WO2022052932A1 - 微流体介电泳分离装置及微流体介电泳分离装置制作方法 - Google Patents

微流体介电泳分离装置及微流体介电泳分离装置制作方法 Download PDF

Info

Publication number
WO2022052932A1
WO2022052932A1 PCT/CN2021/117085 CN2021117085W WO2022052932A1 WO 2022052932 A1 WO2022052932 A1 WO 2022052932A1 CN 2021117085 W CN2021117085 W CN 2021117085W WO 2022052932 A1 WO2022052932 A1 WO 2022052932A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
microfluidic
microfluidic channel
lemon
shaped
Prior art date
Application number
PCT/CN2021/117085
Other languages
English (en)
French (fr)
Inventor
水玲玲
申诗涛
金名亮
Original Assignee
华南师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南师范大学 filed Critical 华南师范大学
Publication of WO2022052932A1 publication Critical patent/WO2022052932A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/4473Arrangements for investigating the separated zones, e.g. localising zones by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1023Microstructural devices for non-optical measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1028Sorting particles

Definitions

  • the invention relates to the technical field of particle separation, in particular to a microfluidic dielectrophoresis separation device and a manufacturing method of the microfluidic dielectrophoresis separation device.
  • Dielectrophoresis (DEP) separation technology has been widely used in particle sorting, biological cell sorting and other fields.
  • the separation technology based on the microfluidic platform allows the size of the separated sample to be reduced, while minimizing the sample consumption, and provides the possibility of actively controlling the separation process in real time. Therefore, separation technology based on microfluidics has developed rapidly in recent years, and is widely used in biological and medical fields. In order to achieve a good separation effect, the separation technology based on the microfluidic platform and the dielectrophoresis separation technology are combined in the prior art.
  • the implementation of the dielectrophoretic separation technology based on the microfluidic chip is as follows: In the microfluidic system, the particles or cells to be separated are usually dispersed in the fluid, and the fluid is passed through the chip inlet, and after the separation is completed in the microfluidic chip , and flow out through multiple outlets respectively, and the purity of particles flowing out from different outlets changes after separation.
  • the realization of dielectrophoretic separation technology requires applying an electric field to the microfluidic chip.
  • the external electric field usually requires that conductive materials such as indium tin oxide (ITO), gold or carbon electrodes be inserted into the channels of the microfluidic chip as electrodes to provide the electric field.
  • ITO indium tin oxide
  • the micro-nano particles dispersed in the fluid will be affected by the dielectrophoretic force and move along the direction of high field strength (positive dielectrophoresis force) or the direction of low field strength (negative dielectrophoresis force). Due to the difference in particle size, electrical conductivity, dielectric constant, particle shape, and other parameters between different particles, the dielectrophoretic force and fluid resistance are different. Therefore, different particles will be dragged to different positions in the channel to complete the separation. . In the prior art, before particle separation, it is usually necessary to perform a pre-aggregation operation.
  • Pre-aggregation squeezes the particles to be separated into narrow particle lines when they just enter the channel, so that the particles to be separated can be separated after being slightly stressed. Break away from the particle line and reach other locations in the channel to achieve separation.
  • Common pre-aggregation techniques include sheath flow pre-aggregation, dielectrophoretic pre-aggregation, electroosmotic flow pre-aggregation, etc. These techniques increase the complexity of chip integration, or limit the types of particles to be separated, so that good separation cannot be achieved.
  • the design of electrodes is the key to the design of microfluidic chips.
  • Existing electrodes are generally planar interdigitated electrodes, and this type of electrode design is usually applied to discontinuous separation microfluidic chips.
  • the electrode gathers particles subjected to positive dielectrophoretic force at the tip of the electrode, and gathers particles subjected to negative dielectrophoretic force at the electrode groove. Due to the high electric field intensity near the surface of the electrode tip and the large gradient value of the electric field intensity, the particles gathered at the electrode tip can overcome the drag force of the fluid and not be carried away by the fluid.
  • Another type of electrode is a rectangular array of electrodes, and the rectangular array forms an acute angle with the direction of the fluid.
  • the microfluidic system includes two inlets, which are used to pass the sample to be separated and the buffer solution respectively.
  • the electrodes are at a certain angle to the direction of the flow field, the particles subjected to the positive dielectrophoretic force will be offset in the direction perpendicular to the flow field, thereby separating from the particles that are not or only subjected to the weak dielectrophoretic force.
  • this electrode can achieve effective separation of particles, it requires a pre-aggregation operation, which is cumbersome and costly.
  • the purpose of the present invention is to provide a microfluidic dielectrophoresis separation device and a manufacturing method of the microfluidic dielectrophoresis separation device, which can achieve efficient separation without pre-aggregation operation during particle separation.
  • an embodiment of the present invention provides a microfluidic dielectrophoresis separation device, including:
  • microfluidic channels for flowing fluid containing particles
  • an electrode corresponding to the microfluidic channel
  • the electrode includes a first electrode area and a second electrode area arranged in sequence along the flow direction of the fluid, the first electrode area is close to the inlet of the microfluidic channel and is located in the
  • the side of the first ground electrodes on both sides of the first electrode area facing the inside of the microfluidic channel is an arc electrode array, and the second central electrode located in the middle of the second electrode area is a lemon-shaped electrode array.
  • the length ratio of the first electrode region to the second electrode region is 0.1-1.
  • the first central electrode located in the middle of the first electrode area is a planar electrode, and the outline of the first central electrode is a smooth straight line; the second central electrode located on both sides of the second electrode area is a flat electrode.
  • the ground electrode is a plane electrode, and the outline of the second ground electrode is a smooth straight line.
  • the microfluidic channel has a curved shape
  • the microfluidic channel includes a bend and a non-bend
  • the width of the non-bend is 8h-15h, wherein h represents the width of the microfluidic channel.
  • Height, the height of the microfluidic channel is 10 ⁇ m-80 ⁇ m.
  • the arc-shaped electrode array of the first ground electrode includes a plurality of arc-shaped portions, and the plurality of arc-shaped portions are arranged in an array at a certain distance along the length direction of the microfluidic channel, and the arc-shaped portions are arranged in an array at a certain distance along the length direction of the microfluidic channel.
  • the shape part is an arc structure, the radius of the arc part is 0.3hh, the distance between the adjacent arc parts is 0.6h-2h, and the distance between the first ground electrode and the first central electrode is 0.6h-2h. The distance between them is 0.6h-1.2h, and the included angle between the first ground electrode and the horizontal direction is 0.5°-5°.
  • the lemon-shaped electrode array includes a plurality of lemon-shaped electrode units, and adjacent lemon-shaped electrode units are connected to each other, and each lemon-shaped electrode unit is provided with an oval-shaped electrode unit. through hole.
  • the size of the long axis of the lemon-shaped electrode unit is 8h-15h, and the size of the short axis of the lemon-shaped electrode unit is 4h-8h; the center of the second central electrode is connected to the second ground.
  • the distance between electrodes is 0.8h-1.2h; in the lemon-shaped electrode array, the distance between the vertices of two adjacent lemon-shaped electrode units is 4h-8h; in the lemon-shaped electrode unit, the The angle between the long axis of the oval hole and the horizontal direction is 10°-40°, the long axis of the oval hole is 5h-7h, and the short axis of the oval hole is 2.5h-3.5h, where h Indicates the height of the microfluidic channel.
  • the lemon-shaped electrode array includes a first array segment and a second array segment disposed along the flow direction of the fluid, the plurality of elliptical holes of the first array segment are inclined upward, and the second array The multiple oval holes of the segment slope downward.
  • An embodiment of the present invention also provides a method for fabricating a microfluidic dielectrophoresis separation device, including:
  • Electrode patterns are etched on the glass substrate using positive photoresist, and electrodes are formed using an etching process
  • microfluidic channel is aligned and bonded to the glass substrate etched with the electrodes.
  • microfluidic channel is made of polydimethylsiloxane
  • electrode is made of ITO conductive material.
  • the microfluidic dielectrophoresis separation device provided in the embodiment of the present invention can be achieved by designing the structures of the electrodes and the microfluidic channels, without the need for pre-aggregation operations, and through the mutual assistance between the electrodes and the microfluidic channels.
  • High-efficiency separation of particles can be achieved; at the same time, the integration performance of the device can be significantly improved, the difficulty of mutual integration or cooperation with external equipment can be reduced, and the applicability of the device can be improved.
