WO2022053852A1 - Dispositivo y proceso para aumentar la eficiencia de motores eléctricos, reduciendo el consumo energético de los mismos - Google Patents

Dispositivo y proceso para aumentar la eficiencia de motores eléctricos, reduciendo el consumo energético de los mismos Download PDF

Info

Publication number
WO2022053852A1
WO2022053852A1 PCT/IB2020/058435 IB2020058435W WO2022053852A1 WO 2022053852 A1 WO2022053852 A1 WO 2022053852A1 IB 2020058435 W IB2020058435 W IB 2020058435W WO 2022053852 A1 WO2022053852 A1 WO 2022053852A1
Authority
WO
WIPO (PCT)
Prior art keywords
efficiency
electric motors
subsystem
increase
transistor
Prior art date
Application number
PCT/IB2020/058435
Other languages
English (en)
French (fr)
Inventor
Tomas VELASQUEZ MEJÍA
Darío BURITICÁ MARÍN
Original Assignee
Velasquez Mejia Tomas
Buritica Marin Dario
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Velasquez Mejia Tomas, Buritica Marin Dario filed Critical Velasquez Mejia Tomas
Priority to PCT/IB2020/058435 priority Critical patent/WO2022053852A1/es
Publication of WO2022053852A1 publication Critical patent/WO2022053852A1/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the present invention is related to a device and process to increase the efficiency of electric motors, reducing heat losses, hysteresis losses, losses due to the creation of Eddy currents, losses due to resistance and stress, losses due to vibrations and mainly due to generation of BMF (Back Electromagnetic Fields) or inverse electromagnetic fields, where the device is composed of a subsystem for influencing the power factor and reactive currents, a harmonic current elimination subsystem, an electronic commutation subsystem, a of operation and dissipation, and a DC power supply subsystem, which are configured to obtain the greatest energy benefit from an external AC source, reducing the consumption of the electric motors that use the device by up to 70%.
  • BMF Back Electromagnetic Fields
  • inverse electromagnetic fields where the device is composed of a subsystem for influencing the power factor and reactive currents, a harmonic current elimination subsystem, an electronic commutation subsystem, a of operation and dissipation, and a DC power supply subsystem, which are configured to obtain the greatest
  • Electric motors are the equipment with the highest energy consumption in the planet. Approximately 70% of world consumption corresponds to electromotive and auxiliary equipment such as fans, pumps, air compressors, conveyor belts, among others. Given its importance and high global application, it is evident that energy consumption in the world is proportional to the use of these devices, thus identifying a need to implement energy saving mechanisms for these electric motors.
  • the electric motor is a device that transforms electrical energy into mechanical energy, through the action of the magnetic fields generated in its coils, so they belong to the field of rotating machines composed of a stator and a rotor, being in some cases reversible its function, that is, transformation of mechanical energy into electrical energy (generators).
  • Electric motors basically consist of two parts, the Stator, which is the fixed part, which acts magnetically operating as a base, and the Rotor, which is the moving part that allows the transfer, since the conversion of electrical energy to mechanical depends on it.
  • Asynchronous or induction motors are the most widely used and are motors in which the rotor moves by electromagnetic induction generated by the stator's magnetic field.
  • auxiliary equipment such as frequency converters and operation controllers, among others, that improve performance by reducing consumption by up to 30% only in completely new motors and equipment.
  • the total cross sections of the wire used in each main and additional winding are of predetermined sizes and preferably follow the approximate ratio of approximately two-thirds (%) for the main winding and approximately one-third (%) for the additional winding, and the respective values of the condenser are predetermined.
  • the number of turns of each additional winding is fifty to one hundred percent (50%-100%) of the number of turns of its respective main winding.
  • the two coils are built simultaneously in a single operation.
  • the invention defined in this foregoing has the disadvantage that in order to increase the efficiency of the motor, it requires modifying the winding of said motor, without providing an electronic configuration to reduce losses due to electrical consumption in induction motors that has a circuit to eliminate harmonic currents, a signal of peak-cutting capacitors, and in the latest designs we do not use a signal of peak-cutting capacitors, which serve as correctors and frequency controllers, a "switching" transistor is controlled by an integrated circuit, making the process much more complex and expensive optimization method.
  • US9041464B2 discloses a circuit to reduce energy consumption, which includes a power amplifier. The circuit also includes a predistortor coupled to the power amplifier.
  • the circuit further includes a power supply coupled to the power amplifier.
  • the circuit further includes a controller coupled to the power amplifier, predistortor and power supply. The controller captures a transmit signal and a feedback signal simultaneously and determines a minimum bias voltage from a set of voltages and predistortion that enables the power amplifier to produce an amplified transmit signal according to a requirement.
  • this prior invention has the drawback that it focuses on reducing consumption in electronic devices, so it does not specifically mention an electronic configuration to reduce losses due to electrical consumption in induction motors that has a circuit to eliminate harmonic currents, a series of short peak capacitors, correctors and frequency controllers, a "switching" transistor that is controlled by an integrated circuit with which a greater optimization in energy consumption would be obtained.
  • US9214876B2 which belongs to the field of power electronics and control of semiconductor converters, where it also belongs to the shot generation method for modified Z sine wave, quasi-Z and trans-Z inverters.
