenna 202, which are required, increases, which leads to an increase in the cost of the transmission / reception device 201. ..
 上記で議論したように、一般的な電波イメージング装置では、検出可能な検知対象物の位置範囲が開口内に制約される。その結果として開口サイズを大きく取る必要があり、装置のサイズとコストが非常に大きくなるという問題がある。このため、実際に使用できる用途や機会は、限定されたものになるという問題がある。 As discussed above, in a general radio wave imaging device, the position range of a detectable object is restricted within the opening. As a result, it is necessary to take a large opening size, and there is a problem that the size and cost of the device become very large. Therefore, there is a problem that the uses and opportunities that can be actually used are limited.
 本発明によれば、
 電波によって物体を検知するための物体検知装置であって、
 前記物体に向けて電波を照射する送信アンテナを備えた送信手段と、
 前記物体から反射された前記電波を受信する受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信手段と、
 前記物体から反射される前記電波の所望反射方向を設定する反射条件設定手段と、
 前記反射条件部設定部において設定された前記所望反射方向に基づいて前記物体に照射されるべき前記電波の要求照射分布を計算する要求照射分布計算手段と、
 前記要求照射分布計算手段が計算した前記要求照射分布に基づいて重み付け係数を計算する重み付け係数計算手段と、
 前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを前記電波又は前記中間周波数信号に適用する重み付け係数適用手段と、
 前記中間周波数信号に基づいて前記物体を検出する対象物検出手段と、
を備えた事を特徴とする物体検知装置が提供される。
According to the present invention
It is an object detection device for detecting objects by radio waves.
A transmitting means equipped with a transmitting antenna that irradiates radio waves toward the object,
A receiving antenna for receiving the radio wave reflected from the object, and a receiving means for generating an intermediate frequency signal from the received signal received by the receiving antenna.
A reflection condition setting means for setting a desired reflection direction of the radio wave reflected from the object, and
A required irradiation distribution calculation means for calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set in the reflection condition unit setting unit.
A weighting coefficient calculating means for calculating a weighting coefficient based on the required irradiation distribution calculated by the required irradiation distribution calculating means, and a weighting coefficient calculating means.
A weighting coefficient applying means for applying the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave or the intermediate frequency signal, and a weighting coefficient applying means.
An object detecting means for detecting the object based on the intermediate frequency signal,
An object detection device characterized by being provided with the above is provided.
 また、本発明によれば、
 電波によって物体を検知するための物体検知方法であって、
 コンピュータが、
  送信アンテナから前記物体に向けて電波を照射するステップと、
  受信アンテナにおいて、前記物体から反射された前記電波を受信アンテナで受信し、更に前記受信アンテナで受信した受信信号から中間周波数信号を生成するステップと、
  前記物体から反射される前記電波の所望反射方向を設定するステップと、
  設定された前記所望反射方向に基づいて前記物体に照射されるべき前記電波の要求照射分布を計算するステップと、
  前記要求照射分布に基づいて重み付け係数を計算するステップと、
  前記重み付け係数による重み付けを前記電波又は前記中間周波数信号に適用するステップと、
 前記中間周波数信号に基づいて前記物体を検出するステップと、
を実行する事を特徴とする物体検知方法が提供される。
Further, according to the present invention,
It is an object detection method for detecting an object by radio waves.
The computer
The step of irradiating radio waves from the transmitting antenna toward the object,
In the receiving antenna, the step of receiving the radio wave reflected from the object by the receiving antenna and further generating an intermediate frequency signal from the received signal received by the receiving antenna.
A step of setting a desired reflection direction of the radio wave reflected from the object, and
A step of calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set, and a step of calculating the required irradiation distribution.
The step of calculating the weighting coefficient based on the required irradiation distribution and
The step of applying the weighting by the weighting coefficient to the radio wave or the intermediate frequency signal, and
The step of detecting the object based on the intermediate frequency signal,
An object detection method characterized by performing the above is provided.
 また、本発明によれば、
 前記物体に向けて電波を照射する送信アンテナを備えた送信手段と、
 前記物体から反射された前記電波を受信する受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信部手段と、
 プロセッサと、
を備える物体検知装置を、
 前記物体から反射される前記電波の所望反射方向を設定する反射条件設定手段、
 前記反射条件部設定部において設定された前記所望反射方向に基づいて前記物体に照射されるべき前記電波の要求照射分布を計算する要求照射分布計算手段、
 前記要求照射分布計算手段が計算した前記要求照射分布に基づいて重み付け係数を計算する重み付け係数計算手段、
 前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを前記電波又は前記中間周波数信号に適用する重み付け係数適用手段、及び、
 前記中間周波数信号に基づいて前記物体を検出する対象物検出手段、
として機能させるプログラムが、提供される。
Further, according to the present invention,
A transmitting means equipped with a transmitting antenna that irradiates radio waves toward the object,
A receiving antenna for receiving the radio wave reflected from the object, and a receiving unit means for generating an intermediate frequency signal from the receiving signal received by the receiving antenna.
With the processor
An object detection device equipped with
Reflection condition setting means for setting a desired reflection direction of the radio wave reflected from the object,
A required irradiation distribution calculation means for calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set in the reflection condition unit setting unit.
A weighting coefficient calculating means for calculating a weighting coefficient based on the required irradiation distribution calculated by the required irradiation distribution calculating means,
A weighting coefficient applying means that applies the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave or the intermediate frequency signal, and
An object detecting means for detecting an object based on the intermediate frequency signal,
A program is provided that functions as.
 本発明による物体検知装置および物体検知方法によれば、物体に照射された電波の反射方向を制御し、開口の範囲から外れる対象物の検知も可能にする事で、検出可能な検知対象物の位置範囲の制約を無くし装置の小型化も実現する効果を奏する。 According to the object detection device and the object detection method according to the present invention, by controlling the reflection direction of the radio wave radiated to the object and enabling the detection of the object outside the range of the opening, the detectable object can be detected. It has the effect of eliminating restrictions on the position range and reducing the size of the device.
図1は、本発明による実施の形態における物体検知装置の構成を示した構成図である。FIG. 1 is a configuration diagram showing a configuration of an object detection device according to an embodiment of the present invention. 図2は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention. 図3は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention. 図4は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention. 図5は、本発明の実施の形態における物体検知方法を示すフローチャートである。FIG. 5 is a flowchart showing an object detection method according to the embodiment of the present invention. 図6は、本発明の実施の形態における反射波の所望反射方向の一例を説明する図である。FIG. 6 is a diagram illustrating an example of a desired reflection direction of a reflected wave according to the embodiment of the present invention. 図7は、本発明の実施の形態における物体検知装置と電波と対象物の位置関係の一例を説明する図である。FIG. 7 is a diagram illustrating an example of the positional relationship between the object detection device, the radio wave, and the object according to the embodiment of the present invention. 図8は、一般技術における反射波の反射方向の一例を説明する図である。FIG. 8 is a diagram illustrating an example of the reflection direction of the reflected wave in the general technique. 図9は、本発明の実施の形態における反射波の反射方向の一例を説明する図である。FIG. 9 is a diagram illustrating an example of the reflection direction of the reflected wave in the embodiment of the present invention. 図10は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 10 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention. 図11は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 11 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention. 図12は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 12 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention. 図13は、本発明の実施の形態における物体検知方法を示すフローチャートである。FIG. 13 is a flowchart showing an object detection method according to the embodiment of the present invention. 図14は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 14 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention. 図15は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 15 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention. 図16は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 16 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention. 図17は、本発明の実施の形態における物体検知方法を示すフローチャートである。FIG. 17 is a flowchart showing an object detection method according to the embodiment of the present invention. 図18は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 18 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention. 図19は、物体検知装置と対象物の位置関係の一例を説明する図である。FIG. 19 is a diagram illustrating an example of the positional relationship between the object detection device and the object. 図20は、従来の方式において検知対象物からの反射波の電波振幅分布を画像化した結果を示す図である。FIG. 20 is a diagram showing the result of imaging the radio wave amplitude distribution of the reflected wave from the detection target in the conventional method. 図21は、本発明の実施の形態において検知対象物からの反射波の電波振幅分布を画像化した結果を示す図である。FIG. 21 is a diagram showing the result of imaging the radio wave amplitude distribution of the reflected wave from the detection object in the embodiment of the present invention. 図22は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 22 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the present invention. 図23は、本発明の実施の形態における物体検知装置を実現するコンピュータの一例を示すブロック図である。FIG. 23 is a block diagram showing an example of a computer that realizes the object detection device according to the embodiment of the present invention. 図24は、一般技術におけるアレイアンテナ方式による電波を用いたイメージング装置(物体検知装置)の概念を示した概念図である。FIG. 24 is a conceptual diagram showing the concept of an imaging device (object detection device) using radio waves by an array antenna method in general technology. 図25は、一般技術における電波を用いたイメージング装置(物体検知装置)における対象物位置と電波の受信状況を示した概念図である。FIG. 25 is a conceptual diagram showing the position of an object and the reception status of radio waves in an imaging device (object detection device) using radio waves in general technology.
 以下、本発明による物体検知装置および物体検知方法の好適な実施形態について添付図を参照して説明する。なお、以降に示す各図面において、同一または相当部分の部位については、同一符号を付して示すこととし、その説明は繰り返さないことにする。 Hereinafter, preferred embodiments of the object detection device and the object detection method according to the present invention will be described with reference to the attached drawings. In each of the drawings shown below, the same or corresponding parts will be indicated by the same reference numerals, and the description thereof will not be repeated.
 以下、本発明の実施の形態における、物体検知装置、物体検知方法、及びプログラムについて、図1~図23を参照しながら説明する。本実施の形態では、装置の高コスト化や設置容易性を損なう原因となる開口の大型化を回避しながら、対象物を検出可能な位置範囲を拡張する、物体検知装置、物体検知方法、及びプログラムが開示される。 Hereinafter, the object detection device, the object detection method, and the program in the embodiment of the present invention will be described with reference to FIGS. 1 to 23. In the present embodiment, an object detection device, an object detection method, and an object detection method that expand the position range in which an object can be detected while avoiding an increase in the cost of the device and an increase in the size of the opening that impairs the ease of installation. The program will be disclosed.
 なお、本実施形態において、「開口」は、送信アンテナ1202と受信アンテナ1203のすべてを内包する最小の領域である。開口の形状は複数の送信アンテナ1202と受信アンテナ1203の配置の仕方に基づき定まる。開口の形状は例えば矩形であるが、これに限定されない。また、「検知対象物が開口の範囲から外れる」とは、複数の送信アンテナ1202及び受信アンテナ1203が延在する面に対し垂直な方向に開口を移動させた時に開口が通過する領域で構成される空間内に検知対象物が存在しないことを意味する。また、「検知対象物が開口の範囲にいる」とは、上記空間内に検知対象物が存在することを意味する。 In the present embodiment, the "opening" is the smallest area including all of the transmitting antenna 1202 and the receiving antenna 1203. The shape of the opening is determined based on how the plurality of transmitting antennas 1202 and the receiving antennas 1203 are arranged. The shape of the opening is, for example, rectangular, but is not limited to this. Further, "the object to be detected is out of the range of the opening" is composed of a region through which the opening passes when the opening is moved in a direction perpendicular to the plane on which the plurality of transmitting antennas 1202 and the receiving antenna 1203 extend. It means that there is no detection target in the space. Further, "the detection target is within the opening range" means that the detection target exists in the above space.
(第一の実施の形態)
[装置構成]
 最初に、図1を用いて、本実施の形態1における物体検知装置の構成について説明する。
(First embodiment)
[Device configuration]
First, the configuration of the object detection device according to the first embodiment will be described with reference to FIG.
 図1に示す本実施の形態における物体検知装置1000は、電波によって物体を検知するための装置である。図1に示すように、物体検知装置1000は、送信部1101と、受信部1102と、演算装置1211とを備えている。 The object detection device 1000 in the present embodiment shown in FIG. 1 is a device for detecting an object by radio waves. As shown in FIG. 1, the object detection device 1000 includes a transmission unit 1101, a reception unit 1102, and an arithmetic unit 1211.
 送信部1101は、対象物配置面1005上に存在し検知対象となる物体(以下、「対象物」と表記する)1003に向けて、送信信号となる電波1002を照射する。受信部1102は、対象物1003で反射された電波1004を受信信号として受信する。 The transmission unit 1101 irradiates the radio wave 1002, which is a transmission signal, toward the object (hereinafter referred to as "object") 1003 that exists on the object placement surface 1005 and is to be detected. The receiving unit 1102 receives the radio wave 1004 reflected by the object 1003 as a receiving signal.