  • FIG. 1 is a schematic structural diagram of a microfluidic dielectrophoresis separation device according to an embodiment of the present invention
  • FIG. 2 is a partial top view of a microfluidic DEP separation device according to an embodiment of the present invention
  • Fig. 3 is the enlarged structural representation of block A part in Fig. 2;
  • FIG. 4 is an enlarged schematic view of the second electrode region in FIG. 2;
  • FIG. 5 is a schematic diagram of the separation of yeast cells and PS particles using the microfluidic dielectrophoresis separation device according to an embodiment of the present invention
  • FIG. 6(a) is a schematic diagram of the separation of red blood cells and tumor cells in the microfluidic DEP separation device according to the embodiment of the present invention.
  • FIG. 6( b ) is another schematic diagram of separation of red blood cells and tumor cells of the microfluidic DEP separation device according to the embodiment of the present invention.
  • FIG. 1 to 4 are schematic structural diagrams of a microfluidic DEP separation device according to an embodiment of the present invention. As shown in FIG. 1 to FIG. 4 , an embodiment of the present invention provides a microfluidic dielectrophoresis separation device, including:
  • microfluidic channel 1 for allowing a fluid containing particles to flow therethrough
  • the electrode 2 is arranged in the microfluidic channel 1.
  • the electrode 2 includes a first electrode area 21 and a second electrode area 22 arranged in sequence along the flow direction of the fluid.
  • the first electrode area 21 is close to the inlet 101 of the microfluidic channel 1 and is located in the One side of the first ground electrodes 211 on both sides of an electrode area 21 facing the microfluidic channel 2 is an arc electrode array, and the second central electrode 222 located in the middle of the second electrode area 22 is a lemon-shaped electrode array.
  • the microfluidic channel 1 is used to provide a flow field for the fluid containing particles to flow through
  • the electrode 2 is used to generate a dielectrophoretic force (providing an electric field) to drive the movement of particles in the fluid in the microfluidic channel 1, and the fluid containing particles enters from the inlet In the microfluidic channel 1 , the particles can be guided to a predetermined position under the synergistic effect of the flow field and the electric field to realize particle separation, and the separated particles flow out from the outlet 102 .
  • the first electrode area 21 includes three electrodes, which are two first ground electrodes 211 disposed on both sides of the first electrode area 21 and a first central electrode 212 disposed in the middle of the first electrode area 21 .
  • the first ground electrode 211 and the first central electrode 212 function;
  • the second electrode area 22 also includes three electrodes, which are two second ground electrodes 221 disposed on both sides of the second electrode area 22 and two second electrodes disposed on the second electrode area 22 respectively.
  • the second central electrode 222 in the middle of the region 22, the two second ground electrodes 221 and the second central electrode 222 function.
  • the three electrodes of the second electrode region 22 are respectively connected to the three electrodes of the first electrode region 21 correspondingly to form an electric field.
  • a first central electrode 212 is provided between the two first ground electrodes 211 , and the first central electrode 212 is close to the edge of the first electrode region 21 and the first ground electrode
  • the electrodes 211 are correspondingly arranged.
  • the microfluidic dielectrophoresis separation device provided in the embodiment of the present invention divides the electrode 2 into a first electrode area 21 and a second electrode area 22 along the flow direction of the fluid containing particles.
  • the first electrode area 21 is a guide area and is located in the first electrode area.
  • the side of the first ground electrodes 211 on both sides of the area 21 facing the inside of the microfluidic channel 2 is an arc electrode array, which can guide the particles in the fluid and prevent some particles from approaching the edge of the channel; the second electrode area 22 is for separation
  • the second central electrode 222 located in the middle of the second electrode region 22 is a lemon-shaped electrode array, which can provide a continuous (along the flow direction of the fluid) electric field gradient distribution for the particles, thereby producing a lateral dielectrophoretic separation effect (LDEP) , so that the particles move along the flow direction perpendicular to the fluid to achieve high-efficiency separation.
  • LDEP lateral dielectrophoretic separation effect
  • the first central electrode 212 located in the middle of the first electrode region 21 is a planar electrode, the outline of the first central electrode 212 is a smooth straight line, and the field strength near the arc structure of the first ground electrode 211 is relatively The field strength is higher than that near the first central electrode 212 . Therefore, the particles subjected to the negative dielectrophoretic force will move from the first ground electrodes 211 on both sides to the first central electrode 212 to guide the particles to the central region of the microfluidic channel 1 .
  • the length ratio of the first electrode area 21 to the second electrode area 22 is 0.1-1, that is, the length of the separation area is greater than the length of the guide area, so that the particles can be quickly guided to the second electrode area 22 and sufficiently in the second electrode area 22 separation.
  • the lemon-shaped electrode array can provide continuous long-scale electric field gradient distribution to the particles.
  • the length of the microfluidic channel 1 (the sum of the length of the first electrode region 21 and the length of the second electrode region 22 ) is preferably 0.5 cm-30 cm.
  • the microfluidic channel 1 is in the shape of a curve. As shown in FIG. 2 , the microfluidic channel 1 can be a composite curve shape composed of multiple straight lines and multiple curved parts, including a curved part and a non-curved part, and no curvature
  • the width w 1 at is 8h-15h, where h represents the height of the microfluidic channel 1, and the height h is about 10 ⁇ m-80 ⁇ m.
  • the side of the microfluidic channel 1 is provided with an arc-shaped structure 11 to make the microfluidic channel 1 have a curved shape.
  • the arc-shaped structure 11 is preferably a circular arc structure to provide an ideal flow field for the movement of the particles, so that the microfluidic channel 1 is in a weak field strength area.
  • the particles pass through the strong field strength area under the action of the flow field, and there is a smooth rounded transition between the no-bend and the bend.
  • the optimized rounded design can avoid particles from accumulating in the arc structure. As shown in FIG.
  • the distance w 2 from the top of the arc structure 11 to the outermost sidewall of the microfluidic channel 1 is 4h-9h, and the distance between the tops of the adjacent arc structures 11 is 4h-9h.
  • the spacing d 1 is 50h-100h.
  • the microfluidic channel 1 may also be all curved.
  • the arc-shaped electrode array of the first ground electrode 211 includes a plurality of arc-shaped portions 2111 , and the plurality of arc-shaped portions 2111 are arranged in an array at a certain distance along the length direction of the microfluidic channel 1 , and the arc-shaped portions 2111 are Arc structure, the radius of the arc portion 2111 is 0.3hh, the distance d 2 between adjacent arc portions 2111 is 0.6h-2h, and the distance g 1 between the first ground electrode 211 and the first central electrode 212 is 0.6h-1.2h, and the included angle between the first ground electrode 211 and the horizontal direction is 0.5°-5°.
  • the angle between the first ground electrode 211 and the horizontal direction refers to the angle between the straight line 2112 aligned with the arc-shaped electrode array and the horizontal direction.
  • the second ground electrodes 222 located on both sides of the second electrode region 22 are planar electrodes whose contours are smooth straight lines.
  • the lemon-shaped electrode array includes a plurality of lemon-shaped electrode units 2221, and adjacent lemon-shaped electrode units 2221 are connected to each other, and each lemon-shaped electrode unit 2221 is provided with an oval hole 2222.
  • An elliptical hole 2222 is provided inside each lemon-shaped electrode unit 2221, which can generate an electric field gradient in the weak field strength area, so that the particles affected by the positive dielectrophoresis force (pDEP) move to the strong field strength area while being subjected to The particles with negative dielectrophoretic force (nDEP) are more efficiently aggregated inside the electrode, which improves the separation effect.
  • pDEP positive dielectrophoresis force
  • nDEP negative dielectrophoretic force
  • the long axis size w3 of the lemon-shaped electrode unit 2221 is 8h-15h, and the short axis size is 4h-8h; the distance between the center of the second central electrode 222 and the second ground electrode 221 is about 0.8h-1.2h, located at The distance w 4 between the two second ground electrodes 221 on both sides of the second central electrode 222 is about 0.6h-1.2h.
  • the distance d 3 between the vertices of two adjacent lemon-shaped electrode units 2221 is within 4h-8h.
  • the angle between the long axis of the oval hole 2222 and the horizontal direction is 10°-40°
  • the long axis of the oval hole 2222 is 5h-7h
  • the short axis is 2.5h-3.5h.
  • the center of the hole 2222 is offset from the center of the lemon-shaped electrode unit 2221 by 0.5h-1.5h in the y-axis direction.
  • the lemon-shaped electrode array includes a first array segment and a second array segment arranged along the flow direction of the fluid, each array segment includes a plurality of lemon-shaped electrode units 2221, and the first array segment