  • the inverter can be controlled using the modified sine wave pulse width modulation method or the phase shift modulation method.
  • the invention defined in said document has the disadvantage of including a large number of components, which do not include an electronic configuration to reduce losses due to electrical consumption in induction motors, which has a circuit to eliminate harmonic currents, a series of short peak capacitors, correctors and frequency controllers, a "switching" transistor that is controlled by an integrated circuit with which a greater optimization in energy consumption would be obtained.
  • the invention described in this foregoing has the disadvantage that it allows improving the efficiency in the conversion of energy from DC to AC, which does not include an electronic configuration to reduce losses due to electrical consumption in induction motors that have a circuit for eliminate harmonic currents, a series of short peak capacitors, correctors and frequency controllers, a "switching" transistor that is controlled by a integrated circuit with which a greater optimization in energy consumption would be obtained.
  • Figure 1 shows a view of each of the components of the device and their interaction.
  • Figure 2 shows how the device interacts with the heat dissipation mechanism.
  • Figure 3 shows the BMF currents, generated in all the motors in operation, these currents tend to wrap the synodal wave of the current that actually moves the motor. These currents include harmonics and noise, where the noise corresponds to disruptive currents that are taken as an inductive load, generating a much higher consumption for the motor than it generally needs for its operation (all this is part of the sum of the current that the manufacturer takes of these as normal consumption).
  • the figure 3a. is an actual graph taken from the measuring instrument
  • Figure 3b is a representative schematic of Figure 3a.
  • Figure 4 shows the sinusoidal wave that represents the operating current of the motor, when adapting to the device disclosed in the present invention.
  • Figure 4a. is an actual graph taken from the measuring instrument
  • Figure 4b is a representative schematic of Figure 4a.
  • the present invention is directed to a device for increasing the efficiency of single-phase, two-phase and three-phase induction electric motors, reducing their energy consumption, wherein said device comprises:
  • a harmonic current elimination subsystem (2) made up of an LRC circuit (23), two capacitors (21) and a resistor (22). Where in addition to blocking harmonic currents, it blocks low frequencies that could affect the efficiency of the device.
  • An electronic switching subsystem (3) made up of a transistor
  • Said subsystem (3) also comprises a capacitor (33) that eliminates the transients that may be generated in the operation of the integrated circuit.
  • said transistor (31) is a switching element.
  • said switching element interrupts in very short intervals the current sinusoidal wave at its highest and lowest peak for each phase that feeds the motor, which not only allows us to obtain a significant current gain, but also interrupts the transcendent of ascending currents, descending currents and all the harmonics, noises or inductive fields generated in the motor.
  • Said subsystem (3) also comprises an RC circuit (35) that eliminates the hysteresis generated in the switching of the transistor (31), made up of a capacitor (351) and a resistor (352).
  • an operation and dissipation subsystem (4) made up of a heat sink, and a tactile or similar operating element.
  • the transistor (31) operates in a temperature range between -40°C and 125°C. however, for the present device it operates with loads of up to 35 amps, at a temperature of 45°C to 60°C.
  • Said heat sink is made of aluminum fins of 5 cm X 5 cm, by 10 cm for single-phase motors, and 5 cm X 5 cm, by 17 cm or more, for two-phase and three-phase motors.
  • This device also comprises a power supply subsystem (5), made up of a current rectifier integrated circuit (51), a DC filter capacitor (52), a variable resistor (53) and a voltage regulation transistor (54) which feed the integrated circuit (32), and the alarm circuit for short circuit in the transistor (31).
  • a power supply subsystem (5) made up of a current rectifier integrated circuit (51), a DC filter capacitor (52), a variable resistor (53) and a voltage regulation transistor (54) which feed the integrated circuit (32), and the alarm circuit for short circuit in the transistor (31).
  • the subsystem 1 presents a phase shift of the capacitive current in the capacitor (1 1), whose effect increases the power factor, where when the current flows from the capacitor (11) to the inductive load circuit, the magnetizing current of the motor, thus decreasing the reactive energy. In this way, the high frequencies that generate stress in the network are absorbed by the capacitor (1 1 ).
  • the device has an integrated wave and voltage rectifier circuit (61) to maintain constant values, together with the resistors (62), (63) that allow the transistor conduction time base to be reduced ( 31), in each period.
  • the device has a software that connects to each phase to measure in real time the consumption, performance and operation of the equipment, where additionally, it allows to know the consumption of each motor through an APP for mobile phones. This monitoring is done 24/7/365.
  • the system is configured for a two-phase motor, replicating each of the previous elements for the second phase.
  • system is configured for a three-phase motor, replicating each of the above elements for the second phase and the third phase.
  • the present invention also teaches a process to increase the efficiency of electric motors, reducing heat losses, hysteresis losses, losses due to the creation of Eddy currents, losses due to resistance and stress, losses due to vibrations and mainly due to the generation of BMF (Back Electromagnetic Fields) or inverse electromagnetic fields, where said process comprises the following stages:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