 本実施の形態1では、受信部1102は、更に、受信した受信信号に、送信部1101で生成された送信信号をミキシングして、中間周波数信号(以下「IF(Intermediate Frequency)信号」と表記する。)を生成する。具体的には、図1に示すように、送信部1101は、受信部1102に向けて、端子1208を経由して送信信号を出力する。受信部1102は、対象物1003から反射され受信した電波と、端子1208を経由して得た送信信号とをミキシングして、IF信号を生成する。また、送信部1101は、生成したIF信号を演算装置1211に出力する。 In the first embodiment, the receiving unit 1102 further mixes the transmitted signal generated by the transmitting unit 1101 with the received received signal, and is referred to as an intermediate frequency signal (hereinafter referred to as "IF (Intermediate Frequency) signal"). .) Is generated. Specifically, as shown in FIG. 1, the transmission unit 1101 outputs a transmission signal toward the reception unit 1102 via the terminal 1208. The receiving unit 1102 mixes the radio wave reflected and received from the object 1003 with the transmission signal obtained via the terminal 1208 to generate an IF signal. Further, the transmission unit 1101 outputs the generated IF signal to the arithmetic unit 1211.
 また、図1においては、送信部1101及び受信部1102は、それぞれ一つのみが図示されているが、送信部1101及び受信部1102は、実際には複数備えられていても良い。送信部1101及び受信部1102が複数備えられている場合は、複数の受信部1102それぞれは、いずれかの送信部1101に対応している。 Further, in FIG. 1, only one transmission unit 1101 and one reception unit 1102 are shown, but a plurality of transmission unit 1101 and reception unit 1102 may actually be provided. When a plurality of transmission units 1101 and reception units 1102 are provided, each of the plurality of reception units 1102 corresponds to any of the transmission units 1101.
 続いて、図1に加えて、図2から図3までを用いて、本実施の形態1における物体検知装置1000内の送受信装置1001の構成について更に具体的に説明する。図2は、本発明の実施の形態1における物体検知装置1000の送信部1101及び受信部1102の構成を具体的に示す図である。図3は、本発明の実施の形態1における物体検知装置1000の送信部1101及び受信部1102の他の例の構成を具体的に示す図である。 Subsequently, in addition to FIG. 1, FIGS. 2 to 3 will be used to more specifically explain the configuration of the transmission / reception device 1001 in the object detection device 1000 according to the first embodiment. FIG. 2 is a diagram specifically showing the configuration of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the first embodiment of the present invention. FIG. 3 is a diagram specifically showing the configuration of another example of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the first embodiment of the present invention.
 図2に示すように、本実施の形態1では、送受信装置1001において、送信部1101は、発振器1201と、可変振幅位相器1207と、送信アンテナ1202とを備えている。また、受信部1102は、受信アンテナ1203と、ミキサ1204と、インターフェイス回路1205とを備えている。更に、図1でも示したように、送信部1101と受信部1102とは、端子1208を介して接続されている。 As shown in FIG. 2, in the first embodiment, in the transmission / reception device 1001, the transmission unit 1101 includes an oscillator 1201, a variable amplitude phase detector 1207, and a transmission antenna 1202. Further, the receiving unit 1102 includes a receiving antenna 1203, a mixer 1204, and an interface circuit 1205. Further, as shown in FIG. 1, the transmission unit 1101 and the reception unit 1102 are connected to each other via the terminal 1208.
 本実施の形態では、例えば、図3に示すように、一つの受信部1102において、受信アンテナ1203とミキサ1204が複数備えられていても良い。 In the present embodiment, for example, as shown in FIG. 3, one receiving unit 1102 may be provided with a plurality of receiving antennas 1203 and mixer 1204.
 送信部1101において、発振器1201は、RF信号(電波)を生成する。発振器1201で生成されたRF信号は、可変振幅位相器1207において振幅と位相を所望値に変更された上で出力される。可変振幅位相器1207から出力されたRF信号(電波)は、送信アンテナ1202から電波1002として対象物1003に照射される。 In the transmission unit 1101, the oscillator 1201 generates an RF signal (radio wave). The RF signal generated by the oscillator 1201 is output after changing the amplitude and phase to desired values in the variable amplitude phase detector 1207. The RF signal (radio wave) output from the variable amplitude phase device 1207 is applied to the object 1003 as a radio wave 1002 from the transmitting antenna 1202.
 対象物1003で反射された電波1004は、受信部1102において、受信アンテナ1203によって受信される。ミキサ1204は、発振器1201から端子1208を経由して入力されてきたRF信号と受信アンテナ1203で受信された電波(受信信号)とを、ミキシングする事で、IF信号を生成する。ミキサ1204で生成されたIF信号は、インターフェイス回路1205を経由して、演算装置1211へと送信される。インターフェイス回路1205は、アナログ信号であるIF信号を、演算装置1211で扱えるデジタル信号に変換する機能を持ち、得られたデジタル信号を演算装置1211へと出力する。 The radio wave 1004 reflected by the object 1003 is received by the receiving antenna 1203 in the receiving unit 1102. The mixer 1204 generates an IF signal by mixing the RF signal input from the oscillator 1201 via the terminal 1208 and the radio wave (received signal) received by the receiving antenna 1203. The IF signal generated by the mixer 1204 is transmitted to the arithmetic unit 1211 via the interface circuit 1205. The interface circuit 1205 has a function of converting an IF signal, which is an analog signal, into a digital signal that can be handled by the arithmetic unit 1211, and outputs the obtained digital signal to the arithmetic unit 1211.
 次に、本実施の形態における演算装置1211の内部構成を図4において示す。本実施の形態における演算装置1211は、図4で示すように、反射条件設定部1301と、要求照射分布計算部1302と、重み付け係数計算部1303と、重み付け係数適用部1304と、対象物検出部1305を備えている。 Next, FIG. 4 shows the internal configuration of the arithmetic unit 1211 in the present embodiment. As shown in FIG. 4, the arithmetic unit 1211 in the present embodiment includes a reflection condition setting unit 1301, a required irradiation distribution calculation unit 1302, a weighting coefficient calculation unit 1303, a weighting coefficient application unit 1304, and an object detection unit. It is equipped with 1305.
[装置動作]
 図5は、本発明の実施の形態1における物体検知装置の動作を示すフロー図である。以下の説明においては、適宜図1~図4を参酌する。また、本実施の形態1では、物体検知装置1000を動作させることによって、物体検知方法が実施される。よって、本実施の形態1における物体検知方法の説明は、以下の物体検知装置1000の動作説明に代える。
[Device operation]
FIG. 5 is a flow chart showing the operation of the object detection device according to the first embodiment of the present invention. In the following description, FIGS. 1 to 4 will be referred to as appropriate. Further, in the first embodiment, the object detection method is implemented by operating the object detection device 1000. Therefore, the description of the object detection method in the first embodiment is replaced with the following description of the operation of the object detection device 1000.
 まず、全体の流れを簡単に説明する。 First, I will briefly explain the overall flow.
 図5に示すように、最初に、反射条件設定部1301は、反射条件を設定する(ステップA1)。 As shown in FIG. 5, first, the reflection condition setting unit 1301 sets the reflection condition (step A1).
 次に、要求照射分布計算部1302は、反射条件設定部1301から出力される上記反射条件の情報に基づいて、検知対象物1003における照射分布の要求値を計算する(ステップA2)。 Next, the required irradiation distribution calculation unit 1302 calculates the required value of the irradiation distribution in the detection target object 1003 based on the information of the reflection condition output from the reflection condition setting unit 1301 (step A2).
 次に、重み付け係数計算部1303は、要求照射分布計算部1302が出力する検知対象物1003における照射分布の要求値に基づいて、重み付け係数を計算する(ステップA3)。 Next, the weighting coefficient calculation unit 1303 calculates the weighting coefficient based on the required value of the irradiation distribution in the detection target object 1003 output by the required irradiation distribution calculation unit 1302 (step A3).
 次に、重み付け係数適用部1304は、重み付け係数計算部1303が計算した重み付け係数に基づいて、送信部1101内の可変振幅位相器1207を制御し、発振器1201から出力されたRF信号の振幅と位相が所望値になるよう設定する(ステップA4)。 Next, the weighting coefficient application unit 1304 controls the variable amplitude phase detector 1207 in the transmission unit 1101 based on the weighting coefficient calculated by the weighting coefficient calculation unit 1303, and the amplitude and phase of the RF signal output from the oscillator 1201. Is set to a desired value (step A4).
 次に、送受信装置1001において、送信部1101から、対象物1003に向けて、送信信号となる電波を照射する(ステップA5)。また、送信部1101は、送信信号となる電波の照射と同時に、端子1208を介して、送信信号を受信部1102に出力する。 Next, in the transmission / reception device 1001, the transmission unit 1101 irradiates the object 1003 with a radio wave that becomes a transmission signal (step A5). Further, the transmission unit 1101 outputs the transmission signal to the reception unit 1102 via the terminal 1208 at the same time as irradiating the radio wave that becomes the transmission signal.
 次に、送受信装置1001において、受信部1102の受信アンテナ1203が、対象物1003から反射された電波を、受信信号として受信する(ステップA6)。 Next, in the transmission / reception device 1001, the reception antenna 1203 of the reception unit 1102 receives the radio wave reflected from the object 1003 as a reception signal (step A6).
 次に、送受信装置1001は、受信部1102の各受信アンテナ1203で受信した受信信号に、送信部1101で生成された送信信号をそれぞれミキシングして、IF信号を生成する(ステップA7)。 Next, the transmission / reception device 1001 mixes the transmission signal generated by the transmission unit 1101 with the reception signal received by each reception antenna 1203 of the reception unit 1102 to generate an IF signal (step A7).
 次に、対象物検出部1305は、受信部1102が生成したIF信号に基づいて、対象物1003を検出する(ステップA8)。 Next, the object detection unit 1305 detects the object 1003 based on the IF signal generated by the reception unit 1102 (step A8).
 なお、ステップA1~A4は測定と独立した処理であり、ステップA5~A8は測定と連動した処理である。ステップA1~A4は、送信アンテナ1202および受信アンテナ1203の位置および送信アンテナ1202から送信される送信信号のRF周波数を変更しない限り測定前に一回だけ処理を行えばよい。一方、ステップA5~A8は測定の度に実行する。 Note that steps A1 to A4 are processes independent of measurement, and steps A5 to A8 are processes linked to measurement. Steps A1 to A4 need to be processed only once before the measurement unless the positions of the transmitting antenna 1202 and the receiving antenna 1203 and the RF frequency of the transmitting signal transmitted from the transmitting antenna 1202 are changed. On the other hand, steps A5 to A8 are executed for each measurement.
 なお、処理量を削減するため、ステップA3で計算した重み付け係数は重み付け係数適用部1304内の記録装置に保存し、ステップA5~A8で実行する測定時に上記記録装置から重み付け係数を読みだしてもよい。すなわちステップA5~A8の測定の度に重み付け係数を再計算しなくてもよい。 In order to reduce the amount of processing, the weighting coefficient calculated in step A3 may be stored in the recording device in the weighting coefficient application unit 1304, and the weighting coefficient may be read out from the recording device at the time of measurement executed in steps A5 to A8. good. That is, it is not necessary to recalculate the weighting coefficient for each measurement in steps A5 to A8.
 続いて、図5に示したステップの内、演算処理部1211で行うステップA1~A7の詳細について説明する。 Subsequently, among the steps shown in FIG. 5, the details of steps A1 to A7 performed by the arithmetic processing unit 1211 will be described.
[ステップA1]
 まず、物体検知装置1000がスキャンを行うスキャン位置と、各スキャン位置で想定される検知対象物1003の向きと、各スキャン位置で望まれる検知対象物1003から反射される電波1004の反射方向(所望反射方向)とを含む反射条件の情報が予め入力される。ユーザがこれらの情報を入力することができる。反射条件設定部1301は、この入力された情報で示される反射条件を設定する。
[Step A1]
First, the scan position where the object detection device 1000 scans, the direction of the detection object 1003 assumed at each scan position, and the reflection direction of the radio wave 1004 reflected from the detection object 1003 desired at each scan position (desired). Information on reflection conditions including the reflection direction) is input in advance. The user can enter this information. The reflection condition setting unit 1301 sets the reflection condition indicated by the input information.