  • the plurality of oval holes 2222 are inclined upward, and the plurality of oval holes 2222 of the second array segment are inclined downward. That is, the second electrode region 22 can be divided into a first half separation region and a second half separation region, the oval hole 2222 located in the first half separation region is inclined upward, and the elliptical hole 2222 located in the second half separation region is inclined downward, so that the Guide the movement of the particles to improve the separation effect.
  • the microfluidic dielectrophoresis separation device provided by the embodiment of the present invention can realize the efficient separation of particles by designing the structure of the electrode and the microfluidic channel, without the need for pre-aggregation operation, and through the mutual assistance between the electrode and the microfluidic channel; at the same time,
  • the integration performance of the device can be significantly improved, and the difficulty of mutual integration or cooperation with external devices (such as flow control instruments) can be reduced.
  • the present invention also provides a method for making a microfluidic dielectrophoresis separation device, comprising the following steps:
  • Step S1 photoresist the negative resist pattern on the substrate, and process the microfluidic channel 1 by pouring;
  • Step S2 on the glass substrate 3, the electrode pattern is photo-etched using positive glue, and the electrode 2 is formed by using an etching process;
  • Step S3 Align and bond the microfluidic channel 1 to the glass substrate 3 on which the electrode 2 is etched.
  • the microfluidic DEP separation device is a microfluidic chip, which can be fabricated by using photolithography technology.
  • the material used to fabricate the microfluidic channel 1 can be polydimethylsiloxane (PDMS), and the channel pattern is formed by photoresisting the negative resist pattern on the substrate, pouring the PDMS conversion model, and then heating solidified to form the microfluidic channel 1 .
  • the microfluidic channel 1 is a flexible PDMS channel, and the inlet 101 and the outlet 102 can be punched by a punch.
  • a plurality of inlets 101 and outlets 102 can be processed.
  • the plurality of inlets can simultaneously enter the fluid, or the corresponding inlets 101 can be opened to enter the fluid according to actual needs, and other inlets can be closed.
  • outlets 102 such as the first outlet 1021, the second outlet 1022 and the third outlet 1023, which can effectively separate different particles.
  • the substrate may include any suitable material, such as semiconductor materials such as silicon, other inorganic materials such as glass and quartz, or organic materials such as organic glass and polycarbonate.
  • the substrate is preferably a silicon wafer.
  • the electrode 2 can be made of an ITO conductive material. Specifically, an electrode pattern is photo-etched on an ITO glass substrate using a positive paste, and then an ITO electrode pattern is obtained by an etching process to form the electrode 2 .
  • Step S3 aligns the PDMS material with the channel structure and the ITO glass substrate etched with the electrode 2 and uses the Plasma plasma cleaner to treat the surface, and then bond them together to form a microfluidic dielectrophoresis separation device.
  • the schematic diagram of the structure of the fluid dielectrophoresis separation device is shown in Figure 1.
  • the fluid containing particles is passed through the inlet 101, and the ITO electrode is connected with an external AC signal generator to connect the circuit.
  • microfluidic channel parameters and electrode parameters of the microfluidic DEP separation device are set as follows:
  • the width w 1 of the non-bending part of the microfluidic channel 1 is 420 ⁇ m, and the height h is 30 ⁇ m.
  • the inner side of the microfluidic channel 1 is provided with an arc-shaped structure 11, and the arc-shaped structure 11 adopts a circular arc design to provide In an ideal flow field, the particles in the weak field strength area pass through the strong field strength area under the action of the flow field, and the non-bending part and the bending part pass through a smooth rounded transition, so as to avoid the accumulation of particles at the arc structure 11 .
  • the distance w 2 from the top of the arc structure 11 to the outermost side wall of the fluid channel 1 is 210 ⁇ m, and the distance d 1 between the tops of the adjacent arc structures 11 is 2 mm.
  • the length of the first electrode region 21 is about 1/10 of the length of the microfluidic channel 1 , the radius of the arc portion 2111 of the first ground electrode 211 is 20 ⁇ m, and the distance d 2 between adjacent arc portions 2111 is 60 ⁇ m , the distance g 1 between the first ground electrode 211 and the first central electrode 212 is 30 ⁇ m, and the included angle between the first ground electrode 211 and the horizontal direction is 1.15°.
  • the length of the second electrode region 22 is about 9/10 of the length of the microfluidic channel 1, the lemon-shaped electrode units 2221 in the lemon-shaped electrode array are connected to each other and the long-axis size w3 of the lemon-shaped electrode units 2221 is 310 ⁇ m, The size of the short axis is 180 ⁇ m; the distance between the center of the second central electrode 222 and the second ground electrode 221 is about 34 ⁇ m. The distance d 3 between the vertices of two adjacent lemon-shaped electrode units 2221 is 180 ⁇ m.
  • the angle between the long axis of the oval hole 2222 and the horizontal direction is 25°, wherein the oval hole 2222 in the first half of the separation area is inclined upward, and the oval hole 2222 in the second half of the separation area is downward.
  • the long axis of the oval hole 2222 is 160 ⁇ m
  • the short axis is 80 ⁇ m
  • the center of the oval hole 2222 and the center of the lemon-shaped electrode unit 2221 are offset by 20 ⁇ m in the y-axis direction.
  • microfluidic channel parameters and electrode parameters are the preferred parameters of the microfluidic DEP separation device, and the microfluidic DEP separation device made based on the above parameters can achieve a better separation effect when used.
  • the manufacturing is convenient, the overall manufacturing difficulty and manufacturing cost of the microfluidic dielectrophoresis separation device can be reduced, and the applicable scope of the device can be improved.
  • the embodiment of the present invention further describes the separation effect of the microfluidic dielectrophoresis separation device according to the microfluidic dielectrophoresis separation device fabricated in the above steps S1 to S3.
  • FIG. 5 shows a schematic diagram of the separation of yeast cells and PS particles using the microfluidic dielectrophoresis separation device according to the embodiment of the present invention.
  • red polystyrene microspheres (PS particles) with a particle size of 7 microns are used to separate yeast cells
  • the cells were mixed to test the separation effect of the microfluidic dielectrophoresis separation device.
  • the particle mixture is passed into the microfluidic channel 1 from the inlet 101 . Therefore, the mixed particles do not need to undergo a pre-agglomeration operation.
  • the conductivity of the particle mixture is preferably in the range of 10-100ms/cm.
  • a sinusoidal signal of 20Vpp and 500kHz is used to generate an electric field.
  • yeast cells were subjected to positive dielectrophoretic force (pDEP) and moved towards the high field strength region at the tip of the electrode.
  • pDEP positive dielectrophoretic force
  • the curved structure (arc 2111) of the electrode 2 and the curved structure 11 of the microfluidic channel 1 help to send the particles to the high field strength region, thereby significantly increasing the separation efficiency.
  • Fig. 6(a) and Fig. 6(b) are schematic diagrams showing the separation of red blood cells and tumor cells using the microfluidic dielectrophoresis separation device according to the embodiment of the present invention
  • the left image of Fig. 6(a) shows the red blood cells
  • the schematic diagram of the state when the tumor cells have just entered the microfluidic channel 1 shows the schematic diagram of the state after the red blood cells and the tumor cells are separated in the second electrode region 22 .
  • the second embodiment uses the same parameters of the microfluidic dielectrophoresis separation device as in the first embodiment to verify the feasibility of the microfluidic dielectrophoresis separation device for separating biological cells.
  • the tumor cells can be breast cancer cells (MDA-MB-231), and the separation of erythrocytes and breast cancer cells uses a 17Vpp, 75kHz sinusoidal signal to generate an electric field.
  • the mixed solution of red blood cells and breast cancer cells is passed into the microfluidic channel 1 from the inlet 101, and after electrification, the separation effect shown in Fig. 6(a) and Fig. 6(b) can be achieved.
  • the concentration of red blood cells is preferably 4.9 ⁇ 10 6 cells/ml
  • the concentration of breast cancer cells is preferably 1.1 ⁇ 10 6 cells/ml.
  • the mixture of red blood cells and tumor cells can achieve a good separation effect at a flow rate of 0.6 ⁇ L/min.
  • red blood cells and tumor cells are randomly distributed in the channel.
  • red blood cells and tumor cells are randomly distributed in the channel. Collect in the middle of the microfluidic channel 1 and flow out from the second outlet 1022 located in the middle of the microfluidic channel 1; An outlet 1021 and a third outlet 1023 flow out. As shown in Fig. 6(b), the mixture is in quasi-static flow, and the separation effect is more obvious.
  • microfluidic dielectrophoresis separation device of the embodiment of the present invention can achieve a good cell separation effect, and the device has good practicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrostatic Separation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种微流体介电泳分离装置及微流体介电泳分离装置制作方法。微流体介电泳分离装置包括:微流体通道(1);电极(2),与微流体通道(1)对应设置,电极(2)包括沿流体的流动方向依次设置的第一电极区域(21)和第二电极区域(22),第一电极区域(21)靠近微流体通道(1)的入口,位于第一电极区域(21)的两侧的第一接地电极(211)朝向微流体通道(1)内的一侧为弧形电极阵列,位于第二电极区域(22)的中部的第二中央电极(222)为柠檬形电极阵列。通过对电极(2)与微流体通道(1)的结构进行设计,无需预聚集操作,通过电极(2)与微流体通道(1)的相互协助作用,即可实现颗粒的高效分离;同时,可以显著提升装置的集成性能,降低与外接设备的相互集成或配合难度,提高装置的适用性。