La presente invención se relaciona con un dispositivo y proceso para aumentar la eficiencia de motores eléctricos, reduciendo las pérdidas por calor, pérdidas por histéresis, pérdidas por la creación de corrientes de Eddy, pérdidas por resistencias y stress, pérdidas por vibraciones y principalmente por la generación de BMF (Back Electromagnetic Fields) o campos electromagnéticos inversos, en donde el dispositivo está compuesto por un subsistema de influencia en el factor de potencia y las corrientes reactivas, un subsistema de eliminación de corrientes armónicas, un subsistema de conmutación electrónica, un subsistema de operación y disipación, y un subsistema de alimentación de corriente DC, los cuales se configuran para obtener el mayor beneficio energético de una fuente externa AC, reduciendo los consumos de los motores eléctricos que utilizan el dispositivo hasta en un 70%.

Description

DISPOSITIVO Y PROCESO PARA AUMENTAR LA EFICIENCIA DE
MOTORES ELÉCTRICOS, REDUCIENDO EL CONSUMO ENERGÉTICO DE LOS MISMOS
CAMPO TÉCNICO
La presente invención se relaciona con un dispositivo y proceso para aumentar la eficiencia de motores eléctricos, reduciendo las pérdidas por calor, pérdidas por histéresis, pérdidas por la creación de corrientes de Eddy, pérdidas por resistencias y stress, pérdidas por vibraciones y principalmente por la generación de BMF (Back Electromagnetic Fields) o campos electromagnéticos inversos, en donde el dispositivo está compuesto por un subsistema de influencia en el factor de potencia y las corrientes reactivas, un subsistema de eliminación de corrientes armónicas, un subsistema de conmutación electrónica, un subsistema de operación y disipación, y un subsistema de alimentación de corriente DC, los cuales se configuran para obtener el mayor beneficio energético de una fuente externa AC, reduciendo los consumos de los motores eléctricos que utilizan el dispositivo hasta en un 70%.
ANTECEDENTES DE LA INVENCIÓN
Los motores eléctricos son los equipos de mayor consumo de energía en el planeta. Aproximadamente el 70% del consumo mundial corresponde a equipos electromotrices y auxiliares tales como ventiladores, bombas, compresores de aire, bandas transportadoras, entre otros. Dada su importancia y alta aplicación global, es evidente que los consumos energéticos en el mundo son proporcionales al uso de dichos dispositivos, de esta manera se identifica una necesidad por implementar mecanismos de ahorro de energía para dichos motores eléctricos.
El motor eléctrico es un dispositivo que transforma energía eléctrica en energía mecánica, por medio de la acción de los campos magnéticos generados en sus bobinas, por lo que pertenecen al campo de las maquinas rotatorias compuestas por un estator y un rotor, siendo en algunos casos reversible su función, es decir, transformación de energía mecánica en energía eléctrica (generadores). Los motores eléctricos constan básicamente de dos partes, el Estator que es la parte fija, que actúa magnéticamente operando como base y el Rotor, el cual es la parte móvil que permite la transferencia, ya que de él depende la conversión de energía eléctrica a mecánica. Los motores asincronos o de inducción son los más utilizados y son motores en los que el rotor se mueve por la inducción electromagnética generada por el campo magnético del estator. Este proceso de transformación de energía eléctrica a mecánica en los motores eléctricos sufre pérdidas considerables de energía eléctrica tomada desde la red, proporcionando el consumo nominal del motor, dichas pérdidas que son tomadas por el fabricante de los motores como condiciones normales. Algunas de estas pérdidas son, pérdidas en forma de calor, pérdidas por histéresis, pérdidas por la creación de corrientes de Eddy, pérdidas por resistencias y stress, pérdidas por vibraciones y principalmente por la generación de BMF (Back Electromagnetic Fíeles) o campos electromagnéticos inversos. Dichas perdidas consisten en corrientes y armónicos tomadas como carga inductiva las cuales generan un consumo adicional en el motor, consumo que generalmente es mucho mayor al requerido para su operación.
Actualmente existen compañías que desarrollan tecnologías enfocadas en motores de alta eficiencia, equipos auxiliares como convertidores de frecuencia y controladores de operación, entre otros, que mejoran el rendimiento reduciendo el consumo hasta un 30% solo en motores y equipos totalmente nuevos.