 例えば、図6で示すように検知対象物1003の向きを基準にしてx軸が設定される。そして、x座標でスキャン位置が指定される。また、スキャン位置毎に、x軸に対する垂直方向からの回転角度θで所望反射方向が指定される。スキャン位置はスキャンしたい任意の位置を指定することができる。所望反射方向は、当該方向の先に複数の送信アンテナ1202及び受信アンテナ1203の設置位置が存在するように設定される。 For example, as shown in FIG. 6, the x-axis is set with reference to the orientation of the detection target object 1003. Then, the scan position is specified by the x coordinate. Further, for each scan position, the desired reflection direction is specified by the rotation angle θ from the direction perpendicular to the x-axis. The scan position can be any position you want to scan. The desired reflection direction is set so that the installation positions of the plurality of transmitting antennas 1202 and the receiving antenna 1203 exist ahead of the direction.
[ステップA2]
 ステップA2における、要求照射分布計算部1302の動作について、図6で示した検知対象物1003の位置(スキャン位置)とその位置における所望反射方向の例に基づいて説明する。検知対象物1003に電波1002が照射され、照射された電波1002の検知対象物1003上の位置xにおける複素振幅(以下、照射分布と呼称)h'(x)が以下の式(1)を満たす場合、電波1004は所望反射方向(角度θ)に反射される。
[Step A2]
The operation of the required irradiation distribution calculation unit 1302 in step A2 will be described based on an example of the position (scan position) of the detection object 1003 shown in FIG. 6 and the desired reflection direction at that position. The radio wave 1002 is irradiated to the detection target object 1003, and the complex amplitude (hereinafter referred to as irradiation distribution) h'(x) at the position x on the detection target object 1003 of the irradiated radio wave 1002 satisfies the following equation (1). In this case, the radio wave 1004 is reflected in the desired reflection direction (angle θ).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、jは虚数単位、fは送信電波1002の周波数、xは検知対象物1003上のスキャン位置のx軸上の値、cは光速である。 Here, j is an imaginary unit, f is the frequency of the transmitted radio wave 1002, x is the value on the x-axis of the scan position on the detection object 1003, and c is the speed of light.
 要求照射分布計算部1302は、反射条件設定部1301から出力されるスキャン位置xと、想定される検知対象物1003の向きと送信アンテナ1202及び受信アンテナ1203の位置関係で定まる電波1004の所望反射方向(角度θ)を用いて、式(1)に従って検知対象物1003上の要求照射分布h'(x)を計算する。要求照射分布計算部1302は、スキャン位置x毎に、各スキャン位置における所望反射方向に基づき要求照射分布h'(x)を計算することができる。 The required irradiation distribution calculation unit 1302 determines the desired reflection direction of the radio wave 1004 determined by the scan position x output from the reflection condition setting unit 1301, the assumed orientation of the detection object 1003, and the positional relationship between the transmitting antenna 1202 and the receiving antenna 1203. Using (angle θ), the required irradiation distribution h'(x) on the detection target 1003 is calculated according to the equation (1). The required irradiation distribution calculation unit 1302 can calculate the required irradiation distribution h'(x) for each scan position x based on the desired reflection direction at each scan position.
[ステップA3]
 次にステップA3における重み付け係数計算部1303の動作について説明する。送信アンテナ1202の方向行列ATXを以下の式(2)のように定義する。
[Step A3]
Next, the operation of the weighting coefficient calculation unit 1303 in step A3 will be described. The direction matrix ATX of the transmitting antenna 1202 is defined by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、LTX(m,x)は各送信アンテナ1202(m=1、2、・・・、M、Mは送信アンテナ1202の本数)から検知対象物1003上のスキャン位置xまでの距離である。各送信アンテナ1202の重み付け係数gを用いて重み付け係数ベクトルg=(g、g、・・・、g、・・・、gを定義する。ここで添字Tはベクトルの転置を表す。この時、検知対象物1003上の照射分布h(x)と、送信アンテナ1202の方向行列ATX及び重み付け係数ベクトルgの間には、以下の式(3)の関係がある。 Here, LTX (m, x) is the distance from each transmitting antenna 1202 m (m = 1, 2, ..., M, M are the number of transmitting antennas 1202) to the scan position x on the detection object 1003. Is. The weighting coefficient vector g = (g 1 , g 2 , ..., gram, ..., g M ) T is defined by using the weighting coefficient g m of each transmitting antenna 1202 m . Here, the subscript T represents the transpose of the vector. At this time, there is a relationship of the following equation (3) between the irradiation distribution h (x) on the detection target object 1003, the direction matrix ATX of the transmission antenna 1202, and the weighting coefficient vector g.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 重み付け係数計算部1303は、要求照射分布計算部1302から出力される検知対象物1003上の要求照射分布h'(x)を用いて、重み付け係数ベクトルgを以下の式(4)に基づいて計算する。 The weighting coefficient calculation unit 1303 calculates the weighting coefficient vector g based on the following equation (4) using the required irradiation distribution h'(x) on the detection object 1003 output from the required irradiation distribution calculation unit 1302. do.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで(ATX -1はATX の逆行列である。送信アンテナ1202の本数Mと位置xの点数が一致しない場合はATX の逆行列の代わりにATX の一般化逆行列を用いてもよい。 Here, (A TX T ) -1 is the inverse matrix of A TX T. If the number M of the transmitting antenna 1202 and the score of the position x do not match, the generalized inverse matrix of AT - T may be used instead of the inverse matrix of AT- T .
[ステップA4]
 次にステップA4における重み付け係数計算部1304の動作について説明する。重み付け係数適用部1304は、送信アンテナ1202(m=1、2、・・・、M)に接続された可変振幅位相器1207の振幅利得及び位相シフトを制御し、送信アンテナ1202から送信される電波1002の複素振幅をg倍する。すなわち、電波1002の振幅は(gの絶対値)倍され、電波1002の位相は∠gシフトする。
[Step A4]
Next, the operation of the weighting coefficient calculation unit 1304 in step A4 will be described. The weighting coefficient application unit 1304 controls the amplitude gain and phase shift of the variable amplitude phase device 1207 m connected to the transmitting antenna 1202 m (m = 1, 2, ..., M), and transmits from the transmitting antenna 1202 m . The complex amplitude of the radio wave 1002 to be generated is multiplied by g m . That is, the amplitude of the radio wave 1002 is multiplied (absolute value of g m ), and the phase of the radio wave 1002 is shifted by ∠ g m .
[ステップA5]
 ステップA5では、ステップA4における可変振幅位相器1207の振幅利得及び位相シフトの制御により、電波1002の複素振幅をg倍した状態で、各送信アンテナ1202(m=1、2、・・・、M)から対象物1003に向けて電波1002を同時に送信する。
[Step A5]
In step A5, each transmitting antenna 1202 m ( m = 1, 2, ... The radio wave 1002 is simultaneously transmitted from (M) to the object 1003.
[ステップA6]
 ステップA6では、対象物1003から反射された電波1004を、各受信アンテナ1203(n=1、2、・・・、N、Nは受信アンテナの本数)で受信する。この時、受信アンテナ1203で受信される電波1004の複素振幅sRX(n)は以下の式(5)で与えられる。
[Step A6]
In step A6, the radio wave 1004 reflected from the object 1003 is received by each receiving antenna 1203 n (n = 1, 2, ..., N, N are the number of receiving antennas). At this time, the complex amplitude s RX (n) of the radio wave 1004 received by the receiving antenna 1203 n is given by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここでσ(x)は位置xにおける対象物1003の反射率である。LRX(n,x)は各受信アンテナ1203(n=1、2、・・・、N)から検知対象物1003上のスキャン位置xまでの距離である。 Here, σ (x) is the reflectance of the object 1003 at the position x. LRX (n, x) is the distance from each receiving antenna 1203 n (n = 1, 2, ..., N) to the scan position x on the detection object 1003.
[ステップA7]
 ステップA7では、送受信装置1001は、受信部1102の各受信アンテナ1203で受信した受信信号に、送信部1101で生成された送信信号をそれぞれミキシングして、IF信号を生成する。受信アンテナ1203を経由して生成されたIF信号s'IF(n)は、以下の式(6)で示すように、式(5)の受信アンテナ1203で受信される電波1004の複素振幅sRX(n)と一致する。
[Step A7]
In step A7, the transmission / reception device 1001 mixes the transmission signal generated by the transmission unit 1101 with the reception signal received by each reception antenna 1203 of the reception unit 1102 to generate an IF signal. The IF signal s'IF (n) generated via the receiving antenna 1203 n has a complex amplitude of the radio wave 1004 received by the receiving antenna 1203 n of the formula (5) as shown by the following formula (6). s Matches RX (n).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記のステップA1からA4までの処理の後、ステップA5で送信部1101から、対象物1003に向けて、送信信号となる電波を照射すると、対象物1003から反射される電波1004は、ステップA1で予め指定した角度θの方向に反射される。 After the above processes from steps A1 to A4, when the transmission unit 1101 irradiates the object 1003 with a radio wave to be a transmission signal in step A5, the radio wave 1004 reflected from the object 1003 is generated in step A1. It is reflected in the direction of the predetermined angle θ.
 したがって、対象物1003から反射される電波1004が受信アンテナ1203で受信される方向にステップA1で角度θを指定しておけば、図7で示すように対象物1003が送信アンテナ1202と受信アンテナ1203で構成される開口の範囲から外れる場合でも、受信アンテナ1203は電波1004を受信する事が可能になる。この事により、対象物1003が送信アンテナ1202と受信アンテナ1203で構成される開口の範囲から外れる場合でも、物体検知装置1000は対象物1003を検知する事ができる。 Therefore, if the angle θ is specified in step A1 in the direction in which the radio wave 1004 reflected from the object 1003 is received by the receiving antenna 1203, the object 1003 has the transmitting antenna 1202 and the receiving antenna 1203 as shown in FIG. The receiving antenna 1203 can receive the radio wave 1004 even if it is out of the range of the opening configured by. As a result, the object detection device 1000 can detect the object 1003 even when the object 1003 is out of the range of the opening composed of the transmitting antenna 1202 and the receiving antenna 1203.
 ここで、重み付け係数による重み付けを適用しない従来の方式での電波1004の反射方向と、本発明の実施の形態で重み付け係数による重み付けを適用して制御した電波1004の反射方向の例をそれぞれ示す。 Here, an example of the reflection direction of the radio wave 1004 in the conventional method in which the weighting by the weighting coefficient is not applied and the reflection direction of the radio wave 1004 controlled by applying the weighting by the weighting coefficient in the embodiment of the present invention are shown.
 図8に従来方式での電波1004の反射方向を示す。図8では、x=0cmの位置に送信アンテナ1202を設置し、x=20cmの位置に対象物1003を設置している。図8では、本発明の実施の形態で用いる重み付け係数による重み付けを適用せずに、送信アンテナ1202から対象物1003に電波1002を照射する。図8で示した従来方式の場合、送信電波1002は対象物1003における鏡面反射により、電波1004は送信電波1002とは逆の方向に反射される。このため、受信アンテナ1203で電波1004を受信するためには、受信アンテナ1203を送信アンテナ1202から離れた位置(具体的にはx=40cmの位置)に設置する必要がある。このため、対象物1003を検知するために、送信アンテナ1202と受信アンテナ1203で構成される開口幅も大きく取る必要がある。 FIG. 8 shows the reflection direction of the radio wave 1004 in the conventional method. In FIG. 8, the transmitting antenna 1202 is installed at the position of x = 0 cm, and the object 1003 is installed at the position of x = 20 cm. In FIG. 8, the radio wave 1002 is irradiated from the transmitting antenna 1202 to the object 1003 without applying the weighting by the weighting coefficient used in the embodiment of the present invention. In the case of the conventional method shown in FIG. 8, the transmitted radio wave 1002 is reflected by the mirror surface of the object 1003, and the radio wave 1004 is reflected in the direction opposite to that of the transmitted radio wave 1002. Therefore, in order for the receiving antenna 1203 to receive the radio wave 1004, it is necessary to install the receiving antenna 1203 at a position away from the transmitting antenna 1202 (specifically, at a position of x = 40 cm). Therefore, in order to detect the object 1003, it is necessary to take a large opening width including the transmitting antenna 1202 and the receiving antenna 1203.