Description

微流体介电泳分离装置及微流体介电泳分离装置制作方法 技术领域
本发明涉及颗粒分离技术领域,具体涉及一种微流体介电泳分离装置及微流体介电泳分离装置制作方法。
背景技术
介电泳(Dielectrophoresis,DEP)分离技术已经广泛应用于颗粒分选、生物细胞分选等领域。基于微流控平台的分离技术,允许分离样品尺寸降低的同时,可以使样品消耗降到最低的,且提供了主动实时控制分离过程的可能性。因此,基于微流控的分离技术近年来得到了快速发展,广泛被应用与生物、医疗领域。为实现良好的分离效果,现有技术中将基于微流控平台的分离技术和介电泳分离技术相结合。基于微流控芯片的介电泳分离技术的实现方式如下:在微流控系统中,待分离的颗粒或细胞通常分散于流体中,流体从芯片入口通入,在微流控芯片中完成分离后,通过多个出口分别流出,分离后从不同出口流出的颗粒纯度发生变化。介电泳分离技术的实现需要通过对微流控芯片施加电场。而外电场通常需要在微流控芯片的通道内置入氧化铟锡(ITO)、金或碳电极等导电材料作为电极,从而提供电场。分散在流体中的微纳米粒子在电场作用下,将受到介电泳力作用,沿着高场强方向(正介电泳力)或低场强方向(负介电泳力)运动。由于不同颗粒之间粒径大小、电导率、介电常数、颗粒形状、等参数不同,受到介电泳力以及流体阻力不同,因此,不同的颗粒将被拖拽至通道中不同的位置,完成分离。现有技术中,在颗粒分离前,通常需要进行预聚集操作,预聚集将待分离颗粒在刚通入通道时挤压成狭窄的颗粒线,从而使得待分离颗粒在轻微受力后,即可脱离颗粒线,到达通道的其他位置,实现分离。常见的预聚集技术包括鞘流预聚集,介电泳预聚集,电渗流预聚集等。这些技术会增加芯片集成的复杂程度,或对分离颗粒的种类有限制,无法实现良好的分离。
基于微流控芯片的介电泳分离技术中,电极的设计是微流控芯片设计的关键。现有的电极一般为的平面叉指型电极,该类电极设计通常应用于非连续分离微流控芯片。该电极将受到正介电泳力作用的颗粒聚集在电极尖端处,而将受负介电泳力作用的颗粒聚集在电极凹槽处。由于电极尖端表面附近电场强度高,且电场强度梯度值大,会导致聚集在电极尖端处的颗粒可以克服流体的拖拽力,不被流体带走。由于电极凹槽处的电场强度低,导致场强变化率低,附近颗粒所受负介电泳力弱。因此,受负介电泳力或者不受力的颗粒将被流体拖拽力带走。当叉指型电极尖端处聚集了理想数量的颗粒后,再通入纯净的流体,并且断开电源,可将电极尖端附近的颗粒带走,分散在所通入的纯净流体中,从而达到分离目的。但是,该电极设计无法完成连续分选,需要将两种流体分先后顺序依次通入微流控系统中,操作复杂。
另一类电极为成矩形阵列式电极,矩形阵列与流体方向呈锐角。微流控系统包括两个入口,分别用于通入待分离样品和缓冲液。当同时通入缓冲液(鞘流)与样品液时,分散在样品液中的所有种类颗粒将聚集在一条较窄的范围,使颗粒被限制在狭长窄小的区域中继续顺流场移动,从而完成预聚集操作。进一步地,颗粒经过电极所在区域,在介电泳力作用下,沿着电极边缘滑动。由于电极与流场方向呈一定角度,因此受到正介电泳力作用的颗粒将在垂直于流场方向上发生偏移,从而与不受或仅受到弱介电泳力作用的颗粒分离。该电极虽然可以实现颗粒的有效分离,但是需要进行预聚集操作,操作繁琐,且成本较高。
发明内容
鉴于现有技术存在的上述问题,本发明的目的在于提供一种微流体介电泳分离装置及微流体介电泳分离装置制作方法,颗粒分离时无需预聚集操作,即可实现高效分离。
为了实现上述目的,本发明实施例提供一种微流体介电泳分离装置,包括:
微流体通道,用于使包含颗粒的流体流过;
电极,与所述微流体通道对应设置,所述电极包括沿流体的流动方向依次设置的第一电极区域和第二电极区域,所述第一电极区域靠近所述微流体通道的入口,位于所述第一电极区域的两侧的第一接地电极朝向所述微流体通道内的一侧为弧形电极阵列,位于所述第二电极区域的中部的第二中央电极为柠檬形电极阵列。
在一些实施例中,所述第一电极区域与所述第二电极区域的长度比为0.1-1。
在一些实施例中,位于所述第一电极区域的中部的第一中央电极为平面电极,所述第一中央电极的轮廓为平滑的直线;位于所述第二电极区域的两侧的第二接地电极为平面电极,所述第二接地电极的轮廓为平滑的直线。
在一些实施例中,所述微流体通道呈曲线形状,所述微流体通道包括弯曲处和无弯曲处,所述无弯曲处的宽度为8h-15h,其中,h表示所述微流体通道的高度,所述微流体通道的高度为10μm-80μm。
在一些实施例中,所述第一接地电极的弧形电极阵列包括多个弧形部,多个所述弧形部沿所述微流体通道的长度方向间隔一定的距离阵列设置,所述弧形部为圆弧结构,所述弧形部的半径为0.3h-h,相邻的所述弧形部之间的间距为0.6h-2h,所述第一接地电极与所述第一中央电极之间的间距为0.6h-1.2h,所述第一接地电极与水平方向的夹角为0.5°-5°。
在一些实施例中,所述柠檬形电极阵列包括多个柠檬形电极单元,相邻的所述柠檬形电极单元之间相互连接导通,每个所述柠檬形电极单元上均设有椭圆形通孔。
在一些实施例中,所述柠檬形电极单元的长轴大小为8h-15h,所述柠檬形电极单元的短轴大小为4h-8h;所述第二中央电极的中心与所述第二接地电极之间的间距为0.8h-1.2h;所述柠檬形电极阵列中,相邻两个所述柠檬形电极单元的顶点处的间距为4h-8h;所述柠檬形电极单元内,所述椭圆形孔的长轴与水平方向的夹角为10°-40°,所述椭圆形孔的长轴为5h-7h,所述椭圆形孔的短轴为2.5h-3.5h,其中,h表示所述微流体通道的高度。
在一些实施例中,所述柠檬形电极阵列包括沿流体的流动方向设置的第一阵列段和第二阵列段,所述第一阵列段的多个椭圆形孔向上倾斜,所述第二阵列段的多个椭圆形孔向下倾斜。
本发明实施例还提供了一种微流体介电泳分离装置制作方法,包括:
在衬底上光刻负胶图案,并通过浇灌加工出微流体通道;
在玻璃基板上使用正胶光刻出电极图案,并使用刻蚀工艺形成电极;
将所述微流体通道与刻蚀有所述电极的玻璃基板对准键合。
进一步地,所述微流体通道采用聚二甲基硅氧烷制作,所述电极使用ITO导电材料制作。
与现有技术相比较,本发明实施例提供的微流体介电泳分离装置,通过对电极与微流体通道的结构进行设计,无需预聚集操作,通过电极与微流体通道的相互协助作用,即可实现颗粒的高效分离;同时,可以显著提升装置的集成性能,降低与外接设备的相互集成或配合难度,提高该装置的适用性。
附图说明
在不一定按比例绘制的附图中,相同的附图标记可以在不同的视图中描述相似的部件。具有字母后缀或不同字母后缀的相同附图标记可以表示相似部件的不同实例。附图大体上通过举例而不是限制的方式示出各种实施例,并且与说明书以及权利要求书一起用于对所发明的实施例进行说明。在适当的时候,在所有附图中使用相同的附图标记指代同一或相似的部分。这样的实施例是例证性的,而并非旨在作为本装置或方法的穷尽或排他实施例。
图1为本发明实施例的微流体介电泳分离装置的结构示意图;
图2为本发明实施例的微流体介电泳分离装置的局部俯视图;
图3为图2中方框A部分的放大结构示意图;
图4为图2中第二电极区域的放大结构示意图;
图5为使用本本发明实施例的微流体介电泳分离装置的酵母细胞与PS颗粒的分离示意图;
图6(a)为本发明实施例的微流体介电泳分离装置的血红细胞与肿瘤细胞的分离示意图;
图6(b)为本发明实施例的微流体介电泳分离装置的血红细胞与肿瘤细胞的另一分离示意图。
附图标记:
1-微流体通道、11-弧形结构、101-入口、102-出口、1021-第一出口、1022-第二出口、1023-第三出口;