De esta forma, en el estado del arte existe una pluralidad de divulgaciones relacionadas con sistemas, dispositivos o aparatos para incrementar la eficiencia en motores eléctricos, reduciendo los consumos energéticos, dentro de los que se encuentra el documento US7227288B2 que enseña un motor eléctrico de corriente alterna monofásico o multifásico o un generador síncrono que incluye bobinas principales y bobinas adicionales que realizan la desaturación del campo magnético de las bobinas principales. Cada bobinado adicional se alimenta a través de al menos un condensador en un ángulo de fase diferente y en direcciones de campo opuestas de los respectivos bobinados principales. Las secciones transversales totales del alambre utilizado en cada bobinado principal y adicional son de tamaños predeterminados y siguen preferentemente la proporción aproximada de aproximadamente dos tercios (%) para el bobinado principal y aproximadamente un tercio (%) para el bobinado adicional, y los respectivos valores del condensador están predeterminados. El número de vueltas de cada bobinado adicional es de cincuenta a cien por ciento (50%- 100%) del número de vueltas de su respectivo bobinado principal. Las dos bobinas se construyen simultáneamente en una sola operación.
Sin embargo, la invención definida en esta anterioridad presenta la desventaja que para aumentar la eficiencia del motor requiere modificar el bobinado de dicho motor, sin proporcionar una configuración electrónica para reducir las pérdidas por consumo eléctrico en motores de inducción que cuente con un circuito para eliminar corrientes armónicas, una señe de capacitores corta picos, Ya en los últimos diseños no utilizamos una señe de capacitores cortapicos, que sirven como|correctores y controladores de frecuencia, un transistor de “swicheo”, es controlado por un circuito integrado, haciendo el proceso de optimización mucho más complejo y costoso. De otra parte, se encuentra también el documento US9041464B2, el cual divulga un circuito para reducir el consumo de energía, el cual incluye un amplificador de potencia. El circuito también incluye un predistortor acoplado al amplificador de potencia. El circuito incluye además una fuente de alimentación acoplada al amplificador de potencia. El circuito incluye además un controlador acoplado al amplificador de potencia, al predistortor y a la fuente de alimentación. El controlador captura una señal de transmisión y una señal de retroalimentación simultáneamente y determina un voltaje de polarización mínimo a partir de un conjunto de voltajes y una predistorsión que permiten al amplificador de potencia producir una señal de transmisión amplificada de acuerdo con un requisito.
No obstante, esta invención de la anterioridad presenta el inconveniente que se enfoca en la reducción de consumo en dispositivos electrónicos, por lo que no menciona específicamente una configuración electrónica para reducir las pérdidas por consumo eléctrico en motores de inducción que cuenta con un circuito para eliminar corrientes armónicas, una señe de capacitores corta picos, correctores y controladores de frecuencia, un transistor de “swicheo” que es controlado por un circuito integrado con lo que se obtendría una mayor optimización en el consumo energético.
Ahora bien, en el estado del arte también se encuentra el documento
US9214876B2, el cual pertenece al campo de la electrónica de potencia y de control de convertidores de semiconductores, en donde además pertenece al método de generación por disparo para inversores de onda sinusoidal Z modificada, cuasi-Z y trans-Z. El inversor puede ser controlado utilizando el método de modulación de ancho de pulso de onda sinusoidal modificada o el método de modulación por desplazamiento de fase. Hay tres métodos para la generación de impulsos en el caso del control de onda sinusoidal modificada: mediante la superposición de los estados activos, durante el estado libre y durante el estado cero. Para igualar las pérdidas de conmutación en el caso de patrones de conmutación asimétricos, las señales de control de los elementos de conmutación superiores e inferiores se intercambian periódicamente.
Sin embargo, se puede ver claramente que la invención definida en dicho documento, presenta la desventaja de incluir una gran cantidad de componentes, que no incluyen una configuración electrónica para reducir las pérdidas por consumo eléctrico en motores de inducción que cuenta con un circuito para eliminar corrientes armónicas, una señe de capacitores corta picos, correctores y controladores de frecuencia, un transistor de “swicheo” que es controlado por un circuito integrado con lo que se obtendría una mayor optimización en el consumo energético.