 図9に本発明の実施の形態を適用した場合の電波1004の反射方向を示す。図9では、x=-10cmから+10cmの間に複数の送信アンテナ1202を設置している。またx=20cmの位置に対象物1003を設置している。図9では、本発明の実施の形態で用いる重み付け係数による重み付けを適用し、送信アンテナ1202から対象物1003に電波1002を照射する。この場合、重み付け係数による重み付けの適用により、電波1004の反射方向を送信アンテナ1202の存在方向に向ける事ができる。この事により、同じ位置に設置した送信アンテナ1202と受信アンテナ1203で構成される開口の範囲から外れる対象物1003が存在する場合でも、受信アンテナ1203で電波1004を受信できる。すなわち本発明の実施の形態では、重み付け係数による重み付けで電波1004の反射方向を受信アンテナ1203で受信可能な方向に制御する事で、対象物1003の検知可能範囲を開口外にまで拡張している。さらに本発明の実施の形態では、開口サイズによる検知可能範囲の制約が無くなるので、開口サイズを縮小し、装置のコストとサイズを低減できる。 FIG. 9 shows the reflection direction of the radio wave 1004 when the embodiment of the present invention is applied. In FIG. 9, a plurality of transmitting antennas 1202 are installed between x = −10 cm and +10 cm. Further, the object 1003 is installed at the position of x = 20 cm. In FIG. 9, the weighting by the weighting coefficient used in the embodiment of the present invention is applied, and the radio wave 1002 is irradiated from the transmitting antenna 1202 to the object 1003. In this case, by applying the weighting by the weighting coefficient, the reflection direction of the radio wave 1004 can be directed to the existing direction of the transmitting antenna 1202. As a result, even if there is an object 1003 that is out of the range of the opening composed of the transmitting antenna 1202 and the receiving antenna 1203 installed at the same position, the receiving antenna 1203 can receive the radio wave 1004. That is, in the embodiment of the present invention, the detectable range of the object 1003 is extended to the outside of the opening by controlling the reflection direction of the radio wave 1004 in a direction that can be received by the receiving antenna 1203 by weighting with a weighting coefficient. .. Further, in the embodiment of the present invention, since the limitation of the detectable range by the opening size is removed, the opening size can be reduced, and the cost and size of the device can be reduced.
(第二の実施の形態)
 次に、本実施の形態2における物体検知装置の構成について説明する。本実施の形態2も、本実施の形態1と同じく、重み付け係数による重み付けの適用により、対象物1003から反射される電波1004の反射方向を所望方向に制御する。本実施の形態1では送信部1101内に実装された可変振幅位相器1207で重み付け係数による重み付けを適用していたのに対し、本実施の形態2では受信部1102内に実装された可変振幅位相器1207で重み付け係数による重み付けを適用する。
(Second embodiment)
Next, the configuration of the object detection device according to the second embodiment will be described. Also in the second embodiment, as in the first embodiment, the reflection direction of the radio wave 1004 reflected from the object 1003 is controlled in a desired direction by applying the weighting by the weighting coefficient. In the first embodiment, the variable amplitude phase detector 1207 mounted in the transmitting unit 1101 applies weighting by a weighting coefficient, whereas in the second embodiment, the variable amplitude phase mounted in the receiving unit 1102 is applied. The weighting by the weighting coefficient is applied by the device 1207.
[装置構成]
 本実施の形態2における物体検知装置1000は、本実施の形態1と同じく、図1で示した構成の装置によって実現される。
[Device configuration]
The object detection device 1000 in the second embodiment is realized by the device having the configuration shown in FIG. 1, as in the first embodiment.
 続いて、図1に加えて、図10から図11までを用いて、本実施の形態2における物体検知装置1000内の送受信装置1001の構成について更に具体的に説明する。図10は、本発明の実施の形態2における物体検知装置1000の送信部1101及び受信部1102の構成を具体的に示す図である。図11は、本発明の実施の形態2における物体検知装置1000の送信部1101及び受信部1102の他の例の構成を具体的に示す図である。 Subsequently, in addition to FIG. 1, FIGS. 10 to 11 will be used to more specifically explain the configuration of the transmission / reception device 1001 in the object detection device 1000 according to the second embodiment. FIG. 10 is a diagram specifically showing the configuration of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the second embodiment of the present invention. FIG. 11 is a diagram specifically showing the configuration of another example of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the second embodiment of the present invention.
 図10に示すように、本実施の形態2では、送受信装置1001において、送信部1101は、発振器1201と、送信アンテナ1202と、使用する送信アンテナ1202を切り替えるスイッチ1206とを備えている。また、受信部1102は、受信アンテナ1203と、ミキサ1204と、インターフェイス回路1205と、可変振幅位相器1207とを備えている。 As shown in FIG. 10, in the second embodiment, in the transmission / reception device 1001, the transmission unit 1101 includes an oscillator 1201, a transmission antenna 1202, and a switch 1206 for switching the transmission antenna 1202 to be used. Further, the receiving unit 1102 includes a receiving antenna 1203, a mixer 1204, an interface circuit 1205, and a variable amplitude phase detector 1207.
 本実施の形態2では、図10で示すように、可変振幅位相器1207はミキサ1204の前段に備えられている。もしくは、図11で示すように、可変振幅位相器1207はミキサ1204の後段に備えられていても良い。 In the second embodiment, as shown in FIG. 10, the variable amplitude phase detector 1207 is provided in front of the mixer 1204. Alternatively, as shown in FIG. 11, the variable amplitude phase detector 1207 may be provided after the mixer 1204.
 送信部1101において、発振器1201で生成されたRF信号は、スイッチ1206で選択した少なくとも一つの送信アンテナ1202から送信信号として送信され、対象物1003に照射される。対象物1003で反射された電波は、受信部1102において、受信アンテナ1203によって受信される。 In the transmission unit 1101, the RF signal generated by the oscillator 1201 is transmitted as a transmission signal from at least one transmission antenna 1202 selected by the switch 1206, and is irradiated to the object 1003. The radio wave reflected by the object 1003 is received by the receiving antenna 1203 at the receiving unit 1102.
 ミキサ1204は、発振器1201から端子1208を経由して入力されてきたRF信号と受信アンテナ1203で受信された電波(受信信号)とを、ミキシングする事で、IF信号を生成する。ミキサ1204の前段又は後段に備えられた可変振幅位相器1207により、上記IF信号の振幅ないし位相は所望値に設定される。上記IF信号は、インターフェイス回路1205を経由して、演算装置1211へと送信される。インターフェイス回路1205は、アナログ信号であるIF信号を、演算装置1211で扱えるデジタル信号に変換する機能を持ち、得られたデジタル信号を演算装置1211へと出力する。 The mixer 1204 generates an IF signal by mixing the RF signal input from the oscillator 1201 via the terminal 1208 and the radio wave (received signal) received by the receiving antenna 1203. The amplitude or phase of the IF signal is set to a desired value by the variable amplitude phase detector 1207 provided in the front stage or the rear stage of the mixer 1204. The IF signal is transmitted to the arithmetic unit 1211 via the interface circuit 1205. The interface circuit 1205 has a function of converting an IF signal, which is an analog signal, into a digital signal that can be handled by the arithmetic unit 1211, and outputs the obtained digital signal to the arithmetic unit 1211.
 次に、本実施の形態における演算装置1211の内部構成を図12において示す。本実施の形態における演算装置1211は、図12で示すように、反射条件設定部1301と、要求照射分布計算部1302と、重み付け係数計算部1303と、重み付け係数適用部1304と、対象物検出部1305とを備えている。 Next, FIG. 12 shows the internal configuration of the arithmetic unit 1211 in the present embodiment. As shown in FIG. 12, the arithmetic unit 1211 in the present embodiment includes a reflection condition setting unit 1301, a required irradiation distribution calculation unit 1302, a weighting coefficient calculation unit 1303, a weighting coefficient application unit 1304, and an object detection unit. It is equipped with 1305.
[装置動作]
 本実施の形態2における物体検知装置1000の動作を示すフロー図は図13において示される。図13で示す本実施の形態2のフロー図では、図5で示した本実施の形態1のフロー図にステップB1が追加されている。
[Device operation]
A flow chart showing the operation of the object detection device 1000 in the second embodiment is shown in FIG. In the flow chart of the second embodiment shown in FIG. 13, step B1 is added to the flow chart of the first embodiment shown in FIG.
 本実施の形態2におけるステップA1~A3は、本実施の形態1の図5で説明したステップA1~A3と共通であるため、説明は繰り返さない。 Since steps A1 to A3 in the second embodiment are common to steps A1 to A3 described in FIG. 5 of the first embodiment, the description will not be repeated.
[ステップA4]
 次に本実施の形態2のステップA4における重み付け係数計算部1304の動作について説明する。重み付け係数適用部1304は、送信アンテナ1202(m=1、2、・・・、M)から電波1002を送信する前に、各受信アンテナ1203(n=1、2、・・・、N)を経由して得られるIF信号の振幅と位相が所望値になるように、可変振幅位相器1207の振幅利得及び位相シフトを設定する(すなわちIF信号の複素振幅をg倍する)。なお、使用する送信アンテナ1202を切り替える度に可変振幅位相器1207の振幅利得及び位相シフトを設定しなおす。また全ての受信アンテナ1203に対し可変振幅位相器1207の振幅利得及び位相シフトは同一量が適用される(すなわち全ての受信アンテナ1203を経由して得られるIF信号の複素振幅は一様にg倍される)。
[Step A4]
Next, the operation of the weighting coefficient calculation unit 1304 in step A4 of the second embodiment will be described. The weighting coefficient application unit 1304 receives each receiving antenna 1203 n (n = 1, 2, ..., N) before transmitting the radio wave 1002 from the transmitting antenna 1202 m (m = 1, 2, ..., M). ), The amplitude gain and phase shift of the variable amplitude phase controller 1207 are set (that is, the complex amplitude of the IF signal is multiplied by gm ) so that the amplitude and phase of the IF signal obtained via) become desired values. The amplitude gain and phase shift of the variable amplitude phase detector 1207 are reset each time the transmission antenna 1202 m to be used is switched. Further, the same amount of amplitude gain and phase shift of the variable amplitude phase device 1207 is applied to all the receiving antennas 1203 n (that is, the complex amplitude of the IF signal obtained via all the receiving antennas 1203 n is uniformly applied. It is multiplied by g m ).
[ステップA5]
 ステップA4の後、ステップA5においてスイッチ1206で各送信アンテナ1202(m=1、2、・・・、M)を切り替えながら電波1002を対象物1003に送信する。
[Step A5]
After step A4, the radio wave 1002 is transmitted to the object 1003 while switching each transmission antenna 1202 m (m = 1, 2, ..., M) with the switch 1206 in step A5.
[ステップA6]
 ステップA6において、各送信アンテナ1202(m=1、2、・・・、M)を切り替えながら電波1002を送信した状態で対象物1003から反射される電波1004を各受信アンテナ1203(n=1、2、・・・、N)で受信する。
[Step A6]
In step A6, each receiving antenna 1203 n (n =) receives the radio wave 1004 reflected from the object 1003 while transmitting the radio wave 1002 while switching each transmitting antenna 1202 m (m = 1, 2, ..., M). Receive at 1, 2, ..., N).
[ステップA7]
 ステップA7では、送受信装置1001は、受信部1102の各受信アンテナ1203で受信した受信信号に、送信部1101で生成された送信信号をそれぞれミキシングして、IF信号を生成する。送信アンテナ1202で送信し、受信アンテナ1203を経由して生成されたIF信号sIF(m,n)は、以下の式(7)で与えられる。
[Step A7]
In step A7, the transmission / reception device 1001 mixes the transmission signal generated by the transmission unit 1101 with the reception signal received by each reception antenna 1203 of the reception unit 1102 to generate an IF signal. The IF signal s IF (m, n) transmitted by the transmitting antenna 1202 m and generated via the receiving antenna 1203 n is given by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
[ステップB1]
 ステップA7の後、ステップB1において、重み付け係数適用部1304は、ステップA7において得たIF信号sIF(m,n)の和を取り、以下の式(8)に従って重み付けIF信号s'IF(n)を生成する。
[Step B1]
After step A7, in step B1, the weighting coefficient application unit 1304 takes the sum of the IF signals s IF (m, n) obtained in step A7, and the weighted IF signal s'IF (n) according to the following equation (8). ) Is generated.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(8)の重み付けIF信号s'IF(n)に式(7)のIF信号sIF(m,n)を代入する事で、重み付けIF信号s'IF(n)は以下の式(9)のようにも表現される事が分かる。 By substituting the IF signal s IF (m, n) of the equation (7) into the weighted IF signal s'IF (n) of the equation (8), the weighted IF signal s'IF (n) becomes the following equation (9). ) Can also be expressed.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 式(9)で与えられる本実施の形態2の重み付けIF信号s'IF(n)は、式(6)で与えられる本実施の形態1のIF信号s'IF(n)と一致する。 The weighted IF signal s'IF (n) of the second embodiment given by the formula (9) coincides with the IF signal s'IF (n) of the first embodiment given by the formula (6).