2-电极;21-第一电极区域、211-第一接地电极、2111-弧形部、2112-直线、212-第一中央电极;22-第二电极区域、221-第二接地电极、222-第二中央电极、2221-柠檬形电极单元、2222-椭圆形孔;
3-玻璃基板。
具体实施方式
下面,结合附图对本发明的具体实施例进行详细的描述,但不作为本发明的限定。
应理解的是,可以对此处公开的实施例做出各种修改。因此,上述说明书不应该视为限制,而仅是作为实施例的范例。本领域的技术人员将想到在本发明的范围和精神内的其他修改。
包含在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且与上面给出的对本发明的大致描述以及下面给出的对实施例的详细描述一起用于解释本发明的原理。
通过下面参照附图对给定为非限制性实例的实施例的优选形式的描述,本发明的这些和其它特征将会变得显而易见。
还应当理解,尽管已经参照一些具体实例对本发明进行了描述,但本领域技术人员能够确定地实现本发明的很多其它等效形式,它们具有如权利要求所述的特征并因此都位于借此所限定的保护范围内。
当结合附图时,鉴于以下详细说明,本发明的上述和其他方面、特征和优势将变得更为显而易见。
此后参照附图描述本发明的具体实施例;然而,应当理解,所公开的实施例仅仅是本发明的实例,其可采用多种方式实施。熟知和/或重复的功能和结构并未详细描述以避免不必要或多余的细节使得本发明模糊不清。因此,本文所公开的具体的结构性和功能性细节并非意在限定,而是仅仅作为权利要求的基础和代表性基础用于教导本领域技术人员以实质上任意合适的详细结构多样地使用本发明。
图1至图4为本发明实施例的微流体介电泳分离装置的结构示意图。如图1至图4所示,本发明实施例提供了一种微流体介电泳分离装置,包括:
微流体通道1,用于使包含颗粒的流体流过;
电极2,设于微流体通道1内,电极2包括沿流体的流动方向依次设置的第一电极区域21和第二电极区域22,第一电极区域21靠近微流体通道1的入口101,位于第一电极区域21的两侧的第一接地电极211朝向微流体通道2内的一侧为弧形电极阵列,位于第二电极区域22的中部的第二中央电极222为柠檬形电极阵列。
微流体通道1用于提供流场使包含颗粒的流体流过,电极2用于产生介电泳力(提供电场)以驱动微流体通道1中的流体中的颗粒运动,包含颗粒的流体从入口进入微流体通道1中,颗粒能够在流场与电场协同作用下被引导至预定位置,实现颗粒分离,分离后的颗粒从出口102流出。
第一电极区域21包括三个电极,分别为设于第一电极区域21的两侧的两个第一接地电极211以及设于第一电极区域21的中部位置的第一中央电极212,两个第一接地电极211和第一中央电极212作用;第二电极区域22也包括三个电极,分别为设于第二电极区域22的两侧的两个第二接地电极221以及设于第二电极区域22的中部位置的第二中央电极222,两个第二接地电极221和第二中央电极222作用。第二电极区域22的三个电极分别与第一电极区域21的三个电极对应连接以形成电场。
需要说明的是,上述两侧和中部位置是指中央电极和接地电极之间在电极区域的相对位置,并不限定其具体的设置位置。例如,本实 施例中,如图2和图3所示,两个第一接地电极211之间设有第一中央电极212,第一中央电极212靠近第一电极区域21的边缘与第一接地电极211对应设置。
本发明实施例提供的微流体介电泳分离装置将电极2沿包含颗粒的流体的流动方向划分为第一电极区域21和第二电极区域22,第一电极区域21为引导区域,位于第一电极区域21的两侧的第一接地电极211朝向微流体通道2内的一侧为弧形电极阵列,可以对流体中的颗粒进行引导,避免部分颗粒靠向通道边缘;第二电极区域22为分离区域,位于第二电极区域22的中部的第二中央电极222为柠檬形电极阵列,可以为颗粒提供连续的(沿流体的流动方向)电场梯度分布,从而产生侧向介电泳分离作用(LDEP),使颗粒沿着垂直于流体的流动方向运动,实现高效分离。通过对电极2进行设计,可以提高介电泳力的作用,增强微流体通道1中的颗粒分离效率。
具体地,如图2和图3所示,颗粒从入口101进入第一电极区域21后,绝大多数颗粒受到负介电泳力作用(nDEP)的颗粒被引导至远离通道侧壁的区域,从而明显减少靠近通道侧壁的颗粒数量。此外,由于通道壁面附近的流速低,将颗粒排出壁面附近,可使颗粒处于高流速位置(微流体通道1的中部),并顺利流向第二电极区域22,完成高效分离。
如图3所示,位于第一电极区域21的中部的第一中央电极212为平面电极,第一中央电极212的轮廓为平滑的直线,第一接地电极211的弧形结构附近的场强相较于第一中央电极212附近的场强更高。因此,受到负介电泳力作用的颗粒将从两侧的第一接地电极211向第一中央电极212运动,以将颗粒引导至微流体通道1的中部区域。
第一电极区域21与第二电极区域22的长度比为0.1-1,即分离区域的长度大于引导区域的长度,使得颗粒能够快速被引导至第二电极区域22并在第二电极区域22充分分离。柠檬形电极阵列可为颗粒提供连续的长尺度的电场梯度分布。
本实施例中,微流体通道1的长度(第一电极区域21的长度与第二电极区域22的长度之和)优选为0.5cm-30cm。
在一些实施例中,微流体通道1呈曲线形状,如图2所示,微流体通道1可以为由多段直线和多个弯曲部组成的复合曲线形状,包括弯曲处和无弯曲处,无弯曲处的宽度w 1为8h-15h,其中,h表示微流体通道1的高度,高度h约为10μm-80μm。
微流体通道1的侧边设有弧形结构11以使微流体通道1呈曲线形状,该弧形结构11优选为圆弧结构,以为颗粒的运动提供理想的流场,使处于弱场强区的颗粒在流场作用下经过强场强区,且无弯曲处与弯曲处通过平滑的圆角过渡,优化的圆角设计可避免颗粒堆积在弧形结构处。如图4所示,本实施例中,弧形结构11的弧顶到微流体通道1的最外侧的侧壁的距离w 2为4h-9h,相邻的弧形结构11的弧顶之间的间距d 1为50h-100h。具体实施中,微流体通道1也可以全部为曲线形状。
如图3所示,第一接地电极211的弧形电极阵列包括多个弧形部2111,多个弧形部2111沿微流体通道1的长度方向间隔一定的距离阵列设置,弧形部2111为圆弧结构,弧形部2111的半径为0.3h-h,相邻的弧形部2111之间的间距d 2为0.6h-2h,第一接地电极211与第一中央电极212之间的间距g 1为0.6h-1.2h,第一接地电极211与水平方向的夹角为0.5°-5°。其中,第一接地电极211与水平方向的夹角指弧形电极阵列所对齐的直线2112与水平方向的夹角。
在一些实施例中,如图2和图4所示,位于第二电极区域22的两侧的第二接地电极222为平面电极,其轮廓为平滑的直线。柠檬形电极阵列包括多个柠檬形电极单元2221,相邻的柠檬形电极单元2221之间相互连接导通,每个柠檬形电极单元2221上均设有椭圆形孔2222。在每个柠檬形电极单元2221的内部均提供一个椭圆形孔2222,可以在弱场强区产生电场梯度,使得受正介电泳力作用(pDEP)的颗粒向强场强区运动的同时,受负介电泳力作用(nDEP)的颗粒更高效地聚集在电极内部,提高分离效果。
柠檬形电极单元2221的长轴大小w 3为8h-15h,短轴大小为4h-8h;第二中央电极222的中心与第二接地电极221之间的间距约为0.8h-1.2h,位于第二中央电极222的两侧的两个第二接地电极221之 间的间距w 4约为0.6h-1.2h。柠檬形电极阵列中,相邻两个柠檬形电极单元2221的顶点处的间距d 3为4h-8h内。柠檬形电极单元2221内,椭圆形孔2222的长轴与水平方向的夹角为10°-40°,椭圆形孔2222的长轴为5h-7h,短轴为2.5h-3.5h,椭圆形孔2222的中心与柠檬形电极单元2221的中心在y轴方向偏移0.5h-1.5h。