Finalmente, se tiene el documento US20170244325 el cual presenta el aumento de la eficiencia de conversión de energía de CC a CA en una topología de conductor de inversor en cascada escaladle, flexible y resistente. Las celdas de potencia plurales, que incluyen un rectificador y un inversor, están dispuestas en una topología sehe/paralela. El uso de celdas de potencia plural aumenta la eficiencia reduciendo las pérdidas de transición de voltaje y aumentando el ciclo de trabajo. Además, las celdas de potencia dan salida a la CA a un motor eléctrico utilizando un controlador de futuro que responde a la demanda de potencia variable mientras mantiene la velocidad del motor a un nivel de eficiencia máximo. La salida de energía se varía variando el ancho de los pulsos de salida del rectificador a los inversores mientras se mantiene el voltaje de los pulsos. Las transiciones entre los niveles de potencia se suavizan mediante la modulación de la densidad de los impulsos. La densidad de los pulsos, determinada automáticamente en el inversor, comienza alta y gradualmente se hace menos densa, de modo que el voltaje cambia rápidamente y luego se reduce gradualmente. La topología y los componentes de la celda de potencia permiten aislar y desviar las celdas de potencia defectuosas 10.
No obstante, la invención descrita en esta anterioridad presenta la desventaja que permite mejorar la eficiencia en la conversión de energía de CC a CA, que no incluyen una configuración electrónica para reducir las pérdidas por consumo eléctrico en motores de inducción que cuenta con un circuito para eliminar corrientes armónicas, una serie de capacitores corta picos, correctores y controladores de frecuencia, un transistor de “swicheo” que es controlado por un circuito integrado con lo que se obtendría una mayor optimización en el consumo energético.
A partir de la información anterior, se puede establecer que los documentos existentes en el estado del arte corresponden a una serie de dispositivos o sistemas para la optimización de la energía eléctrica, reduciendo el consumo de los motores eléctricos, en donde en todos los casos se hace uso de elementos eléctricos y electrónicos comunes en el estado del arte como, circuitos integrados, transistores, diodos, bobinas, capacitores, entre otros.
Sin embargo, y de acuerdo con lo anterior, es claro y evidente que en el estado del arte existe una necesidad por diseñar e implementar un dispositivo para aumentar la eficiencia de motores eléctricos de inducción, monofásicos, bifásicos y trifásicos, reduciendo el consumo energético de los mismos, al reducir las pérdidas por calor, pérdidas por histéresis, pérdidas por la creación de corrientes de Eddy, pérdidas por resistencias y stress, pérdidas por vibraciones y principalmente por la generación de BMF (Back Electromagnetic Fields) o campos electromagnéticos inversos, en donde el dispositivo está configurado para obtener el mayor beneficio energético de una fuente externa AC, reduciendo los consumos de los motores eléctricos en una amplia proporción. BREVE DESCRIPCIÓN DE LAS FIGURAS
La presente invención se entiende de forma más clara a partir de las siguientes figuras donde se muestran los componentes y resultados asociados al presente dispositivo, así como los elementos novedosos con respecto al estado del arte, en donde, las figuras no pretenden limitar el alcance de la invención, el cual está únicamente dado por las reivindicaciones adjuntas, en donde:
La Figura 1 enseña una vista de cada uno de los componentes del dispositivo y su interacción.
La Figura 2 Enseña la forma en que interactúa el dispositivo con el mecanismo de disipación de calor.
La Figura 3 Enseña las corrientes BMF, generadas en todos los motores en operación, dichas corrientes tienden a envolver la onda sinodal de la corriente que realmente mueve al motor. Dichas corrientes comprenden armónicos y ruidos, en donde los ruidos corresponden a corrientes disruptivas que se toman como carga inductiva, generando un consumo mucho mayor al motor del que generalmente necesita para su operación (todo esto hace parte de la sumatoria de corriente que toma el fabricante de estos como consumo normal). La Figura 3a. es una gráfica real tomada del instrumento de medición, la figura 3b es un esquema representativo de la figura 3a.
La Figura 4 Enseña la onda sinusoidal que representa la corriente de operación del motor, al adaptar al dispositivo divulgado en la presente invención. La Figura 4a. es una gráfica real tomada del instrumento de medición, la figura 4b es un esquema representativo de la figura 4a.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención está dirigida a un dispositivo para aumentar la eficiencia de motores eléctricos de inducción, monofásicos, bifásicos y trifásicos, reduciendo el consumo energético de los mismos, en donde dicho dispositivo comprende:
• Un subsistema de influencia en el factor de potencia y las corrientes reactivas (1 ), conformado por un capacitor con resistencia de descarga interna (1 1 ) y un protector de voltaje (12);
• Un subsistema de eliminación de corrientes armónicas (2), compuesto por un circuito LRC (23), dos capacitores (21 ) y una resistencia (22). En donde además de bloquear las corrientes armónicas, bloquea las bajas frecuencias que podrían afectar la eficiencia del dispositivo. • Un subsistema de conmutación electrónica (3), conformado por un transistor