[ステップA8]
 ステップA8では、対象物検出部1305は、ステップB1で得た重み付けIF信号s'IF(n)に基づいて、対象物1003を検出する。
[Step A8]
In step A8, the object detection unit 1305 detects the object 1003 based on the weighted IF signal s'IF (n) obtained in step B1.
 なお、ステップA8における対象物1003の検出には、本実施の形態1では式(6)のIF信号s'IF(n)が用いられ、本実施の形態2では式(9)の重み付けIF信号s'IF(n)が用いられる。本実施の形態2のステップB1で説明したとおり、式(6)のIF信号s'IF(n)と式(9)の重み付けIF信号s'IF(n)は同一であるため、ステップA8における対象物1003の検出結果は本実施の形態1と形態2で同一になる。 For the detection of the object 1003 in step A8, the IF signal s'IF (n) of the formula (6) is used in the first embodiment, and the weighted IF signal of the formula (9) is used in the second embodiment. s'IF (n) is used. As described in step B1 of the second embodiment, since the IF signal s'IF (n) of the equation (6) and the weighted IF signal s'IF (n) of the equation (9) are the same, in step A8. The detection result of the object 1003 is the same in the first embodiment and the second embodiment.
(第三の実施の形態)
 次に、本実施の形態3における物体検知装置の構成について説明する。本実施の形態3も、本実施の形態1と同じく、重み付け係数による重み付けの適用により、対象物1003から反射される電波1004の反射方向を所望方向に制御する。本実施の形態1では可変振幅位相器1207で実装された回路で重み付け係数による重み付けを適用していたのに対し、本実施の形態3では演算装置1211内の信号処理で重み付け係数による重み付けを適用する。
(Third embodiment)
Next, the configuration of the object detection device according to the third embodiment will be described. Also in the third embodiment, as in the first embodiment, the reflection direction of the radio wave 1004 reflected from the object 1003 is controlled in a desired direction by applying the weighting by the weighting coefficient. In the first embodiment, the weighting by the weighting coefficient is applied in the circuit mounted by the variable amplitude phase detector 1207, whereas in the third embodiment, the weighting by the weighting coefficient is applied in the signal processing in the arithmetic unit 1211. do.
[装置構成]
 本実施の形態3における物体検知装置1000は、本実施の形態1と同じく、図1で示した構成の装置によって実現される。
[Device configuration]
The object detection device 1000 in the third embodiment is realized by the device having the configuration shown in FIG. 1, as in the first embodiment.
 続いて、図1に加えて、図14から図15までを用いて、本実施の形態3における物体検知装置1000内の送受信装置1001の構成について更に具体的に説明する。図14は、本発明の実施の形態3における物体検知装置1000の送信部1101及び受信部1102の構成を具体的に示す図である。図15は、本発明の実施の形態3における物体検知装置1000の送信部1101及び受信部1102の他の例の構成を具体的に示す図である。 Subsequently, in addition to FIG. 1, FIGS. 14 to 15 will be used to more specifically explain the configuration of the transmission / reception device 1001 in the object detection device 1000 according to the third embodiment. FIG. 14 is a diagram specifically showing the configuration of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the third embodiment of the present invention. FIG. 15 is a diagram specifically showing the configuration of another example of the transmission unit 1101 and the reception unit 1102 of the object detection device 1000 according to the third embodiment of the present invention.
 図14に示すように、本実施の形態3では、送受信装置1001において、送信部1101は、発振器1201と、送信アンテナ1202と、使用する送信アンテナ1202を切り替えるスイッチ1206とを備えている。また、受信部1102は、受信アンテナ1203と、ミキサ1204と、インターフェイス回路1205とを備えている。 As shown in FIG. 14, in the third embodiment, in the transmission / reception device 1001, the transmission unit 1101 includes an oscillator 1201, a transmission antenna 1202, and a switch 1206 for switching the transmission antenna 1202 to be used. Further, the receiving unit 1102 includes a receiving antenna 1203, a mixer 1204, and an interface circuit 1205.
 本実施の形態3では、例えば、図15に示すように、一つの受信部1102において、受信アンテナ1203とミキサ1204が複数備えられていても良い。 In the third embodiment, for example, as shown in FIG. 15, one receiving unit 1102 may be provided with a plurality of receiving antennas 1203 and mixer 1204.
 送信部1101において、発振器1201で生成されたRF信号は、スイッチ1206で選択した少なくとも一つの送信アンテナ1202から送信信号として送信され、対象物1003に照射される。対象物1003で反射された電波は、受信部1102において、受信アンテナ1203によって受信される。 In the transmission unit 1101, the RF signal generated by the oscillator 1201 is transmitted as a transmission signal from at least one transmission antenna 1202 selected by the switch 1206, and is irradiated to the object 1003. The radio wave reflected by the object 1003 is received by the receiving antenna 1203 at the receiving unit 1102.
 ミキサ1204は、発振器1201から端子1208を経由して入力されてきたRF信号と受信アンテナ1203で受信された電波(受信信号)とを、ミキシングする事で、IF信号を生成する。ミキサ1204で生成されたIF信号は、インターフェイス回路1205を経由して、演算装置1211へと送信される。インターフェイス回路1205は、アナログ信号であるIF信号を、演算装置1211で扱えるデジタル信号に変換する機能を持ち、得られたデジタル信号を演算装置1211へと出力する。 The mixer 1204 generates an IF signal by mixing the RF signal input from the oscillator 1201 via the terminal 1208 and the radio wave (received signal) received by the receiving antenna 1203. The IF signal generated by the mixer 1204 is transmitted to the arithmetic unit 1211 via the interface circuit 1205. The interface circuit 1205 has a function of converting an IF signal, which is an analog signal, into a digital signal that can be handled by the arithmetic unit 1211, and outputs the obtained digital signal to the arithmetic unit 1211.
 次に、本実施の形態における演算装置1211の内部構成を図16において示す。本実施の形態における演算装置1211は、図4で示すように、反射条件設定部1301と、要求照射分布計算部1302と、重み付け係数計算部1303と、重み付け係数適用部1304と、対象物検出部1305とを備えている。 Next, FIG. 16 shows the internal configuration of the arithmetic unit 1211 in the present embodiment. As shown in FIG. 4, the arithmetic unit 1211 in the present embodiment includes a reflection condition setting unit 1301, a required irradiation distribution calculation unit 1302, a weighting coefficient calculation unit 1303, a weighting coefficient application unit 1304, and an object detection unit. It is equipped with 1305.
[装置動作]
 図17は、本発明の実施の形態3における物体検知装置1000の動作を示すフロー図である。図17で示す本実施の形態3のフロー図では、図5で示した本実施の形態1のフロー図からステップA4が削除され、ステップB2が追加されている。
[Device operation]
FIG. 17 is a flow chart showing the operation of the object detection device 1000 according to the third embodiment of the present invention. In the flow chart of the third embodiment shown in FIG. 17, step A4 is deleted from the flow chart of the first embodiment shown in FIG. 5, and step B2 is added.
 本実施の形態3におけるステップA1~A3は、本実施の形態1の図5で説明したステップA1~A3と共通であるため、説明は繰り返さない。 Since steps A1 to A3 in the third embodiment are common to steps A1 to A3 described in FIG. 5 of the first embodiment, the description will not be repeated.
[ステップA5]
 本実施の形態3のステップA5では、本実施の形態1と異なり可変振幅位相器1207を用いず、スイッチ1206で各送信アンテナ1202(m=1、2、・・・、M)を切り替えながら電波1002を対象物1003に送信する。
[Step A5]
In step A5 of the third embodiment, unlike the first embodiment, the variable amplitude phase controller 1207 m is not used, and each transmission antenna 1202 m (m = 1, 2, ..., M) is switched by the switch 1206. While transmitting the radio wave 1002 to the object 1003.
[ステップA6]
 本実施の形態3のステップA6では、各送信アンテナ1202(m=1、2、・・・、M)を切り替えながら電波1002を送信した状態で対象物1003から反射される電波1004を各受信アンテナ1203(n=1、2、・・・、N)で受信する。本実施の形態3のステップA6において、送信アンテナ1202が送信する際に受信アンテナ1203で受信される電波1004の複素振幅sRX(m,n)は以下の式(10)で与えられる。
[Step A6]
In step A6 of the third embodiment, each of the radio waves 1004 reflected from the object 1003 is received while the radio waves 1002 are transmitted while switching each transmission antenna 1202 m (m = 1, 2, ..., M). It is received by the antenna 1203 n (n = 1, 2, ..., N). In step A6 of the third embodiment, the complex amplitude s RX (m, n) of the radio wave 1004 received by the receiving antenna 1203 n when the transmitting antenna 1202 m transmits is given by the following equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
[ステップA7]
 ステップA7では、送受信装置1001は、受信部1102の各受信アンテナ1203で受信した受信信号に、送信部1101で生成された送信信号をそれぞれミキシングして、IF信号を生成する。送信アンテナ1202で送信し、受信アンテナ1203を経由して生成されたIF信号sIF(m,n)は、以下の式(11)で示すように、式(10)の電波1004の複素振幅sRX(n)と一致する。
[Step A7]
In step A7, the transmission / reception device 1001 mixes the transmission signal generated by the transmission unit 1101 with the reception signal received by each reception antenna 1203 of the reception unit 1102 to generate an IF signal. The IF signal s IF (m, n) transmitted by the transmitting antenna 1202 m and generated via the receiving antenna 1203 n is a complex number of the radio wave 1004 of the equation (10) as shown by the following equation (11). Consistent with the amplitude s RX (n).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
[ステップB2]
 ステップA7の後、ステップB2において、重み付け係数適用部1304は、ステップA7において得たIF信号sIF(m,n)と、ステップA3において得た重み付け係数gから、以下の式(12)に従って重み付けIF信号s'IF(n)を生成する。
[Step B2]
After step A7, in step B2, the weighting coefficient application unit 1304 uses the IF signal s IF ( m , n) obtained in step A7 and the weighting coefficient gm obtained in step A3 according to the following equation (12). The weighted IF signal s'IF (n) is generated.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(12)の重み付けIF信号s'IF(n)に式(11)のIF信号sIF(m,n)を代入する事で、重み付けIF信号s'IF(n)は以下の式(13)のようにも表現される事が分かる。 By substituting the IF signal s IF (m, n) of the equation (11) into the weighted IF signal s'IF (n) of the equation (12), the weighted IF signal s'IF (n) becomes the following equation (13). ) Can also be expressed.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 式(13)で与えられる本実施の形態3の重み付けIF信号s'IF(n)は、式(6)で与えられる本実施の形態1のIF信号s'IF(n)と一致する。 The weighted IF signal s'IF (n) of the third embodiment given by the formula (13) coincides with the IF signal s'IF (n) of the first embodiment given by the formula (6).
[ステップA8]
 ステップA8では、対象物検出部1305は、ステップB2で得た重み付けIF信号s'IF(n)に基づいて、対象物1003を検出する。
[Step A8]
In step A8, the object detection unit 1305 detects the object 1003 based on the weighted IF signal s'IF (n) obtained in step B2.
 なお、ステップA8における対象物1003の検出には、本実施の形態1では式(6)のIF信号s'IF(n)が用いられ、本実施の形態3では式(13)の重み付けIF信号s'IF(n)が用いられる。本実施の形態3のステップB2で説明したとおり、式(6)のIF信号s'IF(n)と式(13)の重み付けIF信号s'IF(n)は同一であるため、ステップA8における対象物1003の検出結果は本実施の形態1と形態3で同一になる。 For the detection of the object 1003 in step A8, the IF signal s'IF (n) of the formula (6) is used in the first embodiment, and the weighted IF signal of the formula (13) is used in the third embodiment. s'IF (n) is used. As described in step B2 of the third embodiment, since the IF signal s'IF (n) of the equation (6) and the weighted IF signal s'IF (n) of the equation (13) are the same, in step A8. The detection result of the object 1003 is the same in the first embodiment and the third embodiment.
(第四の実施の形態)
 次に、本実施の形態4について説明する。本実施の形態4では、対象物検出部1305の一例が開示される。本実施の形態4の物体検知装置1000のその他の構成は、本実施の形態1乃至本実施の形態3と同様である。
(Fourth Embodiment)
Next, the fourth embodiment will be described. In the fourth embodiment, an example of the object detection unit 1305 is disclosed. Other configurations of the object detection device 1000 of the present embodiment 4 are the same as those of the present embodiment 1 to the present embodiment 3.