进一步地,在一些实施例中,柠檬形电极阵列包括沿流体的流动方向设置的第一阵列段和第二阵列段,每个阵列段均包括多个柠檬形电极单元2221,第一阵列段的多个椭圆形孔2222向上倾斜,第二阵列段的多个椭圆形孔2222向下倾斜。即可以将第二电极区域22分为前半段分离区域和后半段分离区域,位于前半段分离区域的椭圆形孔2222向上倾斜,位于后半段分离区域的椭圆形孔2222向下倾斜,可以对颗粒的运动进行导向,提高分离效果。
本发明实施例提供的微流体介电泳分离装置通过对电极与微流体通道的结构进行设计,无需预聚集操作,通过电极与微流体通道的相互协助作用,即可实现颗粒的高效分离;同时,可以显著提升装置的集成性能,降低与外接设备(例如流速控制仪器)的相互集成或配合难度。
具体地,无需预聚集操作,在使用中大大减少了预聚集操作所带来的繁琐步骤,如:润洗鞘流通道,控制稳定鞘流与样品流速等步骤,直接将流体通入微流体通道1内即可;无需预聚集操作可减少外接精准流速控制仪器的使用数量,可节约实验成本,使得该装置的适用范围更广。
本发明还提供了一种微流体介电泳分离装置的制作方法,包括如下步骤:
步骤S1:在衬底上光刻负胶图案,并通过浇灌加工出微流体通道1;
步骤S2:在玻璃基板3上使用正胶光刻出电极图案,并使用刻蚀工艺形成电极2;
步骤S3:将微流体通道1与刻蚀有电极2的玻璃基板3对准键合。
具体地,微流体介电泳分离装置为一种微流控芯片,可以采用光刻技术加工制作。
步骤S1中,用于制作微流体通道1的材料可采用聚二甲基硅氧烷(polydimethylsiloxane,PDMS),通过在衬底上光刻负胶图案,通过浇灌PDMS转换模型形成通道图案,然后加热固化,形成微流体通道1。微流体通道1为柔性PDMS通道,入口101及出口102部分可以通过打孔器打孔制作。
具体实施中,可以加工出多个入口101及出口102。当设置有多个入口101时,多个入口可以同时通入流体,也可以根据实际需要开启相应的入口101通入流体,并将其他入口关闭。设置有不同的出口102,例如第一出口1021、第二出口1022以及第三出口1023,可以将不同的颗粒有效分离。
衬底可以包括任意合适的材料,例如硅等半导体材料,玻璃、石英等其他无机材料,或者有机玻璃、聚碳酸酯等有机材料。本实施例中,衬底优选为硅片。
步骤S2中,电极2可使用ITO导电材料制作,具体地,在ITO玻璃基板上使用正胶光刻出电极图案,然后使用刻蚀工艺得到ITO电极图案,形成电极2。
步骤S3将加工出通道结构的PDMS材料与刻蚀有电极2的ITO玻璃基板对准并使用Plasma等离子清洗机处理表面后,键合在一起,形成微流体介电泳分离装置,键合后的微流体介电泳分离装置的结构示意图如图1所示。
微流体介电泳分离装置使用时,包含颗粒的流体从入口101通入,ITO电极与外接交流信号发生仪器相连接,以接通电路。
利用上述的制作方法制作微流体介电泳分离装置时,微流体介电泳分离装置的微流体通道参数和电极参数设置如下:
微流体通道1(PDMS通道)的无弯曲处的宽度w 1为420μm,高度h为30μm,微流体通道1内的侧边设有弧形结构11,弧形结构11采用圆弧设计,以提供理想流场,使处于弱场强区的颗粒在流场作用下经过强场强区,且无弯曲处与弯曲处通过平滑的圆角过渡,以避免颗粒在弧形结构11处堆积。弧形结构11的弧顶到流体通道1的最外侧 的侧壁的距离w 2为210μm,相邻的弧形结构11的弧顶之间的间距d 1为2mm。
第一电极区域21的长度约为微流体通道1的长度的1/10,第一接地电极211的弧形部2111的半径为20μm,相邻的弧形部2111之间的间距d 2为60μm,第一接地电极211与第一中央电极212之间的间距g 1为30μm,第一接地电极211与水平方向夹角为1.15°。
第二电极区域22的长度约为微流体通道1的长度的9/10,柠檬形电极阵列中各柠檬形电极单元2221相互连接导通,柠檬形电极单元2221的长轴大小w 3为310μm,短轴大小为180μm;第二中央电极222的中心与第二接地电极221之间的间距约为34μm。相邻两个柠檬形电极单元2221的顶点处的间距d 3为180μm。柠檬形电极单元2221内,椭圆形孔2222的长轴与水平方向的夹角为25°,其中,前半段分离区域的椭圆形孔2222向上倾斜,后半段分离区域的椭圆形孔2222向下倾斜;椭圆形孔2222的长轴为160μm,短轴为80μm,椭圆形孔2222的中心与柠檬形电极单元2221的中心在y轴方向偏移20μm。
上述微流体通道参数和电极参数为微流体介电泳分离装置的优选参数,基于上述参数制作的微流体介电泳分离装置,使用时可以达到较好的分离效果。
采用上述的制作方法,制作方便,可以降低微流体介电泳分离装置的整体制作难度和制作成本,提高该装置的适用范围。
本发明实施例根据以上步骤S1至S3制作的微流体介电泳分离装置,对微流体介电泳分离装置的分离效果进行进一步说明。
实施例一
图5示出了使用本本发明实施例的微流体介电泳分离装置的酵母细胞与PS颗粒的分离示意图,本实施例中,使用7微米粒径的红色聚苯乙烯微球(PS颗粒)与酵母细胞混合,对微流体介电泳分离装置的分离效果进行测试。
首先,将颗粒混合液从入口101通入微流体通道1。因此,混合颗粒不需要经过预聚集操作处理。颗粒混合液的电导率优选为10-100ms/cm范围内,分离酵母与PS颗粒时,采用20Vpp,500kHz的正弦 信号产生电场。如图5所示,酵母细胞受到正介电泳力作用(pDEP),向电极尖端的高场强区域运动。电极2的弯曲结构(弧形部2111)和微流体通道1的弧形结构11有助于将颗粒送至高场强区域,从而显著增加分离效率。
如图1和图5所示,实验中采用脉冲施加电压方式,脉冲施加周期内开0.6s、关0.2s,使受到介电泳力作用的颗粒可以连续分离。最终使得大多数PS颗粒从位于微流体通道1的中间的第二出口1022流出,酵母细胞从位于微流体通道1的两侧的第一出口1021和第三出口1023流出。
实施例二
图6(a)和图6(b)示出了使用本发明实施例的微流体介电泳分离装置的血红细胞与肿瘤细胞的分离示意图,图6(a)的左图中示出了血红细胞与肿瘤细胞刚进入微流体通道1内的状态示意图,图6(a)的右图中示出了血红细胞与肿瘤细胞在第二电极区域22分离后的状态示意图。实施例二采用与实施例一中相同的微流体介电泳分离装置的参数,验证微流体介电泳分离装置对生物细胞分离的可行性。
肿瘤细胞可以为乳腺癌细胞(MDA-MB-231),分离血红细胞(erythrocyte)与乳腺癌细胞采用17Vpp,75kHz正弦信号产生电场。血红细胞与乳腺癌细胞混合液从入口101处通入微流体通道1中,通电后,可实现如图6(a)和图6(b)所示的分离效果。本实施例中,血红细胞的浓度优选为4.9×10 6cells/ml,乳腺癌细胞的浓度优选为1.1×10 6cells/ml。如图6(a)所示,血红细胞与肿瘤细胞的混合液在流速0.6μL/min下可实现较好的分离效果,分离前血红细胞与肿瘤细胞在通道中随机分布,分离后的血红细胞在微流体通道1的中部聚集,并从位于微流体通道1的中间的第二出口1022流出;肿瘤细胞向微流体通道1的两侧运动聚集,并从位于微流体通道1的两侧的第一出口1021和第三出口1023流出。如图6(b)所示,混合液处于准静态流动下,分离效果更为明显。
由上述试验可以看出,利用本发明实施例的微流体介电泳分离装置可以实现良好的细胞分离效果,本装置具有较好的实用性。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (10)