(31 ), en donde dicha conmutación se realiza por medio de un circuito integrado (32) y un DIAC de polarización (36), siendo dicha conmutación aislada, permitiendo controlar y estabilizar la polarización del transistor (31 ), obteniendo así una conmutación de corriente constante.
Dicho subsistema (3) además comprende un capacitor (33) que elimina los transientes que se puedan generar en el funcionamiento del circuito integrado
(32) y una resistencia (34) que limita la corriente AC, en donde dicho transistor (31 ) Es un elemento de swicheo. En donde dicho elemento de swicheo, interrumpe en intervalos muy cortos la onda sinusoidal de corriente en su pico más alto y bajo por cada fase que alimenta al motor, lo cual no solo nos permite obtener una ganancia de corriente importante, sino que además interrumpe los trascientes de corrientes ascendentes, descendentes y todos los armónicos, ruidos o campos inductivos generados en el motor.
Dicho subsistema (3) además comprende un circuito RC (35) que elimina la histéresis generada en la conmutación del transistor (31 ), conformado por un capacitor (351 ) y una resistencia (352).
• un subsistema de operación y disipación (4) conformado por un disipador de calor, y un elemento de operación táctil o análogo. Para la disipación de calor, se tiene que el transistor (31 ) opera en un rango de temperatura entre -40°C y 125°C. sin embargo, para el presente dispositivo opera con cargas de hasta 35 amperios, a una temperatura de 45°C a 60°C.
Dicho disipador de calor es de aletas de aluminio de 5 cm X 5 cm, por 10 cm para motores monofásicos, y de 5 cm X 5 cm, por 17 cm o más, para motores bifásicos y trifásicos.
El presente dispositivo además comprende un subsistema de alimentación (5), conformado por un circuito integrado rectificador de corriente (51 ), un condensador de filtrado DC (52), una resistencia variable (53) y un transistor de regulación de voltaje (54) los cuales alimentan el circuito integrado (32), y el circuito de alarma por corto circuito en el transistor (31 ).
En una modalidad deseada, el subsistema 1 presenta un desfase de la corriente capacitiva en el capacitor (1 1 ), cuyo efecto incrementa el factor de potencia, en donde al fluir la corriente del capacitor (11 ) al circuito de carga inductiva se compensa la corriente magnetizante del motor, disminuyendo así la energía reactiva. De esta forma, las altas frecuencias que generan stress en la red son absorbidas por el capacitor (1 1 ). En una modalidad deseada, el dispositivo presenta un circuito integrado rectificador (61 ), de onda y voltaje para mantener los valores constantes, en conjunto con las resistencias (62), (63) que permiten disminuir la base de tiempo de conducción del transistor (31 ), en cada período.
En una modalidad deseada, el dispositivo cuenta un software que se conecte a cada fase para medir en tiempo real el consumo, funcionamiento y operación del equipo, en donde adicionalmente, permite conocer el consumo de cada motor por medio de una APP para teléfonos móviles. Dicho monitoreo se realiza 24/7/365.
En una modalidad deseada el sistema se configura para un motor bifásico, replicando cada uno de los elementos anteriores para la segunda fase.
En una modalidad deseada el sistema se configura para un motor trifásico, replicando cada uno de los elementos anteriores para la segunda fase y la tercera fase.
En las mediciones experimentales que se tomaron con distintos motores de marcas variables, se obtuvo un ahorro total de entre 40% y 70% de la energía consumida, al utilizar el dispositivo de la presente invención. La presente invención además enseña un proceso para aumentar la eficiencia de motores eléctricos, reduciendo las pérdidas por calor, pérdidas por histéresis, pérdidas por la creación de corrientes de Eddy, pérdidas por resistencias y stress, pérdidas por vibraciones y principalmente por la generación de BMF (Back Electromagnetic Fields) o campos electromagnéticos inversos, en donde el dicho proceso comprende las siguientes etapas:
• Una etapa de entrada de señal. (Semejante a la entrada de señal al motor);
• Una etapa de separación e identificación del neutro y las fases;
• Una etapa de filtrado y eliminación de las corrientes inversas, reactivas y los armónicos;
• Una etapa de swicheo, para obtener la máxima ganancia de corriente;
• Finalmente, una etapa de recolección de datos y transmisión electrónica de los consumos de energía de cada fase del motor, vía APP u otro medio de transmisión de información por medios electrónicos.
Aunque la anterior descripción define las modalidades preferidas de la presente invención, dicha invención no se encuentra limitada a éstas, sino que, por el contrario, también se pretende incluir dentro del alcance de la presente solicitud todas las variaciones o modificaciones que sean evidentes para los expertos en la materia y que no afectan y cambian el espíritu de la invención.