 図18に示すように、本実施の形態4において、対象物検出部1305は、対象物画像生成部1401と、対象物画像データベース1402と、対象物画像照合部1403とを備えている。 As shown in FIG. 18, in the fourth embodiment, the object detection unit 1305 includes an object image generation unit 1401, an object image database 1402, and an object image collation unit 1403.
 対象物画像生成部1401は、本実施の形態1ないし本実施の形態2におけるIF信号s'IF(n)を用いて、対象物1003の画像を生成する。 The object image generation unit 1401 generates an image of the object 1003 by using the IF signal s'IF (n) in the first embodiment to the second embodiment.
 対象物画像データベース1402は、事前に測定された対象物1003の画像と対象物1003の種別の関係を示すデータが保存されている。 The object image database 1402 stores data showing the relationship between the image of the object 1003 measured in advance and the type of the object 1003.
 対象物画像照合部1403は、対象物画像生成部1401で生成された対象物1003の画像と、対象物画像データベース1402に保存されている対象物1003の画像とを照合し、対象物1003の種別を対象物検出結果として出力する。 The object image collation unit 1403 collates the image of the object 1003 generated by the object image generation unit 1401 with the image of the object 1003 stored in the object image database 1402, and types of the object 1003. Is output as an object detection result.
 なお、本実施の形態4の変形例として、対象物画像データベース1402と対象物画像照合部1403を省いてもよい。そして、対象物検出部1305は、対象物画像生成部1401から出力される対象物1003の画像をディスプレイ等の出力装置を介して出力し、その後、ユーザからその画像に含まれる対象物1003の種別の入力を受付けてもよい。ユーザは、出力された画像を目視で確認して対象物1003の種別を識別し、その識別した結果を入力する。 As a modification of the fourth embodiment, the object image database 1402 and the object image collating unit 1403 may be omitted. Then, the object detection unit 1305 outputs an image of the object 1003 output from the object image generation unit 1401 via an output device such as a display, and then the type of the object 1003 included in the image from the user. You may accept the input of. The user visually confirms the output image, identifies the type of the object 1003, and inputs the identified result.
 以下では、対象物画像生成部1401における対象物1003の画像生成法の一例を示す。対象物1003の画像生成法の例としては、ビームフォーマ法が挙げられる。ビームフォーマ法では、周波数fの送信電波1002を用いて測定した際に得られた本実施の形態1ないし本実施の形態2におけるIF信号s'IF(n、f)を用いて、スキャン位置xにおける対象物1003の画像の複素振幅P(x)を以下の式(14)に従って算出する。 The following is an example of an image generation method for the object 1003 in the object image generation unit 1401. As an example of the image generation method of the object 1003, the beam former method can be mentioned. In the beam former method, the scan position x is used by using the IF signal s'IF (n, f) in the first embodiment to the second embodiment obtained when the measurement is performed using the transmitted radio wave 1002 having the frequency f. The complex amplitude P (x) of the image of the object 1003 in the above is calculated according to the following equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ここで、重み付け係数による重み付けを適用しない従来の方式での対象物1003の画像強度の例と、本実施の形態4で重み付け係数による重み付けを適用した場合の対象物1003の画像強度の例をそれぞれ示す。ここでは図19で示すように、送信アンテナ1202及び受信アンテナ1203で構成された開口内に対象物1003が存在する場合と、開口外に対象物1003が存在する場合の画像強度を示す。 Here, an example of the image intensity of the object 1003 in the conventional method in which the weighting by the weighting coefficient is not applied, and an example of the image intensity of the object 1003 in the case where the weighting by the weighting coefficient is applied in the fourth embodiment, respectively. show. Here, as shown in FIG. 19, the image intensities when the object 1003 1 exists in the opening composed of the transmitting antenna 1202 and the receiving antenna 1203 and when the object 1003 2 exists outside the opening are shown.
 図20において、重み付け係数による重み付けを適用しない従来方式で開口内の対象物1003と開口外の対象物1003の画像強度をそれぞれ算出した結果を示す。従来方式の場合、開口内の対象物1003が存在する範囲(x=-10~10cm)において画像強度は正しく得られているが、開口外の対象物1003が存在する範囲(x=10~30cm)では画像強度の消失が起きている。従来方式では開口外の対象物1003からの反射電波1004から十分な強度のIF信号s'IF(n、f)を得られないために、開口外の対象物1003の画像強度が消失する不具合が発生している。 FIG. 20 shows the results of calculating the image intensities of the object 1003 1 in the opening and the object 1003 2 outside the opening by the conventional method to which the weighting by the weighting coefficient is not applied. In the case of the conventional method, the image intensity is correctly obtained in the range where the object 1003 1 in the opening exists (x = -10 to 10 cm), but the image intensity is correctly obtained in the range where the object 1003 2 outside the opening exists (x = 10). At ~ 30 cm), the image intensity disappears. In the conventional method, since the IF signal s'IF (n, f) having sufficient intensity cannot be obtained from the reflected radio wave 1004 from the object 1003 2 outside the opening, the image intensity of the object 1003 2 outside the opening disappears. There is a problem.
 図21において、本実施の形態4で重み付け係数による重み付けを適用した場合の開口内の対象物1003と開口外の対象物1003の画像強度をそれぞれ算出した結果を示す。本実施の形態4では、開口内の対象物1003が存在する範囲(x=-10~10cm)と開口外の対象物1003が存在する範囲(x=10~30cm)のいずれにおいても画像強度の消失が無く、正しく撮像されている。本実施の形態4では、重み付け係数による重み付けにより、開口内の対象物1003と開口外の対象物1003のいずれに対しても反射電波1004から十分な強度のIF信号s'IF(n、f)が得られるようにする事で、画像強度の消失を防いでいる。 FIG. 21 shows the results of calculating the image intensities of the object 1003 1 in the opening and the object 1003 2 outside the opening when weighting by a weighting coefficient is applied in the fourth embodiment. In the fourth embodiment, the image is in both the range in which the object 1003 1 in the opening exists (x = -10 to 10 cm) and the range in which the object 1003 2 outside the opening exists (x = 10 to 30 cm). There is no loss of intensity and the image is taken correctly. In the fourth embodiment, the IF signal s'IF (n,) having sufficient strength from the reflected radio wave 1004 for both the object 1003 1 in the opening and the object 1003 2 outside the opening is weighted by the weighting coefficient. By making it possible to obtain f), the loss of image intensity is prevented.
(第五の実施の形態)
 次に、本実施の形態5について説明する。本実施の形態5では、対象物検出部1305の一例が開示される。本実施の形態5の物体検知装置1000のその他の構成は、本実施の形態1乃至本実施の形態3と同様である。
(Fifth embodiment)
Next, the fifth embodiment will be described. In the fifth embodiment, an example of the object detection unit 1305 is disclosed. Other configurations of the object detection device 1000 of the fifth embodiment are the same as those of the first to third embodiments of the present embodiment.
 図22に示すように、本実施の形態5において、対象物検出部1305は、対象物IF信号データベース1501と、対象物IF信号照合部1502とを備えている。 As shown in FIG. 22, in the fifth embodiment, the object detection unit 1305 includes an object IF signal database 1501 and an object IF signal collation unit 1502.
 対象物IF信号データベース1501は、事前に得た対象物1003のIF信号の測定結果と対象物1003の種別の関係を示すデータが保存されている。なお、ここでは本実施の形態1ないし本実施の形態2におけるIF信号s'IF(n)を用いる事が望ましい。 The object IF signal database 1501 stores data showing the relationship between the measurement result of the IF signal of the object 1003 obtained in advance and the type of the object 1003. Here, it is desirable to use the IF signal s'IF (n) in the first embodiment to the second embodiment.
 対象物IF信号照合部1502は、測定で得られた本実施の形態1ないし本実施の形態2におけるIF信号s'IF(n)が入力される。対象物IF信号照合部1502は、測定で得られたIF信号と、対象物IF信号データベース1501に保存されているIF信号とを照合し、対象物1003の種別を対象物検出結果として出力する。 The object IF signal collation unit 1502 is input with the IF signal s'IF (n) in the first embodiment to the second embodiment obtained by the measurement. The object IF signal collation unit 1502 collates the IF signal obtained by the measurement with the IF signal stored in the object IF signal database 1501, and outputs the type of the object 1003 as the object detection result.
[プログラム]
 ここで、本発明の実施の形態におけるプログラムを実行することによって、物体検知装置1000を実現するコンピュータ(演算装置)について図23を用いて説明する。図23は本発明の実施の形態における物体検知装置1000を実現するコンピュータの一例を示すブロック図である。
[program]
Here, a computer (arithmetic logic unit) that realizes the object detection device 1000 by executing the program according to the embodiment of the present invention will be described with reference to FIG. 23. FIG. 23 is a block diagram showing an example of a computer that realizes the object detection device 1000 according to the embodiment of the present invention.
 図23に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。 As shown in FIG. 23, the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. Each of these parts is connected to each other via a bus 121 so as to be capable of data communication.
 CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。 The CPU 111 expands the program (code) in the present embodiment stored in the storage device 113 into the main memory 112, and executes these in a predetermined order to perform various operations. The main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory). Further, the program in the present embodiment is provided in a state of being stored in a computer-readable recording medium 120. The program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていても良い。 Further, specific examples of the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive. The input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and mouse. The display controller 115 is connected to the display device 119 and controls the display on the display device 119. The computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。 The data reader / writer 116 mediates the data transmission between the CPU 111 and the recording medium 120, reads the program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120. The communication interface 117 mediates data transmission between the CPU 111 and another computer.
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体が挙げられる。 Specific examples of the recording medium 120 include a general-purpose semiconductor storage device such as CF (CompactFlash (registered trademark)) and SD (SecureDigital), a magnetic recording medium such as a flexible disk, or a CD-. Examples include optical recording media such as ROM (CompactDiskReadOnlyMemory).
 なお、本実施の形態における物体検知装置1000は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、物体検知装置は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。 The object detection device 1000 in the present embodiment can also be realized by using hardware corresponding to each part instead of the computer in which the program is installed. Further, the object detection device may be partially realized by a program and the rest may be realized by hardware.
[効果]
 以下において、本発明の実施の形態の効果を要約する。
[effect]
The effects of embodiments of the present invention are summarized below.
 本発明の実施の形態では、対象物1003から反射される電波1004の反射方向が所望値になるように、対象物1003に電波1002の照射を行う。その照射状態が実現されるように、重み付け係数計算部1303と重み付け適用部1304により、送信アンテナ1202から照射される電波1002ないし受信アンテナ1203で受信される電波1004ないしIF信号に対し重み付けを行う。上記の手段により、対象物1003から反射される電波1004の反射方向を所望値に制御できる。この事により、送信アンテナ1202と受信アンテナ1203で構成される開口の範囲から外れる対象物1003が存在する場合でも、対象物1003から反射される電波1004を受信アンテナ1203で受信できるので、対象物1003の検知可能範囲を開口外にまで拡張できる。さらに本発明の実施の形態では、開口サイズによる検知可能範囲の制約が無くなるので、開口サイズを縮小し、装置のサイズとコストを低減できる。 In the embodiment of the present invention, the radio wave 1002 is irradiated to the object 1003 so that the reflection direction of the radio wave 1004 reflected from the object 1003 becomes a desired value. The weighting coefficient calculation unit 1303 and the weighting application unit 1304 weight the radio waves 1002 emitted from the transmitting antenna 1202 and the radio waves 1004 to IF signals received by the receiving antenna 1203 so that the irradiation state is realized. By the above means, the reflection direction of the radio wave 1004 reflected from the object 1003 can be controlled to a desired value. As a result, even if there is an object 1003 that is out of the range of the opening composed of the transmitting antenna 1202 and the receiving antenna 1203, the radio wave 1004 reflected from the object 1003 can be received by the receiving antenna 1203, so that the object 1003 The detectable range of is extended to the outside of the opening. Further, in the embodiment of the present invention, since the limitation of the detectable range by the opening size is removed, the opening size can be reduced, and the size and cost of the device can be reduced.