  1. 一种微流体介电泳分离装置,其特征在于,包括:
    微流体通道,用于使包含颗粒的流体流过;
    电极,与所述微流体通道对应设置,所述电极包括沿流体的流动方向依次设置的第一电极区域和第二电极区域,所述第一电极区域靠近所述微流体通道的入口,位于所述第一电极区域的两侧的第一接地电极朝向所述微流体通道内的一侧为弧形电极阵列,位于所述第二电极区域的中部的第二中央电极为柠檬形电极阵列。
  2. 根据权利要求1所述的微流体介电泳分离装置,其特征在于,所述第一电极区域与所述第二电极区域的长度比为0.1-1。
  3. 根据权利要求1所述的微流体介电泳分离装置,其特征在于,位于所述第一电极区域的中部的第一中央电极为平面电极,所述第一中央电极的轮廓为平滑的直线;位于所述第二电极区域的两侧的第二接地电极为平面电极,所述第二接地电极的轮廓为平滑的直线。
  4. 根据权利要求3所述的微流体介电泳分离装置,其特征在于,所述微流体通道呈曲线形状,所述微流体通道包括弯曲处和无弯曲处,所述无弯曲处的宽度为8h-15h,其中,h表示所述微流体通道的高度,所述微流体通道的高度为10μm-80μm。
  5. 根据权利要求4所述的微流体介电泳分离装置,其特征在于,所述第一接地电极的弧形电极阵列包括多个弧形部,多个所述弧形部沿所述微流体通道的长度方向间隔一定的距离阵列设置,所述弧形部为圆弧结构,所述弧形部的半径为0.3h-h,相邻的所述弧形部之间的间距为0.6h-2h,所述第一接地电极与所述第一中央电极之间的间距为0.6h-1.2h,所述第一接地电极与水平方向的夹角为0.5°-5°。
  6. 根据权利要求3所述的微流体介电泳分离装置,其特征在于,所述柠檬形电极阵列包括多个柠檬形电极单元,相邻的所述柠檬形电极单元之间相互连接导通,每个所述柠檬形电极单元上均设有椭圆形通孔。
  7. 根据权利要求6所述的微流体介电泳分离装置,其特征在于,所述柠檬形电极单元的长轴大小为8h-15h,所述柠檬形电极单元的短轴大小为4h-8h;所述第二中央电极的中心与所述第二接地电极之间的 间距为0.8h-1.2h;所述柠檬形电极阵列中,相邻两个所述柠檬形电极单元的顶点处的间距为4h-8h;所述柠檬形电极单元内,所述椭圆形孔的长轴与水平方向的夹角为10°-40°,所述椭圆形孔的长轴为5h-7h,所述椭圆形孔的短轴为2.5h-3.5h,其中,h表示所述微流体通道的高度。
  8. 根据权利要求6所述的微流体介电泳分离装置,其特征在于,所述柠檬形电极阵列包括沿流体的流动方向设置的第一阵列段和第二阵列段,所述第一阵列段的多个椭圆形孔向上倾斜,所述第二阵列段的多个椭圆形孔向下倾斜。
  9. 一种微流体介电泳分离装置制作方法,其特征在于,包括:
    在衬底上光刻负胶图案,并通过浇灌加工出微流体通道;
    在玻璃基板上使用正胶光刻出电极图案,并使用刻蚀工艺形成电极;
    将所述微流体通道与刻蚀有所述电极的玻璃基板对准键合。
  10. 根据权利要求9所述的微流体介电泳分离装置制作方法,其特征在于,所述微流体通道采用聚二甲基硅氧烷制作,所述电极使用ITO导电材料制作。
PCT/CN2021/117085 2020-09-11 2021-09-08 微流体介电泳分离装置及微流体介电泳分离装置制作方法 WO2022052932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010950519.1 2020-09-11
CN202010950519.1A CN112034029B (zh) 2020-09-11 2020-09-11 微流体介电泳分离装置及微流体介电泳分离装置制作方法