Claims

REIVINDICACIONES Dispositivo para aumentar la eficiencia de motores eléctricos de inducción, caracterizado porque comprende,
• Un subsistema de influencia en el factor de potencia y las corrientes reactivas (1 ), conformado por un capacitor con resistencia de descarga interna (1 1 ) y un protector de voltaje (12);
• Un subsistema de eliminación de corrientes armónicas (2), compuesto por un circuito LRC (23), dos capacitores (21 ) y una resistencia (22), en donde además de bloquear las corrientes armónicas, bloquea las bajas frecuencias que podrían afectar la eficiencia del dispositivo.
• Un subsistema de conmutación electrónica (3), conformado por un transistor (31 ), en donde dicha conmutación se realiza por medio de un circuito integrado (32) y un DIAC de polarización (36), siendo dicha conmutación aislada, permitiendo controlar y estabilizar la polarización del transistor (31 ), obteniendo así una conmutación de corriente constante.
• un subsistema de operación y disipación (4) conformado por un disipador de calor, y un elemento de operación del dispositivo táctil o análogo. El dispositivo para aumentar la eficiencia de motores eléctricos de la reivindicación 1 , caracterizado porque, además comprende un subsistema de alimentación (5), conformado por un circuito integrado rectificador de corriente (51 ), un condensador de filtrado DC (52), una resistencia variable (53) y un transistor de regulación de voltaje (54) los cuales alimentan el circuito integrado (32), y un circuito de alarma por corto circuito en el transistor (31 ). El dispositivo para aumentar la eficiencia de motores eléctricos de las reivindicaciones 1 y 2, caracterizado porque, dicho subsistema (3) además comprende un capacitor (33) que elimina los transientes que se generan en el circuito integrado (32) y una resistencia (34) que limita la corriente AC. El dispositivo para aumentar la eficiencia de motores eléctricos de acuerdo con las reivindicaciones anteriores, caracterizado porque, dicho transistor (31 ) Es un elemento de swicheo. El dispositivo para aumentar la eficiencia de motores eléctricos de acuerdo con las reivindicaciones anteriores, caracterizado porque, dicho subsistema (3) además comprende un circuito RC (35) que elimina la histéresis generada en la conmutación del transistor (31 ), conformado por un capacitor (351 ) y una resistencia (352). El dispositivo para aumentar la eficiencia de motores eléctricos de acuerdo con las reivindicaciones anteriores, caracterizado porque, además comprede un circuito integrado rectificador (61 ) que permite disminuir la base de tiempo de conducción del transistor (31 ), en cada período. El dispositivo para aumentar la eficiencia de motores eléctricos de acuerdo con las reivindicaciones anteriores, caracterizado porque, dicho subsistema (1 ) presenta un desfase de la corriente capacitiva en el capacitor (1 1 ), para absorber las altas frecuencias que generan stress en la red. El dispositivo para aumentar la eficiencia de motores eléctricos de acuerdo con las reivindicaciones anteriores, caracterizado porque, incluye un sistema de medición de consumo energético, que reporta los datos a dispositivos electrónicos, como celulares, vía APP. El dispositivo para aumentar la eficiencia de motores eléctricos de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque, cada uno de sus componentes se adapta a una red bifásica, para motores bifásicos.
17
. El dispositivo para aumentar la eficiencia de motores eléctricos de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque, cada uno de sus componentes se adapta a una red trifásica, para motores trifásicos. 1 . Proceso para aumentar la eficiencia de motores eléctricos, reduciendo las pérdidas energéticas, caracterizado porque comprende las siguientes etapas:
• Una etapa de entrada de señal;
• Una etapa de separación e identificación del neutro y las fases;
• Una etapa de filtrado y eliminación de las corrientes inversas, reactivas y los armónicos;
• Una etapa de swicheo; 2. El proceso de la reivindicación 1 1 además comprende una etapa de recolección de datos y transmisión electrónica de los consumos de energía de cada fase del motor, vía APP.
18
PCT/IB2020/058435 2020-09-11 2020-09-11 Dispositivo y proceso para aumentar la eficiencia de motores eléctricos, reduciendo el consumo energético de los mismos WO2022053852A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/058435 WO2022053852A1 (es) 2020-09-11 2020-09-11 Dispositivo y proceso para aumentar la eficiencia de motores eléctricos, reduciendo el consumo energético de los mismos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/058435 WO2022053852A1 (es) 2020-09-11 2020-09-11 Dispositivo y proceso para aumentar la eficiencia de motores eléctricos, reduciendo el consumo energético de los mismos