 以上、本発明の好適な実施形態の構成を説明した。しかし、前述の各特許文献等に開示されている内容は、本発明に引用をもって繰り込むことも可能とする。本発明の全開示(特許請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施の形態の変更・調整が可能である。また、本発明の特許請求の範囲の枠内において種々の開示要素の多様な組み合わせあるいは選択も可能である。すなわち、本発明は、特許請求の範囲を含む全開示、技術的思想にしたがって、当業者であればなし得ることが可能な各種変形、修正を含むことは勿論である。 The configuration of a preferred embodiment of the present invention has been described above. However, the contents disclosed in the above-mentioned patent documents and the like can be incorporated into the present invention by citation. Within the framework of the entire disclosure (including the scope of claims) of the present invention, it is possible to change or adjust the embodiment based on the basic technical idea. In addition, various combinations or selections of various disclosed elements are possible within the scope of the claims of the present invention. That is, it goes without saying that the present invention includes various modifications and modifications that can be made by those skilled in the art in accordance with the entire disclosure including the scope of claims and the technical idea.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限定されない。
1. 電波によって物体を検知するための物体検知装置であって、
 前記物体に向けて電波を照射する送信アンテナを備えた送信手段と、
 前記物体から反射された前記電波を受信する受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信手段と、
 前記物体から反射される前記電波の所望反射方向を設定する反射条件設定手段と、
 前記反射条件部設定部において設定された前記所望反射方向に基づいて前記物体に照射されるべき前記電波の要求照射分布を計算する要求照射分布計算手段と、
 前記要求照射分布計算手段が計算した前記要求照射分布に基づいて重み付け係数を計算する重み付け係数計算手段と、
 前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを前記電波又は前記中間周波数信号に適用する重み付け係数適用手段と、
 前記中間周波数信号に基づいて前記物体を検出する対象物検出手段と、
を備えた事を特徴とする物体検知装置。
2. 前記対象物検出手段は、前記中間周波数信号から前記物体の画像を生成する対象物画像生成手段を備えている、
事を特徴とする1に記載の物体検知装置。
3. 前記対象物検出手段は、対象物画像データベースと、対象物画像照合手段と、を備えており、
 前記対象物画像データベースは、事前に得た前記物体の画像と前記物体の種別との関係を示すデータを保持し、
 前記対象物画像照合手段は、前記対象物画像生成手段が生成した前記物体の画像と前記対象物画像データベースが保持する前記物体の画像とを照合する事で、前記物体の種別を出力する、
事を特徴とする2に記載の物体検知装置。
4. 前記対象物検出手段は、対象物中間周波数信号データベースと、対象物中間周波数信号照合手段と、を備えており、
 前記対象物中間周波数信号データベースは、事前に得た前記物体の中間周波数信号の測定結果と前記物体の種別との関係を示すデータを保持し、
 前記対象物中間周波数信号照合手段は、測定で得た前記物体の中間周波数信号と前記対象物中間周波数信号データベースが保持する前記物体の中間周波数信号とを照合する事で、前記物体の種別を出力する、
事を特徴とする1に記載の物体検知装置。
5. 前記送信手段は、可変振幅位相器を備えており、
 前記重み付け係数適用手段は、前記送信手段内の前記可変振幅位相器を制御し、前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを、前記送信アンテナが送信する前記電波に対して適用する、
事を特徴とする1ないし4に記載の物体検知装置。
6. 前記受信手段は、可変振幅位相器を備えており、
 前記重み付け係数適用手段は、前記受信手段内の前記可変振幅位相器を制御し、前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを、前記受信アンテナが受信する前記電波又は前記受信手段が生成した中間周波数信号に対して適用する、
事を特徴とする1ないし4に記載の物体検知装置。
7. 前記受信手段は、前記中間周波数信号をデジタル化するインターフェイス回路を備えており、
 前記重み付け係数適用手段は、前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを、前記インターフェイス回路においてデジタル化された前記中間周波数信号に対して適用する、
事を特徴とする1ないし4に記載の物体検知装置。
8. 前記重み付け係数適用手段は前記重み付け係数を保存する記録装置を備えており、
 前記重み付け係数適用手段は前記重み付け係数による重み付けを適用する際に前記記録装置から保存された前記重み付け係数を読み出す、
事を特徴とする1ないし7に記載の物体検知装置。
9. 前記送信アンテナと前記受信アンテナとで構成される開口の範囲から外れる前記物体を検知する、
事を特徴とする1ないし8に記載の物体検知装置。
10. 電波によって物体を検知するための物体検知方法であって、
 コンピュータが、
  送信アンテナから前記物体に向けて電波を照射するステップと、
  受信アンテナにおいて、前記物体から反射された前記電波を受信アンテナで受信し、更に前記受信アンテナで受信した受信信号から中間周波数信号を生成するステップと、
  前記物体から反射される前記電波の所望反射方向を設定するステップと、
  設定された前記所望反射方向に基づいて前記物体に照射されるべき前記電波の要求照射分布を計算するステップと、
  前記要求照射分布に基づいて重み付け係数を計算するステップと、
  前記重み付け係数による重み付けを前記電波又は前記中間周波数信号に適用するステップと、
 前記中間周波数信号に基づいて前記物体を検出するステップと、
を実行する事を特徴とする物体検知方法。
11. 前記物体に向けて電波を照射する送信アンテナを備えた送信手段と、
 前記物体から反射された前記電波を受信する受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信部手段と、
 プロセッサと、
を備える物体検知装置を、
 前記物体から反射される前記電波の所望反射方向を設定する反射条件設定手段、
 前記反射条件部設定部において設定された前記所望反射方向に基づいて前記物体に照射されるべき前記電波の要求照射分布を計算する要求照射分布計算手段、
 前記要求照射分布計算手段が計算した前記要求照射分布に基づいて重み付け係数を計算する重み付け係数計算手段、
 前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを前記電波又は前記中間周波数信号に適用する重み付け係数適用手段、及び、
 前記中間周波数信号に基づいて前記物体を検出する対象物検出手段、
として機能させるプログラム。
Some or all of the above embodiments may also be described, but not limited to:
1. 1. It is an object detection device for detecting objects by radio waves.
A transmitting means equipped with a transmitting antenna that irradiates radio waves toward the object,
A receiving antenna for receiving the radio wave reflected from the object, and a receiving means for generating an intermediate frequency signal from the received signal received by the receiving antenna.
A reflection condition setting means for setting a desired reflection direction of the radio wave reflected from the object, and
A required irradiation distribution calculation means for calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set in the reflection condition unit setting unit.
A weighting coefficient calculating means for calculating a weighting coefficient based on the required irradiation distribution calculated by the required irradiation distribution calculating means, and a weighting coefficient calculating means.
A weighting coefficient applying means for applying the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave or the intermediate frequency signal, and a weighting coefficient applying means.
An object detecting means for detecting the object based on the intermediate frequency signal,
An object detection device characterized by being equipped with.
2. 2. The object detecting means includes an object image generating means for generating an image of the object from the intermediate frequency signal.
The object detection device according to 1, characterized in that.
3. 3. The object detecting means includes an object image database and an object image collating means.
The object image database holds data showing the relationship between the image of the object and the type of the object obtained in advance.
The object image collating means outputs the type of the object by collating the image of the object generated by the object image generating means with the image of the object held by the object image database.
2. The object detection device according to 2.
4. The object detecting means includes an object intermediate frequency signal database and an object intermediate frequency signal collating means.
The object intermediate frequency signal database holds data showing the relationship between the measurement result of the intermediate frequency signal of the object obtained in advance and the type of the object.
The object intermediate frequency signal matching means outputs the type of the object by collating the intermediate frequency signal of the object obtained by measurement with the intermediate frequency signal of the object held by the object intermediate frequency signal database. do,
The object detection device according to 1, characterized in that.
5. The transmission means includes a variable amplitude phase detector.
The weighting coefficient applying means controls the variable amplitude phase device in the transmitting means, and applies the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave transmitted by the transmitting antenna.
The object detection device according to 1 to 4, wherein the object is detected.
6. The receiving means includes a variable amplitude phase detector.
The weighting coefficient applying means controls the variable amplitude phase device in the receiving means, and the radio wave received by the receiving antenna or the receiving means generates the weighting by the weighting coefficient calculated by the weighting coefficient calculating means. Applies to intermediate frequency signals
The object detection device according to 1 to 4, wherein the object is detected.
7. The receiving means includes an interface circuit for digitizing the intermediate frequency signal.
The weighting coefficient applying means applies the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the intermediate frequency signal digitized in the interface circuit.
The object detection device according to 1 to 4, wherein the object is detected.
8. The weighting coefficient applying means includes a recording device for storing the weighting coefficient.
The weighting coefficient applying means reads out the weighting coefficient stored from the recording device when applying the weighting by the weighting coefficient.
The object detection device according to 1 to 7, wherein the object is detected.
9. Detecting the object outside the range of the opening composed of the transmitting antenna and the receiving antenna.
The object detection device according to 1 to 8, wherein the object is detected.
10. It is an object detection method for detecting an object by radio waves.
The computer
The step of irradiating radio waves from the transmitting antenna toward the object,
In the receiving antenna, the step of receiving the radio wave reflected from the object by the receiving antenna and further generating an intermediate frequency signal from the received signal received by the receiving antenna.
A step of setting a desired reflection direction of the radio wave reflected from the object, and
A step of calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set, and a step of calculating the required irradiation distribution.
The step of calculating the weighting coefficient based on the required irradiation distribution and
The step of applying the weighting by the weighting coefficient to the radio wave or the intermediate frequency signal, and
The step of detecting the object based on the intermediate frequency signal,
An object detection method characterized by executing.
11. A transmitting means equipped with a transmitting antenna that irradiates radio waves toward the object,
A receiving antenna for receiving the radio wave reflected from the object, and a receiving unit means for generating an intermediate frequency signal from the receiving signal received by the receiving antenna.
With the processor
An object detection device equipped with
Reflection condition setting means for setting a desired reflection direction of the radio wave reflected from the object,
A required irradiation distribution calculation means for calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set in the reflection condition unit setting unit.
A weighting coefficient calculating means for calculating a weighting coefficient based on the required irradiation distribution calculated by the required irradiation distribution calculating means,
A weighting coefficient applying means that applies the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave or the intermediate frequency signal, and
An object detecting means for detecting an object based on the intermediate frequency signal,
A program that functions as.
 110 コンピュータ
 111 CPU
 112 メインメモリ
 113 記憶装置
 114 入力インターフェイス
 115 表示コントローラ
 116 データリーダ/ライタ
 117 通信インターフェイス
 118 入力機器
 119 ディスプレイ装置
 120 記録媒体
 121 バス
 1000 物体検知装置
 1001 送受信装置
 1002 電波(送信信号)
 1003 対象物(検知対象となる物体)
 1004 電波(受信信号)
 1005 対象物配置面
 1101 送信部
 1102 受信部
 1201 発振器
 1202 送信アンテナ
 1203 受信アンテナ
 1204 ミキサ
 1205 インターフェイス回路
 1206 スイッチ
 1207 可変振幅位相器
 1208 端子
 1211 演算装置
 1301 反射条件設定部
 1302 要求照射分布計算部
 1303 重み付け係数計算部
 1304、1306 重み付け係数適用部
 1305 対象物検出部
 1401 対象物画像生成部
 1402 対象物画像データベース
 1403 対象物画像照合部
 1501 対象物IF信号データベース
 1502 対象物IF信号照合部
110 computer 111 CPU
112 Main memory 113 Storage device 114 Input interface 115 Display controller 116 Data reader / writer 117 Communication interface 118 Input device 119 Display device 120 Recording medium 121 Bus 1000 Object detection device 1001 Transmission / reception device 1002 Radio wave (transmission signal)
1003 Object (object to be detected)
1004 radio wave (received signal)
1005 Object placement surface 1101 Transmitter 1102 Receiver 1201 Oscillator 1202 Transmitter antenna 1203 Receiver antenna 1204 Mixer 1205 Interface circuit 1206 Switch 1207 Variable amplitude phase device 1208 Terminal 1211 Computing device 1301 Reflection condition setting unit 1302 Requested irradiation distribution calculation unit 1303 Weighting coefficient Calculation unit 1304, 1306 Weighting coefficient application unit 1305 Object detection unit 1401 Object image generation unit 1402 Object image database 1403 Object image collation unit 1501 Object IF signal database 1502 Object IF signal collation unit

Claims (11)

  1.  電波によって物体を検知するための物体検知装置であって、
     前記物体に向けて電波を照射する送信アンテナを備えた送信手段と、
     前記物体から反射された前記電波を受信する受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信手段と、
     前記物体から反射される前記電波の所望反射方向を設定する反射条件設定手段と、
     前記反射条件部設定部において設定された前記所望反射方向に基づいて前記物体に照射されるべき前記電波の要求照射分布を計算する要求照射分布計算手段と、
     前記要求照射分布計算手段が計算した前記要求照射分布に基づいて重み付け係数を計算する重み付け係数計算手段と、
     前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを前記電波又は前記中間周波数信号に適用する重み付け係数適用手段と、
     前記中間周波数信号に基づいて前記物体を検出する対象物検出手段と、
    を備えた事を特徴とする物体検知装置。
    It is an object detection device for detecting objects by radio waves.