Publications (1)

Publication Number Publication Date
WO2022052932A1 true WO2022052932A1 (zh) 2022-03-17

Family

ID=73588710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117085 WO2022052932A1 (zh) 2020-09-11 2021-09-08 微流体介电泳分离装置及微流体介电泳分离装置制作方法

Country Status (2)

Country Link
CN (1) CN112034029B (zh)
WO (1) WO2022052932A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074240A (zh) * 2022-06-15 2022-09-20 大连海事大学 一种基于可变形微液滴的介电泳微颗粒多级分选装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034029B (zh) * 2020-09-11 2022-12-20 华南师范大学 微流体介电泳分离装置及微流体介电泳分离装置制作方法
CN113189180B (zh) * 2021-03-29 2022-09-16 大连海事大学 一种基于交流-介电泳的微藻表征与识别装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683745A (zh) * 2013-08-29 2016-06-15 阿波赛尔公司 用于目标颗粒的分离、捕获和分子分析的方法和装置
US20160299138A1 (en) * 2015-04-10 2016-10-13 The Curators Of The University Of Missouri High Sensitivity Impedance Sensor
CN106824318A (zh) * 2017-03-29 2017-06-13 哈尔滨工业大学 一种基于诱导电荷电渗和介电泳的微尺度颗粒分离芯片及其制备方法与应用
CN109225366A (zh) * 2018-10-12 2019-01-18 大连海事大学 一种基于纳米-微米组合通道交流介电泳的高通量细胞分离装置及方法
CN109456879A (zh) * 2018-12-18 2019-03-12 北京化工大学 用于细胞分选与聚焦的介电泳微流控芯片及其免对准微加工方法
CN112034029A (zh) * 2020-09-11 2020-12-04 华南师范大学 微流体介电泳分离装置及微流体介电泳分离装置制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100457239C (zh) * 2005-12-30 2009-02-04 财团法人工业技术研究院 多样品微流体介电泳分离装置
WO2010104856A2 (en) * 2009-03-09 2010-09-16 Virginia Tech Intellectual Properties, Inc. Devices and methods for contactless dielectrophoresis for cell or particle manipulation
US9873129B1 (en) * 2016-12-19 2018-01-23 Charlot Biosciences, Inc. Multi-planar microelectrode array device and methods of making and using same
CN108977343B (zh) * 2018-09-04 2022-03-29 哈尔滨工业大学 基于介电泳原理的用于细胞分离与捕获的微流控芯片
CN211255889U (zh) * 2019-11-26 2020-08-14 海南大学 一种三角电极红细胞与血小板微分离装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683745A (zh) * 2013-08-29 2016-06-15 阿波赛尔公司 用于目标颗粒的分离、捕获和分子分析的方法和装置
US20160299138A1 (en) * 2015-04-10 2016-10-13 The Curators Of The University Of Missouri High Sensitivity Impedance Sensor
CN106824318A (zh) * 2017-03-29 2017-06-13 哈尔滨工业大学 一种基于诱导电荷电渗和介电泳的微尺度颗粒分离芯片及其制备方法与应用
CN109225366A (zh) * 2018-10-12 2019-01-18 大连海事大学 一种基于纳米-微米组合通道交流介电泳的高通量细胞分离装置及方法
CN109456879A (zh) * 2018-12-18 2019-03-12 北京化工大学 用于细胞分选与聚焦的介电泳微流控芯片及其免对准微加工方法
CN112034029A (zh) * 2020-09-11 2020-12-04 华南师范大学 微流体介电泳分离装置及微流体介电泳分离装置制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074240A (zh) * 2022-06-15 2022-09-20 大连海事大学 一种基于可变形微液滴的介电泳微颗粒多级分选装置及方法

Also Published As

Publication number Publication date
CN112034029B (zh) 2022-12-20
CN112034029A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2022052932A1 (zh) 微流体介电泳分离装置及微流体介电泳分离装置制作方法
Chen et al. A simplified microfluidic device for particle separation with two consecutive steps: induced charge electro-osmotic prefocusing and dielectrophoretic separation
CN100577266C (zh) 方向可控的微流体介电泳颗粒分离装置
EP2010323B1 (en) Method and device for electrokinetic manipulation
JP4627946B2 (ja) 誘電泳動装置および方法
Tajik et al. Simple, cost-effective, and continuous 3D dielectrophoretic microchip for concentration and separation of bioparticles
US20060196772A1 (en) Microfluidic device including membrane having nano- to micro-sized pores and method of separating polarizable material using the same
CN104096608B (zh) 一种分离式微米级粒子自动组装、分选器件及其制作方法
CN108465491A (zh) 微流控芯片、生物检测装置和方法
SE522801C2 (sv) Anordning för att separera suspenderade partiklar från en fluid med ultraljud samt metod för sådan separering
US20180111124A1 (en) High-throughput selective capture of biological cells by dielectrophoresis at a bipolar electrode array
JP6796932B2 (ja) 分離装置
KR100899138B1 (ko) 미소입자 처리장치
US9630187B2 (en) Dielectrophoretic particle concentrator and concentration with detection method
CN106190828A (zh) 一种基于介电电泳效应的细胞多级过滤装置
CN110170341A (zh) 利用声表面波技术实现粒子高通量分选的数字微流控器件
Li et al. Continuous particle separation of microfluidic chip with integrated inertial separation and dielectrophoresis separation
KR100942364B1 (ko) 미세 입자분리 장치
TW201238650A (en) Particle transporter
CN113234588A (zh) 一种基于不对称孔的直流介电泳细胞外泌体分离装置及方法
JP6811381B2 (ja) 誘電泳動に適した濃縮装置およびそれを用いて粒子を濃縮する方法
CN110193386A (zh) 一种基于介电电泳/电浸润效应的微流芯片
EP3842146A1 (en) Method for continuously separating components from a sample
US20210199623A1 (en) Method for Continuously Separating Components From a Sample
US11454583B2 (en) Field-array free flow fractionation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865986

Country of ref document: EP

Kind code of ref document: A1