Publications (1)

Publication Number Publication Date
WO2022053852A1 true WO2022053852A1 (es) 2022-03-17

Family

ID=80631936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/058435 WO2022053852A1 (es) 2020-09-11 2020-09-11 Dispositivo y proceso para aumentar la eficiencia de motores eléctricos, reduciendo el consumo energético de los mismos

Country Status (1)

Country Link
WO (1) WO2022053852A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449190B1 (ko) * 2004-04-02 2004-09-20 (주)세빅코리아 절전형 자동 역률 조정 장치 및 그 방법
US9331566B1 (en) * 2015-02-18 2016-05-03 Adaptive Frequency Holdings, LLC Adaptive AC power exchanger
CN107276485A (zh) * 2017-08-14 2017-10-20 高玉琴 一种三相电动机节电器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449190B1 (ko) * 2004-04-02 2004-09-20 (주)세빅코리아 절전형 자동 역률 조정 장치 및 그 방법
US9331566B1 (en) * 2015-02-18 2016-05-03 Adaptive Frequency Holdings, LLC Adaptive AC power exchanger
CN107276485A (zh) * 2017-08-14 2017-10-20 高玉琴 一种三相电动机节电器

Similar Documents

Publication Publication Date Title
Noguchi Multilevel current waveform generation using inductor cells and H-bridge current-source inverter
Chomat et al. Adjustable-speed single-phase IM drive with reduced number of switches
Zare et al. Electromagnetic interference issues of power, electronics systems with wide band gap, semiconductor devices
US9407133B1 (en) Active power conditioner
Leibl et al. Sinusoidal input current discontinuous conduction mode control of the VIENNA rectifier
JPH11127593A (ja) マルチチャネル・モータ巻線装置およびパルス幅変調制御装置
Noguchi Common-emitter topology of multilevel current-source pulse width modulation inverter with chopper-based DC current sources
WO2014115498A1 (ja) 電力変換装置、電力変換方法、モータシステム
KR20040034908A (ko) 3상 유도전동기의 구동장치
CN107078680A (zh) 电力转换装置以及压缩机驱动装置
Maislinger et al. Efficiency and motor-performance improvement using WBG-inverters with observer-based actively damped LC-sine wave filters
Judek et al. Supply of electric vehicles via magnetically coupled air coils
Nazir et al. Differences in the impact of harmonic distortion due to the installation of electronic load controller in self-excited induction generator and synchronous generator
WO2022053852A1 (es) Dispositivo y proceso para aumentar la eficiencia de motores eléctricos, reduciendo el consumo energético de los mismos
JP2017163647A (ja) 電磁界共振ワイヤレス給電方法及び給電システム
JP5482211B2 (ja) 電力変換装置のスナバ回路
US10348233B2 (en) DC bus ripple reduction
Siwek et al. Improvement of the torque control dynamics of the PMSM drive using the FOC-controlled simple boost QZSDMC converter
CN201160242Y (zh) 一种串激电机
Sarlioglu et al. Assessment of power generation capability of doubly-salient PM generator
US20150340976A1 (en) Method for controlling an electric machine
JP2012125018A (ja) 単相交流直流変換装置及び単相交流直流変換装置を用いた空気調和機
Patil et al. Harmonic analysis of grid connected electric vehicles with residential load for different filters
Hoevenaars et al. Data Center Cooling Harmonics-How To Get The ‘Good’Without The ‘Bad’
CN219980609U (zh) 一种基于碳化硅控制器的pmsm发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953179

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20953179

Country of ref document: EP

Kind code of ref document: A1