    A transmitting means equipped with a transmitting antenna that irradiates radio waves toward the object,
    A receiving antenna for receiving the radio wave reflected from the object, and a receiving means for generating an intermediate frequency signal from the received signal received by the receiving antenna.
    A reflection condition setting means for setting a desired reflection direction of the radio wave reflected from the object, and
    A required irradiation distribution calculation means for calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set in the reflection condition unit setting unit.
    A weighting coefficient calculating means for calculating a weighting coefficient based on the required irradiation distribution calculated by the required irradiation distribution calculating means, and a weighting coefficient calculating means.
    A weighting coefficient applying means for applying the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave or the intermediate frequency signal, and a weighting coefficient applying means.
    An object detecting means for detecting the object based on the intermediate frequency signal,
    An object detection device characterized by being equipped with.
  2.  前記対象物検出手段は、前記中間周波数信号から前記物体の画像を生成する対象物画像生成手段を備えている、
    事を特徴とする請求項1に記載の物体検知装置。
    The object detecting means includes an object image generating means for generating an image of the object from the intermediate frequency signal.
    The object detection device according to claim 1, wherein the object is detected.
  3.  前記対象物検出手段は、対象物画像データベースと、対象物画像照合手段と、を備えており、
     前記対象物画像データベースは、事前に得た前記物体の画像と前記物体の種別との関係を示すデータを保持し、
     前記対象物画像照合手段は、前記対象物画像生成手段が生成した前記物体の画像と前記対象物画像データベースが保持する前記物体の画像とを照合する事で、前記物体の種別を出力する、
    事を特徴とする請求項2に記載の物体検知装置。
    The object detecting means includes an object image database and an object image collating means.
    The object image database holds data showing the relationship between the image of the object and the type of the object obtained in advance.
    The object image collating means outputs the type of the object by collating the image of the object generated by the object image generating means with the image of the object held by the object image database.
    The object detection device according to claim 2, wherein the object is detected.
  4.  前記対象物検出手段は、対象物中間周波数信号データベースと、対象物中間周波数信号照合手段と、を備えており、
     前記対象物中間周波数信号データベースは、事前に得た前記物体の中間周波数信号の測定結果と前記物体の種別との関係を示すデータを保持し、
     前記対象物中間周波数信号照合手段は、測定で得た前記物体の中間周波数信号と前記対象物中間周波数信号データベースが保持する前記物体の中間周波数信号とを照合する事で、前記物体の種別を出力する、
    事を特徴とする請求項1に記載の物体検知装置。
    The object detecting means includes an object intermediate frequency signal database and an object intermediate frequency signal collating means.
    The object intermediate frequency signal database holds data showing the relationship between the measurement result of the intermediate frequency signal of the object obtained in advance and the type of the object.
    The object intermediate frequency signal matching means outputs the type of the object by collating the intermediate frequency signal of the object obtained by measurement with the intermediate frequency signal of the object held by the object intermediate frequency signal database. do,
    The object detection device according to claim 1, wherein the object is detected.
  5.  前記送信手段は、可変振幅位相器を備えており、
     前記重み付け係数適用手段は、前記送信手段内の前記可変振幅位相器を制御し、前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを、前記送信アンテナが送信する前記電波に対して適用する、
    事を特徴とする請求項1ないし4に記載の物体検知装置。
    The transmission means includes a variable amplitude phase detector.
    The weighting coefficient applying means controls the variable amplitude phase device in the transmitting means, and applies the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave transmitted by the transmitting antenna.
    The object detection device according to claim 1 to 4, wherein the object is detected.
  6.  前記受信手段は、可変振幅位相器を備えており、
     前記重み付け係数適用手段は、前記受信手段内の前記可変振幅位相器を制御し、前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを、前記受信アンテナが受信する前記電波又は前記受信手段が生成した中間周波数信号に対して適用する、
    事を特徴とする請求項1ないし4に記載の物体検知装置。
    The receiving means includes a variable amplitude phase detector.
    The weighting coefficient applying means controls the variable amplitude phase device in the receiving means, and the radio wave received by the receiving antenna or the receiving means generates the weighting by the weighting coefficient calculated by the weighting coefficient calculating means. Applies to intermediate frequency signals
    The object detection device according to claim 1 to 4, wherein the object is detected.
  7.  前記受信手段は、前記中間周波数信号をデジタル化するインターフェイス回路を備えており、
     前記重み付け係数適用手段は、前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを、前記インターフェイス回路においてデジタル化された前記中間周波数信号に対して適用する、
    事を特徴とする請求項1ないし4に記載の物体検知装置。
    The receiving means includes an interface circuit for digitizing the intermediate frequency signal.
    The weighting coefficient applying means applies the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the intermediate frequency signal digitized in the interface circuit.
    The object detection device according to claim 1 to 4, wherein the object is detected.
  8.  前記重み付け係数適用手段は前記重み付け係数を保存する記録装置を備えており、
     前記重み付け係数適用手段は前記重み付け係数による重み付けを適用する際に前記記録装置から保存された前記重み付け係数を読み出す、
    事を特徴とする請求項1ないし7に記載の物体検知装置。
    The weighting coefficient applying means includes a recording device for storing the weighting coefficient.
    The weighting coefficient applying means reads out the weighting coefficient stored from the recording device when applying the weighting by the weighting coefficient.
    The object detection device according to claim 1 to 7, wherein the object is detected.
  9.  前記送信アンテナと前記受信アンテナとで構成される開口の範囲から外れる前記物体を検知する、
    事を特徴とする請求項1ないし8に記載の物体検知装置。
    Detecting the object outside the range of the opening composed of the transmitting antenna and the receiving antenna.
    The object detection device according to claim 1 to 8, wherein the object is detected.
  10.  電波によって物体を検知するための物体検知方法であって、
     コンピュータが、
      送信アンテナから前記物体に向けて電波を照射するステップと、
      受信アンテナにおいて、前記物体から反射された前記電波を受信アンテナで受信し、更に前記受信アンテナで受信した受信信号から中間周波数信号を生成するステップと、
      前記物体から反射される前記電波の所望反射方向を設定するステップと、
      設定された前記所望反射方向に基づいて前記物体に照射されるべき前記電波の要求照射分布を計算するステップと、
      前記要求照射分布に基づいて重み付け係数を計算するステップと、
      前記重み付け係数による重み付けを前記電波又は前記中間周波数信号に適用するステップと、
     前記中間周波数信号に基づいて前記物体を検出するステップと、
    を実行する事を特徴とする物体検知方法。
    It is an object detection method for detecting an object by radio waves.
    The computer
    The step of irradiating radio waves from the transmitting antenna toward the object,
    In the receiving antenna, the step of receiving the radio wave reflected from the object by the receiving antenna and further generating an intermediate frequency signal from the received signal received by the receiving antenna.
    A step of setting a desired reflection direction of the radio wave reflected from the object, and
    A step of calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set, and a step of calculating the required irradiation distribution.
    The step of calculating the weighting coefficient based on the required irradiation distribution and
    The step of applying the weighting by the weighting coefficient to the radio wave or the intermediate frequency signal, and
    The step of detecting the object based on the intermediate frequency signal,
    An object detection method characterized by executing.
  11.  前記物体に向けて電波を照射する送信アンテナを備えた送信手段と、
     前記物体から反射された前記電波を受信する受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信部手段と、
     プロセッサと、
    を備える物体検知装置を、
     前記物体から反射される前記電波の所望反射方向を設定する反射条件設定手段、
     前記反射条件部設定部において設定された前記所望反射方向に基づいて前記物体に照射されるべき前記電波の要求照射分布を計算する要求照射分布計算手段、
     前記要求照射分布計算手段が計算した前記要求照射分布に基づいて重み付け係数を計算する重み付け係数計算手段、
     前記重み付け係数計算手段が計算した前記重み付け係数による重み付けを前記電波又は前記中間周波数信号に適用する重み付け係数適用手段、及び、
     前記中間周波数信号に基づいて前記物体を検出する対象物検出手段、
    として機能させるプログラム。
    A transmitting means equipped with a transmitting antenna that irradiates radio waves toward the object,
    A receiving antenna for receiving the radio wave reflected from the object, and a receiving unit means for generating an intermediate frequency signal from the receiving signal received by the receiving antenna.
    With the processor
    An object detection device equipped with
    Reflection condition setting means for setting a desired reflection direction of the radio wave reflected from the object,
    A required irradiation distribution calculation means for calculating the required irradiation distribution of the radio wave to be applied to the object based on the desired reflection direction set in the reflection condition unit setting unit.
    A weighting coefficient calculating means for calculating a weighting coefficient based on the required irradiation distribution calculated by the required irradiation distribution calculating means,
    A weighting coefficient applying means that applies the weighting by the weighting coefficient calculated by the weighting coefficient calculating means to the radio wave or the intermediate frequency signal, and
    An object detecting means for detecting an object based on the intermediate frequency signal,
    A program that functions as.
PCT/JP2020/034070 2020-09-09 2020-09-09 Object detecting device, object detecting method, and program WO2022054160A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022548288A JP7416275B2 (en) 2020-09-09 2020-09-09 Object detection device, object detection method and program
PCT/JP2020/034070 WO2022054160A1 (en) 2020-09-09 2020-09-09 Object detecting device, object detecting method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034070 WO2022054160A1 (en) 2020-09-09 2020-09-09 Object detecting device, object detecting method, and program

Publications (1)

Publication Number Publication Date
WO2022054160A1 true WO2022054160A1 (en) 2022-03-17

Family

ID=80631384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034070 WO2022054160A1 (en) 2020-09-09 2020-09-09 Object detecting device, object detecting method, and program

Country Status (2)

Country Link
JP (1) JP7416275B2 (en)
WO (1) WO2022054160A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133538A (en) * 1999-11-05 2001-05-18 Mitsubishi Electric Corp Signal processing device and method
JP2009049966A (en) * 2007-07-25 2009-03-05 Panasonic Corp Wireless evaluation device
WO2019107368A1 (en) * 2017-12-01 2019-06-06 日本電気株式会社 Mobile entity detector, mobile entity detection method, and computer-readable recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133538A (en) * 1999-11-05 2001-05-18 Mitsubishi Electric Corp Signal processing device and method
JP2009049966A (en) * 2007-07-25 2009-03-05 Panasonic Corp Wireless evaluation device
WO2019107368A1 (en) * 2017-12-01 2019-06-06 日本電気株式会社 Mobile entity detector, mobile entity detection method, and computer-readable recording medium

Also Published As

Publication number Publication date
JP7416275B2 (en) 2024-01-17
JPWO2022054160A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
JP7001069B2 (en) Knowledge generator for inference, knowledge generation method for inference, and program
KR102107685B1 (en) Method and apparutus for signal detecting and recognition
US20060001585A1 (en) Antenna, tag communication apparatus, tag communication system, scanning adjusting method for tag communication apparatus and computer readable medium
JP2000028704A (en) Radar device
US20130176173A1 (en) Grating lobe mitigation in presence of simultaneous receive beams
US8633850B2 (en) Identifying a location of a target object using a monopulse radar system and space-time adaptive processing (STAP)
US11070397B2 (en) Adaptive OTA leakage cancellation for mmWave radar
JP6838658B2 (en) Object detection device, object detection method, and program
JP2005121581A (en) Radar device
WO2022054160A1 (en) Object detecting device, object detecting method, and program
JP6849100B2 (en) Object detection device, object detection method and program
CN112034464A (en) Target classification method
US11892558B2 (en) Method and apparatus for estimating direction of arrival of radar reception signal using antenna array extrapolation
CN113906307A (en) Radar signal processing device, radar system, and signal processing method
JP6939981B2 (en) Object detection device and object detection method
US20210278517A1 (en) Beam formation device, radar device, and beam formation method
US20070005817A1 (en) Computer system having a wireless input device and coordinate processing method
JP7375823B2 (en) Object detection device, object detection method, and program
JP7367876B2 (en) Object detection device, object detection method and program
WO2023073794A1 (en) Object-sensing device, object-sensing method, and program
WO2022059090A1 (en) Radar device, imaging method, and imaging program
US11408976B1 (en) Method and apparatus for detection of a metasurface
CN114063176B (en) Radar imaging method, radar imaging device and computer readable storage medium
RU2402789C1 (en) Method for spatial discrimination of incoming signals in instrumentation antenna of giant-pulse radiolocator
JP2937174B2 (en) Direction finder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548288

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953226

Country of ref document: EP

Kind code of ref document: A1